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ABSTRACT 

 
Cellular model systems are essential platforms used across multiple research fields for 

exploring the fundaments of biology and biochemistry. By multicompartmentalization, systems 

can be created where nanocompartments (serving as artficial organelles) are encapsulated in 

microscale compartments (serving as the cellular structure).  

The first topic of this thesis focusses on polymersomes that are supplemented with membrane 

proteins and enzymes. The biomolecules endow such bioactive vesicles with specific cellular 

functions and enable diverse applications in nano- or pharmatechnology. In this work, we 

particularly introduce a new strategy for modifying the membrane proteins via chemical-

oriented approach. Until now, significant progress in functionalization of polymersomes has 

been obtained by embedding modified proteins into the membrane for stimuli-responsive 

permeability. Inside the polymersomes, enzymes are encapsulated and catalyze distinct 

reactions with molecules diffusing through the membrane. Due to the resulting triggerable 

activity, such bioinspired vesicles are able to detect diverse environmental signals and show a 

remarkable potential for diverse applications such as biosensing and triggerable drug release. 

We introduce a small, periodate-sensitive designed linker blocking the passage through a 

protein channel (OmpF) reconstituted into the membrane of polymersomes. By combining tools 

of organic and bioconjugation crosslinkers, we synthetized this organic linker. OmpF was 

successfully modified with the linker and led to a stimuli-responsive permeability of the 

vesicles. In presence of periodate, the linker was cleaved and allowed substrates to diffuse 

inside the compartments where encapsulated laccase catalyzed the reaction to the respective 

radicals with a characteristic absorbance that was detected. Additionally, the labelling of OmpF 

with the stimuli-responsive linker is performed under mild conditions (no organic solvents, 

room temperature, pH 7) and therefore it has the potential to be adapted for diverse proteins 

that are more sensitive than OmpF. 

With regard to the microscale compartments, synthetic Giant Unilamellar Vesicles (GUVs) and 

Giant Plasma Membrane Vesicles (GPMVs) are one of the most prominent cell-like 

compartments. GUVs are formed by self-assembled lipids or polymers while GPMVs, are 

directly derived from cells. The second project presented here, focusses on GPMVs as a 

platform of cell-like compartments. GPMVs include most of the cellular components and thus, 

provide the highest similarity to real cells. GPMVs will facilitate the investigation and the 

understanding of different behaviors and characteristics of cellular processes. Our aim is to 
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promote the further development of GPMVs with regard to the study of nanoparticles (NPs) 

under physiological conditions. We studied molecular factors that determine the successful 

transfer of cellularly taken-up NPs transferred into formed GPMVs. In particular, we 

investigated the impact of size, concentration and surface charge of NPs in correlation with 

three different cell lines: HepG2, HeLa, and Caco-2. We observed that polystyrene (PS) 

carboxylated NPs with a size of 40 nm and 100 nm were successfully and efficiently transferred 

to GPMVs derived from all cell lines. Then, we investigated the distribution of NPs inside 

formed GPMVs and established the average number of NPs/GPMVs and the percentage of all 

GPMVs with NPs in their cavity.   
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Chapter 1 
 

FUNCTIONAL BIOINSPIRED COMPARTMENTS 
 

The first chapter provides an introduction of the fundaments of bioinspired compartment 
attracting high scientific interest. Considering the inspiration by real cell membranes, the 
membrane structure of synthetic compartments composed of amphiphilic lipids and polymers 
is explained (both nano- and microscale compartments). Polymersomes, as prominent and 
frequently applied 3D nanostructures formed by self-assembly, are introduced more in detail; 
the focus is on polymersomes including different biomolecules for controllable 
multifunctionality (membrane proteins and enzymes). Such nanocompartments show high 
potential for various applications where the most famous of which are introduced in this 
chapter. In the second part, the reader is given an overview of cell-like compartments with the 
focus on microscale compartments synthetically produced (GUVs) or directly derived from 
cells (GPMVs). Regarding cell-like platforms, GPMVs are presented as promising candidates 
and are described in detail, since GPMVs are studied for further development in the later 
chapter of this work. 
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Membrane structure of synthetic nano- and microscale 

compartments 

 
For many different scientifical domains, the design and development of synthetic compartments 

in the nano- and microscale are of big advantage as they have versatile bioinspired 

functionalities due to resemblance to real cells and their organelles. One challenge is the mimic 

of the cellular membrane built up in vitro with laboratory equipment. Lots of different 

parameters and impact factors have to be taken into account and put into practice, such as the 

intrinsic mechanical properties, membrane composition (lipid, polymer) and orientation.1-7  

 

Inspiration by biomembranes  

The synthetic membrane presents the fundamental structure of bioactive nanocompartments 

and cell-like compartments. The in-depth and comprehensive investigation of native cellular 

membrane architectures, advanced significantly the development of synthetic artificial 

membrane assemblies. The cell is surrounded by the membrane protecting selectively the 

cellular interior from the external environment. The biomembrane, also called plasma 

membrane, is mainly built up of dynamic phospholipid bilayers. Phospholipids are polar, 

amphiphilic molecules including a hydrophilic zwitterionic phosphate head group and two 

(un)saturated hydrocarbon chains as hydrophobic tails.8 In an aqueous milieu as it is in animal 

and human bodies, phospholipids are assembled in 2D double layers (bilayer), where the 

hydrophilic head groups are oriented to the water interfaces due to cohesive, attractive forces. 

The high stability and also high flexibility of the membrane is the results of a very important 

and complex balance of the components.  

Straight lined saturated fatty acids incorporated as the hydrophobic tails leads to a denser, stable 

structure. Unsaturated chains (unsaturated fatty acid) show a kink in the area of the C=C double 

bond and result in more lose packing of the phospholipids in the membrane supporting the 

flexibility. Regarding the fluidity of phospholipids in general, rigid compounds or steroids like 

cholesterol, have to be incorporated to allow a stable solidified structure. Their amount has to 

be balanced. Too many rigid components lead to a lack in flexibility and the resulting stiff 

membrane breaks. On the other hand, a lack of steroids in the membrane causes damage as the 

membrane lost stability.9 

The main purpose of the cell membrane is the separation of the intra- and extracellular 

environments. In particular, the membrane is a passive partition wall for cells. The diffusion 
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processes though the membrane into the cell (uptake) or to the exterior (excretion) are 

controlled by the phospholipid bilayer. However, the active cell transport is achieved by diverse 

additional embedded membrane proteins allowing selective permeability towards molecules 

and ions. In the cell membrane are lots of different membrane proteins fulfilling particular tasks 

essential for pH regulation, the metabolism, the cell signaling/communication and adhesion.1, 

10, 11 The OmpF membrane protein (Outer membrane protein F), for example, occurs in bacterial 

membranes as a simple non-specific protein channel. It is shaped as beta barrel with a diameter 

of around 30 Å enabling the diffusion of molecules with a size of approximately 600 Da in both 

directions (in and out of the cell). The rather non-charged inner structure of OmpF further 

supports the transport of charged and uncharged compounds. Another advantage of OmpF is 

its stability towards several conditions like temperature, or solvents. In contrast to most 

membrane proteins, OmpF is easy to isolate from bacteria while maintaining the structure and 

functionality. The robust OmpF can further be engineered, biologically and chemically, which 

turns OmpF and mutants to frequently used tools for permeabilizing the polymeric membrane 

of synthetic bioactive vesicles.12-15 

Besides that, most membrane proteins are difficult to isolate and reconstitute. The highly 

complex structure and dynamics of the cell membrane itself, where phospholipids and 

membrane proteins diffuse freely within, presents a very big challenge for mimicking the 

biomembrane with laboratory equipment. As first approach for membrane mimics, the 

components for a synthetic membrane are narrowed down in order to provide a controlled self-

assembly with fundamental functions.  

 

Synthetic membranes based on lipids and polymers 
Lipid-based synthetic membranes  

Synthetic membranes imitating the plasma membrane with a close composition, are assembled 

by lipids, or rather natural occurring phospholipids. This approach seems to be consequential 

due to the fact that phospholipids are plentifully present in biomembranes. In addition to that, 

the lipids are well-characterized and facile to purchase in a huge variety. They include basically 

4 components: i) glycerol or sphingosine serving as basic structure, ii) a phosphate for the 

hydrophilic head group, iii) an alcohol, usually containing a primary/tertiary amine in addition 

(the alcohol binds to the phosphate, the amine determines the charge of the head group), and 

iv) 2 fatty acids as hydrophobic tails.16 The fatty acids are available in many variations 

(saturated, unsaturated, number of carbons). The resulting 3D self-assemblies depend on the 

molecular conformation of the fatty acids. There are different structures, like micelles and 
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vesicles, that are naturally formed by phospholipids in aqueous solutions (Figure 1). The 

molecular structure and stability of lipidic self-assemblies is controlled by several parameters 

of the phospholipids, such as ionic strength, size of the heap group and saturation of the fatty 

acids. Additionally, external conditions such as pH, ion concentrations and temperature have 

an impact on the assembly.16-18  

 

 

Figure 1. Phospholipids and their self-assemblies – a) Scheme of the structure and charge 

distribution of a typical phosphoglyceride. On the left is the polar phosphoric group esterified 

to the hydroxyl group of an alcohol. On the right is the apolar aliphatic chains esterified to the 

central moiety, which is a glycerol. b) Assembly of a lipidic bilayer. The longer apolar chains 

are stacked in the internal department of the bilayer. c) Architecture of liposomes and micelles. 

The representative steric organization of a liposome (left) and a micelle (right). Liposomes 

have a lipidic bilayer (bottom) whereas micelles are constructed only by one lipid layer that 

has its apolar section turned inwards while its polar heads interact with the environment. 

Adapted from Bitounis with permission.18 

Lipidic vesicles, also called liposomes contain a lipid bilayer forming the membrane. The 

molecular structure of the bilayer is often formed by a mixture of bilayer-preferring lipids, like 

phosphatidylserine (PS), making up merely 20-50%. The majority is non-bilayer preferring 

lipids, such as the unsaturated phosphatidylethanolamine (PE), that have to be included 

additionally in order to stabilize and preserve the bilayer.16 

a 

b  

c 
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The basic structure of natural plasma membrane could be mimicked with labatory equipment 

as the membrane mainly consists of 6 components: PS, PE, phosphatidylinositol (PI), 

phosphatidylcholine (PC), sphingomyeline (SM) and steroids (i.e. cholesterol). The difficult 

task of closer mimicking the plasma membrane is the reconstitution of the diverse membrane 

proteins.1, 19 Membrane proteins are mostly very fragile building blocks. The isolation and 

purification of such sensitive and proteins while retaining their functionality, represent the first 

challenge. Second, the membrane proteins as amphiphilic biomolecules have to be suspended 

in aqueous solutions containing detergents, that disturb the self-assembly of the membrane. Due 

to this, the synthetic lipid membranes have a lack of natural permeability and stability. 

However, phospholipids allow close mimics of the cell membrane. Until today, lipid-based 

synthetic membranes have given new insights into many different important parameters 

considering i) lipid and protein distribution20, ii) activity and function21, 22, iii) the geometric 

flexions in the membrane (affected by protein binding) and iv) the protein-induced membrane 

deformation established in trafficking.23 

 

Polymer-based synthetic membranes  

Besides amphiphilic lipids, amphiphilic block copolymers are classic components for building 

cell-like membrane structures. In contrast to lipids, synthetic polymers form a more stable and 

robust membrane that allows different chemical modifications for designable properties 

(Figure 2).24-26 Until today, there is a huge selection of polymers synthesized in laboratories, 

giving access to diverse self-assembled structures.  

Usually, the polymers are grouped in homo- and copolymers and polyelectrolytes. 

Homopolymers consists of repetitive monomers connected by covalent bonds.27 The monomers 

are units of relatively low molecular weight. (Block) copolymers are composed of at least two 

different blocks of covalently attached homopolymers. In order to obtain homo- and 

copolymers with well-defined properties and low poly dispersity, synthetic strategies such as 

living ionic polymerization, controlled/quasi- ‘living’ radical polymerization (CRP), and (ring-

opening polymerization (ROP) have been developed.28-32 

Polyelectrolytes present an individual group of polymers that assemble to polyelectrolyte 

multilayer (PEM) films. These films are formed by positively and negatively charged 

polyelectrolytes that are alternatively adsorbed onto a template. However, polyelectrolytes are 

beyond the scope of this thesis.33-35  

The amphiphilic character of synthetic copolymers (containing both lipophilic and hydrophilic 

groups) is fundamental for forming a polymeric membrane. The final polymer chain is 
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composed of several hydrophilic and hydrophobic homopolymeric blocks in different ratios. 

The resulting self-assembled membrane architectures (spherical, cylindrical, gyroidal, lamellar) 

depend on the ratio, as well as on other properties of the copolymer such as length, 

polydispersity and mass.36-38 This thesis focusses especially on water-enclosing spherical 

polymeric nanostructures, so called polymersomes.  

 

 

Figure 2. Schematic representation of liposomes and polymersomes –  Polymersomes (right) 

are synthetic analogues of liposomes (left) and are constituted of amphiphilic block copolymer 

membrane. Whilst most properties are similar for both carriers, polymersomes exhibit a high 

versatility and an enhanced stability. Adapted from Messager with permission.24 

 

The chemical composition of the copolymers has an essential impact on the resulting synthetic 

membrane and its functionality. The most common amphiphilic block copolymers used for self-

assembled membranes include hydrophilic blocks such as poly(acrylic acid) (PAA), 

poly(ethylene oxide) (PEO), poly(ethylene glycol) (PEG), or poly(2-methyl-2-oxazoline) 

(PMOXA), mixed with a hydrophobic block, such as polystyrene (poly(1-phenylene-1,2-diyl), 

polybutadiene (PB; buta-1,3-diene), or poly(dimethylsiloxane) (PDMS).39-41 
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Structures of 3D nanocompartments self-assembled by lipids and polymers 
Synthetic nanocompartments are built up by the “bottom up” approach where lipids and 

polymers self-assemble to distinct structures.36-38, 42 The most common self-assembled 3D 

structures at the nanoscale are nanoparticles, micelles and vesicles.16, 43-46 All the spherical 

architectures are available in colloidal suspensions containing aqueous or organic solvents. The 

resulting structure depends on thermodynamic parameters during the formation. There are also 

2D architectures based on identical components (planar membranes), but this strategy is beyond 

the scope of this thesis and is discussed detailed elsewhere.47-49   
Micelles are colloidal aggregates made by macromolecules, rather smaller amphiphilic lipids 

and polymers. The orientation of the molecules depends on the medium they are suspended in. 

In contrast to inorganic nanoparticles (i.e. gold, carbonates, or iron oxide), lipid and polymer 

based nanoparticles have a more deformable, but less stable structure. If the lipid/polymer 

concentration is higher than the critical micellar concentration (CMC), micelles self-assemble. 

The amount of forming micelles depends on the chain length of the macromolecules, on the 

different interactions between the solution and on the chemical structure of the amphiphilic 

macromolecules (van-der-Waals, hydrogen bridge bonds).25, 50 

A neat distinction between micelles and nanoparticles is not always possible and there are 

different definitions for both systems. Commonly, the term “micelles” is used for dynamic 

systems while “nanoparticles“ are used for kinetically trapped systems. Here, the typical 

challenge is that the existing exchange dynamics can often not be investigated and that it is just 

not known whether the system is dynamic or frozen.51, 52  

The most considerable difference between the 3D structures of nanocompartments is found by 

comparing nanoparticles and micelles with vesicles. Micelles/nanoparticles have a solid core. 

Due to steric hindrance of lipidic and polymeric chains inside the core, infiltrated bioactive 

components are inactive until their release. The vesicle architecture, by contrast, shows a lipidic 

or polymeric membrane forming a defined inner cavity (Figure 3). Vesicular structures of sizes 

up to 1 µm self-assembled from amphiphilic phospholipids or polymers, are termed liposomes 

or polymersomes.23 The resulting hollow sphere allows the entrapment of diverse active 

biomolecules staying intact. The rather robust membrane of vesicles, especially a polymeric 

membrane, protects encapsulated cargos from external environment and prevents degradation 

of sensitive biological elements. On the other hand, vesicles with a lipidic membrane relate 

more to real cells and their organelles which supports the biocompatibility.  

Depending on the favored applications, each different structure of 3D nanocompartments can 

be of advantage. In the following part, three very famous and dominant applications of bioactive 
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polymersomes are introduced; drug delivery systems, sensing nanocompartments and artificial 

organelles. 

 

 

Figure 3. Liposomes and polymersomes – Architecture of lipidic and polyermic vesicles 

presented as cross section and 3D image. Adapted from Rideau with permission.25  
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Self-assembled bioactive polymersomes 

 
Living cells and their metabolism represent a complex system were various biochemical 

reactions take place simultaneously without reducing efficiency, and specificity. Bioactive 

nanocompartments are synthetic structures at the nanoscale mimicking these highly organized 

cellular processes and pathways. These compartments are a very promising tool in different 

research fields such as medicine, catalysis, and biotechnology. For developing biohybrid 

systems, nano-sized vesicles, especially polymersomes, are preferred over micro-sized 

polymeric vesicles, like giant unilammelar vesicles (GUVs). Compared to GUVs, 

polymersomes show a higher stability due to the enhanced surface tension caused by the smaller 

size. Furthermore, there is an increasing progress in the reconstitution of membrane proteins in 

polymersomes while such procedures have to be often optimized for GUVs.  

Bioactive polymersomes show great results in therapeutics and are applied in various kinds of 

sensing systems for diagnostics and environmental science. These hybrid structures help to 

advance our understanding of engineering smart nanomaterials and allow additional insights 

into biological basic processes. 

 

 
Figure 4. Schematic representation of bioinspired polymersomes –  Conceptual overview of 

bioinspired polymersomes and polymer membranes highlighting some possible applications of 

such assemblies. Adapted from Palivan with permission.53 
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The polymersomes are built up by the “bottom up” approach where polymers self-assemble to 

distinct structures. Depending on the polymer, different formation techniques have to be applied 

for forming nanoscale vesicular structures. The conventional techniques are the thin-film 

rehydration method54-56 and solvent exchange method.57 

With such “bottom up” techniques it is possible to combine the preparation of synthetic 

compartments with bioactive molecules and units. Lots of different membrane proteins have 

already been reconstituted in the synthetic membrane of polymersomes. Additionally, active 

biocompounds like enzymes, have been incorporated for developing polymersomes with 

engineered controllable functionalities (bioactive nanocompartments) valued for many diverse 

applications (Figure 4). 

 

Architectures of bioactive polymersomes 
Polymersomes are nanoscale vesicles self-assembled by amphiphilic block copolymers 

representing the analogues to liposomes. In aqueous media the hydrophilic block of a diblock 

exposes to the surface, while the hydrophobic block form the inner part of the membrane. 

However, depending on the copolymer, the membranes will have a different morphologies. In 

the resulting membrane, the polymers are commonly aligned as as bilayers in case of diblocks 

(AB). Symmetric triblock copolymers (ABA) have to possible conformations: the hydrophobic 

block can either form a loop so as the hydrophilic chains are on the same side of the membrane 

(U-shape) or they can stretch forming a monolayer with the two hydrophilic blocks at the 

opposite sides of the membrane (I-shape). ABC triblock copolymers assemble into asymmetric 

membranes where the internal and external surface chemistry differ from each other in the 

resulting polymersomes.58, 59 The orientation of the hydrophilic block polymers depends 

additionally on more parameters such as steric hindrance and polymerblock lengths. Bigger and 

more bulky blocks form the outer surface of the polymersomes.60, 61  

The thickness of polymeric membranes ranges from 5-30 nm, depending on the polymer chain 

length.59 The size of the polymersomes is often affected by the polymersome formation method 

which has to be selected accordingly for different polymers. In order to obtain high 

monodispersity and a decreased size distribution, the polymersomes are usually extruded with 

filters having defined pore sizes. In order to form vesicles by self-assembly, determining 

parameters have to be taken into account carefully: i) the packing parameter (p = v/a0lc = 0.5 -

1), ii) the hydrophilic to whole mass balance in a range of 25 - 45% (f-value), and iii) the 

polydispersity index (PDI) of approximately 1 of the amphiphilic block-copolymer (v = volume 

of hydrophobic part, a0 = contact area of head group, lc = length of hydrophobic part).36-38, 62-65  
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With regard to the robust and thicker membrane of polymersomes, different strategies have 

been investigated in order to increase and control the permeability while the polymeric 

structures stay intact for extended periods of time.59 Depending on their chemical nature, homo- 

and copolymers are able to form polymersomes with intrinsic stimuli-responsive properties, 

especially pH-responsiveness. For example, polymersomes self-assembled by copolymers with 

tertiary, protonable amine groups show reversible swelling properties (breathing membrane) at 

distinct pH-values. Such pH-sensitive copolymers can include a PDEAEMA (poly(2-

(diethylamino)ethyl methacrylate)), PDMAEMA (poly(2-(dimethylamino)ethyl methacrylate), 

or PAD (poly(N-amidiono)docecyl acrylamide)) as protonable block.66-68 Further polymers 

forming pH-responsive polymersomes are PAA69, 70 and PSS (poly(styrene sulfonate)).71 

Additionally thermoresponsive polymersomes based on PNIPAM (poly(N-

isoproylacrylamide)) have been successfully developed where the thermosensitive PNIPAM 

forms hydrogels in situ when the temperature is raised above the lower critical solution 

temperature.72 

Another strategy for developing permeable poylmersomes describes stable, non-responsive 

vesicles, where the spontaneous formation of a porous membrane is effected by organic 

solvents or particular stimuli-responsive biomolecules. In contrast to organic solvents, 

biomolecules achieve a triggerable  and thus, a more controllable permeability and present the 

focus of this chapter. A promising approach to allow a more controlled and selective 

permeabilization of the vesicles for protons, ions or small molecules is achieved by 

reconstituted membrane proteins and biopores. Up to now, lots of different membrane proteins 

have been successfully inserted; among them i) channels and pores (Outer membrane protein 

F; OmpF12, 14, 73-75 , Aquaoporin; Aqp076, FhuA (ferric-siderophore transporter)77, maltose pore 

protein; LamB78,  ii) transporters of ions and electrons (a-Hemolysin; aHL, ionomycin for 

divalent cations), and iii) channel forming peptides, like melittin and gramicidin (gA).79, 80  

Additonally, mutants of OmpF, especially, present an elegant strategy to develop stimuli-

responsive permeability. Even though the engineering and expression of OmpF mutants require 

complex procedures, the resulting advantages overcome this issue. For example, a pH 

dependent diffusion efficiency through OmpF 6His mutant was observed where the histidine 

substitutions strongly influences the local electrostatic field, the channel diameter and the 

constriction zone. The total charge states of histideines resulted in a pH-dependent release when 

reconstituted in nanocompartments.81 Second, OmpF mutants have been used to allow a 

selective modification of the proteins resulting in a stimuli-responsive opening/closing of the 

pores in polymersomes presenting the focus of the following chapter.12, 15 Due to this, such 
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biohybrid nanosystems are a very promising tool for different technologies in the fields of 

bioengineering and biomedicine.82  

For a successful reconstitution of membrane proteins, it is essential to choose the appropriate 

polymer that supports the correct orientation of the protein while preserving the natural 

functionality. A functional reconstitution requires polymers forming a flexible enough 

membrane. The polymers have to conform to the lager hydrophobic parts of the protein by 

coiling.53, 59, 82 Especially larger proteins (3.3-7.1 nm) induce imbalance in hydrophobic 

interactions with the block copolymers (9-13 nm) and hamper the functionality of the protein. 

A sufficient flexibilty of the copolymer allows the reconstitution of membrane proteins 

although the resulting synthetic membrane is thicker than the protein itsself. Moreover, the 

polydispersity of the copolymer might also be an essential requirement as smaller polymer 

chains arrange around protein while longer chains form the stable membrane of the 

polymersomes to allow a successful insertion.83 Moreover, a membrane self-assembled by ABC 

block copolymers allows a specific orientation of the membrane protein due to the different 

hydrophilic parts.84 Triblock copolymers composed of PMOXA-b-PDMS-b-PMOXA are also 

great candidates for the insertion of proteins in synthetic membranes as they combine all 

fundamental requirements and present the focus of this part. The PDMS block offers suitable 

flexibility and fluidity to entangle the protein  while providing the stability of the membrane.83 

With regard to the membrane proteins inserted in polymersomes, mild conditions including 

temperature, pH, aqueous medium, are essential for a successful reconstitution as membrane 

proteins are often very fragile and easily denaturate outside the cellular membrane. Therefore, 

For the orientation-specific reconstitution of different membrane proteins into polymersomes, 

diverse worked-out strategies are necessary. One strategy is the particularized membrane 

destabilization of the vesicles by detergents before adding the protein or the incorporation 

during the self-assembly process (post-hoc insertion). The operation process has to be often 

optimized for each membrane protein, but the general key step of all methods is the removal of 

the detergents the proteins are usually resuspended.83 

 

Polymersomes with modified membrane proteins and channels 

Remarkable progress in functionalized polymersomes has been obtain by reconstituting 

genetical and/or chemical modified protein gates, where the diffusion of molecules can be 

triggered by a certain stimulus.  

An example for chemically engineered proteins embedded in polymersomes, describes the 

targeted modification of the lysin residues found inside the channel of FhuA in order to build a 
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reduction-triggered release system.77 The chemical labels bind to the key amino acids and block 

the molecule passage through the pore until dithiothreitol (DTT) addition, that induces the 

cleavage of the labels. An example for genetic modification of membrane proteins, presents a 

mutant type of OmpF, where cysteine have been induced by point mutation.12 In order to 

achieve stimuli responsive permeability of the vesicles, different molecular caps are linked to 

the thiol group of the cysteine. 

Besides controllable permeability, the polymersome membrane can be functionalized with 

membrane proteins for performing distinct biochemical reactions. One approach utilizes the 

simultaneous incorporation of a light driven proton pump bacteriorhodopsin (BR) together with 

the molecular motor protein F0F1-ATP synthase. Via cascade reaction triggered by external 

illumination, the photon energy is transformed into chemical energy. BR builds up a proton 

gradient across the polymer membrane which subsequently supports the catalyzed conversion 

of ADP into ATP, the universal energy source in cells.85-87 

All these examples confirm that the concept of functionalizing polymersomes by the 

reconstitution of proteins into the membrane was translated into action. Besides membrane 

proteins, lots of different catalytical active biomolecules, like enzymes, were used for equipping 

polymersomes for comprehensive biorelated processes, introduced in the following chapter. 

 

Polymersomes equipped with catalytic biomolecules 

Polymersomes offer a great potential to load hydrophilic cargoes in the aqueous core and 

hydrophobic parts in the synthetic membrane, respectively.88 Via thin-film rehydration method 

hydrophilic compounds, such as enzymes, are added to the aqueous phase (rehydration buffer) 

and then are passively transferred into the polymersomes.  

In contrast to enzymes free in solution, enzymes encapsulated inside polymersomes are 

protected from denaturation by environmental conditions and exhibit prolonged activity. 

Examples of enzymes are protease89, horseradish peroxidase12, 90, uricase and superoxide 

dismutase91 that have been encapsulated in polymersomes for developing catalytic 

nanocompartments (CNCs). Furthermore, the enzyme NADH:Ubiquinone oxidoreductase 

complex I has been functionally reconstituted in the membrane for creating an active surface 

that mediates the electron transfer from NADH to ubiquinon.92Besides enzymes, other active 

biomolecules have been encapsulated in polymersomes like Rose Bengal Bovine serum 

conjugate serving as photosensitizer93, or haemoglobin as oxygen carrier.94 The concept behind 

of the 
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Even further, it was possible to combine different CNCs working in cascade reactions or to 

entrap simultaneously more than one enzyme inside the cavity of one CNC.90, 95 Mostly, such 

bioactive polymersomes were also functionalized with (modified) membrane proteins to enable 

the (controlled) diffusion of external substrates and products formed by enzymatic reactions 

inside the compartments.90 

 

Characterization of bioactive polymersomes 
The different characteristics of bioactive polymersomes, like size, vesicular nanostructure, 

homogeneity and surface charge have to be confirmed and analyzed.  Overall, there are two key 

techniques, light scattering and microscopy. 

Nanotracking particle analysis (NTA), static and dynamic light scattering (SLS and DLS) are 

often used in combination to determine the size distribution, concentration and architecture of 

polymer self-assemblies (hollow sphere or solid particle). By measuring electronic mobility of 

polymersomes between two electrodes, the resulting zeta potential reveals information about 

the surface charge.96, 97 

Confocal laser scanning microscopy (CLSM) is a frequently used optical imaging technique to 

visualize nanostructures that are labelled with fluorophores. CLSM allows the visualization of 

fluorescently labelled polymersomes located inside mirco-sized structures (like cells).98 In case 

of reconstituted membrane proteins in polymersomes, fluorescence correlation spectroscopy 

(FCS) analyzes how many biomolecules are incorporated if they have been fluorescently 

labelled. FCS measures the diffusion time of fluorescence objects at already low nanomolar 

concentrations through a small confocal volume where the size and concentrations can be 

determined.99-103  

 

Prominent potential applications  
Due to designable multifunctionalities, bioactive nanocompartments, especially polymersomes 

are applied intensively in a lot of different medical (nanomedicine) and scientific research 

domains (nanomaterials). By taking a closer look, the detailed application methods of 

micelles/nanoparticle-based bioactive compartments differ from vesicle-based systems. In 

order to release the cargo with selective responses and functions, solid structures like 

micelles/nanoparticles have to decompose. Encapsulated biocompounds in vesicles are active 

and are able to move freely inside the cavity. In addition to this, the synthetic membrane of the 

vesicles can be designed to show selective permeability towards particular signals and 
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molecules, which allows a strong functionality without losing the initial structure of the 

compartment.  

 

Drug delivery systems 

Polymersomes are an efficient therapeutical delivery system. They are able to incorporate two 

or more agents, enhance water-solubility of drugs, improve the drugs’ half-life in blood 

circulation and achieve a controlled drug release and targeted delivery (Figure 5).46, 67, 104, 105 

All these properties minimize the side effects and toxicity of the drugs and lowers the frequency 

of taking the medication.  

In the past few decades, a large number of therapeutics based on bioactive nanocompartment 

has been clinically approved and a few pioneering systems became commercially available. In 

near feature the number of such drug delivery systems will increase strongly. Among these 

systems, the polymeric and liposomal (lipidic vesicles) platforms present the main elements 

with ca. 80%.106 The unique properties of liposomes are remarkable and their popularity in 

therapeutics has been still growing fast. These vesicles are able to encapsulate successfully both 

hydrophilic and hydrophobic compounds, they can be functionalized by designed ligands for 

achieving targeted binding on particular cells, and much more talents are investigated. A very 

interesting strategy describes the equipment of liposomes with biocompatible polymers, like 

polyethylene glycol (PEG), to prolong their half-life in vivo. This technique was also adapted 

for nanoparticle-based therapeutics, especially for delivering sensitive anticancer 

chemotherapeutic drugs with adverse side effects.106  

 

 

Figure 5. Schematic representation of polymersomes applied as drug delivery systems – By 

encapsulation of the drug into the polymersomes it is protected from external compounds. Upon 
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a certain stimulus the drug is relaused from the vesicles. Adapted from Onaca with 

permission.107 

 

Consequently, the next advancement in drug delivery systems are vesicles based on polymers 

only. These polymersomes show the same skills as liposomes and more.108 Research over the 

last two decades has yielded significant progress in the development of polymersomes for drug 

delivery. The vesicle membrane contain stimuli-responsive polymers resulting in a 

physical/chemical change or disruption in the structure to release the cargo (drug).109 Examples 

for the stimulus are light110, 111, biomolecules112, 113, temperature114, 115, pH116-118, reductive 

environment119, 120 and magnetic fields.121, 122 Additionally, the enhanced stability of 

polymersomes, half-life and surface properties support greatly the modification with ligands 

(antibodies, receptors for parasite binding) and justify polymersomes as a very promising tool 

in therapeutics.123, 124 

 

Sensing polymersomes  

In this part, two different categories of polymersomes with detecting skills are distinguished. 

The first category comprises nanovesicles that create a measurable signal as a response to a 

certain stimulus. However, during this process the structures disassemble, like in case of drug 

delivery systems. Those compartments are mostly applied as direct detection or imaging 

contrast agents to identify irregular fragments in the body.124-128  

The second category describes polymersomes that stay intact, and can function as applicable 

sensors. As polymersomes form a more robust membrane than liposomes, they are eligible for 

the second category, which presents the emphasis of this thesis and is further discussed in detail 

regarding bioactivity in chapter 4.129, 130 

In diagnostics, synthetic vesicles are used for a selective and local detection of specific 

pathological disease-related conditions, especially for tumor cells causing change in pH, redox 

potential or glucose concentration. As the sensors are expected to maintain their structure and 

function, polymersomes attract most of the attention. The additional modification of the 

polymersomes with biomolecules results in nanocompartments exhibiting cellular and 

molecular functions. Such bioactive polymersomes or biohybrid systems, contain synthetic 

polymers and biological components (proteins, enzymes) and are valuable candidates as 

nanosensors (Figure 6). Their structural integrity and stimuli responsiveness are prevented over 

a longer period of time. The sensing mechanism is based either on the insertion/attachment of 

stimuli-responsive biomolecules (proteins) and/or on the encapsulation of active 
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(bio)molecules (dyes, enzymes). Inside the vesicles, a signal like colorimetric change or 

fluorescence is produced for detection.75, 131-134 

 

Figure 6. Schematic representation of a potential ion sensor based on polymersomes – Design 

of Ca2+-selective permeable membranes by insertion of ionomycin into polymersomes. Adapted 

from Lomora with permission.80 

 

Polymersomes with biopores reconstituted in the membrane are promising candidates for 

sensing pathological conditions. For example, the membrane proteins aquaglyceroporin GlpF 

has been successfully inserted in the polymer membrane and allow selective permeabilization 

for small sugar alcohols.135 The predominant membrane protein is OmpF and OmpF mutants.12, 

15, 75 Due to its stability, triggerable functionalities of OmpF can be engineered which is 

described in the third chapter in detail.  

Besides membrane proteins, chemically tuned polymers forming the membrane are able to 

support the selective permeability of the vesicles due to their chemical nature causing 

attracting/distracting forces with external compounds.66 

 

Artificial organelles 

Catalytic polymersomes have remarkable abilities as sensors and concurrently as simplified 

artificial organelles. Such nanocompartments respond to a stimulus in a bioinspired manner 

related to the behavior of natural organelles in cells.45, 95, 136  
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Polymersomes equipped with active biomolecules (catalytic nanocompartments) are useful 

vehicles serving as artificial organelles. The idea of artificial organelles describes such catalytic 

nanocompartments (CNCs) that have been taken up by cells and performed particular reactions 

inside them. The aim is to replace damaged or missing cellular pathways with implanted 

artificial organelles and to facilitate techniques based on metabolic reactions steps used in the 

fields of tissue engineering and synthetic biology.71, 137  

One famous example are catalytic nanocompartments working as artificial peroxisomes in cells. 

Natural occurring peroxisomes contribute to a defense mechanism against reactive oxygen 

species (ROS). In order to achieve such a detoxifying process, two antioxidant enzymes were 

encapsulated into polymersomes transforming superoxide radicals and H2O2 into oxygen and 

water via a 2-step, cascade reaction. OmpF serving as the gate for substrates and products was 

reconstituted into the polymeric membrane to allow a constant exchange with the external 

environment. In case of a high ROS occurrence (oxidative stress) associated to different 

diseases like arthritis, the artificial peroxisome as cellular implant is expected support the 

overextended organism and to recover the metabolic balance.136 

 

Compartmentalization within cell-like compartments  

In real cells, metabolic reactions are performed in organelles (subcompartmentalization) in 

order to provide the perfect conditions (pH, concentration of ions) appropriate for each specific 

need. This complex architecture performing different biochemical reactions simultaneously is 

the inspiration of developing cell-mimicking platforms. Cell-mimicking platforms became 

indispensable as tools in various scientific domains such as the design of microrecators and the 

investigation of cellular processes. Therefore, the aim is to develop cell-mimicking 

compartments combining different cell functions and including complex compartmentalization 

like in living cells. 

This functional principle of subcompartmentalization in real cells can be adopted for 

microcompartments, like synthetic GUVs (Figure 7) to design cell-mimics.39, 138, 139  The 

prospective challenge is to create so-called artificial cells with multicompartmentalization 

where diverse subcompartments with different activities and membrane permeabilization are 

able to perform metabolic pathways. Here, different kinds of nanosized CNCs (liposomes or 

polymersomes) serve as subcompartments in the GUVs and catalyze one reaction or a cascade 

reaction in case of multicompartmentalization (two or more different CNCs inside the 

cavity).140 Due to the high stability, GUVs formed by polymers attact a lot of attention in this 

research field. The co-laoding of such GUVs with different nanoobjects is achieved 
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simultaneously by using film rehydration method. For example, an external signal can be 

transduced between structurally diverse nanocompartments (particles, vesicles) serving as 

artificial organelles in GUVs. By supplying this system with an additional cytoskeleton 

component (actin), the multicompartment is able to form an internal cytoskeletal network (actin 

polymerization) via ion channel recruitment from the environment.141 The preparation of 

multicompartments by film rehydration method, however, shows some challenges like the low 

encapsulated content and limitations in membrane compositions. To achieve a fine control of 

these parameters, the preparation of multicompartments by double emulsion microfluidics 

attacts a lot of attention.139 The resulting GUVs are able to serve as a ideal cell-sized template 

with a very narrow distribution of GUV size and internal content.142 

 

 

Figure 7. Subcompartmentalization within GUVs – Schematic representation of 

multicompartment system composed of reduction sensitive subcompartments for triggered 

enzymatic activity and ion channel recruitment, encapsulated within polymeric giant 

unilamellar vesicles. The reducing agent DTT was used as the signal (red arrow) that passively 

traverses the polymeric GUV membrane without addition of biopores or channels. Adapted 

from Thamboo et al. with permission.140  

 

Additionally, multicompartmentalization can be performed by transferring bioreactive 

polymersomes in GPMVs to create bioinspired molecular factories and customizable cell 

mimics. The advantage of GPMVs over all GUVs is the very cell-similiar composition that 
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cannot be achieved via bottom-up approaches. The GPMVs are directly formed by cells. Recent 

studies further showed that polymersomes inside GPMVs are able to perform distinct catalytic 

reactions and demonstrate that also GPMVs can be supplemented with nanocompartments 

serving as artificial organelles.14 In fourth chapter, the procedure of transferring nanoscale 

objects from cells into GPMVs is discussed in detail with the focus on optimized conditions for 

an efficient GPMV modification. 
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GUVs as cell-like compartments based on lipid and polymer 

membranes 

 
Lipid- or polymer-based compartments at the microscale, are termed giant unilamellar vesicles 

(GUVs). GUVs are a very promising platform for the reconstitution of a wide variety of 

membrane or peripheral proteins resulting in complex biomimics. Due to this, GUVs have been 

widely used for developing artificial cells models in order to understand cellular functions and 

to investigate bilayer interactions within the membrane.  In the 19th century, cell-free enzymatic 

reactions have been discovered for the first time, showing that biochemical reactions don’t 

necessarily require the whole living organism.143 In the following century, the concept of 

building up synthetic vesicles at the microscale via “bottom up” approach attracted a lot of 

attention.144 These compartments include lipid- and polymer-based GUVs138, 145-148 lipid coated 

porous silica nanoparticles149, layer-by-layer capsules150, membrane free microdroplets, and 

microscaled proteinosomes.151  

GUVs are regularly used in synthetic biology. They are able incorporate a huge number of 

different biomolecules or inorganic compounds that undergo, initiate or catalyze distinct 

reactions in a very effective manner (Figure 8). The most prominent reactions are those 

catalyzed by stable enzymes found in the cavity of biomimicking compartments. These cell 

mimics have a great potential for synthetizing proteins152, synthetic polymers153, and RNAs.154 

Concurrently, GUVs are a valuable tool for determining the molecular parameters supporting a 

single, systematically isolated reaction existing within the whole complex metabolism. In cells, 

many interactions between different biomolecules or assemblies take place at the same time 

and it is impossible to define each single pathway.155 However, GUVs are simultaneously cell-

like and simple enough to gain new aspects of essential biological processes without giving 

biased measurement data. 

Another advantage of GUVs over living cells is the facilitated handling. Cells have to be 

cultivated under certain conditions including temperature, CO2 atmosphere and nutrition. The 

stability and working efficiency of the biomimicking compartments, lacking of an own 

metabolism, are commonly independent of the external environment.  
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Figure 8. Comparison of real cell and synthetic GUV –  Design of (left) a natural cell and 

(right) a synthetic giant unilamellar vesicle (GUV) with encapsulated enzymes engineered for 

selective permeability to substrates and products based on reconstitution of outer membrane 

protein F (OmpF) to visualize a model enzymatic reaction inside the cavity. Adapted from Garni 

with permission.13  

 
Why cell-like compartments? 
A central objective in biology is the template-dependent generation of the inseparably 

associated units of life. The cells of all organisms consist of four essential macromolecular 

components: Lipids, glycans, nucleic acids and proteins (Figure 9).14, 156  Within living cells, 

the fundamental builidng blocks form highly complex, but well-organized structures that work 

with remarkable efficiency and precision on the molecular and atomic level.157 I order to cur 

diseases effectively, we have to acknowledge and understand the fundamental building blocks 

of life first; how they are constructed and interact during the cell metabolism with all its diverse 

reaction steps.   
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Figure 9. The molecular building blocks of life – The four fundamental macromolecular 

components (lipids, glycans, nucleic acids and proteins) are built up by 68 molecules.  Adapted 

from  Marth with permission.156 

 

To get a better insight, cell-mimicking compartments have been created. The compartments 

show a high complexity and multifunctionality similar to living cells. They have distinct cell-

like functionalities and are able to perform complex biochemical reactions and 

transformations.158 Based on biomimicking compartments as platform, researchers could yield 

the information how metabolism, the fundamental prerequisite of living organisms, arose in 

organic frameworks. Overall, biomimicking compartments have great a potential in lots of 

interdisciplinary scientific fields in biotechnology, medicine and material science.138, 159, 160 

Besides treating diseases, it is possible that such synthetic biomimicking platforms will enable 

to assemble alternative tissues and organs. So, necessary transplantations won’t be longer 

dependent on finding the right donors.  

The living cells were discovered two centuries ago and up to now, various different 

achievements have been made that will bring the researchers’ ambitious dreams closer of 

designing and creating cell mimics.158 The main strategies for building up cell mimics and 
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biomimicking compartments in the microscale are: i) the “bottom-up” and ii) the “top-down” 

approaches. The “top-down” approach allows the manipulation and reengineering of the cells 

by using well-developed biotechnological tools.161 This technique is based on the genetic 

modification of living cells (i.e. stem cell) to create so-called “minimal cells”.158, 162  In general, 

the “top-down” approach is suitable for designing fully functional cell mimics. The resulting 

artificial cell models are customized to the respective requested objective and fulfill different 

requirements. Their complexity is closer to the non-engineered cells than the compartments 

obtained from “bottom-up” approach. However, like in case of real cells, the high complexity 

can be a disadvantage as it is difficult to follow a distinct biochemical pathway.162, 163   

The “bottom-up” approach starts with single components on the molecular level that are built 

up to consistent structures in vitro. Synthetic compounds such as lipids or polymers are 

assembled form the membrane of the micro-sized compartment which can be equipped with 

biological molecules for functionalization. Various different combinations have already been 

applied to create cell mimics that are able to accomplish biorelevant processes and biochemical 

reactions for defining structural parameters. Scientific disciplines using these cell-like 

compartments focus on designing simplified cell mimics to gain insights into the function of 

the very complex metabolism. In contrast to a living organism, where millions of actions take 

place, the “bottom-up” cell mimics undergo a limited number of processes that can be observed 

carefully and precisely in order to disclose basic working principles in biology.145, 146, 164-166  

As this work focuses primarily on GPMVs as cell-mimicking platform, the basics and concept 

of lipid and poymer-basased GUVs are shortly summarized in the following.  

 

Building up GUVs 
Lipid-based GUVs 

Lipidic GUVs have a size of at least 1 µm and the membrane is based on phospholipids forming 

a thin bilayer of approximately only 5 nm, similar to living cells. Latest research results have 

advanced lipid GUV systems including complex lipid compositions. Such GUVs exhibit 

controlled asymmetries and allow detailed studies of membrane protein structures and the 

corresponding functionality in cell-like model membranes.167 

Besides phospholipids, minimal artificial cells incorporate additive biomolecules, such as DNA 

or proteins to perform elemental cellular functions. Two prominent technologies for producing 

such lipid-based artificial cells are “bottom-up” approaches, where membrane proteins 

extracted from living cells are reconstituted into GUVs. The compartments were formed by 

either the gentle hydration method (conventional method)80, 168 or by microfluidic.169-171 
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Compared to the hydration method, microfluidic technology achieves the formation of very 

monodisperse, unilamellar giant lipid vesicles in higher concentrations and with a more 

efficient encapsulation rate. 

 

Polymer-based GUVs  

Up to now, several biopores have been reconstituted in polymer GUVs in order to allow 

controlled permeabilization towards ions and/or molecules. The conventional formation of lipid 

GUVs can be easily adapted to polymer GUV formation, if the differences in thermodynamic 

self-assembly of polymers have to be taken into account. Additionally, microfluidic double 

emulsion processes were successfully developed in order to produce polymer GUVs with 

diverse biofunctionalities including enzymes.142  

However, lots of protein reconstitutions successfully implemented in lipid membranes, are not 

readily applicable to synthetic copolymer membranes; the different physicochemical properties 

of polymer membranes strongly affect the interactions between membrane and protein. 

Compared to lipid membranes, synthetic polymer membranes have a much higher molecular 

mass and a considerably thicker membrane with more limited flexibility and fluidity. These 

properties result in a length mismatch between the hydrophobic domain of the copolymer 

membrane and the membrane-spanning hydrophobic domain of the protein. Additionally, the 

polymer membrane is more fragile towards detergent-containing solutions, in which isolated 

membrane proteins are commonly stored in. To overcome this issue, hybrid GUVs were formed 

by phospholipid and block copolymers. The membrane consists of a lipid/polymer mixture that 

combines the biocompatibility and cell-membrane-resemblance of lipids with the robustness 

and chemical versatility of polymer membranes.13, 79, 172   
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GPMVs as cell mimics  

 
Synthetic GUVs represent the simplest cell-like platform due to limited complexity regarding 

internal composition. In contrast to GUVs, giant plasma membrane vesicles (GPMVs) are 

directly formed by cells and thus, contain most of the cellular components expect larger 

organelles, polymerized cytoskeletal elements or internal membranes. GPMVs are filled with 

cytoplasm and its membranes are rich in lipid and protein components corresponding to the 

plasma membrane of the donor cells.173  GPMVs as non-living organisms, are probably the 

most innovative solution for creating “biological” cell-mimicking compartments, with partly 

identic cellular composition. Although GPMVs are the closest and most similar to cells up to 

today, they have been unnoticed as cell-mimics for years. 

In this work, “bottom up” and “top-down” were combined to create GPMVs as cell-like 

compartments. This approach uses eucaryotic cells that have taken up non-natural occurring 

components for distinct functionality. These modified cells are then treated in order to produce 

very cell-like but not living microscale compartments bearing the synthetic components as well. 

Here, the complexity and functionality of GPMVs can be enhanced in a controlled manner by 

systematically increasing the number the components inside as it was performed with GUV 

modifications. Due to this, the construction of a cell-like compartment is continuously 

approximating real cells. 

 

GPMVs as promising cell-like compartment derived directly from cells  

Naturally occurring vesicles produced by cells are an attractive alternative to synthetic 

compartments. For example, exosomes have a great potential for drug delivery systems as they 

achieve targeted delivery which still presents a challenge for other cell-mimicking vesicles.174-

176 However, the drawback of exosomes are their limitations regarding production and 

modification. Therefore vesicles formed from cellular oganelles with promising properties for 

additional modification have been investigated for their potential as exosome-mimics.177, 178 

Additonally, GPMVs have been considered as promising alternative to exosomes and present 

the focus of this chapter. As the name indicates, GPMVs are derived from the plasma membrane 

of cells. GPMVs are naturally formed by cells if they are exposed to huge stress such as lack of 

food. In contrast to exosomes, the formation of GPMVs and the subsequent isolation from the 

donor cells have already been optimized for high yields under laboratory conditions. Here, 

GPMVs are systematically formed by treating the cells with very high salt concentrations, 

reducing agents or laser irradiation causing local delamination of the plasma membrane from 
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the underlying cytoskeleton.179-181 The ensuing protrusions of the cell are then filled by a 

passive flow of the cytoplasma resulting in a GPMV.182-184 GPMVs contain almost all cellular 

components expect larger organelles such as the nucleus or Golgi apparatus regarding the inner 

composition as well as the outer membrane structure.181, 183, 185, 186 

GPMVs were used as platform for studying the compositional and structural characteristics of 

the plasma membrane before and after interactions with external compounds.187-189 In addition, 

a detailed investigation of the properties of the membrane associated IgE-receptor complex was 

described.190 Another research area also started dealing with the development and 

characterization of planar supported membranes received from GPMVs and exploited GPMVs 

as host-cell model for drug delivery.182, 191 Studies regarding the high potential of GPMVs as 

artificial cells are still very rare.184, 192 However, in fourth chapter of this work we describe a 

new promising strategy of using GPMVs as cell-mimicking systems in order to overcome the 

current challenges of designing ideal cell-like compartments.  

 

 
Figure 10. GPMVs formed from Caco-2 cell line – Scale bar 15 µm. 

 
Characterization of GPMVs 
As GPMVs are vesicular structures in the micrometer range, they are easily visible under an 

optical microscope (Figure 10). Furthermore, it is possible to directly observe certain 

interactions of encapsulated solutes and/or structures in real-time. Light/fluorescence/confocal 
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laser scanning microscopy is a suitable technique to visualize cells forming GPMVs and follow 

GPMVs isolated from cells. In order to analyze fluorescently labelled nanoscale objects 

(peptides, polymersomes or nanoparticles) inside GPMVs, CLSM and flow cytometry (a light 

scattering technique)193, 194 provide data in terms of GPMV size and fluorescent properties.59 

CLSM uses a spatial pinhole placed at the confocal plane of the lens for reconstructing the 3D 

architectures from images that are acquired with optical sectioning.  

Membrane properties, such as permeability, elasticity, and surface charge are important 

parameters in many applications. Several methods have been applied to characterize GUVs but 

also GPMVs including various electron microscopy (EM) techniques, which allow direct visual 

inspection of the structures with high resolution. Here, an electron beam is driven through the 

sample and the resulting interactions are recorded. In contrast to the conventional transmission 

or scanning EM, cryo-EM provides information on size, morphology, and membrane thickness 

of the vesicular assemblies as for this method drying or staining of artifacts is not necessary.59 

In addition to microscopy techniques, Förster resonance energy transfer (FRET) yield 

quantitative information about dimerization propensities of fluorescent tagged proteins within 

the membrane. Further mechanical characteristics of GPMVs ca be analyzed by Atomic force 

microscopy (AFM) measurements.195 
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Future perspectives 

 
Bioactive polymersomes 

Triggerable permeability of catalytic polymersomes provides many opportunities for controlled 

activation of enzymatic reactions inside. One established approach is to insert OmpF in the 

membrane. OmpF is a very robust protein gate that is can be isolated fast from bacteria and 

allows an easy handling and modification. Furthermore, mutants of OmpF have been 

successfully expressed allowing diverse additonal modifications and functinalities. The 

modification of reconstituted OmpF mutants enables a  molecule passage through the polymeric 

membrane controlled by stimuli-responsiveness of the mutant or of the molecular caps that have 

been selectively attached to the OmpF mutant. So far, OmpF has been modified with 

commercially available molecules or peptides, serving as molecular caps, that covalently bind 

to genetically engineered cysteine in the eyelet region. The drawback of this approach is the 

supplier-depended variety of potential linkers. Due to this, a refined strategy describing a more 

practicable preparation of stimuli-responsive molecules in the laboratory is needed. The new 

approach should be based on a more customizable solution where different factors can be taken 

into account during the designing process and the synthesis of molecule/linker for OmpF 

mutants. For example, it is important that the linker is of an appropriate size to block OmpF 

pores efficiently. For this reason, diverse structures of potential molecules such as coiling, or 

spatial orientation in aqueous media with a physiological pH, have to be respected. In order to 

apply this technique not only OmpF, but to other (more fragile) membrane proteins, it is also 

important to consider the water solubility of the product. For most proteins, harsh conditions 

like organic solvents, temperature, pH habe to avoided to protect the structure and functionality. 

Additionally, further potential applications of polymersomes with a controlled permeability 

should be considered. For example, polymersomes with encapsulated catalysts and with 

stimuli-responsive permeability present a smart system that allows a precisly initiated catalytic 

reaction and shows a promising  potential in catalysis.  Moreover, the encapsulation of 

polymersomes prolonges the activity of sensitive catalysts, such as enzymes, as the cargo is 

protected from the environment by the robust polymeric membrane. 

 

GPMVs 

Due to their composition, GPMVs represent a very promising biomimicking platform with the 

closest similarity to real cells. However, most reported studies about GPMVs focused on their 
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structure and composition and not on their development as cell-mimicking compartments. Until 

today, there are still many open questions regarding the capability as cell-like templates and if 

a controlled modification of GPMVs is feasable. Therefore, it is essential to investigate the 

modification of GPMVs, meaning the equipment with external, not biological nanoobjects 

inside the cavity. One established sprocedure decribes the modification of GPMVs with 

different nanoscale objects that have been taken-up by cells and transfer subsequently into 

GPMVs during the formation process. Consequently, the next step is to study how GPMVs can 

be modified efficiently with non-cellular nanoobjects. Therefore, different impact factors 

playing an important role during the modification have factors have to be extracted and 

evaluated. Besides different physical and chemical properties of the nanoobjects, the impact of 

the cells forming the  GPMVs have to be investigated to observe first trends in optimizing 

GPMV modification. 
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Chapter 2 
 

AIM OF THE THESIS 
 

In this work, biomimcking and bioactive compartments in the nano- and microscale are 

designed and modified to create i) catalytic polymersomes with stimuli-responsive membrane 

permeabilty and ii) GPMVs supplemented with NPs in high efficiency. 

The first project, describes a new, chemistry-oriented strategy for triggerable activity of 

polymersomes (catalytic nanocompartments). Our aim is to chemically modify the membrane 

protein OmpF with a small organic linker and to subsequently reconstitute this OmpF as a pore 

into the polymeric membrane of the compartments. The linker is  expected to block the diffusion 

of small molecules through the OmpF. However, in presence of a certain stimulus, the linker 

should be cleaved to open the OmpF pores. As the permeability is controlled by a stimuli-

responsive membrane protein, the structure of the vesicles is preserved and allows diverse 

important applications, like artificial organelles or material for nanosensing. Our stategy to 

create such biohybrid polymersomes is based on the modification of the membrane protein  

OmpF serving as model protein. Additionally, our aim is to establish a technique for 

synthesizing customizable linkers suitable for all kinds of proteins. In order to produce a linker, 

completely soluble in water, we combine tools of organic chemistry synthesis with crosslinkers 

used commonly for bioconjugation as starting material. The requirement of the resutling linker 

was the application under protein-appropriate conditions without destroying the structure or 

functionality, meaning avoiding harsh organic solvents or pH values below or above 

physilogical conditions.  

The aim of the second project is to investigate the potential of GPMVs as customizeable cell-

like compartments. We are convinced that GPMVs are great candidates as cell mimics as they 

are directly formed from cells and thus, present the closest cell-mimicking compartments. In 

this work, we want to examine how GPMVs can be modified to obtain platforms applicable for 

the investigation of distinct cellular processes and highly complex biochemical reactions. 

Therefore, we collect new insights regarding the modification of GPMVs with NPs serving as 

a model for nanocompartments. Due to the fact that this research field is almost untouched, 

fundamental questions regarding: i) the effect of concentration, ii) the surface charge and iii) 

the size of such transferred nanoobjects were adressed and analyzed in detail. Those parameters 
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are thouroughly investigated via monitoring the distribution of different NPs inside at least 250 

GPMVs per random sampling to yield representative results.   
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Chapter 3 
 

MEMBRANE PROTEIN CHANNEL EQUIPPED WITH 
A CLEAVABLE LINKER TO ACTIVATE SENSITIVE 

CATALYSTS INSIDE POLYMERSOMES 
 

Significant progress in the functionalization of polymersomes has been obtained by embedding 
modified proteins into the membrane for stimuli-responsive permeability. Inside the 
polymersomes, enzymes are encapsulated and catalyze distinct reactions with molecules 
diffusing through the membrane. Due to the resulting triggerable activity, such bioinspired 
vesicles are promising tools for catalysis. In this chapter, we introduce here an efficient closing-
opening method for polymersomes that contain sensitive catalysts and so achieve a controlled 
and extended catalytic activity. We developed a chemistry-oriented approach for modifying a 
membrane protein (OmpF) resulting in stimuli-responsive pore opening within the membrane 
of the polymeric compartments. We synthesized a diol-containing linker that selectively binds 
to the pores, blocking them. In the presence of an external stimulus (periodate), the linker is 
cleaved allowing the diffusion of substrate through the pores to the interior where the 
encapsulated enzyme catalyzes a reaction to colorimetric products. Besides the precise closing 
and opening of the pores controlling the catalytic activity, the oxidation by periodate 
guarantees the cleavage of the linker under mild conditions, where sensitive biomolecules like 
proteins and enzymes preserve their functionality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This study has been published: Luisa Zartner, Viviana Maffeis, Cora-Ann Schoenenberger, Ionel Adrian Dinu, 
Cornelia G. Palivan*. Membrane protein channels equipped with a cleavable linker for inducing catalysis inside 
nanocompartments, Journal of Materials Chemistry B, (2021) – under revision.  
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Motivation and challenges ahead 

Diverse stimuli-responsive polymersomes are specifically engineered to protect their cargo 

while supporting a triggered functionality when the stimulus is present in the environment.27, 

109, 126, 149, 196, 197 Due to this, such polymersomes, have an increasing potential for applications 

in catalysis as they are able to change their permeability upon the presence of a stimulus in their 

environment while preserving their architecture: the increased permeability favors the 

molecular flow through the synthetic membrane, which will trigger an in situ functionality, as 

for example by starting a specific reaction of the encapsulated active compounds.129, 130  One 

strategy to generate stimuli-responsive polymersomes with preserved architecture is to take 

advantage of stimuli-responsive copolymers to form vesicles that shrink or swell upon an 

external signal (like protons, CO2 or change in temperature).66, 115, 198 A complementary 

strategy, which is “bioinspired” by the cell membrane known to contain a variety of membrane 

proteins that are essential for a molecular transport through, hinges on reconstitution of 

membrane proteins or small polypeptides into the polymeric membrane to achieve a desired 

permeability.82, 129 For example, membrane protein channels, such as the outer membrane 

protein F (OmpF), enable the diffusion of molecules with a size up to the pore diameter, 74, 75, 

90, 133 while others, such as aquaglyceroporin or gramicidin, only allow diffusion of specific 

molecules or ions.79, 135 A step further in developing stimuli-responsive membrane 

permeabilization was achieved by modification of the membrane proteins such to become either 

a “valve” or a “gate”. By attaching a pH-sensitive GALA polypeptide to OmpF, this one has 

been rendered a pH-triggerable valve, which served to open/close the polymersome when it has 

been inserted in the membrane.199 Alternatively, when molecules were covalently bound to a 

double mutant of OmpF, this one became a gate when inserted into the membrane of 

polymersomes, the pores being closed and opened when the molecules were cleaved by upon 

the presence of a specific stimulus.15 Furthermore, polymersomes equipped with stimuli-

responsive OmpF gates and loaded with specific enzymes served for development of catalytic 

nanocompartments (CNCs) with triggered activity: only when the gate was open by the 

presence of a specific stimulus, which cleaved the molecules closing the pore, the enzymes 

encapsulated inside started to perform their biologic function as the substrates freely diffused 

through.12, 15  

Here we enlarge the concept of CNCs with triggered activity by developing a chemistry-based 

strategy for modifying membrane protein channels to achieve stimuli-responsive opening of the 

pores inserted in the membrane of the compartments that allows the substrates to enter and start 



 40 

the in situ reaction. We chemically modified a double mutant of OmpF under mild conditions 

by covalently binding a linker rationally designed and synthesized to render this channel porin 

a “gate” opening in the presence of periodate, an important oxidant for the selective oxidation 

of polysaccharides and glycopeptides.200, 201 We chose OmpF as model of membrane protein 

channels as it is a well characterized porin in terms of structural and functional 

characteristics.202 The linker was designed to bind to specific amino acids K89C R270C of 

OmpF, which are located at the pore opening, and to be cleavable by a particular, small 

molecule (periodate). We chose periodate as it serves for oxidative cleavage of the linker under 

mild conditions in aqueous solutions where membrane proteins are not affected and remain 

functional. Additionally, we were interested to synthesize a water soluble linker to enable 

applications without the use of organic solvents that are expected to affect membrane proteins.  
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Modification of OmpF with a small organic compound for triggerable 

activation of catalytic polymersomes 

 
OmpF monomer has the structure of hollow beta barrel, embedded in the membrane with a 

diameter of around 30 Å (Figure 11A), enabling diffusion of small (generally under 600 Da) 

water-soluble molecules in both directions.203, 204 To achieve the chemical modification 

necessary to bind the linker, we used OmpF-M, a genetically modified porin that features two 

cysteine (Cys) residues opposing each other in the 'eyelet' region of the pore (OmpF double 

mutant K89C R270C, OmpF-M).19, 20 The thiol groups of these Cys moieties are exposed and 

can be readily modified (Figure 11).  

Figure 11. OmpF structure and the linker design – A) PyMol ribbon representation of OmpF-

M secondary structure reveals a distance of about 30 Å between the side groups of the two Cys; 

B) Left: Chemical structure of the designed linker with maleimide groups indicated in green, 

fluorophores in pink and the diol unit in blue. Right: the linker length corresponds to the 

distance between the two opposing Cys of OmpF-M, as estimated by PyMol modeling. 

To block OmpF pores by covalent binding of an organic compound and induce a controlled 

opening by the presence of periodate, different requirements have to be considered in terms of 

the size and conformation of the linker, its accessibility and efficient cleavage for a stimuli-

responsive opening of the OmpF pores. First, the steric size and conformation of the linker 

should efficiently block the pore and second, both ends of the linker should be bound to OmpF 

to minimize the freedom of rotation. Thus, we opted to synthesize a small organic compound 

to provide a more rigid structure compared to coiled macromolecules where the spatial 

orientation and folding is more difficult to predict.205, 206 The length of the linker was designed 
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to span the diameter of the OmpF-M pore at the site of the two Cys moieties, i.e. approximately 

30 Å, whereas a maleimide group at each linker end was inserted to favor the reaction with thiol 

side chain of the two cysteines (Figure 11B).207 Third, an important factor to consider in the 

linker design was the periodate-responsiveness that would result in its oxidative cleavage to 

unblock of the OmpF ’gate’. Hence, we introduced a vicinal diol unit with a periodate-sensitive 

C-C bond in the middle of the symmetric linker (Figure 11B, in blue). Periodate oxidizes the 

diol into the corresponding carbonyl groups under mild conditions, at pH = 7 and room 

temperature.208 Oxidation by periodate is predicted to produce two fragments able to rotate 

freely as they are bound only at one end to a Cys side chain: the periodate-triggered cleavage 

of the linker releases the OmpF pore obstruction. Finally, our linker design included two 

fluorophore (cyanine3 dye) side chains both to create a bulkier structure for a more efficient 

pore blocking and to allow detection by fluorescence-based techniques. Synthesis of the 

periodate-responsive linker was performed in three consecutive steps (Scheme 1). We started 

from the vicinal diol element of a disuccinimidyl derivative of tartaric acid and symmetrically 

built up the linker on both sides. To achieve a final linker length of approximately 30 Å, we 

coupled two cysteine molecules to the respective ends of the reactive ester, to which we then 

covalently attached cyanine3 maleimides via the thiol groups as fluorescent side chains. The 

two functional maleimide end groups of the linker were integrated using a compound 

combining maleimide with a small hydrocarbon chain and hydrazide as the second end 

functional group. The hydrazide moiety reacted selectively with the carboxylate group of the 

cysteine fragments resulting in the final linker with a length of 30 Å (Figure 11B). 

In the first step, cysteine was coupled with disuccinimidyl tartrate (DST) by the simple reaction 

of amine groups with the NHS-activated tartaric acid (Scheme 1). This step was necessary to 

introduce the reactive thiol groups, which were subsequently involved in the second reaction 

step to couple the fluorescent cyanine3 maleimide molecules. The first intermediate 

(Compound 1) was only partially purified and then used further for the synthesis of Compound 

2. Thus, the 1H-NMR spectrum of the first intermediate showed the characteristic peaks of the 

coupled cysteine found in the range of 3.45-3.30 ppm and 4.65 ppm corresponding to the 

methylene (CH2-SH) and methine (NH-CH) groups, together with the two protons (CH-CH) of 

the vicinal diol unit at 4.7-4.6 pm. Additionally, the spectrum indicated the presence of 

monofunctional product, cysteine and free N-hydroxy succinimide. The 13C-NMR spectrum 

confirmed the presence of carbons around 180-170 ppm characteristic for carbonyl moieties 

from amides and carboxylic acids, the two carbons of the vicinal diol unit around 70 ppm, and 

the two carbon atoms of the cysteine connected to the tartaric acid by amide groups at around 
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50 ppm. Analysis by ESI-MS revealed a value of m/z= 179.05, which corresponds to double 

the protonated Compound 1 [M+2H]+ and could not be assigned to DST or cysteine. Compound 

1 was used in the second reaction step aiming to induce its selective reaction with cyanine3 

maleimide, resulting in Compound 2. The 1H-NMR spectrum of Compound 2 showed that 

possible impurities resulting from the synthesis of the first intermediate were efficiently 

removed during the purification step and did not lead to any other side products nor disrupt the 

reaction affording Compound 2 (Figure S1). In addition to the protons of the vicinal diol 

element of tartaric acid and the cysteine fragments, we observed peaks in the 9.00-5.50 ppm 

range, characteristic for the heterocyclic and aromatic rings, as well as for the extended 

conjugation of the double bonds of the cyanine3 dye. The singlet peak characteristic for the two 

protons of the maleimide groups was not identified in the spectrum, indicating the complete 

coupling of cyanine3 maleimide and consequently the formation of Compound 2. According to 

the 13C-NMR spectrum, the characteristic peaks of the carbon atoms from the carboxylic acids 

and amides were visible in the 180-170 ppm range. In addition, carbon peaks of cyanine3 dye 

were observed, including peak at 168 ppm representing carboxamides, C=C groups around 

140 ppm, aromatic carbons around 120-110 ppm, aliphatic amines between 50-30 ppm, and the 

hydrocarbon chains in the 30-20 ppm range (Figure S2). Analysis of the product by MS 

(MALDI-TOF) revealed an m/z value of [M+2H]+ = 379.16, corresponding exactly to 

Compound 2. In the last synthesis step, the carboxylic acid groups of Compound 2 were 

activated by EDC to form the amine-reactive O-acyl isourea intermediate. Subsequently, the 

reaction with N-ε-maleimidocaproic acid hydrazide (EMCH) led to the formation of a 

symmetric bismaleimide linker, as confirmed by the NMR spectra (Figure S3 and Figure S4). 

In addition to the peaks that were already observed for Compound 2, the 1H-NMR spectrum 

showed peaks between 2.0-1.0 ppm, characteristic for protons of the two hydrocarbon chains 

that were introduced by reacting Compound 2 with EMCH. The hydrazide group of the 

crosslinker EMCH commonly generates a very broad peak between 4.5-3.5 ppm with an 

integral of 4, which was not found in the 1H-NMR spectrum of our final product. The 13C-NMR 

spectrum of the final linker indicated its large hydrocarbon backbone and showed the 

characteristic peaks of the two carboxamines carbons from the coupled maleimide groups 

around 165 ppm. Interestingly, the peaks of the aromatic carbons from the fluorophore were no 

longer detected. However, as the characteristic fluorescence of cyanine3 was still clearly visible 

when the linker was dissolved in the NMR-tube (Figure S4), we concluded that the absence 

represents an effect of a decreased solubility in CDCl3. Additionally, MALDI-TOF revealed 

an m/z value of [M+H]+ = 643.68, which corresponds exactly to the bismaleimide linker. 
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Scheme 1. Route of synthesis of the periodate-sensitive linker  

 

Next, we reacted the linker dissolved in water with purified recombinant OmpF-M in order to 

attach the linker and close the OmpF pores. After the labeling reaction, linker-OmpF-M solution 

was heated to 95 °C to denature all intramolecular interactions except covalent bonds and then 

analyzed by SDS-PAGE (Figure S5). We observed a single fluorescent band running with the 

apparent molecular weight of monomeric OmpF-M (about 40 kDa204, lanes 3, 4), which 

indicated a covalent binding of the fluorescent linker to OmpF-M. Therefore, an unspecific 

aggregation of the linker with the protein did not appear and the covalent binding was 

successful. 

To establish whether the linker attachment to the OmpF-M was able to i) close efficiently the 

pore and ii) control the passage through the OmpF pore in a precise manner, we prepared several 
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types of polymersomes encapsulating laccase as model for a sensitive catalyst in their aqueous 

cavity: (i) CNCs without OmpF-M pores (CNC-noOmpF-M), (ii) CNCs with reconstituted 

linker-modified OmpF-M (CNC-linker-OmpF-M), (iii) CNCs with reconstituted OmpF-M 

lacking the linker modification (CNC-OmpF-M), and (iv) CNCs with wild-type OmpF inserted 

in their membranes (CNC-OmpF-WT). We used the film rehydration method209 to form 

polymersomes from poly(2-methyl-2-oxazoline)-block-poly(dimethyl-siloxane)-block-poly(2-

methyl-2-oxazo-line), PMOXA11-b-PDMS104-b-PMOXA11. Such amphiphilic triblock 

copolymers (PMOXA-b-PDMS-b-PMOXA) are known to self-assemble into vesicles with 

membranes that are sufficiently flexible to integrate OmpF despite the hydrophobic 

mismatch.82, 83, 210, 211 The average number of MOXA and DMS repeating units in PMOXA11-

b-PDMS104-b-PMOXA11 was assessed by proton nuclear magnetic resonance (1H-NMR) 

spectroscopy (Figure S6). This method also allowed for obtaining the number-average 

molecular weight of this copolymer (Mn = 9800 g/mol), whereas a dispersity (Ð) of 1.23 was 

revealed by gel permeation chromatography (GPC) (Figure S7).  

Figure 12. Characterization of the CNCs – A) TEM micrographs of CNCs without OmpF 

(CNC-noOmpF), CNCs with linker-OmpF-M (CNC-linker-OmpF-M) inserted in the 

membrane, CNCs with OmpF-M (CNC-OmpF-M), and OmpF wild type (CNC-OmpF-WT). 

Scalebars: 200 nm. B) B) FCS curves (line) and raw data (dots) of PBS solutions of the linker 
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(pink), free linker-OmpF-M in 1% OG (blue), and CNCs with linker-OmpF-M reconstituted in 

the membrane (green), C) Light scattering parameters of CNCs without OmpF pores (CNC-

noOmpF), CNCs with inserted OmpF-M-linker (CNC-linker-OmpF-M), CNCs with inserted 

OmpF-M (CNC-OmpF-M), and CNCs with inserted wild-type OmpF (CNC-OmpF-WT). A ratio 

between the hydrodynamic radius (Rh) and radius of gyration (Rg) between 0.775 and 1 

indicates a hollow sphere architecture for all types of CNCs. Polymersome size homogeneity 

was confirmed by dynamic light scattering with a PDI = 0.2. 

 

The size and architecture of CNCs were characterized by transmission electron microscopy 

(TEM), fluorescence correlation spectroscopy (FCS), and light scattering (LS) shown in 

Figure 12. All three techniques indicated hollow spheres with a diameter of around 200 nm 

with appropriate homogeneity (polydispersity index (PDI) = 0.2). The characteristic collapsed 

vesicle structures with a diameter of diameter of 200 nm are shown in Figure 12A. By 

extrapolating the data with Mie or Guinier plot (Figure 2C), we observed the radius of gyration 

(Rg) and radius of hydration (Rh) for all CNCs. CNC-linker-OmpF-M, CNC-OmpF-M and 

CNC-OmpF-WT were in a similar range of size with Rh of around 120 nm and Rg of 100-

110 nm, while CNC-noOmpF were slightly bigger (Rh = 138, Rg = 134 nm). The calculated 

ratios of Rh/Rg were found in the range between 0.8-1.0 presenting typical values for hollow 

spheres. 

Owing to the fluorescent side chains of the linker, the backbone binding of the linker to OmpF-

M has been assessed by FCS (Figure 12B). The autocorrelation curves revealed shifts in the 

diffusion times of linker-OmpF-M relative to free linker and linker-OmpF-M permeabilized 

CNCs relative to free linker-OmpF-M (Table S1). These characteristic increases in diffusion 

time confirmed a successful coupling of the linker to OmpF-M and a successful reconstitution 

of linker-OmpF-M in the polymeric membrane. In addition, we used brightness measurements 

to evaluate the number of linker molecules/OmpF pore.  With the counts per molecules given 

in Table S1, we calculated that one linker molecule is bound per OmpF-M monomer and 

obtained the average number of 9 reconstituted linker-OmpF-M molecules per CNC.  

We next assayed the in situ activity of encapsulated laccase in response to treating CNCs with 

NaIO4. Laccase is expected to catalyze the oxidation of 2,6-dimethoxyphenol (DMP) to the 

corresponding radical species. The resulting orange radical can be detected 

spectrophotometrically at 470 nm.212, 213 When DMP is added in the environment of CNCs, thus 

should diffuse through the OmpF pores to reach the enzyme, which is possible only when the 

linker-blocked OmpF-M pores are open as a result of the linker cleavage. The periodate-
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triggered unblocking of OmpF-M pores in CNCs was evaluated by measuring the absorbance 

related to DMP oxidation for several hours (Figure 13). As controls, we monitored the 

enzymatic activity of CNCs with linker-modified OmpF-M pores in the absence of NaIO4 

(CNC-linker-OmpF-M) and of corresponding CNCs without OmpF pores (CNC-no-OmpF). 

To establish whether NaIO4 cleaves the linker but does not affect the overall stability of the 

CNCs, CNC-no-OmpF was additionally treated with periodate (CNC-noOmpF-M with NaIO4). 

The quenching with glucose after periodate treatment avoided false positive signals from 

periodate-induced oxidation reactions. The treatment of CNC-linker-OmpF-M with NaIO4 led 

to a significantly higher absorbance at 470 nm as the DMP was able to diffuse into the cavity 

where it was oxidized to the colored product (Figure 3, pink curve). In the case of CNC-no-

OmpF, the periodate treatment neither induced oxidation of DMP, nor damaged the CNCs 

(Figure 13, yellow curve), which would have otherwise led to a release of laccase and to an 

enzyme-catalyzed oxidation of DMP. Our spectrophotometric results clearly indicate that the 

linker closes OmpF efficiently and second, enables a stimuli-responsive opening of OmpF-M 

pores in the presence of periodate. Additionally, the increasing absorbance demonstrated that 

periodate did not unhinge the activity of encapsulated laccase.  

Figure 13. Linker-based control of molecular passage through catalytic nanocompartments 

demonstrated by spectrophotometric assessment of laccase activity of CNCs in response to 

NaIO4 – The increase in absorbance at 470 nm reflects laccase-catalyzed substrate conversion. 

Measurements were carried out at RT for 9 h at pH = 7.4. NaIO4 cleaves the linker that blocks 

the passage of substrate through linker-OmpF-M pores in the closed state and thereby unblocks 

the pore. In the open state, DMP enters the compartment where it is oxidized in situ to a 
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detectable product by the confined laccase. The polymeric membrane separates the 

encapsulated laccase from the environment.  

 

We also measured the absorbance of CNCs over several days to evaluate how long the 

protection shield of polymersomes is protecting the encapsulated enzyme (Figure 14). The 

maximum activity of free laccase was reached after 8 h and continuously decreased over the 

following 12 h (Figure 14A). In contrast to this, enzymatic activity of laccase encapsulating 

CNCs whose membrane was permeable to DMP either by unmodified OmpF-M pores (CNC-

OmpF-M) or by periodate-induced opening linker-OmpF-M pores (CNC-linker-OmpF-M), 

increased for several days (Figure 14B). Again, in the absence of OmpF pores (CNC-no-OmpF 

with NaIO4), periodate treatment did not lead to the oxidation of DMP or damaged the CNCs 

as confirmed by TEM (Figure 14D). 

Figure 14. Long-term laccase activity of CNCs in response to NaIO4 (with standard deviation 
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calculated from three technical repeats), based on the increase in absorbance intensity of 

laccase-product with a characteristic absorbance at 470 nm – Measurements were carried out 

at RT at pH 7.4: A) Activity of free laccase in PBS solution (with standard deviation) recorded 

over 20 h; B) Activity measured for one week of i) free laccase in PBS solution (without 

periodate treatment (black)), ii) CNC-OmpF-M (without periodate treatment (orange)), iii) 

CNC-noOmpF-M (without periodate treatment (purple)), iv) CNC-linker-OmpF-M (without 

periodate treatment (yellow)), v) CNC-noOmpF-M (without periodate treatment (blue)) and vi) 

CNC-linker-OmpF-M with periodate treatment (pink); C) Schematic representation of the three 

different polymersomes with encapsulated laccase. D)  TEM micrographs of CNCs after 

periodate treatment. Scalebars: 500 nm. 

 

For comparison, we also tested laccase activity of corresponding CNCs using 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS) as substrate (Figure S8). These 

enzyme assays involving CNCs were performed over several months, indicating that CNCs 

were active over long time periods if stored at 4 °C. However, DMP in PBS solution exhibited 

notable lower autooxidation212 over 9 h and thus was more suitable for our optimized long-term 

measurements of catalytic activity (Figure 14). Further evidence of the longevity of laccase 

encapsulating CNCs was provided by TEM micrographs recorded after eleven months 

(Figure S9). Long-term stability of CNCs represents a key aspect for further application of this 

system. 
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Conclusion 

 
Our CNC system allows the controlled activation of small catalysts and protects also sensitive 

catalysts from degradation by encapsulating them in stable polymeric nanocompartments. Due 

to i) efficient pore closing by a small organic linker and ii) due to precise pore-opening of the 

CNC by periodate, an improved spatio-temporal control has been achieved.  Secondly, the 

catalytic reactions are induced under mild conditions (no organic solvents, pH = 7, RT) where 

other sensitive biomolecules stay intact. Moreover, through the cleavage of the stimuli-

responsive linker, no modification to the CNC structure has been observed ensuring the full 

functionality of our system. Our approach in catalysis pave the way to a new molecular 

technology which might be extremely useful in multifunctional cluster activity when specific 

substrates or products need to be accessible at a precise time and space to be converted by the 

second catalyst to a desired molecule. We strongly believe that our novel approach for chemical 

OmpF modification with controllable functionality and improved properties could advance the 

development of sensitive catalysts based on CNCs for a broad range of applications including 

catalysis, food science and nanotechnology. For example, following titration experiments will 

provide more information regarding the sensitivity and selectivity of the linker towards 

periodate and will show if the CNCs are potential candidates as periodate sensors with 

appropriate properties such as lower detection limit. 
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Chapter 4 
 
THE PROMISING POTENTIAL OF GPMVS AS CELL-

MIMICKING PLATFORM 
 

Cellular model systems are essential platforms used across multiple research fields for 
exploring the fundaments of biology and biochemistry. Here, we present Giant Plasma 
Membrane Vesicles (GPMVs) as a platform of cell-like compartments that will facilitate the 
study of particles within a biorelevant environment and promote their further development. We 
studied how cellularly taken up nanoparticles (NPs) transfer into formed GPMVs and which 
are the molecular factors that play a role in successful transfer (size, concentration and surface 
charge along with three different cell lines: HepG2, HeLa, and Caco-2). We observed that, 
polystyrene (PS) carboxylated NPs with a size of 40 nm and 100 nm transferred successfully 
and efficiently into GPMVs derived from all cell lines. We then investigated the distribution of 
NPs inside formed GPMVs and established the average number of NPs/GPMVs and the 
percentage of all GPMVs with NPs in their cavity. Our results could  pave the way for GPMVs 
usage as superior cell-like mimics in medically relevant applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This study has been published: Luisa Zartner, Martina Garni, Ioana Craciun, Tomaz Einfalt, Cornelia G. Palivan*. 
How can giant plasma membrane vesicles serve as a cellular model for controlled transfer of nanoparticles?, 
Biomacromolecules, (2021), Volume 22, pages 106-115. 
DOI: 10.1021/acs.biomac.0c00624 
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Motivation and challenges ahead 

 
The history of GPMVs (Giant Plasma Membrane Vesicles) starts in the first half of the 20th 

century where the formation of cell surface “blebs” was observed after treating a chick embryo 

heart with a variety of hypotonic and hypertonic solutions.214 In 1948, the process of this 

formation, called potocytosis was described more accurately by using the phase microscope.215 

Later on, a method for isolating such plasma membrane vesicles (PMVs) from cells in higher 

amounts was developed. It was based on a great number of aldehydes and disulfide blocking 

agents that promoted the PMV formation and subsequent release from cells.184 This pioneering 

procedure replaced the traditional techniques for the isolation of cell surface membrane 

fragments and enabled targeted studies and applications of PMVs (nowadays called GPMV: 

Giant Plasma Membrane Vesicle). The followed reports of those newly discovered GPMVs 

focused on studying the compositional and structural characteristics of their plasma membrane 

after formation from different cell lines.181, 186, 216 Additionally, a detailed investigation of the 

properties of the membrane associated IgE-receptor complex was described.217 So far, the most 

investigated field of GPMV studies used the vesicles as an innovative platform with realistic 

biological membrane composition without the cytoskeletal constraint found in living 

cells.183,179, 218, 219 GPMVs are obtained directly from cells and include the cellular membrane 

and almost all cell components, except larger organelles, such as Golgi apparatus and the 

nucleus.181, 184 In addition to that, the known mechanism of GPMV formation involves local 

delamination of the cytoskeleton.185 Another research area also started dealing with the 

development and characterization of planar supported membranes received from GPMVs220, 221 

and exploited GPMVs as new tools for drug delivery.222 

Here, we introduce GPMVs as the novel type for a complete, overall cell-mimicking 

compartment. The complexity of cells encourages the development of a huge variety of 

simplified cell model platforms, of which the features can be tailored to the respective requested 

objective to fulfill different requirements, e.g. cell-like membrane compositions. Until now, 

cell-mimicking structures have become indispensable strategies for investigating highly 

complex biological processes such as molecule transport through cell membrane, or specific 

reactions controlled by enzymes in cell organelles.158  

With our study, we discovered a promsing new strategy of forming a new class of cell-

mimicking systems in order to overcome the current challenges of designing ideal cell-like 

compartments. Here, we propose as cell-mimicking compartments the GPMVs and studied how 

they can be equipped with nanoparticles (NPs) during their formation process such to provide 
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a cytoplasm medium in which the NPs freely move. We selected GPMVs as cell-like 

compartments because they combine the advantage of having both a cytoplasm and cell 

membrane185, 219 with a defined inner cavity volume and long-term stability without requiring 

cell cultivation. In addition, even though GPMVs are larger in size (in the lower µm range), 

their cell-identical composition supports them as promising platforms to study medically 

relevant exosomes. Cell-secreted exosomes are vesicles that contain plasma membrane 

proteins, cell-type-specific RNA and protein cargoes and play an important role in different 

biological processes such as intercellular signaling, stimulation or inactivation of T-cells.223  

Whilst exosomes attract a lot of attention with the focus on understanding different biological 

functions and on their applications in diagnostics and therapeutics, their development has 

stagnated due to their low production by cells and their inefficient isolation. In contrast to 

exosomes, GPMVs can be produced on a large scale, which turns them into valuable platforms 

in medical research.14 

While we previously proved that GPMVs can be equipped with soft nanoassemblies, such as 

liposomes and polymersomes14, here we go one step further and studied how hard NPs with 

different properties can transfer into GPMVs without affecting their properties and in which 

conditions this transfer can take place. We focused on different properties of NPs, such as 

surface chemistry, size and concentration that have the potential of influencing their transfer 

from cells into GPMVs.  We selected three cell lines in order to understand whether the transfer 

of NPs is mediated by the cell type and to identify which precursor cell line results in the largest 

GPMV population. By using fluorescent NPs, we evaluated qualitatively and quantitatively the 

number of NPs transferred into subsequently formed GPMVs as a function of the cell line by a 

combination of confocal laser scanning microscopy (CLSM) and flow cytometry. Our study 

reveals that a balance between the properties of the NPs and the cell line is crucial for obtaining 

a maximal loading of GPMVs. 
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Applying GPMVs as biomimicking platform 

 
In order to study the transfer efficiency of nanoparticles (NPs) from cells into the cavity of 

GPMVs, it is essential to investigate precisely all effects influencing the cellular uptake - size, 

concentration and surface of NPs. We selected carboxylated polystyrene (PS) NPs as those 

presents a suitable model system for determining the factors of particle functionalization.224 We 

studied the transfer of fluorescent NPs in sizes of 40 nm, 100 nm, 500 nm, that were added to 

the cells in different concentrations. Additionally, we studied how the surface modification of 

PS NPs could influence the cellular uptake and tested 100 nm sized particles functionalized 

with amine groups on the surface and NPs (100 nm) without any additional modification. The 

experiments were performed in parallel with three different cell types to investigate the cell-

dependent behavior of the endocytotic pathway. Within the endosomal transport of endocytosis, 

the taken up NPs (cargos) are delivered in endosomes. Here, a sorting process occurs where the 

cargos are routed to different organelles.  Cargoes can be sorted to recycling endosomal carriers 

bringing the cargos back to the plasma membrane.225 We assume that the cargoes found in the 

recycling process near the plasma membrane are exactly those NPs, we can observe inside 

GPMVs.   

HeLa cells were chosen for our experimental setup because of their role as model cell line for 

NP uptake studies.224 HepG2 cell line were selected due to their lack of membrane protein 

caveolae1 which disables the NP entry by caveolae-dependent endocytosis.226 As third cell line, 

we chose Caco-2 since they have been widely used as a model for the intestinal barrier. Due to 

its heterogenous structure, Caco-2 culture contains cells with slightly different properties. 227  

GPMVs are obtained directly from cells when they are exposed to chemical stress.228 All three 

chosen cell lines were able to form GPMVs when treated with a “vesiculation solution” 

containing reducing agent dithiothreitol (DTT) and cross-linking agent paraformaldehyde 

(PFA), however with varying sizes and uniformity. 

The cells have to uptake the respective NPs before the GPMV formation can be induced. By 

confocal laser scanning microscopy (CLSM) we investigated if these taken-up NPs have 

successfully been transferred into GPMVs and if they bear the potential for innovative tools in 

nanotechnology that retain the cell-like composition. The yielded GPMVs were observed by 

CLSM and we analyzed their average size by measuring the diameter of more than 250 GPMVs 

per cell line. 
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Evaluating a possible transfer of polystyrene nanoparticles with 

different surface modifications into GPMVs 

 
Polystyrene nanoparticles in cell medium 

In order to evaluate the nanoparticle (NP) transfer into GPMVs, it is important to investigate 

the NP properties influencing the cellular uptake: NP size, charge, surface chemistry and the in 

which concentration the particles were added to the cells.  

We first compared the impact of the NP’s surface properties. We selected i) PS NPs with 

carboxylate groups on the surface or ii) with amine groups instead and iii) PS NPs without 

additional surface modifications. All NPs had a size of 100 nm. Carboxylated NPs are known 

to be nontoxic and to be readily taken up by all cells at sizes smaller than 200 nm.224 Amine-

modified NPs were chosen as the natural occurring complement of the carboxylate group in 

amino acids. The unmodified NPs were used to understand the general influence of functional 

groups on the NP surface for the transfer into GPMVs. We ensured that the same conditions for 

all performed trials with any NPs were maintained so that we could compare the results of each 

experiment accurately. The initial concentrations of the NPs were determined by nanoparticle 

tracking analysis (NTA). Furthermore, the NPs were analyzed by dynamic light scattering 

(DLS) and zeta potential both in solutions of aqueous phosphate-buffered saline (PBS) and cell 

medium (Table 1) to visualize the resulting different hydrophobicity and hydrophilicity in these 

media. In contrast to PBS, cell medium contains high concentrations of proteins from fetal 

bovine serum.229, 230 

Table 1. Measurements of 100 nm PS particles with different surface modifications 

(carboxylated, aminated, unmodified) in PBS and cell medium. 

 

 

In cell medium, the NPs showed similar zeta potentials, stabilized to -8 mV and -10 mV.  

However, in PBS (pH 7.4) the carboxylated NPs and those without surface modifications were 

highly negatively charged; around -32 mV or more. The most extensive change in surface 

 carboxylate-modified NP amine-modified NP non-modified NP 

diameter 
[nm] 

charge 
[mV] 

PDI diameter 
[nm] 

charge 
[mV] 

PDI diameter 
[nm] 

charge 
[mV] 

PDI 

1x PBS 
pH 7.4 

109.2±0.4 -32.2±1.2 0.005±0.002 104.2±0.2 +17.4±0.7 0.086±0.019 99.7±0.5 -39.3±1.9 0.010±0.008 

medium 
pH 7.1-
7.3 

145.8±1.0 -8.4±1.4 0.240±0.005 134.9±0.7 -8.2±0.8 0.299±0.023 136.3±0.6 -10.1±0.6 0.228±0.002 
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charge was observed in case of aminated NPs. While having a positive charge in PBS, these 

NPs turned slightly negative in cell medium (-8 mV).  

With regard to the size of NPs, we observed that the hydrodynamic radius all NPs was higher 

in cell medium (30-38 nm) than in PBS. In cell medium, the implied proteins adsorbed onto the 

NPs surface and formed a protein corona which induced in a bigger measured particle size, 

higher polydispersity index (PDI, Table 1) and change in zeta potential.231 In case of the three 

different NPs, all zeta potentials shifted more towards zero while the hydrodynamic diameter 

increased slightly of ca. 36-38 nm. In general, the effect of a protein corona depends on its 

protein composition and the resulting strength of adsorption forces between the proteins and 

NP surface.232-234 As a strong surface charge prevents NPs from aggregation, further 

characterization by transmission electron microscopy (TEM) of NPs in cell medium was 

essential to prove that no aggregations occurred in the medium (Figure 15) that could distort 

the performed DLS measurements or manipulate the following cellular uptake studies. 

 

 

Figure 15. TEM micrographs of carboxylated, aminated and unmodified NPs in cell medium 

– Scale bar of top images: 500 nm and for images below: 200 nm. 

 

Effect of the surface modifications of PS NPs on their transfer into GPMVs 

For studying the impact of the NP’s surface properties on the transfer into GPMVs, we treated 

three cell lines (HepG2, Caco-2 and HeLa) with different fluorescent PS NPs (carboxylated, 

aminated, without additional surface modifications) having a size of 100 nm.  In the first step, 

the cells were incubated for 24 h with the selected NPs to induce the uptake. Then, the GPMV 

formation was promoted by treating the cells with a solution containing PFA and DTT 
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(vesiculation buffer). After 1-2 h, the GPMVs were isolated from cells by centrifugation 

(Figure 16). 

By LSM, we investigated if the fluorescent NPs are located in the formed GPMVs. By 

comparing the NPs with different surface modification, we observed that only carboxylated 

NPS transferred from cells into GPMVs (Figure S14). Both the aminated NPs and those without 

additional functional groups were not found in GPMVs formed from any cell line. Moreover, 

Caco-2 cells especially, underwent serous changes in the morphology indicative for cell death 

after incubation with aminated NPs. At the highest concentration it was not possible any more 

to yield GPMVs from the treated cells. Regarding aminated NPs, it is known that a positive 

surface charge can increase the uptake as the resulting interaction with the negatively charged 

cell membrane is stronger. However, on the other hand previously published studies reported 

toxic effects towards cells caused by aminated NPs which is also in agreement with our 

observations where the irregular cellular morphology suggested to cell damages. Positively 

charged NPs having amine or cysteamine groups on the surface induced destabilization of the 

lysosomal membrane and damaged the mitochondria after entering the astrocytoma cell line 

1321N1.230 For endothelial cells, a positively charged NP surface led to a strong reduction in 

cell viability, whereas neutral and negatively charged nanoparticles were classified as highly 

biocompatible.229 In addition, it had to be considered that the stability of the protein corona 

verified by DLS (Table 1) depended highly on adsorption forces between the surface charge of 

the NPs and the protein source. As a consequence, the individual charge of the functional groups 

on NPs still had to be taken into account during cellular uptake233. 

 

 

Figure 16. General procedure for generating GPMVs from cells loaded with NPs – A) NPs 

are taken up by the cells within 24 h. B) NPs  transfer into GPMVs during GPMV formation, 

induced by GPMV vesiculation solution. C) After 1-2 h the NP equipped GPMVs are formed 

and isolated from the cells. 
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By comparing the two negatively charged NPs (carboxylated, unmodified) we investigated that 

not only the surface chemistry but also the biocompatibility of the NPs played a crucial role in 

the transfer process from cells into GPMVs. The carboxylated NPs have been often used for 

cell uptake studies as they are known to be nontoxic are known for their biocompatibility.224 In 

contrast to this, the unmodified NPs were not found in GPMVs although these NPs also had a 

strong negatively charged surface.  

The experiments demonstrated how strong the surface chemistry and biocompatibility affected 

the NP transfer into GPMVs. Positively charged aminated NPs induced an intrinsic cytotoxic 

effect on the cells, and simultaneously prevented their transfer signaling that such 

nanostructures are not biologically relevant for future biomedical studies. In general, the uptake 

of NPs by cells without causing cell death so that GPMVs can still be formed, was the 

fundamental precondition for a successful NP transfer into GPMVs. In contrast to synthetic 

GUVs, this kind of built-in sorting out system of not biocompatible nanomaterials occurred 

naturally in the case of GPMVs and presents a direct advantage over GUVs, where all kinds of 

nanoscale objects can be encapsulated with no feedback information on biorelevance.13, 140 This 

described biocompatible-selectivity of GPMVs allowed the application as cell-mimicking 

platform while maintaining a strong resemblance to real cells. 

As the carboxylated NPs were both non-toxic and successfully taken up and transferred into 

GPMVs, we selected them to establish the role of other molecular properties on the NPs transfer 

into GPMVs. We focused on the questions such as how different sizes and concentrations of 

carboxylated NPs influence the transfer into GPMVs.  
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Crucial preconditions for the transfer of polystyrene carboxylated 

nanoparticles into GPMVs 

 
Analysis of empty GPMVs by CLSM 

In order to investigate if the transfer process of NPs into GPMVs has an impact on the size of 

the formed GPMVs, we first evaluated the average size of 250 GPMVs from each cell line 

(HepG2, Caco-2, HeLa) without NPs (Figure 17). The yielded GPMVs were isolated from the 

cells and observed by confocal laser scanning microscopy (CLSM) to measure the respective 

diamters of the GPMVs. HepG2 produced GPMVs in a range of ca. 5-14 µm. Caco-2 cells 

formed the biggest GPMVs on average with a size and with a large size distribution between 6 

and 20 µm. The smallest, yet most uniform in size, GPMVs were obtained from HeLa cells (4-

8 µm).  

 

 

Figure 17. HepG2, Caco-2 and HeLa cells form GPMVs – A) HepG2 cells after GPMV 

formation, B) Caco-2 cells after GPMV formation, C) HeLa cells after GPMV formation, D) 

average size of GPMVs generated by HepG2 (red), Caco-2 (blue) and HeLa cells (green) given 

as average diameter in µm with standard deviation. Significance level: p < 0.5 (*). 

 

Effect of size and cellular uptake of carboxylated PS NPs on transfer into GPMVs 

In the subsequent study, we determined an upper size limit of carboxylated NPs that still 

transferred into GPMVs using red fluorescent carboxylated PS NPs with different sizes (40 nm 

and 100 nm (Figure S15) and 500 nm (Figure S16)). The original concentrations of the particle 
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suspensions were analyzed by NTA (Table S3) to prepare dilutions at the same NP 

concentration (4´109 particles/mL, 8´109 particles/mL, 1.6´1010 particles/mL). First, the three 

cell lines (HepG2, Caco-2, HeLa) were treated with 500 nm particles to determine the upper 

limit of NP transfer. The resulting CLSM images showed only empty GPMVs after isolation 

from the cells indicating that particles of 500 nm in size were already above the maximum size 

limit for transferring NPs into GPMVs (Figure S16). In contrast to 500 nm particles, NPs of 

40 nm and 100 nm in size were observed in the GPMVs formed by all three cell lines 

(Figure S15).  

As mentioned above, the cellular uptake of the nanostructures into cells presented one important 

checkpoint in the investigation of the GPMV platforms. Therefore, the NP cell uptake was a 

crucial step we had to consider when optimizing the transfer of different particles into GPMVs. 

Due to this, flow cytometry analysis with each cell line treated with 40 nm or 100 nm 

carboxylated PS NPs at three different concentrations were performed (4´109 particles/mL - 

1.6´1010 particles/mL, Figure S17-S20). In general, we observed a dose dependent increase in 

NP uptake in the case of all three cell lines. Regarding the selectivity, we observed that all cell 

lines favored the uptake of the smaller 40 nm NP over the larger 100 nm particles where 

significantly more 40 nm particles have been taken up at most tested concentrations compared 

to 100 nm NPs. The selectivity towards the different sizes was only negligible at the highest 

NP concentration tested (1.6´1010 particles/mL) for HepG2 cells and at the lowest NP 

concentration (4´109 particles/mL) tested for Caco-2 cells.  

The results will serve as a basis for determining the relationship between uptake and transfer of 

the NPs into GPMVs.  

  

Analysis of isolated GPMVs with transferred NPs by flow cytometry and CLSM 

After determining that the three cell types have efficiently taken up the NPs in a concentration 

dependent manner, we turned the focus towards investigating the appropriate technique for 

analyzing GPMVs as biomimicking platform. We started with a combination of both flow 

cytometry and CLSM to examine which method provided the most valuable information about 

the formed GPMVs and about the transferred NPs for a detailed analysis.  The focus of this 

experiments was to clarify which of the two technique (flow cytometry or CLSM) provided the 

most appropriate analysis for the investigation of NP transfer into GPMVs. Based on the 

success with isolating GPMVs from HepG2 cell line in a previous study14, we chose HepG2 as 

a model cell line to determine first if GPMVs are detected adequately by these two different 

measurement techniques and second, to identify and evaluate the information that were 
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provided by these two techniques. Therefore, we treated the HepG2 cells with different 

concentrations of 100 nm red fluorescent carboxylated PS particles (4´109 particles/mL, 8´109 

particles/mL and 1.6´1010 particles/mL) in order to evaluate the dose-dependent NP transfer by 

flow cytometry and CLSM. 

 

 

Figure 18. Flow cytometry measurements of isolated GPMVs formed from HepG2 cells and 

loaded with increasing concentrations of 100 nm red fluorescent carboxylated PS NPs – A) 

three technical repeats of the  measurements. The graphs of three self-standing flow cytometry 

measurements include the following peaks for GPMVs yielded from cells incubated with:  REF 

no NPs (grey), 1: 4´109 particles/mL (blue), 2: 8´109 particles/mL (green), 3: 1.6´1010 

particles/mL (red). B) Flow cytometry analysis of GPMV size characterization by sideward and 

forward scattering analysis. The marked-out section represents GPMV populations used for 

analysis by flow cytometry. 

 

Flow cytometry analysis allowed a fast determination of the amount of GPMVs derived from 

HepG2. In addition, flow cytometry provided an analysis of the fluorescence of NP-equipped 

GPMVs, where we observed the effect of the NP concentration on the NP transfer ratio into 

GPMVs (Figure 18). Empty GPMVs served as a negative control (red peak) and the 

measurement series were repeated three times.  The measurements showed clear the expected 

dose dependent increase in the NP loaded GPMV population. At the highest NP concentration, 

more than half of all GPMVs were loaded with NPs. 

The visualization of the GPMVs from HepG2 by CLSM allowed us to track the red-fluorescent 

NPs inside all GPMVs. The NPs diffused freely inside the cytoplasm of the GPMVs. In contrast 

to flow cytometry, CLSM provided information about the size of each GPMV and about the 

distribution of transferred NPs and the average number of NPs/GPMV together with the mean 

size of the respective GPMVs (Figure S21-S26). Furthermore, we were able to distinguish by 
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CLSM if NPs are inside GPMVs or if interactions or aggregation between NPs and the 

membrane occurred.  

As a result, we chose CLSM as the main imaging technique to establish and quantify the impact 

of size and concentration on the NP transfer process from three different cells (HepG2, Caco-

2, HeLa) into GPMVs, since it allowed an exact localization of NPs. With CLSM it was possible 

to guarantee that only NPs freely diffusing within the cavity of the GPMVs were taken into the 

study without aggregation present or high affinity toward the GPMV membrane (Figure 19).   

 

Figure 19. GPMVs isolated from HepG2 cells – The membrane was stained fluorescent green 

either by A) CellMaskTM or B) Lck-GFP-transfection14. Inside GPMVs, red fluorescent 

carboxylated PS NPs (100 nm) can be observed. 

 

Effect of initial concentration of carboxylated PS NPs (40 nm, 100 nm) on their transfer 

to GPMVs 

We treated the three cell lines with 40 nm and 100 nm fluorescent carboxylated NPs particles 

in increasing concentrations (4´109 particles/mL, 8´109 particles/mL, 1.6´1010 particles/mL, 
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and 1.6´1011 particles/mL) to quantify the impact of NP concentration on the transfer 

efficiency. After incubating the cells with NPs and subsequent GPMV formation, the transfer 

of 40 nm and 100 nm particles into GPMVs was visualized by CLSM (Figure S27 and 

Figure S28). We imaged more than 250 GPMVs in each experiment and summarized the 

observations regarding the average numbers of NPs/GPMV (Figure 20) and the percentage of 

GPMVs that showed NPs in the cavity as function of NP size and concentration GPMVs 

(Figure 21). One experiment covered the analysis of isolated GPMVs derived from one of the 

three cell lines treated with one type of NP size at each concentration, where we determined the 

number of NPs/GPMV along with the diameter of GPMVs using ImageJ. By collecting and 

summarizing all data, we received distribution graphs (Figure S21-S26), showing the diameter 

of GPMVs on the x-axis and the number of NPs inside GPMV on the y-axis. We investigated 

that the size of formed GPMVs has not been affected by the transfer process of NPs for any of 

the three cell lines, which further supported GPMVs as a platform to study NPs in a cell-like 

environment. In case of HepG2 cells, the formed GPMVs had a size of 8.7±4.1 µm in the 

absence of NP uptake (Figure 17). The average size of GPMVs equipped with 40 nm sized NPs 

was 7.3±0.6 µm and 7.3±0.2 µm when equipped with 100 nm sized NPs. These results 

demonstrated that neither the transfer of NPs nor their size up to 100 nm affected the mean 

value of the diameter of GPMVs if NPs have transferred into the cavity.  

For Caco-2 and HeLa cells, an impact of the NP transfer on the diameter was slightly more 

pronounced but still not significant. GPMVs formed by Caco-2 cells, showed an average size 

of 13.1±6.9 µm in absence of NPs, while the 40 nm particle transfer resulted in GPMVs with a 

diameter of 7.9±0.4 µm and 10.0±0.8 µm for 100 nm. In case of HeLa cells, we obtained 

slightly bigger GPMVs if there were no NPs inside (6.2±2.2 µm) and when equipped with 

40 nm particles the mean size of GPMVs decreased to 3.9±0.4 mm, and 5.8±0.6 µm for transfer 

of 100 nm NPs. Summarizing all data, we suggest that the transfer of NPs into GPMVs for 

Caco-2 and HeLa preserved the order of magnitude of the GPMVs size, but in contrast to 

HepG2, a higher degree of size change was observed. 

With regard to the average number of NPs/GPMV (Figure 20), we observed that each cell line 

had a different average number of 40 nm and 100 nm particles per GPMV. For these 

experiments, the determined NPs represented the minimal number of NPs/GPMVs as the 

number was obtained by CLSM micrographs without a 3D staking. The NPs were freely 

moving inside GPMVs, so each micrograph presented a current snapshot of the NPs in the 

confocal plane of the microscope.  
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Figure 20.  Average number of 40 nm (yellow) and 100 nm (green) NPs in 1 GPMV – GPMVs 

were obtained from three cell lines HepG2, Caco-2 and HeLa. NPs were used at 4 different 

concentrations: 4´109 particles/mL, 8´109 particles/mL, 1.6´1010 particles/mL, and 1.6´1011 

particles/mL. 250 GPMVs/cell line and for each type of NPs were observed by CLSM. Error 

bars are given as ± standard deviation, significance level: p < 0.5 (*). 

 

Considering the size of NPs, we observed the highest difference of the average number of 

NPs/GPMV for the Caco-2 cells. At the maximum concentrations of the NPs, a number of 

3.2±0.3 particles/GPMV was reached for 40 nm, and 1.3±0.2 particle/GPMV were obtained for 

100 nm particles. In contrast to Caco-2, HepG2 and HeLa cell lines did not show a considerable 

effect of the NP size on the average number of NPs/GPMV. In GPMVs formed from HepG2, 

the number of 40 nm particles found per GPMV at highest concentration was 1.9±0.2, and 

2.8±0.3 particles/GPMV in case of 100 nm. For HeLa cells, the average numbers of NPs were 

1.5±0.2 (40 nm NPs) and 1.8±0.3 (100 nm NPs) per GPMV.  

Even though it is possible to achieve a higher efficiency of NP encapsulation by microfluidic 

assembly, such resulting GUVs cannot keep up with the huge cell resemblance of GPMVs. For 

our study it was important to select GPMVs instead of GUVs as cell-mimicking platform since 

GPMVs contain both a cytoplasm and cell membrane. In comparison with NPs encapsulated in 

GUVs performing controlled reactions inside GPMVs140, the average number of 1-3 NPs per 

GPMV presented a sufficient number of a successful nanoobject transfer with the future 

potential of mimicking cellular signaling pathways. As mentioned above, the numbers 

summarized in the graph, were maybe lower than the real numbers. Our counted values were 
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obtained by observing single plane projections of GPMVs, but the NPs were freely moving 

inside GPMVs. Besides that, there was no correlation between the number of NPs/GPMV and 

the size of GPMVs. 

The percentage of GPMVs from each cell line that contained transferred NPs (loaded GPMVs) 

is shown as total numbers in Figure 21. In the case of HepG2 cells, the percentage of loaded 

GPMVs increased with the concentration of NPs which was also in in agreement with the above 

presented flow cytometry measurements suggesting that the percentage of cellularly taken up 

NPs correlated with the initial concentration used for cell incubation. The calculated values 

derived from recorded CLSM images (Figure 21), showed that by treating HepG2 cells with 

the highest NP concentration (1.6´1011 particles/mL), the number of formed GPMVs with NPs 

inside increased to 40-43 %. The percentage of the loaded GPMVs from HeLa cells exhibited 

a similar dependency on the NP concentration as compared to HepG2 cells. But in contrast to 

HepG2, the maximum percentage was lower: 20 % of the GPMVs were equipped with 40 nm, 

and 14 % with 100 nm particles. In case of Caco-2 cells, the number of resulting loaded GPMVs 

depended notably on the size of the transferred NPs. 35 % loaded GPMV population was 

achieved for the 40 nm NPs, but only 25 % for the 100 nm particles. In summary, the transfer 

efficiency of NPs was the greatest when transferring from HepG2 cells into the subsequently 

formed GPMVs. Here, almost 40 % of the GPMVs were successfully loaded in case of 40 nm 

particles at highest concentration, and 45 % in the case of 100 nm particles. In total, HeLa cells 

had the lowest transfer of the three cell lines with only 15-20 % loaded GPMVs at the highest 

concentration of NPs. 

Comparing the cellular uptake studies of NPs in individual cell lines (Figure S17-S20) to the 

results of NP loaded GPMVs (average number of NP/GPMV and % of NP loaded GPMVs) we 

assumed that the NP to GPMV transfer was not only promoted by an efficient cell uptake. 

Addditionally, it depended on the “post-GPMV-behavior” of each cell-type. For example, while 

the uptake of 40 nm NPs was favored for HepG2 cells, we observed, however, that the transfer 

of 100 nm NPs from HepG2 into GPMVs was more favored. In case of Caco-2, 40 nm NPs 

were favored both in the cellular uptake of the NPs and in the NP transfer process into GPMVs. 

HeLa cells seemed to be not be as selective towards NP size. This indicated that for designing 

a GPMV platform, both first step (cellular uptake) and the transfer and isolation as second step 

were crucial. Again, this highlighted the advantage of a designed GPMV platform over 

synthetic or lipidic GUVs.  In GPMVs, only biocompatible nanostructures, that were readily 

taken up and flow freely through the cytoplasm, transferred into the biomimicking 

microcompartment.  
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Figure 21. Percentage of all GPMVs equipped with 40 nm (red) or 100 nm (blue) NPs in 

their cavity. – GPMVs were obtained from three cell lines HepG2, Caco-2, HeLa. NPs were 

used at four different concentrations: 4´109 particles/mL, 8´109 particles/mL, 1.6´1010 

particles/mL, and 1.6´1011 particles/mL. 250 GPMVs/cell line for each type of NPs were 

observed by CLSM. 

 

Considering our results about the effect of concentration and size of carboxylated PS NPs, we 

were able to extract interesting characteristics for each cell line. The GPMVs formed from 

HepG2 and HeLa cells seemed to be dependent on the NP concentration, but independent on 

the size of the NPs as the transfer of 40 nm and 100 nm showed similar results regarding the 

average number of NPs/GPMV and percentage of NP-loaded GPMVs. In contrast to this, Caco-

2 cells resulted in a more size dependent transfer of the NPs. Compared to 100 nm particles, 

the treatments with 40 nm particles achieved considerably higher values of the average number 

of NP/GPMV and of the percentage of NP loaded GPMVs. 
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Conclusion 

 
GPMVs present an innovative alternative to synthetic GUVs in applications as a biomimicking 

platform. GPMVs have a high potential for many different biologically relevant studies and are 

assumed to present the closest cell mimics. Our study highlighted their further medical 

potential. However, the lack of information regarding loading strategies with nanostructures 

limited the further development of GPMVs considering the multifaceted details of the NP 

transfer mechanisms. Additionally, the impacts of the respective cell line are complex and still 

not investigated completely. Therefore, our work aimed to start the investigation how the 

transfer on NPs into GPMVs could be optimized regarding different properties of  NPs in order 

to designed cell-mimicking platforms that benefit from a cytoplasm medium and a cell 

membrane as boundary.  

By comparing HepG2 and Caco-2 cells with HeLa as the model cell line for carboxylated PS 

NP uptake studies, we demonstrated that the NP transfer mechanism form the cells into GPMVs 

was cell dependent. With focus on the size of GPMVs, HeLa cells formed smaller but more 

uniform GPMVs while Caco-2 cells yielded larger GPMVs but having a bigger size 

distribution. The results regarding HepG2 cells having a lack of the membrane protein 

caveolae1, we observed that HepG2 are particularly well suited for GPMV formation, as the 

cells showed a high abundance of NP loaded GPMVs with no observable effect on the size of 

the GPMVs. HepG2 cells resulted GPMVs with a high average number of 40 nm and 100 nm 

particle loaded GPMVs. Caco-2 cells, already known for great adsorption skills (model for the 

intestinal barrier) seemed to be the best choice for 40 nm NPs, especially, since here the 

obtained average number of NPs/GPMV was the highest compared to HepG2 or HeLa.  

In general, we suggest that a balance between the highest NP concentration (achieving the most 

efficient transfer of NPs into GPMVs) and the NPs’ intrinsic toxicity is essentail. For optimizing 

GPMVs as cell-mimicking platform, we want to highlight the fact that biocompatibility of the 

nanostructures was already taken into account during the tranfer process as it was an important 

prerequisite for our system. Compared to synthetic GUVs, we have the possibility to prescreen 

all non-biorelevant nanostructures prior to loading in case of designing GPMVs as 

biomimicking platform. Therefore, GPMVs allowed us to study only nanostructures with high 

biomedical potential. We are convinced that our study provided an important guideline towards 

further modification and applications for GPMVs equipped with nanoassemblies. GPMVs 

allowed us to study the interactions of NPs or investigate distinct reactions of 

nanocompartments inside a close-to nature system. Our study will help promote the future 
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development of GPMVs such as an optimized strategy to separate modified GPMVs from non-

modified. Potential approaches may include a technique resembling to FACS (Fluorescence 

Activated Cell Sorting) or use magnetic beads to achive appropriate separation in a magnetic 

field. 
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Chapter 5 
 

CLOSING REMARKS AND OUTLOOK 
 

Polymersomes allowing the modification with diverse biomolecules and compounds are 

described detailed in this work. Such bioactive nanocompartments have increasing potential in 

many different applications as their versatility is markedly expanded by the biomolecules that 

endow the polymersomes with specific molecular and cellular functions. In particular, 

polymersomes are of great interest because of the increased stability and biocompatibility. 

Towards the development of bioactive polymersomes, we modified chemically OmpF as a 

biopore that showed triggerable permeability when reconstituted in the polymeric membrane. 

For the OmpF modification, we designed and synthetized a small organic linker that blocked 

the passage of molecules through the pore. In presence of periodate, the linker was cleaved and 

the diffusion through OmpF was established. Inside the polymersomes, laccase was 

encapsulated to catalyze the oxidation of an external substrate to a colored product and to 

visualize the pore opening. For closing the pore and for a controlled cleavage, different factors 

had to be taken into account during the linker design. The linker was designed to have the 

appropriate size to block the OmpF passage and at the same time to allow the anchoring of 

different functional groups. The linker was equipped with maleimide ends to enable the 

covalent binding to two engineered cysteine of OmpF (OmpF-M). In the middle of the linker 

structure, we needed a functional group where covalent bonds cleave upon a certain stimulus 

(periodate). In addition to this, we modified the linker with fluorophores to facilitate the 

detection and consequent measurements. For the synthesis of the linker, we used peptide 

crosslinkers commonly used for bioconjugation as starting materials. Such crosslinkers allowed 

mild reaction conditions and formed products with expected water solubility. In general, it is 

essential to work in aqueous solutions during the protein modification to prevent the protein 

structure and functionality. Furthermore, we applied organic chemistry techniques for high 

reaction yields and purifications. Our approach to the chemical modification of membrane 

proteins presents a first step towards the development of biomolecules with triggerable 

functionality and activity due to the guaranteed mild working conditions. A promising future 

study regarding the linker would be to investigate if after the oxidation (clevage of the linker) 

a subsequent reduction will merge the two linker residues together again. This would show the 

potential of the linker as a reversible blocking/unblocking tool of the OmpF pore. Another 
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chemistry-related protein modification could describe a synthesis of a linker that allows 

reversible activation without breaking chemical bonds and provides mild conditions. An 

advanced linker structure would be needed that e.g., undergoes different reversible spatial 

orientations leading to a blocking/unblocking of a membrane protein or activation/deactivation 

of a receptor. One opportunity would be light-sensitive compounds such as azobenzenes that 

changes from trans to cis conformation upon a certain wavelength. 

In addition to synthetic biomimicking compartments, like GUVs, GPMVs represent an 

innovative platform for cell-mimics as such microscale compartments are derived formed from 

cells and include most of the cellular components (e.g., biological membrane and cytoplasm). 

Moreover, GPMVs can be produced fast and isolated in larger quantities by chemical treatment. 

Even though GPMVs are the closest cell-like compartments available on the market, the 

application of GPMVs as cell-mimicking platform in biological relevant studies remains a 

challenge.In our second study, we demonstrated that GPMVs were formed from different cell 

lines. Depending on the cell line, GPMVs have a size from 4 to 20 µm. By investigating the 

transfer of cellular taken up NPs into subsequent formed GPMVs, we were able to gather new 

insides and trends regarding the customizable modification of GPMVs with synthetic nanoscale 

objects. We studied the impact of different cell lines and NPs varying from surface 

modification, size and concentration on the NP transfer process. An interesting next step in this 

field would be the investigation of GPMVs as promising alternatives towards exosomes. As 

both platforms are directly formed from cells, they show similar compositions, but in contrast 

to exosomes, GPMV production and modification is more practicable and faster. Therefore, it 

would be very interesting to decrease the size of GPMVs in the nanoscale (more similar to 

exosomes) and investigate properties of GPMVs especially regarding targeted drug delivery 

where exosomes attract a lot of attention due to their great features. 
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Chapter 6 
 

MATERIALS AND METHODS 
 

Chapter 3 

 
Materials 

Disuccinimidyl tartrate (DST) and 3,3'-N-[ε-maleimidocaproic acid] hydrazide, trifluoroacetic 

acid salt EMCH were purchased from ThermoFisher, cyanine 3 maleimide from Lumiprobe. 

All other materials were purchased from Sigma Aldrich, except the PMOXA11-b-PDMS104-b-

PMOXA11 triblock copolymer which was previously synthesized in our group. All reagents 

were of the highest commercially available grade and were used without any further 

purification, unless stated otherwise. 

 

Methods 

Synthesis of amphiphilic triblock copolymer  

The amphiphilic block copolymer PMOXA11-b-PDMS104-b-PMOXA11 was previously 

synthesized in our group according to reported protocols.59, 93 Briefly, a hydroxyl-terminated 

bifunctional PDMS was reacted below -10 °C with trifluoromethanesulfonic anhydride in dry 

hexane, leading to the activated PDMS macroinitiator. After filtration under argon and removal 

of hexane under vacuum, dry chloroform was added as reaction solvent, in which dry 2-methyl-

2-oxazoline (MOXA) reacted with the macroinitiator via symmetric cationic ring-opening 

polymerization. The hydroxyl-terminated triblock copolymer was obtained after quenching the 

polymerization reaction with a triethylamine/water mixture (1:4 v/v) and ultrafiltration in a 1:5 

(v/v) water/ethanol mixture. A number-average molecular weight (Mn) of 8700 g mol-1 and a 

chemical composition of PMOXA12-b-PDMS87-b-PMOXA12 was obtained from the 1H-NMR 

spectrum of this triblock copolymer, whereas its dispersity (Ð) of 1.6 was revealed by gel 

permeation chromatography (GPC) in THF.59 To decrease the dispersity of this copolymer and 

thereby better control the shape morphology of the self-assembled structures, an extraction from 

a1:1 (v/v) hexane/methanol mixture was performed and the copolymer fraction with a longer 

PDMS block was recovered from the hexane phase after solvent removal. After this additional 

step, the copolymer with a longer PDMS block was characterized by 1H NMR (Figure S6) and 
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SEC (Figure S7), obtaining the final chemical structure as PMOXA11-b-PDMS104-b-PMOXA11 

with Mn = 9800 g mol−1 (from 1H-NMR) and Đ = 1.23 (from SEC). 
1H NMR (500 MHz, CDCl3) δ/ppm = 3.84 – 3.15 (bm, 8H), 2.30 – 1.96 (bm, 6H), 1.64 – 1. 53 

(bm, 4H), 1.38 – 1.26 (bm, 4H), 0.50 – 0.60 (m, 4H), 0.20 – -0.10 (bs, 6H). 

 

Synthesis and characterization of the bismaleimide Linker 

To obtain the thiol-reactive linker able to covalently bind to both thiol groups of the OmpF 

double mutant and block its pore, we have selected as diol-containing starting compound the 

disuccinimidyl-activated derivative of tartaric acid. Thus, Compound 1 was first synthetized 

according to a general procedure used for crosslinking proteins with small modifications.235 

Briefly, disuccinimidyl tartrate (DST, 10.7 mg, 31 mmol, 1.0 eq.) was first dissolved in 100 µL 

DMSO in an Eppendorf tube (1.5 mL), and then a 0.24 M aqueous solution containing L-

cysteine was added (284 µL, 68.2 mmol, 2.2 eq.). After the pH was adjusted to a value between 

8 and 9 with 1 M NaOH (aqueous solution), the reaction mixture was shaken in the dark at RT 

for 16 h. The resulting suspension was centrifuged (13.400 rpm, 5 min). The solvenst were 

removed by rotary evaporator, and the resulting product was dried under vacuum for 3 days to 

give Compound 1 as a white solid which was further used in the synthesis of Compound 2. 

MF: C10H16N2O8S2  

MW: 356.36 

ESI-MS m/z calcd for C10H16N2O8S2 [M+2H]+: 179.02; found: 179.05. 
1H-NMR (D2O, 500 MHz): δ = 4.68 (d,), 4.65 ppm (d), 3.45-3.30 (dd, 4H) ppm. 
13C-NMR (D2O, 126 MHz): δ = 176.49, 173.51, 162.97 (d, J = 35.5 Hz), 72.45, 72.35 (d, J = 

7.0 Hz), 54.87, 53.49, 38.72, 37.55, 25.17 ppm. 

The synthesis of Compound 2 was adapted and modified from literature.236 Compound 1 

(2.8 mg, 8.0 mmol, 1.0 eq.) was dissolved in 200 µL mixture of H2O/DMF = 1/1 with a pH>8, 

whereas cyanine 3 maleimide (10.7 mg, 16.0 mmol, 2.0 eq.) was dissolved in 400 µL DMF. 

Both solutions were combined, and the resulting reaction mixture was shaken in the dark at RT 

for 16 h after adjusting the pH value back to 8 with 1 M NaOH. The solvent mixture was 

removed by adding an excess of toluene and subsequent rotary evaporation. To the crude 

product 10 mL H2O with a pH>8 was added. The aqueous layer was extracted 3x with DCM. 
The organic phases were collected, and the solvent was evaporated to give Compound 2 as 

pink solid (7.64 mg, 4.9 mmol, 61%). 
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MF (cation): C80H104N10O14S2  

MW: 1515.87 (cation),  

ESI-MS m/z calcd for C82H102N10O14S2 [M+2H]+: 

379.18; found: 379.16. 
1H-NMR (500 MHz, CDCl3): δ = 11.35 (s, 2H), 8.38 (t, 

J = 13.4 Hz, 2H), 7.45 – 7.32 (m, 9H), 7.17 (d, J = 8.0 

Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 6.70 (t, J = 13.9 Hz, 4H), 6.41 (d, J = 13.1 Hz, 2H), 5.82 (d, 

J = 13.1 Hz, 2H), 4.17 (t, J = 7.6 Hz, 4H), 3.69 (s, 6H), 3.52 – 3.39 (m, 7H), 2.30 (t, J = 6.8 Hz, 

4H), 2.23 (d, J = 10.4 Hz, 8H), 1.84 (p, J = 7.8 Hz, 4H), 1.80 – 1.75 (m, 4H), 1.72 (d, J = 5.5 

Hz, 22H), 1.56 – 1.41 (m, 4H). 
13C-NMR (126 MHz, CDCl3): δ =174.73, 174.57, 174.04, 171.47, 168.05, 151.03, 143.03, 

142.15, 140.97, 140.69, 138.71, 129.47, 129.34, 128.15, 126.04, 125.79, 122.43, 122.40, 

111.80, 111.10, 104.46, 104.18, 77.67, 77.41, 77.16, 49.61, 49.32, 44.84, 39.84, 39.47, 36.74, 

31.88, 28.50, 27.47, 26.05, 25.53. 

 

The Linker was synthetized according to the general procedure used for chemical labelling 

with small modifications.237 Briefly, 3,3'-N-[ε-Maleimidocaproic acid] hydrazide, 

trifluoroacetic acid salt (EMCH, 4.2 mg, 12.3 mmol, 2.5 eq.) was dissolved in 300 µL H2O, 

whereas 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC HCl, 4.7 mg, 24.5 mmol, 

5 eq) in 100 µL H2O. A solution of Compound 2 (7.6 mg, 4.9 mmol, 1 eq.) was prepared in 

H2O/DMF (1:1000, 3 mL). All three solutions were combined, and the pH was adjusted to 7 

with 1 M NaOH. The reaction mixture was stirred in the dark at RT for 16 h. The crude product 

was purified by extraction with DCM (3x). The organic layers were combined, and the solvents 

were evaporated to yield the Linker as pink solid (8.0 mg, 3.8 mmol, 78 %). 

MF (cation): C102H128N16O18S2  

MW (cation): 1930.36 

ESI-MS m/z calcd for C102H128N16O18S2 [M+H]+: 643.64; 

found: 643.68. 
1H-NMR (500 MHz, CDCl3): δ 7.71 (d, J = 16.0 Hz, 1H), 

7.58 – 7.49 (m, 3H), 7.46 – 7.30 (m, 9H), 6.87 – 6.67 (m, 

2H), 6.46 (d, J = 16.0 Hz, 2H), 6.15 (t, J = 1.3 Hz, 2H), 5.62 

– 5.53 (m, 1H), 5.29 (s, 9H), 4.51 – 4.39 (m, 6H), 4.22 – 

3.96 (m, 1H), 3.75 – 3.58 (m, 4H), 3.52 – 3.29 (m, 3H), 2.95 (s, 1H), 2.88 (s, 1H), 2.41 – 2.10 
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(m, 4H), 1.99 – 1.85 (m, 15H), 1.72 (d, J = 5.9 Hz, 16H), 1.41 (s, 3H), 1.32 – 1.17 (m, 13H), 

1.10 (s, 8H), 0.90 – 0.79 (m, 3H), 0.07 (s, 1H). 
13C-NMR (126 MHz, CDCl3): δ 167.20, 166.71, 145.43, 135.96, 134.29, 130.45, 128.94, 

128.93, 128.16, 126.11, 117.54, 77.24, 62.52, 62.21, 59.53, 53.44, 38.15, 31.24, 29.71, 28.13, 

18.29, 14.13, 1.02. 

 

OmpF expression, extraction 

Both OmpF wild type and the OmpF-M double mutant (OmpF K89C/R270C) were expressed 

and purified following a published procedure.199 Protein purity was evaluated on a 12 % SDS-

PAGE gel, and the concentration measured spectrometrically at λ = 280 nm with Nanodrop 

(Witec Ag). Wild type and mutant OmpF were stored at 4 °C in 3 % OG at a concentration of 

around 3 mg/mL for several months. Before the reconstitution experiments, OmpF was dialysed 

against 1 L of 0.05 % OG in PBS for 16 h, then 2x against PBS for 2 h. After the dialysis, the 

protein concentration was adjusted to 2.0 mg/mL in PBS. 

 

Chemical modification of protein gate OmpF double mutant (OmpF-M) 

OmpF-M was diluted with PBS solution containing 3 % OG to a concentration of 1 mg/mL 

(500 µL, 25 mM, 12.5 nmol). Next, a solution of the linker in MilliQ-H2O (7.5 mM) was added 

(2.5 µL, 19 nmol). The mixture was stirred overnight in the dark at RT. The OmpF-M labelled 

with the linker (linker-OmpF-M) was washed 12 times with 1 % OG in PBS in Amicon Ultra-

0.5 mL centrifugal filters for protein purification and concentration, molecular cutoff 10 kDa 

(Millipore). The volume of linker-OmpF-M suspension was adjusted to 450 μL, transferred to 

a dialysis tubing with a 14 kDa molecular cutoff (Carl Roth), and dialyzed against 1 % OG 

solution in PBS, for 16 h, followed by 2x2 h dialysis against PBS. After dialysis, the protein 

concentration of linker-OmpF-M was measured spectrometrically at λ = 280 nm with Nanodrop 

(Witec Ag) and adjusted to 2.0 mg/mL.  

 

Characterization of linker-OmpF-M 

2.5-5 µL of OmpF WT, OmpF-M and linker-OmpF-M were each mixed with 4 x laemmli 

loading buffer (2.5 µL) containing mercaptoethanol (0.7 mM). The volume was adjusted to 

12.5 µL with 1 % OG solution and samples denatured at 95 °C for 5 min. Samples (10 µL) were 

loaded on a 4-20 % precast polyacrylamide gel (Mini-PROTEAN® TGX™) and ran at 200 V 

for 45 min (Figure S5). Before Coomassie staining, the gel was imaged by Bio-Rad GelDoc to 

observe the emitted fluorescence of the linker (fluorescence of cyanine3 maleimide: 550/580). 
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Preparation of bioactive polymersomes with encapsulated laccase 

5 mg PMOXA11-b-PDMS104-b-PMOXA11 triblock copolymer was dissolved in 186 µL EtOH. 

154 µL of dialyzed OmpF (2.0 mg/mL) or dialyzed OG solution (3 %) as control, were added. 

After evaporating the solvents by a rotary evaporator (155 rpm, 40 °C, 175 mbar for 10 min, 

then vacuum for 15 min), the polymer films were rehydrated with 1 mL laccase from Agaricus 

bisporus dissolved in PBS (4.6 µg/mL). For self-assembling nanocompartments, the mixture 

was stirred overnight at RT. After extrusion (200 nm polycarbonate filters), the 

nanocompartments were purified by size exclusion chromatography (SEC) and subsequently 

incubated with Proteinkinase K (1 mg/mL, 1-2 µL per 100 µL) to remove non-encapsulated 

enzyme. 

 

Characterization of CNCs with protein gates 

The size and morphology of polymersomes were evaluated by using a combination of light 

scattering (SLS, DLS), transmission electron microscopy (TEM) and fluorescence correlation 

spectroscopy (FCS). Quantification of reconstituted linker-OmpF-M was carried out by FCS 

measurements. With all three techniques, we were able to confirm the vesicular, hollow sphere 

structure of the CNCs with a size of around 200 nm. Additionally, we calculated the value for 

Rh by using the diffusion time of FCS measurements from the BODIPY stained vesicles (Table 

S1). With a diffusion time of around 6000 µs, we received a Rh of 92.1 nm resulting in a 

polymersome diameter of 184.2 nm, which is also in agreement with the results from TEM and 

LS (Figure 2). Cryo-TEM images of vesicles formed by the triblock copolymer PMOXA11-b-

PDMS104-b-PMOXA11 further showed a membrane thickness of around 15 nm (Figure S10).  

To exclude unspecific binding of linker-OmpF-M to the CNC membrane, FCS measurements 

were performed with linker-OmpF-M added to preformed, CNC-noOmpF (Figure S11, Table 

S1). Although FCS measurements revealed an increased diffusion time compared to the free 

linker, the shift of fitted autocorrelation curves was less pronounced than that observed for 

linker-OmpF-M reconstituted into CNCs. In addition, to confirm that the detergent (1 % OG) 

used to solubilize linker-OmpF-M did not disrupt CNCs, we added hydrophobic BODIPY 

630/650-X to stain the nanocompartment membrane and measure the vesicle diffusion time by 

FCS.  

 

DLS/SLS - Light scattering experiments were performed using an ALV goniometer (ALV 

GmbH, Germany) equipped with an ALV He−Ne laser (JDS Uniphase, wavelength λ = 



 76 

632.8 nm). The solutions after film rehydration method (10 µL of suspended 

nanocompartments in 990 µL PBS) were measured in a 10 mm cylindrical quartz cell at angles 

ranging from 35° to 135° at 293 K with angular steps of 5°. ALV/Static and Dynamic FIT and 

PLOT program version 4.31 10/10 were used for data analysis. Static light scattering data were 

processed according to the MIE and Guinier plotting models. 

TEM Nanocompartments solutions were diluted in a ratio of 1:3 with PBS. 5 µL aliquots were 

deposited on a carbon-coated copper grid and negatively stained with 2 % uranyl acetate 

solution and deposited on a carbon-coated copper grid. The samples were examined with a 

transmission electron microscope (Philips CM-100) operated at 80 kV.  

Cryo-TEM - Aliquots of the samples (4 μL) were deposited on a holey carbon-coated grid 

(Lacey, Tedpella, USA), and vitrified into liquid ethane at -178 °C using a Leica GP plunger 

(Leica, Austria). The frozen samples were examined with a Talos electron microscope (FEI, 

USA) operated at 200 kV.  

NTA - NTA measurements were performed using a NanoSight NS3000 equipped with a blue 

(488 nm) and green laser (532 nm). The samples were diluted at 1:1000 in PBS to avoid 

interferences. The CNCs were excited with the blue laser and their emission was detected by 

using appropriate filters. The average particle concentration was calculated through the 

Stokes−Einstein equation related to a sphere, and their hydrodynamic radius distribution was 

analysed by NanoSight’s single particle tracking system. 

FCS - FCS measurements were carried out using a confocal laser scanning microscope (ZEISS 

ZEISS LSM 880, inverted microscope ZEISS Axio Observer, Carl Zeiss, Germany) equipped 

with a water immersion objective (C-Apochromate 40x/1.2W korr FCS M27) using the Zen 

Black software. A HeNe laser (561 nm or 633 nm) was used to excite the samples. The 

measurements were carried out at room temperature using a sample volume of 20 μL. 

Measurements were recorded over 10 s, and each measurement was repeated 30 times. The 

diffusion times of the free dye (100 nM cyanine3 maleimide), the linker and the different types 

of CNCs were measured independently. The autocorrelation function was calculated using a 

software correlator and fitted with a one component fit. Less than 10% of the correlation curves 

could not be fitted and were excluded from the analysis. Correlation curves that could not be 

fitted were excluded (<10%).  

For determining the specific binding of the linker to OmpF-M and the reconstitition of linker-

OmpF-M in the polymeric membrane, experimental auto correlation curves were fitted using a 

two-component model including the triplet state (Eq. 1). 

Eq. 1: 	
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τD represents the diffusion time, T the fraction of fluorophores in triplet state with triplet time 

τtrip, N is the number of particles and R the structural parameter.  

R and τD of free dye (cyanine 3 maleimide) and the free linker were determined independently, 

experimental auto correlation curves were fitted using a one component model including triplet 

state (Eq. 2). 

Eq. 2: 

G(τ)fit = 1 + (1 +
𝑇

1 − 𝑇 𝑒
! "
"trip)

1
𝑁
⎣
⎢
⎢
⎡ 1

1 + 𝜏
𝜏D

1

.1 + 𝑅# 𝜏𝜏D⎦
⎥
⎥
⎤
 

τD represents the diffusion time, T the fraction of fluorophores in triplet state with triplet time 

τtrip, N is the number of particles and R the structural parameter.  

Enzyme encapsulation efficiency  

The concentration of non-encapsulated laccase (laccase from Agaricus bisporus MW: 

65,000 g/mol238, confirmed by SDS PAGE, Figure S12) was determined from the 

fraction of laccase in solution eluted from size exclusion (SEC) purification of CNC-

noOmpF. Based on the BCA calibration curve (Figure S12) performed according to the 

supplier’s protocol (Thermo Fisher Scientific, U.S.A.), we determined the initial 

concentration of the laccase in solution (4.60 µg/mL) and subsequently quantified the 

amount of enzyme that was not encapsulated in the CNCs (total volume 0.85 mL, 

2.6x1011 ± 1.6x1010 vesicles/mL, measured by NTA; see Table S2). The difference 

between the amount of laccase added for the formation of the CNCs and the amount of 

enzyme that was not encapsulated (3.70 µg), corresponded to the amount of laccase 

encapsulated in our CNCs-noOmpF. Dividing the total number of encapsulated laccase 

molecules by the number of vesicles yielded a value of 8-9 encapsulated laccase 

molecules per vesicle. 

 

How to open linker-OmpF-M  

To 100 µL of CNCs without OmpF and CNCs with linker-OmpF-M inserted in their 

membrane, NaIO4 dissolved in MilliQ-H2O (0.3 M, 10 µL, 1 eq.) was added and 

incubated at 37° C for 24 h. An excess of glucose dihydrate dissolved in MilliQ-H2O 
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(0.6 M, 25 µL, 5 eq.) was added to quench NaIO4. We added approximately 2x1010 

CNCs to an aqueous solution of NaIO4 to a final periodate concentration of 30 mM in 

110 µL, corresponding to 1.6x10-7 mmol or 3.5 x10-5 mg periodate per vesicle. The 

mixture was incubated at 37° C for 24 h. Subsequently, CNCs were purified by SEC and 

incubated with proteinase K (1 mg/mL, 2 µL per 100 µL) to remove the free laccase. 

 

Enzymatic assay with DMP  

CNCs (5 µL) without NaIO4-treatment or CNCs incubated with NaIO4 and glucose (20 µL due 

to dilution after SEC purification) per well were added to 2,6-dimethoxyphenol (DMP) in PBS 

(20 mM, 10 µL) at pH 7.4 (total volume 210 µL) in a 96-well plate. The absorbance at 470 nm 

was measured with a Spectramax M5e microplate reader (Molecular Devices). The activity was 

measured for free laccase in solution (1 pg, corresponding to the amount of laccase in 1x109 

CNCs, 5 µL sample), for CNCs equipped with wild-type OmpF or double mutant OmpF-M, 

CNCs without inserted OmpF (before and after NaIO4-treatment) and CNCs with linker-OmpF-

M inserted in the membrane (before and after NaIO4-treatment). The concentration of all CNC 

samples in PBS solution was determined by NTA (Table S2) to perform the assays at 

comparable enzyme concentrations.  

 

Enzymatic assay with ABTS  

Corresponding laccase activity measurements were carried out using 2,2'-azinobis [3-

ethylbenzothiazoline-6-sulfonic acid]-diammonium salt (ABTS) as substrate. The oxidation 

product was monitored by determining the increase of absorbance at 420 nm using a 

Spectramax M5e microplate reader (Molecular Devices). 
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Chapter 4 
 
Materials  

All materials were purchased from Sigma Aldrich, except CellMaskTM Green Plasma 

Membrane Stain, GibcoTM Collagen I coated plate 6 well, FluoSpheresTM Carboxylate 

Mircospheres red fluorescent (580/605) 2-5 % solid (0.04 µm, 0.1 µm, 0.5 µm) were purchased 

from ThermoFisher. Red fluorescent polystyrene latex particles were purchased from 

Magsphere. Orange fluorescent (575/540) amine-modified polystyrene latex beads (0.1 µm, 

2.5 % solid) were purchased from Merck. 

 

Methods 

CellMask™ Green staining, solid-sphere particle uptake and packaging  

Cells were either cultured at a density of 5´104 cells per well in a µ-Slide 8 well, or at a density 

of 6´106 in a 6 well, in 200 µL or 500 µL cell medium respectively. The cells were grown as 

uniform monolayer with appropriate morphology and with at least 70% confluency.  In case of 

HepG2 and HeLa cells, the medium was DMEM growth medium (High Glucose Dulbecco’s 

Modified Eagle Medium (DMEM)), supplemented 10 % fetal calf serum, penicillin 

(100 units/mL) and streptomycin (100 µg/mL)). In case of Caco-2, the cell medium was Eagle's 

Minimum Essential Medium (EMEM) supplemented with 1X NEAA (non-essential amino 

acids), 2 mM glutamine, 10 % fetal calf serum, penicillin (100 units/mL) and streptomycin 

(100 µg/mL).  After incubation for 24 h at 37 ºC, 5% CO2 the medium was removed and 200 µL 

or 500 µL of FluoSpheres™ Carboxylate-Modified Microspheres, 2 % solids diluted to 4´109 

particles/mL, 8´109 particles/mL, 1.6´1010 particles/mL, and 1.6´1011 particles/mL in 

DMEM/EMEM growth medium were added to the cells. Cells were incubated for an additional 

24 h in DMEM/EMEM growth medium, then washed five times with 200 µL (8 well chambers) 

or 3 mL (6 well) DMEM/EMEM growth medium. After the final wash step, the DMEM/EMEM 

growth medium was removed and CellMask™ Green diluted 1:1000 in DMEM/EMEM growth 

medium was added. After incubation for 10 min the medium was removed, and the cells were 

washed 3 times with 200 µL (8 well chambers) or 3 mL (6 well chambers) cell medium. Then 

vesiculation buffer (1 mL solution of 10mM HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid), 150 mM NaCl, 2 mM CaCl2, pH 7.4, 18 µL of 4 % (wt/vol) 

PFA solution, 2 µL of 1 M DTT) was added (200 µL for 8 well chambers, or 500 µL for 6 well 

chambers). The cells were imaged after incubation with vesiculation buffer for 1-2 h. 
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GFP transfection 

Cells were plated as described above in 8 or 6 well plates. 1 min after culturing the cells, 10 µL 

of CellLight® Plasma Membrane-GFP BacMam 2.0 was added for cells cultured in the 8 wells 

plates and 25 µL for cells cultured in 6 well plates. Subsequently, cells were incubated for 24 h 

at 37 ºC, and 5 % CO2 to allow attachment to the surface. 

 

Isolation of GPMVs 

The supernatant (500 µL) from 6 well cell culture plates was transferred to an Eppendorf tube 

and centrifuged at 0.1 rpm for 10 min to pellet and remove cells. The supernatant containing 

the GPMVs was transferred to plasma activated 2 well microscopy chambers (NuncTM Lab-

TekTM Chamber Slide System, Thermo Fisher Scientific). 

 

CLSM 

CLSM measurements were performed using a confocal laser scanning microscope (ZEISS LSM 

880, inverted microscope ZEISS Axio Observer, Carl Zeiss, Germany) equipped with a water 

immersion objective (C-Apochromate 40x/1.2W korr FCS M27) using the Zen Black software. 

Samples containing CellMaskTM Green Plasma Membrane Stain, GFP or the aminated NPs 

were excited with an argon laser at 488 nm by setting the detector range to 499-521 nm. To 

measure the fluorescence of FluospheresTM Carboxylate Mircospheres, a diode-pumped solid-

state 561-10 laser (DPSS) at 561 nm was used as excitation source and the detector range set to 

572-704 nm. Respectively, nanocompartment beam splitters (MBS) of 488 and 561 were used. 

Each sample was scanned unidirectionally using 1024´1024 pixels with a Bit Depth of 16 Bit. 

Images were processed using ImageJ software.  

 

Flow cytometry analysis of GPMVs 

The cells were grown in 6 well plates as described above and the GPMVs were subsequently 

isolated as described above for CLSM studies. Flow cytometry analysis was performed using a 

BD LSR Fortessa Analyzer. Doublets were excluded using FSC-A and FSC-H detectors. The 

GPMVs were excited at 541 nm, and the emission was detected using the Texas-Red Channel 

(BP filter 620/10). 100 000 events were recorded for each sample in “slow” flow through mode. 

The data was processed using Flow Jo VX software (TreeStar, Ashland, OR).  
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Flow cytometry analysis of cells 

For cellular uptake studies cells were grown and incubated with NPs in 6 wells as described 

above. Cells were washed five times with cell medium, trypsinized, resuspended in 1 mL cell 

medium, centrifuged and then suspended in 500 µL PBS. Flow cytometry analysis was 

performed using a BD FACS Canto II flow cytometer (BD Bioscience, USA). Doublets were 

excluded using FSC and SSC detectors, single cells were excited at 561 nm and the emission 

was detected in FL5 (610/20; Texas-Red Channel). A total of 10,000 single cells for each 

sample were analyzed and data processed using Flow Jo VX software (TreeStar, Ashland, OR). 

 

NTA 

NTA measurements were performed using a NanoSight NS3000 equipped with a blue (488 nm) 

and red laser (642 nm). The NPs were excited with red laser and their emission was detected 

by using appropriate filter for 642 nm. The average particle concentration was calculated 

through the Stokes-Einstein equation related to a sphere and their hydrodynamic radius 

distribution was analyzed by NanoSight’s single particle tracking system 

 

TEM 

A suspension of 100 nm beads (1´109 particles/mL) in cell medium was used for TEM imaging 

studies. These samples were negatively stained with 1.5 % uranyl acetate solution and deposited 

on carbon-coated copper grids. A transmission electron microscope (Philips Morgagni 268D) 

at 293 K was used. 

 

DLS 

The measurements of hydrodynamic diameter (Rh) of NPs were performed on a Zetasizer Nano 

ZSP at 25 °C. The measure angle is 173 ° and the data was analyzed by intensity distribution. 

A suspension of 450 μL of with a concentration of 1.6´1011 particles/mL was used for the 

measurements.  

 

  



 82 

 

Chapter 7 
 

APPENDIX – SUPPLEMENTARY INFORMATION 

 
Chapter 3 
 

Figure S1. 1H-NMR spectrum of Compound 2 in CDCl3 at 500 MHz. 

Figure S2. 13C-NMR spectrum of Compound 2 in CDCl3 at 126 MHz. 
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Figure S3. 1H-NMR spectrum of the bismaleimide linker in CDCl3 at 500 MHz. 

 

 

 

Figure S4. 13C-NMR spectrum of the bismaleimide linker in CDCl3 at 126 MHz and the image 

of the corresponding dissolved linker in the NMR-tube. 
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Figure S5. SDS PAGE of OmpF-M (left, fluorogram, right, Coomassie-stained): L: Protein 

ladder; 1,2: unlabelled OmpF-M, at 1/1 (1) and 2/1 (2) ratio (v/v) with loading buffer. 3, 4: 

OmpF-M labelled with the linker comprising fluorescent cyanine 3 (550/580). MW of OmpF 

around 40 kDa. 

Table S1. Fluorescence correlation parameters of the free fluorophore cyanine3 maleimide, 

free linker, CNCs with OmpF-M-linker inserted in the membrane, stand-alone OmpF-M-linker, 

and OmpF-M-linker added to empty polymersomes before and after staining the polymersomes 

with BODIPY 630/650-X. 

 
Counts per 
molecule 

[kHz] 

Diffusion time 
[µs] 

Cyanine3 maleimide 1.7 61 

Linker 2.3 70 

OmpF-M-Linker vesicles  28.3 4530 

Linker-OmpF-M 3.1 452 

Vesicles ANDlinker- 
OmpF-M without BODIPY 7.0 452 

Vesicles AND linker-
OmpF-M with BODIPY 138.3 6000 
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Figure S6. 1H-NMR spectrum of poly(2-methyl-2-oxazoline)-b-poly(dimethylsiloxane)-b-

poly(2-methyl-2-oxazoline) triblock copolymer (PMOXA11-b-PDMS104-b-PMOXA11) in CDCl3 

at 500 MHz. 

Figure S7. Elugram (GPC) of PMOXA11-b-PDMS104-b-PMOXA11 in DMF. 
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Table S2.  Data from NTA measurements of CNC-noOmpF, CNC-linker-OmpF-M, CNC-

OmpF-M), and CNC-OmpF-WT samples diluted 1:1000 in PBS. 

 CNC-noOmpF CNC-linker-OmpF-M CNC-OmpF-M CNC-OmpF-WT 

diameter (nm) 202±47 192±42 182±42 215±49 

concentration 
(particles/mL) 

2.6´108 ± 
1.6´107 

1.8´108 ± 
4.5´106 

3.1´108 ± 
1.7´107 

3.8´108 ± 
2.4´107 

Figure S8. Laccase activity of CNCs in response to NaIO4 (with standard deviation). 

Measurements were carried out over 9 h at RT, pH 7.4: ABTS in PBS with CNC-OmpF-WT 

(black), ABTS in PBS with CNC-OmpF-M (red), ABTS in PBS CNC-linker-OmpF-M in the 

presence (green) and absence of NaIO4 (blue), CNC-noOmpF without (purple) and with NaIO4 

(yellow), and ATBS in PBS: A)-C) represent 3 independent CNC preparations. 
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Figure S9. TEM micrographs of different CNCs encapsulating laccase 11 month after 

preparation. Left, with linker-OmpF-M inserted in the membrane (CNC-linker-OmpF-M), 

middle, with inserted OmpF-M (CNC-OmpF-M), right, with inserted wild-type OmpF (CNC-

OmpF-WT). Scalebars: 500 nm 

 

Figure S10. Cryo-TEM micrographs of polymersomes self-assembled from PMOXA11-b-

PDMS104-b-PMOXA11. Scale bars: 100 nm 
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Figure S11. FCS curves (line) and raw data (dots) of PBS solutions of cyanine 3 maleimide 

(pink), OmpF-M-linker in 1% OG mixed with empty polymersomes before (blue), and after 

stained with BODIPY 630/650-X (red). 

Figure S12. SDS PAGE of laccase: L: Protein ladder; Lac1: 10 µg laccase, Lac2: 5 µg laccase. 
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Figure S13. Calibartion curve for BCA assay performed according to the supplier’s protocol 

(Thermo Fisher Scientific, U.S.A.) 
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Chapter 4 
 

Table S3. Original concentrations of purchased NP suspensions in particles/mL. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Original concentration of 
suspension (particles/mL) 

FluoSpheresTM  40 nm 1 ´ 1013 

FluoSpheresTM  100 nm 8 ´ 1012 

FluoSpheresTM  500 nm 2 ´ 1011 

amine-modified PS NPs 100 nm 2 ´ 1011 

red-fluorescent PS NPs 100 nm 8 ´ 1012 
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Figure S14. Formation of GPMVs from HepG2, Caco-2 and HeLa cells after incubation with 

100 nm fluorescent aminated NPs (yellow) or unmodified NPs (red) with initial concentrations 

between 4´109 particles/mL and 1.6´1011 particles/mL. 
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Figure S15. GPMVs formed from HepG2, HeLa and Caco-2 cells with transferred, red 

fluorescent carboxylated NPs inside their cavities. The NPs are of 40 nm or 100 nm size with 

initial concentrations between 4´109 particles/mL and 1.6´1011 particles/mL.  
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Figure S16. GPMVs formed from HepG2, Caco-2 and HeLa cell lines treated with red 

fluorescent carboxylated NPs (500 nm with initial concentrations between 4´109 particles/mL 

and 1.6´1011 particles/mL). No transfer of the 500 nm particles could be observed. 

 

  



 94 

 

 

Figure S17. Flow cytometry analysis of HepG2 cells with uptaken NPs: A) cellular uptake 

depending on the concentration of 40 nm red fluorescent carboxylated PS NPs. REF no NPs 

(grey), 1: 4´109 particles/mL (blue), 2: 8´109 particles/mL (green), 3: 1.6´1010 particles/mL 

(red). B) flow cytometry analysis of HepG2 cell size characterization by sideward (SSC) and 

forward scattering (FSC) analysis. The marked-out section represents the cell populations used 

for further NP uptake analysis by flow cytometry by PE-Texas Red A. C) cellular uptake 

depending on the concentration of 100 nm red fluorescent carboxylated PS NPs. REF no NPs 

(grey), 1: 4´109 particles/mL (blue), 2: 8´109 particles/mL (green), 3: 1.6´1010 particles/mL 

(red). D) flow cytometry analysis 100 nm NPs, size characterization by sideward and forward 

scattering analysis. The marked-out section represents the cell populations used for analysis 

by flow cytometry.  
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Figure S18. Flow cytometry analysis of Caco-2 cells with uptaken NPs: A) cellular uptake 

depending on the concentration of 40 nm red fluorescent carboxylated PS NPs. REF no NPs 

(grey), 1: 4´109 particles/mL (blue), 2: 8´109 particles/mL (green), 3: 1.6´1010 particles/mL 

(red). B) flow cytometry analysis of Caco-2 cell size characterization by sideward (SSC) and 

forward scattering (FSC) analysis. The marked-out section represents the cell populations used 

for further NP uptake analysis by flow cytometry by PE-Texas Red A. C) cellular uptake 

depending on the concentration of 100 nm red fluorescent carboxylated PS NPs. REF no NPs 

(grey), 1: 4´109 particles/mL (blue), 2: 8´109 particles/mL (green), 3: 1.6´1010 particles/mL 

(red). D) flow cytometry analysis 100 nm NPs, size characterization by sideward and forward 

scattering analysis. The marked-out section represents the cell populations used for analysis 

by flow cytometry. 
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Figure S19. Flow cytometry analysis of HeLa cells with uptaken NPs: A) cellular uptake 

depending on the concentration of 40 nm red fluorescent carboxylated PS NPs. REF no NPs 

(grey), 1: 4´109 particles/mL (blue), 2: 8´109 particles/mL (green), 3: 1.6´1010 particles/mL 

(red). B) flow cytometry analysis of HeLa cell size characterization by sideward (SSC) and 

forward scattering (FSC) analysis. The marked-out section represents the cell populations used 

for further NP uptake analysis by flow cytometry by PE-Texas Red A. C) cellular uptake 

depending on the concentration of 100 nm red fluorescent carboxylated PS NPs. REF no NPs 

(grey), 1: 4´109 particles/mL (blue), 2: 8´109 particles/mL (green), 3: 1.6´1010 particles/mL 

(red). D) flow cytometry analysis 100 nm NPs, size characterization by sideward and forward 

scattering analysis. The marked-out section represents the cell populations used for analysis 

by flow cytometry.  
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Figure S20. Relative fluorescence (RFU) of flow cytometry analysis given in Figure S6-S8: 

HepG2, Caco-2 and HeLa cells without NPs and treated with 40 nm (yellow) and 100 nm 

(green) PS NPs at 3 different concentrations (4´109 particles/mL, 8´109 particles/mL (green), 

1.6´1010 particles/mL). Error bars are given as ± standard deviation, significance level: p < 

0.5 (*). 

Figure S21. Evaluation of single plane projections of GPMVs formed from HepG2 cells treated 

with 40 nm carboxylated NPs at different concentrations: A) 4´109 particles/mL, B) 8´109 

particles/mL, C) 1.6´1010 particles/mL, D) 1.6´1011 particles/mL. 
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Figure S22. Evaluation of single plane projections of GPMVs formed from HepG2 cells treated 

with 100 nm carboxylated NPs at different concentrations: A) 4´109 particles/mL, B) 8´109 

particles/mL, C) 1.6´1010 particles/mL, D) 1.6´1011 particles/mL. 

 

Figure S23. Evaluation of single plane projections of GPMVs formed from Caco-2 cells treated 

with 40 nm carboxylated NPs at different concentrations: A) 4´109 particles/mL, B) 8´109 

particles/mL, C) 1.6´1010 particles/mL, D) 1.6´1011 particles/mL. 
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Figure S24. Evaluation of single plane projections of GPMVs formed from Caco-2 cells treated 

with 100 nm carboxylated NPs at different concentrations: A) 4´109 particles/mL, B) 8´109 

particles/mL, C) 1.6´1010 particles/mL, D) 1.6´1011 particles/mL. 

 

Figure S25. Evaluation of single plane projections of GPMVs formed from HeLa cells treated 

with 40 nm carboxylated NPs at different concentrations: A) 4´109 particles/mL, B) 8´109 

particles/mL, C) 1.6´1010 particles/mL, D) 1.6´1011 particles/mL. 

 



 100 

Figure S26. Evaluation of single plane projections of GPMVs formed from HeLa cells treated 

with 100 nm carboxylated NPs at different concentrations: A) 4´109 particles/mL, B) 8´109 

particles/mL, C) 1.6´1010 particles/mL, D) 1.6´1011 particles/mL. 
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Figure S27. GPMVs formed from HepG2, Caco-2 and HeLa cell lines treated with 40 nm red 

fluorescent carboxylated NPs. From left to right the initial concentrations are 4´109 

particles/mL, 8´109 particles/mL, 1.6´1010 particles/mL and 1.6´1011 particles/mL. After 

formation the GPMVs were isolated. 
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Figure S28. GPMVs formed from HepG2, Caco-2 and HeLa cell lines treated with 100 nm red 

fluorescent carboxylated NPs. From left to right the initial concentrations are 4´109 

particles/mL, 8´109 particles/mL, 1.6´1010 particles/mL and 1.6´1011 particles/mL. After 

formation the GPMVs were isolated. 
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LIST OF ABBREVATIONS 

 
PS  phosphatidylserine 
PE  phosphatidylethanolamine  
PI  phosphatidylinositol  
PC  phosphatidylcholine  
SM  sphingomyeline  
CRP  controlled/quasi- ‘living’ radical polymerization   
ROP  ring-opening polymerization  
PEM  polyelectrolyte multilayer  
PAA  poly(acrylic acid)  
PEO  poly(ethylene oxide)   
PEG  poly(ethylene glycol)  
PMOXA poly(2-methyl-2-oxazoline) 
PDMS  poly(dimethylsiloxane)  
PB   polybutadiene  
PS  polystyrene  
PDEAEMA  poly(2-(diethylamino)ethyl methacrylate 
PDMAEMA  poly(2-(dimethylamino)ethyl methacrylate 
PAD   poly(N-amidiono)docecyl acrylamide 
PSS   poly(styrene sulfonate) 
PNIPAM  poly(N-isoproylacrylamide) 
CMC  micellar concentration  
GUV  giant unilammelar vesicles  
GPMV  giant plasma membrane vesicle 
DTT  dithiothreitol  
PFA  paraformaldehyde  
CNCs  catalytic nanocompartments  
OmpF  outer membrane protein F 
BR  bacteriorhodopsin  
NTA  nanotracking particle analysis  
PDI  polydispersity index  
SLS  static light scattering  
DLS  dynamic light scattering 
Rg   radius of gyration  
Rh  radius of hydration 
CLSM  confocal laser scanning microscopy  
FCS  fluorescence correlation spectroscopy  
TEM  transmission electron microscopy 
Cryo-TEM cryogenetic transmission electron microscopy 
EM  electron microscopy  
FACS  fluorescence-activated cell sorter  
ROS  reactive oxygen species  
NP  nanoparticles 
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PBS   phosphate buffered saline 
SRB  sulphorhodamine B  
ABTS   2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt 
DMP  2,6-dimethoxyphenol 
BCA  bicinchoninic acid 
OG   n-octyl-β-D-glucopyranoside 
DMEM  high glucose dulbecco’s modified eagle medium  
EMEM  eagle's minimum essential medium  
HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
DMSO  dimethyl sulfoxide 
DMF   dimethylformamide 
MeCN  acetonitrile 
DST   disuccinimidyl tartrate 
EMCH  3,3'-N-[ε-maleimidocaproic acid] hydrazide, trifluoroacetic acid salt  
EDC   1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide 
DCM   dichloromethane 
NMR  nuclear magnetic resonance 
MS  mass spectrometry 
Ð  polydispersity 
GPC   Gel permeation chromatography  
SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SEC  size exclusion chromatography  
RFU  relative fluorescence 
 

  



 105 

LIST OF FIGURES AND TABLES 

 
Figure 1. Phospholipids and their self-assemblies 
Figure 2.  Schematic representation of liposomes and polymersomes 
Figure 3.  Liposomes and Polymersomes 
Figure 4.  Schematic representation of bioinspired polymer vesicles 
Figure 5.  Schematic representation of polymersomes applied as drug delivery systems 
Figure 6.  Schematic representation of a potential ion sensor based on polymersomes 
Figure 7.  Subcompartmentalization within GUVs 
Figure 8.  Comparison of real cell and synthetic GUV 
Figure 9.  The molecular building blocks of life 
Figure 10.  GPMVs formed from Caco-2 cell line  
Figure 11.  OmpF structure and the linker design 
Figure 12.  Characterization of the CNCs 
Figure 13.  Linker-based control of molecular passage through catalytic 

nanocompartmentsdemonstrated by spectrophotometric assessment of laccase activity 
of CNCs in response to NaIO4 

Figure 14.  Long-term laccase activity of CNCs in response to NaIO4 (with standard deviation 
calculated from three technical repeats), based on the increase in absorbance intensity 
of laccase-product with a characteristic absorbance at 470 nm 

Figure 15.  TEM micrographs of carboxylated, aminated and unmodified NPs in cell medium 
Figure 16.  General procedure for generating GPMVs from cells loaded with NPs 
Figure 17.  HepG2, Caco-2 and HeLa cells form GPMVs 
Figure 18.  Flow cytometry measurements of isolated GPMVs formed from HepG2 cells and 

loaded with increasing concentrations of 100 nm red fluorescent carboxylated PS NPs 
Figure 19.  GPMVs isolated from HepG2 cells 
Figure 20.   Average number of 40 nm (yellow) and 100 nm (green) NPs in 1 GPMV 
Figure 21.  Percentage of all GPMVs equipped with 40 nm (red) or 100 nm (blue) NPs in their 

cavity 
 
Scheme 1.  Chemical synthesis of the periodate-responsive linker 
 
Figure S1.   1H-NMR spectrum of Compound 2 in CDCl3 at 500 MHz 
Figure S2.  13C-NMR spectrum of Compound 2 in CDCl3 at 126 MHz. 
Figure S3.  1H-NMR spectrum of the bismaleimide linker in CDCl3 at 500 MHz. 
Figure S4. 13C-NMR spectrum of the bismaleimide linker in CDCl3 at 126 MHz and the image of 

the corresponding dissolved linker in the NMR-tube. 
Figure S5. SDS PAGE of OmpF-M  

Figure S6.  1H-NMR spectrum of poly(2-methyl-2-oxazoline)-b-poly(dimethylsiloxane)-b-poly(2-
methyl-2-oxazoline) triblock copolymer (PMOXA11-b-PDMS104-b-PMOXA11) in 
CDCl3 at 500 MHz 

Figure S7.  .Elugram (GPC) of PMOXA11-b-PDMS104-b-PMOXA11 in DMF 

Figure S8.  Laccase activity of CNCs in response to NaIO4 (with standard deviation) 
Figure S9.  TEM micrographs of different CNCs encapsulating laccase 11 month after preparation. 
Figure S10.  Cryo-TEM micrographs of polymersomes self-assembled from PMOXA11-b-PDMS104-

b-PMOXA11.  



 106 

Figure S11.  FCS curves (line) and raw data (dots) of PBS solutions of Cyanine3 maleimide (pink), 
OmpF-M-linker in 1% OG mixed with empty nanocompartments before (blue), and 
after stained with BODIPY 630/650-X (red). 

Figure S12 SDS PAGE of laccase 
Figure S13.  Calibration curve for BCA assay performed according to the supplier’s protocol  
Figure S14.  Formation of GPMVs from HepG2, Caco-2 and HeLa cells after incubation with 

100 nm fluorescent aminated NPs (yellow) or unmodified NPs (red) with initial 
concentrations between 4´109 particles/mL and 1.6´1011 particles/mL. 

Figure S15.  GPMVs formed from HepG2, HeLa and Caco-2 cells with transferred, red fluorescent 
carboxylated NPs inside their cavities. 

Figure S16.  GPMVs formed from HepG2, Caco-2 and HeLa cell lines treated with red fluorescent 
carboxylated NPs (500 nm with initial concentrations between 4´109 particles/mL and 
1.6´1011 particles/mL).  

Figure S17.  Flow cytometry analysis of HepG2 cells with uptaken NPs 
Figure S18.  Flow cytometry analysis of Caco-2 cells with uptaken NPs: 
Figure S19.  Flow cytometry analysis of HeLa cells with uptaken NPs: 
Figure S20.  Relative fluorescence (RFU) of flow cytometry analysis given in Figure S18-S20 
Figure S21.  Evaluation of single plane projections of GPMVs formed from HepG2 cells treated with 

40 nm carboxylated NPs at different concentrations 
Figure S22.  Evaluation of single plane projections of GPMVs formed from HepG2 cells treated with 

100 nm carboxylated NPs at different concentrations 
Figure S23.  Evaluation of single plane projections of GPMVs formed from Caco-2 cells treated with 

40 nm carboxylated NPs at different concentrations 
Figure S24.  Evaluation of single plane projections of GPMVs formed from Caco-2 cells treated with 

100 nm carboxylated NPs at different concentrations 
Figure S25.  Evaluation of single plane projections of GPMVs formed from HeLa cells treated with 

40 nm carboxylated NPs at different concentrations 
Figure S26.  Evaluation of single plane projections of GPMVs formed from HeLa cells treated with 

100 nm carboxylated NPs at different concentrations 
Figure S27.  GPMVs formed from HepG2, Caco-2 and HeLa cell lines treated with 40 nm red 

fluorescent carboxylated NPs 
Figure S28.  GPMVs formed from HepG2, Caco-2 and HeLa cell lines treated with 100 nm red 

fluorescent carboxylated NPs. 
  



 107 

Table 1.  Light scattering parameters of laccase loaded nanocompartments (NR−), laccase loaded 
nanocompartments with inserted OmpF-M-linker (NRC), laccase loaded 
nanocompartments with inserted OmpF-M (NR+), and OmpF wild type (NR2+). The 
ratio between the hydrodynamic radius (Rh) and radius of gyration (Rg) between 0.775 
and 1 indicates that the polymer assemblies have a hollow sphere architecture.57 The 
homogeneity of the nanocompartments size was confirmed by dynamic light scattering 
as with a PDI = 0.2. 

Table 2.  Measurements of 100 nm particles with different surface modifications (carboxylated, 
aminated, unmodified) in PBS and cell medium. 

 
Table S1.  Fluorescence correlation parameters of the free fluorophore cyanine3 maleimide, free 

linker, CNCs with OmpF-M-linker inserted in the membrane, stand-alone OmpF-M-
linker, and OmpF-M-linker added to empty polymersomes before and after staining the 
polymersomes with BODIPY 630/650-X. 

Table S2.  Data from NTA measurements of CNC-noOmpF, CNC-linker-OmpF-M, CNC-OmpF-
M), and CNC-OmpF-WT samples diluted 1:1000 in PBS. 

Table S3. Original concentrations of purchased NP suspensions in particles/mL. 
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PRACTICAL	EXPERIENCE		
07.2017	–	06.2021	
PhD	student	–	University	of	Basel,	Switzerland	
• Projects:		

A.	 Design	 and	 synthesis	 of	 stimuli-sensitive	 compounds	 for	 protein	
modification	and	labelling;	development	of	catalytic	nanocompartments	
based	 on	 encapsulated	 enzymes	 and	 functional	 membrane	 proteins	
reconstituted	in	the	polymeric	membrane	for	periodate	detection	
B.	Screening	diverse	nanoparticles	and	optimizing	the	uptake	into	cells;	
detailed	 investigation	 of	 the	 conditions	 for	 an	 efficient	 transfer	 of	
nanoparticles	 into	 cell	 blebs	 called	 Giant	 Plasma	 Membrane	 Vesicles	
(GPMVs)		

• Writing:	Scientific	publications,	reviews	and	reports	
• Research:	 Literature	 research,	 aseptic	 sample	 preparation	 in	 the	 lab,	

statistical	data	analysis		
• Teaching:	Supervision	of	students	during	physical	chemistry	internships	

	
	

08.2016	-	01.2017							
Master	thesis	-	Roche	Diagnostics	GmbH,	Penzberg,	Germany	
• Synthesis	 of	 modified	 chromophores	 and	 evaluation	 of	 their	

spectroscopic	 properties	 and	 advantages	 in	 selective	 detection	 of	
cysteine	in	aqueous	solutions	

	
08	-	09.2015	
Internship	-	Eagle	Burgmann	GmbH	&	Co.	KG,	Wolfratshausen,	Germany	
• Testing	and	optimizing	workflows	for	processes	in	patent	management	
• Database	maintenance,	cataloguing	correspondence	
• Translations	from	German	into	English		

	

	

	

	

 PERSONAL	DATA	

Address:	Unterer	Mühlenweg	15	

79859	Schluchsee	
Germany	

Phone:	+49	(0)	151	1661	0526			
Email:	luisa.zartner@gmail.com	
Nationality:	German	
Date	of	birth:	14.11.1991	

	

	PROGRAMS	

o SCS	Swiss	Women	in	
Chemistry	-	Mentorship	from	
industry	

o Feminno	-	Career	Program	
for	Innovative	Women	in	Life	
Science	
	

EXTRACURRICULAR	

WORKSHOPS	

o Licenses	&	Patents	
o Pitch	Training	
o Productive	Meetings	
o Innovation	Workshop	
o Funding	your	Projects	
o Negotiation	Skills	

	

	SOFT	SKILLS	

o Fast,	solution-oriented	
knowledge	transfer	

o Well-organized,	detail-
oriented,	independent	
methods	

o Meet	the	deadlines	
o Team-minded	
o Clear	communication	
o Flexibility	
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EDUCATION	
04.2015	-	03.2017	
Master	in	Chemistry	(1.52)	-	LMU	Munich,	Germany	
• Thesis:	“Synthesis	and	UV/Vis	Assays	of	Cysteine	Sensors	-	Direct	and	Highly	

Selective	Detection	of	L-Cysteine	with	Dyes	Carrying	Acryloyl	Esters”	(1.3)	
• Main	subjects:	Organic	chemistry,	inorganic	chemistry	
• Minor	subject:	Patent	legislation	for	chemists	

10.2011	–	01.2015	

Bachelor	in	Chemistry	(2.1)	-	LMU	Munich,	Germany	

	
	
TECHNICAL	KNOWLEDGE	

• Expression	and	extraction	of	proteins	
• Chemical	modification	of	membrane	proteins	
• Organic	synthesis,	bioconjugation	
• Self-assembly	of	polymers	and	membrane	proteins	into	functional	

nanostructures	
• Aseptic	cell	culturing	
• Analytical	techniques:	CLSM,	FCS,	NMR,	LCMS,	SDS-PAGE,	light	scattering:	

SLS/DLS,	column	chromatography,	TEM,	IR	and	UV/Vis	spectroscopy	
• Search	engine	SciFinder	
• Image	evaluation	program	ImageJ	
• Office	software:	MS	Office	(Powerpoint,	Word,	Excel),	Open	Office	Libre,	

EndNote,	ChemBioDraw,	MestReNova		
• Further	device-specific	data	analysis	softwares	

	
PUBLICATIONS	

L.	Zartner,	V.	Maffeis,	C.-A.,	Schoenenberger,	I.	A.	Dinu,	C.	G.	Palivan,	Membrane	
protein	channels	equipped	with	a	cleavable	 linker	 for	 inducing	catalysis	 inside	
nanocompartments,	Journal	of	Materials	Chemistry	B	2021		

L.	Zartner,	M.	Garni,	I.	Craciun,	T.	Einfalt,	C.	G.	Palivan,	How	Can	Giant	Plasma	
Membrane	 Vesicles	 Serve	 as	 a	 Cellular	 Model	 for	 Controlled	 Transfer	 of	
Nanoparticles?,	Biomacromolecules	2021	

L.	Zartner,	M.	S.	Muthwill,	I.	A.	Dinu,	C.-A.	Schoenenberger,	C.	G.	Palivan,	The	
rise	 of	 bio-inspired	 polymer	 compartments	 responding	 to	 pathology-related	
signals,	Journal	of	Materials	Chemistry	B	2020	

M.E.	El	Idrissi,	C.E.	Meyer,	L.	Zartner,	&	W.	Meier,	Nanosensors	based	on	polymer	
vesicles	 and	 planar	 membranes:	 a	 short	 review,	 Journal	 Nanobiotechnology	
2018	

 

 

 LANGUAGES	

o German	(native	language)	
o English	(fluent)	

	

	VOLUNTARY	WORK	

	02.2019	-	04.2020	

caring	for	residents	in	

retirement	home	

	

	HOBBIES	

o Reading:	biology,	physics,	
perfumery,	philosophy		

o Fitness	
o Playing	viola	
o Travelling	

	

	REFERENCES	

o On	request	

	

	

	

	

	
	

	

	


