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ABSTRACT Internet-of-Things (IoT) devices are massively interconnected, which generates a massive
amount of network traffic. The concept of edge computing brings a new paradigm to monitor and manage
network traffic at the network’s edge. Network traffic classification is a critical task to monitor and identify
Internet traffic. Recent traffic classification works suggested using statistical flow features to classify
network traffic accurately using machine learning techniques. The selected classification features must
be stable and can work across different spatial and temporal heterogeneity. This paper proposes a feature
selection mechanism called EnsembleWeight Approach (EWA) for selecting significant features for Internet
traffic classification based on multi-criterion ranking and selection mechanisms. Extensive simulations have
been conducted using publicly-available traces from the University of Cambridge. The simulation results
demonstrate that EWA is capable of identifying stable features subset for Internet traffic identification.
EWA-selected features improve the mean accuracy up to 1.3% and reduce RMSE using fewer features than
other feature selection methods. The smaller number of features directly contributes to shorter classification
time. Furthermore, the selected features can train stable traffic classification generativemodels irrespective of
the dataset’s spatial and temporal differences, with consistent accuracy up to 97%. The overall performance
indicates that EWA-selected statistical flow features can improve the overall traffic classification.

INDEX TERMS Edge computing, Internet-of-Things, network traffic classification, feature selection.

I. INTRODUCTION
The introduction of the Internet-of-Things (IoT) has ben-
efited numerous sectors like healthcare, manufacturing,
finance, and entertainment. The massive IoT devices’ inter-
connectivity raises serious concerns since it resulted in high
network traffic. Monitoring and managing network traffic,
especially at the network’s edge, requires an accurate and
efficient network traffic classification. One of the factors
for efficient and accurate network traffic classification is the
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selected classification features that are stable and can work
across different spatial and temporal heterogeneity.

Traffic application identification is a fundamental and crit-
ical task in network traffic management [1]. The limitation of
port-based e.g. [2]–[4] and payload-based strategies e.g. [3],
[5]–[8] prompts the use of statistical flow features e.g. [9],
[10] for traffic classification. The latter provides the pliabil-
ity to identify network traffic in contrast to port-based and
signature-based strategies since this type of traffic identifier
is not affected by detection avoidance mechanisms such as
non-static port numbers and payload encryption.

Identifying the classes of Internet traffic using statistical
flow features is non-trivial because of the high dimensionality
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of traffic features used for traffic classification. Preferably,
the usage of many features would boost the ability to differ-
entiate Internet traffic [11], [12]. Nonetheless, it is not always
so in practice because not every feature is informative and
useful. Some statistical flow features may not be relevant and
uninformative, while others may have high inter-correlation
with each other features and thus redundant [13], [14]. The
use of less significant traffic features affects the efficiency
and accuracy of network traffic classification [13], [15]–[17].

Different feature selection (FS) techniques have been sug-
gested by different researchers and scholars [15], [17]–[20]
to enhance classification performance and accuracy by dis-
carding irrelevant attributes. Nevertheless, these studies did
not consider the selected features’ stability when applied in
a situation with a different location and time heterogeneity.
Moreover, for traffic identification at the network edge in
real-time, a minimal number of features must be used to
improve the classification throughput on edge devices such
as middleboxes.

Thus, this work proposes a feature selection method
for network traffic classification named Ensemble Weight
Approach (EWA) for selecting robust statistical flow fea-
tures for Internet traffic classification that are robust. The
proposed feature selection method first generates candidate
features using conventional feature selection methods, rank-
ing each feature combination, and searching for the best
features. Extensive simulations have been conducted using
publicly-available traces from the University of Cambridge
to evaluate the proposed EWA feature selection. EWA selects
fewer features for machine learning classification of Inter-
net traffic that are stable irrespective of the dataset’s spa-
tial and temporal differences, improving the overall traffic
classification.

The remainder of this paper is organized as follows.
Section II explains similar feature selection methods, particu-
larly for network traffic classification. Section III presents the
proposed FS method. Section IV describes the experimental
setup, while Section V discusses the results. Section VI con-
cludes the paper and recommends future works.

II. RELATED WORK
This section discusses similar feature selection methods, par-
ticularly for network traffic classification. We also present
a comprehensive review of state-of-the-art feature selection
techniques for network traffic classification.

A. ML TRAFFIC CLASSIFICATION
ML is one of the techniques that can be used for IoT. ML is
a group of robust strategies for data mining and knowledge
discovery [21], [22]. The first work using this technique
was [23]. The conventional structure for creating ML models
involves sampling the training dataset, extracting features,
selecting informative features, and creating the generative
model. Once the generative model has been generated, net-
work traffic can be classified based on the preset classes
defined during training.

Feature extraction is a method of extracting features that
can distinguish a data class over the others. In the case of
network traffic classification, distinct attributes such as port
[4] and packet inter-arrival time and flow statistics [24] can be
used as the classification features. However, the cardinality
of possible features can be huge. While classifier training
can be done offline, many features will result in a large
generative model and require a big memory footprint. Fur-
thermore, extracting a large number of features in real-time
classification is not realistic. Hence, feature selection (FS)
is required to boost both effectiveness and efficiency since
it discards less informative or irrelevant features that benefit
both the training and classification phases.

B. THE USE OF FEATURE SELECTION
In machine learning, FS is a commonly used technique in
data preprocessing. FS methods aim to identify and choose
a subset of features to describe the data concept effectively.
Simultaneously, FS can reduce the effects of noise and unre-
lated attributes to yield a good prediction of data class [17],
[25], [26]. Traffic identification can greatly benefit in terms of
accuracy and other performance metrics by utilizing the most
significant features [27]. The selection of relevant features for
network traffic identification is non-trivial due to:

• It requires a good understanding of the traffic engineer-
ing domain to identify which features are relevant.

• Datasets may contain uninformative features that con-
siderably can reduce classification accuracy.

• Efficiency of the identifiers decreases when selecting a
huge number of attributes. The storage requirement is
increased, and time taken for training and testing of the
model is also increases [28].

Recently, FS strategies are extensively deployed in many
applications, such as identifying informative genes [29],
bioinformatics [30], and text categorization [31]. The objec-
tives of the algorithms used for extracting features may differ.
However, they all have many similarities [32]:

• To find the minimal size feature subgroup is fundamen-
tal and sufficient to the target concept [33].

• The ability to choose a subgroup of features from a large
collection, in which the criterion value can be optimized
over every subgroup [34].

• The right choice of subclass features to increase identi-
fication accuracy. Reducing the structure of chosen fea-
tures and not tampering with the built model’s prediction
accuracy [35].

• Selecting a small group can result in class distribution
given only values of the selected features, which can
closely represent the original distribution [35].

Furthermore, FS process evaluation can be achieved with
four basic stages: subset creation and assessment, termination
criterion, and result validation [36]. The process starts with
subclass creation employing a particular search approach
to yield candidate feature subsets. Subsequently, every can-
didate subgroup is examined using specific examination
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conditions and related to the previous best result. The
obtained result becomes the best result if it outperforms
the previous best. The procedure for subset creation and
examination continues until the termination condition is
fulfilled. Lastly chosen best feature subgroup is authenticated
by previous information or test data. The search approach and
assessment condition are two vital factors for the study of FS.

Subset creation starts with a search point, that could be an
empty set, whole set, or a randomly created subset. In the
beginning, it can lookup feature subgroups from random
directions. In the forward search, features are inserted indi-
vidually, whereas in the backward search, the least significant
feature is detached based on the valuation criterion. Random
search includes or removes features in random to evade being
trapped into a local maximum.

C. FEATURE SELECTION MODELS
FS processes can be divided to two main methods - filter
and wrapper methods [37]–[39]. The filter approaches or
feature rankingmethods can use thewrapper approach to rank
features too. A filter-based FS can return a subset of features,
e.g., Correlation-based FS method (CFS). These techniques’
attractive nature is centered on their simplicity, scalability,
and good empirical success [14]. Feature ranking is effective
because it involves only computation and sorting of scores.
The subsets of the main features can be chosen based on
feature ranks to create a classifier. Some filter techniques
employ ranking conditions based on information-theoretic
criteria including information gain (IG) [40], GainRatio (GR)
[27], mutual information [14], and entropy-based measure
[41], whereas some use statistics, such as Chi-squared statis-
tics [42], T-statistics [43], F-statistics [44], MIT correlation
[45], and Fisher criterion [46].

The wrapper approaches [47], [48] rely on identifying
informative features for obtaining a feature subset. Wrappers
exploit the performance learning machine to appraise the
value of feature subgroups. The wrapper FS techniques can
produce high identification accuracy for a specific identifier
at the expense of high computational complexity and less gen-
eralization of the selected features on other identifiers. The
wrapper techniques commonly surpass filter technique with
regards to the accuracy of the learning machine, which could
be categorized as sequential selection algorithms ((SFS),
sequential backward (SBFS), and sequential forward floating
selection (SFFS)) and heuristic search algorithms (genetic
algorithm [49]).

The other group of FS is hybrid methods. Every feature
evaluation measure (EM) is equipped with distinct advan-
tages and disadvantages. Some hybrid procedure FS tech-
niques include filter andwrapper [39], [50]. Lately, the hybrid
approach has been widely explored for FS due to its global
optimization abilities [51]. The hybrid method proposed in
[29] applied rank, which grouping to associate various FS
approaches. These features were combined using a weighted
sum from every component rankings acquired from a dis-
tinct FS mechanism. This shows that a combination scheme

performs better than individual FS techniques. Moreover,
Rogati and Yang [52] demonstrated that the increase in
performance was achieved by merging different feature
selectors.

Moreover, all these methods can be represented in the
space of features according to the evaluation measures (EM),
generation of successor (GoS), and search organization stan-
dards. GoS and Search organization are grouped as gen-
eration procedure. These three categories are explained as
follows.
• EM is a function applied to evaluate the generated suc-
cessor.

• GoS is a technique that suggestes a successor of the cur-
rent hypothesis. Several operators can be considered to
generate a successor: Backward, Compound, Forward,
Random, and Weighting.

• Search technique is applied to drive the FS process
applying one of these techniques: sequential, exponen-
tial, or random strategy.

Moore and Zuev [53] used the Fast Correlation Based
Filter (FCBF) FS technique for feature reduction and Naive
Bayes classifier to measure the significance of the feature
reduction. The overall identification accuracy result based on
subsets features is 84.06%, obtained by using all features.
Jun et al. in [54] applied two subsets feature to create a iden-
tified traffic. The work employed subsets features of flow on
Support Vector Machine (SVM). Training time was reported
at 40 seconds, while the classifier accuracy is 70%. In [55]
identified traffic using SVM and random search algorithm
for feature reduction. The proposed method did not use UDP
traffic, even though network traffic is composed of TCP and
UDP packets.

Moore and Zuev [53] used the Fast Correlation Based Fil-
ter (FCBF) feature selection technique for feature reduction
and Naive Bayes algorithm to measure the significance of the
feature reduction. The overall classification accuracy result
based on features subsets is 84.06%, obtained by using all
features. Jun et al. [54] used two feature subsets to create a
classified traffic. Thework employed flow features subsets on
Support Vector Machine (SVM). Training time was reported
at 40 seconds, while the classifier accuracy is 70%. In [55]
classified traffic using SVM and random search algorithm for
features reduction. The proposed method did not use UDP
traffic, even though network traffic is composed of TCP and
UDP packets.

Zhang et al. [16] proposed WSU AUC and SRSF FS algo-
rithms. WSU AUC was employed to choose features from
high dimensional imbalanced data. This work used ten Cam-
bridge datasets, UNIBS, and CAIDA datasets and applied
the C4.5 decision tree and NBK machine learning algorithm
(batch learning method) to evaluate proposed FS algorithms.
This method computes the value of WSU on each feature and
the classes and removes redundant features depending on the
specific three-shot. This method also used the SRSF method
to select the robust features that depend on frequency weight.
This work selected three features are server port features,
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minimum segment size observed and the total number of
bytes sent in the initial window, hence achieved an accuracy
of more than 94%.

D. CHALLENGES IN FEATURE SELECTION FOR TRAFFIC
CLASSIFICATION
The key challenge for selecting features is preserving the
appropriate features subset for accurate traffic identification.
Traffic classification accuracy is associated with a small
number of appropriate features [13], [15]–[17]. Various FS
methods select various sets of significant features, but they
do not always select the same number of significant features.
These are challenging due to:
• Representative influence of a specific FS approach may
limit its search space, which hinders achieving an opti-
mal subset.

• Various FS approaches may produce feature subgroups
that can be termed as local optimal in the space of subsets
feature.

• A collective method can give an improved approxima-
tion to ranking or optimal subset of features, which is
not frequently applicable with a single feature selection
technique.

Moreover, a broad analysis is required to provide informa-
tion or knowledge for the main factors affecting the robust-
ness of the FS procedures. Al Harthi et al. [56] proposed
an approach named global optimization algorithm (GOA) it
was focused on the stability issues. This approach depends
only on the frequency of the selected feature (ignore the
robustness of the selected feature) and consider Round-Trip
Time (RTT) features as part of selected subset features, which
depend on location [57].Nevertheless, it would be ideal to
ensure the robustness of feature subset (accurate regardless
of location and time heterogeneity and selection of a small
relevant number of features). This is important to build traffic
identification.

III. PROPOSED ENSEMBLES WEIGHT AVERAGE (EWA)
FEATURE SELECTION
The conceptual illustration of traffic classification is shown
in Figure 1. This framework comprises the learning model
that learns from the sampled datasets and the classifier model
that classifies incoming traffic based on the learned classifier
model. A traffic instance (flow or packet) is represented by
various features that can measure varying aspects of such an
feature. A flow refers to a group of packets sharing same
5-tuples (transport protocol, destination and source IP, des-
tination and source port). Flow can be represented by TCP or
UDP packets.

Generally, datasets (can be in the pcap format) are used
as the classifier’s training sample. Then, the FS selects the
relevant feature subsets to the target protocol or application
(in this case, network traffic classification). The learning
model is then learned based on the selected feature subsets
of all training instances.

FIGURE 1. Generic stages for ML traffic classification. The shaded tasks
are for training the ML generative model that can be done offline.

As previouslymentioned, the hybridmethod combines fea-
tures based on a weighted sum from every component rank-
ings acquired from a distinct FS mechanism. This approach is
shown to perform better than individual FS techniques. The
EWA method consists of three main stages: Evaluation of
individual FS methods and feature pool generation, weighted
ranking of features, and searching an optimal features sub-
set, as shown in Figure 2. The first stage involves feature
extraction and the formation of a feature pool from outputs of
individual FS methods (wrapper and filter FS methods). The
cutpoint of twenty features is used as the stopping criterion.
The cutpoint value can be changed accordingly. Since the
EWA aims to select the fewest possible traffic classification
features, the cutpoint is set to twenty. In the second stage,
the selected features are ranked, and features observed in
different datasets will be given higher ranks. In the third
stage, EWA applies one widely used sequential search strat-
egy (SFS) (Sequential Forward Selection (SFS)) [58] to
remove both irrelevant and redundant features from the initial
selected features pool.

A. STAGE 1: FEATURE POOL GENERATION
This stage evaluates the stability of each feature subset
generated by the respective FS technique. Each FS tech-
nique generates non-unique feature subsets when applied
to the different training datasets. Note that a distinct FS
technique uses a distinct method to create feature subsets. The
selected features are then evaluated using ML classifier. Here
Naive Bayes classifier is appiled to evaluate the accuracy of
each dataset. Selecting optimal features across the different
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FIGURE 2. Generic stages for ML traffic classification. The shaded tasks
are for training the ML generative model that can be done offline.

locality and time heterogeneity is difficult. Hence, to make
the best of the various FS methods, EWA uses multi-feature
selection methods on multiple datasets to create the initial
pool of multiple feature subsets. Accuracy and Stability are
used as the criterion to select the candidate FSmethods. These
selected feature subsets are used to create the initial features
pool. Unselected features by any of the FS techniques are
removed.

Assume a set of training datasets,D = {D1,D2, . . . ,D|D|},
k is the number of candidate FS methods FS =

{FS1,FS2, . . . ,FSk}, and F = {f1, f2, . . . , f|F |} is the poten-
tial features that can be used for traffic classification. Moore
et al. proposed 248 porential features that be used for network
traffic classification [19]. Let Ppool = ∅ be the initial features
pool and Pk is the the X best ranking features for FSk , where
X is features cutpoint. Each Pk is evaluated using a ML
classifier, in this work the Naive Bayes classifier, to evaluate
its accuracy Ack and Stability Stk . Algorithm 1 shows the
initial features pool.

Applying the cross-validation, the Accuracy Ack,i due to
the selected subset features by FSk on dataset Di is given as

Ack,i =
tp + tn

tp + tn + fp + fn
(1)

Ack = avg(Acck,i) ∀Di ∈ D (2)

where tp, tn, fp, and fn respectively represents true posi-
tive, true ngative, false positive, and false negative. Accu-
racy Ac = [0, 1], where Ack → 1 shows accurate traffic
classification whereas Ack → 0 indicates inaccurate traffic
classification.

Algorithm 1 Feature Pool Generation
1: Datasets D = {D1,D2, . . . ,D|D|}
2: FS techniques FS = {FS1,FS2, . . . ,FSk}
3: Feature pool P[pool = ∅
4: for i = 1 to |D| do
5: for j = 1 to k do
6: Generate Pk
7: Evaluate Ack and Stk
8: Select first features X in ranking
9: Ppool ← Ppool ∪ Pk

10: end for
11: end for
12: return Candidate features as the P

Stability St is a measurement to indicate the robustness
of the selected features regardless of traffic data variations.
A certain FS method may generate different feature sets
on datasets collected in different periods or locality due to
concept drift. Therefore, it is critical to select features that can
yield high prediction Accuracy and better relative Stability
over different samples. This study employed the stability
measure suggested by [20] to evaluate the distinct feature
selection methods.

A FS may respectively generate Pa and Pb feature subsets
from datasets Da and Db, where both maybe unidentical. Let
Pk = Pa ∪ Pb. The stability Stk of the selected features by
FSk over the two datasets can be estimated according to [20]
as:

Stk = [1− RU (Pk )]× 100 (3)

RU (Pk ) =
H (Pk )
log(|F |)

(4)

H (Pk ) =
1
|F |

|F |∑
i=1

−
nij

k|Dj|
log

(
nij

k|Dj|

)
(5)

where |F | is the total number of features, nij is the frequency
of specific feature fi observed across different datasets Dj.

B. STAGE 2: WEIGHTED RANKING OF FEATURES
EWA is based on a weighted ranking measure to select robust
features using multiple individual FS methods on different
traffic datasets. The idea behind this as a class is superiority
over that of individual FSmethods, where themost significant
features for network traffic classification are probably be
endorsed by most FS methods.

A weighted ranking measure for each feature fi is Rfi ,
which is the likelihood that fi is selected by multiple FS
methods in different traffic datasets (or none at all), as shown
in Equations (2). The mean value of Rfi in Equation (5) shows
high optimality when avg(Rfi ) → 1, whereas avg(Rfi ) → 0
indicates low optimality.

Let |D| denotes the cardinality of traffic datasets D, where
k represents the total number of FS methods used on a single
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dataset. A weighted ranking for each feature fi is given as:

Rfi =
1

k|D|

|D|∑
j=1

k∑
z=1

Oi,j,z (6)

Oi,j,z =
X − Li,j,z

X
(7)

avg(Rfi ) =

|F |∑
i=1

Rfi

|F |
(8)

where Oi,j,z denotes the weight of feature fi dependent on its
location Li,j,z w.r.t. cutpoint value X for eachDj and FSz. The
lower the value of Li,j,z indicates its high significance.

An optimal threshold value is needed for selecting features
that are stable and have high weighted ranks, which are
sufficiently unique and reliable. As an example, a feature
with a high average ranking weight is considered sufficiently
reliable. The threshold B = Rfi − avg(Rfi ) is determined
through experimentation. The higher value of B may not
necessarily result in higher accuracy as too few features is
required to classify network traffic.

In the second algorithm, firstly, the average weight mea-
sures of the features fi are computed. Then each feature which
has average weight measures more than or equal threshold is
selected and kept into the set of the best stable features subset
Pranked subset. Finally, important features containing indis-
pensable information about the original features are selected.

Algorithm 2Weighted Ranking of Features
1: Features set F = {f1, f2, . . . , f|F |}
2: Features pool Ppool (stage 1)
3: Ranked features set Pranked = ∅
4: Threshold B
5: for fi ∈ Ppool do
6: Compute Bi = Rfi − avg(Rfi )
7: if Bi ≥ B then
8: Pranked ← Pranked ∪ fi;
9: Update B = Bi
10: end if
11: end for
12: return Pranked

C. STAGE 3: SEARCH THE BEST FEATURES SUBSET USING
SEQUENTIAL FORWARD SELECTION
In this stage, we apply the wrapper approach to identify the
best candidate features as a good search technique. The tech-
niques, in general, are classified into three groups: random-
ized, exponential, and sequential. This research considers a
widely used Sequential Forward Selection (SFS), a sequential
search strategy [58]. SFS selects the best combination of
subset features for extraction. The selection process begins
with an empty set and continuously adds a single feature from
the superset to the subset when the accuracy increases.

TABLE 1. Procedure of SFS.

Table 1 illustrate the modified SFS to create a selected fea-
tures from a ranked features subest. In this case, {f1, f2, f3, f4}
are selected as the features to be used in network trafffic
classification.

IV. EXPERIMENTAL SETUP
This section describes the validation of EWA compared to
other feature selection methods.

A. VALIDATION PROCEDURE
The validation procedure involves evaluating the proposed
EWA feature selection compared to the IG [59], FCBF [53],
and GOA method [56] in term of Accuracy (Ac), Stability
(St), and Root Mean Squared Error (RSME).
The following software and tools were used to achieve the

set objectives of this work:
• Batch learning algorithms are frameworks that facili-
tate the selection of the appropriate attributes for the
identification of Internet traffic. Naive Bayes (NB) was
used as classifiers. These classifiers have been applied
successfully in various works for tackling traffic classi-
fication [60]. They were executed in Weka open-source
platform [61].

• Weka [61] a data mining software was used to imple-
ment the selection of select suitable and correct traffic
features.

• A laptop with Intel Core i7-5500U processor, 8 GB
RAM, and 1 TB HDD was used for validation purposes.

B. DATASET
EWA was evaluated using the widely acceptable traffic
datasets from the University of Cambridge [19] (dataset D1
to D10). This dataset is among the largest network traf-
fic traces, which is publicly-available and assembled by
a high-performance network monitor over different peri-
ods from two different network sites. The sites are des-
ignated as Site A and Site B, with each site hosts about
1,000 Internet-connected users through a full-duplex Giga-
byte Ethernet link. A high-performance network monitors
the full-duplex traffic for each traffic set on this connection.
Table 2 summarizes the datasets. For the implementation,
we used the Weka data mining tool [61]. In the Cambridge
dataset case, the early stage-packet statistic is not available
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TABLE 2. Cambridge Dataset [19].

without access to the all raw packets. Hence, the complete
flow statistics are used. To give an impartial assessment of
all datasets, the Cambridge dataset’s mean attributes were
recomputed to obtain the total attributes.

C. EVALUATION METRICS
Primarily, the proposed EWA is evaluated in terms of Accu-
racy and Stability as described in Section III. To measure
EWA in relation to other similar works, Similarity Si and Root
Mean Square Error (RSME) are also used.

This research evaluates the similarity with respect of the
accuracy of FS techniques when classifying traffic datasets
collected from different time and location. The similarity (Si)
in term of accuracy between two candidate datasets, Da and
Db is defined as

Si(Da,Db) = 1−
1
2

|C|∑
c=1

|Aca,c − Acb,c| (9)

where C is the set of ML classifiers used to evaluate the
datasets. The Similarity measure takes values Si = [0, 1],
where the value close to zero indicates low similarity in
accuracy across multiple datasets and ML classifiers, while
the value approaching 1 indicates high similarity in terms of
accuracy.

Root Mean Square Error (RMSE) (quadratic scoring) is
used to measure the average magnitude of error. RMSE pro-
duces a relatively high weight for large errors. Hence, RMSE
is the most technique useful when large errors are particularly
unwanted.

V. RESULTS AND DISCUSSION
Based on EWA stages that have been described in Section III,
this section explains the results from EWA:

• We evaluated seven FS algorithms in order to choose the
best top methods.

• The selected FS methods are applied to generate the
features pool.

• The weight of the features in the features pool is used to
select the best features depending on the threshold.

• Sequential Forward Selection method and Naive-Bayes
classifier are applied to select the best combination sub-
set of features.

TABLE 3. The average accuracy avg(Ac) for conventional FS methods.

FIGURE 3. Accuracy and Stability of multiple existing FS methods.

• Lastly, we compare EWA method with FS methods: IG
[59], FCBF [53] and GOA method proposed in [56].

A. STAGE 1 RESULT
We evaluated seven FS techniques i.e., GainRatio (GR),
Chi-square (Chi), information gain (IG), Correlation
Attribute Eval (CAE), CV Attribute Eval (CV AE), Principal
components (PC), and Consistency Subset Eval (CSE) on
four Cambridge dataset which are D1, D3, D6 and D10. The
cutpoint X = 20 is applied for the ranking method. After
that, FS methods that achieved higher mean accuracy were
selected.

Table 3 presents a comparison of classification accuracy
for seven (7) FSmethods on four Cambridge datasets (D1,D3,
D6 and D10). Hence, an FS strategy with high mean accuracy
is preferred. It is worthy of note the FS methods that give
higher accuracy are ranked as follows: Chi-square, PC, GR,
IG, CSE, CAE, and CV AE; as presented in Table 3. As a
result, we select Chi-square, PC, GR, and IG methods for
Stage 1 of EWA.

The selected FS techniques (Chi-square, PC, GR, and IG
methods) are compared based on their accuracy and stability
(see Figure 3). None of the FS methods outperformed the
others in most cases as there is no available FS technique that
can satisfy both criteria (stability and accuracy). For instance,
the performance of Chi-square FS was good on the accuracy
metric but poor on the stability metric. Meanwhile, PC was
poor on both metrics, while IG performed well on stability
but poor on accuracy.

Therefore, it is concluded each of the evaluated FSmethods
has its advantages and disadvantages when measured in
terms of accuracy and stability. Our motivation for proposing
a ranking method based on multi-criterion methods is to
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TABLE 4. Weighting matrix result with avg(Rfi
) = 0.196.

TABLE 5. The threshold values and their relationship with the number of
features and accuracy.

identify a stable and optimal subset of features that help
traffic classifiers perform well across different times and
locations. In this stage also, we evaluated 248 features (see
[19]) using four FS techniques (GR, Chi-square, IG, and
PC). The experiment utilized ten Cambridge dataset D1 to
D10 with cutpoint equals twenty is applied, and the best
20 features in the ranking are selected.

B. STAGE 2 RESULT
In this stage, we compute the mean ranking weight of all
248 features F = {f1, f2, . . . , f248} by using four FS tech-
niques on the ten Cambridge datasets and filter out all features
that have average weight Rfi ≤ 0.005, which reduces the
number of features from 248 to 32 features as tabulated
in Table 4. Therefore, features with higher mean weight are
desired. The features f1, f95, f96, f180 and f187 achieve a higher
mean weights.

Table 4 shows the threshold value (B) for all selected
32 features. Here we set (B) to select the best features
depending on the best result during evaluation using the
Naive Bayes classifier and the Cambridge datasets. Table 5
tabulates threshold B values and the number of features and
their respective accuracy for each range of B. The results
explain the value of B ≥ 0.054 is the best accuracy than other
values of B.

C. STAGE 3 RESULT
In this stage, the Sequential Forward Selection (SFS) method
and the Naive Bayes classifier are applied to select the best
feature combinations as the classification features. The SFS
method begins with an empty set and continuously adding a

TABLE 6. Selected features based on features described in [19].

TABLE 7. Accuracy (%) for different FS methods for different dataset2s.

FIGURE 4. Accuracy of EWA compared to GOA.

single feature at any time until all possible combinations are
tested. Table 6 explains the selection of these features.

D. PERFORMANCE COMPARISON WITH OTHER FS
METHODS
Not to be biased with the proposedmetrics, EWA is compared
with full features, baseline FS methods: IG [59], FCBF [53]
andGOAmethod proposed in [56]. The proposedmethodwas
tested and validated using the same metrics.

Table 7 presents results of comparison between the pro-
posed method and full features (FF), baseline FS methods:
IG [59], Fast Correlation-Based Filter (FCBF) [53] and GOA
method proposed in [56]. EWA improvesmean accuracy up to
4.2% using Naive Bayes for the 10 Cambridge dataset, and at
the same time, it uses the smallest number of features (5 fea-
tures) compared with others. Figure 4 shows EWA’s accuracy
achieves a slight improvement over the GOA method, while
full features perform poorly.

Table 8 shows the comparison in terms of RMSE between
EWA and GOA. The results indicate that the EWA approach
achieved slight improvement overall compared to other FS
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TABLE 8. Root mean squared error (RMSE) comparison between EWA,
full-feature, and other FS methods (in %).

FIGURE 5. RMSE comparison between EWA, GOA, and full-features.

methods for the ten Cambridge datasets, as shown in Table 8,
while full features perform poorly. For the RMSE com-
parison between EWA and GOA, the EWA approach has
achieved slight improvement over the GOAmethod, as shown
in Figure 5.
Figure 6 shows the comparison between EWA, full features

(FF), and other FS techniques (IG, FCBF, and GOA) in
accuracy and stability. The full-feature performs very well on
the stability but fares poorly in accuracy. The full features
set contains many redundant and irrelevant features. Other
FS methods such as IG performed poorly on accuracy but
performed equally well on stability, while FCBF performs
poorly on both metrics. GOA and EWA outperform the other
FS techniques (i.e., IG and FCBF) on both stability and accu-
racy metrics, as various FS techniques are incorporated in
GOA and EWA to select different groups of relevant features.

Conventional FS methods may not agree on the same
relevant features for these reasons: Different FSmethods may
select feature subsets that can be considered local optimal in
the feature subsets space.
• The search space of any FS technique may be restricted
by the technique’s representative power such that it may
be impossible to reach the optimal subset.

• The combination ofmore than one approach can produce
a better ranking of features or a better approximation to
the optimal subset.

• In most cases, EWA outperforms all methods in terms
of stability and accuracy. Although GOA and EWA have
similar stability, EWA outperforms GOA because EWA
is based on a weighted ranking measure that allows the

FIGURE 6. Accuracy and Stability of EWA compared to GOA and other
existing FS methods.

FIGURE 7. RMSE versus Runtime of EWA compared to GOA and other
existing FS methods.

selection of robust features from multiple FS techniques
on different traffic datasets.

Figure 7 shows the comparison of full features (FF),
FS techniques (IG [59], FCBF [53]) and GOA methods [56]
compared to the proposed EWA method in terms of RMSE
and time to build the model (runtime (in seconds)). As a
result, full features have very high RMSE and Runtime (i.e.,
using full features). FCBF generates high RMSE and low
Runtime, while IG performs equally poorly on both. GOA
and EWA methods outperform full features and selected
FS techniques (IG, FCBF) in RMSE and Runtime criteria.
In most cases, EWA performs better than GOA in terms
of RMSE as GOA depends only on the selected feature’s
frequency. Both EWA and GOA have similar Runtime (s) due
to both methods selected only five features for classification.

Tables 9 and 10 show the comparison of EWA with GOA
in terms of similarity and accuracy. Naive Bayes and decision
tree J48 ML classifiers are applied on Cambridge datasetsD1
and D2, collected at different times (Table 9) and datasets D1
and D2 collected from different locations (Table 10). Results
show that EWA performs better than GOA in similarity and
accuracy as EWA is based on a weighted ranking measure.
This allows a selection of features selected by multiple FS
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TABLE 9. Similarity in accuracy for dataset collected at different times.

TABLE 10. Similarity in accuracy for dataset collected from different
locations.

techniques from different traffic datasets with different time
and location heterogeneity.

The simulation results indicate that EWA can perform the
selection of stable features that can be applied at different
times and location heterogeneity. However, in some practical
traffic classification use-cases that require modularity and
scalability, such as in hierarchical classification [62], time
and location heterogeneity are undesirable. EWA can still be
used as the feature subsets are dependent on the used datasets.
By categorizing training datasets, different feature subsets for
hierarchical traffic classification can be obtained.

VI. CONCLUSION
This paper contributes to the selection of robust feature sub-
sets for the identification of Internet traffic. The Ensemble
Weighted Approach (EWA) feature selection method was
proposed to select robust subset features for Internet traffic
identification. The results of the experiments proved that no
singular feature selection technique could perform well on
all datasets. Based on this fact, we suggested a method that
relies on the positives of the individual FS methods to obtain
a robust method. The simulation results on real datasets
illustrate EWA’s capability to identify robust subset features
for Internet traffic identification. Our findings also show that
EWA improves mean accuracy up to 1.3% and, at the same
time, reduced RMSE up to 0.016 uses a smaller number of
features that directly contribute to improving Runtime up to
0.003 seconds). Selected features can build stable traffic iden-
tification models that remain accurate regardless of location
and time heterogeneity with high similarity above 97%.

For future works, we plan to further analyze EWA for the
early estimation of statistical flow features. This is important
for real-time traffic identification as only certain features can
be extracted on the wire with the limited flow or packet
observability. We also plan to enhanceML classification with
incremental learning, as there is a need to propose forgetting
to enhance traffic classification accuracy over time by remov-
ing uninformative features when concept drift happens. Also,
a real-time traffic detection system can be integrated with any
network traffic management.
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