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ABSTRACT The clinical investigation explored that early recognition and intervention are crucial for
preventing clinical deterioration in patients in Intensive Care units (ICUs). Deterioration of patients is
predictable and can be preventable if early risk factors are recognized and developed in the clinical setting.
Timely detection of deterioration in ICU patients may also lead to better health management. In this paper,
a new model was proposed based on Long Short-Term Memory-Recurrent Neural Network (LSTM-RNN)
to predict deterioration of ICU patients. An optimisation model based on a modified genetic algorithm (GA)
has also been proposed in this study to optimize the observation window, prediction window, and the number
of neurons in hidden layers to increase accuracy, AUROC, and minimize test loss. The experimental results
demonstrate that the prediction model proposed in this study acquired a significantly better classification
performance compared with many other studies that used deep learning models in their works. Our proposed
model was evaluated for two tasks: mortality and sudden transfer of patients to ICU. Our results show that
the proposed model could predict deterioration before one hour of onset and outperforms other models.
In this study, the proposed predictive model is implemented using the state-of-the-art graphical processing
unit (GPU) virtual machine provided by Google Colaboratory. Moreover, the study uses a novel time-series
approach, which is minute-by-minute. This novel approach enables the proposed model to obtain highly
accurate results (i.e., an AUROC of 0.933 and an accuracy of 0.921). This study utilizes the individual and
combined effectiveness of different types of variables (i.e., vital signs, laboratory measurements, GCS, and
demographic data). In this study, data was extracted from MIMIC-III database. The ad-hoc frameworks
proposed by previous studies can be improved by the novel and reliable prediction framework proposed
in this research, which will result in predictions of more accurate performance. The proposed predictive
model could reduce the required observation window (i.e., a reduction of 83%) for the prediction task while
improving the performance. In fact, the proposed significant small size of observation window could obtain
higher results which outperformed all previous works that utilize different sizes of observation window (i.e.,
48 hours and 24 hours). Moreover, this research demonstrates the ability of the proposed predictive model
to achieve accurate results (>80%) on ‘raw’ data in an experimental work. This shows that the rule-based
pre-processing of clinical features is unnecessary for deep learning predictive models.
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and recurrent neural network.
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I. INTRODUCTION
Identifying patients of ICU who have a high deterioration
risk is vital so that treatment decisions, quality assurance,
and resources usage management can be guided to reduce
mortality rate. Patients who are admitted to ICUs and survive
hospitalization have a high mortality rate in the six months
after discharge [1]. A lot of these post-discharge deaths
are within patients transferred to other acute-care hospitals
[2] or long-term acute care facilities [3]. Unidentified deterio-
rations could delay the ICU transfer of patients, which would
necessitate resuscitation in as much as 67% of cases or even-
tually result in deaths [4]. A report by the American Health
Association (AHA) in 2015 showed that about 209,000 in-
hospital cardiac arrests occur annually in the United States of
America (USA) [5]. There are approximately 2,300 annual
cases of cardiac arrests in Swedish hospitals as reported by
the Swedish Resuscitation Council, which oversees 95% of
Swedish hospitals [6]. It was also found by the 2010 USA
government investigation that 44% of adverse events could
have been clearly or likely prevented [7]. Some researchers
in New Zealand [8], UK [9], and Canada [10] used deteri-
oration as defined by the result of health care management
instead of the underlying disease process in the assessment of
more than 25,000 patient records, from which 8% - 17% of
admissions were related to unfavourable events, preventable
deteriorations made thought to be around 37% - 51%, and 7%
- 19% ended in disability or death.

To this end, several works have put forward different
definitions of deterioration that are dependent on the vari-
ous causes and the involved critical procedure. For instance,
some studies [11]–[14] defined deterioration as the patient
being transferred to an ICU or experiencing a cardiac arrest,
while there are other researchers related the term to patients
who are admitted, transferred to another specialized hospital
for emergency surgical treatment, or died after revisiting
the emergency department (ED) [15]. Quinten et al. [16]
demonstrated that deterioration is primarily connected with
organ dysfunctions like liver failure, kidney injury, respira-
tory failure, ICU admission, or death at a hospital. Further,
deterioration have also been defined by several studies [4],
[17] to be a patient’s sudden transfer from the general ward
to an ICU with positive pressure ventilation, vasopressors,
fluid resuscitation, or any immediate procedure that may be
conducted between 2 hours pre or 12 hours post transfer. Hen-
riksen et al. [18] has also defined deterioration as a patient
deviating from the specified normal range in the 2–24 hours
interval after hospital admission. Nevertheless, in the present,
the physiological importance of deterioration is appreciated
and the exact definition of it is still vague among the scientific
community [19].

Deterioration of patients in ICUs can be avoided by
utilising technologies that detect deterioration in a timely
manner, by logging several data types in health informatics
systems, and processing the data by utilising software anal-
ysis models with accurate performance [20]–[23]. There are

many excellent data-driven learning models could be imple-
mented in clinical decision support system by the implemen-
tation of electronic health records (EHRs), Markov models
[24] and dynamic Bayesian networks [25] to study disease
development through modelling the temporal characteristics
of EHRs. Moreover, preventing the occurrence of patients’
deterioration in an adequate time window turns into a need
in medicinal services communities and biomedical research
fields. It is also imperative that hospital care quality is
enhanced significantly so that unwanted results are reduced.
The notable hypothesis is recent technology can be used so
that models that were developed using dynamic variables
(e.g., vital signs and/or lab tests) and static variables (e.g.,
age, gender, and admission type) are utilized to build and
strengthen an automated classification algorithm that can
predict deterioration accurately.

In this study, patient deterioration is defined as the patients
either suddenly being transferred to ICUs from general wards
(i.e., urgent admission type), or ICU patients suddenly dying
[13], [14], [26], [27]. Studies [28], [29] showed a sudden
ICU transfer is related with worse outcomes and increased
mortality. The complex patterns in patients’ longitudinal data
affect the clinical interventions and ICU deaths [30]. As such,
this study intends to forecast these events more reliably prior
to their occurrence so suitable pre-emptive action can be
taken by the hospital staff.

The main findings and contributions are as follows 1) The
proposed model will assist in building a prediction model
based on ‘‘Big Data’’ which has enhanced prediction accu-
racy. 2) This study contributes by revealing previously
unknown relationships between many variables (predictors)
which could result in useful diagnostic or prognostic insights.
3) This research uses definitions of deterioration, where its
endpoint measure will be either mortality or sudden transfer
to ICUs, which is used by researchers to obtain a better
classification of patients. 4) The proposed predictive model is
implemented using the state-of-the-art GPU virtual machine.
This work proposes an advanced hardware that overcome
challenges in gain, estimation time and testing processing
time via using a virtual GPU. Moreover, the study uses
a novel time-series approach, which is minute-by-minute.
This novel approach enables the proposed model to obtain
highly accurate results. The novel deep learning predictive
model’s ability to identify patterns in multivariate time-series
of different clinical measurements is empirically evaluated
by this research. 5) This research proposes an LSTM-RNN
deep learning model that does not require feature engineer-
ing, it also proposes an optimisation model based on GA
to enhance the performance metrics. 6) The ad-hoc frame-
works proposed by previous studies can be improved by the
novel and reliable prediction framework proposed in this
research, which will result in predictions of higher accuracy.
The proposed predictive model could reduce the required
observation window for the prediction task while improving
the performance. The rest of the paper is organized as follows.
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In Section II, related works that interested in predictive mod-
els of deterioration of patients are introduced. The top-level
proposed prediction framework for patient’s deterioration
in ICU is presented in Section III. The design idea and
steps of establishing the sequential model of LSTM-RNN
are introduced in Section IV. In Section V, a modified multi
objective genetic algorithm is used to optimize the hyper-
parameters of the proposed LSTM-RNN predictive model.
The results of the proposedmodels with LSTM-RNN andGA
and comparison with other works are presented in Section VI.
A conclusion is given in Section VII.

II. RELATED WORKS
A revolutionary development in information technologies
such as cloud computing [31], web hosting [32], social
networks [33], and bioinformatics [34] has caused a rapid
expansion in health data and many research fields. As data
normally originates from multiple sources, there is a sub-
stantial opportunity to be heterogeneous. In fact, clinical
elements based on patient’s vital signs can be standard-
ized across different institutions. However, the other types
of clinical elements such as acuity and nursing assess-
ments differed across the institutions because of different
EHR systems and/or different customizations made by each
institution.

A recent research indicated that 90% of global data
today has been updated in the preceding 2 years [35]. The
modern application field is facing a crucial challenge of
extracting useful information from data to carry out bene-
ficial actions. Deep learning’s capacity for extracting high-
level, complex abstractions, and data representations from
massive data repositories, for both unsupervised data and
sufficient volume of supervised data, makes it a valuable
tool in Big Data analytics [36], [37]. More specifically,
‘‘Big Data’’ problems like prediction of patients’ deterio-
ration in ICU and/or general wards as well as fast infor-
mation retrieval can be better tackled with the aid of deep
learning [38], [39].

Deep learning has rapidly become so popular due to the
reason that this approach promises a better performance
(i.e. accuracy and/or AUROC) in solving several problems
[40]. When as initial input data is entered by humans, they
are required to work so much harder to ensure that these
initial input data have good responds towards the targeted
problem by a process so-called feature engineering. Problem
solving has been made much easier by deep learning as
the most critical step in a machine-learning workflow (i.e.
feature engineering) has been completely automated [41].
Using deep learning, all features can be learnt by models in
one pass instead of being reengineered through a repetitive
and iterative cycle. Conventional machine learning workflow
has been highly simplified by this ability, which frequently
results in sophisticated multistage pipelines being replaced
by a single and end-to-end deep learning model. Thus, a deep
learning model learns all layers of representations jointly and
simultaneously instead of in succession [42].

There has been increased interest recently in time-series
data availability task [43]. This interest causes hundreds of
time-series classification models to be implemented. The
definition of a time-series classification problem is a classifi-
cation problem that uses data that is registered by considering
any notion of ordering [44]. Common deep learning models
are convolutional neural networks (CNNs) [45] and recurrent
neural networks (RNNs) [46]. The following sub sections
describe the predictivemodels of patient’s deterioration based
on several well-known deep learning models such as CNN
and LSTM. It also provides an overview of optimisation
methods applied in past research that used genetic GA based
on deterioration prediction

A. PREDICTIVE MODELS BASED ON CONVOLUTIONAL
NEURAL NETWORKS
Visual data processing and other healthcare problems are
frequently use convolutional neural network (CNN) as a deep
learning model [47]. A CNN is conceptually similar to a
multilayer perceptron in concept (MLP) [48]. Each neuron in
the MLP has a function for activation that maps the weighted
inputs to the output [49]. When more than one hidden layer
is added to the network, an MLP becomes a deep MLP. In a
similar manner, a CNN is considered as an MLP that has a
special structure. The CNN’s special structure allows it to
be both translation and rotation invariant due to the model’s
architecture [50]. The model’s architecture has three basic
layers i.e., a convolutional layer, a pooling layer, and a fully
connected layer with a rectified linear activation function.
Therefore, a CNN comprises one or more convolutional lay-
ers (often with a subsampling step), followed by one or more
fully connected layers [51].

Rafiq et al. [52] developed a deep learning-based meth-
ods to identify the factors contributing to hospital readmis-
sions of patients within 30 days, by multiple chronic con-
current (MCC) conditions and using sequential EHRs gath-
ered from 610 patients undergoing treatment at Danderyd
Hospital in Stockholm, Sweden. The study illustrated that
physicians often document their communication about the
patient’s condition along with treatment plans and outlines
as an unstructured, free-flowing text in clinical EHR notes,
which makes later assessment of these EHR data tedious
and time-consuming. In their study, Word2Vec approach [53]
was used to convert the non-sequential records in EHR data
into a vector form, and then a CNN was used to reorder
and make the EHR sequential. The EHR data that has been
sequenced was then applied in a recurrent neural network
deep learning architecture to predict the hospital readmis-
sions. The main disadvantage of this proposed work is that
the prediction accuracy derived from texts using CNN still
requires improvement.

Wickramasinghe [54] suggested that CNN and a logistic
regression-based deep learning method called Deepr (abbre-
viation of Deep record) be combined in a hybrid method
to predict unplanned readmissions after hospitalized patients
were discharged. Their method was based on the concepts
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used in natural language processingwhich involve the conver-
sion of electronic medical records (EMRs) into a ‘‘sentence’’
of multiple phrases (with each phrase representing a visit
to the hospital) separated by unique ‘‘words’’ that represent
the time gap between phrases. Converting patient’s medical
information into a sentence makes it possible to analyze
their information accurately and efficiently, as shown by the
study utilising a validation dataset containing 300,000 patient
records divided into three subsets based on the unplanned
readmission of patients within different periods. Brand et al.
[55] proved that one-dimensional CNNs has the potential to
predict mortalities using vital signs data of variable length.
This proposed CNN model appraises patient risk hourly with
minimal equipment use as it needs only low-frequency vital
signs. It provides patient risk scores that are periodically
automatically updated. This study provided a guideline for
using a proper database for implementing predictive models,
which is the MIMIC-III database. The study also illustrated
that implementing accurate predictive models requires more
data types in addition to vital signs, which was the only type
used in this model.

Chen et al. [56] put forward a new CNN-based multi-
modal disease risk prediction (CNN-MDRP) algorithm that
uses structured and unstructured data from a hospital. This
study gives a guideline to obtain benefits from advances in
computing hardware, particularly graphics processing units
(GPUs) that can enable larger, deeper networks to be trained,
as well as obtaining more accurate and less training time
results. Data was divided into a training set and a test set using
a ratio of 6:1. There were 606 patients in the training data
set and 100 patients in the test data set. This study’s primary
weaknesses are the absence of a validation data set and the test
data set is in low number. As a result, the prediction method
of [56] cannot generate a solid conclusion and outperformed
the methods used in [52], [54], [55], even though the method
can achieve higher prediction accuracy.

Yi?it and I?ik [57] proposed a deep learning model
based on non-invasive neuroimaging biomarkers to diag-
nose Alzheimer’s disease (AD) and dementia. The predic-
tive model used structural magnetic resonance (MR) brain
images as the input. Two different pre-processed data sets of
brain images were used to train and test the CNN models.
The models achieved approximately 80% accuracy values
in diagnosing both Alzheimer’s disease and mild cognitive
impairment. It can be concluded from this work that CNN
is a valuable approach in image processing methods and can
achieve acceptable prediction accuracy when it is used to
predict the diagnosis of certain diseases. The model, which is
trained with the back-propagated algorithm, could make pre-
dictions on the pixels of the image without feature extraction.

To conclude, the concept of weight sharing (or weight
replication) in CNN reduces the number of trainable net-
work parameters, so the network complexity is reduced
and generalization is enhanced as compared to ANN [58].
CNNs are easy to train with backpropagation as compared
to other ANNs due to sparse connectivity in each convolu-

tion layer [59]. CNNs are widely used in the area of deep
learning because of the availability of application-oriented
large databases and efficient parallel computing in GPUs
[60]. CNNs deliver better performance in image resolution
as compared to traditional sparse representation because it
possesses higher representation capability [61]. On the con-
trary, CNN optimizes its weight of the convolution masks via
gradient-based training scheme, which fundamentally con-
siders self-similarity in the entire set of patches available in a
relatively large number of training sets [62]. It also it suffers
from a problem of gradient explosion and fails to converge
quickly [63].

B. PREDICTIVE MODELS BASED ON RECURRENT NEURAL
NETWORKS
RNN presents an elegant infrastructure to process ever-
evolving streams of clinical data due to loops that permit
them to persist information from the past (time) [64]. RNN
repeatedly going through the sequence elements for process-
ing and sustaining a condition which comprises information
relative to what it has seen so far (sequence) [65]. In general,
RNNs consist of four main architectures, which are simple
RNN [66], Gated Recurrent Unit (GRU) [67], LSTM [68],
and Bidirectional Recurrent Neural Network (BRNN) [69].
A simple RNN is the first implemented architecture of RNNs
with simple multiplication of inputs and previous outputs
without any control gates. To solve the vanishing gradient
problem of a simple RNN, GRU utilizes, so-called, update
gate and reset gate. Fundamentally, these are two vectors
that determine what information should be passed to the
output. The special thing about them is that they can be
trained to keep information from long ago, without washing
it through time or remove information which is irrelevant to
the prediction. In this architecture, mathematical operations
are done on the same inputs. A GRU is unidirectional and
less complex than both LSTM and BRNN architectures. It is
also considered as a simplified form of LSTM architecture
[70]. This study implemented a predictive model using this
architecture (i.e., GRU) and benchmarked the results with
the proposed predictive model based on LSTM-RNN deep
learning model.

LSTM is a special type of RNNs with memory cells. In the
basic architecture of LSTM, the network is given two addi-
tional gates, i.e., the forget gate and the output gate together
with the existing update gate. This architecture requires more
mathematical operations but offers the most controllability
and better flexibility in controlling the outputs to provide
better performance results. LSTM should, in theory, remem-
ber longer sequences than GRU and outperform GRU in
tasks requiring modelling of long-distance relations [71].
In BRNN, the output of each layer learns from the previous
layers and the next layers. In addition, every hidden layer
is comprised of two opposite layers, i.e., a forward layer
and a backward layer. The gating mechanism in this type
of neural networks makes it as a perfect choice for long-
term dependencies [72], [73]. The BRNN can be trained
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without the limitation of using input information just up to
a pre-set future frame. This is accomplished by training it
simultaneously in positive and negative time direction. It is
mostly useful for sequence embedding and the estimation of
observations given bidirectional context. Thus, gradients will
have a very long dependency chain. Also, it is very costly to
train due to long gradient chains.

Hochreiter and Schmidhuber [74] were the first to intro-
duce LSTMs after many researchers had studied RNNs for
sequence learning. Rumelhart et al. [75] also conducted a
previous work that was fairly significant and they proposed
backpropagation through time. Elman [76] is notable for
training RNNs to conduct supervised machine learning tasks
with sequential inputs and outputs. The new LSTM memory
cell design has maintained its closeness to the original, where
forget gates have been added and normally utilized alongwith
peep-hole connections [77], [78]. In LSTM, memory is built
up by feeding the previous hidden state as an additional input
into the subsequent step. This makes modelling dynamic
information in time-series variables particularly suited to this
model since there is a strong statistical dependency between
medical events over long-time intervals. The identification
of early signs of physiological deterioration can be achieved
using this dependency. LSTM also permits gradients to be
efficiently propagated in the training phase, alleviating the
problem of vanishing gradients common in recurrent neural
networks [79].

Many extensions to develop LSTM have been proposed.
Che et al. [80], for example, concentrated on handling miss-
ing values and time irregularities. DeepCare [81] modelled
the effects of time irregularities via forget gate activation. The
work also showed that the interactions between disease pro-
gression and interventions were confusing. Zhang et al. [82]
proposed an LSTM-based framework that has two levels of
imperfect but informative labels to jointly learn septic shock’s
distinct patterns. A framework on a variant of LSTM models
was proposed by the work to demonstrate septic shock’s tem-
poral progression during a long visit. The experiment results
demonstrated that the proposed framework’s dominance and
LSTM significance in comparison with various baselines.
The proposed LSTM was also shown to be robust and this
was validated by the test data with three different ground-
truth labels.

Lin et al. [83] proposed a model that combined static
and dynamic features for early diagnoses and prediction of
sepsis shock using convolutional-LSTM where it used in
learning optimal features directly from the data itself with
no human guidance. This allows latent data relationships
to be automatically discovered instead of being unknown.
The proposed framework was compared against other classic
machine learning models that are commonly used with a
prediction window size of 2 to 4.5 hours and 85.17% AUC,
and with a prediction window size of 5 to 24 hours with 72.65
% AUC. It can be noted from this study that large prediction
window sizes can negatively influence the performance of a
predictive model. The study provides a guideline to utilize

different data types and combine static and dynamic features
for implementing predictive models.

Harutyunyan et al. [84] supported the adoption of a public
benchmark suite that includes four different clinical pre-
diction tasks inspired by the opportunities for ‘‘big clinical
data’’ as discussed in Bates et al. [85], which are in-hospital
mortality [86], physiologic decompensation [87], length of
stay (LOS) [88], and phenotype classification [89] taken from
the public MIMIC-III database [90]. Their research was an
attempt to supply public benchmarks that could decrease the
entry barrier and allow novice researchers to start with no
need to acquire data access or recruit expert collaborators.
This study also determined a rule to implement a predictive
model for different clinical prediction tasks.

Lipton et al. [89] supported LSTMs proficiency in distin-
guishing patterns in clinical measurements with multivari-
ate time-series. The work specifically considered multi-label
classification of diagnoses. A model was trained to classify
128 diagnoses with 13 commonly but irregularly sampled
clinical measurements. The work initially measured a simple
LSTM network’s efficiency in clinical data modelling. It then
built a training strategy that was straightforward and effective
where the targets were duplicated at every sequence step.
The model that was proposed had a superior performance to
various strong baselines, including a multilayer perceptron
that was trained on hand-engineered features.

A warded patient’s unplanned readmission indicates
patient risk exposure and unnecessarily and avoidably wastes
medical resources. Lin et al. [91] suggested a solution to the
problem by proposing an LSTM model on comprehensive,
longitudinal clinical data fromMIMIC-III database to predict
patient ICU readmission within 30 days of their discharge.
The research combined various feature types such as chart
events, and demographics. The study showed that the pro-
posed LSTM-based solution can better predict ICU patients’
high volatility and unstable status that are crucial factors in
ICU readmission.

Most of the dynamic prediction models proposed by pre-
vious work do not handle multi-period data with different
intervals, and patient hospital records are large scale data
that have not been used efficiently to improve the prediction
performance. Therefore, Junwei et al. [92] put forth a new
traditional LSTM-based model for predicting cardiovascular
disease as a type of deterioration. The irregular time interval
is smoothed in this work to achieve the time parameter vector,
and it adopts the LSTM’s forgetting gate input for solving the
prediction obstacle resulting from the irregular time interval.
A guideline is also presented by this study to use the weighted
summation of the prediction loss of all time slices and the pre-
diction loss of the last time slice as a loss function of the entire
model to update its parameters. In addition, the importance of
test loss as a performance metric is required in modelling of
the predictive model.

Long-term dependencies in LSTM are done via the addi-
tional use of an input, an output, and a forget gate, allowing
every neuron to 1) select which measurements update its
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current state, 2) choose which values to output to its future
state, and 3) determine which previous values to forget,
respectively. This is done at each input time and can be
regarded as the memory cell of the neural network [93].
Plate et al. [94] put forward a model for predicting clinical
deterioration at the intermediate care unit (IMCU) via multi-
ple repeated measurements being incorporated using either
a joint modelling approach or an LSTM-RNN. The study
illustrated that the LSTMmodel requires themeasurements to
be taken at regular time intervals, which asked for inter- and
extrapolation of some of the data points in this study dataset.
This study provides a guideline that the primary outcome for
clinical deterioration is the sudden transfer of patients to ICU
or death. However, the clinical application of the proposed
model is limited as the overall performance is unsatisfying.

Doctor AI [95] utilizes discretized medical codes (e.g.,
diagnosis, medication, procedure) from longitudinal patient
visits via a purely supervised setting. The proposed model
was developed and applied to longitudinal time stamped
EHR data from 260K patients using GRU deep leap learning
model. Encounter records were input to GRU-RNN to predict
(all) the diagnosis and medication categories for a subsequent
visit. The proposed model was tested on a large real-world
EHR datasets and achieved 79.58% recall@30. Thus, in med-
ical practice, incorrect predictions can sometimes be more
important than correct predictions as they can degrade patient
health and it would be more useful to learn to perform better
than average. To avoid overfitting, the study used dropout
between the GRU layer and the prediction layer (i.e., code
prediction and time duration prediction). Hence, this gives
a guideline to utilize such technique (i.e., dropout) to prone
overfitting.

In time series prediction, it has been notified that miss-
ing values and their missing patterns are repeatedly cor-
related with the target labels, a.k.a., informative missing-
ness. Che et al. [80] proposed a novel deep learning models,
namely GRU-D, as one of the early attempts that is based on
GRU. It adopts two representations of missing patterns which
are masking and time interval that efficiently integrates them
into a deep model architecture so that it not only captures the
long-term temporal dependencies in time series, but also uses
the missing patterns to acquire better prediction results. The
study concludes that if the missingness is not informative at
all, or the inherent correlation between the missing patterns
and the prediction tasks are not clear, then the proposedmodel
possibly will gain limited improvements or even fail. The
proposed models are only evaluated in retrospective observa-
tional study settings, which is due to the inherent limitation
of the publicly available datasets utilized in the study. Thus, it
is important to consider the generalization task of an adopted
predictive model.

Peiffer et al. [96] proposed a predictive model based on
a Bidirectional Long Short-Term Memory (BiLSTM) net-
work and bidirectional recurrent neural network (BiRNN)
and utilizes different monitored parameter sequences from
over 2000 ICU admissions to predict the presence of sepsis.

Temporal models have a slight advantage in predicting the
outcome close to the time the blood sample test was taken
but are noticeably better than other models in predicting this
test many hours upfront. In the advanced BiLSTM network,
hidden states from all time steps have direct influence on
the output node. While in the simpler BiLSTM network,
the hidden state values first must ripple through the whole
LSTM chain.

Pan et al. [97] performed different experiment using vari-
ous deep learning models for comparison to predict AD. The
study proposed a simple RNNmodel based on time series that
utilizes the common AD diagnostic attribute values and com-
bines the data of three-time nodes. It also proposed an LSTM
model that uses the same input data and function. Moreover,
the study proposed a GRU model simplified by LSTM that
has the same input data and the samemodel function. Further,
the study utilizes a bidirectional LSTM plus Attention mech-
anism as a model. In addition, the patient’s basic information,
genetic data and three time points of neuropsychology scale
were used as input to predict the development trend of the
patient’s condition, which is normal (NL), mild cognitive
impairment (MCI) or Alzheimer’s disease (AD).

It can be observed that RNNs of different varieties have
become popular in modelling clinical time series, as they
are able to learn complex nonlinear functions of their input
without the need for extensive domain knowledge or feature
engineering. This better allows for learning expressive repre-
sentations and discovering unforeseen structure than methods
that rely on hand-crafted features. Among the previous stud-
ies that are based on prediction of deterioration of patients,
it can be observed that LSTM cells are with more complex
form of module that can be used to alleviate issues of vanish-
ing and exploding gradients when trained via gradient-based
methods. LSTM-RNNs are standard baselines as they tend to
work well in practice and often give competitive performance
comparedwithmore sophisticated architectures. Unlike naive
RNNs, RNNs built using LSTM cells can capture long range
dependencies and nonlinear dynamics. However, LSTM net-
works have internal contextual state cells that act as long-term
or short-termmemory cells. The output of the LSTM network
is modulated by the state of these cells. This is a particularly
important property for the prediction of the neural network to
depend on the historical context of inputs, rather than only on
the very last input. The related works provide a guideline to
the proposed elements of the baseline deterioration prediction
model in this study. These elements involve the choice of
data pre-processing, appropriate database, and methodology
to implement the proposed models.

C. OPTIMSATION METHODS APPLIED IN LITERATURE
THAT USED IN GENETIC ALGORITHM
It is important to provide an overview of optimisation meth-
ods applied in past research that used genetic algorithm
(GA) based on deterioration prediction. Over the past decade,
GA has been used in various fields at varying success
rates (Ding and Fu 2016). Jiang et al. (Jiang, Peng et al.
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2017) proposed the Probability Distribution Patterns Analysis
(PDPA) method to derive significant information from the
continuous blood pressure time series. The research then
used a machine learning model by merging GA and SVM
to identify the representative features for successful classifi-
cation. The acquired accuracy for classifying and predicting
hypotension was 80.8%, 78.2% for sensitivity, and 81.5% for
specificity when applied to the validation cohort. Moreover,
Choudhury et al. (Choudhury and Greene 2018) proposed a
study that considered patient readmission risk as the objec-
tive for optimisation and utilised a valuable risk prediction
approach to tackle unplanned readmissions. Additionally, GA
and Greedy Ensemble algorithm were used to optimize the
developed model constraints.

Unexpected disease deterioration causes a lot of sudden
health issues to patients. Lai et al. .(Lai, Tan et al. 2020)
suggested a model of clinical support to predict readmissions
for patients admitted with all-cause conditions. Specifically,
the research designed an online web service system based on
integrated GA and SVM (IGS) to assist physicians in detect-
ing patients that have potentially a higher risk of all-cause
readmissions after discharge. When necessary, the patients
are given appropriate interventions to reduce their morbidities
and mortalities, and to lower their healthcare costs. GA was
used to select significant variables and adjust SVM parame-
ters (C and γ ). Pre-defined GA parameters were used in the
study, for example the initial chromosome population number
that was set to 10.

Extracting clinical phrases from nurses’ notes has been
recently used as an advanced method to find patient dete-
rioration risk factors. Korach et al. .(Korach, Yang et al.
2020) put forward the use of multiple natural language pro-
cessing approaches which contain language modelling, word
embeddings, and two phrase mining methods (TextRank and
NC-Value) to identify the quality phrases that are clinically
significant from unannotated nursing notes. The study com-
bined the two mining methods in GA to complement each
other. The study suffered from low performance with average
precision of 0.890 to 0.764, and it was also a single-objective
optimisation approach.

Incapacitated patients are assigned temporary emergency
medical service (EMS) centres based on their geographical
locations and final mortality risk value. Gao et al. .(Gao,
Zhou et al. 2017) utilised GA with modified fuzzy C-means
clustering algorithm to find the temporary emergency medi-
cal service centres and their allocations. The study aimed to
minimise the total mortality risk value. However, the param-
eters and settings of the predictive model were not optimised.
The mortality of cardiovascular patients in an ICU has been
predicted using different models with some extent. However,
several models require many patient registrations, which in
the majority of cases is not possible to record all data.

Moridani et al. .(Moridani, Setarehdan et al. 2018)
employed a roulette wheel to benefit from the selection
operator. The prediction of coronary artery disease also used
secondary input and output membership functions (optimised

with GA). Sensitivity and specificity were shown to be the
best findings with a prediction window ranging between
0.5 hour and 1 hour before the patients with coronary artery
disease died with area feature. Table 2.5 provides recent pre-
vious studies (Gao, Zhou et al. 2017, Jiang, Peng et al. 2017,
Choudhury and Greene 2018, Moridani, Setarehdan et al.
2018, Korach, Yang et al. 2020, Lai, Tan et al. 2020) that have
adopted GA to optimise classification performance of their
deterioration proposed diagnosis models. Their application,
fitness function, strengths, and weaknesses are summarised.

III. TOP-LEVEL PROPOSED PREDICTION FRAMEWORK
FOR PATIENT’S DETERIORATION IN ICU
Big health data has presented more opportunities to health
data analysis and health service development through inno-
vative approach. This study proposes a novel and reliable
prediction framework to enhance ICU patient deterioration
prediction based on the paradigms of big data analysis and
modern GPUs to increase the efficiency of data processing
[98]. The framework consists of five layers, namely dataset
layer, exploration layer, prediction layer, optimisation layer
and performance evaluation layer. In this study, the patient
deterioration is defined as the patients either suddenly being
transferred to ICUs from general wards (i.e., urgent admis-
sion type), or ICU patients suddenly dying [13], [14], [26],
[27]. Themain novelty of this proposed prediction framework
is the novel and reliable prediction framework offers the
transformative characteristic that allows a model to learn all
layers of representation jointly and simultaneously, instead
of in succession. This proposed novel framework is based on
the combination of LSTM deep learning algorithm as pre-
diction model, together with the optimisation approach based
on multi-objective genetic algorithm to supply the LSTM
predictive model with more comprehensive and reliable time-
series data to achieve better prediction performance for higher
accuracy and reliability.

The novel and reliable prediction framework and all the
associated layers are applied in a manner which fully utilizes
the advantages of deep learning as shown in Figure 1 below.

The preliminary knowledge and basic concept that related
with each layer will be presented in detail in the following
subsections.

A. DATASET LAYER
The adoption of EHR system is increasing in recent years to
encourage paperless system in the medical field [99]. In the
USA, the number of non-federal severe medical centres that
utilize EHR system increased more than eight times to reach
75.4% during the interval between 2008 and 2014 [100].With
EHRs providing ideal support, it enables real-time trend anal-
ysis and score visualisation with an easy clinical deterioration
display and adjustable thresholds per patient. In a constant
monitoring environment particularly, this could probably lead
to earlier interventions and better patient outcomes [101].
The structure of the dataset layer on the proposed prediction
framework is based on the utilization of publicly available
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open-source research dataset, so called MIMIC-III database
[102]. The main function of the dataset layer is to provide
all the necessary input data to the prediction layer for the
patient deterioration prediction in the proposed prediction
framework. There are four main categories of input parame-
ter, namely static parameter which involve three demographic
attributes, dynamic parameter which involves seven vital
signs, dynamic parameter consists of eight laboratory test
and dynamic parameter of the level of consciousness. As a
result, all four categories contribute to total of 19 attributes
as summarized in Table 1.

The latest version of MIMIC-III (i.e., version 1.4) database
contains rich de-identified data which include 46,476 patients
with 61,532 ICU stays. There are 53,423 distinct hospital
admission records for adult patients and 8,100 neonates. The
detailed data is associated with patients admitted to several
care units between June 2001 and October 2012. The median
age of adult patients is 65.8 years old (Q1–Q3: 52.8–77.8),
with female patients make up 44.1% of all patients. Each
hospital admission has a mean of 4,579 charted observations
and about 380 laboratory measurements [100]. The database
contains about 30 parameters recorded every minute with an
amplitude resolution of up to 16 bits.

Supplementary details are acquired from different sources
to establish the complete database, such as demographic
data like gender, date of birth, ethnicity, and in-hospital
mortality. Furthermore, the database comprises laboratory
measurements, such as chemistry tests and microbiology
results. Other than billing-related information, other info
such as International Classification of Diseases, 9th Edition
(ICD-9) codes, Diagnosis Related Group (DRG) codes, and
Current Procedural Terminology (CPT) codes are also avail-
able. Moreover, Echo reports, ECG reports, and radiology
reports are available for both inpatient and outpatient stays.
More specifically, in MIMIC-III database CATEGORY and
DESCRIPTION define the type of note recorded. For exam-
ple, a CATEGORY of ‘Discharge summary’ implies that
the note is a discharge summary, and the DESCRIPTION
of ‘Report’ implies a full report while a DESCRIPTION
of ‘Addendum’ indicates an addendum (additional text to
be added to the previous report). However, before the data
was integrated into the database, it was first de-identified in
conformity with all of the 18 rules defined in the MIMIC-III
database has 26 different tables. Tables are merged with
each other using different identifiers (IDs), such as SUB-
JECT_ID, hospital admission identifier (HADM_ID), and
ICUSTAY_ID. Correspondingly, each of these tables con-
tains detailed information about specific patient’s data. These
tables are categorised into four main categories. The first
category determines, and tracks patients’ stays. The second
category provides ICU data and involves 6 tables. The third
category provides hospital data and contains 10 tables. The
fourth category implies dictionaries for cross referencing
codes versus their competent definitions [90], [100]. All
the categorized and associated identifiers are summarized
in Table 2.

As this study utilizes different types of data (i.e., dynamic,
and static data) to achieve higher predictive performance
based on the MIMIC-III database. This framework utilizes
many tables, such as CHARTEVENTS and LABEVENTS
for dynamic data, and ADMISSIONS and PATIENTS for
static data, respectively. All these data are then fetched to the
proposed prediction model and optimisation model for ICU
patient deterioration prediction. In this dataset layer, some
significant tools and libraries are used, such as PostgreSQL
that utilizes and expands the Structured Query Language
(SQL) combined with many features that safely store and
scale the most complicated data workloads.

B. PREDICTION LAYER
This layer is the most crucial layer in the proposed patient
deterioration prediction framework. This layer consists of
different steps which are windowing, data pre-processing,
feature selection, data merging, and prediction model based
on LSTM-RNN as shown in Figure 2. In fact, windowing is
the extraction of successive data with size N from a time-
series data [103]. This step involves observation window
(OW) (i.e., duration of observation before prediction window
from which data are used [104], [105]) and prediction win-
dow (PW) (i.e., the amount of time before clinical diagnoses
[104]). Moreover, data pre-processing is an essential step in
this work to group and arrange a biological dataset into a
proper manner before further data processing [106]. Besides,
feature selection enables the predictive model to process and
apply various transform that converts datasets into a much
more usable and desirable form. This study modified the
RNN architecture to contain both the dynamic as well as
the static data by data merging to combine various types of
different data for performance enhancement of the proposed
prediction model based on LSTM-RNN to predict deterio-
ration of patients in ICU due to its capacity of capturing
long-term sequential patterns, by employing LSTM in a deep
learning architecture.

In fact, the LSTM architecture has three gates (input i,
forget f , and output o) and a cell memory vector. The input
gate determines how the state of the memory cell is varied
by the incoming vectors xt . The output gate permits the
memory cell to affect the output. Lastly, the forget gate lets
the cell remember or forget its previous state [107].Moreover,
the memory unit has two valves, which are the forget valve
and the new memory valve [108].

A single layer neural network controls the forget valve.
Besides, the inputs of the neural network, a bias vector bo,
is also added to the forget valve. The activation function is
the sigmoid function σ and the forget valve acts as the output
vector. The forget valve will be provided to the old memory
Ct−1 by an element-wise multiplication [108]. A second
neural network represents the new memory valve that forms
the second valve. This valve takes the same inputs as the for-
get valve and its activation function is the hyperbolic tangent
tanh [109]. In fact, this valve controls howmuch newmemory
affects the old memory. The output will be multiplied with the
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FIGURE 1. Top-level prediction framework for patient deterioration.

TABLE 1. Input data summary of dataset layer

new memory valve and added to the old memory to produce
the new memory [108]. In the end, the output for the LSTM
network will be generated. The new memory is where the
inputs and a bias vector control the output valve. This valve is
responsible for the memory that will be generated to the next
LSTM unit [108].

In this model, several techniques are also applied, namely
normalization, dropout, learning rate and early stopping. In
fact, dropout is a technique where randomly selected neu-
rons are ignored during training. They are ‘‘dropped-out’’
randomly. Moreover, normalization is an adopted technique
to change the value of the numeric variable in the dataset to
a typical scale, without misshaping contrasts in the range of
value, this has the effect of settling the learning process and
significantly reducing the number of training epochs needed
to train a deep neural network. On the other hand, learning
rate is defined as the amount that the weights are updated
during training. Particularly, it is a configurable hyperpa-
rameter utilized in the training of neural networks with a
small positive value, often in the range between 0.0 and 1.0.

However, early stopping is a form of regularization utilized
to avoid overfitting when training a learner with an iterative
method, it implies a guidance as to how many iterations can
be run before the learner begins to over-fit.

Moreover, time series data in real applications are often
collected over a long span of time such as electronic health
records. However, this is the main layer, and its aim is pre-
dicting ICU patient deterioration by employing LSTM in a
deep-learning architecture. The LSTM predictive model has
individual layers that are trained to produce a higher-level
representation of the patterns observed, based on the data it
receives as the input from the layer below. This main layer
can accumulate time-series data to make accurate predictions
of future unseen data.

This subsection briefly introduces the structure of LSTM
which is a variant of RNN. Rather than conducting classi-
fication at each time step separately, LSTM introduces an
LSTM cell to model the transitions between several time
steps. Every LSTM cell involves a cell state Ct which
serves as memory and controls the information flow, added,
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TABLE 2. Description of tables in MIMIC-III database
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FIGURE 2. Prediction layer.

removed, or unchanged. Every LSTM cell also outputs a
hidden representation ht which is a high-level representation
of information at current time step, and can be utilized for
classification at time t .
The cell state Ct is generated by combining memory from

previous block Ct−1 and output of previous block ht−1.
Specifically, the LSTM structure first decide what informa-
tion should be added to the current cell state by generating a
new candidate cell state. The LSTM structure also generates
an input gate to filter the new added information. The gating
variables in LSTM cell such as input gate are computed by a
sigmoid function with combination of xt and ht−1, while the
candidate cell state is generated by a tanh function as follows:

at = tanh(Wa
∗xt + Ua ∗ ht−1) (1)

it = σ (Wi
∗xt + Ui ∗ outt−1) (2)

whereUa εRH×H,Wa εRH×D andWa,Ua,Wi, andUi denotes
two sets of weight parameters for generating the input gate
(i.e., a way to ‘‘learn’’ new information) and candidate gate
(i.e., a way to ‘‘ignore’’ new information) respectively. Here-
inafter, the previous formulas omit the bias terms as they
can be absorbed into weight matrices. After that, the LSTM
structure creates a forget gate using a sigmoid function to
remove information from the past:

ft = σ (Wf ∗xt + Uf ∗ht−1) (3)

whereWf , Uf denotes the weight parameters utilized to gen-
erate the forget gate layer.

In the way of forgetting old information from the old state
Ct−1 and filtering new information from the candidate cell
state at time t , the new cell state is obtained as follows

Ct = ft∗statet−1 + at∗it (4)

At the end, the hidden representation is generated by filter-
ing the obtained new cell state by an output gate layer Ot

Ot = σ (Wo
∗xt + Uo∗ht−1) (5)

ht = tanh(Ct )∗Ot (6)

where Wo, Uo are weight parameters that are utilized to
generate the output gate layer. The output gate determines
the information to output from Ct to ht. Thus, the LSTM

architecture has three gates (input i, forget f , and output o)
and a cell memory vector. The input gate determines how the
state of the memory cell is varied by the incoming vectors xt .
The output gate permits the memory cell to affect the output.
Lastly, the forget gate lets the cell remember or forget its
previous state [107].

C. OPTIMISATION LAYER BASED ON GENETIC
ALGORITHM
Deep learning algorithms utilizes novel methods for classi-
fication that tries to improve the training speed, while still
striving for a comparable or better classification performance.
In this study, a modified Genetic Algorithm (GA) is applied
alongwith the proposed deep learning predictivemodel based
on LSTM-RNN to identify the potential informative hyperpa-
rameters for predicting patient deterioration.

GA is a search heuristic algorithm that tries to mimic
biological process of natural selection. It is used widely to
generate useful solutions for optimisation and search prob-
lems. GA can be broken down into four sub parts which
are individual, chromosome, population, and fitness. In fact,
individual chromosome can be defined as a single entity
that closely resembles a possible solution amongst a pool of
solutions. However, every individual has a chromosome that
is generally bit encoding of the representative solution in a
binary format.Moreover, a population is defined as a group of
individuals (i.e., solutions) amongst which reproduction takes
place. Finally, fitness which is a characteristic representative
of how fit or good the individual is.

The basic process for a genetic algorithm is consists of
several phases, which are initialization, fitness evaluation,
selection, mutation, and termination. Initialization creates an
initial population which is usually randomly generated and
can be of any desired size, from only a few individuals
to thousands. Fitness evaluation is another step where each
member of the population is estimated and a ’fitness’ for
that individual is calculated. The fitness value is calculated
by how well it fits with the desired requirements. Selection
is another important step in the process of GA since there
is a need to constantly improving the populations overall
fitness. Selection helps to do this by discarding the bad
designs and only keeping the best individuals in the pop-
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ulation. The fourth step in the process of GA is crossover
where new individuals are created by combining aspects
of selected individuals. By combining certain traits from
two or more individuals, the aim of crossover is to create an
even ’fitter’ offspring which will inherit the best traits from
each of its parents. Mutation induces randomness into the
chromosomes of the solution. It aims to bringing back some
characteristic genes which were lost during the process of
crossover.

The same processes are iteratively repeated to generate the
next generation of population, go through the fitness evalua-
tion, selection, crossover, and mutation until the termination
criteria is reached. GA is considered as one of the extremely
innovative approaches to perform optimisation. GA can be
utilized better than conventional approaches. It is also able
to handle datasets that have lots of features. GA also does
not require specific knowledge of the problem being studied.
Also, GA could be simply parallelized in computer clusters.
The aforementioned steps describe the primary steps required
to design a chromosome. Based on the literature review, the
appropriate parameters and settings are selected. Then, they
are encoded into the binary string with a certain bit length and
put into the chromosome. For the OW, 10 bits are chosen.
5 bits are selected as the number of bits to perform the
chromosome (i.e., in the first hidden layer). 10 bits are chosen
for the PW. These bits are put into the whole chromosome.
Here, in the step, a modification was performed to obtain
the targeted hyperparameters namely length of observation
window, number of hidden neurons in the first hidden layer,
and the size of the prediction window.

There are three basic termination criteria of a GA algo-
rithm, (i) there is no further improvements, (ii) the givenmax-
imumnumber of generations is reached, and (iii) the objective
function reaches minimum value. In this work, the basic pre-
diction framework is padded with this optimisation layer to
give more composite representations to the predictive model
for ICU patient deterioration. The aim of the proposed model
is to optimize certain framework parameters, such as the
size of the observation window and the prediction window,
as well as the number of neurons in the first hidden layer,
which will be further discussed in exploration layer in next
sections.

D. EXPLORATION LAYER
To get the best performance of the proposed prediction frame-
work, many parameters are explored to identify the best
configuration at the prediction layer from data pre-processing
until final prediction model based on LSTM-RNN as shown
in Figure 3. These parameters include the window size of the
observation window and the prediction window, the number
of neurons in the first hidden layer of the prediction model
as well as feature selection approach. As feature selection
is one of the most crucial process in prediction layer to
train, validate and test the prediction model, this work has
applied three different approaches of feature selection for
performance comparison. There are features based on vital

sign only, features based on laboratory only, and finally the
feature selection based on ‘‘selecting a percentile’’ using Chi2
score. The performance evaluation proves that the Chi2 score
feature selection approach is the best approach to strike the
balance between prediction accuracy and the computation
performance.

It is also important to note that in the exploration layer, the
exploration of window size and LSTM network architecture
is an automated process based on GA algorithm, whereas the
feature selection approach is executed manually by compar-
ing the framework performance.

E. FRAMEWORK EVALUATION LAYER
As the name implied, the framework evaluation layer as
shown in Figure 4 is meant to measure the performance of the
proposed patient deterioration prediction framework in terms
of prediction accuracy, AUROC, test loss and processing
time. To evaluate the performance, the MIMIC-III dataset
at the dataset layer is divided into three parts, i.e., training
dataset, validation dataset, and testing dataset, with the ratio
of 70%, 15% and 15%, respectively.

Training dataset is a set of data used to fit the model
parameters, such as weights of connections between neurons
in the proposed prediction model. Firstly, the weights of the
network are allocated random values, consequently the net-
work simply implements a series of random transformations.
Certainly, its output is far from what it should preferably be,
and the loss score is therefore very high. However, with every
single example of the network processes, the weights are
adjusted in the correct direction to minimize the loss score.
This is the training loop, which, repeated an adequate number
of times (typically tens of iterations over thousands of exam-
ples), produces weight values that reduce the loss function.
A network with a minimal loss is one for which the outputs
are as close as they can be to the targets: a trained network.
On the other hand, the validation dataset evaluates the loss
at the end of each epoch. It is used to give an estimation of
model skill while tuning model’s hyperparameters [110]. The
dataset utilized to assess the finalmodel performance is called
the ‘‘test set’’.

Conventionally, most of the studies in literature split the
dataset into just two sets which are training and testing
datasets. However, this will give a biased framework perfor-
mance as using information from the test set during the model
training in any way is considered as a ‘‘peeking’’ behavior.
As a result, many researchers strongly suggested to totally
separate and lock the test set from model training until the
model tuning is completed [111].

In the framework evaluation layer, the performance of the
proposed prediction framework will also benchmark with
many previous related works in terms of the number and types
of features obtained from different database targeted for dif-
ferent prediction task, the dataset sequence and the splitting
for performance evaluation, different prediction model based
on various deep learning algorithm, as well as the observation
window size.
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FIGURE 3. Exploration layer.

FIGURE 4. Framework evaluation layer.

IV. MODELLING AND ALGORITHMIC DEVELOPMENT IN
THE PROPOSED PREDICTIVE MODEL
In achieving the aim of implementing a novel and reliable
prediction framework that enables different techniques for
data preparation, training, and prediction to be deployed to
carry out experiment, a deep learning approach of LSTM-
RNN to predict patient deterioration in ICU was chosen in
this study as the suitable method for a baseline analysis.
The hypothesis that changing window sizes will result in a
balance between the accuracy and time prediction of different
variables for deterioration prediction is adopted. In addition,
an experimental set using different types of data was carried
out to demonstrate the influence exerted by data types to
obtain better results. A generic experimental procedure that
followed the conventional design cycle of pattern recognition
was developed. This includes vital components of the raw
variables pre-processing tasks; dividing the data into training,
validation, and testing data sets; performing experiments at
different sizes of observationwindow and predictionwindow;
and optimisation and calculation results. Under this frame-
work, the impact of different types of data time-series and
different sizes of windows on the prediction performance
will be analysed. The implementation of the baseline predic-
tion framework to perform the experimental works is shown
in Figure 5.

The long size of observation window (i.e., 24 hours and/or
48 hours) requires more data storage and more computations

to obtain acceptable results. Therefore, this work aims to
decrease the size of observation window from 24 hours to
only 4 hours (i.e., an 83% reduction) while still acquiring
an acceptable accuracy rate in its prediction. It also aims to
predict deterioration before a time that enables the medical
team to save lives, increase morbidity, and decrease mortality.
In other words, predict deterioration before 1 hour, 2 hours, 3
hours, 4 hours, 5 hours, and 6 hours. These goals show the
importance of this study to predict deterioration before an
acceptable prediction window and using small observation
window. This study acquires key results that illustrate the
strength points performed in this study.

Based on the works of Purushotham et al. [112] and
Johnson et al. [113], adult patients are considered to com-
prise any patient whose age was above 15 years at the ICU
admission time. This research targeted this group. Many
patients in MIMIC-III database have more than one ICU
admission. Hence, in this study, the data associated with the
first admission is only utilized and this is done to avoid
potential details leakage in the upcoming analysis, as well as
to maintain comparable experimental settings [112], [113].
For every admission, all records of vital signs and laboratory
values comprised an interval of 5 hours starting from the
admission of patients to the ICU for both control and case
groups (i.e., 5 hours prior to sudden death or sudden transfer
for the group that suffered from clinical deterioration), such
as [11]. However, patients who stayed under 5 hours in the
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FIGURE 5. Implementation of the baseline prediction framework to perform the experimental works.

ICU were placed under the exclusion criteria. Thus, admis-
sions that met these criteria were eligible for inclusion. The
study employs minute-by-minute time-series, which involves
8,031 kilobytes (KB).

This study defines a dataset involving 399 patients like
[114]. The dataset contains 2,274,300 samples organised as
119,700 rows and 19 columns in addition to the time-series
column and the label column. The dataset is used to define
training, validation, and testing data sets. Building solid
models requires selecting the significant features that affect
the performance of the model while implementing it [115].
Feature selection is performed to obviate overfitting and
develop model performance. Besides, it is done to enhance
the speed of models in terms of time consumption. Feature
selection can also imply deeper insight into the embedded
techniques that provided the data. To select correlated fea-
tures, this research applied a methodology, namely Selecting
a Percentile of Features using Chi2 methodology [116]. This
methodology selects features as stated by a percentile of
the highest scores. The selected features involve dynamic
(i.e., sequential) features and static (non-sequential) features.
The sequential features involve vital signs (i.e., HR, SysBP,
MeanBP, RR, SPO2), GCS, and laboratory test results (i.e.,
Glucose, PTT, PT, and BUN). The selected static features
were age and admission type. In the proposed LSTM-RNN
predictive model, each of the dynamic features was repre-
sented by the sequences of minute-by-minute values cor-
responding to 5 hours in the first calendar day after ICU
admission. If there was no value reported during a particular
minute, a missing value was set.

In clinical datasets, static information like age, gender,
blood type, and admission type combined with dynamic
information (i.e., sequences of data) are recorded for hos-
pitalized patients, either in general wards or in ICUs. The
study uses the data collected from MIMIC-III database that
contains ICU patients’ complete information. It is notable
that the medical data sets have become longer (i.e., more
samples are collected through time) and wider (i.e., store
more variables). Therefore, it is necessary to merge various
data types prior to their being imported to any predictive
model that analyses the complex relationships between many
time-evolving variables. In this study, the static information
is concatenated with the dynamic information in a merge step
using a category of joins called ‘‘many-to-one’’ joins. This
is one of the strength points involved in this study. In fact,
some joins are those in which one of the two key columns has
duplicate entries. For the many-to-one case, the DataFrame
that results will preserve these duplicate entries as appropri-
ate. The output then undergoes concatenation with LSTM’s
hidden states at each time step. These LSTM hidden layers
output will be fed into a dense hidden layer before the output
layer.

V. PROPOSED OPTIMISATION MODEL BASED ON MULTI
OBJECTIVE GENETIC ALGORITHM
Many widespread applications of learning models from
customer targeting to medical diagnosis, evolve due to
sophisticated relationships among settings and parameters.
In addition, optimisation is a method to discover input that
are most significant for a predictive model. This particular
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method can be used to identify and remove parameters and
settings that are unwanted, insignificant, and superfluous,
and which have no effect or minimise the predictive model’s
accuracy. Also, the approach determines the most appropriate
values that provide higher performance metrics. The process
of selecting appropriate sizes of windows and number of neu-
rons in hidden layers needs much computational effort and,
if the numbers of neurons and sizes of observation window
and prediction window are significant, the process becomes
impractical.

Consequently, the requirement of rational approaches that
select appropriate values of important settings in practice is
urgent. One of the most innovative models for optimisation
is genetic algorithm. GA is a method that stochastically opti-
mises functions andwas created based on natural genetics and
biological evolution mechanics [117]. These models could be
utilized to optimise the performance of a predictive model via
assigning the most significant values of different settings. GA
is an empirical and population-based search approach that is
presented by Holland [118]. It is introduced based on the
Darwinian natural evolution in biological systems. In GA,
a list of potential solutions for an optimisation problem is
characterised via what is called a population. The population
comprises a finite number of individuals (or called chro-
mosomes). Every individual comprises a list of genes that
signifies a point in the search space that sequentially signifies
a potential solution.

The flow chart of the GA-based optimisation model as
recommended by Huang and Wang [119] and this study has
adopted it with some modifications. The model proposed by
Huang and Wang is utilized as a reference for describing the
optimisation process. The dataset is first split into the training
set and the testing set. The GA solution is decoded for every
chromosome in the population so that the optimal values for
OW, PW, and number of neurons in a hidden layer can be
achieved. The algorithm returns the fitness score of the pre-
defined value of 100 if OW, PW, and number of neurons are
zero. The selected settings are utilized collectively with the
training dataset. Then, the algorithm splits the data based on
new optimised settings.

Time-series data are used in this work, so an LSTM model
has been designed to train the training data and predict the
testing data. An LSTM model involves an input layer with
several neurons equal to the new optimised window size.
It also contains a hidden layer with several neurons equal
to the number of optimised number of neurons. The LSTM
model additionally has one output dense layer that provides
the predicted values of OW, PW, and number of units in the
first hidden layer. Root Mean Square Error (RMSE) score is
calculated as a fitness score of GA. DEAP Python Library is
used to implement the GA model. After that, some param-
eters are initialised as Bernoulli random variables. Chromo-
somes are reordered by shuffling mutation. Then, a roulette
wheel is used for selecting algorithms. Finally, the func-
tion used for evaluating the fitness of individual solutions is
trained.

In an LSTMmodel, the determination of the optimal num-
ber of lags and number of hidden layers is a non-deterministic
polynomial (NP) hard problem. GA is a meta-heuristic algo-
rithm, so there is no guarantee that a global optimum solution
can be found. Nevertheless, meta-heuristic algorithms tend to
have suboptimal good solutions that sometimes can be near
the global optimal solutions. GA algorithms have shown in
past research that they can be used effectively to find a near-
optimal set of time lags [120], [121]. This problem is solved
by GA using an evolutionary process inspired by natural
selection and genetic science mechanisms.

GA is used in this section to obtain the proposed model’s
optimum hyperparameters, the size of the observation win-
dow, how many neurons are present in the first hidden layer,
and the size of the prediction window. This proposed optimi-
sation model is used to find the hyperparameters that reduce
the fitness function of the model (i.e., RMSE) [122]. At the
beginning of the GA algorithm, the required modules such as
random module and scipy.stats module are imported [123].
Aside from the DEAP module, base, creator, tools, and algo-
rithms are also imported [124]. In DEAP, a class is created
that is inherited from the deap.base module. Then, using the
weight parameters, the function is maximised. An individual
class is defined, which is used to inherit the class list. It also
informs the DEAP creator module to assign FitnessMax as its
fitness attribute [125]. Now, DEAP toolbox is used to define
the gene pool and create a population. All the objects used are
stored in a container called toolbox. However, contents can be
added to the container using the register method [126].

After creating an individual and a population by repeatedly
utilising the individual class, a class is passed to the toolbox
for creating a gene of length N [127]. Then, the fitness
function is defined, which is returned in DEAP library as
a tuple for permitting multi-objective fitness function. Now,
the fitness function, crossover operator, mutation operator,
and parent selector operator are added to the container. Then,
the fitness function defined previously is registered. The
crossover operator is also registered. In this proposed algo-
rithm, a cxOrdered operator is used. The mutation operator is
registered, and themutShuffleIndexes option is selected [128],
which shuffles the attributes of the individual input with a
probability indpb = 0.6. The selection operator is registered,
which defines the method that the parents are selected, and
the selRoulette technique is used.
The hyperparameters are encoded in a binary string with

10 bits for OW size, 5 bits for number of neurons in the first
hidden layer, and 10 bits for PW size. Therefore, the complete
encoded chromosome involves 25 bits.

VI. RESULTS AND DISCUSSION
The features chosen by the ‘‘Selecting a Percentile’’ feature
selection approach in this work were heart rate, systolic
blood pressure, mean blood pressure, diastolic blood pres-
sure, respiratory rate, SpO2, glucose, GCS, PTT, PT, age,
and admission type. The proposed model’s operation can
be summarised as the following. Initially, the observation
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TABLE 3. Prediction results for the proposed LSTM-RNN predictive model

window and the prediction window are determined. After
that, the number of epochs involved is determined. Fur-
thermore, the batch size is determined. Then, the features
are defined and imported. The dataset is then normalised.
The dataset is divided afterwards into three datasets, which
are training dataset, validation dataset, and testing dataset.
The hidden layers are implemented after that. Furthermore,
the output layer is defined. Then, the model is compiled to
make a prediction. Finally, the performance is calculated.

Table 3 shows the outcomes resulting from metrics that
involve different observation window and prediction window
sizes. There are four sizes in the observation window: 1 hour,
2 hours, 3 hours, and 4 hours. Previous works like [129, 130]
utilized a 24-hour observation window to achieve acceptable
prediction performance level (i.e., accuracy and/or AUROC
> 0.80). This study tends to reduce the observation window
from 24 hours to only 4 hours (i.e., a reduction of 83%)
while achieving an acceptable prediction accuracy rate. The
prediction window involves six sizes with an increment of 1
hour each time starting from 1 hour until 6 hours.

The results show that as the observation window increases,
the performance becomes better. Thus, at each time step in the
input sequence, the model learns to predict the value of the
next time step. It also shows that as the prediction window
increases, the performance becomes a little bit worse. The
best results were obtained when the observation window was
4 hours, and the prediction window was 1 hour. The results
also demonstrate that the proposed model is able to perform
with high results up to 6 hours before the onset of ICU patient
deterioration. The results of LSTM-RNN showed that best
solutions had an accuracy of 0.90 and 0.918 for AUROC,
when the OW was 4 hours, the PW was 1 hour, and there
were 128 neurons in the first hidden layer.

The proposed model’s performance is superior to the SVM
model and logistic regression model using the same dataset.
The SVM model had an accuracy of 0.821 and the logistic
regression model scored an accuracy of 0.792. The proposed
model achieved an accuracy of 0.84 when using all 19 fea-
tures. To get a higher prediction accuracy, the manual feature
engineering still need to work with deep learning model for
high prediction accuracy.

Table 4 below demonstrates the results that verified the per-
formance difference between the proposed optimal solutions
obtained from the proposed optimisation algorithm based on

GA and the best solution from the proposed predictive model
based on LSTM-RNN. This comparison is based on accuracy
and AUROC.

The improvements can be summarised as follows:

1) The accuracy is improved by 0.327%. This small
enhancement shows that, based on accuracy, the pro-
posed optimisation algorithm can improve the pro-
posed predictive model’s performance in ICU patient
deterioration.

2) The AUROC is improved by 3.67%. This good
improvement indicates that the proposed GA algorithm
can build the proposed deep learning model’s perfor-
mance based on LSTM-RNN.

3) The prediction window is improved by 4.67%. This
significant improvement confirms that the proposed
models are efficient in their ICU patient deterioration
prediction.

4) The observation window is reduced by 40% compared
to the size of observation windows used by most of the
studies that tend to predict deterioration of patients (i.e.,
24 hours).

The quantification of patient health and prediction of future
outcomes are vital issues in studies into critical care. The
death of patients and their sudden transfer to the ICU are
regarded as the most crucial outcomes in ICU admission.
The accurate prediction of deaths and sudden ICU transfer
might assist in illness severity assessments and as a potential
parameter in determining the value of new treatments, inter-
ventions, and health care policies. The goal of this study is
the accurate prediction of clinical outcomes and benchmark-
ing the performance against several other recent research
[112], [113], [131], [132]. The results of the benchmarking
against the research mentioned in terms of several criteria
like the database source, prediction model, features type
(time series or non-time series), ages of patients involved
in each work, number of features, prediction task, and the
area under the receiver operating curve result are presented
in Table 5. Referring to Table 5, it verifies that the proposed
models in this study outperform previous works that utilized
deep learning approaches to implement predictive models.
Johnson et al. [113] used an observation window of 24 hours
and they demonstrated the lowest AUROC among previous
studies at 84%. Pirrachio [131] employed a 24-hour observa-
tion window and it achieved the highest AUROC among other
works with 88%. Harutyuyan et al. [84] achieved an AUROC
of 87% despite using an observation window of 48 hours. All
these previous studies did not divide the dataset into training,
validation, and testing datasets in evaluating performance, but
only divided them into two. Harutyuyan et al. [84] divided
their dataset into training and testing datasets at 85% and
15%, respectively. Such an approach cannot capture the right
prediction performance on the unseen testing dataset. The
optimized work in this study acquired a significant reduction
of the observation window of about 40% and still outperforms
the other works.
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TABLE 4. Comparison between the best results obtained from the proposed predictive model based on LSTM-RNN and the optimal solutions given by the
proposed optimisation algorithm

TABLE 5. Benchmarking results against previous works that used deep learning models

Table 6 illustrates the results of benchmarking with pre-
vious works regarding several criteria, which are the size
of observation window, prediction task, inclusion criteria,
models used to perform prediction, and AUROC achieved,
where the observation window used was 24 hours. Referring
to Table 6, it shows that the proposedmodels in this paper out-
perform previous works that utilized different linear and non-
linear models to implement predictive models. The AUROC
of previous works in Table 6 ranged between 0.762 and 0.89.
All the previous works in this table utilized an observation
window of 24 hours. These works used different prediction
tasks. Joshi and Szolovits [138] performed a new unsuper-
vised learning approach, radial domain folding, to predict
in-hospital mortality and achieved the highest AUROC with
89%. The results obtained by this study outperform all pre-
vious works in Table 6 despite using a shorter observation
window. All studies in this table performed one prediction
task, while this study performs two prediction tasks (i.e.,
mortality and sudden transfer to ICU). It can be noticed that

all studies useMIMIC open-source database whichmakes the
benchmarking task easier.

Table 7 shows the results of benchmarking with previous
works regarding several criteria, where the observation win-
dow used was 48 hours or more. The table shows that the
AUROC ranged between 0.72 and 0.8602. Johnson et al.
[145] used a varied range of feature types from the original
time-series signals, including standard statistical descriptors
such as the minimum, maximum, median, first, last, and
the number of values. A new Bayesian ensemble scheme
comprising 500 weak learners was used in the proposed
model to group the data samples. This model could achieve
the highest AUROC among the previous works that used
48 hours or more as the observation window. The table shows
that the results achieved by this study outperform other works.
It also shows that the observation window was reduced about
80%.

Experiments in this research are performed in a virtual
machine provided byGoogle Colaboratory using an advanced
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TABLE 6. Benchmarking results against previous works that employed observation window of 24 hours

GPU of NVIDIA-SMI 440.82, driver version of 418.67, and
CUDA version of 10.1. Table 8 shows the results of per-
forming different predictive models utilising various hard-
ware for experiments performed. The processor used here is
Intel R©Core TMi7-3770 CPU @ 3.40 GHz, 3.90 GHz, and
the installed memory is 16.0 GB. The first row in Table 8

(i.e., Gain) compares training time on CPU and GPU using
LSTM and GRU predictive models. The execution time of the
training uses the default parameters (e.g., epochs = 20 and
batch size = 64) as they provide a good baseline in many
cases. The time to fit the LSTM model on top of CPU is
432 minutes, the time to fit the GRU model on top of GPU is
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TABLE 7. Benchmarking results against previous works that employed observation window of 48 hours

TABLE 8. Comparison between different predictive models using various hardware for previous experiments

36minutes, and the time to fit the LSTMmodel on top ofGPU
is 29 minutes. Thus, GPU speedup over CPU of about 14.89.
Furthermore, a reduction of 9.47 times in testing processing
time between CPU and GPU is recorded. The performance
of LSTM model using GPU is better than that of using CPU
(i.e., 0.9180 vs. 0.8804).

Generally, the training of LSTM models involves high
computational power and utilisation of GPUs, which results
from backpropagation through time training model. More-
over, the vanishing and exploding gradient problem must
be tackled to accomplish adequate findings. Assigning

proper settings and parameters can alleviate these problems.
The computational complexity of the proposed LSTMmodel
for the inference requires significantly fewer computing oper-
ations in comparison to the training phase. The proposed
model utilizes only CPU processing in the Google cloud
submission system. Moreover, Purushotham et al. [112] used
Python implementation of the Super Learner algorithm to
predict the in-hospital mortality. This predictive model took
about 25 – 30 minutes for evaluating the prediction task using
a feature set consists of the 17 features used in the calculation
of the SAPS-II score (i.e., feature set A) and it took about
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TABLE 9. Comparison between different predictive models using various hardware units for magnetic properties

3 hours for evaluating the prediction task using a feature set
consists of 135 raw features (feature set C).

This predictive model took about 25 – 30 minutes for
evaluating the prediction task using a feature set consists of
the 17 features used in the calculation of the SAPS-II score
(i.e., feature set A) and it took about 3 hours for evaluating the
prediction task using a feature set consists of 135 raw features
(feature set C). A deep Feed forward neural (FFN) network
implemented using Keras took around 90 and 100minutes for
evaluating the same mortality task using Feature sets A and C
respectively, while the Multi Modal Deep Learning (MMDL)
model took around 30 minutes and 1 hour for Feature sets
A and C respectively. All the experiments involved in [112]
were run on a 32-core Intel(R) Xeon(R) CPU E5-2630 v3
@ 2.40GHz machine with NVIDIA TITAN-X GPU proces-
sor. Table 9 summarises the benchmarking results between
Purushotham et al. [112] and this study. The table shows
the efficiency of implementing Python in the top of GPU
and using LSTM-RNN deep learning prediction model to
predict deterioration of patients in ICU since this work out-
performs the previous works in terms of computation time
and AUROC.

Chen et al. [56] proposed a new CNN-based multimodal
disease risk prediction algorithm utilising structured and
unstructured data from hospital. The study performed exper-
iments on a regional chronic disease of cerebral infraction.
It illustrated the running time of CNN- unimodal disease
risk prediction (UDRP) using text data (T-data) and CNN-
multimodal disease risk prediction (MDRP) using structured
and text data (S & T- data) in personal computer (2core CPU,
8.00G RAM) and data center (6core∗2∗7D84core CPU,
48∗7D336G RAM). For CNN-UDRP (T-data) algorithm,
the running time in data center is 178.5s while the time in
personal computer is 1646.4s. For CNN-MDRP (S&T - data)
algorithm, its running time in data center is 178.2s while the
time in personal computer is 1637.2s. thus, the running speed
of the data center is 9.18 times on the personal computer.

On the other hand, the running time for the proposed pre-
dictive model based on LSTM-RNN to predict deterioration
is 64.39s, thus, it is faster of about 2.77 times than that for
CNN-UDRP (T-data) in data center. It is also faster of about
25.57 than that for CNN-UDRP (T- data) in personal com-
puter. Moreover, the running time for the proposed predictive
model based on LSTM-RNN to predict deterioration is faster
than that for CNN-MDRP (S&T- data) of about 2.76 times
in data center. Besides, it is also faster of about 25.56 than
that for CNN-UDRP (T- data) in personal computer. There
are a significant difference in favor of the proposed model
performed by this study in the running time compared to
personal computer as well as the data center performed by
Chen et al. [56] despite the slightly difference in accuracy
between the 2 studies. Table 9 shows the efficiency of the
proposed model based on LSTM-RNN in terms of running
time over the CNN model.

Tables demonstrate that open-source data, such as MIMIC
database in all its versions, makes the benchmarking task
easier. The tables show that the results obtained in this study
outperform studies that used linear and non-linear models.
The tables also confirm that open-source datasets public dis-
semination is essential in the facilitation of iterative improve-
ment in predictive models. Furthermore, the tables show
that some studies [134], [149] focused on specific patient
groups, while others required clinical notes [135], [140].
Moreover, the tables show wide inter-study heterogeneity in
inclusion criteria, model adopted, and performance. In fact,
the AUROC obtained in this study outperforms previous
works that used different sizes of observation windows and
different predictive models, either linear or non-linear.

VII. CONCLUSION
In the quest to improve the performance of ICU patient
deterioration prediction which uses dynamic and static data,
a novel and reliable prediction framework is proposed in
this study. The framework consists mainly of a predictive
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model based on deep learning (i.e., LSTM-RNN) and an
optimisation model based on GA. These models are used to
predict deterioration before its onset.

The proposed predictive model overcomes the shortcom-
ings that exist in current prediction processes of research
based on deterioration of patients in ICU. Deep learning
model based on LSTM that uses dynamic and static data
implemented on GPU and an optimisation model based on
GA are proposed to achieve the research objectives. Different
benchmarking metrics are adopted by this research, which
are sequence type, inclusion criteria, number of features,
prediction task, splitting ratios, observationwindow size, data
source, AUROC, model type, gain, estimation time, testing
processing time, and validation accuracy.

The observation window used by the proposed predic-
tive model is minimised during the training, validation, and
testing steps. Different advanced techniques are proposed to
achieve better performance and a reduction in the observation
window. These techniques are normalisation, learning rate,
dropout, and early stopping. In fact, computing hardware
advances in the last decade, particularly GPUs, have enabled
larger, deeper networks to be trained. These more sophis-
ticated networks have demonstrated remarkable success in
wide ranging applications such as prediction of deterioration
for patients in ICU. Furthermore, the experimental work
illustrates that using GPU can reduce gain (execution time),
estimation time, and testing processing time. The validation
accuracy has also been shown to be better compared with the
LSTMmodel implemented using a CPU or another predictive
model (i.e., GRU) using a GPU. This research also pro-
posed an optimisation algorithm based on GA-based multi-
objective optimisation algorithm. In the proposed algorithm,
the data is trained using the LSTMmodel. Optimisation of the
observation window size, the number of hidden units in the
first hidden layer, and the prediction window size are carried
out to enhance the accuracy and AUROC and lower the
proposed predictive model’s test loss. Chart event features are
considerably sensitive to time series among the data utilized
in this research, and they cannot be properly obtained by
conventional machine learning models (e.g., logistic regres-
sion and/or Support Vector Machine). An LSTM-RNN deep
learning framework for ICU patient deterioration prediction
is proposed in this research, as it can incorporate time-series
data properly with no information loss. Moreover, advances
in learning algorithms (i.e., machine learning and deep learn-
ing) are being driven by three technical forces which are hard-
ware, datasets and benchmarks, and algorithms advances.
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