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Abstract

Pigovian transport pricing was implemented in a large-scale field experiment

in urban areas of Switzerland. The pricing varied across time, space and mode of

transport. One third of the participants were given a financial incentive to reduce

their external costs of transport, whereas others were provided information only or

served as a control group. The pricing treatment caused a significant reduction in

the external costs of transport. This reduction is a consequence of mode substitution

and a shift of departure times. The effect of providing information in the absence

of pricing was statistically significant only for subgroups of the sample.
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1 Introduction

Transport systems face multiple challenges. In many cities around the world, drivers lose

over 100 hours per year due to traffic congestion (INRIX, 2020). Public transport can

help reduce congestion (Anderson, 2014) but also faces crowding problems. Increasing the

capacity of private and public transport faces physical limitations and can be very costly

as transport infrastructure competes with other land uses. Furthermore, greater road

capacity induces demand and thus results in little improvement in congestion (Duranton

and Turner, 2011). The transport sector is also among the largest contributors of local

air pollution (EEA, 2019) and greenhouse gas emissions (Creutzig et al., 2015), which

have remained roughly constant during the past 30 years as gains in efficiency have been

neutralized by an increase in distance traveled (IEA, 2020).

Congestion, climate damages and health effects constitute the most important external

costs of transport. Whereas the private costs of transport, such as the purchase of fuel or a

transport pass, have been shown to influence individual transport choices (Oum, Waters

and Yong, 1992; Goodwin, Dargay and Hanly, 2004; Vrtic et al., 2008), the external

costs are borne by society at large and are thus typically not reflected in the decision

about where, when and how to travel.1 This large-scale market failure is the normative

motivation for policy interventions in the transport domain. In this paper, we implement

a multi-modal Pigovian transport pricing scheme based on the full marginal social costs

of transport and estimate its effects on individual transport choices.

Our study uses the design of a randomized controlled trial (RCT). The sample consists

of people living in urban areas of the German- and French-speaking parts of Switzerland.

The pricing affects all modes and is implemented by providing the participants with a

budget, from which the external costs of their transport choices is subtracted. This

treatment causes a reduction in the external costs of transport by around 5.1%. If we

relate this to the (total) price increase implied by the Pigovian pricing scheme of 16.4%,

we arrive at an elasticity of -0.31. The reduction in the external costs is caused by a

combination of a shift in transport mode and departure times, but not a reduction in

the overall distance traveled. Women and French speakers respond less strongly to the

pricing. Moreover, the strength of the effect is driven by intrinsic values (as measured

using a standardized questionnaire), the extent to which people paid attention to the

experiment and/or had prior knowledge about the external costs of transport.

1The third category of transportation costs are the infrastructure costs, which are fixed and can be
paid by user fees or general subsidies. For a recent discussion of the definition of the external costs of
transport, see CE Delft (2019).
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To differentiate the pricing effect from a pure information effect, the experiment in-

cludes a second treatment in which the participants are provided with the same informa-

tion about the external costs of transport as the pricing group, but without having to pay

anything. The results suggest an effect of information per se, but this effect was smaller

than that of the pricing treatment and statistically significant at conventional levels only

for subgroups of the sample. The results further imply that adding pricing to information

is particularly important in reducing the external costs associated with congestion.

The external costs of transport have been, for the most part, addressed by “command-

and-control” policies such as speed limits (Van Benthem, 2015), fuel standards (Portney

et al., 2003), license-plate restrictions (Davis, 2017) or high occupancy lanes (Bento et al.,

2014). Theoretically speaking, however, price instruments reflecting the external costs of

transport are a more efficient means of regulation as they allow people to retain high-utility

trips while reducing those that they view as less important. The most prevalent examples

of price-based instruments in the transport sector are fuel taxes, road tolls and registration

fees. However, they are usually imposed to recover the cost of road construction and thus

typically do not reflect the full external costs of transport (Parry and Small, 2005; Parry,

Walls and Harrington, 2007). Road congestion charges can act as an effective way to

internalize some of the external costs of driving (Small, 2008), and several cities have

introduced fees for driving into the city center at certain times. However, these fees tend

to be fixed and can therefore not fully address the time-varying nature of congestion.

The theoretical foundations for road pricing were laid by Pigou (1920) and Knight

(1924). Vickrey (1963) showed that with optimal congestion pricing, tolls must match

the severity of congestion, and vary by time of day, location, type of vehicle and current

conditions. The methods for road pricing can be categorized by their level of internalizing

the external costs. In first-best pricing, the marginal external cost is charged to the

user. In this case, both the charging mechanism and the amount charged need to be

optimal Verhoef (2000). In second-best, the pricing mechanism is guided by the principle

of marginal external costs, but the implemented scheme is simplified (Small, Verhoef and

Lindsey, 2007). For a review of studies that applied economic incentives in the transport

context, see Dixit et al. (2017).

Previous empirical research includes computations of the aggregate effects of the con-

gestion charges that were introduced in Singapore (Agarwal and Koo, 2016), London

(Leape, 2006), Stockholm (Eliasson et al., 2009) and Gothenburg (Börjesson and Kristof-

fersson, 2018). Field experiments in Denmark and Australia installed GPS receivers in

vehicles and drivers were then exposed to different peak and off-peak pricing schemes

(Nielsen, 2004; Martin and Thornton, 2017). Commuters in Singapore responded to re-
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wards and social comparisons by shifting departure times when using public transit (Plun-

tke and Prabhakar, 2013), and quasi-experimental evidence of the congestion charges in

Norway suggests that that they were effective in reducing congestion and air pollution

(Isaksen and Johansen, 2021). There are two other RCT’s involving financial incentives

that we are aware of. One is by Rosenfield, Attanucci and Zhao (2020), who carry out

an experiment involving 2,000 employees at the Massachussetts Institute of Technology.

They use three treatment arms, but none of them led to statistically significant effects.

The other is by Kreindler (2018), who examines the effect of a departure time charge and

a zonal price on drivers in Bangalore and derives highly significant treatment effects using

a smartphone app similar to ours.

Most existing studies focused on a single mode of transport and could therefore not

identify modal shifts. To detect the full impact of transport pricing, observation (and

ideally pricing) of all modes is necessary, including of non-motorized modes (Tirachini

and Hensher, 2012) An example of a previous multi-modal study is the “Spitsmijden”

experiment in the Netherlands, in which commuters responded to financial and in-kind

rewards by shifting departure times, switching to other modes of transport and by working

from home (Ben-Elia and Ettema, 2011). Their monetary rewards were comparable to

the average external cost in our experiment. Our study is similar in spirit but based on a

larger sample and, importantly, uses a control group to absorb time-varying factors that

may be correlated with the treatment. This makes MOBIS, to the best of our knowledge,

the first multi-modal RCT of a pricing intervention in the transport context.

Because of concerns of social acceptability, behavioral change could also be achieved

by means of non-financial interventions, which could be easier to implement than prices

or taxes. A number of studies have investigated the effect of non-financial interventions in

the transport sector Möser and Bamberg (for a review, see 2008), and some recent papers

have used tracking apps to test the effect of informational interventions but based on small

samples (Maerivoet et al., 2012; Carreras et al., 2012; Bothos et al., 2014; Jariyasunant

et al., 2015). Among the few information-based RCTs carried out in the transport context

are Cellina et al. (2019) and (Kristal and Whillans, 2020), both of which did not find any

effects of non-financial incentives.

Our paper makes several contributions to the literature of transport economics. First,

we provide a methodology to compute the marginal external costs of transport as they

vary across time and space and apply it to a sample observed in real time. This al-

lows for the computation of a multi-modal Pigovian pricing scheme, which provides a

useful benchmark for simplified versions of transport pricing. Second, by implementing

this pricing scheme in a representative sample of the population living in large urban ag-
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glomerations, we obtain credible information about the short-run behavioral response to

multi-modal transport pricing, including modal substitution. Third, because we apply an

information-only treatment within the same experiment, our experiment thus contributes

to our understanding of the relative importance of information-based and monetary in-

centives in the transport domain.

The next sections provide more background about the experimental setup and the

methodology used to compute the external costs of transport. Section 4 describes the

methodology, section 5 contains the results, and section 6 concludes.

2 The MOBIS experiment

2.1 Study design

The sample for the Mobility in Switzerland (MOBIS) project was recruited from indi-

viduals living in urban areas in the German- and French-speaking parts of Switzerland.

Participants had to fulfill a number of inclusion criteria such as being between 18 and 65

years old and using a car at least two days per week. They agreed to having their daily

travel tracked with a smartphone app (see below) over a period of 8 weeks. In return for

taking part in the study, all participants were offered CHF 100, which they received at

the end of the project.2 The participants in the pricing treatment had the opportunity to

earn additional money by not spending all of their budget.

Figure 1 provides an overview of the study design. We contacted over 90,000 people by

mail and invited them to participate in the study. The addresses were randomly selected

and provided by the Federal Office of Statistics, which maintains a comprehensive registry

of inhabitants, and also from a private vendor.3 The first step consisted in an initial online

survey, which was filled in by 21,800 respondents. It contained questions about travel

behavior and socio-demographics and served as a screening mechanism. Around 11,000

of the respondents from the initial survey qualified for the tracking study, and 5,466

registered for it. However, not everyone who registered actually started tracking, and

some participants dropped out at the beginning of the study. A total of 3,656 participants

successfully completed the RCT. The MOBIS sample differs from the general population

due to an age restriction and the focus on drivers but is otherwise quite representative.

2At the end of the RCT (December 2020), one Swiss Franc (CHF) corresponded to 0.91 Euro or
1.11 US Dollars.

3We were provided with 60,000 addresses from the Federal Office of Statistics at no charge. When
it became clear that this would not be sufficient to recruit the required number of participants, we
purchased another 31,000 addresses from a private marketing firm.
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Figure 1: Design of the MOBIS experiment

Table 1 shows the socio-demographic characteristics of our participants of the intro-

duction survey and the tracking study and compares them to the transport Microcensus,

which is a representative travel diary survey of the Swiss population undertaken by the

Federal Office of Statistics and the Swiss Federal Office of Spatial Development (2017).

The respondents of the MOBIS introduction survey differ from the Microcensus popula-

tion in terms of the age distribution, as we limited the study to ages 18-65, and in terms

of the regional coverage (only urban agglomerations and excluding the Italian-speaking

region of Switzerland). The MOBIS participants have higher levels of education, employ-

ment and income, much of which was due to the age restriction.4

The tracking sample differs from the introduction survey sample in terms of employ-

ment, household size, income, and access to a car, probably due to the eligibility require-

ment of regularly traveling by car. The distribution across the language regions reflects

their national representation. More details about the design and implementation of the

experiment can be found in Appendix B.

2.2 Tracking app

The participants in the tracking study agreed to download the tracking app “Catch-My-

Day” on their smartphones. Catch-My-Day is a location tracker for iOS and Android,

4When censoring for age, the employment rate in the Microcensus is very similar to that in MO-
BIS.
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Table 1: Demographic information for the MOBIS sample

Variable Level MOBIS Intro Mobis Tracking Microcensus

Control Info Pricing

Age Under 18 13.2
[18, 25] 19.4 18.2 20.0 19.6 9.0
(25, 35] 18.7 18.1 18.5 16.7 14.2
(35, 45] 19.2 22.0 20.8 24.3 15.4
(45, 55] 20.8 22.5 23.6 22.2 16.7
(55, 65] 18.3 18.0 16.0 15.7 12.9
66 and older 3.6 1.1 1.1 1.5 18.5

Education Mandatory 9.1 8.0 5.2 6.8 19.3
Secondary 43.6 47.6 49.4 48.4 49.5
Higher 47.3 44.4 45.5 44.8 31.2

Employment Employed 66.4 72.7 71.3 70.0 48.2
Self-employed 7.4 6.1 5.4 7.4 7.2
Apprentice 1.8 1.9 1.6 1.7 2.6
Unemployed 4.3 3.3 4.0 4.5 2.5
Student 9.0 7.5 8.6 7.6 3.7
Retired 3.3 3.5 2.7 3.4 19.3
Other 7.7 5.0 6.4 5.4 16.5

Gender Female 50.6 50.0 50.0 50.5 50.7
Male 49.4 50.0 50.0 49.5 49.3

Household size 1 15.8 11.3 11.6 12.2 34.0
2 33.0 30.1 31.3 29.2 35.4
3 20.0 23.1 21.3 20.0 13.0
4 22.8 25.1 27.7 29.3 12.5
5 or more 8.3 10.3 8.1 9.3 5.1

Income 4 000 CHF or less 12.1 6.8 8.2 7.2 17.8
4 001 - 8 000 CHF 29.9 31.3 30.0 27.4 32.8
8 001 - 12 000 CHF 24.4 27.5 29.5 30.0 17.4
12 001 - 16 000 CHF 11.9 15.6 13.9 14.3 6.8
More than 16 000 CHF 7.9 9.8 9.4 10.5 4.5
Prefer not to say 13.8 9.1 9.0 10.6 20.7

Language German 63.1 66.8 65.0 66.6 68.4
French 28.5 25.5 26.7 26.1 25.3
Italian 6.3
English 8.5 7.8 8.2 7.3

Nationality Switzerland 98.2 98.1 98.0 98.1 75.9
Other 1.8 1.9 2.0 1.9 24.1

Access to car Yes 61.5 87.3 87.8 88.2 75.8
Sometimes 15.1 11.6 10.7 10.9 18.1
No 23.4 1.1 1.5 0.9 6.2

Full PT subscription Yes 36.8 21.8 24.9 25.3
No 63.2 78.2 75.1 74.7

Half fare PT subscription Yes 47.9 49.2 49.0 48.3
No 52.1 50.8 51.0 51.7

No PT subscription Yes 26.0 33.9 32.6 33.9
No 74.0 66.1 67.4 66.1

Access to bicycle Yes 68.1 72.9 71.8 69.4
Sometimes 4.0 4.5 5.5 3.8
No 27.8 22.6 22.7 26.8

N 21.571 1.225 1.238 1.193 57.090

Notes: Descriptive statistics shown for the MOBIS introduction survey (N = 21,571), the MOBIS control group
(N = 1,225), the MOBIS information group (N = 1,238), the MOBIS pricing and information group (N = 1,193), and
the Swiss Microcensus 2015 (N = 57,090) samples.
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which uses the location services of the respective operating system. The GPS tracks

are stored on the phone and uploaded to the Motiontag analytics platform, where trip

stages are identified and travel modes and activities are imputed. A trip between two

activities can consist of multiple stages, using the same or different modes of transport.

The splitting of a day into stages and activities is called segmentation. This is performed

by the Motiontag app using a machine-learning algorithm.

For each stage, the associated external costs of transport were computed based on

cost factors published by the Swiss Government (see section 3). Participants were able to

review and correct the mode assignment manually.

Figure 2: The Catch-my-Day interface

Note: From left to right: 1) Calendar home page. 2) Daily view showing recorded trips. 3) Editing the

mode of a selected trip.

Figure 2 shows three interfaces of the app. Catch-my-Day provides a best guess of the

travel mode for each stage. The participants could confirm this detected mode or correct

it. This confirm-correct procedure was optional and participants were informed that this

was possible and would be appreciated.5 Around 29% of the stages were confirmed by

the participants. The database stores both their correction and the original algorithmic

5In recent years, state-of-the-art machine learning algorithms for mode and activity detection have
achieved accuracy rates of over 90%, depending on the approach (Wu, Yang and Jing, 2016; Nikolic
and Bierlaire, 2017). Hence, we made validation of the trip purpose and mode optional for participants,
in order to not increase the response burden excessively over the 8 weeks.
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imputation. The possibility for mode correction increases the accuracy of the mode de-

tection, but it also introduces a scope for “gaming” the experiment. We return to this

issue in section 5.6.

The following modes are detected the by Catch-my-Day app: Air plane, bicycle, bus,

car, ferry, train (local, regional and long-distance), tram and walk. In addition, users could

select the following modes as a correction: Boat, car sharing, gondola, motorbike/scooter,

Taxi/Uber. E-bikes and E-Scooters were not detectable or selectable.

The mode detection provided by the tracking app was a key component of the MOBIS

study. To the best of our knowledge, this is the first study to incentivise changes in

mobility behavior based on the output of a mode detection algorithm. As seen in the

tables containing the average detection accuracy by mode (Table B.1) and the mode

detection matrix (Table B.2) in the Appendix, the algorithm worked exceptionally well,

with an overall accuracy of over 90% for both operating systems.

2.3 Treatments

The recruitment took place on a rolling basis between August and November of 2019.

Once a participant registered the first track on the app, he or she automatically became

part of the RCT sample. The participants did not know at this stage that they were

part of an experiment. The RCT consisted of 4 weeks of observation for all participants,

followed by another 4 weeks of one of two treatments.6 Assignment to the treatment

and control groups was fully randomized without any form of stratification. During the

observation period, participants were presented with a weekly summary of their travel

behavior by mode of transport, including duration, distance and number of trips.

On study day 29, the participants assigned to the “Information only” and “Pricing”

treatments received an e-mail that informed them about the external costs of transport,

how they are computed and monetized and what they could do to reduce them. The

e-mail contained a link to a table with per-km monetized costs by mode. The congestion

cost was framed as an example, as it varies by time and place.To complement this ex-ante

price information and to provide the participants with an idea about their individual level

of external costs (i.e., including congestion) that the participant individually caused, they

were also shown a personalized summary of the previous week.7 For the remainder of the

6The study concluded just before the onset of the COVID-19 pandemic at the beginning of 2020.
Some of the participants agreed to re-start tracking, as part of an effort to study travel patterns in
response to COVID-19 policies. Preliminary results of this ongoing study have been reported in Molloy
et al. (2020).

7To provide participants with ex-ante information about the congestion costs for particular trips

8



treatment period, the participants were presented with weekly summaries such that they

could observe changes in their external costs. The external costs were always presented

by mode of transport and by type of cost (health, climate and congestion).

The participants assigned to the “Pricing” treatment received the same information

about the external costs as the “Information” group, but in addition were given a budget

from which the external costs of transport were deducted. The participants were informed

on day 29 that as of now, their budget would be used to pay for the external costs caused

by their travel, and that any money left over in their account at the end of the study

was theirs to keep. This individualized budget was computed based on each participants’

external costs during the observation period, plus 20 % for a buffer to allow for the

possibility that some participants had to increase their external costs of transport for

idiosyncratic reasons.8 This treatment thus simulated transport pricing based on the

monetized marginal external costs of transport.

The weekly reports were comprised of modular panels, as shown in Figure 3. The

introduction and distance by mode panels were presented to all participants in both study

phases. The external cost and chart explanation panels were shown to the information

and pricing groups in the treatment phase, and the remaining budget panel (middle

module on the left) only to the pricing group during the treatment phase. Due to the

rolling start of the experiment, participants received these reports on different days of the

week. Participants in the control group continued to received a weekly email with their

kilometers traveled per mode throughout the experiment. Once the RCT was concluded,

all participants were informed about having taken part in a research experiment.9

In principle, we could have used any pricing scheme and estimated the participants

response to it. We chose the Pigovian rate (i.e., the marginal external costs) for three rea-

sons. First, internalizing the external costs of transport can be motivated and explained

to people on normative grounds. The “information only” treatment could thus be inter-

preted as providing information about societal costs about which the participants were

likely not perfectly informed. In contrast, introducing a price unrelated to the external

was infeasible within the project budget as this would have required a lot of additional programming
and presumably also a different app. However, it is not clear to what extent the participants would
have actually relied on such detailed information. Furthermore, the internal part of congestion costs
are experienced personally, such that participants have an idea about the expected congestion in their
area. We believe that combining ex-ante averages with ex-post individualized numbers is a reasonable
compromise that sends a price signal without overly taxing participants’ attention.

8The average budget was CHF 144, but for some participants it exceeded CHF 700. Note that once
participants reached the treatment phase, they could no longer correct the modes during the observa-
tion phase in order to prevent a strategic increase of the mobility budget.

9This procedure was pre-approved by ETH’s Institutional Review Board.
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Figure 3: Weekly reports by e-mail

Note: The participants in the control group received only the report on the left, but without the

middle module titled “Remaining Budget”. The participants in the information group additionally

received the message on the right. The participants in the pricing group received all modules.

costs would not contain useful information (other than the price signal itself) and thus

not lead to behavioral change via an altruistic motive. Second, using the Pigovian rate

and estimating people’s response to it serves as a policy benchmark.10 If larger (smaller)

responses are required, the policy maker can choose to exceed (stay below) this rate, but

we believe that knowing the level and people’s response to the first-best transport price

is useful information. Last but not least, the use of the Pigovian rate was a condition

imposed by one of the federal agencies that co-funded the project.

10Technically speaking, the Pigovian rate is the marginal social damage at the social optimum, such
that the pricing implemented in the experiment likely deviates from the true Pigovian tax. If such a
scheme were implemented in practice, however, one would need to monitor the external costs anyway
and update the scheme from time to time, such that the social optimum would be reached iteratively.
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3 The external costs of transport

The health, emissions, noise and congestion costs of the mobility behavior are computed

on the recorded daily trips using an automated data pipeline. Additionally, data collected

from the online introduction survey was incorporated into the data processing pipeline to

improve the imputation.

3.1 Costs associated with driving

For the calculation of external costs in private road transport, the recorded GPS tracks are

aligned to the road network using Graphhopper (Karich and Schröder, 2014) and processed

using modules developed on top of the MATSim framework to calculate the external costs

of congestion and emissions. The emissions factors are taken from the HBEFA database

(version 3.3), and applied using the MATSim emissions module (Hülsmann et al., 2011;

Kickhöfer et al., 2013). For congestion, an average marginal cost approach incorporating

spillback effects and flow congestion was applied, based on the work of Kaddoura (2015).

These modules returned quantities of the externalities in grams (for emissions) and seconds

of caused delay (for congestion) for road transport, which were then converted to monetary

costs using the values in Table 2.

Table 2: Monetization of externalities

Emission Aspect Value Unit

Scenario year 2019

CO2 Climate Costs 136.08 CHF/ton

PM10 Costs (Healthcare)
Rural 515,497 CHF/ton
Urban 1,358,461 CHF/ton

NOx Regional 7,109 CHF/ton

VTTS National 25.77 CHF/h a

Source: Federal Roads Office - ASTRA (2017), updated for 2019; a scaled nominal wage rate

Figure 4 illustrates the externalities pipeline for motorized private transport. The ob-

jects in bold are those developed as part of this project. Dotted lines indicate data inputs

from static sources, and solid lines are the flow of the GPS-based trip data through the

model. The lack of flows inside the MATSim framework is intentional, as those modules

are built on top of the MATSim event framework (Horni, Nagel and Axhausen, 2016).

Molloy, Tchervenkov and Axhausen (2021) contains more details about the externalities

pipeline.
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Figure 4: MATSim-based externalities pipeline

Source: Molloy, Tchervenkov and Axhausen (2021)

3.2 Costs of public and active transport

For modes other than driving, the per-km values presented in Table 3 were applied to the

recorded length of the trip. The health effects include accident costs (most of which are

external to the people involved due to coverage by the Swiss health care system), but also

the external portion of health benefits in the form of a reduced mortality and morbidity

as a consequence of physical activity (Götschi, Garrard and Giles-Corti, 2016). Whereas

walking is associated with net external benefits, the external accident costs outweigh the

external health benefits from cycling, such that bicycling is associated with small net

external costs in the experiment.11

The marginal social cost of public transport (in terms of pollution and noise) de-

creases as the occupancy rate increases. On the other hand, crowding affects willingness

to pay and can be seen as a form of congestion in public transport, and delay in some

circumstances (Tirachini, Hensher and Rose, 2013). Crowding effects are extremely het-

erogeneous, both spatially and temporally. Even in peak hour, crowding can be restricted

to particular transit lines during very short periods (Zurich Public Transport, 2017). We

thus feel that it would be unreasonable to distribute the crowding effects in an aggre-

gate measure across peak hour travelers in a specific public transit region. Additionally,

11Most of the positive health effects are private in the form of lower morbidity and mortality and at
least partly internalized by cyclists (Götschi and Hintermann, 2014).
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Table 3: Per-km monetary costs (in CHF) used in the MOBIS experiment

Mode CO2 PM10 NOx Accidents Noise Health

Train 0.000066 0.0140 - 0.00066 0.0087 -
Bus 0.0144 0.0437 0.5440 0.0141 0.0257 -
Tram - - - 0.0126 0.0075 -
Bicycle - - - 0.257 - -0.1870
Walk - - - 0.075 - -0.1863

Notes: Federal Roads Office - ASTRA (2017) does not report CO2 values for Tram, but this
would be small. Negative costs indicate an external benefit. The external costs of driving vary over
time and space and were computed within MATSim (see Fig. 4).

for each public transport operator, data would have to be collected separately and col-

lated as it is not available on a national level. As a practical solution, a zonal peak-hour

surcharge pricing scheme was developed for the national public transport network, as a

form of second-best pricing. Throughout the experiment, participants had access to a

interactive map which showed them where and when the pricing scheme applied. The

peak-hour pricing surcharge of 0.10 CHF/km was applied to transit stages between any

two zones which experience peak hour demand. The peak hour windows and the affected

zone-pairs were determined using the MATSim scenario output for Switzerland (Bösch,

Müller and Ciari, 2016). The peak windows were set as 7am to 9am and 5pm to 7pm, and

not adapted for regional variations in working patterns. Municipality pairs were priced

if the maximum hourly transit trip count during peak hour was greater than three times

the average hourly transit trip count during the daily off-peak (9am - 5pm) for that pair.

A municipality could also be paired with itself if the above criteria was met, and the

direction of the peak hour flow is not considered. If the trip was partially in both the

peak and off-peak periods, only the proportion of the travel duration that overlaps with

the peak period was charged.

4 Regression framework

Given that we randomize the treatment and thus no self-selection or endogeneity issues

need to be addressed, the econometrics involved in estimating the average treatment effect

(ATE) are straightforward. After aggregating the data to the person-day level, the ATE

can be estimated by

Yits = c0 + αP ·DiDP
its + αI ·DiDI

its + µi + µt + µs + εits (1)
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The dependent variable is the outcome of interest for person i ∈ (1, ..., N) on calendar

day t ∈ (1, ..., T ) and day of study s ∈ (1, ..., 56). This can be the total quantity of external

costs, the external costs along a particular dimension (health, climate and congestion),

distance traveled in total or by mode, the mode share, or additional outcomes as specified

in the results section.

The two difference-in-differences terms DiDP
its and DiDI

its are the products of treat-

ment group and treatment period dummies and are equal to one if the pricing (P) and

information treatment (I), respectively, are active for person i on a particular day and

zero otherwise. The treatment starts on the 29th day of the experiment. Due to the

rolling recruitment, the beginning of the experiment varies by person. To control for

unobserved heterogeneity, we include fixed effects on the person (µi), calendar day (µt)

and day-of-study (µs) level. The calendar day-fixed effects capture common shocks that

affect travel (and thus the associated external costs) for everyone in Switzerland, e.g.,

due to a national holiday or a sports event. The day-of-sample fixed effects account for

the possibility that respondents may respond differently to the treatment over time. We

find a high variation on the first day (presumably due to technical issues and learning

by participants) and on day 29 (the first day of the treatment, and some people may

have been slow to check their e-mails). We remove these two days from the analysis.

The combination of day-of-study and calendar day FE implies that the treatment effect

is computed by comparing participants in the treatment and control groups that started

the experiment on the same day. Finally, the error term εits has an expected mean of zero

and a variance of σ. We allow for a correlation of the error within participants.

Due to the random assignment, we do not need to control for any covariates as they

are expected to affect the treatment and control groups equally. This leads to a fully

nonparametric regression in which we compare simple means between treated and control

observations. However, because weather information is an important predictor for mobil-

ity, especially for leisure activities and for active transport modes, we enrich our tracking

data with temperature and precipitation data from MeteoSwiss provided on a 1 x 1 km

grid.12 This could reduce the noise in the regression and thus increase the precision of

our estimates, but at the cost of introducing a parametric assumption.

The weather variables are assigned separately for each recorded trip based on the

nearest weather station. To allow for a nonlinear effect of temperature on travel choices,

12The data is provided by www.meteoswiss.admin.ch.
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we define the level of “Heat” and and “Cold” for an observed trip j on day t as follows:

Heatjt ≡ max {tmax
jt − 25, 0} (2)

Coldjt ≡ max {10− tmin
jt , 0} (3)

The variables tmax
jt and tmin

jt refer to the daily maximum and minimum temperature,

respectively, recorded in degrees Celsius at the weather station closest to the departure

location for trip j. In addition, we included the daily precipitation (recorded between 6

am and 6 am on the following day). To compute the values per person and day (which is

our unit of analysis), we take the average of the heat, cold and precipitation values across

all trips taken by person i on day t and add them as linear control variables to (1).

The ATE of pricing plus information is given by the coefficient estimate αP ; the ATE

for information only is given by αI ; and the ATE of adding pricing to information is their

difference, αP −αI . This cannot be interpreted as the effect of pricing per se, as adding a

price could make the information more salient or interact with it in some other manner.

We emphasize that αP − αI could also be computed by running a DiD analysis on the

pricing group while using the information group as the control. It is therefore a causal

ATE in its own right, rather than simply a difference between two coefficients.

To investigate potential differences of the treatment effect along major socio-economic

variables, we interact the DiD terms in eq. (1) with categorical variables denoting, e.g.,

gender or income groups. For the regressions that use external costs as the dependent

variable, we estimate (1) in levels. Estimation in levels (rather than in logs) is necessary as

the external benefit associated with walking renders a number of person-day observations

negative. We then compute the proportional response by dividing the coefficients (which

are in CHF) the external costs generated during the observation period. For regressions

in which the dependent variable is non-negative (e.g., distance traveled), we estimate

proportional effects directly by using a Poisson Pseudo-Maximum Likelihood (PPML)

model. We prefer this approach to taking logarithms due to the possible presence of

heteroskedasticity, which can lead to a bias in log-linearized regressions, and the presence

of zeroes in the data.13

13For a discussion of the advantages of using a Poisson model in the presence of zeroes and het-
eroskedasticity, see Santos Silva and Tenreyro (2006). We use Stata’s ppmlhdfe command that was
developed by Correia, Guimarães and Zylkin (2019) and Correia, Guimarães and Zylkin (2020).
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5 Results

5.1 Tracking summary

Table 4 shows the summary statistics of the tracking data for overall travel. Table A.1 in

the Appendix shows the data separately for each mode.

Table 4: Tracking summary statistics

Pre-treatment Post-treatment

Dimension Outcome Control Info Pricing Control Info Pricing

Ext. costs Total 4.498 4.579 4.686 4.218 4.252 4.218
(CHF) (5.690) (5.650) (5.811) (5.392) (5.549) (5.408)

Congestion 1.045 1.076 1.151 0.858 0.878 0.904
(1.584) (1.582) (1.705) (1.445) (1.539) (1.524)

Climate 0.880 0.883 0.894 0.849 0.838 0.829
(1.295) (1.293) (1.295) (1.235) (1.286) (1.222)

Health 2.573 2.619 2.640 2.510 2.536 2.485
(3.551) (3.546) (3.609) (3.476) (3.561) (3.460)

Private costs 26.103 26.683 26.827 25.719 25.988 25.476
(CHF) (33.824) (34.080) (34.587) (33.403) (34.068) (33.134)
Tracking Trips 4.85 4.87 4.90 4.67 4.64 4.71

(3.11) (3.08) (3.04) (2.89) (2.88) (2.92)
Distance (km) 47.408 48.388 49.854 45.954 47.789 47.784

(55.789) (54.978) (57.720) (54.331) (56.246) (55.269)
Duration (min) 96.364 97.176 98.453 92.698 95.443 95.421

(92.890) (88.568) (93.527) (88.397) (93.972) (92.736)

Notes:
Average values per participant and day during the experiment (standard dev. in parentheses).

Figure 5 displays the mode distribution recorded in MOBIS in terms of distance (panel

a), number of trips (panel b) and external costs (panel c). Almost two-thirds of the

recorded distance is traveled by car, whereas the majority of stage counts correspond to

walking. The vast majority of external costs is associated with driving. Panel d shows

the constant per-km external costs for walking and bicycling, as well as the distribution

of external per-km costs for driving and public transport, which vary over space and time

due to congestion and crowding.

We observe a seasonal variation in the travel distance by mode, which translates to a

negative trend in external costs. Including a control group allows us to control for such

trends. In contrast, if the treatment effect were estimated based on a before-vs.-after

approach, as in most of the previous literature, the results would be biased towards a

larger effect as the decrease in external costs over time would also be attributed to the

treatment.
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Figure 5: Mode distribution of distances, trips and external costs

Notes: For the external costs of walking and cycling, fixed values per person-km were used
(see Tables 2-3). The external costs of public transport vary over time and space.

Before using the data for analysis, it was cleaned using some routine procedures that

check for plausibility and remove obviously problematic data. In addition, we removed

the data if one of the following was true: Average daily speed for car and PT above 100

km/h, above 40 km/h for bicycling and above 20 km/h for walking; or more than 500

km/day for car and PT, and more than 20 km/day for walking. If one of these limites

was exceeded, we removed this person-day observation.

5.2 Average treatment effects

Table 5 shows the average treatment effect (ATE) on the external costs of travel in CHF

per day. Due to the randomization and the presence of the control group, these are the
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causal effects of introducing price incentives and/or providing information. The first two

columns report the results for the total external costs of transport, with and without

controlling for the weather, whereas the next three pairs of columns contain the ATE on

the external health, climate and congestion costs. About half of the reduction in external

costs is due to a decrease in health costs, followed in magnitude by congestion and then

climate costs. Including the weather does not significantly change the ATE.

Table 5: Average treatment effects on external costs

Total Ext. Cost Health Cost Climate cost Congestion Cost

Pricing -0.215** -0.215** -0.108** -0.109* -0.036* -0.035* -0.070** -0.070**
(0.069) (0.072) (0.043) (0.045) (0.016) (0.017) (0.023) (0.023)

Information -0.087 -0.091 -0.046 -0.048 -0.019 -0.020 -0.022 -0.022
(0.069) (0.069) (0.043) (0.043) (0.016) (0.016) (0.022) (0.022)

Pricing-Inf. -0.127’ -0.125’ -0.063 -0.061 -0.017 -0.016 -0.048* -0.048*
(0.071) (0.071) (0.044) (0.044) (0.016) (0.016) (0.022) (0.022)

Precipitation 0.002 0.000 0.000 -0.002**
(0.004) (0.003) (0.001) (0.001)

Heat 0.177** 0.148** 0.055** -0.026**
(0.018) (0.012) (0.004) (0.004)

Cold -0.501** -0.357** -0.128** -0.016
(0.075) (0.050) (0.017) (0.019)

Adj. R2 0.232 0.234 0.225 0.227 0.221 0.223 0.268 0.269
Clusters 3,656 3,656 3,656 3,656 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208 161,208 161,208 161,208 161,208

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1 (based on two-sided testing). The dependent
variable is the external cost of transport aggregated to the person-day level. Standard errors
(in parentheses) are clustered at the participant level. Precipitation (“rain”) is measured in
mm per hour; heat and cold are as defined be eqs. (2)-(3). All regressions include calendar
day, day of study and person fixed effects.

Figure 6 shows the proportional reduction of the external costs of transport caused by

the two treatments. The proportional effect for the external costs related to health and

climate is comparable to the effect on total external costs, whereas the effect for conges-

tion was somewhat stronger. There may be a treatment effect associated with providing

only information (yellow bars), but this effect is weaker and not statistically significant

at conventional levels, at least not for the overall sample (see below for a sub-sample

analysis). The figure also shows the differential effect, which is the causal effect of adding

pricing to information. This effect is statistically significant for congestion, indicating

that including a monetary component is relatively more important for congestion than

for the other types of external costs. A possible explanation is that the external costs in

terms of health and climate may be more salient (and more intuitive) than the external

18



costs associated with congestion.

Figure 6: Treatment effect on the external costs of transport

Note: The figure shows the average treatment effect for overall travel from Table 5.
Proportional effects were computed by scaling the regression coefficients by the average
external cost of the control group during the treatment period. The bars denote
95%-confidence intervals.

An event-study graph of the treatment effect by study day reveals no pronounced

learning effects (see Fig. A.2 in the Appendix), but lack of statistical power for a given

day leads to very noisy estimates. Furthermore, as part of a series of robustness tests

(see below), we find no difference between the ATE as estimated based on weeks 5 & 6 as

opposed to weeks 7 & 8. This supports our underlying hypothesis of a stable treatment

effect with respect to the treatment time.

Figure A.3 in the Appendix shows the treatment effect for the external costs associated

with driving and public transport (the regression estimates underlying this figure are

shown in Table A.12). Whereas the proportional reduction of the external costs is similar

for driving as for overall travel, we find no significant effect on total costs for PT travel,

and a positive effect for health and climate costs. This suggests a mode shift that we will

address in more detail below.

On average, the respondents in the pricing group reduced their external costs of trans-

port by 5.1% relative to the control group. To interpret the magnitude of this effect, we

have to compare this response to the change in the total price due to the implementation

of the pricing scheme, i.e., the price including the private costs.
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To compute the private costs of transport, we make the following assumptions: The

private cost of active transport (cycling and walking) is zero; we thus abstract from

the purchase or rental price of bicycles. For public transport, we use the ticket price as a

reference, either full or half fare depending on whether a particular participant holds a half-

fare discount card. For participants that hold a public transport pass, we approximated

the average cost by multiplying the half-fare ticket with a factor that is less than one.

The level of the factor is determined by comparing the cost of a regional PT subscription

with the corresponding cost if one were to buy a daily pass on 22 days per month.14 For

driving, we use an average value of CHF 0.70 per km, which is the official value used for

deducting commuting expenses from taxable income, and also very close to the value that

the respondents in the final survey reported as their average costs of driving.

Given these assumptions, the average daily private cost of transport for the control

group during the treatment period was CHF 25.72. The external cost was CHF 4.22,

which corresponds to a price increase of 16.4%. Dividing the ATE by the average external

costs leads to a proportional reduction of 5.1% (this is the point estimate in Figure 6).

The resulting elasticity, in terms of a percentage reduction in external costs in response

to a one-percent increase in the costs of transport is therefore -5.1/16.4=-0.31.15 This

implies that introducing a transport pricing scheme based on external costs that raises

total transport costs, on average, by 10 % would lead to a reduction in the external costs

of transport by 3.1% in the short run.

Table 6 shows the sensitivity of the results with respect to controlling for the different

levels of fixed effects, the weather and using a control group. The preferred model is in

column (1). Adding the weather variables has no effect on the ATE, as already shown

above. Removing either the day of study fixed effects (columns 3-4) or the calendar

day fixed effects (columns 5-6) does not significantly change the results; however, when

removing both, the elasticity more than doubles (columns 7-8). Controlling for unobserved

characteristics that vary over time is therefore crucial for identification. When estimating

the ATE using only before-vs-after data for the pricing group, the resulting elasticity is

around -0.38 if calendar day FE are included, and between -0.57 and -0.71 without (day

of study FE cannot be included in this setting as they would be collinear with the “Post”

dummy). This highlights the importance of including a control group that is exposed

to the same shocks as the treatment group. The elasticity is significantly over-estimated

14The savings implicit in the subscription ranges from 24% in Geneva to 76% in Basel.
15This is the elasticity of external costs with respect to the total price of transport. The elasticity of

the external costs with respect to the externality-related price cannot be computed as the latter is zero
before the treatment.
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in the before-vs.-after setting, because the treatment also absorbs a part of the seasonal

and day of study-effects. Controlling for the weather or calendar day FE mitigates the

problem, but it cannot fully remove the bias.

Table 6: Sensitivity analysis

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Pricing -0.215** -0.216** -0.228** -0.231** -0.218** -0.214** -0.470** -0.536**
(0.072) (0.072) (0.064) (0.064) (0.072) (0.072) (0.052) (0.054)

Information -0.087 -0.091 -0.101’ -0.105’ -0.088 -0.085* -0.341** -0.408**
(0.069) (0.069) (0.060) (0.060) (0.069) (0.069) (0.049) (0.051)

Precipitation 0.0002 0.002 -0.003** -0.005* 0.003 -0.006
(0.004) (0.004) (0.002) (0.002) (0.007) (0.004)

Heat 0.177** 0.177** 0.042** 0.024** 0.193** 0.043**
(0.018) (0.018) (0.006) (0.005) (0.030) (0.010)

Cold -0.501** -0.499** -0.250** -0.189** -0.388** -0.256**
(0.075) (0.075) (0.039) (0.037) (0.136) (0.076)

Post -0.310** -0.312** -0.470** -0.584**
(0.106) (0.106) (0.052) (0.057)

Prop. effect -0.051 -0.051 -0.054 -0.055 -0.052 -0.051 -0.111 -0.127 -0.066 -0.067 -0.100 -0.125
(0.017) (0.017) (0.015) (0.015) (0.017) (0.017) (0.013) (0.013) (0.022) (0.022) (0.010) (0.011)

Elasticity -0.310 -0.312 -0.330 -0.333 -0.315 -0.310 -0.679 -0.774 -0.378 -0.381 -0.574 -0.714
(0.104) (0.104) (0.092) (0.092) (0.104) (0.104) (0.078) (0.080) (0.128) (0.127) (0.060) (0.065)

Person FE X� X� X� X� X� X� X� X� X� X� X� X�
Cal. day FE X� X� X� X� � � � � X� X� � �
Study day FE X� X� � � X� X� � � � � � �

Adj. R2 0.232 0.234 0.232 0.234 0.229 0.230 0.229 0.229 0.228 0.229 0.224 0.225
Cluster 3,656 3,656 3,656 3,656 3,656 3,656 3,656 3,656 1,193 1,193 1,193 1,193

N 161,208 161,208 161,208 161,208 161,208 161,208 161,208 161,208 52,229 52,229 52,229 52,229

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Standard errors in parentheses and clustered at participant level. The dummy variable
“post” takes the value of one during the treatment period (study days 29-56), and zero otherwise. The daily external cost and the price
increase implied by Pigovian transport pricing is based on the control group during the treatment phase and is 4.22 CHF and 16.4%,
respectively (columns 1-8). For the before-vs.-after analysis in columns (9)-(12), the daily external cost (CHF 4.69) and price increase
(17.5%) was computed for the pricing group during the observation phase.

5.3 Effect heterogeneity

The overall effect could mask heterogeneous responses within different segments of the

population. Figure 7 shows the treatment effects on total external costs for different

subgroups of the sample; the regression results, including those pertaining to the cost cat-

egories, are presented in Tables A.3-A.10 in the Appendix. We find that men respond more

strongly to both treatments than women, and the difference is particularly pronounced for

congestion costs.16 The treatment effect also differs across the language regions. However,

for most socio-demographic variables, we do not find statistically significant differences,

or only for cost subgroups.

16The graphs show the coefficient on the base category (e.g., for women, whose gender dummmy is
coded as male=0) and the sum of the coefficient on the base category and the coefficient on the inter-
action term (e.g., pricing x male). Whether two groups have statistically different effects can be seen
from the p-value of the coefficient of the interaction term, which is reported in Tables A.3-A.10.

21



Figure 7: Treatment effect heterogeneity

Notes: Results from including interaction dummies in the DiD regression. The bars denote
95%-confidence intervals. The results are given in CHF per day.

In the final survey conducted after the experiment was concluded, a battery of ques-

tions was used to elicit respondents’ personal values (Schwartz, 1992; De Groot and Steg,

2010). Using this methodology, respondents were assigned an index along four dimensions

labeled “altruistic”, “egoistic”, “hedonic” and “biospheric”. The study participants that

scored above the median in terms of the altruistic index responded significantly not only

to pricing, but also to information alone. There were no statistically significant differences

along the other three “values” dimensions.

The concept of (and our definition for) the external costs of transport was explained to

the participants of the treatment groups at the beginning of the treatment. We included

a question in the final survey to gauge the heterogeneity with respect to the uptake of

this information. More specifically, the participants in the treatment groups were asked
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to identify the correct definition of “external costs of transport” among a list of four

possible options. The last group of coefficients in Figure 7 shows the ATE separately for

those that could correctly identify the definition of the external costs of transport used

in the experiment (45% of the sample) vs. those that could not. The results imply that

the treatment effect for pricing is driven by the respondents that answered the question

correctly. On the other hand, knowledge about the definition of external costs was not

generally associated with an increased response to the information-only treatment.

The interaction effects shown in Figure 7 and Tables A.3-A.10 are univariate correla-

tions and have no causal interpretation. In order to investigate the effect heterogeneity

further, we employ a “causal forest” approach based on the generalized regression forest

algorithm proposed by Wager and Athey (2018) and implemented in the R package grf

(Tibshirani, Athey and Wager, 2020). In contrast to the regression approach, the causal

forest is agnostic as to which individual characteristics may generate heterogeneous treat-

ment effects. The regression trees in the causal forest algorithm are grown by conditioning

on those variables that generate the most heterogeneous treatment effects at each node.

This procedure is repeated many times on samples randomly drawn without replacement

from the data to form a causal forest. The splits can be tallied across trees to arrive at

a measure for the most important splitting variables, weighted by the level at which the

splits occur. The earlier the split, the higher the weight assigned to that variable in the

importance measure. This results in a list of “most important” variables in the sense that

they generate the strongest heterogeneity in the ATE.

Figure A.4 in the Appendix shows the distribution of the conditional treatment effect

using the causal forest algorithm, both for the pricing and the information-only treatment.

The relative variable importance derived from the algorithm is shown in Figure A.5. To

interpret this measure, we also included a continuous and a discrete random variable. The

variables with a higher importance ranking than these random variables can be treated

as likely candidates to explain the effect heterogeneity.

Table 7 shows the results of a multivariate regression that includes 15 potentially

relevant categorical variables that are interacted with the DiD term in a multi-variate

regression. The variables were selected based on their “importance” measure, the results

displayed in Fig. 7) and economic theory.17 We find that when controlling for these

dimensions simultaneously, the pricing effect is stronger (i.e., more negative) for partici-

pants that (i) answered the “exam question” correctly, (ii) are below 30 years of age and

17We are aware that a multivariate regression will not necessarily identify causal effects. However,
to the extent that the covariates are correlated with each other, the multivariate regression provides
“better controlled” estimates than the univariate regressions that are the basis for Fig. 7.
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Table 7: Multivariate interactions

Total costs Health Cost Climate Cost Congestion Cost

Pricing Info Pricing Info Pricing Info Princing Info

Base 0.258 0.128 0.146 0.050 0.056 0.057 0.056 0.021
(0.178) (0.178) (0.109) (0.116) (0.04) (0.041) (0.056) (0.048)

Correct=1 -0.401** -0.099 -0.253** -0.071 -0.087** -0.037 -0.061’ 0.01
(0.109) (0.102) (0.068) (0.064) (0.025) (0.023) (0.035) (0.032)

Age≥55 -0.112 0.009 -0.079 -0.032 -0.048 -0.001 0.015 0.042
(0.151) (0.147) (0.094) (0.09) (0.035) (0.035) (0.048) (0.042)

Age≤30 -0.406** 0.009 -0.239** 0.074 -0.100** 0.024 -0.067’ 0.056
(0.132) (0.117) (0.081) (0.074) (0.031) (0.027) (0.041) (0.037)

Egoistic=1 0.018 -0.05 0.036 -0.039 0.021 -0.031 -0.039 0.02
(0.109) (0.108) (0.067) (0.068) (0.025) (0.025) (0.034) (0.032)

Altruistic=1 -0.138 -0.224* -0.083 -0.117’ -0.027 -0.045’ -0.027 -0.063*
(0.118) (0.110) (0.073) (0.071) (0.027) (0.025) (0.038) (0.032)

Hedonic=1 0.111 -0.065 0.051 0.007 0.018 0.005 0.042 -0.076*
(0.114) (0.11) (0.069) (0.068) (0.027) (0.025) (0.037) (0.032)

Biospheric=1 -0.164 0.094 -0.097 0.053 -0.036 0.022 -0.031 0.018
(0.122) (0.117) (0.077) (0.075) (0.028) (0.027) (0.038) (0.033)

Income>12k -0.116 0.021 -0.013 0.028 -0.006 -0.016 -0.097* 0.009
(0.141) (0.135) (0.084) (0.085) (0.034) (0.031) (0.049) (0.042)

Income<8k 0.205’ -0.021 0.081 -0.049 0.043 -0.003 0.082* 0.031
(0.121) (0.117) (0.075) (0.072) (0.027) (0.027) (0.036) (0.035)

HH size>4 -0.199 0.245 -0.14 0.149 -0.089* 0.046 0.031 0.05
(0.186) (0.186) (0.117) (0.107) (0.044) (0.051) (0.047) (0.053)

HH size<3 -0.181 -0.057 -0.04 -0.014 -0.042 -0.031 -0.099** -0.012
(0.118) (0.112) (0.073) (0.07) (0.028) (0.026) (0.038) (0.034)

French=1 0.204’ 0.003 0.115 -0.032 0.037 -0.017 0.053 0.052
(0.120) (0.109) (0.077) (0.069) (0.027) (0.026) (0.036) (0.033)

Tert. educ -0.052 -0.056 -0.07 -0.039 -0.011 -0.022 0.03 0.005
(0.112) (0.107) (0.068) (0.067) (0.026) (0.025) (0.037) (0.031)

Male=1 -0.195’ -0.165’ -0.066 -0.02 -0.021 -0.022 -0.108** -0.123**
(0.109) (0.100) (0.068) (0.062) (0.025) (0.023) (0.033) (0.031)

Weekend=1 0.12 0.179 0.058 0.089 0.041 0.019 0.022 0.071*
(0.122) (0.118) (0.077) (0.075) (0.027) (0.026) (0.035) (0.036)

Adjusted Rˆ2 0.232 0.225 0.221 0.269
Clusters 3,486 3,486 3,486 3,486
N 155,517 155,517 155,517 155,517

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Standard errors in parentheses and clustered
at the participant level. The dependent variable is the external cost of transport aggre-
gated to the person-day level. Standard errors (in parentheses) are clustered at the partic-
ipant level. The “Pricing” and “Info” columns indicate the type of DiD term with which
the interaction terms have been multiplied. All dimensions also include one omitted cate-
gory. The “Base” coefficient is thus associated with an observation that has a zero for all
included dummies.
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Table 8: Elasticities for subsamples

Treatment effect (%) Price increase (%) Elasticity

Estimate
Lower
Bound

Upper
Bound

Estimate
Lower
Bound

Upper
Bound

Estimate
Lower
Bound

Upper
Bound

p N

Male=1 -5.88 -10.48 -1.27 16.47 16.21 16.73 -0.36 -0.64 -0.08 0.012 80,338
Male=0 -4.09 -8.81 0.63 16.32 16.06 16.58 -0.25 -0.54 0.04 0.089 80,863
Correct=1 -10.57 -14.93 -6.20 16.40 16.22 16.59 -0.64 -0.91 -0.38 <0.001 103,685
Correct=0 0.03 -3.72 3.78 16.40 16.22 16.58 0.00 -0.23 0.23 0.989 115,038
French=1 2.33 -4.72 9.37 16.79 16.40 17.19 0.14 -0.28 0.56 0.518 42,014
French=0 -7.39 -11.20 -3.57 16.29 16.09 16.50 -0.45 -0.69 -0.22 <0.001 119,190
Inc. <8000 -2.51 -51.10 20.04 16.15 15.87 16.44 -0.16 -0.51 0.20 0.392 59,779
Inc >=8000 -6.28 -10.29 -2.28 16.55 16.31 16.79 -0.38 -0.62 -0.14 0.002 101,425

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Standard errors in parentheses and clustered at participant level.
The dummy variable “post” takes the value of one during the treatment period (study days 29-56), and zero oth-
erwise.

(iii) men, and it is weaker for (iv) French speakers and (v) those with a household income

below CHF 8,000 per month. The effect of information alone on total external costs is

stronger for (i) altruists and (ii) men. The effect heterogeneity for the individual cost

dimensions is overall similar, but there are also some differences. For example, we see

that people with a high household income reduced their congestion costs by more than

the reference category.

Table 8 presents the proportional effects, price increases and resulting elasticities for

the sub-samples for which we found the largest effect heterogeneity of the pricing treat-

ment. The elasticity of the participants that correctly identified the external costs in the

“exam” question is in fact -0.64, whereas the elasticity of the rest of the sample (around

55% of the participants in the treatment groups) is precisely centered around zero. The

ATE is thus exclusively driven by those participants that understood the nature of the

experiment. The table also shows the elasticity for men vs. women, French- vs. German-

speakers and people with a monthly household income above/below CHF 8,000.

5.4 Mechanisms

People can reduce their external costs of transport in different ways: Travel less, substi-

tute towards modes associated with lower external costs and choose different routes and

departure times. To shed light on potential mechanisms, Figure 8 shows the effect of the

pricing treatment on various outcomes. The regression results underlying this figure are

shown in Tables A.11 - A.14 in the Appendix.

The treatment did not significantly reduce overall travel distances, but we measure

a statistically significant reduction in car distance countered by increases in the other
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modes (panel a). The effect can be seen separately on the intensive margin in panel b

(i.e., conditional on traveling with a particular mode on a given day) and on the extensive

margin in panel c (i.e., the probability of traveling). The mode shift becomes even more

pronounced if the treatment effect is shown for mode share in terms of distance (panel

d). There is a statistically significant reduction in the share of car distance by about 3%

and an increase in the share of public transport, bicycling and walking.

Figure 8: Mechanisms underlying the reduction in external costs

Note: The bars denote 95%-confidence intervals, corresponding to a two-sided test at p<0.05.
In panels (a), (b), (d) and (e), the treatment effects are computed using a Poisson
pseudo-maximum likelihood (ppml) regression. Panel (c) shows the marginal results of a logit
regression. In panel (f), a linear DiD-specification is chosen with the departure time
(measured in minutes after midnight) as the dependent variable.

The pricing treatment significantly reduced congestion costs per km of car travel (panel

e), implying that modal shift is not the only mechanism responsible for the reduction in

external costs. The reduction in congestion per km can be due to a change in route and/or

a change in departure time. Using the departure time (in minutes) as the dependent

variable, we observe a significant shift in the departure times for car trips in the morning
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towards earlier departures, but no effect in the evening (panel f). There was no reduction

in crowding for public transport, nor was there an effect on PT departure time. The

treatment did not change the average car and PT speed on a daily level.

5.5 Acceptability

Even if transport pricing works, its implementation may be challenging not only in terms

of technology and data confidentiality, but also in terms of social acceptability. In the in-

troduction survey, we included three questions designed to elicit respondents’ preferences

about a possible introduction of transport pricing. In order not to reveal the purpose

of the experiment, these questions were part of a larger number of queries posed to the

respondents. The three questions aimed at the same concept but were worded differently.

Please indicate whether you agree or disagree with each policy:

Time- and route-specific mobility pricing, made revenue-neutral by lowering other taxes.

Please indicate your level of agreement or disagreement with the following statements:

The price for mobility should reflect the social cost (e.g., health, environment, congestion).

The transport network should be used more efficiently by introducing dynamic pricing.

Figure 9 shows the responses. A majority of the respondents were either positive or

neutral if the question was worded with respect to social costs or revenue-neutral transport

(or mobility) pricing.18 However, if the focus was placed on the time-varying nature of

this pricing, the majority were opposed. This suggests that transport pricing could, in

principle, find a political majority, but that it depends on how it is communicated.

In the final survey, we followed up on the issue of revenue use. The a majority of the

participants preferred at least some of the money to be used for transport projects, whereas

fewer than 8% indicated that they preferred the revenue to be returned to households (Fig.

A.1). The revenue neutrality embedded in the question about mobility pricing thus likely

led to a lower level of approval, ceteris paribus.

18The same questions were asked again in the final survey, which took place after the experiment.
Despite the different samples (21,800 respondents of the introduction survey vs. 3,521 participants in
the tracking study), the answers were qualitatively similar. There was also no systematic difference in
the answers of the three experimental groups.
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Figure 9: Support for transport pricing
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Note: The figure shows participants’ responses to the questions described in the main text.

5.6 Robustness tests

In this subsection, we address problems that could potentially threaten the validity of our

results.

Observation effect

As mentioned in Section 5.1, we observe a reduction in the external costs of travel during

the course of the experiment. This is partly due to a seasonal effect, but the effect persists

even after controlling for seasonality. Table 9 shows the results from regressing the daily

external costs of travel during the observation phase on dummies denoting membership in

the Pricing and the Information groups, calendar day FE and a linear day-of-study trend.

This trend is significant and indicates that the external costs from all travel decrease by

1.5 cents per study day (column 1). However, there is no difference in this trend across

the groups (column 2), which is crucial for identification purposes. Columns 3-6 show

that the trend is caused by a reduction in the external costs of driving. When using

distance as the dependent variable (Table A.15), the results indicate that there may be

a shift away from driving and towards public transport during the pre-treatment period,

but this shift is the same for all groups.

28



Table 9: Trends in external costs

All Travel All Travel Car PT Bicycle Walking

Info 8.574 -4.206 -6.704 4.167 -0.452 -1.217
(12.071) (15.902) (16.114) (2.887) (0.801) (0.743)

Pricing 18.853 5.115 -0.062 6.375* 0.236 -1.434*
(12.245) (16.079) (16.268) (3.039) (0.936) (0.721)

Day of study trend -1.115** -1.703** -1.715** 0.099 -0.006 -0.081**
(0.397) (0.539) (0.542) (0.102) (0.026) (0.027)

Pricing x Day-of-study trend 0.921 0.864 0.033 -0.022 0.046
(0.640) (0.647) (0.102) (0.032) (0.046)

Info x Day-of-study trend 0.957 0.900 -0.090 0.006 0.040
(0.638) (0.642) (0.104) (0.030) (0.040)

Adj. R2 0.005 0.005 0.005 0.009 0.007 0.012

N 83,081 83,081 83,081 83,081 83,081 83,081

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable is the external cost
of transport (in cents per day), aggregated to the person-day level, and restricted to study
days 1-28 (pre-treatment). Standard errors (in parentheses) are clustered at the partici-
pant level. The regressions additionally include calendar day FE.

Strategic mode corrections

One possible explanation for the trend discussed in the previous section is a strategic

correction of modes. Participants were invited to use the validation interface to confirm

the detected mode and purpose of their trips and activities. As the mode is crucial in

determining the external costs, the possibility of over-writing the detected mode provided

an opportunity for the participants in the pricing group to “game” the experiment, e.g.,

by mis-assigning actual car trips to another transport mode.

On the other hand, mode adjustments could also be true corrections of a wrongly de-

tected mode. The key question is therefore whether we observe a systematically different

mode correction behavior for the pricing group relative to the control and information

groups. To test for this, we regress the number of daily mode corrections during the treat-

ment phase on dummies indicating membership in the pricing and information groups,

while controlling for day of sample and day of calendar day FE. We focus on the treatment

phase because there was no incentive to act strategically during the observation period.

The results are shown in column 1 of Table 10. We see no difference in the number of cor-

rections per day across groups, and the results remain stable if we add a series of control

variables (column 2).19 Columns 3-4 show the marginal effects of a logit regression, using

the same explanatory variable but with a dummy that is equal to one if a person has

19These are the variables for which we compute the interaction terms in section 5.3.
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corrected a mode on a given day, and zero otherwise. We find no differential correction

on the extensive margin.

Table 10: Mode Correction

Corrections Corrections Probability (Corr.) Probability (Corr.)

Pricing 1.024 1.009 0.002 0.0003
(0.066) (0.065) (0.006) (0.007)

Information 0.981 0.976 0.000 -0.001
(0.063) (0.063) (0.007) (0.007)

Controls � X� � X�
N 74,899 72,759 74,858 72,718

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Standard errors (in parentheses)
clustered at participant level. The dependent variable in the first two columns
is the number of mode corrections per day. The coefficients are proportional
effects, estimated using a ppml model. Columns 3-4 display the marginal effects
from logit regressions. All regressions control for calendar and study day FE.

To further test the robustness of our results, we re-run our base regression after remov-

ing all observations (on the person-day-level) that contain at least one mode correction

(this removes 9.4% of the data in phase 2). The resulting treatment effects, proportional

effects and elasticities are shown in column 2 of Table 11, along with the baseline results.

Although the point estimates change somewhat due to the different sample, the effects

remain largely stable. This implies that our results are unlikely to be driven by strategic

mode correction.

Self-selection due to nonrandom attrition

The assignment into groups was randomized, but people chose whether or not they wanted

to continue with the study. If people in the pricing group were more or less likely to drop

out of the study than the control group, this could lead to a bias due to self-selection. We

address this issue in detail in Appendix B.8, where we investigate participant retention

and find no differential attrition across groups.

Furthermore, if attrition were influenced by the group assignment, any bias due to

self-selection should increase over the course of the treatment phase. We therefore re-

estimate our base model using only the first two weeks (column 3 of Table 11) or the last

two weeks of the treatment period (column 4). The results remain largely unchanged,

indicating that nonrandom attrition is unlikely to be an important source of bias.
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Table 11: Subsample analyses

Baseline w/o corrections w/o weeks 7-8 w/o weeks 5-6 w/o zeroes

Pricing -0.215** -0.237** -0.234** -0.228** -0.216**
(0.072) (0.080) (0.082) (0.086) (0.074)

Information -0.087 -0.075 -0.080 -0.092 -0.091
(0.069) (0.078) (0.081) (0.084) (0.071)

Constant 4.462** 4.711** 4.527** 4.486** 4.664**
(0.020) (0.020) (0.015) (0.016) (0.020)

Prop. effect -0.051 -0.054 -0.055 -0.049 -0.053
(0.017) (0.018) (0.019) (0.021) (0.017)

Elasticity -0.310 -0.329 -0.339 -0.300 -0.324
(0.103) (0.109) (0.116) (0.126) (0.103)

Clusters 3,656 3,656 3,656 3,656 3,656
Adj.R2 0.232 0.238 0.235 0.232 0.238

N 161,208 139,703 121,311 122,977 154,520

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Standard errors in parentheses and
clustered at participant level. All regressions include fixed effects for person, day of
study and day of calendar. The proportional effect and the elasticity are computed
using the averages of the control group subject to the appropriate restrictions.

Treatment of missing tracking data

Many participants did not deliver tracks on all days. To differentiate between true zeroes

(i.e., participants staying at home) and missings (participants disabling the app), we rely

on imputed activities. Suppose that a participant travels home on Friday evening and

does not deliver another track until Monday. If the app (and our algorithm) impute an

uninterrupted activity “at home” that spans the trips on Friday and Monday, then we

assume that this person stayed at home and assign a travel distance of zero. However,

the imputation of activities is not always correct. To gauge the sensitivity or our results

to the issue of missings vs. zeroes, we re-estimate the model using only data from days

with nonzero travel distances. The resulting ATE is shown in column 5 of Table 11. Due

to the exclusion of zero-travel days, the average daily external cost increases, and the

proportional effect and the elasticity therefore decrease somewhat, but the results are

overall quite stable.

6 Conclusion

The MOBIS experiment implemented transport pricing based on the social marginal costs.

The external health costs were the most important, followed by congestion and climate
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costs. The short-term elasticity for total external costs associated with the pricing treat-

ment was -0.31. Whereas the information-only treatment had an effect for subgroups of

the population (such as altruists), the effect is not statistically significant for the sample

overall. The reduction in the external costs is due to a combination of a shift away from

driving towards other modes and towards less congested times and routes. The effect

varies with gender, age, income, household size and language region, and also with the

degree to which participants engaged with the experiment.

The elasticity estimate is comparable to results based on toll pricing (Bain, 2019), but

lower than earlier estimates based on before-vs.-after studies (Leape, 2006; Nielsen, 2004).

The MOBIS experiment is the first multi-modal RCT about pricing in a transport setting

and thus different to uni-modal pricing schemes, where the lack of pricing for alternative

modes may have inflated the mode shift effect of the pricing scheme.

Drivers were over-represented in this study by design. As driving produces the largest

external costs, the observed short-term elasticity therefore may lead to over-estimating

pricing effects in the overall population. Furthermore, since the pricing scheme in the

experiment consisted of taking money away from a given budget, loss aversion may have

increased the effect relative to a tax (Tversky and Kahneman, 1991). On the other hand,

there are a number of arguments for expecting larger effects in the long run. With a per-

manent introduction of transport pricing, additional margins of response would become

available such as the choice of work and home locations, changes in activity routines,

vehicle/transit pass ownership or negotiations with employers about work hours and lo-

cation. Furthermore, the behavioral response was concentrated among those respondents

that understood the concept of external costs underlying the experiment. Whereas it is

to be expected that not everyone pays close attention to the “rules” in a short study, a

general introduction of transport pricing would presumably have a greater salience.

Our experiment shows that multi-modal transport pricing works in practice. The

required technology is available, and a number countries have computed the external

costs of mobility within their borders. The COVID-19 pandemic has demonstrated that

patterns of living, working and traveling are more adjustable than previously assumed. It

seems justified to expect people to respond to the price incentives in similar, albeit less

dramatic ways. Furthermore, a transition away from the current transport funding that

relies mostly on fuel taxes is unavoidable due to shifts in modes, fuel types and vehicle

technologies. Pigovian transport pricing is an alternative funding mechanism that can

also be implemented in the presence of a sizeable electric vehicle fleet.

A Pigovian pricing scheme as used in the MOBIS experiment would face a number

of challenges for practical implementation due to privacy concerns, limited social accept-
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ability and the technical constraints of assessing the tax on a real-time basis (including

an update of the congestion costs, which will change if pricing leads to significant peak

shifting). However, even a simplified pricing scheme should be guided by the marginal ex-

ternal costs of transport to increase the efficiency of the transport system. A key challenge

will be to agree on the price setting (e.g., the value of time or the social cost of carbon)

within the political process. Furthermore, it is well-known that fuel taxes are regressive

(West and Williams, 2004; Bento et al., 2009), and the distributional aspects of a cost-

based pricing scheme like the one used here thus deserve further investigation. Efforts

to advance such a scheme will need to be complemented with re-distributive measures to

counteract adverse distributional implications.

Multi-modal transport pricing based on the external costs of transport is feasible and

has the desired effect of shifting modes, departure times and routes. It thus leads to

a more efficient use of the transport system and a reduction in the need for network

expansions. If implemented in an equitable way, transport pricing could become a key

pillar of sustainable transport policy.
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Online Appendix

A Additional tables and figures

Figure A.1: How revenue from transport pricing should be used.

Notes: Based on question: “If dynamic mobility pricing (i.e., prices depending on mode, route
and time) were introduced, what should be done with the revenue?”.
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Figure A.2: Event study graph

Note: These event study graphs show the effect of pricing plus information (top) and
information only (bottom) per study day. These are the coefficients on the interaction terms
involving the study day and the treatment dummies. The effects are shown relative to the
first three weeks, which is normalized to zero. The bars show 95% confidence intervals. Study
day 29 has been removed, making day 30 the first in the treatment period.
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Figure A.3: Treatment effect for car travel and public transport

Note: The figure shows the proportional Average Treatment Effect for driving (left) and
public transport (right). For additional notes, see Fig. 6 in the main text.
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Figure A.4: Distribution of conditional effects

Notes: The figure shows the distribution of the conditional treatment effects resulting from
the causal forest approach for total external costs and the individual cost dimensions
considered.
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Figure A.5: Variable importance in Causal Forest

Notes: The figure shows the variable importance measure from the causal forest approach,
relative to the “most important” variable which differs across the cost dimensions considered.
The top left panel shows the conditional treatment effects on total external costs, and the
remaining panels show the effects for the dimensions congestion, climate and health.
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Table A.2: Effect for car and public transport

(a) Car

Total External Cost Health Costs Climate Costs Congestion Costs

Pricing -0.223** -0.224** -0.117** -0.037* -0.069**
(0.072) (0.074) (0.045) (0.017) (0.021)

Information -0.110 -0.113 -0.062 -0.020 -0.028
(0.069) (0.069) (0.044) (0.016) (0.020)

Difference -0.113 -0.111 -0.056 -0.017 -0.040*
(0.072) (0.072) (0.045) (0.016) (0.020)

Precipitation 0.003
(0.004)

Heat 0.186**
(0.018)

Cold -0.503**
(0.076)

Adj. R2 0.238 0.239 0.229 0.223 0.274
Clusters 3,656 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208 161,208

(b) Public Transport

Total External Cost Health Cost Climate Cost Congestion Cost

Pricing 0.011 0.011 0.011* 0.002 -0.002
(0.014) (0.014) (0.005) (0.001) (0.010)

Information 0.023’ 0.023’ 0.016** 0.001 0.006
(0.012) (0.012) (0.005) (0.001) (0.009)

Difference -0.012 -0.012 -0.005 0.001 -0.008
(0.013) (0.013) (0.005) (0.001) (0.010)

Precipitation -0.002*
(0.001)

Heat -0.006’
(0.003)

Cold -0.007
(0.015)

Adj. R2 0.286 0.286 0.235 0.137 0.274
Cluster 3,656 3,656 3,656 3,656 3,656

N 168,208 168,208 168,208 168,208 168,208

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Standard errors in parentheses and clustered at
participant level. The dependent variable contains the external costs of transport aggregated
to the person-day level (in CHF). Difference is the differential effect between the Pricing and
the Information groups. All regressions include individual, calendar day and day of study FE.
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Table A.3: Effect heterogeneity: Gender and Education

(a) Gender

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.121 -0.079 -0.028 -0.014
(0.081) (0.051) (0.019) (0.026)

Information -0.004 -0.035 -0.004 0.035
(0.077) (0.049) (0.018) (0.024)

Pricing x male -0.189’ -0.059 -0.016 -0.114**
(0.104) (0.064) (0.024) (0.032)

Inf. x male -0.165’ -0.022 -0.029 -0.114**
(0.097) (0.061) (0.022) (0.029)

Pricing + Pr. x male -0.311** -0.138* -0.044* -0.128**
(0.096) (0.059) (0.022) (0.030)

Inf. + Inf. x male -0.169’ -0.057 -0.033 -0.079*
(0.091) (0.057) (0.021) (0.028)

Pricing - Inf. -0.117 -0.045 -0.023 -0.049’
(0.088) (0.055) (0.020) (0.027)

(Pricing + Pr. x male)
- (Inf. + Inf. x male)

-0.141 -0.082 -0.010 -0.049

(0.112) (0.069) (0.026) (0.035)
Adj. R2 0.232 0.225 0.221 0.269
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

(b) Education

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.182* -0.080 -0.031 -0.071**
(0.087) (0.054) (0.022) (0.027)

Information -0.037 -0.018 -0.001 -0.017
(0.083) (0.052) (0.019) (0.026)

Pricing x tertiary educ. -0.073 -0.063 -0.010 0.000
(0.104) (0.064) (0.024) (0.033)

Inf. x tertiary educ. -0.012 -0.060 -0.041’ 0.011
(0.97) (0.061) (0.022) (0.030)

Pricing + Pr. x tertiary educ. -0.255** -0.143* -0.041* -0.070*
(0.089) (0.056) (0.020) (0.029)

Inf. + Inf. x tertiary educ. -0.148’ -0.079 -0.041* -0.028
(0.086) (0.054) (0.020) (0.027)

Pricing - Inf. -0.146 -0.062 -0.030 -0.053’
(0.099) (0.061) (0.023) (0.030)

(Pricing + Pr. x tertiary educ.)
- (Inf. + Inf. x tertiary educ.)

-0.107 -0.065 0.000 -0.042

(0.103) (0.064) (0.023) (0.033)
Constant 4.462** 2.587** 0.887** 1.003**

(0.020) (0.012) (0.004) (0.006)
Adj. R2 0.221 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable contains the external
costs of transport aggregated to the person-day level (in CHF). Standard errors (in paren-
theses) are clustered at the participant level. The dummy variable “male” is equal to one for
men. The dummy “tertiary educ.” is equal to one for those that have a tertiary education,
and zero otherwise. All regressions include individual, calendar day and day of study FE.

47



Table A.4: Effect heterogeneity: Age

Total ext. costs Health costs Climate costs Congestion costs

Pricing -0.110’ -0.046 -0.004 -0.060*
(0.084) (0.053) (0.019) (0.026)

Information -0.122 -0.055 -0.026 -0.041
(0.081) (0.051) (0.018) (0.025)

Pricing x old -0.185 -0.096 -0.063’ 0.026
(0.145) (0.086) (0.033) (0.049)

Inf. x old -0.059 -0.066 -0.014 0.020
(0.137) (0.084) (0.032) (0.038)

Pricing x young -0.261 -0.166* -0.075** -0.020
(0.122) (0.076) (0.028) (0.037)

Inf. x young 0.175 0.082 0.035 0.058
(0.112) (0.071) (0.026) (0.036)

Pricing + Pr. x old -0.295* -0.142’ -0.067* -0.087’
(0.137) (0.081) (0.031) (0.047)

Inf. + Inf. x old -0.181 -0.120 -0.039 -0.022
(0.130) (0.080) (0.030) (0.036)

Pricing + Pricing x young -0.371** -0.212** -0.079** -0.080*
(0.113) (0.070) (0.026) (0.035)

Inf. + Inf. x young 0.053 0.027 0.010 0.016
(0.104) (0.066) (0.024) (0.034)

Pricing - Inf. 0.112 0.008 0.022 -0.019
(0.094) (0.059) (0.022) (0.029)

(Pricing + Pr. x old)
- (Inf. + Inf. x old)

-0.114 -0.022 -0.027 -0.051

(0.175) (0.105) (0.041) (0.0555)
(Pricing + Pr. x young)
- (Inf. + Inf. x young)

-0.424** -0.239** -0.088** -0.096*

(0.137) (0.085) (0.032) (0.043)
Adj. R2 0.232 0.225 0.221 0.26
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable contains the exter-
nal costs of transport aggregated to the person-day level (in CHF). Standard errors (in
parentheses) are clustered at the participant level. The reference category is the age group
30-54. The dummy “young” is equal to one for people less than 30 years, and the dummy
“old” is equal to one for people that are 50 or older (and zero otherwise). All regressions
include individual, calendar day and day of study FE.
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Table A.5: Effect heterogeneity: Income

Total ext. costs Health costs Climate costs Congestion costs

Pricing -0.259** -0.135* -0.049* -0.076*
(0.095) (0.059) (0.021) (0.031)

Information -0.070 -0.025 -0.009 -0.036
(0.069) (0.058) (0.021) (0.029)

Pricing x high inc. -0.069 0.000 0.002 -0.071
(0.135) (0.081) (0.032) (0.045)

Inf. x high inc. -0.048 -0.011 -0.035 0.002
(0.129) (0.081) (0.030) (0.040)

Pricing x low inc. 0.177 0.075 0.036 0.066’
(0.119) (0.075) (0.027) (0.035)

Inf. x low inc. -0.016 -0.047 -0.006 0.037
(0.110) (0.069) (0.025) (0.033)

Pricing + Pr. x high inc. -0.328** -0.134’ -0.046 -0.147**
(0.118) (0.071) (0.029) (0.040)

Inf. + Inf. x high inc -0.118 -0.036 -0.044 -0.038
(0.115) (0.072) (0.027) (0.036)

Pricing + Pr. x low inc. -0.082 -0.059 -0.013 -0.010
(0.100) (0.064) (0.023) (0.028)

Inf. + Inf. x low inc -0.086 -0.073 -0.015 0.001
(0.092) (0.057) (0.021) (0.028)

Pricing - Inf. -0.189’ -0.109 -0.040 -0.040
(0.112) (0.070) (0.025) (0.036)

(Pricing + Pr. x high inc.)
- (Inf. + Inf. x high inc.)

-0.209 -0.098 -0.002 -0.109*

(0.149) (0.091) (0.036) (0.049)
(Pricing + Pr. x low inc.)
- (Inf. + Inf. x low inc.)

0.004 0.013 0.002 -0.011

(0.117) (0.073) (0.027) (0.032)
Adj. R2 0.232 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable contains the external
costs of transport aggregated to the person-day level (in CHF). Standard errors (in paren-
theses) are clustered at the participant level. The reference category is given by a house-
hold income between CHF 8,000 and 12,000 per month. “high inc.” and “low inc.” are
dummy variables denoting respondents that reported a monthly household income of above
CHF 12,000 and below CHF 8,000, respectively. All regressions include individual, calendar
day and day of study FE.
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Table A.6: Effect heterogeneity: Household size

Total ext. costs Health costs Climate costs Congestion costs

Pricing -0.135 -0.084 -0.011 -0.041
(0.086) (0.053) (0.019) (0.027)

Information -0.082 -0.051 -0.012 -0.019
(0.084) (0.053) (0.019) (0.026)

Pricing x large size -0.293 -0.188 -0.108* 0.002
(0.182) (0.114) (0.042) (0.046)

Inf. x large size 0.265 0.165 0.049 0.051
(0.182) (0.106) (0.049) (0.051)

Pricing x small size -0.125 -0.015 -0.035 -0.074*
(0.111) (0.068) (0.026) (0.036)

Inf. x small size -0.065 -0.020 -0.027 -0.018
(0.102) (0.064) (0.023) (0.032)

Pricing + Pr. x large size -0.429* -0.272* -0.119** -0.038
(0.175) (0.110) (0.041) (0.044)

Inf. + Inf. x large size 0.183 0.114 0.037 0.032
(0.176) (0.102) (0.048) (0.049)

Pricing + Pr. x small size -0.260** -0.099 -0.046* -0.114**
(0.099) (0.064) (0.023) (0.032)

Inf. + Inf. x small size -0.147 -0.071 -0.039’ -0.037
(0.090) (0.059) (0.021) (0.028)

Pricing - Inf. -0.053 -0.033 0.001 -0.021
(0.098) (0.061) (0.022) (0.030)

(Pricing + Pr. x large size)
- (Inf. + Inf. x large size)

-0.612* -0.386** -0.156* -0.070

(0.238) (0.144) (0.061) (0.062)
(Pricing + Pr. x small size)
- (Inf. + Inf. x small size)

-0.113 -0.028 -0.007 -0.078*

(0.115) (0.071) (0.027) (0.036)
Adj. R2 0.232 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable contains the external
costs of transport aggregated to the person-day level (in CHF). Standard errors (in paren-
theses) are clustered at the participant level. The reference category is a household size with
3 or 4 persons. Participants living in households with fewer than 3 persons are denoted by
the dummy “small size”, and those living in households with 5 or more persons are denoted
by “large size”. All regressions include individual, calendar day and day of study FE.
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Table A.7: Heterogeneity: Attention to experiment

(a) Awareness of experimental rules

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.204’ -0.083 -0.031 -0.089*
(0.111) (0.067) (0.025) (0.037)

Information 0.003 0.015 0.007 -0.019
(0.097) (0.060) (0.022) (0.030)

Pricing x aware -0.016 -0.037 -0.006 0.027
(0.117) (0.070) (0.027) (0.038)

Inf. x aware -0.149 -0.101 -0.043’ -0.006
(0.102) (0.064) (0.023) (0.031)

Pricing + Pr. x aware -0.220** -0.120** -0.037* -0.062**
(0.078) (0.049) (0.018) (0.024)

Information + Inf. x aware -0.146’ -0.085’ -0.036* -0.025
(0.077) (0.048) (0.018) (0.024)

Constant 4.462** 2.587** 0.872** 1.003**
(0.020) (0.012) (0.004) (0.006)

Adj. R2 0.232 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

(b) Correct answer to externalities question

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.027 0.006 0.005 -0.038
(0.083) (0.052) (0.019) (0.026)

Information -0.045 -0.018 -0.003 -0.024
(0.085) (0.053) (0.020) (0.026)

Pricing x correct -0.481** -0.296** -0.103** -0.083*
(0.107) (0.066) (0.025) (0.034)

Inf. x correct -0.099 -0.060 -0.036 0.003
(0.098) (0.061) (0.022) (0.030)

Pricing + Pr. x correct -0.509** -0.289** -0.098** -0.121**
(0.098) (0.060) (0.023) (0.031)

Inf. + Inf. x correct -0.144’ -0.077 -0.039* -0.027
(0.085) (0.054) (0.020) (0.027)

Adj. R2 0.232 0.224 0.221 0.268
Clusters 3,486 3,486 3,486 3,486

N 155,517 155,517 155,517 155,517

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable contains the external costs
of transport aggregated to the person-day level (in CHF). Standard errors (in parentheses) are
clustered at the participant level. The dummy “aware” is equal to one for those participants that
reported in the final survey that they were aware that they could make money or reduce their ex-
ternal costs of travel by changing their travel patterns. The dummy “correct” is equal to one for
those participants that correctly selected the definition of the external costs of transport among
four presented options, and zero otherwise.

51



Table A.8: Heterogeneity: Intrinsic values (1/2)

(a) “Egoistic” score

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.237* -0.136* -0.050* -0.050
(0.098) (0.060) (0.023) (0.031)

Information -0.048 -0.027 -0.001 -0.022
(0.096) (0.061) (0.022) (0.029)

Pricing x egoistic 0.035 0.044 0.023 -0.032
(0.107) (0.066) (0.025) (0.034)

Inf. x egoistic -0.060 -0.029 -0.030 -0.001
(0.102) (0.064) (0.023) (0.031)

Pricing + Pr. x egoistic -0.202* -0.092’ -0.027’ -0.082**
(0.083) (0.052) (0.019) (0.026)

Information + Inf. x egoistic -0.108 -0.056 -0.029’ -0.023
(0.078) (0.049) (0.018) (0.024)

Pricing - Inf. -0.189 -0.110 -0.051’ -0.028
(0.118) (0.073) (0.027) (0.036)

(Pricing + Pr. x egoistic)
- (Inf. + Inf. x egoistic)

-0.094 -0.037 0.002 -0.060*

(0.090) (0.056) (0.021) (0.028)
Constant 4.462** 2.587** 0.872** 1.003**

(0.020) (0.012) (0.005) (0.006)
Adj. R2 0.221 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

(b) “Hedonic” score

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.292** -0.150* -0.050* -0.093**
(0.1041) (0.061) (0.023) (0.033)

Information -0.044 -0.041 -0.017 0.013
(0.094) (0.060) (0.021) (0.028)

Pricing x hedonic 0.128 0.068 0.023 0.037
(0.109) (0.068) (0.025) (0.035)

Inf. x hedonic -0.069 -0.008 -0.004 -0.057’
(0.101) (0.064) (0.023) (0.030)

Pricing + Pr. x hedonic -0.164* -0.081 -0.026 -0.056*
(0.081) (0.019) (0.064) (0.024)

Inf. + Inf. x hedonic -0.113 -0.049 -0.020 -0.044’
(0.078) (0.049) (0.018) (0.025)

Pricing - Inf. -0.248* -0.109 -0.033 -0.106**
(0.119) (0.073) (0.027) (0.038)

(Pricing + Pr. x hedonic)
- (Inf. + Inf. x hedonic)

-0.051 -0.032 -0.006 -0.012

(0.088) (0.055) (0.021) (0.027)
Adj. R2 0.232 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable contains the external costs
of transport aggregated to the person-day level (in CHF). Standard errors (in parentheses) are
clustered at participant level. Based on a battery of 16 values-related questions, participants were
given an index among the dimensions “altruistic”, “hedonic”, “egoistic” and “biospheric”. The
dummies ”egoistic” and ”hedonic” denote participants with an above-median value for these two
dimensions.
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Table A.9: Heterogeneity: Intrinsic values (2/2)

(a) “Altruistic” score

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.157 -0.065 -0.020 -0.072*
(0.097) (0.061) (0.022) (0.031)

Information 0.021 0.018 -0.001 0.002
(0.098) (0.063) (0.022) (0.028)

Pricing x altruistic -0.093 -0.070 -0.025 0.002
(0.107) (0.066) (0.025) (0.034)

Inf. x altruistic -0.167 -0.098 -0.031 -0.038
(0.103) (0.065) (0.024) (0.030)

Pricing + Pr. x altruistic -0.250** -0.135** -0.045* -0.070**
(0.083) (0.051) (0.019) (0.026)

Information + Inf. x altruistic -0.146’ -0.080’ -0.030’ -0.036
(0.077) (0.048) (0.018) (0.025)

Pricing - Inf. -0.178 -0.083 -0.021 -0.074*
(0.119) (0.075) (0.027) (0.036)

(Pricing + Pr. x altruistic)
- (Inf. + Inf. x altruistic)

-0.104 -0.055 -0.015 -0.034

(0.089) (0.055) (0.021) (0.028)
Constant 4.462** 2.587** 0.872** 1.003**

(0.020) (0.012) (0.004) (0.006)
Adj. R2 0.232 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

(b) “Biospheric” score

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.179’ -0.077’ -0.023 -0.078**
(0.099) (0.063) (0.023) (0.030)

Information -0.0084 -0.042 -0.022 -0.020
(0.105) (0.067) (0.024) (0.030)

Pricing x bio -0.057 -0.050 -0.020 0.012
(0.108) (0.067) (0.025) (0.033)

Inf. x bio -0.005 -0.005 -0.043* -0.004
(0.109) (0.068) (0.019) (0.032)

Pricing + Pr. x bio -0.236** -0.127* -0.018 -0.0566*
(0.082) (0.050) (0.019) (0.026)

Information + Inf. x bio -0.089 -0.047 -0.021 -0.024
(0.075) (0.047) (0.017) (0.024)

Pricing - Inf. -0.095 -0.035 -0.002 -0.059
(0.126) (0.080) (0.029) (0.036)

(Pricing + Pr. x bio)
- (Inf. + Inf. x Bio)

-0.147’ -0.080 -0.025 -0.042

(0.087) (0.053) (0.020) (0.028)
Adj. R2 0.232 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable contains the external costs of
transport aggregated to the person-day level (in CHF). Standard errors (in parentheses) are clus-
tered at the participant level. Based on a battery of 16 values-related questions, participants were
given an index among the dimensions “altruistic”, “hedonic”, “egoistic” and “biospheric”. The
dummies ”altruistic” and ”biospheric” denote participants with an above-median value for these
dimensions. All regressions include individual, calendar day and day of study FE.
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Table A.10: Heterogeneity: Language and day of week

(a) Language

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.286** -0.145** -0.048** -0.093**
(0.079) (0.049) (0.018) (0.025)

Information -0.079 -0.033 -0.015 -0.031
(0.077) (0.048) (0.018) (0.024)

Pricing x French 0.273* 0.142* 0.046’ 0.085*
(0.111) (0.070) (0.025) (0.035)

Inf. x French -0.030 -0.047 -0.014 0.032
(0.102) (0.066) (0.024) (0.030)

Pricing + Pr. x French -0.013 -0.001 -0.003 -0.008
(0.104) (0.067) (0.023) (0.033)

Information + Inf. x French -0.109 -0.082 -0.029 0.001
(0.097) (0.063) (0.022) (0.028)

Pricing - Inf. -0.206* -0.112* -0.032 -0.062*
(0.086) (0.052) (0.020) (0.027)

(Pricing - Pr. x French)
- (Inf. - Inf. x French)

0.096 0.076 0.028 -0.009

(0.124) (0.081) (0.028) (0.038)
Constant 4.462** 2.587** 0.882** 1.003**

(0.020) (0.012) (0.004) (0.006)
Adj. R2 0.232 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

(b) Weekend

Total Ext. Cost Health Cost Climate Cost Congestion Cost

Pricing -0.251** -0.126** -0.047** -0.078**
(0.077) (0.048) (0.018) (0.024)

Information -0.137’ -0.070 -0.024 -0.043’
(0.075) (0.047) (0.017) (0.024)

Pricing x weekend 0.125 0.059 0.040 0.026
(0.120) (0.076) (0.026) (0.034)

Inf. x weekend 0.172 0.083 0.017 0.071*
(0.116) (0.073) (0.025) (0.036)

Pricing + Pr. x weekend -0.126 -0.067 -0.007 -0.052
(0.115) (0.073) (0.026) (0.034)

Inf + Inf x weekend 0.034 -0.013 -0.007 0.028
(0.111) (0.070) (0.024) (0.034)

Pricing - Inf. -0.113 -0.055 -0.023 -0.035
(0.078) (0.049) (0.018) (0.024)

(Pricing + Pr. x weekend)
- (Inf. + Inf. x weekend)

-0.160 -0.080 0.000 -0.080*

(0.133) (0.084) (0.029) (0.039)
Adj R2 0.222 0.225 0.221 0.268
Clusters 3,656 3,656 3,656 3,656

N 161,208 161,208 161,208 161,208

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable contains the external costs of
transport aggregated to the person-day level (in CHF). Standard errors (in parentheses) are clus-
tered at the participant level. The reference category are German speakers or those that chose En-
glish as their preferred language. The dummy variable “French” is equal to one for French speak-
ers. The weekend dummy is equal to one for week-ends and holidays, and zero otherwise. All re-
gressions include individual, calendar day and day of study FE.
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Table A.11: ATE on travel distance

(a) Overall margin

Distance
Total

Distance
Car

Distance
Public Transport

Distance
Bicycle

Distance
Walk

Pricing 0.986 0.957* 1.062 1.133 1.039*
(0.015) (0.017) (3) (0.087) (0.018)

Information 1.010 0.973 1.136** 1.061 1.014
(0.015) (0.017) (0.045) (0.075) (0.018)

Difference 0.976’ 0.983 0.935’ 1.068 1.025
(0.014) (0.017) (0.034) (0.084) (0.018)

Precipitation 0.998* 1.000 0.992** 0.978** 0.994
(0.001) (0.001) (0.002) (0.006) (0.001)

Heat 1.046** 1.059** 1.004 1.051** 1.026**
(0.004) (0.005) (0.010) (0.017) (0.004)

Cold 0.860** 0.826** 0.930 0.903’ 0.943**
(0.018) (0.022) (0.046) (0.053) (0.017)

Constant 45,442.6** 33,894.1** 22,839.2** 2,975.3** 2,086.7**
(818.166) (707.771) (1,054.363) (201.647 (40.978)

Adj. R2 0.273 0.299 0.416 0.471 0.263
Clusters 3,656 3,653 3,525 2,186 3,655

N 161,208 161,139 155,765 97,342 161,201

(b) Intensive margin

Total Car Public Transport Bicycle Walking

Pricing 0.986 0.973’ 1.025 0.989 1.040*
(0.014) (0.016) (0.037) (0.052) (0.017)

Information 1.009 0.986 1.093* 1.001 1.014
(0.014) (0.015) (0.040) (0.048) (0.017)

Difference 0.977 0.987 0.938’ 0.988 1.025
(0.014) (0.016) (0.032) (0.056) (0.017)

Precipitation 0.999 1.000 0.997 0.999 0.995**
(0.001) (0.001) (0.002) (0.004) (0.001)

Heat 1.047** 1.064** 1.023* 1.026** 1.029**
(0.004) (0.004) (0.009) (0.009) (0.004)

Cold 0.857** 0.845** 0.943 0.945 0.941**
(0.017) (0.020) (0.041) (0.042) (0.016)

Adj. R2 0.280 0.298 0.486 0.647 0.261
Clusters 3,656 3,651 3,373 1,541 3,654

N 154,520 125,452 55,889 12,645 135,651

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable contains the distance trav-
eled aggregated to the person-day level either including zeroes (panel a) or restricted to positive
observations (panel b). Standard errors (in parentheses) are clustered at the participant level. The
coefficients were estimated using a PPML model and then exponentiated to derive proportional ef-
fects (with 1.00 representing no effect). All regressions include individual, calendar day and day of
study FE.
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Table A.12: ATE on mode distance share and congestion per km

(a) Mode Distance Share

Car Public transport Bicycle Walking

Pricing 0.969** 1.047* 1.178* 1.048’
(0.008) (0.024) (0.080) (0.027)

Information 0.983* 1.045* 1.067 1.017
(0.007) (0.022) (0.067) (0.025)

Difference 0.986’ 1.001 1.104 1.031
(0.008) (0.021) (0.076) (0.026)

Precipitation 1.002** 0.995** 0.980** 0.996*
(0.000) (0.001) (0.004) (0.001)

Heat 1.005* 0.969** 0.993 1.015*
(0.002) (0.005) (0.013) (0.006)

Cold 0.969** 1.033 0.979 1.019
(0.010) (0.023) (0.042) (0.021)

Adj. R2 0.056 0.201 0.303 0.121
Clusters 3,653 3,525 2,186 3,655

N 154,483 149,507 93,927 154,518

(b) Congestion per km

Congestion (car) Congestion (PT) Speed (car) Speed (PT)

Pricing 0.930** 0.977 1.001 1.010
(0.019) (0.040) (0.006) (0.013)

Information 0.955* 0.950 1.001 1.023’
(0.020) (0.040) (0.006) (0.013)

Difference 0.974 1.028 1.000 0.986
(0.020) (0.041) (0.006) (0.012)

Precipitation 0.999 0.997 0.999’ 0.999
(0.001) (0.002) (0.000) (0.001)

Heat 0.950** 0.948** 1.017** 1.007*
(0.004) (0.008) (0.001) (0.003)

Cold 1.073** 1.077 0.960** 0.996
(0.028) (0.059) (0.008) (0.015)

Adj. R2 0.028 0.038 0.189 0.294
Clusters 3,651 2,517 3,651 3,373

N 125,452 48,295 125,453 55,889

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Standard errors in parentheses and clustered at
participant level.
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Table A.13: ATE on probability to travel (extensive margin)

Total travel Car Public Transport Bicycling Walking

Pricing 1.000 0.970** 1.062* 1.133* 1.006
(0.005) (0.010) (0.027) (0.070) (0.008)

Infomation 0.998 0.980* 1.047’ 1.011 1.004
(0.005) (0.009) (0.025) (0.059) (0.007)

Difference 1.002 0.990 1.014 1.121’ 1.001
(0.005) (0.010) (0.026) (0.072) (0.008)

N 101,787 151,263 155,620 97,342 151,458

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Standard errors in paren-
theses and clustered at participant level. The coefficients in the table are
marginal effects in the form of semi-elasticities (dlny/dx) after estimat-
ing a logit regression that includes the weather variables and a series of
dummies to capture person, day of study and calendar day FE effects.

Table A.14: ATE on departure time for car trips

Overall Morning Evening

Pricing 0.381 -4.680* 1.850
(2.525) (1.964) (2.181)

Info post -3.179 -1.745 -0.083
(2.499) (1.989) (2.207)

Difference 3.560 -2.934 1.933
(2.528) (2.096) (2.242)

Adj. R2 0.054 0.204 0.116
Clusters 2,886 2,885 2,886

N 285,077 102,410 182,665

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Standard errors (in parentheses) clustered
at participant level. The regressions include observations from participants that
travelled at least once by car in the morning peak (departure between 6:30 and 8:30)
and the evening peak (departure between 16:30 and 18:30) during the observation
period. In column 1, all trips were combined, whereas columns 2 and 3 focus on
departure before or after noon, respectively. All regressions include day of calendar, day
of study and person fixed effects.
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Table A.15: Trends in distance travelled

All Travel All Travel Car PT Bicycle Walking

Info 0.099 0.242 -0.093 0.291 -0.067 0.111’
(1.107) (1.461) (1.329) (0.835) (0.115) (0.067)

Pricing 2.456* 2.546’ 0.694 1.689’ 0.034 0.129*
(1.133) (1.510) (1.348) (0.908) (0.134) (0.065)

Study Day 0.042 0.027 -0.046 0.066* -0.001 0.007*
(0.038) (0.053) (0.046) (0.032) (0.004) (0.002)

Pricing x Study Day -0.006 0.012 -0.011 -0.003 -0.004
(0.063) (0.055) (0.037) (0.005) (0.003)

Info x Study Day 0.051 0.066 -0.013 0.001 -0.004
(0.063) (0.055) (0.037) (0.004) (0.003)

Calendar day FE X� X� X� X� X� X�
Adj. R2 0.005 0.005 0.005 0.007 0.007 0.012

N 83,081 83,081 83,081 83,081 83,081 83,081

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. The dependent variable the travel
distance (in km), aggregated to the person-day level. Standard errors (in paren-
theses) are clustered at the participant level.
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B The MOBIS study: Step by step

In this section, we describe the study in more detail.

B.1 Sample size

In order to determine the appropriate sample size of the experiment, we carried out a series

of power calculations by means of simulation. In panel data, autocorrelation is a design

feature, which we also observe in our data (i.e., a particular respondent makes similar

travel choices over time). The presence of autocorrelation implies that the standard

formulae for power calculations, e.g. as in Duflo, Glennerster and Kremer (2007), are

biased (Burlig, Preonas and Woerman, 2020). Computing the power of an experiment

based on simulations addresses this problem as it uses the empirical correlation structure

in the data.

We based our power calculations on data from two earlier transport studies carried

out by ETH-IVT.20 We imposed a significance level of p=0.05, a power of 0.8 and an

effect size of 5%. Given these settings, the power calculations indicated that we needed

a sample size of around 1,100 for each group (treatment and control). Given that we

have two treatment groups, this led to a target sample size of 3,300 for our study. To

ensure that this sample size was attained even after removing respondents who did not

participate on a sufficient number of days or who had to be excluded for other reasons,

we set a recruitment goal of 3,600 people. Once we attained this number, recruitment

was stopped.

B.2 Invitation

Assuming a participation rate in the main study similar to the one observed in the pilot

study (i.e. 3.4%), approximately 100,000 addresses were expected to be required to achieve

the goal of 3,400 participants. Ultimately, 90,909 persons were invited to participate in

the MOBIS study. The invitation letters were sent in two waves by regular mail.

The first wave started in July 2019. 60,409 persons were contacted using home ad-

dresses provided by the Swiss Federal Statistical Office (BFS in German). Only persons

aged 18 to 65 in 2018 and living in an agglomeration of the German- and French-speaking

Swiss cantons were invited. The persons who did not react after the first invitation letter

20The 6-weeks MOBIDrive (Axhausen et al., 2002) and the 6 week-Thurgau survey (Axhausen
et al., 2007).
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received up to two reminders (a second and third invitation letter). The time lag between

the invitation letter and the reminders was between 3 and 4 weeks.

The second wave was invited in October 2019. 30,500 additional persons were con-

tacted using home addresses purchased from the private vendor Schober Information

Group AG. The persons of the second wave only received a single invitation letter, i.e.,

no reminder was sent. 56 persons in the second wave accidentally received a duplicated

participant ID which had already been allocated to participants in the first wave. These

persons were informed that despite the invitation, they could not participate in the study.

The invitation letter was written in German, French and English. The front side

of the invitation showed the German or the French version, while the back side always

showed the English version. The language of the front side was assigned based on the

communication language, which was provided in the list of addresses. In case of Italian

speaking persons, the main spoken language of their home canton was assigned.

The content of the invitation was the same for all languages. The letter explained the

background of the study (rationale, participating universities and supporting institutions)

and provided instructions for completing the online introduction survey and registration.

No reference to an experiment was made. The participant ID (a five-letter code) was

provided in these instructions. This ID enabled the access to the introduction survey,

registration and final survey. Finally, the letter informed about the financial reward for

complete participation and about the data privacy policy.

B.3 Introduction survey

The invited persons who were willing to participate in the MOBIS study first had to fill

out an online introduction survey. This survey had two goals: First, to collect transport-

related opinion from the general population, and second, to identify subjects who qualified

for the main study based on the following inclusion criteria:

• Be the recipient of the personal invitation letter (the invitation was not transferable

to other persons)

• Live in a metropolitan area in the German- or French-speaking part of Switzerland

(the lists of addresses included only people living in these areas but the survey

double-checked the post code)

• Be between 18 and 65 years old in 2018 (the list of addresses provided by the BFS

was pre-filtered by age at this year)
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• Travel by car at least two weekdays per week (including their own car, car-sharing

as a driver, or with a taxi and App-based services such as Uber as passenger)

• Use a smartphone that can install the tracking app

• To be able to walk 200 meter without assistance (to ensure that participants have

free mode choice)

• Not work as a professional driver (to ensure that participants have free mode choice)

People meeting the above listed inclusion criteria were invited to register for the field

experiment of the MOBIS study by clicking on a web link embedded at the end of the

introduction survey survey. Beyond the questions related to the aforementioned inclusion

criteria, the introduction survey contained questions related to transport-related topics,

but without making reference to an experiment.

The introduction survey was accessible online through the survey platform Qualtrics.

B.4 Tracking

People who completed the introduction survey, met the inclusion criteria and accepted

to participate in the tracking study were sent forward to the registration (survey), which

was also accessible online through Qualtrics. The registration had as a goal to confirm the

acceptance of the conditions and terms of the field experiment and to collect the emails

of the participants for sending interventions (incentives) and information. All registered

participants were given a code and directions to install the Catch-my-Day app.

Participants could start tracking at any time, and the 8 weeks would start from the

first complete tracking day. To remain eligible for the CHF 100 incentive, participants

were informed that they needed to track at least half the time for the duration of the

study. Participants identified as not tracking for a certain number of consecutive days

were notified by email, with the aim of increasing the quality of the tracking data and

reducing the dropout rate. An initial minimum number of 2 days between reminders was

set but later increased to 4 days, to avoid burdening the participants. Participants who

did not generate tracking data on more than 12 days in the first 4 weeks were not allowed

to participate in the treatment phase and did not receive the CHF 100 incentive.

Users can view their daily travel patterns on their phone in the form of a logbook,

validate the travel mode and activity purpose or indicate if a stage or activity did not take

place. There are some user-interface differences between the iOS and Android versions,
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which are most noticeable in the validation interface. Figure B.1 presents the validation

interface of the app for the respective operating systems.

Figure B.1: Validation interface for iOS (left) and Android (right)

To assess the mode detection performance of the app, we assume that a mode has been

assigned correctly if (i) a stage has been validated but not corrected and (ii) the person

in question has made at least one correction during the course of the experiment.21

Table B.1 provides the accuracy rates using this assumption. There is small difference

in accuracy between iOS and Android, with iOS being on average slightly better (92.23%

vs 92.10%). The differences in accuracy are more observable at the categorical level.

The iOS performs better on car, local rail, regional rail, tram and walk. However, the

differences are only 1-3% in accuracy. Note that ‘Rail’ groups all rail modes together for

conciseness. It is also worth noting that while the accuracy of some individual rail modes

is quite low, the overall rail accuracy is very good.

21Among the participants that used the validation functionality (85.7%) functionality, 20.4% of
iPhone users and 44.1% of Android users did not make a single correction over the 8 weeks of the ex-
periment. Even with state-of-the-art accuracy rates, a perfect mode detection is highly unlikely. We
will therefore assume that these participants did not use or understand the validation interface cor-
rectly and and these participants are therefore removed from the following analysis on the mode de-
tection performance. The difference between the two operating systems also indicates that the iPhone
validation interface was much more intuitive.

62



Table B.1: Comparison of the mode detection performance bewteen iOS and Android

% Correct

Mode Android iOS

Airplane 99.48% 98.86%
Bicycle 81.59% 79.14%
Bus 66.98% 66.82%
Car 92.98% 93.15%
Rail 89.50% 91.05%

Local train 88.67% 90.18%
Regional train 71.35% 73.40%
Subway 93.56% 92.53%
Train 63.13% 63.78%

Tram 95.01% 96.64%
Walk 95.56% 97.21%

Table B.2: Confusion matrix of mode detection accuracy

Confirmed mode

Airplane Bicycle Boat Bus Car Rail Tram Walk Other Total

Predicted

Airplane 2,113 - - - 22 - - - - 2,135
Bicycle 4 26,201 136 438 1,499 177 149 2,771 1,500 32,875
Bus 1 435 2 35,713 15,085 140 280 889 865 53,410
Car 372 2,495 741 8,028 366,649 3,314 1,950 2,834 7,433 393,816
Rail 64 56 85 1,748 7,298 60,270 691 258 298 70,768
Tram - 49 2 128 396 60 20,174 149 16 20,974
Walk 80 3,807 456 1,224 9,960 868 868 514,944 638 532,845

2,634 33,043 1,422 47,279 400,909 64,829 24,112 521,845 10,750 1,106,823

Table B.2 presents the confusion matrix between the modes. Here we can see that

the algorithm often mis-detected car travel as bus travel. The category ‘Other *’ includes

those modes which could be manually selected by the participant, but which were not

automatically detected. These included Carsharing, Taxi/Uber, Motorbike/Mopeds, and

Gondolas. Most of these were detected as car travel, and the 1,500 ‘Bicycle’ trips which

were corrected to ‘Other’ were predominately trips by motorbike or moped.

B.5 Final survey

Upon completing the tracking study, participants received an email with a link to the

final survey. The final survey contained questions related to the following topics:

• Socio-economic background: self-reported absences during the field experiment.
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• Employment background: same questions as in introduction survey to check changes

during the experiment and flexibility in working conditions regarding home office

and work schedule.

• Transport-related opinions

• Awareness and evaluation of the interventions

• Opinion regarding the use of the revenues of mobility pricing

• Lifestyles and values

• Bank data for the payment

B.6 Compensation

All participants who completed the final survey received CHF 100 for their full participa-

tion, except those who did not generate tracking data on more than 12 days during the

treatment phase, who instead received CHF 50 for partial participation (this partial com-

pensation was not discussed ex-ante). Participants who did not generate enough tracking

data in the observation phase were removed from the study, and thus did not receive any

compensation. In addition, participants in the pricing group received any positive amount

remaining on their virtual mobility budget.

Importantly, all participants were informed about the incentive of CHF 100 upon

completion of the study. The possibility of a partial incentive was not mentioned and

introduced at the end mainly as a gesture of appreciation towards people that delivered

some tracks (but not enough to be included in the study). Likewise, the possibility of

earning money during the pricing treatment was only communicated to the pricing group,

and only on day 29 of participation.

A form was provided at the end of the final survey in which the participants could

enter their bank account details, and all payments were processed by the ETH finance

department. Table B.3 shows a summary of the allocated virtual budgets, remaining

balances paid out to the participants as well as the incurred costs. Only the 1,147 par-

ticipants who completed the pricing treatment and received compensation are included.

Remaining balances (i.e., exhausted budget) are capped to zero, as this is the amount

that was actually paid out. This was the case for 202 participants.
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Table B.3: Virtual budgets, remaining balances and incurred costs (CHF).

Virtual budget Remaining balance Incurred costs

Mean 173.82 45.45 132.89
Std. dev. 101.63 48.53 81.66

Min 50.00 0.00 0.00
25% 100.00 7.00 75.72
50% 150.00 31.44 115.37
75% 230.00 68.53 172.72
Max 745.00 432.68 616.08

B.7 Study monitoring and user support

Two dashboards were developed for the monitoring of both the participants and the

participation rate (see Figures B.2 and B.3 respectively). The first dashboard was essential

for troubleshooting with participants, as it gave a visual overview of their participation by

week, including when they track abroad. The second gave an overall view of the response

rate. This helped identify that a second invitation wave was required to meet the target

number of participants.

A project website was created to support people invited to the MOBIS study. The

website contained links to the introduction survey and the tracking study registration, a

project description, information for study participants (including a general information

sheet, instructions for the tracking app, data privacy policy and consent) as well an FAQ

section. The website was available in English, German and French.

Additionally, a help-desk service was set up to allow participants to ask questions and

communicate any issues they might have had during the study. The communication with

the help-desk was possible via phone call or email. The phone help-desk was open 10

hours per week, from 17:00 to 19:00 from Monday to Friday and from 10:00 to 12:00 on

Saturday. The online help-desk received 5,218 emails during the study, of which nearly

50% came during the on-boarding process.

B.8 Participant retention

To explore the retention rate of participants in the tracking phase, we performed a survival

analysis on the duration of tracking in the study. First, a Kaplan-Meier approach (see

Figure B.4) shows the impact of the treatment on the length of time which participants

would track. Participants who were automatically dropped out after phase 1 due to poor

tracking compliance but were still tracking at the end of phase 1 were censored (marked

65



Figure B.2: Overview page of participants

Note: This screenshot was taken after the conclusion of the study, and the participants
counts do not reflect the real status during the study.

Figure B.3: Screenshot of the MOBIS response rates dashboard
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by a cross). There is no significant difference between the three treatment groups in

their survival curves. A sharp decrease in survival is evident in the last study week. As

participants were informed at the end of the study that they could delete the app, the

last few days of tracking were sometimes not collected before the app was deleted.

Figure B.4: Kaplan-Meier survival curve by treatment group
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Given the participation goal of 8 weeks, one would expect that the attrition rate would

be highest early on in the study and flatten out as participants neared the 8-week goal,

after which they would receive the incentive. However, the survival curve is almost linear.

Furthermore, Figure B.4) shows that the treatment didn’t affect the attrition rate in the

second phase.

A time-variant Cox proportional hazards model is to investigate the impact of different

factors on the participation duration (see Table B.4 for the model results). To account for

time-dependent effects, the study period was stratified into fortnightly windows. Those

in high-income brackets (more than 12,000 CHF/year) were more likely to stop tracking.

Conversely, those from larger households and those with tertiary education were more

likely to track for longer. A significant gender-based difference was only observed in the

final fortnight, where females were more likely to remain in the study.

Contrary to expectations, there was no significant effect of age on the hazard rate.
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This suggests that common concern about the feasibility of tracking studies for older age

groups is unfounded, at least up to the age of 65, the age limit in this study.

The coefficient on employment is also time-dependent. Those in the workforce (i.e.

excluding students, homeworkers and retirees) were more likely to remain in the study

throughout the first fortnight.

The participant’s mobile device played a much larger role. Having an Android phone

of any model increased the hazard drastically. However, this effect was strongest in the

first week. The effects were even larger for Huawei models. The incompatibility of GPS

loggers with Android (and particularly Huawei devices) is already well known; however,

here the effect is quantified, and seen to be dramatic. The effect was also time-dependent,

with the most significant hazard in the first fortnight. At the end of the second fortnight,

participants who tracked insufficiently were removed from the study - this explains the

reduction in the Android hazard coefficient for the third fortnight, when many of them

could have been expected to stop tracking, had they not been removed from the study.

At the end of the tracking study, participants were told that they could delete the

app, but were also encouraged to continue using it if they wished. Figure B.5 shows the

dropout rate for the whole study, including the post-study period. The majority of the

participants dropped out soon after the study, but even 6 months after the study was

completed, around 5% of participants continued to use the app. Anecdotal reports from

participants indicated that they enjoyed having an overview of their travel, and that it

even continued to inform their mobility decisions. The impacts of the mobile operating

system continued even after the study, with the post-study retention rate falling faster

for Android users.
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Figure B.5: Post-study participation survival curve
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Table B.4: Cox porportional-hazard model

Beta (SE) HR (95% CI) p
Income > 12,000 CHF 0.28 (0.09) 1.32 (1.10, 1.58) 0.003 **
Household size -0.07 (0.03) 0.93 (0.87, 1.00) 0.038 *
Age (decades) 0.00 (0.03) 1.00 (0.95, 1.06) 0.883
Tertiary education -0.19 (0.08) 0.83 (0.70, 0.97) 0.022 *
German speaking 0.03 (0.09) 1.03 (0.87, 1.22) 0.752
Female

fortnight=1 0.02 (0.15) 1.02 (0.77, 1.35) 0.895
fortnight=2 -0.07 (0.20) 0.93 (0.62, 1.39) 0.721
fortnight=3 -0.04 (0.22) 0.96 (0.62, 1.48) 0.841
fortnight=4 -0.28 (0.12) 0.76 (0.60, 0.96) 0.022 *

Android
fortnight=1 0.87 (0.16) 2.38 (1.73, 3.26) 0.000 ***
fortnight=2 0.46 (0.22) 1.58 (1.02, 2.45) 0.040 *
fortnight=3 -0.01 (0.25) 0.99 (0.60, 1.62) 0.960
fortnight=4 0.41 (0.13) 1.51 (1.17, 1.94) 0.002 **

Huawei
fortnight=1 0.38 (0.20) 1.47 (0.99, 2.18) 0.057 .
fortnight=2 0.37 (0.32) 1.45 (0.78, 2.70) 0.239
fortnight=3 0.29 (0.41) 1.33 (0.59, 2.98) 0.487
fortnight=4 0.15 (0.21) 1.16 (0.77, 1.75) 0.465

Employed
fortnight=1 -0.33 (0.16) 0.72 (0.53, 0.97) 0.033 *
fortnight=2 -0.07 (0.23) 0.94 (0.60, 1.47) 0.775
fortnight=3 0.24 (0.27) 1.27 (0.75, 2.15) 0.369
fortnight=4 0.05 (0.14) 1.05 (0.80, 1.38) 0.718

AIC 10484.33
Coordance 0.602
Num. events 655
PH test 0.76
Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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