
Saturated Post-hoc Optimization for Classical Planning

Jendrik Seipp,1,2 Thomas Keller,1 Malte Helmert1

1University of Basel, Switzerland
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Abstract
Saturated cost partitioning and post-hoc optimization are two
powerful cost partitioning algorithms for optimal classical
planning. The main idea of saturated cost partitioning is to
give each considered heuristic only the fraction of remaining
operator costs that it needs to prove its estimates. We show
how to apply this idea to post-hoc optimization and obtain a
heuristic that dominates the original both in theory and on the
IPC benchmarks.

Introduction
Methods for admissibly combining admissible heuristics
significantly improved the state of the art in optimal classical
planning. Early work that exploits the additivity of heuris-
tics (Felner, Korf, and Hanan 2004; Edelkamp 2006) led to
the development of the canonical heuristic (Haslum et al.
2007), which computes all maximal subsets of pairwise in-
dependent pattern database (PDB) heuristics and then uses
the maximum of all sums over these subsets as the heuristic
value.

The additivity criterion has been replaced by a more gen-
eral theory with the introduction of cost partitioning (Katz
and Domshlak 2008), which ensures that admissible heuris-
tic estimates can be summed up admissibly as long as the
sum of the operator costs that are used to compute the heuris-
tics does not exceed the original cost function. The computa-
tion of optimal cost partitionings (Katz and Domshlak 2010)
has — despite its polynomial time complexity — proven to
be too costly in practice (Pommerening, Röger, and Helmert
2013; Seipp, Keller, and Helmert 2017b). Suboptimal cost
partitionings that are efficiently computable both in theory
and practice have therefore received much attention.

The underlying observation of saturated cost partition-
ing (Seipp and Helmert 2014, 2018) is that we can often
reduce operator costs without affecting heuristic estimates.
The saturated cost partitioning algorithm considers a set of
heuristics in a given order. For the first heuristic h, it com-
putes all heuristic values of h under the original cost func-
tion, computes the minimum cost function that preserves the
heuristic values, that is, the saturated cost function, and con-
tinues with the next heuristic with the remaining costs until
all heuristics have been considered.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The post-hoc optimization heuristic (Pommerening,
Röger, and Helmert 2013) uses a linear program (LP) to de-
termine a real-valued factor for each heuristic in a set of pat-
tern database (PDB) abstractions (Edelkamp 2001), and the
cost partitioning is derived by multiplying the costs of all
operators that affect an abstraction with that factor. Opera-
tors that only induce self-loops in an abstraction are assigned
costs of zero. In the (equivalent) operator counting version
of the dual LP (Pommerening et al. 2014), there is a con-
straint for each PDB that specifies that the total contribution
of all operators in a heuristic multiplied with the operator
cost must at least sum up to the heuristic estimate. The fact
that every plan for the original problem must also be a plan
for each PDB allows us to use the same operator counting
variables for all abstractions.

In this paper, we strengthen the post-hoc optimization
constraints by combining them with the central idea of sat-
urated cost partitioning. We observe that an operator never
contributes more than its saturated cost to the heuristic value
of an abstraction because all heuristic values remain the
same even if we were to reduce its cost to the possibly lower
saturated cost. We show that the resulting saturated post-
hoc optimization heuristic dominates post-hoc optimization
theoretically and confirm that the theoretical superiority car-
ries over into practice in an experimental evaluation on the
domains of the International Planning Competitions.

Background
A classical planning task induces a transition system and
solving the task optimally implies finding a shortest path
from the initial state to a goal state. Formally, a transition
system T is a directed, labeled graph defined by a finite set
of states S(T ), a finite set of labels L(T ), a set T (T ) of
labeled transitions s `−→ s′ with s, s′ ∈ S(T ) and ` ∈ L(T ),
an initial state s0(T ), and a set of goal states S?(T ).

A goal path from s ∈ S(T ) is a sequence of transitions
from s to any goal state s′ ∈ S?(T ). Goal paths are also
called plans.

A cost function for transition system T is a function
cost : L(T ) → R. A cost function cost is non-negative if
cost(`) ≥ 0 for all labels `. We write C(T ) for the set of
all cost functions for T . Our input planning tasks use non-
negative cost functions, but following Pommerening et al.
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Figure 1: Example abstraction heuristics h1 (left) and h2
(right) from Seipp, Keller, and Helmert (2017a). The cost
function is cost = {o1 7→ 4, o2 7→ 1, o3 7→ 4, o4 7→ 1}.
The si are concrete states, the rounded rectangles are ab-
stract states, abstract goal states use double borders and dot-
ted lines depict abstract self-loops.

(2015) we allow negative costs in cost partitionings.1
By combining a transition system T and a cost function

cost, we obtain a weighted transition system 〈T , cost〉. The
cost of a goal path in a weighted transition system is the
sum of its transition weights and a goal path is optimal if
its cost is minimal among all goal paths. The goal distance
h∗T (cost, s) of a state s in T is the cost of an optimal goal
path from s under the cost function cost or∞ if there is no
goal path from s.

A heuristic is a function h : C(T ) × S(T ) → R ∪
{−∞,∞} that estimates the distance of a given state to a
goal state under a given cost function (Pearl 1984). It is ad-
missible if h(cost, s) ≤ h∗T (cost, s) for all cost functions
cost ∈ C(T ) and all states s ∈ S(T ). A heuristic h is cost-
monotonic if h(cost, s) ≥ h(cost′, s) for all states s ∈ S(T )
whenever cost ≥ cost′ (that is, making transitions more ex-
pensive cannot decrease heuristic estimates).

In this paper, we focus on abstraction heuristics (e.g.,
Edelkamp 2001; Helmert, Haslum, and Hoffmann 2007;
Katz and Domshlak 2008, 2010). An abstraction heuristic
for a transition system T is defined by a transition sys-
tem T ′ called the abstract transition system and a function
α : S(T )→ S(T ′) called the abstraction function. The ab-
straction function must preserve goal states and transitions;
we refer to the literature for details (Helmert, Haslum, and
Hoffmann 2007). Heuristic values are computed by mapping
states of T (concrete states) to states of T ′ (abstract states)
and computing the goal distance in the abstract transition
system: h(cost, s) = h∗T ′(cost, α(s)). Abstraction heuristics
are cost-monotonic.

Cost partitioning is the preferable mechanism for com-
bining multiple admissible heuristics. It preserves admissi-
bility by distributing the costs of a task among the compo-
nent heuristics (Katz and Domshlak 2008, 2010). A cost
partitioning for a transition system T and a cost func-
tion cost ∈ C(T ) is a tuple 〈cost1, . . . , costn〉 ∈ C(T )n
whose sum is bounded by cost:

∑n
i=1 costi(`) ≤ cost(`)

for all ` ∈ L(T ). It induces the cost-partitioned heuristic
h(cost, s) =

∑n
i=1 hi(costi, s).

1To cleanly state some definitions concerning saturated cost
partitioning, it is useful to allow costs of positive and negative in-
finity. However, to simplify the presentation here, we only consider
finite cost functions and refer to Seipp, Keller, and Helmert (2020)
for details on the more general case.

Saturated Cost Partitioning
One of the strongest algorithms for computing cost parti-
tionings is saturated cost partitioning (Seipp and Helmert
2014; Seipp, Keller, and Helmert 2020). At the heart of the
algorithm lies the concept of saturated cost functions, which
capture the insight that heuristic estimates often remain the
same even if we evaluate the heuristic under a reduced cost
function.
Definition 1 (saturated cost function). Consider a transition
system T , a heuristic h for T and a cost function cost ∈
C(T ). A cost function scf ∈ C(T ) is saturated for h and cost
if
1. scf(`) ≤ cost(`) for all labels ` ∈ L(T ) and
2. h(scf, s) = h(cost, s) for all states s ∈ S(T ).

We can compute a saturated cost function for any given
heuristic h and cost function cost, since cost itself satisfies
the criteria of Definition 1. Ideally, however, we want to find
a saturated cost function that uses lower costs than the orig-
inal cost function (to save costs for other heuristics). For
some classes of heuristics, there is a unique minimum satu-
rated cost function and we can compute it efficiently (Seipp,
Keller, and Helmert 2017a, 2020).2 This is the case for
explicitly represented abstraction heuristics (Helmert et al.
2014) such as the pattern database heuristics (Haslum et al.
2007; Pommerening, Röger, and Helmert 2013) and Carte-
sian abstractions (Seipp and Helmert 2013) we consider be-
low, and landmark heuristics (Karpas and Domshlak 2009).
Example 1. Consider the abstraction heuristic h1 in Fig-
ure 1. Under the original cost function cost, h1 yields the
following estimates: h1(s1) = h1(s2) = 5, h1(s3) = 1,
h1(s4) = h1(s5) = 0. Reducing the costs to the minimum
saturated cost function scf = {o1 7→ 4, o2 7→ 0, o3 7→
1, o4 7→ 1} does not change any heuristic estimates.

Saturated cost partitioning iteratively computes saturated
cost functions for a sequence of heuristics.
Definition 2 (saturated cost partitioning). Consider a
weighted transition system 〈T , cost〉 and an ordered se-
quence of heuristics ω = 〈h1, . . . , hn〉 for T .

The saturated cost partitioning 〈cost1, . . . , costn〉 of the
cost function cost for ω is defined as:

rem0 = cost
costi = saturate(hi, remi−1) for all 1 ≤ i ≤ n
remi = remi−1 − costi for all 1 ≤ i ≤ n,

where the auxiliary cost functions remi represent the re-
maining costs after processing the first i heuristics in ω and
saturate(hi, remi−1) computes a cost function that is satu-
rated for hi and remi−1. In this work, saturate always refers
to the unique minimum saturated cost function for a given
abstraction heuristic and cost function.

We write hSCP
ω for the heuristic that is cost-partitioned by

saturated cost partitioning for order ω.
2Strictly speaking, this is only true if we allow costs of −∞ to

account for labels that a heuristic detects as “dead”, i.e., not part of
any goal path. We again refer to Seipp, Keller, and Helmert (2020)
for details. Later on, we discuss a way to deal with such dead labels
outside the cost partitioning mechanism.



Example 2. Consider the two abstraction heuristics h1 and
h2 in Figure 1. If we compute a saturated cost partitioning
for the order 〈h1, h2〉, we obtain the saturated cost function
cost1 = {o1 7→ 4, o2 7→ 0, o3 7→ 1, o4 7→ 1} as in Ex-
ample 1. Thus, we have remaining costs rem1 = {o1 7→
0, o2 7→ 1, o3 7→ 3, o4 7→ 0}. Under this cost function, we
have h2(rem1, si) = 3 for 1 ≤ i ≤ 4 and h2(rem1, s5) = 0.
Computing the saturated cost function for h2 under rem1

reveals that we can reduce rem1(o2) = 1 to cost2(o2) = 0,
and could use its cost for hypothetical subsequent heuristics.
The functions cost1 and cost2 form a cost partitioning, which
means that we can sum their estimates admissibly to obtain
hSCP
〈h1,h2〉(s1) = h1(cost1, s1) + h2(cost2, s1) = 5 + 3 = 8.

Post-hoc Optimization
The second cost partitioning algorithm we consider in this
paper is post-hoc optimization (Pommerening, Röger, and
Helmert 2013). The post-hoc optimization heuristic hPhO

dominates the canonical heuristic hCAN (Haslum et al.
2007), even though computing hPhO takes polynomial time,
whereas computing hCAN is NP-equivalent. Originally, post-
hoc optimization has been applied to pattern database
heuristics, but it has also been used for Cartesian abstrac-
tions and landmark heuristics since (Seipp, Keller, and
Helmert 2017a). Like optimal cost partitioning, post-hoc op-
timization is based on linear programming (LP), but since
the post-hoc optimization LPs are much smaller than LPs for
optimal cost partitioning over the same set of heuristics, the
former are much faster to solve in practice. Consequently, in
contrast to optimal cost partitioning, it is possible to com-
pute a cost partitioning based on post-hoc optimization for
each evaluated state during an A∗ search and obtain compet-
itive performance.

A central concept for post-hoc optimization is the distinc-
tion whether or not a given label affects a given heuristic. We
follow the definition by Seipp, Keller, and Helmert (2017a):

Definition 3 (affects). A label ` affects a heuristic h for a
transition system T if there exists a state s ∈ S(T ) and two
non-negative cost functions cost and cost′ differing only on
` with h(cost, s) 6= h(cost′, s).

Note the restriction to non-negative cost functions in this
definition. If negative cost functions were considered, the
definition would trivialize in many cases, failing to capture
the traditional notion of labels affecting a heuristic in the lit-
erature on which post-hoc optimization is based. In particu-
lar, every label with negative cost that induces a self-looping
transition along any goal path in an abstract transition sys-
tem would force the abstraction heuristic value to −∞, and
hence all these self-loop-inducing labels would have to be
considered as affecting the heuristic. This is not in the spirit
of the post-hoc optimization approach and would lead to in-
ferior heuristic estimates.

Note also that the definition is purely semantic: it is based
on heuristic values under different cost functions, without
regard to how the heuristic is computed or how the property
can be evaluated. To make computations based on affect-
ing labels practically efficient, this purely semantic notion
is generally relaxed. In the following, we write A(h) to de-

note an overapproximation of the set of all labels that affect
the heuristic h. For abstraction heuristics h, which are the
only heuristics we experimentally evaluate in this paper, we
set A(h) to the set of all labels ` such that there exists a
transition s `−→ s′ with s 6= s′ in the abstract transition sys-
tem. This set is guaranteed to include all labels that affect
the heuristic, but may also include some labels that do not
affect the heuristic. The post-hoc optimization heuristic is
admissible with any overapproximation of affecting labels,
but tighter sets can improve the quality of the heuristic.

We can now describe the linear program defining the post-
hoc optimization heuristic. All linear programs can be writ-
ten in primal and dual form. We call the following LP the
primal post-hoc optimization LP and refer to it as PhO-LP:

Definition 4 (hPhO). Let 〈T , cost〉 be a weighted transition
system with labelsL, and letH be a set of admissible heuris-
tics for T . The post-hoc optimization heuristic hPhO(cost, s)
for state s ∈ S(T ), T and H is the objective value of the
PhO-LP:

minimize
∑
`∈L

cost(`) · Y` s.t.∑
`∈A(h)

cost(`) · Y` ≥ h(cost, s) for all h ∈ H (1)

Y` ≥ 0 for all ` ∈ L (2)

The PhO-LP uses the operator counting formulation of
post-hoc optimization (Pommerening et al. 2014). We can
transform this formulation into the equivalent original for-
mulation by Pommerening, Röger, and Helmert (2013) if we
replace cost(`) · Y` by Xo, where Y` counts the number of
times label ` is used and Xo stands for the induced costs by
operator o.

By converting the PhO-LP into its dual formulation
PhO-Dual, we can see the relationship to cost partitioning
more clearly:

maximize
∑
h∈H

h(cost, s) · wh s.t.∑
h∈H:`∈A(h)

cost(`) · wh ≤ cost(`) for all ` ∈ L (3)

wh ≥ 0 for all h ∈ H. (4)

In the resulting post-hoc optimization cost partitioning,
each heuristic h ∈ H is assigned the cost function costh,
where costh(`) = cost(`) ·wh if ` ∈ A(h) and costh(`) = 0
otherwise. Due to the PhO-Dual constraints, all such cost
functions costh are non-negative.3

3Note that we could simplify Constraint 3 to the inequality∑
h∈H:`∈A(h) wh ≤ 1 by dividing both sides by cost(`) and omit-

ting the constraint for zero-cost labels, for which it is trivially satis-
fied. Intuitively, if a label affects multiple heuristics, then the total
weight we assign to these heuristics cannot exceed 1. This ensures
that we do not account for a higher cost contributed by the label
than it actually contributes.



Saturated Post-hoc Optimization

The main observation we exploit in this paper is that it is im-
possible that an operator contributes more than its saturated
cost to the heuristic value of an abstraction, which implies
that we can use the saturated cost of an operator in Con-
straint 1 rather than the (original) cost of the operator.

Definition 5 (hSPhO). Let 〈T , cost〉 be a weighted transi-
tion system with labels L, and let H be a set of admissible
heuristics for T . The saturated post-hoc optimization heuris-
tic hSPhO(cost, s) for state s ∈ S(T ), T and H is the objec-
tive value of the SPhO-LP:

minimize
∑
`∈L

cost(`) · Y` s.t.∑
`∈L

scfh(`) · Y` ≥ h(cost, s) for all h ∈ H (5)

Y` ≥ 0 for all ` ∈ L, (6)

where scfh is a saturated cost function for h and cost.

Of course, different choices of scfh lead to different
heuristics. In the following, we focus on heuristics h for
which a unique minimum saturated cost function exists and
the case where scfh is this function. As discussed earlier, this
is the case for abstraction heuristics and more generally all
heuristics to which the concepts of post-hoc optimization or
saturated cost functions have been applied in the literature.

In cases where a heuristic function detects that a label `
cannot be part of any goal path, scfh(`) could be set arbi-
trarily low (to −∞ if we considered infinite cost functions).
Because linear programs require finite coefficients, we in-
stead add the constraint Y` = 0 in such cases and omit terms
for Y` in Constraint 5, which is mathematically equivalent to
dealing with such infinities directly.

There are two notable differences between the SPhO-LP
and the PhO-LP (and indeed these are the only differences).
Firstly, Constraint 5 uses the saturated cost function scfh,
while Constraint 1 uses the original cost function cost. Sec-
ondly, the SPhO-LP does not require a notion of affecting
labels: the sum in Constraint 5 is over all labels, where Con-
straint 1 is restricted to (possibly an overapproximation of)
the labels affecting the given heuristic. Indeed, this restric-
tion is critical for the utility of hPhO: it is not difficult to see
from the dual formulation that, if we replaced A(h) with
the set of all labels, hPhO degenerates to the maximum of
the component heuristics. Saturated post-hoc optimization
can work without knowledge of which labels affect which
heuristics because the same (and more) information is al-
ready implicit in the saturated cost function, as we will see
in the following.

Before comparing hSPhO to hPhO, we first establish that
hSPhO is admissible.

Theorem 1. hSPhO is admissible. This result holds for all
possible choices for the saturated cost functions scfh.

Proof. Consider SPhO-Dual, the dual of the SPhO-LP:

maximize
∑
h∈H

h(cost, s) · wh s.t.∑
h∈H

scfh(`) · wh ≤ cost(`) for all ` ∈ L (7)

wh ≥ 0 for all h ∈ H. (8)

By the duality theorem (e.g., Schrijver 1998), the objec-
tive value of the SPhO-Dual is equal to the objective value
of the SPhO-LP, so it is sufficient to show that the objective
value of SPhO-Dual is an admissible estimate.

Consider any solution for SPhO-Dual. Because h(scfh, s)
is an admissible heuristic value under the cost function scfh
and because wh ≥ 0, h(scfh, s) ·wh is an admissible heuris-
tic value under the cost function scfh ·wh. Constraint 7 is ex-
actly the cost partitioning constraint under these (scaled by
wh) heuristics, and the objective value of the LP is exactly
the cost-partitioned heuristic value, taking into account that
h(cost, s) = h(scfh, s) by the properties of saturated cost
functions. Admissibility thus follows from the admissibility
of cost partitioning (Katz and Domshlak 2010; Pommeren-
ing et al. 2015).

The advantage of saturated post-hoc optimization over
regular post-hoc optimization is that the saturated cost of
an operator can be significantly smaller than its cost. It can
even be negative. This means that Constraint 5 can be sig-
nificantly tighter than Constraint 1, leading to a higher ad-
missible heuristic estimate. However, this presupposes that
the information about affecting labels in Constraint 1 is in-
deed automatically captured by saturated post-hoc optimiza-
tion as claimed above. We now show that this is the case if
scfh is the unique minimum saturated cost function for h and
cost.

Theorem 2. With unique minimum saturated cost functions,
hSPhO dominates hPhO, i.e., hSPhO(cost, s) ≥ hPhO(cost, s)
for all cost functions cost and states s.

Proof. Comparing Definitions 4 and 5, the linear programs
that define the two heuristics are identical except for the
difference in coefficients in Constraint 1 and Constraint 5.
For heuristic h and label `, the coefficient in Constraint 5
(“SPhO coefficient”) is scfh(`), while the corresponding co-
efficient in Constraint 1 (“PhO coefficient”) is cost(`) if
` ∈ A(h) and 0 (the corresponding term does not appear)
otherwise.

We show that the SPhO coefficient is always less than or
equal to the corresponding PhO coefficient. From this it fol-
lows that Constraint 5 is at least as tight as Constraint 1, and
consequently the set of feasible solutions for the SPhO-LP
is a subset of the set of feasible solutions for the PhO-LP.
For a minimization LP, this proves that the objective value
for the SPhO-LP is greater or equal to the objective value of
the PhO-LP, proving the theorem.

It remains to show the relationship between the coeffi-
cients for every heuristic h and label `. If ` ∈ A(h), we
need to show scfh(`) ≤ cost(`), which holds because it is
one of the defining properties of saturated cost functions.



If ` /∈ A(h), we must show scfh(`) ≤ 0. We know that
` does not affect h because A(h) is a superset of the set
of labels that affect h. Let cost′ be the (non-negative) cost
function which is like cost except that cost′(`) = 0. From
the definition of “affects” and ` not affecting h, we obtain
h(cost′, s) = h(cost, s) for all states s. Moreover, we have
cost′(`′) ≤ cost(`′) for all labels `′ from the definition of
cost′. These two properties show that cost′ is a saturated cost
function for h and cost. Because scfh is the unique mini-
mum saturated cost function for h and cost, it never exceeds
cost′. We obtain scfh(`) ≤ cost′(`) = 0, which concludes
the proof.

We note that the example in Figure 1 shows that
there are cases where the dominance is strict: we have
hSPhO(cost, s1) = 8 > 5 = hPhO(cost, s1).

From the proof, we see that we do not necessarily need a
unique minimum saturated cost function to establish dom-
inance. It is sufficient to consider any saturated cost func-
tion that assigns a cost of at most 0 to all labels outside of
A(h), and such a saturated cost function always exists by
iterating the construction of cost′ in the proof over all labels
` /∈ A(h).

Other Cost Partitioning Algorithms

Saturated post-hoc optimization is the latest addition to an
extensive collection of cost partitioning algorithms. Seipp,
Keller, and Helmert (2017a) compare cost partitioning al-
gorithms both theoretically and experimentally. They show
for cost-monotonic heuristics that saturated cost partition-
ing dominates greedy zero-one cost partitioning (Haslum,
Bonet, and Geffner 2005; Edelkamp 2006) and that by satu-
rating costs in a uniform cost partitioning (Katz and Domsh-
lak 2008) we obtain an opportunistic version of uniform cost
partitioning that dominates the original.

Up until now, post-hoc optimization was the last cost par-
titioning algorithm without a direct connection to cost satu-
ration. As we show above, the two ideas can indeed be com-
bined into saturated post-hoc optimization, which dominates
post-hoc optimization. Finally, since post-hoc optimization
dominates the canonical heuristic (Haslum et al. 2007; Pom-
merening, Röger, and Helmert 2013), we can infer that satu-
rated post-hoc optimization dominates the canonical heuris-
tic as well.

This leaves the question of how hSPhO compares to the
other cost partitioning algorithms that are not already known
to be dominated, i.e., saturated cost partitioning (hSCP) and
opportunistic uniform cost partitioning (hOUCP). We already
know that hSCP and hOUCP do not dominate each other
(Seipp, Keller, and Helmert 2017a), and we show that there
are no dominance relations between hSPhO and hSCP or
hOUCP either.

Theorem 3. For each of the following pairs of cost parti-
tioning algorithms there exists a weighted transition system
〈T , cost〉 and a set of cost-monotonic heuristics H for T

s1 s2, s3 s4

o1

o2

o3

s1, s2 s3 s4

o2

o1

o3

Figure 2: Example abstraction heuristics h3 (left) and h4
(right) used in the proof of Theorem 3. All operators cost
1. The si are concrete states, the rounded rectangles are ab-
stract states, abstract goal states use double borders and dot-
ted lines depict abstract self-loops.

such that

hSCP
ω (cost, s) > hSPhO(cost, s) (9)

hSPhO(cost, s) > hSCP
ω (cost, s) (10)

hOUCP
ω (cost, s) > hSPhO(cost, s) (11)

hSPhO(cost, s) > hOUCP
ω (cost, s) (12)

for a state s ∈ S(T ) and an order ω ofH.

Proof. Consider the abstraction heuristics h1 and h2 in Fig-
ure 1 for a weighted transition system 〈T , cost〉 . For state
s2 we have hSCP

〈h1,h2〉(cost, s2) = 8 > hSPhO(cost, s2) =

7.2 > hSCP
〈h2,h1〉(cost, s2) = 7 > hOUCP

〈h1,h2〉(cost, s2) = 6,
showing (9), (10) and (12). As an example for (11), con-
sider the abstraction heuristics h3 and h4 in Figure 2 for a
weighted transition system 〈T ′, cost′〉. For both heuristic or-
ders ω, hOUCP

ω (cost′, s1) = 3 > hSPhO(cost′, s1) = 2.

Experiments
We implemented saturated post-hoc optimization in the Fast
Downward planning system (Helmert 2006) and used the
Downward Lab toolkit (Seipp et al. 2017) for running ex-
periments on Intel Xeon Silver 4114 processors. Our bench-
mark set consists of all 1827 tasks without conditional ef-
fects from the optimal sequential tracks of the International
Planning Competitions 1998–2018. We limit time by 30
minutes and memory by 3.5 GiB. All benchmarks, code
and experiment data are published online (Seipp, Keller, and
Helmert 2021).

In our experiments we compute cost partitionings over
four different sets of abstraction heuristics: pattern databases
found by hill climbing (HC, Haslum et al. 2007), system-
atic pattern databases of sizes 1 and 2 (SYS, Pommeren-
ing, Röger, and Helmert 2013), Cartesian abstractions of
landmark and goal task decompositions (CART, Seipp and
Helmert 2018) and the combination of these three heuristic
sets (COMB=HC+SYS+CART).

Table 1 compares the number of solved tasks by hPhO and
hSPhO for the four types of heuristic sets. We see that sat-
urating the costs is beneficial for all considered abstraction
heuristics: the overall coverage increases by 9, 51, 176 and
171 tasks, respectively. A per-domain analysis reveals that
hSPhO solves more tasks than hPhO in 6, 17, 20 and 20 do-
mains across the four settings, while the opposite is true in



HC SYS CART COMB

agricola (20) 0 0 0 0
airport (50) 23 28 25 +2 31
barman (34) 4 4 4 4
blocks (35) 28 26 +1 18 26 +1
childsnack (20) 0 0 0 0
data-network (20) 10 9 10 12
depot (22) 7 7 4 +1 7
driverlog (20) 12 12 7 13
elevators (50) 40 33 33 +4 42
floortile (40) 2 2 2 2
freecell (80) 17 +1 14 +1 14 +39 15 +38
ged (20) 19 15 15 15
grid (5) 3 2 2 2 +1
gripper (20) 7 7 7 7
hiking (20) 10 10 +1 10 +1 9 +2
logistics (63) 27 25 16 +8 28
miconic (150) 63 50 +2 52 +81 60 +82
movie (30) 30 30 30 30
mprime (35) 22 21 25 24
mystery (30) 15 15 17 17
nomystery (20) 19 16 10 +5 19
openstacks (100) 40 38 +2 37 +1 37 +2
organic (20) 7 7 7 7
organic-split (20) 9 7 8 7
parcprinter (50) 28 30 +2 24 28 +3
parking (40) 10 -1 3 +4 0 2 +4
pathways (30) 4 4 4 4
pegsol (50) 44 44 +4 44 +2 44 +4
petri-net (20) 0 2 +2 1 +1 0
pipes-nt (50) 15 +1 15 +1 15 +1 16 +1
pipes-t (50) 10 +2 8 +3 10 +1 9 +1
psr-small (50) 49 +1 49 +1 48 49 +1
rovers (40) 7 6 5 +1 7
satellite (36) 6 6 5 6
scanalyzer (50) 23 11 +16 9 +4 15 +12
snake (20) 8 +1 6 +1 7 6 +1
sokoban (50) 44 48 +1 35 +6 48 +1
spider (20) 12 12 +1 7 +4 12 +1
storage (30) 15 15 14 15
termes (20) 9 6 -1 5 8
tetris (17) 5 +4 3 5 3
tidybot (40) 21 18 7 +8 18 +3
tpp (30) 6 6 6 6
transport (70) 31 21 22 27
trucks (30) 7 7 6 +4 7 +3
visitall (40) 28 27 12 27
woodwork (50) 15 25 +9 9 +2 25 +9
zenotravel (20) 13 11 8 12 +1

Sum 824 +9 761 +51 661 +176 808 +171

Table 1: Absolute number of solved tasks by traditional post-
hoc optimization and the difference in coverage when using
saturated post-hoc optimization instead for the four different
types of abstraction heuristics.
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Figure 3: Expansions excluding the last f layer for tradi-
tional and saturated post-hoc optimization when using the
combination of abstraction heuristics (COMB).

only a single domain for HC and SYS and never for CART
nor COMB.

Figure 3 explains why hSPhO solves so many more tasks
than hPhO for the combination of abstraction heuristics
(COMB) by comparing the number of expansions before
the last f layer: saturating the costs often makes the result-
ing heuristic much more accurate. There are 327 commonly
solved tasks for which cost saturation decreases the number
of expansions. Furthermore, for 52 of these 327 tasks hPhO

expands states before the last f layer whereas hSPhO is per-
fect.

Conclusion
We showed that we can transport the idea of cost saturation
to post-hoc optimization by considering for each heuristic
only the fraction of costs that actually contributes to its esti-
mates. The result is a cost partitioning algorithm that domi-
nates the original both in theory and on the IPC benchmarks.
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