

 © 2020 Julanar Ahmed Fadhil, Koh Tieng Wei and Kew Si Na. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Review

Artificial Intelligence for Software Engineering: An Initial

Review on Software Bug Detection and Prediction

1Julanar Ahmed Fadhil, 1Koh Tieng Wei and 2Kew Si Na

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia
2Faculty of Social Sciences and Humanities, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Malaysia

Article history

Received: 29-10-2020

Revised: 12-12-2020

Accepted: 16-12-2020

Corresponding Author:

Koh Tieng Wei

Faculty of Computer Science

and Information Technology,

Universiti Putra Malaysia

(UPM), Serdang, Malaysia

Email: twkoh@upm.edu.my

Abstract: The need for speed and quality in delivering all software

engineering artifacts has inevitably remained the biggest challenge in

today’s software development environment. While everyone caters to

complex software engineering processes, new releases are expected by the

market on almost a daily basis. Thus, several Artificial Intelligence (AI)

techniques have been introduced that are intensively used in the modern

software engineering industry to fulfill market needs. This paper presents

the initial results of our review work on software bug detection and

prediction studies using AI techniques. Our focus is to (i) identify factors

affecting the effectiveness of current software bug detection and prediction

techniques and (ii) identify the effectiveness of AI techniques in improving

current software bug detection and prediction techniques. The evidence

showed that the software engineering domain has utilized artificial

intelligence approaches and techniques to facilitate the complex tasks of

software bug detection and bug prediction. It mainly demonstrates the

significance of merging artificial intelligence with the software engineering

domain in terms of reduced overhead and efficient results to enhance the

quality of software products.

Keywords: Artificial Intelligence, Software Engineering, Bug Detection

and Prediction

Introduction

Conceptually, software engineering mainly
concentrates on the scientific and systematic
mechanisms involved in developing, maintaining,

operating and retiring software products. However, the
software development process is considered a very
complicated process that currently represents a primarily
human activity (Mall, 2018). Software engineering is
considered an intensive knowledge activity, which
requires extensive application domain knowledge of

specific target software. Programming and software
development require various categories of previous
knowledge in both the programming and problem
domains. A final solution should include a combination
of both knowledge types to provide efficient and reliable
software (Jabangwe et al., 2018). Despite the

disciplinary and systematic natures of software
development, it is subject to various issues and
limitations. Simulating the human mind and behaviors is
one of the most difficult issues and computer awareness
also represents another obstacle for software

engineering. Also, sequential approaches and fixed
phases are widely adopted process models in software
engineering, so, by nature, software products are not

flexible (Fitzgerald and Stol, 2017). Furthermore,
software that depends on real time becomes difficult to
optimize using software engineering. Many costs of
software products are attributed to current techniques
that are ineffective in managing that knowledge.
Therefore, artificial intelligence techniques can be

efficient alternative solutions.

Artificial intelligence can be referred to as a

fundamental computer science field which mainly

focuses on creating intelligent machines and approaches.

It includes the design and implementation of various

intelligent methods. Artificial intelligence research is

extremely technical and deeply specialized. It can be

categorized into various sub-categories that are often not

communicated effectively (Jackson, 2019). On the other

hand, artificial intelligence is also reported as having

various types of issues and limitations. However, various

traits, including learning, knowledge reasoning and

Julanar Ahmed Fadhil et al. / Journal of Computer Science 2020, 16 (12): 1709.1717

DOI: 10.3844/jcssp.2020.1709.1717

1710

planning as well as the ability to move, communicate with

and manipulate objects, represent fundamental problems

in the field of artificial intelligence. General intelligence

or strong artificial intelligence is still considered one the

long-term goals of the field. Presently, not all features and

characteristics of human intelligence have been properly

captured. Recently, artificial intelligence research has

focused more often on fields of distinguished application,

where the full extent of artificial intelligence capabilities is

not required (Acemoglu and Restrepo, 2018). Both software

engineering and artificial intelligence are considered critical

fields of the computer science. The specifications of both

software engineering and artificial intelligence have been

separately developed during the last decades with little

exchange of research results. However, both computer

science fields include various features and drawbacks.

Therefore, integrating artificial intelligence with software

opens the door for various possibilities and ideas.

Software engineering is considered a formal and

scientific approach used to implement, develop, evaluate

and superannuate software products. Despite the

disciplined and systematic approaches used in software

engineering, it still has multiple issues and limitations.

Initially, the simulation of the human mind or its actions

was considered a complex task to be handled with the

utilization of software engineering. However, software

engineering does not support the computer consciousness

and quick solving of NP-complete problems, which are

impossible to process in polynomial time (Tunio et al.,

2018). Finally, the majority of software engineering

process models utilize the sequential approach and fixed

phases, which result in inflexibility of software.

Ultimately, due to the low cost of building software,

formal methods for engineering validation are not used

widely in software development for real implementation.

Software development is considered a profession more

than an engineering exercise due to a lack of firmness in

the fundamental processes of design improvement and

validation (Ramirez et al., 2018).

The tremendous growth of research on emerging

techniques in artificial intelligence for implementing

software engineering in recent years has resulted in an

increasing number of publications and projects (Kumari and

Kulkarni, 2018). A dedicated number of journals and

conferences have focused on artificial intelligence

integration with software engineering to propose various

researches on this attractive topic. The main goal of

proposing artificial intelligence approaches is to minimize

the market time and provide software system quality

enhancement. Thus, the majority of artificial intelligence

approaches still utilized by researchers have had a minor

impact on the tools and processes of practicing software

engineers (Kulkarni and Padmanabham, 2017).

In this review paper, we attempt to present the latest

efforts and ways of utilizing artificial intelligence in

software engineering. These efforts can help to bridge

the gap between researchers’ proposals and artificial

intelligence-based applied techniques to handle issues in

software engineering.

The rest of this paper is organized as follows. Section

2 presents the background of the software lifecycle and

potential factors which need to be considered when

integrating software engineering and artificial intelligence.

Section 3 presents the methodology used for this paper for

reviewing the latest approaches for integrating software

engineering and artificial intelligence. Section 4 provides

a detailed review of various artificial intelligence

approaches used in three main complex trends of software

engineering, including cost estimation, bug detection and

bug prediction. A discussion then investigates the results

of applying various artificial intelligence methods for

software engineering.

Background

In this section, a brief introduction to the software

development lifecycle is introduced. The IEEE 12207

standard comprises the main framework for the software

development lifecycle process. It mainly provides well

defined terminology, which can be utilized by all clients.

This standard includes all tasks, processes and activates

related to the development process of any software

system, including standalone software or software as a

service. The lifecycle covers requirements for all phases

of analysis, design, implementation, testing and

evolution, as shown in Fig. 1.

Fig. 1: Lifecycle of software system development

Julanar Ahmed Fadhil et al. / Journal of Computer Science 2020, 16 (12): 1709.1717

DOI: 10.3844/jcssp.2020.1709.1717

1711

System and software architectures play critical roles

in assigning management activities when software

systems are being developed and maintained. The

activities and associated documents of the development

process workflow are provided by the IEEE standard.

The activity of the system architecture design that

generates the software architecture, the software

requirements and allocation description documents

represent the highest level of the system architecture and

mainly define the hardware and software components of

that system. After that, these components are developed

separately and concurrently. The development of software

components is initialized by the software requirements

analysis phase, which results in the documentation of the

software requirements specification. The software

architecture design phase then generates the software

architecture description documents and software

interface design description. The software coding and

testing activities come in the next stage.
Since the artificial intelligence concept was

postulated, an increasing utilization of artificial

intelligence mechanisms, algorithms, tools and

implementations have been reported in various fields,

particularly in the field of software engineering. There is

increasing research interest in emerging artificial

intelligence techniques in software engineering.

However, various factors were considered before the

emergence of artificial intelligence and software

engineering. These factors include communication

levels, objectives, problems, motivations and drawbacks

(Shehab et al., 2020).

Communication Level

The main goal of software engineering is to study,

build and enhance the quality of delivered software.

Efficient software involves the reduction of time and

cost overheads in the building stage. These goals focus

on various issues, including reliability, productivity,

software reusability and software maintenance. Artificial

intelligence is similar to software engineering in both

targets and issues (Wangoo, 2018). A solution for these

issues has been the main target of research that has

focused on these issues. The main problem in interacting

at the solution level is that there is a chance for solution

exchange from one domain to another. Thus, proposed

research needs to be related to problems rather than

solutions, where proposed solutions must fit existing

problems. Several misconceptions between artificial

intelligence and software engineering are caused by

attempts to bridge the gap between these two domains at

the solution level without reference to objectives.

Software engineering contrasts with artificial intelligence

in that it is considered an engineering discipline for

software quality, efficient development and maintenance.

Objective Level

The second factor is that artificial intelligence and

software engineering have different purposes, objectives

and goals. Although both concepts are involved in the

software development lifecycle, both have different targets.

The main target of artificial intelligence is to develop

intelligent applications or devices. On the other hand,

software engineering mainly targets the development of

reliable and high quality applications within stipulated

time periods in accordance with disciplines, approaches

and optimized costs (Erlenhov et al., 2019).

Problem Level

Interaction between artificial intelligence and

software engineering can result in various problems

because both concepts are meant to handle different

problems. Artificial intelligence handles issues that need

solutions regarding methods that are not well understood

(Afzal and Torkar, 2008). Therefore, artificial

intelligence researchers have proposed multiple powerful

tools and methods for programming and associated

techniques. Software engineering handles issues related

to processes used for the simulation of human behavior

and computer consciousness that can be achieved within

the limits of the discipline. The sequential approach is

the major approach, which is used by process models in

software engineering. However, engineers have

experienced high levels of difficulty in implementing

real-time software utilizing software engineering

approaches (Ammar et al., 2012).

Motivation Level

Artificial intelligence and software engineering have

different implementation approaches. Artificial

intelligence handles issues related to the implementation

of human behavior and emotion and software

intelligence. Software engineering, on the other hand,

handles issues related to productivity, maintenance and

software reliability (Ammar et al., 2012). Despite these

differences, there are various motivations which push

toward the integration of artificial intelligence methods,

techniques and tools within software engineering. These

motivations include:

1. The concept of automatic programming is a new

paradigm for software engineering in research which

can directly result from artificial intelligence

software integration

2. The development and maintenance environments of

artificial intelligence need to be fit for direct

application to the software engineering process

3. Artificial intelligence methodology and

approaches need to be applied to the design

process of software building

Julanar Ahmed Fadhil et al. / Journal of Computer Science 2020, 16 (12): 1709.1717

DOI: 10.3844/jcssp.2020.1709.1717

1712

4. The rapid architecture of the artificial intelligence

model is useful in the software engineering model

Drawbacks Level

Many reasons offered in suggesting approaches for
merging artificial intelligence and software engineering
are not applicable (Harman, 2012). The reasons for this
pessimism include:

1. The sequential approach and non-flexible phases

adopted by a majority of software engineering
process models do not fit models proposed by
artificial intelligence

2. Human behavior is difficult to simulate utilizing
software engineering

3. Software engineering does not support the computer
consciousness concept

4. Practitioners in the subfields of artificial intelligence,
which are deeply divided, overwhelmingly fail to
communicate with each other, making it more
difficult to communicate with software engineering
practitioners

Artificial Intelligence in Software

Engineering

In this study, artificial intelligence models are
investigated to provide the required topics programmers
and researchers need in order to investigate, understand,
communicate and discover the advantages and
disadvantages of merging artificial intelligence
approaches with software systems. We consider few
domains of artificial intelligence including data mining,
neural networks, knowledge-based systems, fuzzy logic
and machine learning. Recent papers are reviewed to
investigate which artificial intelligence domains have
been utilized to facilitate software engineering models.

Various software engineering problems utilize data

mining as an expected solution. Various researches have

been proposed that focus on three problem areas from

the perspective of data mining in software engineering.

These categories include software error prediction,

software cost estimation and bug prediction due to

software changes (Wang and Srinivasan, 2017).
The bug detection in the initial stages of the software

development process is very important for quality
assurance and it has been widely adopted for a long time.
Testing and bug fixing in software engineering are very
expensive and require high levels of resources.

Many researchers have used artificial intelligence
approaches to detect and predict software bugs in the
early stages of software development. These approaches
include logistic regression, principal component
analysis, logical classification, layered neural network
models, discriminant analysis and holographic networks
(Iqbal et al., 2019). The back-propagation learning
technique has been used to build neural networks.
Performance has also been investigated through predictive
validity, misclassification rate, cost verification and
achieved quality (Lamba and Mishra, 2019).

Detection of Software Bugs

Software bugs are very critical when the software
reaches the production stage as bugs minimize client
satisfaction and thus threaten software companies’
reputations (Uddin et al., 2017). Software bug detection
is one of the biggest areas to attract researchers’ efforts
to reduce the consequences of these bugs. Recent
researches have argued that up to half of developers and
software testers efforts are spent on avoidable work
(Hindle and Onuczko, 2019), the majority of which
results from system defects (Wikar, 2019). The process
of defect management is shown in Fig. 2, which includes
defect prevention, deliverable baseline, defect discovery,
defect resolution and process improvement. Thus, defect
discovery presents a fundamental stage for later stages in
which defects can be handled efficiently.

Fig. 2: Defect handling process

Defect Management Process

Management Reporting

Defect

Prevention
Deliverable

Baseline

Defect

Discovery

Defect

Resolution

Process

Improvement

Julanar Ahmed Fadhil et al. / Journal of Computer Science 2020, 16 (12): 1709.1717

DOI: 10.3844/jcssp.2020.1709.1717

1713

Table 1: Software engineering bug detection approaches using AI techniques

Proposed work Main features and ideas AI techniques

A mining approach to obtain the software It proposed a mining algorithm for vulnerabilities to efficiently Data mining
vulnerability characteristics (Li et al., 2017b) detect and analyze the essential software vulnerability
 characteristics depending on data-mining approaches.
NAR-miner for discovering negative association The NAR-miner system was designed to extract negative association Data mining
rules from code for bug detection (Bian et al., 2018) programming rules automatically from large-scale systems
 and then detect their violations to find bugs.
An ontology-based approach to automate tagging of A completely automated classification and tagging approach was Ontologies
software artifacts (Alqahtani and Rilling, 2017) proposed. It has the ability to extract security tags from texts
 with no need to train the system on manual training data.
Software behavior decision trees for defect detection This layered detection technology is based on a software behavior Decision tree
technology (Chen et al., 2018) decision tree model.
Test-driven ontology development in Protégé An ontology was proposed based on both logic and test-driven Ontology
(Schekotihin et al., 2018) development approaches. It was mainly fed by a queue from test-
 driven development in the software engineering field, then
 processed and detected bugs were presented.
DWEN: Deep word embedding network for The proposed approach mainly works on detecting and tagging Neural network
duplicate bug report detection in software repositories duplicate bug reports. This approach is important to mitigate same
(Budhiraja et al., 2018) bug assignment to different developers. Detection of bugs and their
 elimination can significantly reduce the cost of the software
 development process.
MODE: Automated neural network model debugging This proposed debugging approach mainly works by conducting Neural network
via state differential analysis and input selection differential analysis on the model state to detect and analyze the
(Ma et al., 2018) internal model features which cause bugs. It then starts training input
 selection, which is like program input selection in regression testing.
DeBGUer: A Tool for bug prediction and diagnosis DeBGUer was proposed as a web-based application that can be used Fault prediction
(Elmishali et al., 2019) to predict and segregate software bugs. It was implemented on model
 different levels for learning, diagnosing and planning (LDP) the
 approach. The LDP paradigm was a newly introduced approach for
 integrating artificial intelligence and software engineering
 for detecting software bugs and for the correction process.
An artificial intelligence paradigm for It integrated three artificial intelligence technologies: Machine learning
troubleshooting software bugs (Elmishali et al., 2018) 1. Machine learning, which worked on learning from the structure of
 the source code and history revisions of failures to identify
 software components that likely have bugs,
 2. Automated diagnosis, which included the software component
 specifications which require modification to fix detected bugs,
 3. Automated planning, which planned extra tests when
 required to enhance the accuracy of bug diagnostics.

The main idea is that the high cost of software testing

challenges practitioners to look for knowledge useful in
detecting defects that exist prior to the testing process
(Sheneamer and Kalita, 2016). In achieving this, the
predictors of software bugs are basically data mining
approaches that help in prioritizing the software modules
list to be used in tests to effectively assign limitations to
testing resources and thus discover most of the existing
defects with minimal effort and cost (Pandey et al.,
2017). There is a positive trend in the number of studies
applying intelligent techniques to agile software
development (Perkusich et al., 2020). The most popular
ones are effort estimation, requirements prioritization,
resource allocation, requirements selection and
requirements management (Xie, 2018). Table 1 shows
recently proposed approaches for software bug detection
using artificial intelligence approaches.

Prediction of Software Bugs

Software bugs can also result from software

configuration changes at run time. This type of bug can

result in more catastrophic effects (Zhang et al., 2016).

Therefore, researchers started investigating the utilization

and the integration of artificial intelligence approaches for

bug prediction when there is a change in the software

configuration or for input which has a high probability of

generating bugs. The proposed approaches work on

allowing high-risk updates to be directly identified after the

code commit process when the changes happen rather than

waiting for completing the whole software module and

entering the implementing phase (Lanza et al., 2016).

The efficiency of defect predicting is shown in Fig. 3

(Arar and Ayan, 2015). The defect predictor is very

beneficial for the testing phases, which consume high

levels of effort and high costs. It can divide the output

modules based on what requires more effort and what

requires less testing effort.

When the code updates are committed, the change

contexts are still fresh in the mind of the developer, which

can make it easier for him to analyze for discovered bugs

and connect that with other findings. The prediction

models based on bug-inducing changes for specific

software applications can be implemented depending on

information that describes prior software updates.

Julanar Ahmed Fadhil et al. / Journal of Computer Science 2020, 16 (12): 1709.1717

DOI: 10.3844/jcssp.2020.1709.1717

1714

Table 2: Software engineering bug prediction approaches using AI techniques

Proposed work Main features and idea AI techniques

Severity prediction of software bugs It combined strong classification methods with a Classification algorithms

(Otoom et al., 2016) proposed feature set to enhance bug severity predicting.

 The proposed approach utilized a boosting algorithm to

 enhance performance.

Software defect prediction via convolutional A framework called Defect Prediction was proposed Deep learning

neural networks (Li et al., 2017a) utilizing a Convolutional Neural Network (DP-CNN). It

 leveraged the concept of deep learning to generate effective

 features based on the programs’ Abstract Syntax Trees (ASTs).

Software bug prediction using machine This was a machine-learning-based software bug prediction Naive Bayes classifiers,

learning approach (Hammouri et al., 2018) model. Three supervised machine-learning algorithms were decision trees and neural

 used to efficiently predict the expected software faults networks

 depending on collected historical data. Utilized classifiers

 include naive Bayes classifiers, decision trees and artificial

 neural networks.

BPDET: An effective software bug prediction This was a primitive classification approach proposed Classification algorithms

model using deep representation and ensemble depending on a framework for bug prediction using Deep and deep learning

learning techniques (Pandey et al., 2020) Representation and Ensemble Learning (BPDET) approaches

 for software bug prediction. Ensemble Learning (EL) and

 Deep Representation (DR) were applied. Conventional

 software metrics were used for software bug prediction.

 A Staked Denoising Auto-Encoder (SDA) was utilized to

 deeply represent the software metrics, which is considered

 a robust learning feature.

A comprehensive model for using Bayesian It adopted two different types of classifier to predict Bayesian network and

network classifiers for software bug bugs: General Bayesian networks and augmented naive Bayes classifier

prediction prototypes (Pandey et al., 2018) classifiers. They also compared different Bayesian classifiers

 and networks in terms of their efficiency in bug prediction.

Deep-neural-network-based hybrid approach A hybrid approach was proposed which integrated Deep Neural network

for software defect prediction using software Neural Networks (DNNs) for classification and genetic

metrics (Manjula and Florence, 2019) algorithms for feature optimization. An enhanced version

 of genetic algorithm was incorporated, which included a

 novel technique for fitness function computation and

 chromosome designing.

Software bug prediction system using neural This was a software bug prediction model using gradient Neural network

networks (Kumar and Gupta, 2016) descent adoptive learning back-propagation techniques.

Fig. 3: Defect prediction output

Previous versions Current version

Training data
Input: Quality metrics

Output: Defective or

non-defective

Defect

predictor

Software modules Software modules

Input: Quality metrics

Output: unknown

Defective

modules
Non-defective

modules

Test more Test more

Julanar Ahmed Fadhil et al. / Journal of Computer Science 2020, 16 (12): 1709.1717

DOI: 10.3844/jcssp.2020.1709.1717

1715

Pervious updates can be fetched using version control

systems (Lamba and Mishra, 2019). The automation of

software testing and evaluation can be implemented

using various AI approaches (Fehlmann and Kranich,

2017). Tools used for implementing such an approach

are test stories and test cases that use a formal language

to be machine-readable (Fehlmann, 2020).

Table 2 summarizes the recently proposed approaches

for software bug prediction using artificial intelligence.

Discussion

The main purpose of this work was to investigate the
emergence and integration levels of artificial intelligence
techniques in various levels and models of software

engineering. An initial review of recently proposed
researches utilizing artificial intelligence techniques to
facilitate various tasks of software engineering was
conducted. This review demonstrates the significance of
utilizing artificial intelligence techniques, including
machine learning, data mining, neural networks, deep

learning and classification methods, to facilitate software
engineering tasks. These models succeeded in reducing
the overhead of implementation and provided efficient
results in applying core concepts of software
engineering, including bug detection and bug prediction.

The examples demonstrated reduced effort and

costs in terms of the design, implementation and use
of artificial intelligence mechanisms to perform
various tasks in software engineering. The automation
features and learning techniques have significantly
enhanced the output of software engineering models
and achieved more resilient results in terms of

accuracy and overhead reduction.
Neural networks and deep learning have been widely

utilized to estimate the required information from current
software projects and provide reliable feedback for
future updates and projects where artificial intelligence
learning has noticeably reduced the required efforts and

achieved better results. Various data-mining methods are
implemented in software engineering data mining for
software bug detection and prediction. Artificial
intelligence techniques, including clustering,
classification and regression, have changed approaches
utilized in visualization modelling and exploratory data

analysis. Software developers now more frequently
utilize artificial intelligence techniques and business
intelligence approaches to support their software skills
and facilitate the daily process of decision making for
bug detection and prediction.

Conclusion

This paper presents an initial review of the

approaches used in the integration of artificial

intelligence and software engineering. It investigates

how the software engineering domain has utilized

artificial intelligence approaches and techniques to

facilitate the complex tasks of software bug detection and

bug prediction. It mainly demonstrates the significance of

merging artificial intelligence with the software

engineering domain in terms of reduced overhead and

efficient results to enhance the quality of software

products. We have also presented an analysis of various

artificial intelligence techniques that are utilized in the

field of software engineering from different perspectives.

Acknowledgement

This study has been funded by the Ministry of

Education (MOE) Malaysia under Fundamental

Research Grant (FRGS) project no. 05-01-19-2199FR

(5540324). The authors would like to thank the editors

and all anonymous reviewers for valuable comments.

Author’s Contributions

Julanar Ahmed Fadhil: Collecting, reviewing,

synthesizing relevant literature and drafting

manuscript contents.

Koh Tieng Wei: Supervising, revising manuscript

contents and editing manuscript.

Kew Si Na: Reviewing and editing manuscript.

Ethics

This article is original and contains unpublished

material. All authors have read and approved the

manuscript and no ethical issues are involved.

References

Acemoglu, D., & Restrepo, P. (2018). Artificial

intelligence, automation and work (No. w24196).

National Bureau of Economic Research.

Afzal, W., & Torkar, R. (2008, October). A comparative

evaluation of using genetic programming for

predicting fault count data. In 2008 The Third

International Conference on Software Engineering

Advances (pp. 407-414). IEEE.

Alqahtani, S. S., & Rilling, J. (2017, November). An

ontology-based approach to automate tagging of

software artifacts. In 2017 ACM/IEEE International

Symposium on Empirical Software Engineering and

Measurement (ESEM) (pp. 169-174). IEEE.

Ammar, H. H., Abdelmoez, W., & Hamdi, M. S. (2012,

February). Software engineering using artificial

intelligence techniques: Current state and open

problems. In Proceedings of the First Taibah

University International Conference on Computing

and Information Technology (ICCIT 2012), Al-

Madinah Al-Munawwarah, Saudi Arabia (p. 52).

Julanar Ahmed Fadhil et al. / Journal of Computer Science 2020, 16 (12): 1709.1717

DOI: 10.3844/jcssp.2020.1709.1717

1716

Arar, Ö. F., & Ayan, K. (2015). Software defect

prediction using cost-sensitive neural network.

Applied Soft Computing, 33, 263-277.

Bian, P., Liang, B., Shi, W., Huang, J., & Cai, Y. (2018,

October). NAR-miner: discovering negative

association rules from code for bug detection. In

Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and

Symposium on the Foundations of Software

Engineering (pp. 411-422).

Budhiraja, A., Dutta, K., Reddy, R., & Shrivastava, M.

(2018, May). DWEN: deep word embedding

network for duplicate bug report detection in

software repositories. In Proceedings of the 40th

International Conference on Software Engineering:

Companion Proceeedings (pp. 193-194).
Chen, X. Z., Ding, H. X., Zhang, J., Yang, W. A. N. G.,

Zhang, G., & Wang, Y. N. (2018). An Artificial
Intelligence (AI) Defect Detection Technology
Based on Software Behavior Decision Tree.
DEStech Transactions on Computer Science and
Engineering, (CCNT).

Elmishali, A., Stern, R., & Kalech, M. (2018). An

artificial intelligence paradigm for troubleshooting

software bugs. Engineering Applications of

Artificial Intelligence, 69, 147-156.
Elmishali, A., Stern, R., & Kalech, M. (2019, July).

DeBGUer: A Tool for Bug Prediction and
Diagnosis. In Proceedings of the AAAI Conference
on Artificial Intelligence (Vol. 33, pp. 9446-9451).

Erlenhov, L., de Oliveira Neto, F. G., Scandariato, R., &
Leitner, P. (2019, May). Current and future bots in
software development. In 2019 IEEE/ACM 1st
International Workshop on Bots in Software
Engineering (BotSE) (pp. 7-11). IEEE.

Fehlmann, T., & Kranich, E. (2017, October).
Autonomous real-time software & systems testing.
In Proceedings of the 27th International Workshop
on Software Measurement and 12th International
Conference on Software Process and Product
Measurement (pp. 54-63).

Fehlmann, T. M. (2020). Autonomous Real-Time
Testing: Testing Artificial Intelligence and Other
Complex Systems. Logos Verlag Berlin GmbH.

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software
engineering: A roadmap and agenda. Journal of
Systems and Software, 123, 176–189.

Hammouri, A., Hammad, M., Alnabhan, M., &

Alsarayrah, F. (2018). Software bug prediction

using machine learning approach. International

Journal of Advanced Computer Science and

Applications, 9(2), 78-83.

Harman, M. (2012, June). The role of artificial

intelligence in software engineering. In 2012 First

International Workshop on Realizing AI Synergies

in Software Engineering (RAISE) (pp. 1-6). IEEE.

Hindle, A., & Onuczko, C. (2019). Preventing duplicate

bug reports by continuously querying bug reports.

Empirical Software Engineering, 24(2), 902–936.

Iqbal, A., Aftab, S., Ali, U., Nawaz, Z., Sana, L.,

Ahmad, M., & Husen, A. (2019). Performance

analysis of machine learning techniques on software

defect prediction using NASA datasets. Int. J. Adv.

Comput. Sci. Appl, 10(5).

Jabangwe, R., Edison, H., & Duc, A. N. (2018).

Software engineering process models for mobile app

development: A systematic literature review. Journal

of Systems and Software, 145, 98–111.

Jackson, P. C. (2019). Introduction to artificial

intelligence. Courier Dover Publications.

Kulkarni, R. H., & Padmanabham, P. (2017). Integration

of artificial intelligence activities in software

development processes and measuring effectiveness

of integration. IET Software, 11(1), 18–26.

Kumar, R., & Gupta, D. (2016). Software bug prediction

system using neural network. European Journal of

Advances in Engineering and Technology, 3(7), 78-84.
Kumari, V., & Kulkarni, S. (2018). Use of artificial

intelligence in software development life cycle:
Requirements and its model. Int. Res. J. Eng.
Technol. (IRJET), 5(8), 398–403.

Lamba, T., & Mishra, A. (2019). Optimal machine
learning model for software defect prediction.
International Journal of Intelligent Systems and
Applications, 10(2), 36.

Lanza, M., Mocci, A., & Ponzanelli, L. (2016). The
tragedy of defect prediction, prince of empirical
software engineering research. IEEE Software,
33(6), 102–105.

Li, J., He, P., Zhu, J., & Lyu, M. R. (2017a, July).
Software defect prediction via convolutional neural
network. In 2017 IEEE International Conference on
Software Quality, Reliability and Security (QRS)
(pp. 318-328). IEEE.

Li, X., Chen, J., Lin, Z., Zhang, L., Wang, Z., Zhou, M.,

& Xie, W. (2017b, August). A mining approach to

obtain the software vulnerability characteristics. In

2017 Fifth International Conference on Advanced

Cloud and Big Data (CBD) (pp. 296-301). IEEE.
Ma, S., Liu, Y., Lee, W. C., Zhang, X., & Grama, A.

(2018, October). MODE: automated neural network
model debugging via state differential analysis and
input selection. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering (pp. 175-186).

Mall, R. (2018). Fundamentals of software engineering.

PHI Learning Pvt. Ltd..

Manjula, C., & Florence, L. (2019). Deep neural

network based hybrid approach for software

defect prediction using software metrics. Cluster

Computing, 22(4), 9847–9863.

Julanar Ahmed Fadhil et al. / Journal of Computer Science 2020, 16 (12): 1709.1717

DOI: 10.3844/jcssp.2020.1709.1717

1717

Otoom, A. F., Al-Shdaifat, D., Hammad, M., &

Abdallah, E. E. (2016, April). Severity prediction of

software bugs. In 2016 7th International Conference

on Information and Communication Systems

(ICICS) (pp. 92-95). IEEE.

Pandey, N., Sanyal, D. K., Hudait, A., & Sen, A. (2017).

Automated classification of software issue reports

using machine learning techniques: an empirical

study. Innovations in Systems and Software

Engineering, 13(4), 279-297.

Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2020).

BPDET: An effective software bug prediction

model using deep representation and ensemble

learning techniques. Expert Systems with

Applications, 144, 113085.

Pandey, S. K., Mishra, R. B., & Triphathi, A. K. (2018).

Software bug prediction prototype using Bayesian

network classifier: A comprehensive model.

Procedia Computer Science, 132, 1412–1421.

Perkusich, M., de Silva, L. C., Costa, A., Ramos, F.,

Saraiva, R., Freire, A., . . . Gorgônio, K. (2020).

Intelligent software engineering in the context of

agile software development: A systematic literature

review. Information and Software Technology,

119, 106241.

Ramirez, A., Romero, J. R., & Simons, C. L. (2018). A

systematic review of interaction in search-based

software engineering. IEEE Transactions on

Software Engineering, 45(8), 760–781.

Schekotihin, K., Rodler, P., Schmid, W., Horridge, M.,

& Tudorache, T. (2018, June). Test-Driven

Ontology Development in Protégé. In ICBO.

Shehab, M., Abualigah, L., Jarrah, M. I., Alomari, O. A.,

& Daoud, M. S. (2020). Artificial intelligence in

software engineering and inverse. International

Journal of Computer Integrated Manufacturing, 1–16.

Sheneamer, A., & Kalita, J. (2016). A survey of software

clone detection techniques. International Journal of

Computer Applications, 137(10), 1–21.

Tunio, M. Z., Luo, H., Wang, C., Zhao, F., Shao, W., &

Pathan, Z. H. (2018). Crowdsourcing software

development: Task assignment using PDDL

artificial intelligence planning. Journal of

Information Processing Systems, 14(1).

Uddin, J., Ghazali, R., Deris, M. M., Naseem, R., &

Shah, H. (2017). A survey on bug prioritization.

Artificial Intelligence Review, 47(2), 145–180.

Wang, Z., & Srinivasan, R. S. (2017). A review of

artificial intelligence based building energy use

prediction: Contrasting the capabilities of single and

ensemble prediction models. Renewable and

Sustainable Energy Reviews, 75, 796–808.

Wangoo, D. P. (2018, December). Artificial intelligence

techniques in software engineering for automated

software reuse and design. In 2018 4th International

Conference on Computing Communication and

Automation (ICCCA) (pp. 1-4). IEEE.

Wikar, M. J. (2019). Intelligent software development tools.

Xie, T. (2018, September). Intelligent software

engineering: Synergy between ai and software

engineering. In International Symposium on

Dependable Software Engineering: Theories, Tools

and Applications (pp. 3-7). Springer, Cham.

Zhang, T., Chen, J., Yang, G., Lee, B., & Luo, X.

(2016). Towards more accurate severity prediction

and fixer recommendation of software bugs. Journal

of Systems and Software, 117, 166–184.

