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A B S T R A C T

In this research study, a thermal treatment approach based on a novel single-step has been utilised to addresses
the synthesis of binary NiO( )0.5 Cr O( )2 3 0.5 nanoparticles. Characteristics of these binary metal oxide nanoparticles
were examined by employing appropriate characterization tools. Sample patterns of X-ray diffractions were
used, calcined with temperature (Temp), set to 500 °C revealed the existence of face-centred cubic (fcc) and
hexagonal crystalline structures (hcs). It was noted that with a rising calcination temperature, the nanoparticle
dispersal was enhanced further. On the other hand, TEM micrographs have been used to calculate the size of the
mean particle. It was found that there was a rising tendency with the increased calcination temperature and this
the growth of the mean particle. Increased particle size inherited a rise of nanoparticles' photoluminescence
intensity, as suggested by recorded spectra, and various energy band gaps. This result would have been reduced
as an effect once calcination temperature was increased. Resulting NiO( )0.5 Cr O( )2 3 0.5 nanoparticles could be used
in the realm of semiconductors and energy applications.

Introduction

Recently, there has been a remarkable growth in the research ac-
tivities of nanomaterials arena has been observed. Amongst which,
semiconductor nanomaterials with intriguing optoelectronic and cata-
lytic properties are deemed of great interest because of their potential
role in a wide range of applications [1–4]. Of these, nano-sized nickel
oxide (NiO), with its rock salt simple structure, is considered a sig-
nificant p-type metal oxide semiconductor with a band gap equal to

−3.6 4.0 eV and excellent chemical stability [5,6], It has been utilised
in several applications including chemical and gas sensing, solar cells,
optoelectronic devices, and waste water treatment [7–11]. Another

metal oxide of interest is chromium (III) oxide (Cr2O3), which is fa-
mously known as eskolaite or chromia. It is a p-type metal oxide
semiconductor, having a hexagonal structure and distinct properties
such as high melting point, excellent corrosion resistance and promising
electrical conductivity. Furthermore, recording have shown that the
direct energy band gap equals approximately 3.00 eV and indirect en-
ergy band gap approximately equals to 3.40 eV [12]. These interesting
properties, which are further enhanced in its nanostructure, allow
chromia to be involved in many beneficial applications including solar
photovoltaic cells, chemical and gas sensing, and biomedical applica-
tions [12–15].

Binary material related studies involve a mixture of two phases
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possessing dissimilar chemical compositions. These appealing proper-
ties stemmed from combining two different metal oxides in nanometric
size as the driving forces behind the continuous research into the realm
of binary metal oxide semiconductor materials [16–18]. Since both NiO
and Cr2O3 share similar properties clearly observed from their ionic
radii (0.70 Å for Ni+2 and 0.63 Å for Cr2O3) and bad gap energies [5], it
is considered that consolidating these aspects would make it likely to
see a rise in associated functionality, to a level greater than what could
be attained through their individual forms [19].

A number of techniques addressed in literature were used to syn-
thesise metal oxide semiconductor nanomaterial e.g., co-precipitation
[20], sol-gel [21], thermal decomposition [22], microwave irradiation
[23], precipitation [24], sonochemical [25], electrochemical [26], and
wet chemical methods [27,28]. Besides the high cost and low yielding
drawbacks associated with most of the aforementioned synthesis
methods used to produce metal oxide semiconductor nanomaterials,
these methods exhibit difficulties pertaining the sophisticated proce-
dures at commercial scale production. In addition, there is the problem
of poisonous byproducts and toxic reagents being released during the
synthesis process, which cause environmental pollution. Thus, a dif-
ferent approach is deemed necessary. Other techniques proposed in
Refs. [29–34] have produced metal oxide nanostructures with cost ef-
fective, eco-friendly and antibacterial activity against many Gram po-
sitive and Gram negative bacterial pathogens. There are research works
carried out to produce binary metal oxide nanoparticles, and the
thermal treatment technique was one of the implemented approaches
deemed simple, less expensive, environmentally friendly, and proven to
provide consistent and high quality metal oxide semiconductor nano-
materials [35–51]. However, there is no report available that discusses
the synthesis of binary (NiO)x (Cr2O3)1−x using thermal treatment
method. Therefore, in this work a single step based novel method is
employed to synthesise binary (NiO)0.5 (Cr2O3)0.5 nanoparticles invol-
ving the heat treatment approach. The effectiveness of the capping
agent used in this technique was described. The effect of structural,
morphological and optical characteristics of (NiO)0.5 (Cr2O3)0.5 nano-
particles caused by different calcination temperatures was also in-
vestigated in detail.

Experimental method

Materials

In this experiment research, the Nickel (II) acetate tetrahydrate Ni
(OCOCH3)2·4H2O (MW = 248.84 g/mol) and Chromium (III) acetate
hydrate Cr2(CH3CO2)4·2(H2O) (MW = 247.143 g/mol) had been used as
metal precursors, polyvinyl alcohol (PVA) had been employed to be a
capping agent to attempt to disperse the particles, and deionized water
had been employed to be a solvent. Ni(OCOCH3)2·4H2O (99%),
Cr2(CH3CO2)4·2(H2O) (99%) and PVA (MW = 61,000) had been at-
tained with the help of Sigma-Aldrich.

Methodology

In this technique, 0.5 mmol of Ni(OCOCH3)2·4H2O was dissolved,
and then 0.5 mmol of Cr2(CH3CO2)4·2(H2O) and 4% of PVA had been
added, before being mixed rigorously until a homogeneous solution had
been formed. The petri dish has been employed to receive the obtained
solution result, in order to dry at temp of 80 °C for 24 h. Afterwards, a
dry sample with a yellow colour was attained and then grained, where
some had retained a room temp = 27–30 °C to examine the purposes
via XRD and FTIR. The remaining portion was divided into four parts.
For calcination purposes, four temperature variations were adopted,
each of which took 3 h. The temperature were temp = 500, 600, 700,
and 800 °C, respectively.

Characterisation

Numerous characterisation methods were used to study the sample
prepared by the thermal path. For the samples’ crystalline structure to
be examined, an X-ray diffractometer (Shimadzu 6000 model) was used
at an ambient temperature in 2θ, set to be between twenty and eighty
degrees, while Cu Kα (0.154 nm) was the source of radiation. An EDX
spectroscopy had been performed using an EDX spectrometer (7353
model, Oxford Instruments, UK), after samples had been sputter-coated
with gold. Transmission electron microscopy was also utilised (JEOL
TEM 2010F UHR model) to accelerate voltage of 200 kV in order to
assess the nanopowders’ morphology dimension distribution and con-
sistency. A Fourier transform infrared (FTIR) spectrometer (Perkin
Elmer 1650 model) using KBr was employed to assess samples’ infrared
spectra ranging between 280 cm−1 and 4000 cm−1. Thus, inorganic
sample's post-calcination presence in its composite form could be as-
sessed. Further, capping agent removal could be seen as possibility of
confirmation. The samples’ optical characteristics have been well stu-
died at ambient temperatures ranging from two-hundred to eight-
hundred nm using a UV–vis spectrophotometer (Shimadzu UV-3600
model), as well as using measurement of photoluminescence (PL) per-
formed at room temperature through a spectrofluorometer equipped
with a Xenon lamp (LS-55 Perkin Elmer model).

Results and discussion

Analysis of XRD

X-ray diffractograms of the prepared (NiO)0.5 (Cr2O3)0.5 nano-
powder before and after calcination are shown in Fig. 1. It can be re-
cognized that the sample before calcination exhibits no trace of typical
diffraction peaks, suggesting its amorphous behavior. On the other
hand, the crystalline behavior of (NiO)0.5 (Cr2O3)0.5 nanopowder can be
seen clearly after it has been calcined at different temperature values of
500, 600, 700 and 800 °C. The diffraction peaks appearing in the XRD
pattern are typical values which correspond to NiO and Cr2O3 nano-
particles with face centered cubic and hexagonal structures, respec-
tively. As per the JCPDS Card 36-1451, the diffraction peaks of NiO
nanoparticles are well indexed to (1 1 1), (2 0 0), (2 2 0) and (3 1 1)
planes [52]. Similarly, according to the JCPDS Card 38-1479, the dif-
fraction peaks of Cr2O3 are linked to (0 1 2), (1 0 4), (1 1 0), (0 0 6),
(1 1 3), (0 2 4), (2 1 1), (0 1 8), (2 1 4), (0 3 0), (2 1 1), (0 1 0) and
(2 2 0) planes [12]. These phases co-exist due to separate grains of NiO
and Cr2O3. The phases configuration was obtained this way because the
two systems are stable as in the case of chemically stable systems
[53,54].

The crystallites’ average size of nanoparticles has been calculated
(as shown in Table 1) in accordance to the well known formula of
Debye-Scherrer [55]:

=D k λ
β cosθ

.
. (1)

where

• D is crystallites average size

• k is shape factor = 0.9

• λ is the X-ray wavelength corresponding to Cu Kα = 0.154 nm

• β is the full width at half of the maximum intensity peak measured
in radians (FWHM)

• θ is the Bragg’s diffraction angle refers to the peak position [56].

From the results, and as can be seen in Fig. 1(b)–(e), the diffraction
peaks became sharper and narrower with higher intensities as a result
of the increasing calcination temperature. Thus, the crystallinity of
binary nanopowders has significantly been enhanced with calcination
temperatures.
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Morphological & size distribution analysis using TEM

Fig. 2(a)–(d) display the TEM results of prepared samples of (NiO)0.5
(Cr2O3)0.5 nanopowders that were calcined at different temperature
variations. From these images, the morphology of the synthesized
binary nanoparticles is recognized to possess a uniform spherical shape
for all calcined samples. Moreover, size of particle increased re-
markably with calcination temperature increases as shown in Table 1.
This is explained through the fact that the small crystallites of each

particle have expanded at higher temperatures and hence coalesce with
that of the other particles, thus forming larger particles.

Another point worth mentioning is the homogeneous dispersion of
(NiO)0.5 (Cr2O3)0.5 nanoparticles observed for all calcination tempera-
ture values. This result is essentially credited to the presence of poly-
vinyl alcohol (PVA) which curbed the nanoparticles' propensity to ag-
glomerate. The aforementioned results emphasise the effectiveness of
the adopted preparation technique when it come to producing high
quality binary nanoparticles with being homogenously dispersed.

EDX analysis

The initial composition of synthesized binary (NiO)0.5 (Cr2O3)0.5
samples at room temperature calcined at 600 °C, was verified via the
EDX spectrum as depicted in Figs. 3(a) and (b). The sample shown in
Fig. 3(a) at room temperature has indicated that all compositions ap-
peared. For the calcined sample at 600 °C, the presence of elements Ni,
Cr and O can be noticeably obvious as for the sample shown in Fig. 3(b).
It is clearly seen that the spectrum ascertains the presence of (NiO)0.5

Fig. 1. XRD patterns of binary (NiO)0.5 (Cr2O3)0.5 nanoparticles prepared at (a) room temperature of 30 °C, and at different calcination temperatures of (b) 500, (c)
600, (d) 700 and (e) 800 °C.

Table 1
XRD and TEM data for the binary oxide nanoparticles at various temperatures.

Calcination temperature (°C) Crystal size, DXRD (nm) Particle size, DTEM (nm)

500 8.6 9 ± 3
600 13.4 14 ± 4
700 17.9 19 ± 3
800 31.8 33 ± 5
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(Cr2O3)0.5 nanoparticles in terms of the existing peaks corresponding to
the individual elemental constituents i.e. Ni, Cr and O. Other peaks
noticed in the spectrum are related to the gold used for the analysis. It
has have been consumed in the sputter- coating process of

nanoparticles, in order to avoid undesired electrostatic charging and to
improve secondary electron signal received from the nanoparticles'
surface [57]. The atomic composition (%) ratio of [Ni:Cr:O] determined
from EDX data is [14.3:28.6:57.1] %, which approximately confirms

Fig. 2. TEM images and particle size distribution of (NiO)0.5 (Cr2O3)0.5 nanoparticles at calcination temperatures of (a) 500 (b) 600, (c) 700 and (d) 800 °C.

Fig. 3a. EDX spectrum of binary (NiO)0.5 (Cr2O3)0.5 nanoparticles calcined at room temperature.
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the Ni to Cr precursors 5:10 ratio which in turn is revealed by the
chemical formula of their nanoparticles compound i.e. (NiO)0.5
(Cr2O3)0.5. Organic compound absence through the adopted synthesis
processes is another sign that proves the effectiveness of this approach.

FTIR analysis

As seen in Fig. 4, FTIR spectra related to synthesized (NiO)0.5
(Cr2O3)0.5 nanopowders have been demonstrated before and after

calcination, which was conducted at different temperature variations in
the range of 280–4500 cm−1. The PVA and bimetal nitrate traces were
observed through their distinct absorption peaks. For the as-synthesized
sample without calcination, various absorptions peaks took place at
wave numbers 3414, 2945, 1646, 1428, 1277, 839, 639, 582 cm−1.
Absorption peaks located at 3414, 2945 and 1646 cm−1 are attributed
to N–H, C–H and C] O stretching vibrations [52,58,59]. Additionally,
the peak noticed at 1428 cm−1 was a result of –C–H bending vibration
in the methylene group, while the peak was observed at 1277 cm−1.

Fig. 3b. EDX spectrum of binary (NiO)0.5 (Cr2O3)0.5 nanoparticles calcined at 600 °C.

Fig. 4. FTIR of binary (NiO)0.5 (Cr2O3)0.5 nanoparticles prepared at (a) room temperature 30 °C, and at calcination temperatures of (b) 500, (c) 600, (d) 700 and (e)
800 °C.
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This peak was ascribed to the C–N stretching vibration. Remaining
peaks at 839 and 639 cm−1 were a consequence of C–N]O bending
vibration in NO3

− groups [60,61].
For whole calcined samples at various temperatures, there has been

an absence of absorption peaks in the corresponding wave number
range except for values below 560 cm−1. Two absorption peaks were
observed below 560 cm−1, which were seen to move to lower wave
number values due to calcination temperature increases. This suggests
the formation of highly pure (NiO)0.5 (Cr2O3)0.5 nanoparticles.

UV–vis analysis

The UV–Vis analysis is carried out to study changes of the optical
band gap of nanopowders exposed to heat treatment procedures. The

obtained diffuse reflectance spectra of the synthesized binary (NiO)0.5
(Cr2O3)0.5 nanopowders, with a range of 220–800 nm in term of wa-
velength, were transformed using the Kubelka-Munk method as de-
picted in Fig. 5. Subsequently, the optical band gap values were mea-
sured based on transformed spectra using Eq. (2) [62]:

= −
∞

F R hν A hν E( ( )· ) ( )g
2 (2)

Fig. 5 illustrates the transformed reflectance spectra to show the
plotted values of (F(R∞)·hν)2 as a function of hν for all (NiO)0.5
(Cr2O3)0.5 nanoparticle samples. Values of optical band gaps of different
samples for (NiO)0.5 (Cr2O3)0.5 nanopowders were calculated based on
line projections that were extrapolated to intercept the hv axis (as
provided in Table 2).

Fig. 5. Energy band gab of (NiO)0.5 (Cr2O3)0.5 nanoparticles at calcination temperatures of (a) 500 (b) 600, (c) 700 and (d) 800 °C.

Fig. 6. PL of (NiO)0.5 (Cr2O3)0.5 nanoparticles at calcination temperatures of (a) 500 (b) 600, (c) 700 and (d) 800 °C.
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Photoluminescence analysis (PL)

To investigate the photoluminescence property of the synthesized
(NiO)0.5 (Cr2O3)0.5 nanoparticles, all samples with different calcination
temperatures were excited at room temperature at 390 nm. Fig. 6 de-
monstrates the photoemission spectra of the synthesized (NiO)0.5
(Cr2O3)0.5 nanoparticles with different calcination temperatures. It is
apparently seen that broad emission spectra of visible light occurred in
the range of 465–550 nm for all samples, which included two peaks
associated with emissions at 480 and 527 nm, respectively.

It is well-known that the root cause of visible light emission in oxide
nanomaterials is the existence of oxygen vacancies and intrinsic defects,
which are the source of free carriers [63–66]. Thus, origination of the
first and second peaks is due to the transition resulting from a re-
combination of electron-hole pairs between oxygen vacancies and metal
ions [61]. The transition for the first and most intense peaks located at
480 nm produced photons of blue-green light, while for the second and
less intense peak located at 527 nm photons of green light were pro-
duced.

From another perspective, it is noticed that the photoluminescence
intensity increased (shown in Table 3) with calcination temperature
increases of the synthesized binary nanopowders, implying a better-
ment in its crystallinity when the sample was exposed to higher calci-
nation temperatures.

Conclusion

In this work, the single step based thermal treatment technique was
utilised to synthesise (NiO)0.5 (Cr2O3)0.5 semiconductor nanoparticles.
The analyzed XRD patterns revealed the formation of a high purity
mixed cubic-hexagonal phase structure at all calcination temperatures.
The presence of individual elemental constituents of (NiO)0.5 (Cr2O3)0.5
nanoparticles and corresponding atomic composition ratio were ver-
ified from the EDX data analysis. Moreover, the lack of elemental loss
shown by comparing the EDX results with initial stoichiometric ratios,
is an indication of the effectiveness of this novel technique in the
synthesis of binary metal oxides nanoparticles. Furthermore, FTIR re-
sults confirmed the purity of (NiO)0.5 (Cr2O3)0.5 nanopowders and
disappearance of the organic agent beyond temperature of calcination
at 500 °C. From another perspective, the TEM results have confirmed
the fact that nanopowders’ size can growth as the temperature of cal-
cination also increases. As a result, significant improvement to samples'
crystallinity has been achieved. In addition, the control this technique
offered over (NiO)0.5 (Cr2O3)0.5 particle sizes, through varying the
calcination temperature producing binary semiconductor nanoparticles
with multiple band gaps energies, meant that they were suitable for use
in solar cell applications.
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