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Abstract. We present a comprehensive discussion on lattice techniques for the simulation
of scalar and gauge field dynamics in an expanding universe. After reviewing the continuum
formulation of scalar and gauge field interactions in Minkowski and FLRW backgrounds,
we introduce the basic tools for the discretization of field theories, including lattice gauge
invariant techniques. Following, we discuss and classify numerical algorithms, ranging from
methods of O(δt2) accuracy like staggered leapfrog and Verlet integration, to Runge-Kutta
methods up to O(δt4) accuracy, and the Yoshida and Gauss-Legendre higher-order inte-
grators, accurate up to O(δt10). We adapt these methods for their use in classical lattice
simulations of the non-linear dynamics of scalar and gauge fields in an expanding grid in 3+1
dimensions, including the case of ‘self-consistent’ expansion sourced by the volume average of
the fields’ energy and pressure densities. We present lattice formulations of canonical cases
of: i) Interacting scalar fields, ii) Abelian U(1) gauge theories, and iii) Non-Abelian SU(2)
gauge theories. In all three cases we provide symplectic integrators, with accuracy ranging
from O(δt2) up to O(δt10). For each algorithm we provide the form of relevant observables,
such as energy density components, field spectra and the Hubble constraint. We note that all
our algorithms for gauge theories always respect the Gauss constraint to machine precision,
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including when ‘self-consistent’ expansion is considered. As a numerical example we analyze
the post-inflationary dynamics of an oscillating inflaton charged under SU(2) × U(1). We
note that the present manuscript is meant to be part of the theoretical basis for the code
CosmoLattice, a multi-purpose MPI-based package for simulating the non-linear evolution
of field theories in an expanding universe, publicly available at http://www.cosmolattice.net.

Keywords: particle physics - cosmology connection, physics of the early universe, cosmolog-
ical phase transitions, inflation
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1 Introduction

1.1 The Numerical Early Universe: a laboratory for non-linear high energy
physics

Significant evidence [1] supports the idea of inflation, a phase of accelerated expansion in
the early universe, which provides both a solution to the shortcomings of the hot Big Bang
framework [2–8], and an explanation for the origin of the primordial density perturbations [9–
13]. Inflation is often assumed to be driven by a scalar field, the inflaton, with potential
and initial conditions appropriately chosen to sustain a long enough period of accelerated
expansion. To switch to the standard hot Big Bang cosmology, a reheating period must
ensue after inflation, converting the energy available into light degrees of freedom (dof ),
which eventually thermalize and dominate the energy budget of the universe. This transition
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process is an integral part of the inflationary paradigm, although observationally is much
less constrained than the period of inflation itself. For reviews on inflation and reheating,
see [14–18] and [19–22], respectively.

In many scenarios, the inflaton oscillates around the minimum of its potential following
the end of inflation, initially in the form of a homogeneous condensate. Particle species cou-
pled sufficiently strong to the inflaton are then created in energetic bursts. If the particles
are bosonic species, their production is driven by parametric resonance, what (depending
on the coupling) can result in an exponential transfer of energy within few oscillations of
the inflaton [23–30]. If the particles are fermionic species, there can also be a significant
transfer of energy [31–34], albeit no resonance can be developed due to Pauli blocking. Par-
ticle production in this way, of either bosons or fermions, corresponds to a non-perturbative
effect, which cannot be described with standard quantum field theory (QFT) perturbative
techniques. Furthermore, particle species created by these effects are far away from ther-
mal equilibrium, and in the case of bosonic species their production is exponential, so they
eventually ‘backreact’ into the inflaton, breaking apart its initial homogeneous condition.
The dynamics of the system becomes non-linear from that moment onward. All of these
effects, from the initial particle production to the eventual development of non-linearities in
the system, represent what is referred to as a preheating stage. In order to fully capture the
non-perturbative, out-of-equilibrium, and eventual non-linearities of preheating, we need to
study such phenomena in a lattice. This requires the use of classical field theory real-time
simulations, an approach valid as long as the particle species involved in the problem have
large occupation numbers nk � 1, so that their quantum nature can be neglected [35, 36].

Parametric particle production can also be developed in the early universe, in circum-
stances other than preheating. For instance, in the curvaton scenario [37–40], the initially
homogeneous curvaton (a spectator field during inflation) may decay after inflation via para-
metric resonance, transferring abruptly all of its energy to other particle species [41–44]. If
the Standard Model (SM) Higgs is weakly coupled to the inflationary sector, the Higgs can
be excited either during inflation [45–47], or towards the end of it [48, 49], in the form of
a condensate with a large amplitude. The Higgs then decays naturally into the rest of the
SM species via parametric effects [46, 49–54], some time after inflation.1 In supersymmetric
(SUSY) extensions of the SM we encounter flat directions [63, 64], configurations in field space
where the renormalizable part of the scalar potential is exactly flat (as SUSY must be broken,
the exact flatness is however typically uplifted by various effects [65]). During inflation, due
to quantum fluctuations, field configurations can be developed with a large expectation value
along these directions [64, 66]. If such scalar condensates have a soft mass, its amplitude
starts oscillating after inflation once the Hubble rate becomes smaller than its mass [65, 67],
possibly ensuing an explosive decay of the field condensate due to non-perturbative resonant
effects [68–70].

In certain types of inflationary models where spontaneous symmetry breaking plays a
central role, tachyonic effects can also lead to non-perturbative and out-of-equilibrium particle
production, eventually driving the system into a non-linear regime. A paradigmatic example
of this is Hybrid inflation [71], a family of models where the inflationary stage is sustained
by the vacuum energy of a Higgs-like field. In these scenarios, the effective squared mass of
the Higgs field is positive defined during inflation, but becomes negative when the inflaton

1Note that this differs from the Higgs-Inflation scenario [55, 56], where the Higgs also decays after inflation
into SM fields via parametric effects [51, 57–62], but as the Higgs plays the role of the inflaton, this scenario
belongs to the category of preheating.
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eventually crosses around a critical point. The Higgs then sustains a tachyonic mass that leads
into an exponential growth of the occupation number of its most infrared (IR) modes below
its own tachyonic mass scale [72–75]. This continues until the mass squared becomes positive
again, due to the Higgs own self-interactions. In Hilltop-inflation, inflation is sustained while
the inflaton slowly rolls from close to a maximum of its potential (the ‘hilltop’) towards its
minimum, located at some non-vanishing scale. When the inflaton crosses a certain threshold
amplitude, inflation ends, and the inflaton starts oscillating around its minimum. Its effective
squared mass then alternates between positive and negative values, as the inflaton rolls back
and forth between the minimum and the region of negative curvature of its potential around
where inflation ended. Fluctuations of the inflaton then grow exponentially during successive
oscillations [76–79].

Preheating effects have also been studied in models with gravitationally non-minimal
coupled fields [61, 80–85], and in particular, recently, in multi-field inflation scenarios [86–90].
In the latter, a single-field attractor behavior is developed during inflation, later persisting
during preheating. Due to this, particle production after inflation becomes more efficient than
in multi-field models with minimal couplings, where a de-phasing effect of the background
fields’ oscillations leads to a damping of the resonances [20, 91–94].

Furthermore, as gauge fields are naturally present in the SM and in many of its exten-
sions, their presence in inflationary scenarios has also been considered. Due to their bosonic
nature, gauge fields can exhibit highly nonlinear dynamics during preheating. For instance,
if the inflaton enjoys a shift-symmetry, a topological coupling to a gauge sector is allowed.
In the case of U(1) gauge fields, preheating effects have been studied in axion-inflation sce-
narios [95–100], showing that an interaction φFF̃ leads to an extremely efficient way to
reheat the universe, as well as to very interesting (potentially observable) phenomenology.
In [98, 101, 102] an improved lattice formulation of an interaction φFF̃ between an axion-like
field and a U(1) gauge sector was constructed, demonstrating that the topological nature of
FF̃ as a total derivative ∂µKµ, can be actually realized exactly on a lattice (hence preserving
exactly the shift symmetry at the lattice level). Interactions between a singlet inflaton and
an Abelian gauge sector, via f(φ)F 2, or a non-Abelian SU(2) gauge sector, via f(φ)Tr G2,
have also been explored in the context of preheating [103, 104].

In Hybrid inflation models, the presence and excitation of gauge fields have also been
addressed extensively, both for Abelian and non-Abelian scenarios, obtaining a very rich
phenomenology, see e.g. [105–115]. The case of preheating via parametric resonance, with
a charged inflaton under a gauge symmetry, has however not been considered very often in
the literature.2 Nothing is wrong per se about considering an inflaton charged under a gauge
group [and hence coupled to some gauge field(s)], as long as one constructs a viable working
model, respecting all observational constraints. In such a case, when the inflaton starts oscil-
lating following the end of inflation, the corresponding gauge bosons will be parametrically
excited. This has been studied in detail in ref. [116], for both Abelian U(1) and non-Abelian
SU(2) gauge groups. Actually, in this manuscript we also consider a similar model for which
we compute the preheating stage via parametric resonance effects into U(1) and U(1)×SU(2)
sectors. A natural realization of an inflationary set-up where the inflaton is charged under
a gauge group is the Higgs-Inflation scenario [55, 56], where the SM Higgs is the inflaton.
There the electroweak gauge bosons and charged fermions of the SM are coupled to the Higgs,

2Possibly, this is partially due to the fact that there is no particular need to ‘gauge’ the inflationary sector,
and partially because of the potential danger that gauge couplings may induce large radiative corrections in
the inflaton potential, spoiling the conditions to sustain inflation.
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and thus they experience parametric excitation effects during the oscillations of the Higgs
after inflation [51, 57–62]. In the case where the SM Higgs is rather a spectator field during
inflation, the post-inflationary decay of the Higgs into SM fields has also been considered
in [53, 54, 117–119].

The non-linear dynamics characteristic of preheating scenarios, and in general of non-
perturbative particle production phenomena, are interesting not only by themselves, but also
because they may lead to cosmologically relevant and potentially observable phenomena.
Among these, we highlight:

• The generation of scalar metric perturbations [120–129], possibly leading to the forma-
tion of primordial black holes [130–138].

• The production of stochastic gravitational wave backgrounds by parametric effects [99,
100, 114, 139–155]. For a recent review see [156].

• The creation of topological defects, like cosmic string networks [72, 114, 157–159],
and their evolution during the scaling regime [160–166] and corresponding emission of
GWs [167, 168].

• The creation of soliton-like structures such as oscillons [79, 145, 148, 149, 151, 154, 158,
169–173] and other field configurations [127, 174–176].

• The realization of magnetogenesis [96, 112, 113, 177–180] and baryogenesis mecha-
nisms [96, 105–109, 181–188].

• The determination of the post-inflationary equation of state, and its implications for
the CMB inflationary observables [170, 189–193], or for the dark matter relic abun-
dance [194].
In general, the details of nonlinear phenomena are difficult, when not impossible, to be

grasped by analytic calculations. In order to fully understand the non-linearities developed
in a given model, the use of numerical techniques becomes necessary. The results arising from
the non-linear dynamics of early universe high-energy phenomena, represent an important
perspective in determining the best observational strategies to probe the unknown physics
from this era. It is therefore crucial to develop numerical techniques, as efficient and robust
as possible, to simulate these phenomena. Numerical algorithms developed for this purpose
must satisfy a number of physical constraints (e.g. energy conservation), and keep the nu-
merical integration errors under control. It is actually useful to develop as many techniques
as possible, to validate and double check results from simulations. Only in this way, we will
achieve a certain robustness in the predictions of the potentially observational implications
from non-linear high energy phenomena. Furthermore, the techniques developed for studying
nonlinear dynamics of classical fields are common to many other non-linear problems in the
early universe, like the dynamics of phase transitions [74, 75, 102, 195–199] and their emis-
sion of gravitational waves [200–206], cosmic defect formation [114, 159, 207–214], their later
evolution [160–166, 215, 216] and gravitational wave emission [114, 167, 168, 217], axion-like
field dynamics [172, 175, 218–221], moduli dynamics [222, 223], etc. These techniques can
also be used in applications of interest not only to cosmology, but also to other high energy
physics areas. For example, classical-statistical simulations have been used to compute quan-
tities such as the sphaleron-rate [224–239], and to study the Abelian [102, 197, 240–243] and
non-Abelian [244] dynamics associated to the chiral anomaly. They have also been used to
study spectral quantities [245, 246], and some properties of the quark-gluon plasma [247–250].
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1.2 Purpose of this manuscript. Introducing CosmoLattice

As just reviewed in the previous section, the phenomenology of high-energy non-linear pro-
cesses in the early universe is vast and very rich. In order to make reliable predictions of
their potentially observable consequences, we need appropriate numerical tools. The Nu-
merical Early Universe, i.e. the study of high-energy non-linear field theory phenomena with
numerical techniques, is an emerging field, increasingly gaining relevance, especially as a
methodology to assess our capabilities to experimentally constrain (or even determine) the
physics of this (yet) unknown epoch. It is because we recognize the importance of this, that
we have created this dissertation, the content and purpose of which we explain next.

The present manuscript constitutes a theoretical basis for the code CosmoLattice, pub-
licly available at http://www.cosmolattice.net. CosmoLattice is a modern multi-purpose
MPI-based C++ package, developed as a user-friendly software for lattice simulations of
non-linear dynamics of scalar and gauge field dof in expanding backgrounds, including the
possibility to ‘self-consistently’ source the expansion of the universe by the fields themselves.
Of course, exploring numerically the nonlinear dynamics of interacting fields during the early
universe is not a new idea, as witnessed by the increasing number of lattice codes dedicated
to this purpose that have appeared within the last years. With the exception of the recent
GFiRe code [159], that includes an integrator for Abelian gauge theories, previous public pack-
ages were dedicated only to interacting scalar fields, either with finite difference techniques
in real space, like Latticeeasy [251], Clustereasy [252], Defrost [253], CUDAEasy [254],
HLattice [255], PyCOOL [256] and GABE [257], or pseudo-spectral codes like PSpectRe [258]
and Stella [171]. In most of the mentioned codes, metric perturbations (whenever present)
are sourced passively, neglecting backreaction effects on the dynamics of the scalar fields. No-
table exceptions to this are HLATTICE v2.0, and especially the recent GABERel [128], which
allows for the full general relativistic evolution of non-linear scalar field dynamics. Given
that all these codes are already available, one may wonder what is the point of releasing yet
a new one. In order to answer this, let us explain the purpose of CosmoLattice, which is
actually twofold:

1. CosmoLattice is meant to be a ‘platform’ for users to implement any system of equa-
tions suitable for discretization on a lattice. That is, CosmoLattice is not a code for
doing one type of simulation with one specific integration technique, such as e.g. the
real-time evolution of interacting scalar fields sourcing self-consistently the expansion
of the universe. The idea is rather something else: CosmoLattice is a package that
introduces its own symbolic language, by defining field variables and operations over
them. Therefore, once the user becomes familiar with the basic ‘vocabulary’ of the
new language, they can write their own code: be it for the time evolution of the field
variables in a given model of interest, or for some other operation, like a Monte-Carlo
generator for thermal configurations. One of the main advantages of CosmoLattice is
that it clearly separates the physics (i.e. fields living on a lattice and operations between
them) from the implementation details, such as the handling of the parallelization or
the Fourier transforms. For example, let us imagine a beginner user with little ex-
perience in programming, and with no experience at all in parallelization techniques.
With CosmoLattice, they will be able to run a fully parallelized simulation of their
favourite model (say using hundreds of processors in a cluster), while being completely
oblivious to the technical details. They will just need to write a basic model file in
the language of CosmoLattice, containing the details of the model being simulated.
If, on the contrary, the user is rather an experienced one and wants to look inside
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the core routines of CosmoLattice and modify, for example, the MPI-implementation,
they can always do so, and perhaps even contribute to improving them. On top of
this, CosmoLattice includes already a library of basic routines and field-theoretical
operations. This constitutes a clear advantage of using CosmoLattice as a platform
to implement a given scenario over writing your own code from scratch. In particular,
CosmoLattice comes with symbolic scalar, complex and SU(2) algebras, which allows
to use vectorial and matrix notations without sacrificing performances. Furthermore,
CosmoLattice is MPI-based and uses a discrete Fourier Transform parallelized in mul-
tiple spatial dimensions [259], making it very powerful for probing physical problems
with well-separated scales, running very high resolution simulations, or simply very
long ones. CosmoLattice is publicly available in http://www.cosmolattice.net, and it
comes with a detailed manual explaining its whole structure and the basic instructions
to start running your own simulations.

2. CosmoLattice includes already a set of algorithms to evolve lattice scalar-gauge theo-
ries in real-time, which can be selected with a single ‘switch’ option. Part of this doc-
ument can be actually considered as the theoretical basis for such algorithms. In fact,
this manuscript is really meant to be a primer on lattice techniques for non-linear sim-
ulations, as we present a comprehensive discussion on such techniques, in particular for
the simulation of scalar and gauge field dynamics in an expanding universe. In section 2
we review first the formulation of scalar and gauge field interactions in the continuum,
both in a flat space-time and in Friedmann-Lemaître-Robertson-Walker (FLRW) back-
grounds. In section 3 we introduce the basic tools for discretizing any bosonic field
theory in an expanding background, including a discussion on lattice gauge-invariant
techniques for both Abelian and non-Abelian gauge theories. Next, we introduce and
classify a series of numerical algorithms, starting with the staggered leapfrog andVerlet
integration methods of O(δt2) accuracy, passing through Runge-Kutta methods up to
O(δt4) accuracy, and finally covering higher-order integrators accurate up to O(δt10),
such as the Yoshida and Gauss-Legendre methods. In the following sections 4, 5 and 6,
we adapt the previous algorithms to a specialized use for classical lattice simulations
of scalar and gauge field dynamics in an expanding background. We include the possi-
bility of ‘self-consistent’ expansion of the universe, sourcing the evolution of the scale
factor by the volume average of the fields’ energy and pressure densities, independently
of whether the fields are scalars, Abelian gauge fields, or non-Abelian gauge fields. In
section 4, we present a variety of lattice formulations of interacting scalar fields, con-
sisting in different integrators that can reproduce the continuum theory to an accuracy
ranging from O(δt2) to O(δt10). Analogously, in sections 5 and 6, we present a set
of algorithms for Abelian U(1) gauge theories and Non-Abelian SU(2) gauge theories
respectively, again with an accuracy ranging between O(δt2) and O(δt10). In the case
of interacting scalar fields, we provide both symplectic and non-symplectic integrators,
whereas for gauge fields only symplectic integrators are built. For every algorithm
presented, we always provide the form of the most significant observables, such as the
energy density components, relevant field spectra, and the Hubble constraint. The
latter is verified by our symplectic algorithms with an accuracy that depends on the in-
tegrator order, reaching even machine precision in the case of the highest order schemes.
Furthermore, it is worth noting that our integration algorithms for gauge theories al-
ways respect the Gauss constraint exactly, down to machine precision, independently
of the order of the integrator. This remains true even in the case of self-consistent
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expansion, and independently of whether the gauge sector is Abelian or non-Abelian.
We note that all the explicit-in-time algorithms presented in sections 4–6 are already
implemented in CosmoLattice, and have been made publicly available with the release
of the code.

It should also be noticed that this manuscript represents only Part I of our intended dis-
cussion on lattice techniques for the simulation of interacting fields in an expanding universe.
In this document we focus on the presentation of general integration techniques (section 3),
and in their use to build explicit-in-time integration algorithms for canonical scalar-gauge
theories, i.e. for field theories with canonically normalized kinetic terms, standard scalar po-
tentials (section 4), and standard scalar-gauge Abelian (section 5) and non-Abelian (section 6)
interactions. We would like to highlight that we present higher-order integration algorithms
for interacting scalar fields, similarly as in HLattice [255]. Whereas in HLattice one family
of algorithms with accuracy up to O(δt6) was built, we go a step beyond, building a variety
of algorithm families, and introducing explicit implementations to all (even) orders, includ-
ing also O(δt8) and O(δt10). Analogously, we present higher-order integration algorithms
for Abelian U(1) gauge theories, similar in spirit to the algorithm presented in GFiRe [159],
which was tested to O(δt4). We present a variety of flavours of these algorithms, and demon-
strate explicitly their numerical implementation for all (even) accuracy orders for the first
time, including now O(δt6), O(δt8) and O(δt10). Furthermore, to the best of our knowl-
edge, we also present for the first time an algorithm for non-Abelian SU(N) gauge theories
that is symplectic, explicit in time, and of arbitrary order, as well as preserving exactly
the Gauss constraint while solving for the expansion of the universe self-consistently. As a
numerical example to test our algorithms in scalar-gauge canonical theories, we analyze the
post-inflationary preheating dynamics of an oscillating inflaton charged under SU(2)×U(1)
in section 8. We postpone the discussion about methods for non-canonical scenarios for Part
II of our dissertation on lattice techniques, to be published elsewhere [260], together with
the public release of their implementation in CosmoLattice. Non-canonical scenarios are
theories e.g. with non-minimal gravitational couplings, or more generally with kinetic terms
with non-trivial field metrics, as considered e.g. in [89, 90, 257]. Non-canonical scenarios may
also include interactions between field variables and their conjugate momenta, as naturally
arising in exact derivative couplings between an axion-like field and gauge fields, as consid-
ered e.g. in [98]. Non-canonical interactions can be numerically complicated to deal with,
and usually require integration techniques which are either non-symplectic or simply more
involved, typically with high memory requirements, and often not explicit in time. It is pre-
cisely because of these circumstances that we naturally separate the methods for canonical
scalar-gauge theories presented here in Part I (in sections 4–6 of the present document), from
the numerical integrators that we will present for non-canonical interactions in Part II [260].

To conclude this section, let us mention that precisely because CosmoLattice is a
platform rather than a specialized code for certain type of scenarios or integration techniques,
there is a number of extensions (beyond the routines currently discussed here in Part I, or
planned to be presented in Part II ), which we would like to add in CosmoLattice in the
mid-term, as we go updating and improving the code in time. We hope to eventually consider
(perhaps in collaboration with you?) the following aspects:

• Addition of fermions. Even though this is numerically very costly, one can simulate
the out-of-thermal-equilibrium dynamics of classical bosonic fields coupled to quantum
fermions. This has been done by [261] and successive works [262–264], combining the
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lattice implementation based on the quantum mode equations proposed in [265], with
the ‘low cost’ fermions introduced in [266].

• Computation of metric perturbations. This could be done for scalar and vector pertur-
bations following [255], whereas tensor perturbations representing gravitational waves
(GW) can be obtained following [267] (based on the idea originally proposed in [142]),
as this allows for general GW sources built from either scalar and gauge fields (or even
fermions if they were present).

• Addition of relativistic hydrodynamics. This can be useful to describe scenarios where
a classical scalar field, playing the role of an order parameter in a phase transition, is
coupled to a relativistic fluid by means of a phenomenological friction term. This is the
basis to describe numerically the dynamics of first order phase transitions [74, 75, 102,
195–199] and their emission of gravitational waves [200–206].

• Addition of new ‘initializer’ routines. So far we have only considered the initialization
of field fluctuations in Fourier space (on top of homogeneous field values), given a
theoretical spectrum as an input. However, in order to simulate e.g. the dynamics of a
network of cosmic strings or other type of topological defects, different algorithms need
to be used to create initially the defect network in configuration space, see e.g. [160–
167, 215, 216, 268].

• Addition of ‘importance sampling’ algorithms. Monte-Carlo algorithms and Langevin
dynamics are used to generate fields according to some probability distributions. They
can be used to set up thermal initial conditions to study e.g. chiral charge dynam-
ics in gauge theories at finite temperature [102, 197]. Alternatively, one could turn
CosmoLattice into a general platform to sample positive definite path integrals. While
specific and highly optimized open-source codes exist to simulate lattice QCD [269, 270],
to the best of our knowledge, there is no truly versatile software to easily simulate
other theories.

1.3 Conventions and notation

Unless otherwise specified, throughout the document we use the following conventions. We
use natural units c = ~ = 1 and choose metric signature (−1,+1,+1,+1). We use inter-
changeably the Newton constant G, the full Planck mass Mp ' 1.22 · 1019 GeV, and the re-
duced Planck mass mp ' 2.44 ·1018 GeV, all related throughM2

p = 8πm2
p = 1/G. Concerning

space-time coordinates, Latin indices i, j, k, . . . = 1, 2, 3 are reserved for spatial dimensions,
and Greek indices α, β, µ, ν, . . . = 0, 1, 2, 3 for space-time dimensions. We use the Einstein
convention of summing over repeated indices only in the continuum, whereas in the lattice,
unless otherwise stated, repeated indices do not represent summation. We consider a flat
FLRW metric ds2 = −a2α(η)dη2 + a2(η) δij dxidxj with α ∈ Re a constant chosen conve-
niently in each scenario. For α = 0, η denotes the coordinate time t, whereas for α = 1, η
denotes the conformal time τ =

∫ dt′

a(t′) . For arbitrary α, we will refer to the time variable
as the α-time. We reserve the notation ()· for derivatives with respect to cosmic time with
α = 0, and ()′ for derivatives with respect to α-time with arbitrary α. Physical momenta are
represented by p, comoving momenta by k, the α-time Hubble rate is given by H = a′/a,
whereas the physical Hubble rate is denoted by H = H|α=0. Cosmological parameters are
fixed to the CMB values given in [1, 271]. Our Fourier transform convention in the continuum
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is given by

f(x) = 1
(2π)3

∫
d3k f(k) e−ikx ⇐⇒ f(k) =

∫
d3x f(x) e+ikx . (1.1)

2 Field dynamics in the continuum

In this section, we describe briefly the formulation of scalar and gauge field dynamics in
the continuum. We review first, in section 2.1, the case of interacting fields in a Minkowski
background, starting with scalar fields only, and then introducing gauge symmetries and the
corresponding gauge field degrees of freedom (dof ). We then promote the background metric
into a curved manifold, and specialize our study to the case of a spatially-flat, homogeneous,
and isotropic space-time, described by the FLRW metric. We consider the dynamics of
scalar and gauge fields living in a FLRW background in section 2.2, and the dynamics of the
background itself, as sourced by the fields that live within it, in section 2.3.

2.1 Scalar and gauge field interactions in flat space-time

Let us consider first a set of Ns relativistic interacting scalar fields with action in flat
space-time

SS = −
∫
d4x

{1
2∂

µφi∂µφi + V ({φj})
}
, (2.1)

where i, j = 1, . . . Ns label the fields, and the potential V ({φj}) characterizes the interac-
tions between fields, including also possibly self-interactions. Because of the normalization
constant 1/2 in front of the kinetic term ∂µφi∂µφi, we will refer to these fields as canonically
normalized scalar fields. We note that space-time indices are raised with the Minkowski
metric, e.g. ∂µφ ≡ ηµν∂νφ. The equations of motion (EOM) of the system are obtained from
minimizing eq. (2.1). This leads to

−�ηφi + ∂V

∂φi
= 0 , with �η ≡ ηµν∂µ∂ν = ∂α∂α . (2.2)

In a more explicit form, the EOM can be written as follows

φ̈i −
#»∇ 2
φi + ∂V

∂φi
= 0 ⇐⇒

 φ̇i ≡ πi ,

π̇i = #»∇ 2
φi − ∂V

∂φi
.

(2.3)

Let us now consider a general scalar-gauge theory in the continuum, including three
types of (canonically normalized) scalar fields: a singlet φ, a U(1)-charged field ϕ, and a
[SU(N) × U(1)]-charged field Φ; as well as the corresponding Abelian Aµ and non-Abelian
Bµ = Ba

µ Ta gauge vector bosons. Here {Ta} are the N2 − 1 group generators of SU(N),
satisfying the properties of the SU(N) Lie algebra

[Ta, Tb] = ifabcTc , Tr(Ta) = 0 , Tr(TaTb) = 1
2δab , T

†
a = Ta , (2.4)

with fabc the totally anti-symmetric structure constants of SU(N). In the particular case of
SU(2), Ta ≡ σa/2 (a = 1, 2, 3), with σa the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.5)
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For later convenience we also write some of their properties,

[σa, σb] = 2iεabcσc , Tr(σa) = 0 , Tr(σaσb) = 2δab , σ†a = σa , (2.6)

with εabc the total anti-symmetric tensor.
We can write a gauge invariant action as

S=−
∫
d4x

{1
2∂µφ∂

µφ+(DA
µϕ)∗(Dµ

Aϕ)+(DµΦ)†(DµΦ)+ 1
4FµνF

µν+ 1
2Tr{GµνGµν}+V

}
=
∫
d4x

{
φ̇2

2 −
|~∇φ|2

2 +|D0ϕ|2−| ~Dϕ|2+|D0Φ|2−| ~DΦ|2+ |
~E|2

2 −
| ~B|2

2 +
∑
a

(
|~Ea|2

2 − |
~Ba|2

2

)
−V

}
,

(2.7)

with a potential V ≡ V (φ, |ϕ|, |Φ|) describing the interactions among the scalar fields,

φ ∈ Re , ϕ ≡ 1√
2

(ϕ0 + iϕ1) , Φ =


ϕ(0)

ϕ(1)

...
ϕ(N−1)

 = 1√
2


ϕ0 + iϕ1

ϕ2 + iϕ3
...

ϕ2N−2 + iϕ2N−1

 , (2.8)

and where we have introduced standard definitions of covariant derivatives (denoting QA
and QB the Abelian and non-Abelian charges) and field strength tensors,

DA
µ ≡ ∂µ − igAQAAµ , (2.9)

Dµ ≡ IDA
µ − igBQBBa

µ Ta , (2.10)
Fµν ≡ ∂µAν − ∂νAµ , (2.11)
Gµν ≡ ∂µBν − ∂νBµ − i[Bµ, Bν ] , (2.12)

with I the N ×N identity matrix. In the second line of (2.7) we have used the properties of
the generators, displayed in eq. (2.4), to obtain

Gµν ≡ GaµνTa ⇒
1
2Tr(GµνGµν) ≡ 1

2G
a
µνG

µν
a ; Gaµν ≡ ∂µBa

ν − ∂νBa
µ + fabcBb

µB
c
ν , (2.13)

and introduced Abelian and non-Abelian electric and magnetic fields as

Ei ≡ F0i, Bi = 1
2εijkF

jk, Eai ≡ Ga0i, Bai = 1
2εijkG

jk
a . (2.14)

The equations of motion (EOM) of the system can be obtained from minimizing eq. (2.7).
They are

∂µ∂µφ = ∂V

∂φ
[Singlet]

Dµ
AD

A
µϕ = 1

2
∂V

∂|ϕ|
ϕ

|ϕ|
[U(1)-charged]

DµDµΦ = 1
2
∂V

∂|Φ|
Φ
|Φ| [U(1)× SU(N)]

∂νF
µν = JµA [Abelian vector]

(Dν)abGµνb = Jµa [Yang-Mills vector]

, (2.15)
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where (DνO)a = (Dν)abOb ≡ (δab∂ν − fabcBc
ν)Ob, and the currents are given by

JµA ≡ 2gAQ(ϕ)
A Im[ϕ∗(Dµ

Aϕ)] + 2gAQ(Φ)
A Im[Φ†(DµΦ)] , (2.16)

Jµa ≡ 2gBQBIm[Φ†Ta(DµΦ)] . (2.17)

It is straightforward to show that both action (2.7) and the EOM (2.15) are invariant
under the following set of gauge transformations,

φ(x) −→ φ(x) , [singlet]

ϕ(x) −→ ω(x)ϕ(x) , ω(x) = e−igAQ
(ϕ)
A α(x) ,

Φ(x) −→ ω(x)Ω(x)Φ(x) , Ω(x) ≡ e−igBQBβa(x)Ta , ω(x) = e−igAQ
(Φ)
A α(x) ,

Aµ(x) −→ Aµ(x)− ∂µα(x) ,

Bµ(x) −→ Ω(x)Bµ(x)Ω†(x)− i

gBQB
[∂µΩ(x)]Ω†(x) ,

(2.18)

with α(x) and βa(x) arbitrary real functions, Q(ϕ)
A and Q(Φ)

A the Abelian charges of ϕ and Φ,
and QB the non-Abelian charge of Φ. The transformation of the gauge fields imply that the
field strengths transform as

Fµν(x) −→ Fµν(x) , [invariant]
Gµν(x) −→ Ω(x)Gµν(x)Ω†(x) .

(2.19)

Using the definitions in eq. (2.14), we can also write the EOM in vectorial form, making
more explicit the individual terms in each equation:

φ̈− #»∇ 2
φ = −V,φ , (2.20)

ϕ̈− #»

D
2
Aϕ = −

V,|ϕ|
2

ϕ

|ϕ|
, (2.21)

Φ̈− #»

D
2Φ = −

V,|Φ|
2

Φ
|Φ| , (2.22)

#̇»E − #»∇× #»B = #  »

JA ≡ 2gAQ(ϕ)
A Im[ϕ∗ #   »

DAϕ] + 2gAQ(Φ)
A Im[Φ† #»

DΦ] , (2.23)

( #»D0
#»E )a − ( #»D × #»B)a = # »

Ja ≡ 2gBQ(Φ)
B Im[Φ†Ta

#»

DΦ] , (2.24)

− #»∇ #»E = JA0 ≡ 2gAQ(ϕ)
A Im[ϕ∗(DA

0 ϕ)] + 2gAQ(Φ)
A Im[Φ†(D0Φ)] , (2.25)

−( #»D #»E )a = (J0)a ≡ 2gBQ(Φ)
B Im[Φ†Ta(D0Φ)] . (2.26)

We note that eqs. (2.25) and (2.26) represent constraint equations, as they correspond to the
equations associated with the temporal component of the gauge field, which is not dynamical.
These constraints are equivalent to the standard Gauss Law of electromagnetism #»∇ #»E = ρ.
In particular, they are the generators of gauge transformations [272].

2.2 Field dynamics in an expanding background

To describe the expansion of the universe we consider a flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric, with line element

ds2 = gµνdxµdxν = −a(η)2αdη2 + a(η)2δijdxidxj , (2.27)
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where a(η) is the scale factor, δij is the Euclidean metric, and α is a constant parameter that
will be chosen conveniently in a case by case basis. The choice α = 0 identifies η with the
coordinate time t, whereas α = 1 makes η the conformal time τ ≡

∫ dt′

a(t′) . For the time being,
we will consider α as an unspecified constant, and we will refer to η as the α-time variable.

Note. Recall that we reserve the symbol ḟ ≡ df/dt for derivatives with respect to the coor-
dinate time, whereas f ′ ≡ df/dη will indicate derivative with respect to any α-time variable.

For later convenience we write the metric and inverse metric elements explicitly,

g00 = −a(η)2α ; gij = a(η)2δij ; g00 = −a(η)−2α ; gij = a(η)−2δij . (2.28)

To obtain the EOM in curved space, we follow the minimal gravitational coupling pre-
scription, making the following replacements into the flat space-time equations,

ηµν → gµν , (2.29)
∂γV

αβ...
µν... ≡ V αβ...

µν... ,γ → ∇γV αβ...
µν... ≡ V αβ...

µν... ;γ = V αβ...
µν... ,γ + ΓαγσV σβ...

µν... − ΓσγµV αβ...
σν... + . . . , (2.30)

where V;µ = ∇µV represents a (gravitational) covariant derivative, with Γµαβ the Christoffel
symbols, and V αβ...

µν... an arbitrary tensor. Using the non-vanishing Christoffel symbols of the
FLRW metric,

Γ0
00 = α

a′(η)
a(η) , Γ0

ij = a−2α+2a
′(η)
a(η) δij , Γii0 = a′(η)

a(η) , (2.31)

we can obtain, via the minimal coupling prescription, the EOM in an expanding universe. In
practice, we can obtain directly the transformation of the derivative terms in the scalar and
gauge field EOM, by making use of the following identities for the divergence of a vector and
a rank-2 anti-symmetric tensor,

∇σV σ = 1
√
g

∂(V σ√g)
∂xσ

= 1
a3+α

∂(V σa3+α(t))
∂xσ

= ∂σ(gσλVλ) + (3 + α)a
′

a
V 0 , (2.32)

∇σF σλ = 1
√
g

∂(F σλ√g)
∂xσ

= 1
a3+α

∂(F σλa3+α(t))
∂xσ

= ∂σ(gσµgλβFµβ) + (3 + α)a
′

a
g0µgλβFµβ ,

(2.33)

where g = −det(gµν). This leads to

∂µ∂
µφ −→ ∇µ[∂µφ] = −a−2αφ′′ + a−2∂i∂iφ− a−2α(3− α)a

′

a
φ′ , (2.34)

∂µF
µν −→ ∇µFµν = gνν

(
−a−2α∂0F0ν + a−2∂iFiν − (3− α)a−2αa

′

a
F0ν

)
− a−2αF0ν∂0g

νν .

(2.35)
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Using these identities and the metric elements (2.28), we obtain the EOM in an expanding
background as

φ′′ − a−2(1−α) #»∇ 2
φ+ (3− α)a

′

a
φ′ = −a2αV,φ , (2.36)

ϕ′′ − a−2(1−α) #»

D
2
Aϕ+ (3− α)a

′

a
ϕ′ = −

a2αV,|ϕ|
2

ϕ

|ϕ|
, (2.37)

Φ′′ − a−2(1−α) #»

D
2Φ + (3− α)a

′

a
Φ′ = −

a2αV,|Φ|
2

Φ
|Φ| , (2.38)

∂0F0i − a−2(1−α)∂jFji + (1− α)a
′

a
F0i = a2αJAi , (2.39)

(D0)ab(G0i)b − a−2(1−α)(Dj)ab(Gji)b + (1− α)a
′

a
(G0i)b = a2α(Ji)a , (2.40)

∂iF0i = a2JA0 , (2.41)
(Di)ab(G0i)b = a2(J0)a , (2.42)

where the currents in the r.h.s. of the gauge field EOM are still given by eqs. (2.16)–(2.17).
We note that eqs. (2.41) and (2.42) are the generalization of the U(1) and SU(2) Gauss
constraints in an expanding background. When discretizing the system of equations later on,
we will use them as an indicator of the correctness of the discretization scheme, checking the
degree of preservation of these constraints during the field evolution.

2.3 Dynamics of the expanding background
If the expansion of the universe is dictated by some external dof different than the fields
we are evolving, say e.g. a fluid with a given equation of state, this corresponds to a fixed
background case. If on the contrary, the matter fields (scalar and/or gauge) we are evolving
are the ones sourcing themselves the expansion of the universe, we will refer to this as a self-
consistent expansion case. In general, the evolution of the scale factor a(η) is dictated by the
stress-energy tensor of matter fields via the Friedmann equations. Denoting the background
energy and pressure densities as ρ̄ and p̄, the stress-energy tensor of a background perfect
fluid is given by

T̄µν ≡ (ρ̄+ p̄)uµuν + p̄gµν , gµνu
µuν = −1 =⇒

{
ρ̄ = a−2α T̄00 ,

p̄ = 1
3a2

∑
j T̄jj ,

(2.43)

where we have used uµ = (aα, 0, 0, 0) and uµ = −(a−α, 0, 0, 0). The evolution of the scale
factor is then determined by the Friedmann equations, which, in α-time, read as

H2 ≡
(
a′

a

)2
= a2α ρ̄

3m2
p

,
a′′

a
= a2α

6m2
p

[(2α− 1)ρ̄− 3p̄] . (2.44)

Let us consider first the case of a fixed background. If the expansion of the universe is
created by an external fluid with equation of state w ≡ p/ρ, the two Friedmann equations
can be combined into a single equation as

2a′′ + (1 + 3ω − 2α)a
′2

a
= 0 , (2.45)

with solution, for w = const,

a(η) = a(ηi)
(
1+ 1

p
Hi(η−ηi)

)p
, H(η) = Hi(

1+ 1
pHi(η−ηi)

) = Hi
p
√
a(η)/a(ηi)

, p≡ 2
3(1+ω)−2α ,

(2.46)
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with ηi some initial time. In order to solve the scalar/gauge field dynamics, we just need to
plug-in the above expressions for a(η) and H(η) into the EOM of the matter fields.

In the case of self-consistent expansion, the situation is however slightly more elaborated.
We need first an expression for the energy momentum-tensor of the scalar/gauge matter fields,
and then take a volume average of the corresponding local expressions of the energy and
pressure densities, which source the Friedmann equations. From the Lagrangian in eq. (2.7)
we can actually derive a local expression for the stress-energy tensor of the scalar and gauge
fields as

Tµν =− 2
√
g

δ(√gL)
δgµν

= gµνL−2 δL
δgµν

=−gµν
(
gαβ

[
(DαΦ)†(DβΦ)+(DA

αϕ)∗(DA
β ϕ)+ 1

2(∂αφ)(∂βφ)
]
+ 1

4g
αδgβλ(GaαβGaδλ+FαβFδλ)+V

)
+
[
2Re{(DµΦ)†(DνΦ)}+2Re{(DA

µϕ)∗(DA
ν ϕ)}+(∂µφ)(∂νφ)

]
+gαβ

(
GaµαG

a
νβ+FµαFνβ

)
,

(2.47)

where in the first equality we used3 δ(√g) = −1
2gµν
√
g δgµν , and in the second we used

δgαβ = −gαµgβνδgµν . Using FµνFµν = − 2
a2(1+α)

∑
i F

2
0i + 1

a4
∑
i,j F

2
ij (similarly for Gaµν), and

(DµΦ†)(DµΦ) = −a−2α(D0Φ)†(D0Φ) + a−2(DiΦ)†(DiΦ) (similarly for the U(1)-charged and
singlet scalar fields), we obtain for the energy and pressure densities,

ρ=Kφ+Kϕ+KΦ+Gφ+Gϕ+GΦ+KU(1)+GU(1)+KSU(2)+GSU(2)+V , (2.48)

p=Kφ+Kϕ+KΦ−
1
3(Gφ+Gϕ+GΦ)+ 1

3(KU(1)+GU(1))+ 1
3(KSU(2)+GSU(2))−V , (2.49)

with V the interacting scalar potential, whereas the kinetic and gradient energy densities are

Kφ = 1
2a2αφ

′2

Kϕ = 1
a2α (DA

0 ϕ)∗(DA
0 ϕ)

KΦ = 1
a2α (D0Φ)†(D0Φ)

;

Gφ = 1
2a2

∑
i

(∂iφ)2

Gϕ = 1
a2

∑
i

(DA
i ϕ)∗(DA

i ϕ)

GΦ = 1
a2

∑
i

(DiΦ)†(DiΦ)

;

KU(1) = 1
2a2+2α

∑
i

F 2
0i

KSU(2) = 1
2a2+2α

∑
a,i

(Ga0i)2

GU(1) = 1
2a4

∑
i,j<i

F 2
ij

GSU(2) = 1
2a4

∑
a,i,j<i

(Gaij)2 .

(2.50)

(Kinetic-Scalar) (Gradient-Scalar) (Electric & Magnetic)

Whenever dealing with scenarios with self-consistent expansion of the universe, we then
need to take first a volume average of the local expressions in eqs. (2.48), (2.49), so that
we obtain the background energy and pressure densities ρ̄ and p̄, within a given volume.
Plugging back the background quantities into the Friedmann eqs. (2.44), will determine then

3Had we wanted to obtain Tµν with the space-time indices above, then we should use instead δ(√g) =
+ 1

2g
µν√g δgµν .
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the evolution of the universe within the chosen volume, namely(
a′

a

)2
= a2α

3m2
p

〈
Kφ+Kϕ+KΦ+Gφ+Gϕ+GΦ+KU(1)+GU(1)+KSU(2)+GSU(2)+V

〉
, (2.51)

a′′

a
= a2α

3m2
p

〈
(α−2)(Kφ+Kϕ+KΦ)+α(Gφ+Gϕ+GΦ)+(α+1)V (2.52)

+(α−1)(KU(1)+GU(1)+KSU(2)+GSU(2))
〉
,

where 〈. . .〉 represents volume averaging. As long as the volume is sufficiently large compared
to the scales excited in the matter fields, this approximation should lead to a well-defined
notion of a ‘homogeneous and isotropic’ expanding background, within the given volume.

3 Field dynamics in a computer: the lattice approach

3.1 Lattice definition and discrete Fourier transform
In order to simulate the dynamics of interacting fields, we will consider a cubic lattice with
N sites per dimension. As we are interested in three spatial dimensions, the lattice will have
therefore N3 points in total, labeled as

n = (n1, n2, n3), with ni = 0, 1, . . . , N − 1 , i = 1, 2, 3 . (3.1)

We will often refer to this set of points simply as the lattice, the grid, or even more colloquially,
as the box. For convenience we define

1̂ ≡ (1, 0, 0) , 2̂ ≡ (0, 1, 0) , 3̂ ≡ (0, 0, 1) , (3.2)

as unit vectors in the lattice, corresponding to positive displacements of length

δx ≡ L

N
, (3.3)

in each of the independent directions in the continuum. The length δx is referred to as the
lattice spacing.

A continuum function f(x) in space is represented by a lattice function f(n), which
has the same value as f(x) at x = n δx. We note that whereas in a flat background,
positions {x} and their corresponding lattice sites {n} represent physical spatial coordinates,
in an expanding background they will rather represent comoving spatial coordinates. Unless
specified otherwise, we will always consider periodic boundary conditions in the three spatial
directions, so that f(n + ı̂N) = f(n), i = 1, 2 or 3.

The periodic boundary conditions in coordinate space imply that momenta must be
discretized, whereas the discretization of the spatial coordinates implies that any definition
of a discrete Fourier transform must be periodic. For each lattice we can then consider always
a reciprocal lattice representing Fourier modes, with sites labeled as

ñ = (ñ1, ñ2, ñ3), with ñi =−N2 +1,−N2 +2, . . . ,−1,0,1, . . . , N2 −1, N2 , i= 1,2,3 . (3.4)

We then define the discrete Fourier transform (DFT) as

f(n) ≡ 1
N3

∑
ñ

e−i
2π
N

ñnf(ñ) ⇔ f(ñ) ≡
∑
n

e+i 2π
N

nñf(n) , (3.5)
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and for convenience we write down the following identity∑
n

ei
2π
N

nñ = N3δ0,ñ . (3.6)

As expected, it follows that Fourier-transformed functions are periodic in the reciprocal
lattice, with periodic boundary conditions as f(ñ + ı̂N) = f(ñ), with ı̂ analogous unit
vectors as in eq. (3.2), but defined in the reciprocal lattice.

Let us emphasize that from the above discussion, it follows that we can only represent
momenta down to a minimum infrared (IR) cut-off

kIR = 2π
L

= 2π
Nδx

, (3.7)

such that ñ labels the continuum momentum values k = (ñ1, ñ2, ñ3) kIR. Furthermore, there
is also a maximum ultraviolet (UV) momentum that we can capture in each spatial dimension,

ki,UV = N

2 kIR = π

δx
. (3.8)

The maximummomentum we can capture in a three-dimensional reciprocal lattice is therefore

kmax =
√
k2

1,UV + k2
2,UV + k2

3,UV =
√

3
2 NkIR =

√
3 π
δx

. (3.9)

In many situations, it will be useful to define the power− spectrum of f(x), character-
izing its ensemble average 〈f2〉 in the continuum, as

〈f2〉 =
∫
d log k Pf(k) , 〈fkfk′〉 = (2π)3 2π2

k3 Pf(k)δ(k− k′) . (3.10)

In a lattice, the ensemble average is substituted by a volume average,

〈f2〉V = δx3

V

∑
n
f2(n) = 1

N3

∑
n
f2(n) , (3.11)

so that using the discrete Fourier transform defined above, leads to

〈f2〉V = 1
2π2

∑
|ñ|

∆ log k(ñ) k3(ñ)
(
δx

N

)3 〈∣∣f(ñ)
∣∣2〉

R(ñ) , (3.12)

with 〈(. . .)〉R(ñ) ≡ 1
4π|ñ|2

∑
ñ′∈R(ñ)(. . .) an angular average over the spherical shell of radius

ñ′ ∈
[
|ñ|, |ñ + ∆ñ|

)
, and ∆ñ a given radial binning. We also defined ∆ log k(ñ) ≡ kIR

k(ñ) .
Identifying 〈f2〉V in eq. (3.12) with 〈f2〉 in eq. (3.10), we obtain the following expression for
a discrete power spectrum

Pf (k) ≡ k3(ñ)
2π2

(
δx

N

)3 〈∣∣f(ñ)
∣∣2〉

R(ñ) . (3.13)

Finally, let us notice that we will be dealing in general with spatially dependent func-
tions representing field amplitudes at a given time. As time goes by in the simulation, the
amplitude of the functions will change. We can therefore think of the above functions de-
pending not only on their coordinates n (or reciprocal coordinates ñ), but also depending on
a discrete variable n0 = 0, 1, 2, . . . counting the number of time iterations in a simulation. In
general, n0 labels a time η = η∗+n0δη, where δη is the temporal step chosen in the evolution,
and η∗ denotes an initial time. We will think therefore of the above functions as 4-dimensional
functions, and we will often write them as f(n) = f(n0,n), or f(ñ) = f(n0, ñ). We will use
the notation 0̂ to represent the advance of one time step, so e.g. f(n+ 0̂) = f(n0 + 1,n).
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3.2 Lattice representation of differential operators

3.2.1 Derivative operators and lattice momenta

Either in an action or in the corresponding EOM, there are always continuum derivatives,
so we need to replace these with lattice expressions that have the correct continuum limit,
i.e. that reproduce the continuum operations to some order in the lattice spacing/time step. A
simple and symmetric definition of a lattice derivative is e.g. the centered or neutral derivative

[∇(0)
µ f ] = f(n+ µ̂)− f(n− µ̂)

2δxµ −→ ∂if(x)
∣∣
x≡nδx+n0δη

+O(δx2
µ) , (3.14)

where in the case of spatial derivatives δxµ refers to the lattice spacing δx, whereas for
temporal derivatives it refers to the time step δη (typically bounded to be smaller than δx).
The expression to the right-hand side of the arrow indicates where and to what order in
the lattice spacing/time step the continuum limit is recovered. The neutral derivative in
eq. (3.14) has the drawback that it is insensitive to spatial variations at the smallest scale
we can probe, ∼ δx, or temporal variations within a time of the order of the simulation time
step ∼ δη. Because of this, a definition involving the nearest spatial/temporal neighbors
is typically preferred. A standard way to do this, is to define the forward and backward
derivatives

[∇±µ f ] = ±f(n± µ̂)∓ f(n)
δxµ

−→

 ∂if(x)
∣∣
x≡nδx+n0δη

+O(δxµ) .

∂if(x)
∣∣
x≡ (n±µ̂/2)δxµ +O(δx2

µ) .
, (3.15)

which recover the continuum limit to linear or to quadratic order in the lattice spacing/time
step, depending on whether we interpret that the discrete operator lives in n or in between the
two lattice sites involved n±µ̂/2. This shows that in order to recover a continuum differential
operation in the lattice, not only it is important to use a suitable discrete operator, but also
to determine where it ‘lives’. Depending on this choice, the operator might be symmetric or
not with respect to the given location, hence recovering the continuum limit up to an even
or an odd order in the lattice spacing/time step, respectively.

To improve accuracy, one could also consider lattice derivatives which involve more
points, typically leading to definitions that have a symmetry either around a lattice site
or around half-way between lattice sites, see e.g. [253]. Depending on the choice of lattice
operator ∇i for the spatial derivatives, the discrete Fourier transform will lead to different
lattice momenta. In general, for any given derivative operator, the value of the derivative
[∇if ] will be a linear combination of the field values at different lattice sites, [∇if ] (l) =∑

mDi(l,m)f(m), with Di(l,m) a real-valued function of two variables on the lattice. Since
we want the derivative to be invariant under translations, Di(l,m) can only be a function of
the difference l−m, i.e. Di(l,m) = Di(l−m), and we can write

[∇if ] (l) =
∑
m
Di(l,m)f(m) =

∑
m
Di(l−m)f(m) =

∑
m′

Di(m′)f(l−m′) . (3.16)

For example, for the neutral derivative (3.14),

D0
i (m′) = δm′,−ı̂ − δm′ ,̂ı

2δx , (3.17)
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whereas for the nearest-neighbor derivative (3.15),

D±i (m′) =
±δm′,∓ı̂/2 ∓ δm′,±ı̂/2

δx
, if l = n + ı̂

2 , (3.18)

D±i (m′) = ±δm′,∓ı̂ ∓ δm′,0
δx

, if l = n . (3.19)

The Fourier transform of the derivative [∇if ] is

∇if(ñ) =
∑

n
e

2πi
N

ñ·n∑
m
Di(n−m)f(m) (3.20)

=
∑
n′
e

2πi
N

ñ·n′Di(n′)
∑
m
e

2πi
N

ñ·mf(m) (3.21)

≡ −ikLat(ñ)f(ñ) , (3.22)

leading us to define the lattice momentum kLat(ñ) as

kLat(ñ) = i
∑
n′
e

2πi
N

ñ·n′Di(n′). (3.23)

Conversely, any function kLat(ñ) with the correct leading behaviour kLat(ñ) ≈ ñ kIR in the
IR limit |ñ| � N , defines a lattice derivative through the inverse Fourier transform.

In practice, for the neutral derivative (3.14) we obtain

k0
Lat,i = sin(2πñi/N)

δx
, (3.24)

whereas for the forward/backward derivatives (3.15),

k+
Lat,i = k−Lat,i = 2sin(πñi/N)

δx
, if l = n± ı̂

2 , (3.25)

k±Lat,i = sin(2πñi/N)
δx

± i1− cos(2πñi/N)
δx

, if l = n . (3.26)

We note that for anti-symmetric lattice derivatives with Di(−m′) = −Di(m′), the lattice
momentum kLat must be real.

3.2.2 Lattice gauge invariant techniques
Discretizing a gauge theory requires a special care in order to preserve gauge invariance at the
lattice level. It is not enough to recover gauge invariance in the continuum, sending the lattice
spacing/time step to zero, as gauge invariance is meant to remove spurious transverse degrees
of freedom. If we were to discretize a gauge theory substituting all ordinary derivatives in
the continuum EOM by finite differences like those in eqs. (3.14), (3.15), the gauge symmetry
would not be preserved and the spurious degrees of freedom would propagate in the lattice.

In order to understand this, let us consider the simplest possible case of a gauge theory,
say an Abelian-Higgs model in flat space-time, with Lagrangian −L = (∂µ + ieAµ)ϕ∗(∂µ −
ieAµ)ϕ + 1

4FµνF
µν + V (ϕ∗ϕ), where e = gAQA in the notation of section 2. This sys-

tem is invariant under continuum gauge transformations ϕ(x) → e−ieα(x)ϕ(x), Aµ(x) →
Aµ(x) − ∂µα(x) simply because the transformation of ∂µ(e−ieα(x)ϕ(x)) leads to a term
−ie∂µα(x)e−ieα(x)ϕ(x), whereas the transformation of the gauge field in −ieAµe−ieα(x) leads
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to a term identical but of opposite sign, +ie∂µα(x)e−ieα(x)ϕ(x), which cancels out with the
previous one. However, if we were to discretize the system by simply promoting continuum
derivatives into finite differences, say replacing ∂µf(x) by ∆+

µ f(x), then ∆+
µ (e−ieα(x)ϕ(x)) 6=

−i(e∆+
µα(x))e−ieα(x)ϕ(x)+e−ieα(x)∆+

µϕ(x), and hence the transformation of the field deriva-
tive would not produce a term to compensate the contribution from the gauge field transfor-
mation Aµ → Aµ(x)−∆+

µα(x). The reason is simple, the Leibniz rule (fg)′ = f ′g+fg′ does
not hold for finite difference operators. The situation is no different in non-Abelian gauge
theories.

How can we restore gauge invariance in the lattice? To mimic a continuum gauge theory
in the lattice, we must adopt a special discretization procedure that preserves some sort of
discretized version of gauge transformations. Lattice gauge invariance is actually necessary in
order to preserve constraints that follow from the EOM, in particular the Gauss laws. In order
to introduce a general formalism valid for gauge theories (either Abelian or non-Abelian), let
us consider the more general case of a SU(N) gauge invariant theory. We introduce then a
parallel transporter, connecting two points in space-time

U(x, y) = Pexp

{
−ie

∫ y

x
dxµAµ

}
, (3.27)

where Pexp{. . .} means path-ordered along the trajectory. The crucial observation is that
under a gauge transformation of the gauge fields, recall eq. (2.18), the parallel transporter
transforms as

U(x, y)→ Ω(x)U(x, y)Ω†(y) , (3.28)

which in the Abelian case reduces simply to U(x, y) → U(x, y)e−ie(α(x)−α(y)). Therefore,
according to eq. (3.28), a parallel transporter transforms exactly as the field strength trans-
forms for x = y, see eq. (2.19). Thus, considering the minimal connector between two space-
time sites separated only by one lattice spacing/time step, x(n) ≡ nδx + n0δt, x(n + µ̂) ≡
nδx+ n0δt+ δxµ, we define the link variables as

U0,n≡Pexp
{
−ie

∫ x(n+0̂)

x(n)
dt′A0

}
≈ e−ieδtA0 , Ui,n≡Pexp

{
−ie

∫ x(n+ı̂)

x(n)
dxAi

}
≈ e−ieδxAi ,

(3.29)
where the gauge field, and hence the link, is considered to live in the point n + µ̂

2 . We also
define U−µ,n = U †µ,n−µ ≡ U †µ(n − 1

2 µ̂). Before we continue, it will useful at this point to
establish some conventions to simplify the notation of upcoming expressions.

Convention. From now on, unless stated otherwise, a scalar field living in a generic lattice
site n = (no,n) = (no, n1, n2, n3), i.e. ϕn = ϕ(n), will be simply denoted as ϕ. If the point is
displaced in the µ−direction by one unit lattice spacing/time step, n + µ̂, we will then use
the notation n+µ or simply +µ to indicate this, so that the field amplitude in the new point
is expressed as ϕ+µ ≡ ϕ(n+ µ̂). In the case of gauge fields, whenever represented explicitly
in the lattice, we will automatically understand that they live in the middle of lattice points,
i.e. Aµ ≡ Aµ(n+ 1

2 µ̂). It follows then that e.g. Aµ,+ν ≡ Aµ
(
n+ 1

2 µ̂+ν̂
)
. In the case of links, we

will use the notation Uµ ≡ Uµ,n ≡ Uµ(n+ 1
2 µ̂), and hence Uµ,±ν = Uµ,n±ν ≡ Uµ(n+ 1

2 µ̂± ν̂).
Even though the lattice spacing δx and the time step δt do not need to be equal, we will
loosely speak of corrections of order O(δx), independently of whether we are referring to the
lattice spacing or the time step (the latter is actually always forced to be smaller than the
former). In lattice expressions we will never consider summation over repeated indices.
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In the continuum limit, we recover the gauge fields simply from

1
e

(I − Uµ,n)
iδxµ

−→ Aµ

(
n+ 1

2 µ̂
)

+O(δx) . (3.30)

It turns out that we can actually build the action or EOM for any gauge theory, preserving
a discretized version of the gauge symmetry, using only link variables and no gauge fields.
That is known as the compact formulation of lattice gauge theories, which can be applied to
both Abelian and non-Abelian gauge theories. Actually, in the case of non-Abelian theories,
compact formulations are the only way to discretize them while respecting gauge invariance
in the lattice. In Abelian gauge theories, however, it is still possible to make use of an
explicit representation of the gauge fields, in the so called non-compact formulation. In
order to describe these formulations, we introduce below standard definitions for writing
down lattice actions or EOM invariant under (a discretized version) of gauge symmetries, see
e.g. [273]. We provide toolkits for Abelian and non-Abelian gauge theories, containing each
the basic definitions of links, plaquettes and covariant derivatives for U(1) and SU(N) theories
respectively, together with useful approximations, expressions and properties, that can be
used to understand straightforwardly how a lattice action or a set of EOM approximate their
continuum counterpart expressions (in the case of Abelian theories we include both compact
and non-compact lattice formulations):

U(1) toolkit:

Links : Vµ≡ e−igAQAδxµAµ = cos(gAQAδxµAµ)−isin(gAQAδxµAµ); V−µ≡V ∗µ,−µ; V ∗µ Vµ = 1;

Plaquettes : Vµν ≡VµVµ,+µV ∗µ,+νV ∗ν ' e−igAQAδxµδxν [Fµν+O(δx)]; V ∗µν =Vνµ ;

Covariant Derivs. : (D±µ ϕ)(l) =± 1
δxµ

(V±µϕ±µ−ϕ) , l = n± 1
2 µ̂

Expansions :


(D±µ ϕ)(l) −→ (Dµϕ)(l)+O(δx2) l = n± 1

2 µ̂

Re{Vµν} −→ 1− 1
2δx

2
µδx

2
νg

2
AQ

2
AF

2
µν+O(δx5) , l = n+ 1

2 µ̂+ 1
2 ν̂

Im{Vµν} −→ −δxµδxνgAQAFµν+O(δx3) , l = n+ 1
2 µ̂+ 1

2 ν̂

Expressions :



∑
n

1
4F

2
µν
∼=−1

2
∑
n
Re{Vµν}

δx2
µδx

2
νg

2
AQ

2
A

=−1
4
∑
n

(Vµν+V ∗µν)
δx2
µδx

2
νg

2
AQ

2
A

+O(δx2)
∑
n

1
4F

2
µν '

∑
n

1
4
Im2{Vµν}
δx2
µδx

2
νg

2
AQ

2
A

=−∑n
1
4

(Vµν−V ∗µν)2

δx2
µδx

2
νg

2
AQ

2
A

+O(δx2)

 (Compact)

∑
n

1
4F

2
µν ' 1

4
∑
n(∆+

µAν−∆+
ν Aµ)2+O(δx2)

]
(Non−Compact)

Gauge Trans. :


φ −→ e+igAQAαφ

Aµ −→ Aµ−∆+
µα

V±µ −→ V±µe
igAQA(α±µ−α)

=⇒
{
D±µ φ −→ eigAQAα(D±µ φ)

Vµν −→ Vµν (gauge inv. !)
(3.31)
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SU(N) toolkit:

Links : Uµ≡ e−igBQBδxBµ = e−igBQBδxB
a
µTa ; U−µ≡U †µ,−µ; U †µUµ = I

Plaquettes : Uµν ≡UµUν,+µU †µ,+νU †ν ' e−igBQBδxµδxν [GaµνTa+O(δxµ)] ; U †µν =Uνµ

Covariant Derivs. : (D±µ Φ)(l) =± 1
δxµ

(U±µΦ±µ−Φ) −→ (DµΦ)(l)+O(δx2), l = n± 1
2 µ̂

Expansions :


(D±µ Φ)(l) −→ (DµΦ)(l)+O(δx2) , l = n± 1

2 µ̂

(Uµν−U †µν) −→ −2igBQBδxµδxνGµν+O(δx3
µ) , l = n+ 1

2 µ̂+ 1
2 ν̂

Tr[Uµν ] −→ 2− δx2
µδx

2
νg

2
BQ

2
B

4
∑
a(Gaµν)2+O(δx5

µ) , l = n+ 1
2 µ̂+ 1

2 ν̂

Expressions :


1
2Tr[GµνGµν ] = 1

4
∑
a(Gaµν)2∼=− Tr[Uµν ]

δx2
µδx

2
νg

2
BQ

2
B

+O(δx2) ,

Gµν =GaµνTa' i
2δxµδxνgBQB (Uµν−U †µν)+O(δx2) ,

Gaµν ' 1
δxµδxνgBQB

Tr[(iTa)(Uµν−U †µν)]+O(δx2)

Gauge Trans. :

 Φ −→ ΩΦ , Ω≡ e+igBQBαaTa

U±µ −→ ΩU±µΩ†±µ

 =⇒


D±µ Φ −→ Ω(D±µ Φ)

Uµν −→ ΩUµν Ω†

Tr{Uµν} −→ Tr{Uµν}
(3.32)

In the of case of SU(2), any element can be written as

Uµ = cµ0I +
3∑

a=1
icµaσa =

3∑
ν=0

cµν σ̄a , σ̄a ≡ (1, i~σ) ,
3∑

ν=0
c2
µν = 1 , (3.33)

or, in matrix form (in the gauge U0 = I)

Ui≡Ui(ci0, ci1, ci2, ci3) =
(
ci0+ici3 ci2+ici1
−ci2+ici1 ci0−ici3

)
, U †i =Ui(ci0,−ci1,−ci2,−ci3) . (3.34)

Useful expressions for the electric and magnetic fields are

Eai = Ga0i ≈
1

δtδxgBQB
Tr[(iTa)(U0i − Ui0)] , (3.35)

Bai = 1
2εijkG

a
jk ≈

εijk
2δx2gBQB

Tr[(iTa)(Ujk − Ukj)] . (3.36)

3.3 Evolution algorithms

Solving the field dynamics in an expanding background in a lattice amounts to writing
some appropriate discrete version of the continuum EOM [eqs. (2.36)–(2.38) for scalar fields,
eqs. (2.39)–(2.42) for gauge fields, and eqs. (2.51)–(2.52) for the scale factor], and then iterate
the discrete EOM for a finite number of time steps. In general we will have to follow, on each
spatial lattice site, the evolution of a number of dof represented by real field amplitudes,
say one per singlet, two per complex field, four per doublet, etc, as well as the Lorentz
components of each gauge field considered. Let us denote these dof collectively as the field
amplitudes {fj}, with j some index labeling all the real field amplitudes involved in a given
scenario, and {πj} their conjugate momenta. As the scale factor is only a homogeneous
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dof (sourced by the volume averaged energy and pressure densities built from the matter
fields), we will not include it in the previous numbered list of dof ’s, and we will rather
treat it as a separate variable a(η), with conjugate momenta πa ≡ a′(η). For example, in
a theory with two singlet scalar fields, say φ and χ, and self-consistent expansion, we can
consider {f1, f2} ≡ {φ(x), χ(x)} and {π1, π2} ≡ {φ′(x), χ′(x)}, and then separately a(η) and
πa(η) = a′(η). Looking at the EOM in the continuum eqs. (2.36)–(2.40) and the scale factor
eqs. (2.51)–(2.52), we note the following structure in the system of equations (independently
of the nature of the fields involved),

πa(η) = a′(η) , (3.37)
π′a(η) = Ka[a(η), EV (η), EK(η), EG(η)] , (3.38)

πi(x, η) = Di[f ′i(x, η), a(η), πa(η); {fj(x, η)}, {f ′j 6=i(x, η)}] , (3.39)
π′i(x, η) = Ki[fi(x, η), πi(x, η), a(η), πa(η); {fj 6=i(x, η)}, {πj 6=i(x, η)}] , (3.40)

where Di[. . .] is a functional — the drift — that defines the conjugate momentum of the ith
dof , Ki[. . .] is another functional — the kernel or kick –, that determines the interactions
of the ith dof with the rest of dof ′s (possibly including itself), and finally Ka[. . .] is given
by the square root of the r.h.s. of eq. (2.52), based on the volume averages 〈. . .〉 of the
different dof contributions to the potential, kinetic and gradient energy densities, EV ≡ 〈V 〉,
EK ≡ 〈

∑
jKj〉 and EG ≡ 〈

∑
j Gj〉.

For canonical kinetic terms, the drift Di actually does not depend on any field amplitude
fj(x, η), and whereas it does depend on f ′i , it will not depend on any other derivative f ′j 6=i.
Note that we have separated within the argument of each kernel Ki, the amplitude and
momentum of the ith dof itself, from the amplitudes and momenta of the rest of dof ’s.
The latter act in fact merely as ‘instantaneous’ parameters for an infinitesimal evolution of
the ith dof . Besides, without loss of generality, we can actually consider that Ki does not
depend on the conjugate momenta {πi 6=j} of other dof ’s.4 Thus, in theories with canonically
normalized kinetic terms, we will only care about the dependence of the kernel Ki on fi
and πi. Furthermore, we will encounter often that the time derivative π′i of a given dof
can (and often will) depend on its amplitude fi, but not on πi itself. This is actually not
a physical requisite, but rather a mathematical requisite that we will seek. In fact, the
EOM in the continuum as written so far, rather lead to kernels Ki that depend on πi, see
the friction terms in eqs. (2.36)–(2.40). However, from the point of view of the stability
of the numerical algorithms used to solve the discrete EOM, it will be convenient to define
appropriate conjugate momenta (or alternatively to massage appropriately the EOM), so
that one arrives into effective kernels Ki that do not depend on πi. We will see later how to
do this in a case by case basis. For the time being, we will consider that this condition has
been achieved, implicitly assuming that pertinent conjugate momenta definitions or EOM
manipulations have been made to grant it. Taking into account all the above considerations,
the typical system of equations we will want to solve (for a theory with canonical kinetic
terms), looks as follows

πa(η) = a′(η) , (3.41)
π′a(η) = Ka[a(η), EV (η), EK(η), EG(η)] , (3.42)

πi(x, η) = Di[f ′i(x, η), a(η); . . .] , (3.43)
π′i(x, η) = Ki[fi(x, η), a(η), πa(η); . . .] . (3.44)

4This is however not true for general non-canonically normalized kinetic theories, but we are not concerned
with those here.
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Let us note that, although any possible dependence of the drift Di on πa would not pose a
problem to the algorithms presented below, in practice we do not know of any theory that
produces such dependence, so we have removed it as an explicit argument from Di. A discrete
version of the EOM will then have a scheme similar to

πa(η) = ∆0a(η) , (3.45)
∆0πa = Ka[a(η), EV (η), EK(η), EG(η)] , (3.46)

πi(x, η) = Di[∆0fi(x, η), a(η); . . .] , (3.47)
∆0πi(x, η) = Ki[fi(x, η), a(η), πa(η); . . .] , (3.48)

with ∆0 some discrete operator mimicking continuum time derivatives. As we will see in a
moment, introducing time operators as simple as

(∆±
r0̂f) = ±f(n±rδt)∓f(n)

rδt
−→



(∆+
0̂ f) = f(n+δt)−f(n)

δt , Standard Forward Deriv.
(∆−0̂ f) = f(n)−f(n−δt)

δt , Standard Backward Deriv.
(∆+

0̂/2f) = f(n+δt/2)−f(n)
(δt/2) ,+1

2 Forward Deriv.

(∆−0̂/2f) = f(n)−f(n−δt/2)
(δt/2) ,−1

2 Backward Deriv.
(3.49)

will actually enable us to address all basic algorithms to iterate coupled finite difference
equations like (3.45)–(3.48), mimicking continuum coupled differential equations like (3.41)–
(3.44). For simplicity, the r = 1 case corresponding to standard forward/backward derivative
operators, will be often simply written as (∆±0 f), instead of (∆±0̂ f).

3.3.1 (Staggered) Leapfrog
One of the simplest methods for solving second order differential equations is the leapfrog
algorithm. Let us illustrate it by solving a simple one-dimensional problem, consisting in one
dof x(t) that depends only on a time variable t, with EOM

ẍ(t) = K[x(t)] , (3.50)

where K[. . .] is the kernel of x(t). Taylor expanding the position at the next step we obtain

x(t+ δt) = x(t) + ẋ(t)δt+ 1
2K[x(t)]δt2 + . . . ≡ x(t) + ẋ(t+ δt/2)δt+ . . . , (3.51)

where in the second equality we have substituted the Taylor expansion of the velocity at half
time step

ẋ(t+ δt/2) = ẋ(t) + δt

2 K[x(t)] + . . . ≡ ẋ(t− δt/2) +K[x(t)]δt+ . . . , (3.52)

and where we have used that ẋ(t) = ẋ(t − δt/2) + K[x(t − δt/2)]δt + O(δt2) and K[x(t −
δt/2)]δt + O(δt2) = K[x(t)]δt + O(δt2). Applying recursively the above relations between
velocity and position, we obtain

x(t) = x(t− δt) + ẋ(t− δt/2)δt , (3.53)
ẋ(t+ δt/2) = ẋ(t− δt/2) +K[x(t)]δt , (3.54)
x(t+ δt) = x(t) + ẋ(t+ δt/2)δt , (3.55)

ẋ(t+ 3δt/2) = ẋ(t+ δt/2) +K[x(t+ δt)]δt , (3.56)
. . . .
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The leapfrog method has an accuracy of order O(δt2), because each step advances x or ẋ
in terms of its derivative at the middle of the step. This is better than a simpler Euler
method, which has O(δt) accuracy. This can be demonstrated by simply noting the accuracy
of the derivative expressions (x(t+ δt)− x(t))/δt ' ẋ(t+ δt/2) +O(δt2) and (ẋ(t+ δt/2)−
ẋ(t − δt/2))/δt ' ẍ(t) + O(δt2). Let us label the initial time as t0, and start with initial
conditions x0 ≡ x(t0) and ẋ0 ≡ ẋ(t0). We can obtain first ẋ(t0 + δt/2) = ẋ0 + 1/2K[x0]δt,
and from then on, iterate as follows: (x(t0), ẋ(t0 +δt/2)) −→ (x(t1), ẋ(t1 +δt/2)) −→ . . . −→
(x(tn), ẋ(tn + δt/2)), with tn ≡ t0 + nδt, and n the number of iterations.

In terms of the previously introduced time derivative operators, we can simply write
the algorithm as

∆+
0 xn = πn+1/2 , (3.57)

∆+
0 πn+1/2 = K[xn+1] , (3.58)

so that the first line defines the conjugate momentum πn+1/2, and we understand that xn lives
at ‘integer’ times tn ≡ t0 + nδt, whereas π lives at ‘semi-integer’ times tn+1/2 ≡ tn + δt/2 =
t0 +(n+1/2)δt. Correspondingly, this implies that ∆+

0 xn ≡ (xn+1−xn)δt lives at tn+1/2, and
∆+

0 πn+1/2 ≡ (πn+3/2 − xn+1/2)δt lives at tn+1. Due to the fact that variable amplitudes live
at integer times and conjugate momenta live at semi-integer times, sometimes this method
is referred to as the ‘staggered’ leapfrog algorithm. We will content ourselves with simply
referring to it as the leapfrog algorithm.

The leapfrog method, encapsulated in eqs. (3.57)–(3.58) can be extended readily to
multiple dof , simply labeling them with some index as xin and πin+1/2, with i = 1, 2, 3, . . . , Nf

counting the number of dof . Namely

∆+
0 x

i
n = πin+1/2 , (3.59)

∆+
0 π

i
n+1/2 = Ki

[
xin+1, {x

j 6=i
n+1}

]
, (3.60)

where the kernels Ki represent the interaction of the ith dof xi with the rest of dofs {xj 6=i},
and possibly with itself. This method is however only applicable to conservative forces,5
i.e. to systems with kernels that only depend on amplitude variables K ≡ K[{xi(t)}]. This
method can be therefore applied readily to our field theory EOM (3.45)–(3.48) in a flat space-
time background. If the expansion of the universe is switched off, i.e. a = 1 and ȧ = ä = 0,
we can ignore the first two eqs. (3.45)–(3.46) and take care of evolving only (3.47)–(3.48),
which represent the evolution of the matter field dof in a flat background. Switching back
to our α-time variable, say introducing η(n0) ≡ η0 + n0δη with n0 counting the number of
time steps, we can solve eqs. (3.47)–(3.48) with a leapfrog scheme simply as

∆+
0 fi(x, n0) = πi(x, n0 + 1/2) , (3.61)

∆+
0 πi(x, n0 + 1/2) = Ki [{fj(x, n0 + 1)}] , (3.62)

with i = 1, 2, . . . , Nf counting our field theory dof , e.g. scalar field real components and
gauge field Lorentz components.

We note now that in any set of discrete EOM mimicking continuum EOM, the spatial
coordinates x are discretized, being represented by a finite set of lattice sites n = (n1, n2, n3)

5In reality nothing prevents you from applying it to non-conservative forces with K = K[x(t), ẋ(t)], but
then its stability properties and its O(δt2) accuracy will be lost.
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with ni = 0, 1, 2, . . . , N − 1, and N the number of lattice sites per spatial dimension (recall
section 3.1 for definitions). This implies that spatial derivatives appearing in the discrete
EOM, e.g. the Laplacian operator for scalar fields ∇2f , will be substituted by lattice deriva-
tive operators like that in eq. (3.15). Due to this, kernels in the discretized EOM are not
functions of the point n only, but also of its nearest neighbours, e.g. n ± ĵ, with j = 1, 2, 3.
The correct form of the discretized field EOM in a flat background will then look like

∆+
0 fi(n, n0) = πi(n, n0 + 1/2) , (3.63)

∆+
0 πi(n, n0 + 1/2) = Ki

[
{fj(m, n0 + 1)}

]
, (3.64)

with m representing n and its nearest neighbours (to be determined in each case depending
on the choice of lattice spatial derivatives).

Note that the leapfrog algorithm cannot be applied directly to scenarios where the
expansion of the universe is considered (either background or self-consistent expansion),
without a careful choice of the dof to evolve. Indeed, the EOM of matter fields in FLRW
have kernels K[. . .] containing conjugate momenta πi, due to the presence of the friction terms
∝ (a′/a)f ′i in the field EOM, cf. eqs. (2.36)–(2.40). Furthermore, the Friedmann equation
π′a = Ka[a,EV , EK , EG], cf. eq. (2.52), also contains the kinetic terms EK(η) ≡ 〈∑iKi〉, built
out of the conjugate momenta of the fields. As in a leapfrog algorithm, conjugate momenta
πi and πa live naturally at semi-integer times ηn+1/2, the leapfrog algorithm for kernels which
contain conjugate momenta will not work, as they should rather live at integer times ηn for
the algorithm to be stable and order O(δt2). As we will show in sections 4.2.1 and 4.2.2, it is
possible to overtake this problem by means of variable re-definitions and/or manipulations of
the EOM, so that we can have a consistent iterative scheme with appropriate kernels, even in
the presence of an expanding background. So for now, let us assume that we have managed
to obtain dof such that the kernels do not depend on the momenta. We can then write the
following leapfrog algorithm in an expanding universe

Leapfrog in an expanding background

∆+
0 πi(n, n0 − 1/2)) = Ki

[
{fj(m, n0)}, a(n0)

]
, (3.65)

∆+
0 πa(n, n0 − 1/2) = Ka

[
a(n0), EV (n0), EK(n0), EG(n0)

]
, (3.66)

∆+
0 a(n0) = πa(n0 + 1/2) , (3.67)

∆+
0 fi(n, n0) = Di[πi(n, n0 + 1/2), a(n0 + 1/2)] . (3.68)

where in the first line EK(n0) ≡ 1
2(EK(n0 − 1/2) + EK(n0 + 1/2)), and in the last line,

a(n0 + 1/2) ≡ (a(n0) + a(n0 + 1))/2. The concrete realizations of this algorithm specialized
to the case of interacting scalar, Abelian and non-Abelian gauge fields, will be discussed in
sections 4, 5 and 6, respectively.

3.3.2 Verlet integration (synchronized leapfrog)
Let us study again the one-dimensional problem of a single dof that depends only on time,
x(t), with EOM

ẍ(t) = K[x(t)] , (3.69)

say with initial condition t0 = 0, x(0) = x0 and ẋ(0) = π0. Recall that in order to initiate
the leapfrog algorithm just introduced in the previous section, we initially needed x0 and
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π1/2 ≡ ẋ(δt/2), so we proposed to obtain the initial half-time step displaced velocity as
π1/2 ' π0 + 1

2δtK[x0] + O(δt2) (or equivalently, from applying ∆+
0̂/2π0 = 1

2K[x0]). Next,
following the leapfrog prescription, we would apply ∆+

0 x0 = π1/2 leading to x1 at order
O(δt2), and then ∆+

0 π1/2 = K[x1] leading to π3/2 at order O(δt2), and so on and so forth with
successive iterations. However, after obtaining x1, we might as well apply ∆+

0̂/2π1/2 = 1
2K[x1],

leading to π1, also at order O(δt2). Essentially, by applying the velocity part of the leapfrog
algorithm at two equal and successive half time steps (with one position update in between),
we can simply jump from (x0, π0) to (x1, π1), and from there to (x2, π2), and so on and so
forth. In other words, we can actually obtain the position and velocity always at integer
times, up at order O(δt2), with a ‘kick-drift-kick’ scheme as

πn+1/2 = πn + 1
2δtK[xn] ,

xn+1 = xn + πn+1/2δt ,

πn+1 = πn+1/2 + 1
2δtK[xn+1] ,

 ⇐⇒


∆+

0̂/2πn = K[xn] ,

∆+
0 xn = πn+1/2 ,

∆+
0̂/2πn+1/2 = K[xn+1] .

(3.70)

In reality, this method is nothing else than the leapfrog algorithm, but adding an ‘extra’
computation of the conjugate momenta at integer times in each iteration,

xn+1 = xn + πn+1/2δt ,

πn+3/2 = πn+1/2 + δtK[xn+1] ,(
πn+1 = πn+1/2 + 1

2δtK[xn+1]
)
 ⇐⇒


∆+

0 xn = πn+1/2 ,

∆+
0 πn+1/2 = K[xn+1] ,(

∆+
0̂/2πn+1/2 = K[xn+1]

)
.

(3.71)

Alternatively, since in this method we only care about the amplitudes and conjugate momenta
at the same moment, say at integer times, the scheme can be put into a ‘drift-kick’ scheme,
simply by

xn+1 = xn + πnδt+ 1
2K[xn]δt2 ,

πn+1 = πn + 1
2(K[xn] +K[xn+1])δt ,

}
⇐⇒

{
∆+

0 xn = πn + δt
2 K[xn] ,

∆+
0 πn = 1

2(K[xn] +K[xn+1]) .
(3.72)

The method, represented by either scheme eq. (3.70), eq. (3.71) or eq. (3.72), is known as
the velocity-Verlet algorithm. This method is nothing else than a synchronized version of
the leapfrog method, where the third extra computation at each time step, takes care of
the synchronization between amplitudes and conjugate momenta. We note that the 2-step
scheme in eq. (3.72) has actually no advantage versus the 3-step scheme in eqs. (3.70), (3.71),
as in reality the number of operations is the same: the 2-step scheme simply contains the
‘third’ step in the drift (i.e. in the right hand side of the amplitude updates). The 2-step
scheme is only a convenient way of writing the algorithm in a more compact way.

If instead we apply the coordinate part of the leapfrog algorithm at two equal and
successive half time steps (with one velocity update in between), then the method turns into
the position-Verlet algorithm, which in a ‘drift-kick-drift’ scheme, has the form

xn+1/2 = xn + 1
2πnδt ,

πn+1 = πn + δt · K[xn+1/2] ,
xn+1 = xn+1/2 + 1

2πn+1δt ,

 ⇐⇒


∆+

0̂/2xn = πn ,

∆+
0 πn = K[xn+1/2] ,

∆+
0̂/2xn+1/2 = πn+1 .

(3.73)
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As before, this is nothing more than a synchronized version of the leapfrog algorithm, with
an extra third computation at each time step to synchronize the variables at the same time.
Position-Verlet is also an algorithm of order O(δt2). The position-Verlet algorithm can also
be put in a 2-step scheme like

πn+1 = πn + δt · K[xn + δt
2 πn] ,

xn+1 = xn + δt
2 (πn + πn+1) ,

}
⇐⇒

{
∆+

0 πn = K[xn + δt
2 πn] ,

∆+
0 xn = 1

2(πn + πn+1) ,
(3.74)

which again is just a more compact manner to write the algorithm, but the number of
operations is still three at each time step, with the ‘third’ step now contained inside the
argument of the kick.

The application of either Verlet algorithm to field theories in a flat space-time back-
ground is straightforward. Introducing again η(n0) ≡ ηi+n0δη as the discrete α-time variable
(ηi some initial time), and i = 1, 2, 3, . . . , Nf labeling the field theory dof (namely scalar field
real components and gauge field Lorentz components), the velocity-Verlet algorithm reads

∆+
0̂/2πi(n, n0) = Ki

[
{fj(m, n0)}

]
, (3.75)

∆+
0 fi(n, n0) = πi(n, n0 + 1/2) , (3.76)

∆+
0̂/2πi(n, n0 + 1/2) = Ki

[
{fj(m, n0 + 1)}

]
, (3.77)

whereas the position-Verlet algorithm is
∆+

0̂/2fi(n, n0) = πi(n, n0) , (3.78)

∆+
0 πi(n, n0) = Ki

[
{fj(m, n0 + 1/2)}

]
, (3.79)

∆+
0̂/2fi(n, n0 + 1/2) = πi(n, n0 + 1) . (3.80)

Here, like in the staggered leapfrog algorithm, m on the r.h.s. represents n and its nearest
neighbours, which are determined by the choice of lattice spatial derivatives.

As in the case of leapfrog algorithms, in order to apply Verlet algorithms to the case
of an expanding universe, a careful definition of variables needs to be made. The details of
that will be discussed in sections 4–6, where concrete realizations of the Verlet algorithms
will be provided, specialized to the case of interacting scalar, Abelian and non-Abelian gauge
fields. Assuming now that we have dof variables such that the kernels are independent of
the momenta, the velocity- and position-Verlet algorithms in an expanding background, in
respective ‘kick-drift-kick’ and ‘drift-kick-drift’ schemes, read as:
Velocity-Verlet in an expanding background

∆+
0̂/2πa(n, n0) = Ka

[
a(n0), EV (n0), EK(n0), EG(n0)

]
, (3.81)

∆+
0̂/2πi(n, n0) = Ki

[
{fj(m, n0)}, a(n0)

]
, (3.82)

∆+
0̂ a(n0) = πa(n0 + 1/2) , (3.83)

a(n0 + 1/2) = 1
2(a(n0) + a(n0 + 1)) , (3.84)

∆+
0 fi(n, n0) = Di[πi(n, n0 + 1/2), a(n0 + 1/2)] , (3.85)

∆+
0̂/2πi(n, n0 + 1/2) = Ki

[
{fj(m, n0 + 1)}, a(n0 + 1)

]
, (3.86)

∆+
0̂/2πa(n, n0 + 1/2) = Ka

[
a(n0 + 1), EV (n0 + 1), EK(n0 + 1), EG(n0 + 1)

]
. (3.87)
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Position-Verlet in an expanding background

∆+
0̂/2fi(n, n0) = Di[πi(n, n0), a(n0)] , (3.88)

∆+
0̂/2a(n0) = πa(n0) , (3.89)

∆+
0̂ πi(n, n0) = Ki

[
{fj(m, n0 + 1/2)}, a(n0 + 1/2)

]
, (3.90)

EK(n0 + 1/2) ≡ 1
2 (EK(n0 + 1) + EK(n0)) (3.91)

∆+
0 πa(n, n0) = Ka

[
a(n0 + 1/2), EV (n0 + 1/2), EK(n0 + 1/2), EG(n0 + 1/2)

]
, (3.92)

∆+
0̂/2a(n0 + 1/2) = πa(n0 + 1) , (3.93)

∆+
0̂/2fi(n, n0 + 1/2) = Di[πi(n, n0 + 1), a(n0 + 1)] , (3.94)

It is important to note that in both position- and velocity-Verlet algorithms for an
expanding background, the kernels Ki[. . .] of the matter dof must not depend on πa, as the
latter already depend on the conjugate momenta through the volume averaged kinetic energy
EK [{πj}]. An advantage of the Verlet algorithm(s) is that they can readily be turned into
more accurate schemes, as will be explained in section 3.4.1.

3.3.3 Explicit Runge-Kutta methods

Let us consider now a one-dimensional problem with a single dof , where the kernel of the
EOM is also allowed to depend on the velocity,

ẍ(t) = K[x(t), ẋ(t)] . (3.95)

We take initial conditions x(0) = x0 and ẋ(0) = π0 at the initial time t0 = 0. First-order
Runge-Kutta algorithms are the Euler method,

xn+1 = xn + πnδt , (3.96)
πn+1 = πn + δtK[xn, πn] , (3.97)

and the Euler-Cromer method,

xn+1 = xn + πnδt , (3.98)
πn+1 = πn + δtK[xn+1, πn] . (3.99)

Both methods have an accuracy of O(δt). They are also less stable than Leapfrog/Verlet
methods when integrated over many steps, as they are not symplectic algorithms, and hence
they do not conserve well energy (see section 3.5 for further clarifications on this).

More accurate algorithms are the Runge-Kutta second-order ormodified Euler algorithm
[RK2 ],

k1 ≡ K[xn, πn] ,
k2 ≡ K[xn + πnδt, πn + k1δt] ,

}
=⇒

{
xn+1 = xn + πnδt+ 1

2k1δt
2 ,

πn+1 = πn + δt
2 (k1 + k2) ,

(3.100)
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accurate to O(δt2), and the Runge-Kutta fourth-order method [RK4]

k1 = K[xn,πn] ,
k2 = K[xn+ 1

2πnδt,πn+ 1
2k1δt] ,

k3 = K[xn+ 1
2πnδt+

1
4k1δt

2,πn+ 1
2k2δt] ,

k4 = K[xn+πnδt+ 1
2k2δt

2,πn+k3δt] ,


=⇒


xn+1 = xn+πnδt+ 1

6

(
k1+k2+k3

)
δt2 ,

πn+1 = πn+ 1
6

(
k1+2k2+2k3+k4

)
δt ,

(3.101)

accurate to O(δt4).
Adapting RG2 to field theory EOM, we obtain a

(1) = a, f
(1)
i = fi , π

(1)
i =πi , π

(1)
a =πa ,

a(2) = a(1)+δηπ(1)
a , f

(2)
j = f

(1)
j +δηπ(1)

j , π
(2)
i =π

(1)
i +δηk1,i , π

(2)
a =π

(1)
a +δηk1,a , k1,i =Ki[a(1),π

(1)
a ,{f (1)

j },{π
(1)
j }] , k1,a =Ka[a(1),E

(1)
K ,E

(1)
G ,E

(1)
V ] ,

k2,i =Ki[a(2),π
(2)
a ,{f (2)

j },{π
(2)
j }] , k2,a =Ka[a(2),E

(2)
K ,E

(2)
G ,E

(2)
V ] ,


=⇒

=⇒



∆+
0 fi(n,n0) = πi(n,n0)+ 1

2k1,iδη ,

∆+
0 a(n0) = πa(n0)+ 1

2k1,aδη ,

∆+
0 πi(n,n0) = 1

2

(
k1,i+k2,i

)
,

∆+
0 πa(n0) = 1

2

(
k1,a+k2,a

)
,

(3.102)

Similarly, RG4 leads to

a(1) = a, f
(1)
i = fi , π

(1)
i =πi , π

(1)
a =πa ,

a(2) = a(1)+ δη
2 π

(1)
a , f

(2)
j = f

(1)
j + δη

2 π
(1)
j , π

(2)
i =π

(1)
i + δη

2 k1,i , π
(2)
a =π

(1)
a + δη

2 k1,a ,

a(3) = a(1)+ δη
2 π

(2)
a , f

(3)
j = f

(1)
j + δη

2 π
(2)
j , π

(3)
i =π

(1)
i + δη

2 k2,i , π
(3)
a =π

(1)
a + δη

2 k2,a ,

a(4) = a(1)+δηπ(3)
a , f

(4)
j = f

(1)
j +δηπ(3)

j , π
(4)
i =π

(1)
i +δηk3,i , π

(4)
a =π

(1)
a +δηk3,a ,

k1,i =Ki[a(1),π
(1)
a ,{f (1)

j },{π
(1)
j }] , k1,a =Ka[a(1),E

(1)
K ,E

(1)
G ,E

(1)
V ] ,

k2,i =Ki[a(2),π
(2)
a ,{f (2)

j },{π
(2)
j }] , k2,a =Ka[a(2),E

(2)
K ,E

(2)
G ,E

(2)
V ] ,

k3,i =Ki[a(3),π
(3)
a ,{f (3)

j },{π
(3)
j }] , k3,a =Ka[a(3),E

(3)
K ,E

(3)
G ,E

(3)
V ] ,

k4,i =Ki[a(4),π
(4)
a ,{f (4)

j },{π
(4)
j }] , k4,a =Ka[a(4),E

(4)
K ,E

(4)
G ,E

(4)
V ] ,



=⇒

=⇒



∆+
0 fi(n,n0) = πi(n,n0)+ 1

6

(
k1,i+k2,i+k3,i

)
δη ,

∆+
0 a(n0) = πa(n0)+ 1

6

(
k1,a+k2,a+k3,a

)
δη ,

∆+
0 πi(n,n0) = 1

6

(
k1,i+2k2,i+2k3,i+k4,i

)
,

∆+
0 πa(n0) = 1

6

(
k1,a+2k2,a+2k3,a+k4,a

)
.

(3.103)
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3.3.4 Crank-Nicolson
Let us now consider the specific problem of a one-dimensional single dof with a kernel of
the form

ẍ(t) = F (t)ẋ(t) +Kx[x(t)] , (3.104)
where F (t) is some external function depending on time. We will refer to F (t)ẋ(t) as the
friction term. We take initial conditions x(0) = x0 and ẋ(0) = π0 at the initial time t0 = 0.
The Crank-Nicolson method is based on representing the friction term by a semi-sum

xn+1 = xn + πn+1/2δt , (3.105)

πn+1/2 = πn−1/2 + δt

2
(
Fn+1/2πn+1/2 + Fn−1/2πn−1/2

)
+ δtKx[xn] , (3.106)

so that

xn+1 = xn + πn+1/2δt , (3.107)

πn+1/2 =
(

1 + δt
2 Fn−1/2

1− δt
2 Fn+1/2

)
πn−1/2 + δt

(1− δt
2 Fn+1/2)

Kx[xn] . (3.108)

The application of this algorithms to the case of field theories in an expanding universe is
actually straight forward, as the friction term is played by the Hubble friction term naturally
present in the kernels Ki[. . .] of the EOM of matter fields in FLRW, which contain terms
∝ (a′/a)f ′i , cf. eqs. (2.36)–(2.40). We can write

Crank-Nicolson in an expanding background

πa(n0 + 1/2) = πa(n0 − 1/2) + δtKa
[
a(n0), EV (n0), EK(n0), EG(n0)

]
, (3.109)

πi(n, n0 + 1/2) =

1− 3δt
2a(n0)πa(n0 − 1/2)

1 + 3δt
2a(n0)πa(n0 + 1/2)

πi(n, n0 − 1/2) +
δtKi

[
{fj(m, n0)}, a(n0)

]
1− δt

2a(n0)πa(n0 + 1/2)
,

(3.110)
a(n0 + 1) = a(n0) + δtπa(n0 + 1/2) , (3.111)

fi(n, n0 + 1) = fi(n, n0) + δtDi[πi(n, n0 + 1/2), a(n0 + 1/2)] . (3.112)

where in the first line EK(n0) ≡ 1
2(EK(n0 − 1/2) + EK(n0 + 1/2)), and in the last line,

a(n0 + 1/2) ≡ (a(n0) + a(n0 + 1))/2. We note that this algorithm cannot be made explicit
at O(δt2) due to the implicit relation between equations (3.109) and (3.110), so we would
need a recursive solution at every time step.6 Alternatively, if we make the substitution
EK(n0) −→ EK(n0−1/2), the algorithm becomes explicit but only at the expense of reducing
its accuracy to order O(δt). Because of these issues, we will not present concrete realizations
of this algorithm specialized to the case of interacting fields in either of the sections 4, 5 or 6.

3.4 Higher-order integrators
We discuss now the construction of higher-order integrators with accuracy O(δt4), O(δt6),
O(δt8) and even O(δt10), based on the use of O(δt2) staggered/synchronized leapfrog algo-
rithms as building blocks (section 3.4.1), and based on the generalization of the previous
explicit Runge-Kutta equations into an implicit problem (section 3.4.2).

6The algorithm remains however explicit and of O(δt2) for a fixed background expansion, i.e. if the scale
factor is given by an external function and we do not need to evolve eqs. (3.109) and (3.111).
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3.4.1 Yoshida method: recursive Verlet integration
TheO(δt2) Verlet integration methods, introduced in section 3.3.2 to solve the problem ẍ(t) =
K[x(t)] with initial conditions x(t0) = x0, ẋ(t0) = π0, can be used recursively as building
blocks to conveniently construct integrators of higher (even) order O(δtn). The idea is to
decompose appropriately a single time step δt into s sub-steps δti = wiδt (with

∑s
i=1wi = 1),

in such a way that the errors of the intermediate steps cancel up to order n. In practice,
the only thing that has to be done is to iterate s-times the Verlet algorithm (3.70) or (3.73),
using each time the appropriate δti sub-step. For example, using (3.70) as the building block,
one full step δt of the algorithm must be divided in the sum of different δti’s as follows,
t(0) = tn

π(0) ≡ πn
x(0) ≡ xn

=⇒


π

(i)
1/2 = π(i−1) + ωi

δt
2 K[x(i−1)]

x(i) = x(i−1) + π
(i)
1/2ωiδt

π(i) = π
(i)
1/2 + ωi

δt
2 K[x(i)]


i= 1, ..., s

=⇒


tn+1 = tn + δt

πn+1 ≡ π(s)

xn+1 ≡ x(s) .

For information about how to construct a specific algorithm, i.e. how to find the corresponding
weights ωi, we refer the interested reader to the original paper by Yoshida [274]. We collect in
table 2 of the appendix, sets of δti’s characterizing algorithms of order O(δt4), O(δt6), O(δt8)
and O(δt10), see [274, 275] for their derivation. We will refer to these algorithms as V V 4,
V V 6, V V 8 and V V 10, while we will refer to the standard velocity Verlet building block
as V V 2.

Some comments are, however, in order. First, the number of steps required to reach a
given accuracy grows quickly. For example, V V 4 requires only 3 times more operations than
V V 2, while V V 10 requires 31 times more operations than V V 2. Actually, to go from one
algorithm to the next, the number of steps in each iteration is slightly more than doubled
every time. This gives a rule of thumb as of when it is beneficial to use the next more accurate
algorithm: if in order to reach some target precision, the time step must be decreased by
more than a factor two, then we should consider using the next more accurate algorithm.

This said, let us write for completeness how this algorithm reads for field theories in an
expanding background, again assuming that a clever choice of dof variables has been made,
so that the field kernels do not depend on their conjugate momenta:

π
(0)
i ≡πi(n,n0)

f
(0)
i ≡ fi(n,n0)
a(0)≡ a(n0)

π
(0)
a ≡πa(n0)


=⇒



π
(p)
a,1/2 = π

(p−1)
a + ωpδη

2 Ka
[
a(p−1),E

(p−1)
K ,E

(p−1)
K ,E

(p−1)
V

]
π

(p)
i,1/2 = π

(p−1)
i + ωpδη

2 Ki[a(p−1),{f (p−1)
j }]

a(p) = a(p−1)+ωpδηπ(p)
a,1/2 ,

a
(p)
1/2 = 1

2

(
a(p)+a(p−1)

)
f

(p)
i = f

(p−1)
i +ωpδηDi

[
a

(p)
1/2,π

(p)
i,1/2

]
π

(p)
i = π

(p)
i,1/2+ ωpδη

2 Ki[a(p),{f (p)
j }]

π
(p)
a = π

(p)
a,1/2+ ωpδη

2 Ka[a(p),E
(p)
K ,E

(p)
K ,E

(p)
V ]


p=1, ..., s

=⇒



πi(n,n0+1)≡π(s)
i

fi(n,n0+1)≡ f (s)
i

a(n0+1)≡ a(s)

πa(n0+1)≡π(s)
a

(3.113)
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Note that a similar algorithm could be constructed instead, using the position-Verlet method
as the building block.

3.4.2 Gauss-Legendre methods: implicit Runge-Kutta

The Runge-Kutta methods RK2 and RK4 (of order O(δt2) and O(δt4) respectively), pre-
viously introduced in section 3.3.3 to solve the problem ẍ(t) = K[x(t), ẋ(t)] with initial
condition x(t0) = x0 and ẋ(t0) = π0, are actually only representative examples of a whole
family of Runge-Kutta methods. Runge-Kutta methods are characterized in general by a
one-step δt iteration algorithm of the form

xn+1 = xn + δt
s∑
i=1

ciπ
(i) , πn+1 = πn + δt

s∑
i=1

cik
(i) , (3.114)

with

x(i) ≡ xn + δt
s∑
j=1

bijπ
(j) , π(i) ≡ πn + δt

s∑
j=1

bijk
(j) , k(i) ≡ K[x(i), π(i)] , (3.115)

where a single step is subdivided in s sub-intervals, δt = ∑s
i=1 δti, with δti ≡ ciδt, ci < 1,

and ∑s
i=1 ci = 1. Schematically, each RK algorithm can be represented by a Butcher tableau

as follows
b11 b12 · · · b1s
b21 b22 · · · b2s
. . . . . . · · · . . .
bs1 bs2 · · · bss
c1 c2 · · · cs

. (3.116)

The RK2 and RK4 algorithms are represented by the following tableaux,

RK2 :
0 0
1 0

1/2 1/2
, RK4 :

0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0

1/6 1/3 1/3 1/6

. (3.117)

These correspond to explicit RK algorithms, as they are characterized by bij = 0 ∀ i ≤
j, which allows to compute the successive ki’s, i = 1, 2, . . . , s, as an explicit function of
the previous ones. In any other circumstance, eq. (3.114) corresponds to an implicit RK
algorithm, as the ki’s depend on the previous and following ones (even on themselves) through
the implicit relations in eq. (3.115). In a seminal paper [276], J. C. Butcher demonstrated that
i) the coefficients ci and bij in eqs. (3.114) and (3.115) are unique (see appendix of [276]),
and ii) the accuracy of the numerical solution of a method with s sub-steps is of order
O(δt2s). Furthermore, Butcher also determined the corresponding tableaux for the implicit
RK methods with s = 2, 3, 4 and 5 sub-steps, which we reproduce in table 3 of the appendix.
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Adapting the implicit RK methods to the field theory of our interest, we obtain

π
(l)
i ≡ πi(n, n0) + δη

∑s
m=1 blmk

(m)
i ,

π
(l)
a ≡ πa(n0) + δη

∑s
m=1 blmk

(m)
a ,

f
(l)
i ≡ fi(n, n0) + δη

∑s
m=1 blmπ

(m)
i ,

a(l) ≡ a(n0) + δη
∑s
m=1 blmπ

(m)
a ,

k(l)
i ≡ Ki

[
a(l), π

(l)
a , {f (l)

j }, {π
(l)
j }
]
,

k(l)
a ≡ Ka

[
a(l), E

(l)
K , E

(l)
K , E

(l)
V

]
,



=⇒



∆+
0 fi(n, n0) = ∑s

m=1 cmπ
(m)
i ,

∆+
0 a(n0) = ∑s

m=1 cmπ
(m)
a ,

∆+
0 πi(n, n0) = ∑s

m=1 cmk
(m)
i ,

∆+
0 πa(n0) = ∑s

m=1 cmk
(m)
a ,

(3.118)

3.5 Integrator properties

Before we move into discussing the explicit adaptation of the previous algorithms for their
use in interactive field theories in an expanding background, we review here the list of desired
properties that we may want to demand to a good numerical integrator:

• Time reversal. Dynamical processes are time-reversible if their EOM are invariant
under a change in the sign of the time variable. Since this is an exact symmetry in the
continuum EOM, it is desirable that a numerical integration method respects the same
property: an evolution algorithm for discrete EOM respects time reversibility if we can
integrate forward p steps, and then reverse the direction of integration and integrate
backwards p steps, to arrive exactly at the original starting initial condition.

• Symplecticness. Dynamical processes driven by conservative forces (i.e. from kernels
that do not depend on conjugate momenta or on any time-dependent external function)
respect the Liouville’s theorem, which states that the infinitesimal phase-space area per
degree of freedom is preserved as the system evolves. As this area-preserving property
is an exact feature of the continuum EOM which we want to mimic, it is desirable that a
numerical integrator respects such a conservation law. Numerical schemes that do so are
referred to as symplectic. The relevance of having a symplectic integrator is that they
possess a great stability: since the phase-space area is preserved during the evolution,
there cannot be situations where the field amplitudes or their conjugate momenta (and
hence their energy) increase without bound, because this would expand the phase-space
area. Symplectic integrators offer therefore a good numerical conservation of energy,7
with accuracy given by the accuracy O(δtp) of the integrator itself.

• Integration accuracy. Depending on the nature of a given numerical integrator method,
we may obtain integrated field amplitudes and conjugate momenta which differ from
their continuum values by some error of order O(δtp), typically with an even value
p = 2, 4, 6, 8, or even 10. Our base symplectic algorithms (Leapfrog/Verlet) have an
accuracy O(δt2). However, these can be turned into higher-order integrators using
techniques due to Haruo Yoshida. Essentially, by applying the basic algorithm over
a number of adjusted different timesteps chosen so that the errors cancel, far higher-
order integrators can be obtained, see section 3.4.1. This is particularly interesting
as the base methods are symplectic integrators, and hence the degree of conservation

7In the case of scenarios with an expanding background, by conservation of energy we actually mean the
preservation of the Hubble constraint 3m2

pH
2 = ρ.
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of energy (Hubble constraint for expanding backgrounds) will improve significantly as
we increase the integrator accuracy. Basic Runge-Kutta methods of order O(δt2) and
O(δt4) can also be generalized into implicit algorithms of higher order as demonstrated
by J. C. Butcher, see section 3.4.2.

• Efficiency. We obviously want to make our numerical integration as fast as possible,
so if we need to choose between two integration methods with the same accuracy
O(δtp), but different levels of energy conservation, in certain situation we might still
prefer the faster integrator even if it has worse energy conservation (as long as it can
be confronted and calibrated against the outcome from other integrators with better
energy conservation).

4 Lattice formulation of interacting scalar fields

4.1 Continuum formulation and natural variables

Let us consider a set of interacting real scalar fields {φa} with canonically normalized kinetic
terms. If they live in a FLRW background gµν = diag(−a2α, a2, a2, a2), with line element
ds2 = −a2αδη2 + a2(η)d~x2 and α-time η, their action can be written like

S = −
∫
d4x
√
−g

(1
2∂µφb∂

µφb + V ({φc})
)

=
(
f∗
ω∗

)2
S̃ , (4.1)

where

S̃ =
∫
d3x̃dη̃

1
2a

3−α∑
b

φ̃′ 2b −
1
2a

1+α∑
b,k

(∇̃kφ̃b)2 − a3+αṼ ({φ̃c})

 (4.2)

is the action expressed in the dimensionless variables

φ̃a ≡
φa
f∗
, dη̃ ≡ a−αω∗dt , dx̃i ≡ ω∗dxi , (4.3)

with ′ ≡ d/dτ̃ and ∇̃i ≡ ∂/∂x̃i, and where a dimensionless potential has been also intro-
duced as

Ṽ ({φ̃c}) ≡
1

f2
∗ω

2
∗
V ({φc})

∣∣∣
φc=f∗φ̃c

. (4.4)

Here, f∗ and ω∗ are scales conveniently chosen depending on the problem at hand. See the
discussion on program variables on the next page for further clarification. Explicit examples
will be provided in section 8.

The EOM in the dimensionless variables follow immediately from varying the action S̃,

φ̃′′a − a−2(1−α)∇̃2φ̃a + (3− α)a
′

a
φ̃′a + a2αṼ,φ̃a = 0 . (4.5)

The expansion of the universe, on the other hand, is dictated by the Friedmann equa-
tions, sourced by the volume averaged energy and pressure densities 〈ρφ〉, 〈pφ〉 of the fields.
Writing the relevant part of eqs. (2.51), (2.52) in the dimensionless variables (4.3), we have

a′′ = a2α+1
(
f∗
mp

)2 1
6[(2α− 1)〈ρ̃φ〉 − 3〈p̃φ〉] , a′2 = a2α+2

(
f∗
mp

)2 1
3〈ρ̃φ〉 , (4.6)
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with program energy and pressure densities defined as

ρ̃φ ≡
ρ

f2
∗ω

2
∗

= K̃φ + G̃φ + Ṽ , ; p̃φ ≡
p

f2
∗ω

2
∗

= K̃φ −
1
3G̃φ − Ṽ , (4.7)

where Ṽ is given by eq. (4.4), and we have introduced

K̃φ = 1
2a2α

∑
i

(φ̃′i)2 , G̃φ = 1
2a2

∑
i,k

(∇̃kφ̃i)2 . (4.8)

As in reality we need the volume averages 〈. . .〉 of the dimensionless energy density compo-
nents, we define

ẼK ≡
1

2a2α

∑
i

〈
(φ̃′i)2

〉
, ẼG ≡

1
2a2

∑
i,k

〈
(∇̃kφ̃i)2

〉
, ẼV ≡

〈
Ṽ ({φ̃j})

〉
, (4.9)

so that the Friedmann equations read(
a′

a

)2
= a2α

3

(
f∗
mp

)2 [
ẼK + ẼG + ẼV

]
, (4.10)

a′′

a
= a2α

3

(
f∗
mp

)2 [
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]
. (4.11)

If, on the contrary, the expansion of the universe is sourced by an external fluid, say with
constant barotropic equation of state w ≡ 〈p〉/〈ρ〉, then we obtain the scale factor simply
from the analytical expression

a(η̃) = a0

(
1 + 1

p
H̃0(η̃ − η̃0)

)p
, with p = 2

3(1 + ω)− 2α , (4.12)

where we fixed the initial conditions at an initial time η̃0 to a0 = a(η̃0) and H̃0 ≡ H̃(η̃0), and
introduced a (dimensionless) program Hubble rate H̃ = aα

ω∗
H, where H ≡ ȧ/a is the physical

Hubble parameter.

Program variables. We will refer to the dimensionless field and space-time variables in
eq. (4.3) as the lattice or program variables,8 and to the dimensionless potential in eq. (4.4)
as the lattice or program potential. The values of α, f∗ and ω∗ can be chosen, in principle,
arbitrarily. However, certain choices can be more convenient than others, depending on the
form of the potential V . First, let us consider the choice of α. A priori, this could be chosen
at will: we could take α = 0 if we wanted to solve our dynamics in cosmic time, whereas we
could choose α = 1 if we wanted to solve it in conformal time (up to dimensionful constant
factors). However, there are many situations in which an oscillatory field dominates the
energy budget of the system for a long time, with a time-dependent oscillation period Tosc(t).
As the integration techniques introduced in the previous sections assume a constant time
step, we would not be able to resolve later oscillations of the field with the same accuracy as
early ones. If the oscillation period decreases with time, this may cause stability problems in
the simulation at late times. Therefore, if we were in such a situation, it would be extremely
convenient to choose a value of α that makes the oscillation period constant in the new α-time
variable. In section 8 we show an example of this in the context of a scalar field oscillating
around the minimum of a monomial potential, so that we choose conveniently different values
for α, depending on the exponent of the power-law of the monomial potential.

8We will also define later on dimensionless program variables for the charged scalars and gauge fields in
eqs. (5.1) and (6.1).
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Let us now consider the choice of f∗. For this, let us imagine a scenario in which one
scalar field (say φ) has initially a homogeneous configuration with a certain initial amplitude
Φ∗. A natural choice would be f∗ = Φ∗, so that as long as that field dominates the energy
budget of the matter content in the simulation, its normalized amplitude φ̃ = φ/f∗ will be of
order unity (modulo red-shifting dilution factors due to the expansion of the universe). This is
often the case in models with parametric resonance, such as the preheating scenario presented
in section 8. If on the contrary, relevant field(s) in the dynamics start with vanishing (or
small) amplitude but acquire a vacuum expectation value 〈φ〉 = v 6= 0 later on, it might be
convenient to take f∗ = v. This will be the case e.g. in models with spontaneous symmetry
breaking, like in phase transitions and cosmic defect formation.

The choice of ω∗ follows also a similar logic. For instance, if the dominant scalar field of
the system oscillates say with a frequency Ωosc(η) (possibly time-dependent), it can be conve-
nient to take ω∗ = Ωosc(η∗), at the time η = η∗ marking the onset of field oscillations. How-
ever, if the time scale ∆η∗ of excitation of other fields is rather the relevant time scale in the
problem, it might be more convenient to choose ω∗ of the order of 1/∆η∗. Another possibility
would be to simply set f∗ = ω∗, so we prevent ratios f∗/ω∗ (naturally appearing e.g. in the
initial condition of scalar field fluctuations) to become tiny or extremely large, see section 7.

In summary, if the choice of α, f∗ and ω∗ is made judiciously, it will lead to slowly
varying dimensionless (initially of order unity) program field amplitudes and time scales.
This will achieve a twofold objective: first, a better handle of the program variables in the
computer, so we do not need to deal with very large nor very small numbers, and secondly,
an easier and more transparent conversion of the dimensionless computer program variables
into the physical mass/time scales of a given scenario. We will present practical examples of
how to make optimal choices of (α, f∗, ω∗) in section 8.

From now on, we assume that independently of the scenario under study, a convenient
choice of (α, f∗, ω∗) has been made. In order to solve the dynamics of the interacting
scalar fields in a computer, we need now to obtain some discretized version of the continuum
EOM (4.5) expressed in the natural variables (4.3), (4.4). We need to do two things: first, to
substitute somehow the time and spatial continuum derivatives by lattice operators mimicking
such continuum differential operations up to some order O(δxµ); and second, to solve the
resulting discrete lattice EOM with some algorithms. Our toolkit to address these two
aspects was provided in section 3, where we introduced both lattice differential operators
and evolution algorithms. Armed with such toolkit, we have essentially two options:

i) Lattice action approach. This is based on discretizing the continuum action, so that it is
substituted by a lattice version. Varying such lattice action with respect to the lattice
field dof , leads to lattice EOM enjoying whichever symmetry the lattice action enjoyed
in first place. Constraint equations (expected as a consequence of the symmetries) are
then automatically satisfied at the lattice level.

ii) EOM discretization approach. This is based on discretizing the continuum EOM di-
rectly. Here we simply substitute the partial derivatives involved in certain terms of the
continuum EOM by appropriate lattice operators mimicking those continuum deriva-
tives. This method allows to envisage lattice EOM adapted to essentially any evolution
algorithm we wish to use.

Either approach i) or ii) may have its advantages and disadvantages depending on
the model and circumstances. Whereas for EOM in flat space-time the two approaches are
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essentially very similar, this might not be case in an expanding universe, particularly in the
presence of gauge fields. As for the time being, in this section, we only deal with scalar
sectors in expanding backgrounds, we present next a series of algorithms based on either
approach i) or ii), providing in each case a set of lattice EOM suitable to be solved by the
evolution algorithms we previously introduced in section 3.

4.2 Lattice formulation of interacting scalar fields: O(δη2) accuracy methods

4.2.1 Staggered leapfrog from a lattice action
A lattice version of action (4.2) can be written using e.g. forward derivatives [cf. eq. (3.15)]
for the time derivatives and the spatial gradients. Promoting integrals into discrete sums∫
dη(. . .) ≡ δη∑n0(. . .),

∫
dx3(. . .) ≡ δx3∑

n(. . .), we write

S̃L = δη̃δx̃ 3∑
n0

∑
n

1
2a

3−α
+0/2

∑
b

(∆̃+
0 φ̃

b)2 − 1
2a

1+α∑
b,k

(∆̃+
k φ̃

b)2 − a3+αṼ ({φ̃c})

 . (4.13)

Note that we have not determined yet at what times the scale factor ‘lives in’, and we have
rather referred to a scale factor at integer and half-integers times, whenever appropriate. The
logic to specify at what time the scale factor lives in each term of the action, is to consider
the time at which the operator multiplying the scale factor, lives in. Thus, as (∆̃+

0 φ̃
(a))2 lives

at n0 + 1/2, we write its pre-factor as a3−α
+0/2, whereas (∆̃+

k φ̃
(a))2 lives at n0, so we write its

pre-factor as a1+α, etc. Varying this action with respect each field dof , δφaSL = 0, leads to
the discrete EOM

∆̃−0 [a3−α
+0/2∆̃+

0 φ̃b] = a1+α∑
k

∆̃−k ∆̃+
k φ̃b − a

3+αṼ,φ̃b , b = 1, 2, . . . , Ns , (4.14)

with Ns the total number of scalar fields.
Let us now deal with the expansion of the universe. We need to express the Friedmann

equations as a function of program expressions of the volume averaged field energy and
pressure densities 〈ρφ〉, 〈pφ〉. We introduce first a discretized versions of the kinetic, gradiental
and potential energies, cf. eq. (4.9),

ẼK ≡
1

2a2α
+0/2

∑
b

〈
(∆̃+

0 φ̃b)2
〉
, ẼG ≡

1
2a2

∑
b,k

〈
(∆̃+

k φ̃b)
2
〉
, ẼV ≡

〈
Ṽ ({φ̃b})

〉
(4.15)

with ẼG and ẼV naturally living at integer times n0, and ẼK at semi-integer times n0 + 1/2.
We need to decide now whether we consider a scale factor living ‘naturally’ at integer or
semi-integer times. If we consider that a lives at semi-integer times, then it is natural to
define the operator b ≡ ∆̃+

0 a−0/2 living at integer times, and hence identify the first and
second derivative [via the Friedmann equations in (4.10), (4.11)] of the scale factor as

a′ → ∆̃+
0 a−0/2 ≡ b , (4.16)

a′′ → ∆̃+
0 b = 1

3

(
f∗
mp

)2

a1+2α
+0/2

[
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]
. (4.17)

with ẼG ≡ (ẼG + ẼG,+0̂)/2 and ẼV ≡ (ẼV + ẼV,+0̂)/2, so that they live at semi-integer
times, like the scale factor and ẼK . Alternatively, if we think of the scale factor living at
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integer times, we can define the operator b+0/2 ≡ (∆̃+
0 a) living at semi-integer times, and

identify the first and second derivative of the scale factor as
a′ → ∆̃+

0 a ≡ b+0/2 , (4.18)

a′′ → ∆̃+
0 b−0/2 = 1

6

(
f∗
mp

)2

a1+2α
[
(α− 2)ẼK + α ẼG + (α+ 1)ẼV

]
, (4.19)

with ẼK ≡ (ẼK,−0̂/2 + ẼK,+0̂/2)/2 living at integer times, as much as a, ẼG and ẼV .
From a practical or computational point of view, choosing a scale factor living at integer

or semi-integer times, is actually irrelevant. If we choose that it lives at e.g. integer times,
we will always be forced to obtain it also, within each iteration, at semi-integer times, from
the semi-sum of its two values at the closest integer times. And vice versa. In order to
provide an iterative scheme, we still need to decide on the conjugate momenta π̃(a)

+0/2, which
will be implemented through forward derivative operators. The question is whether to choose
that π̃(a)

+0/2 represents the time-derivative of each field, i.e. φ′a, or rather represents a3−αφ′a,
as the EOM actually naturally suggest. It turns out that depending on this choice the
integrator will be accurate to order O(δη) or O(δη2). Altogether, we can obtain the following
implementations of a staggered leapfrog algorithm (here IC stands for Initial Condition, and
HC for Hubble Constraint):

I) Iterative scheme for π̃(a)
+0/2 ≡ ∆̃+

0 φ̃a and scale factor a(n0 + 1/2)

IC : {φ̃a, b} at η̃0, {π̃(a)
−0/2, a−0/2} at η̃0 − 0.5δη̃ (4.20)

a+0/2 = a−0/2 + b δη̃ −→ a ≡ (a+0/2 + a−0/2)/2 (4.21)

π̃
(a)
+0/2 =

(
a−0/2
a+0/2

)3−α

π̃
(a)
−0/2 + a

−(3−α)
+0/2

(
a1+α∑

k

∆̃−k ∆̃+
k φ̃

(a) − a3+αṼ,φ̃(a)

)
δη̃ (4.22)

φ̃
(a)
+0 = φ̃(a) + δη̃ π̃

(a)
+0/2 (4.23)

b+0 = b+ δη̃

3

(
f∗
mp

)2

a1+2α
+0/2

[
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]
, (4.24)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
(
ẼK + ẼG + ẼV

)
. (4.25)

II) Iterative scheme for π̃(a) ≡ ∆̃+
0 φ̃

(a)
−0/2 and scale factor a(n0)

IC : {ã, π̃(a)} at η̃0, {φ̃(a)
−0/2, b−0/2} at η̃0 − 0.5δη̃ (4.26)

φ̃
(a)
+0/2 = φ̃

(a)
−0/2 + δη̃ π̃(a) (4.27)

b+0/2 = b−0/2 + δη̃

3

(
f∗
mp

)2

a1+2α
[
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]
, (4.28)

a+0 = a+ b+0/2 δη̃ −→ a+0/2 ≡ (a0 + a)/2 , (4.29)

π̃
(a)
+0 =

(
a

a+0

)3−α
π̃(a) + a

−(3−α)
+0

(
a1+α

+0/2
∑
k

∆̃−k ∆̃+
k φ̃

(a)
+0/2 − a

3+α
+0/2Ṽ,φ̃(a)

∣∣∣
+0/2

)
δη̃ , (4.30)

HC : b2+0/2 = 1
3

(
f∗
mp

)2

a
2(α+1)
+0/2

(
ẼK + ẼG + ẼV

)
, (4.31)
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III) Iterative scheme for π̃(a)
+0/2 ≡ a

3−α
+0/2∆̃+

0 φ̃a and scale factor a(n0)

IC : {φ̃(a), a, } at η̃0, {π̃(a)
−0/2, b−0/2} at η̃0 − 0.5δη̃ (4.32)

π̃
(a)
+0/2 = π̃

(a)
−0/2 +

(
a1+α∑

k

∆̃−k ∆̃+
k φ̃

(a) − a3+αṼ,φ̃(a)

)
δη̃ (4.33)

b+0/2 = b−0/2 + δη̃

3

(
f∗
mp

)2

a1+2α
[
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]
, (4.34)

a+0 = a+ b+0/2 δη̃ −→ a+0/2 ≡ (a+0 + a0)/2 , (4.35)

φ̃
(a)
+0 = φ̃(a) + δη̃ π̃

(a)
+0/2a

−(3−α)
+0/2 , (4.36)

HC : b2+0/2 = 1
3

(
f∗
mp

)2

a
2(α+1)
+0/2

(
ẼK + ẼG + ẼV

)
, (4.37)

IV) Iterative scheme for π̃(a) ≡ a3−α∆̃+
0 φ̃

(a)
−0/2 and scale factor a(n0 + 1/2)

IC : {π̃(a), b} at η̃0, {φ̃(a)
−0/2, a−0/2} at η̃0 − 0.5δη̃ (4.38)

a+0/2 = a−0/2 + b δη̃ −→ a ≡ (a+0/2 + a−0/2)/2 (4.39)

φ̃
(a)
+0/2 = φ̃

(a)
−0/2 + δη̃ π̃(a)a−(3−α) (4.40)

π̃
(a)
+0 = π̃(a) +

(
a1+α

+0/2
∑
k

∆̃−k ∆̃+
k φ̃

(a)
+0/2 − a

3+α
+0/2Ṽ,φ̃(a)

∣∣∣
+0/2

)
δη̃ (4.41)

b+0 = b+ δη̃

3

(
f∗
mp

)2

a1+2α
+0/2

[
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]
, (4.42)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
(
ẼK + ẼG + ẼV

)
. (4.43)

While all these iterative schemes descent from the same action (4.13), they are truly
different algorithms, based on the choice of conjugate momenta and time domain of the
scale factor. In fact, iterative schemes I and II, which are basically very similar as they
are based on (discretized versions of) the same choice πa ≡ φ′a, are only accurate to order
O(δη). Iterative schemes III and IV , also very similar to each other as they are based on
(discretized versions of) the choice πa ≡ a3−αφ′a, are however accurate to order O(δη2). This
becomes manifest in numerical simulations by monitoring the Hubble constraint 3m2

pH
2 = ρ,

which in the case of schemes I and II is only verified to order O(δη) by eqs. (4.25), (4.31),
whereas in the schemes III and IV , eqs. (4.37), (4.43) are verified to order O(δη2). This is
a clear illustration of the importance of choosing the appropriate conjugate momentum to
evolve the equations.

4.2.2 Staggered leapfrog à la LatticeEasy
Alternatively to discretizing action (4.1), like in (4.13), one can start from the continuum
EOM for scalar fields, eq. (4.5), and discretize these equations directly. Considering the EOM
of Ns scalar fields canonically normalized [cf. eq. (4.5)],

φ̃′′i − a−2(1−α)∇̃2φ̃i + (3− α)H̃φ̃′i + a2αṼ,φ̃i = 0 , i = 1, 2, . . . , Ns , (4.44)
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where H̃ ≡ a′/a, we could attempt to substitute here the continuum derivatives ∂̃µ by
finite difference operators ∆̃±µ , and then obtain a discretized version of the EOM. However,
we would run immediately into the problem of the friction term ∝ φ̃′, which prevents the
iterative scheme to be in the form of a Staggered leapfrog algorithm: namely, the kernel of
the conjugate momenta, π̃′i = Ki[{φ̃j}, {π̃j}, . . .], would depend on the conjugate momenta
itself π̃i = φ̃′i, so ∂π̃iKi 6= 0.

It turns out that the problem can be easily avoided, by making a conformal re-definition
of the scalar field amplitudes φ̃i −→ ϕ̃i ≡ aβφ̃i, so that the EOM become

ϕ̃′′i + (3− α− 2β)H̃ϕ̃′i − a−2(1−α)∇̃ 2ϕ̃i + a2(α+β)Ṽ,ϕ̃i + m̃2[α, β]ϕ̃i = 0 , (4.45)

with

m̃2[α, β] ≡ β
(

(α+ β − 2)H̃2 − a′′

a

)
. (4.46)

Choosing β = (3 − α)/2 leads immediately to the elimination of the friction term, so the
EOM can be finally written like

ϕ̃′′i −a−2(1−α)∇̃2ϕ̃i+a3+αṼ,ϕ̃i+m̃2
αϕ̃i = 0 , m̃2

α≡
(3−α)

2

((α−1)
2 H̃2− a

′′

a

)
. (4.47)

This corresponds to a set of equations that can be discretized with a staggered leapfrog
algorithm simply by choosing π̃i ≡ ϕ̃′i, so that the kernel π̃′i = Ki[. . .] depends on the
field amplitudes but not on the field momenta, ∂π̃iKj = 0 ∀ i, j. This trick however is not
enough by itself, as we still have to deal with the evolution of the scale factor through the
Friedmann equations, now incorporating the conformal re-scaling of the field amplitudes.
Furthermore, we notice that the new mass term m2

β depends actually on H and a′′/a, so in
order for the kernel of π̃i to depend only say on integer times (assuming π̃i’s live at semi-
integer times), we need both H and a′′/a to be evaluated at the same integer time. Recalling
eq. (2.52) for a′′, and denoting the scale factor conjugate momentum as b ≡ a′, we observe
that b′ = Ka[a, ẼK , ẼG, ẼV ] with ẼK , ẼG and ẼV representing the volume averaged kinetic,
gradient and potential terms, as contributed by all scalar fields, cf. (4.9). We have therefore,
on the one hand, EOM dictating the evolution of the conjugate momenta π̃′is via kernels
depending on a′′/a, and on the other hand, an equation for a′′/a depending on the conjugate
momenta {π̃j} through the kinetic terms. This prevent us from obtaining an explicit solution.
Furthermore, if we substitute the conformal redefinition of the field amplitude in the kinetic
terms sourcing a′′/a, we obtain that the kernel b′ = Ka[. . .] contains terms ∝ π̃2

j , ∝ H̃2ϕ̃2
j

and ∝ H̃ϕ̃j π̃j , and hence that Ka[. . .] depends also on H̃. We immediately understand that
implementing a staggered leapfrog algorithm is still not feasible in the current system of
equations, unless we perform some extra step.

The celebrated package LatticeEasy (and for this matter its parallelized version Clus-
terEasy), developed in the 2000’s by Gary N. Felder and Igor I. Tkachev, circumvented the
previous issue by means of the following trick: the kinetic term ẼK in the Friedmann equa-
tion 3m2

pb
′ = f2

∗a
1+2α[(α − 2)ẼK + αẼG + (1 + α)ẼV ], can be substituted by its expression

obtained from the other Friedmann equation 3m2
pH̃2 = f2

∗a
2α(ẼK +ẼG+ẼV ). That is ẼK =

3(f∗/mp)−2a−2αH̃2 − ẼG − ẼV , and hence 3m2
pb
′ = 3(α− 2)m2

paH̃2 + f2
∗a

1+2α(2ẼG + 3ẼV ).
Choosing that the scale factor lives at integer times, and introducing b+0/2 ≡ ∆̃+

0 a and
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∆̃−0 b+0/2 ≡ ∆̃−0 ∆̃+
0 a for the first and second derivative of the scale factor, the second Fried-

mann equation can be written as
(
b+0/2 − b−0/2

δη̃

)
= (α− 2)

a

(
b+0/2 + b−0/2

2

)2
+ 1

3

(
f∗
mp

)2

a1+2α(2ẼG + 3ẼV ) , (4.48)

where we have introduced an averaged Hubble rate as H̃ ≡ (b+0/2+b−0/2)
2a . As eq. (4.48) is

simply a quadratic equation for b+0/2, we can re-arrange terms to write

B2b
2
+0/2 +B1b+0/2 +B0 = 0 ,


B2 ≡ cδη̃ , c ≡ (α−2)

4a

B1 ≡ 2cδη̃b−0/2 − 1
B0 ≡ b−0/2(1 + cδη̃b−0/2) + δη̃

3

(
f∗
mp

)2
a1+2α(2ẼG + 3ẼV )

(4.49)
so that b+0/2 = (−B1±

√
B2

1 − 4B2B0)/(2B2). Only by choosing the negative sign we arrive
at the correct limit b+0/2 −→ b−0/2 when δη̃ −→ 0, so we finally obtain

b+0/2 = −b−0/2 + 1
2cδη̃

(
1−

√
(1− 2cδη̃b−0/2)2 − 4cδη̃B0

)
. (4.50)

The kernel of the second Friedmann equation a′′/a = Ka[. . .] does not depend, in this way,
on the field conjugate momenta π̃j ’s, while at the same time the mass term in the EOM of
the π̃i’s, eq. (4.47), can now be built from H̃ ≡ (b−0/2 + b+0/2)/(2a) and a′′/a ≡ (b+0/2 −
b+0/2)/(aδη̃). Hence, a consistent staggered leapfrog algorithm can be put forward [with
c,B0 given in eq. (4.49)] as

LatticeEasy staggered leapfrog scheme

IC : {ϕ̃i, a} at η̃0, {π̃(i)
−0/2, b−0/2} at η̃0 − 0.5δη̃ (4.51)

b+0/2 = −b−0/2 + 1
2cδη̃

(
1−

√
(1− 2cδη̃b−0/2)2 − 4cδη̃B0

)
(4.52)

π̃
(i)
+0/2 = π̃

(i)
−0/2 + δη̃

(
a−2(1−α)∇̃ 2ϕ̃i − a3+αṼ,ϕ̃i − m̃2

α(a, b−0/2, b+0/2)ϕ̃i
)

(4.53)

ϕ̃
(i)
+0 = ϕ̃(i) + δη̃ π̃

(i)
+0/2 (4.54)

a+0 = a+ b+0/2 δη̃ (4.55)

As the field amplitudes are conformally transformed as φ̃i = a−βϕ̃i, the canonical mo-
menta becomes φ̃′i = a−β(π̃i−βH̃ϕ̃i), with π̃i = ϕ̃′i and β = (3−α)/2. The Hubble constraint
(in the continuum) then becomes

HC : H̃2 = 1
3

(
f∗
mp

)2(
aα−3

2
∑
i

〈
(π̃i − βH̃ϕ̃i)2

〉
+ a3α−5

2
∑
i

〈
( #̃»∇ϕ̃i)2

〉
+ a2α

〈
Ṽ
〉)

,

(4.56)
which is a quadratic equation for H. LatticeEasy/ClusterEasy presented a discretized
version of eq. (4.56) that is verified numerically to accuracy O(δη̃2), as expected for a valid
staggered leapfrog scheme. Discretizing the expression in eq. (4.56) requires however to deal
with the fact that there are terms in its r.h.s. that live at integer times, others that live at
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semi-integer times, and there are even ‘crossed’ terms built from the product of the latter
two. The solution LatticeEasy/ClusterEasy adopted for this was to synchronize the field
amplitudes with the conjugate momenta, just before checking the Hubble law. In this way
field amplitudes are evolved backwards in time by half time step, so that they live, during
the check, at the same semi-integer step as the conjugate momenta. After the check has been
done, one just evolves forward by half time step the field amplitudes, so that they are back
to their appropriate value within the evolution loop.

A remark is now in order. Even though the above implementation of an O(δη2) stag-
gered leapfrog algorithm for scalar fields, works fine, it is somehow more cumbersome than
our proposed schemes in section 4.2.1. First of all, the conformal transformation of the fields
leads to mix terms between amplitudes and conjugate momenta, whenever time derivatives
of the original field amplitudes are calculated. Secondly, the whole method relies on the
elimination of the kinetic term from the second Friedmann equation. This leads to solving
the evolution of the scale factor from a quadratic equation, and generates a Hubble con-
straint which becomes itself also a quadratic equation for the Hubble rate H. Even though
one does not need to solve explicitly for H to verify the Hubble law,9 one still needs to syn-
chronize and desynchronize the field amplitudes just before and after checking the Hubble
law. Furthermore, whenever computing observables like the fields’ energy density terms or
the various relevant field spectra, one needs to un-do the conformal transformation of the
field variables, in order to obtain physically meaningful quantities (or at least one needs to
have a very clear idea of what is being obtained, and in what variables it is written down).
While none of these aspects are particularly difficult to deal with, they altogether make this
prescription more complicated than e.g. our iterative schemes III and IV in section 4.2.1.
Our schemes are simpler and more natural, not only because they do not require to re-define
the field variables, but also because they are based on a lattice principle, i.e. in writing first
a correct discretized action, from which naturally follows the dynamics and the observables.
The most important caveat, however, is something that has not yet become manifest, but
that we can anticipate here: the trick used to eliminate the kinetic term of the scalar fields
from the Friedmann equation for a′′/a, is not generalizable to gauge theories. This is simple
to understand, recalling eqs. (2.51), (2.52), we observe that the weight of the scalar and gauge
field kinetic terms is the same in the Hubble constraint, but it is different in the equation
for a′′/a. This implies that it is impossible to eliminate both kinetic terms at the same time
from the second Friedmann equation, and hence it is not possible to achieve a scale factor
kernel Ka[. . .] free from all fields’ conjugate momenta (this is actually independent of any
potential conformal transformation of the gauge fields): Ka[. . .] is always left with the conju-
gate momenta of the scalar fields, or with the conjugate momenta of the gauge fields (played
by the electric fields of the problem). Therefore, an approach of this kind to obtain a second
order integrator for a gauge theory in an expanding background (no matter whether Abelian
or non-Abelian), is simply not feasible.

4.2.3 Synchronized Leapfrog: position- and velocity-Verlet
While in section 4.2.1 our starting point was a lattice action from which we derived the
lattice EOM, here we will rather discretize directly the continuum EOM, without introducing
a conformal rescaling, similarly to what was done in section 4.2.1, using a re-definition of
the field variables. Considering again the EOM of Ns scalar fields canonically normalized,
cf. eq. (4.44), we immediately conclude that the field variables’ kernel depend on the conjugate

9It is enough to check that the l.h.s. and the r.h.s. of eq. (4.56) are numerically balanced to order O(δη2).
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momenta through the friction term (3 − α)H̃φ̃′b. This appears seemingly as an impediment
to apply staggered or synchronized leapfrog methods. The EOM as derived initially from the
continuum action (4.2), can however be written as

(a(3−α)φ̃′i)′ − a1+α∇̃ 2φ̃i + a3+αṼ,φ̃i = 0 , i = 1, 2, . . . , Ns , (4.57)

so that only when expanding the first term (and after multiplying by a−(3−α)), the standard
second derivative and friction terms φ̃′′i + (3 − α)H̃φ̃′i become explicit. Instead of expand-
ing such terms, the form of eqs. (4.57) invites to rather re-write them more naturally in a
Hamiltonian-like scheme as

φ̃′i = a−(3−α)π̃i , (4.58)
π̃′i = a1+α∇̃ 2φ̃i − a3+αṼ,φ̃i , (4.59)

where it is manifest that the kernel does not depend on the conjugate momenta. Analogously,
the second Friedmann equation (4.11) can then be written as

a′ = b , (4.60)

b′ = a1+2α

3

(
f∗
mp

)2 [
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]
, (4.61)

whereẼK ≡
1

2a6

∑
i

〈
(π̃i)2

〉
, ẼG ≡

1
2a2

∑
i,k

〈
(∇̃kφ̃i)2

〉
, ẼV ≡

〈
Ṽ ({φ̃j})

〉
, (4.62)

This immediately invites for the application of either staggered or synchronized leapfrog
methods. In fact, the methods III and IV from section 4.2.1 corresponded precisely with
the application of staggered leapfrog schemes, so we will rather focus now on the application
of synchronized leapfrog schemes, i.e. Verlet integrators, either velocity- or position-based.
Following section 4.2.3, these algorithms read:

I) Velocity-Verlet scheme for interacting scalar fields in an expanding background

IC : {φ̃(i), π̃(i), a, b} at η̃0 , (4.63)

b+0/2 = b+ 1
3

(
f∗
mp

)2

a1+2α
[
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]δη̃
2 , (4.64)

π̃
(i)
+0/2 = π̃(i) +

(
a1+α∑

k

∆̃−k ∆̃+
k φ̃

(i) − a3+αṼ,φ̃(i)

)
δη̃

2 , (4.65)

a+0 = a+ b+0/2δη̃ , (4.66)

a+0/2 = a+0 + a

2 , (4.67)

φ̃
(i)
+0 = φ̃(i) + δη̃ π̃

(i)
+0/2a

−(3−α)
+0/2 , (4.68)

π̃
(i)
+0 = π̃

(i)
+0/2 +

(
a1+α

+0
∑
k

∆̃−k ∆̃+
k φ̃

(i)
+0 − a

3+α
+0 Ṽ,φ̃(i)

∣∣∣
+0

)
δη̃

2 , (4.69)

b+0 = b+0/2 + 1
3

(
f∗
mp

)2

a1+2α
+0

[
(α− 2)ẼK,+0 + αẼG,+0 + (α+ 1)ẼV,+0

]δη̃
2 , (4.70)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
(
ẼK + ẼG + ẼV

)
, (4.71)
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II) Position-Verlet scheme for interacting scalar fields in an expanding background

IC : {φ̃(i), π̃(i), a, b} at η̃0 , (4.72)

a+0/2 = a+ b
δη̃

2 , (4.73)

φ̃
(i)
+0/2 = φ̃(i) + δη̃

2 π̃
(i)a−(3−α) , (4.74)

π̃
(i)
+0 = π̃(i) +

(
a1+α

+0/2
∑
k

∆̃−k ∆̃+
k φ̃

(i)
+0/2 − a

3+α
+0/2Ṽ,φ̃(i)

∣∣∣
+0/2

)
δη̃ , (4.75)

b+0 = b+ 1
3

(
f∗
mp

)2

a1+2α
+0/2

[
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]
δη̃ , (4.76)

a+0 = a+0/2 + b+0
δη̃

2 , (4.77)

φ̃
(i)
+0 = φ̃

(i)
+0/2 + δη̃

2 π̃
(i)
+0a

−(3−α)
+0 . (4.78)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
(
ẼK + ẼG + ẼV

)
, (4.79)

Both algorithms have O(δη2) accuracy, so one can use in principle one or the other, and
obtain the same results. Verlet integrators have however three steps per iteration (as they
come in a kick-drift-kick or drift-kick-drift fashion) versus two steps of the staggered leapfrog
integrators III and IV from section 4.2.1 (which come in a drift − kick or kick − drift
scheme). Verlet integrators are therefore some ∼ 30%− 50% slower than staggered leapfrog
algorithms. They can be used however to implement higher-order in δη with the method
presented in section 3.4.1, see section 4.3.2.

4.3 Lattice formulation of interacting scalar fields: O(δηn) accuracy methods

4.3.1 Explicit Runge-Kutta 4th order

Here we just need to specialize eqs. (3.3.3) corresponding to the (explicit) Runge-Kutta
method of order O(δη4) to the EOM for Ns interacting scalar fields dictating the expansion
of the universe, eqs. (4.5) and (4.11). We first re-write the continuum EOM as

a′ = b , (4.80)
φ̃′i = π̃i , (4.81)
π̃′i = Ki[a, b, {φ̃j}, π̃i] , (4.82)
b′ = Ka[a, ẼK , ẼG, ẼV ] , (4.83)

where



Ki[a, b, {φ̃j}, π̃i] ≡ a−2(1−α)∇̃2φ̃i − (3− α) ba π̃i − a2αṼ,φ̃i ,

Ka[a, ẼK , ẼG, ẼV ] ≡ 1
3

(
f∗
mp

)2
a1+2α

[
(α− 2)ẼK + αẼG + (α+ 1)ẼV

]
,

ẼK ≡ 1
2a2α

∑
i

〈
π̃2
i

〉
, ẼG ≡ 1

2a2
∑
i,k

〈
(∇̃kφ̃i)2

〉
, ẼV ≡

〈
Ṽ ({φ̃j})

〉
.

(4.84)
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It is then straightforward to adapt the explicit RK4 algorithm based on eqs. (3.3.3), into the
above system of EOM, obtaining

π̃
(p)
i ≡ π̃i(n,n0)+δη̃bp,p−1k

(p−1)
i ,

b(p) ≡ b(n0)+δη̃bp,p−1k
(p−1)
a ,

φ̃
(p)
i ≡ φ̃i(n,n0)+δη̃bp,p−1π̃

(p−1)
i ,

a(p) ≡ a(n0)+δη̃bp,p−1b
(p−1) ,

k(p)
i ≡ Ki

[
a(p),{φ̃(p)

j }, π̃
(p)
i

]
,

k(p)
a ≡ Ka

[
a(p), Ẽ

(p)
K , Ẽ

(p)
G , Ẽ

(p)
V

]
,


p=1,2,3,4

=⇒



∆̃+
0 φ̃i(n,n0) = 1

6

(
π̃

(1)
i +2π̃(2)

i +2π̃(3)
i +π̃(4)

i

)
,

∆+
0 a(n0) = 1

6

(
b(1)+2b(2)+2b(3)+b(4)

)
,

∆̃+
0 π̃i(n,n0) = 1

6

(
k

(1)
i +2k(2)

i +2k(3)
i +k(4)

i

)
,

∆̃+
0 b(n0) = 1

6

(
k

(1)
a +2k(2)

a +2k(3)
a +k(4)

a

)
,

where b10≡ 0 , b21≡
1
2 , b32≡

1
2 , b43≡ 1 , (4.85)

Note that here bp,p−1’s are coefficients, whereas b(p)’s represent the p-th version of the time
derivative of the scale factor b ≡ a′.

Since both field amplitudes and conjugate momenta live at the same integer times (after
each full iteration), the Hubble constraint is simply

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
(
ẼK + ẼG + ẼV

)
, (4.86)

evaluated at any integer time.

4.3.2 Verlet integration nth order

In order to consider any of the higher-order Verlet integrators that we introduced in sec-
tion 3.4.1, we need to re-write first the EOM (4.58)–(4.61) for Ns interacting scalar fields
dictating the expansion of the universe, as follows

a′ = b , (4.87)
φ̃′i = a−(3−α)π̃i , (4.88)
π̃′i = Ki[a, {φ̃j}] , (4.89)
b′ = Ka[a, ẼK , ẼG, ẼV ] , (4.90)

where

Ki[a,{φ̃j}]≡ a1+α∇̃2φ̃i−a3+αṼ,φ̃i , (4.91)

Ka[a,ẼK , ẼG, ẼV ]≡ 1
3

(
f∗
mp

)2

a1+2α
[
(α−2)ẼK+αẼG+(α+1)ẼV

]
, (4.92)

ẼK ≡
1

2a6

∑
i

〈
π̃2
i

〉
, ẼG≡

1
2a2

∑
i,k

〈
(∇̃kφ̃i)2

〉
, ẼV ≡

〈
Ṽ ({φ̃j})

〉
. (4.93)
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Decomposing one time step δη = ∑s
p=1 δηp into s sub-steps δηp = wpδt, so that∑s

p=1wp = 1,
the idea is to iterate s-times one of the Verlet algorithms, (3.70) or (3.73), using each time
the appropriate δηp sub-step. For instance, using the Velocity Verlet algorithm (3.70) as the
building block, we can write



π̃
(0)
i ≡ π̃i(n, n0)

φ̃
(0)
i ≡ φ̃i(n, n0)
a(0) ≡ a(n0)
b(0) ≡ b(n0)

=⇒



b
(p)
1/2 = b(p−1) + ωp

δη̃
2 Ka

[
a(p−1), Ẽ

(p−1)
K , Ẽ

(p−1)
G , Ẽ

(p−1)
V

]
π̃

(p)
i,1/2 = π̃

(p−1)
i + ωp

δη̃
2 Ki

[
a(p−1), {φ̃(p−1)

j }
]

a
(p)
1/2 = a(p−1) + b

(p)
1/2ωp

δη̃
2

φ̃
(p)
i = φ̃

(p−1)
i + ωpδη̃ π̃

(p)
i,1/2(a(p)

1/2)−(3−α) ,

a(p) = a
(p)
1/2 + b

(p)
1/2ωp

δη̃
2 ,

π̃
(p)
i = π̃

(p)
i,1/2 + ωp

δη̃
2 Ki

[
a(p), {φ̃(p)

j }
]

b(p) = b
(p)
1/2 + ωp

δη̃
2 Ka

[
a(p), Ẽ

(p)
K , Ẽ

(p)
G , Ẽ

(p)
V

]


p= 1, ..., s

=⇒

=⇒



π̃i(n, n0 + 1) ≡ π̃(s)
i

φ̃i(n, n0 + 1) ≡ φ̃(s)
i

a(n0 + 1) ≡ a(s)

b(n0 + 1) ≡ b(s) .

(4.94)

By choosing the appropriate weights wp’s from table 2 of the appendix, the errors of
the intermediate steps cancel up to order O(δηn), with n = 4, 6, 8 and 10 for s = 3, 7, 15 and
31, respectively.

Finally, let us look at the Hubble constraint. Like in the RK4 case, here both field
amplitudes and conjugate momenta live at the same integer times (after each full iteration
over the s-subintervals), so we simply write

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
(
ẼK + ẼG + ẼV

)
, (4.95)

evaluated at any integer time.
We note that a similar algorithm of accuracy O(δt6), has been previously introduced in

ref. [255].

4.3.3 Gauss-Legendre nth order

We can adapt the higher-order Gauss-Legendre integrators (based on implicit Runge-Kutta
algorithms) introduced in section 3.4.2, to solve the dynamics of Ns interacting scalar fields
with self-consistent expansion of the universe. The continuum EOM can be written either
as we did in section 4.3.1 [here referred to as Scheme I ], or as we did in section 4.3.2 [here
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referred to as Scheme II ]:

Scheme I :



a′= b ,

φ̃′i = π̃i ,

π̃′i =Ki[a,b,{φ̃j}, π̃i] ,

b′=Ka[a,ẼK , ẼG, ẼV ] ,
Ki[a,b,{φ̃j}, π̃i]≡ a−2(1−α)∇̃2φ̃i−(3−α) ba π̃i−a2αṼ,φ̃i ,

Ka[a,ẼK , ẼG, ẼV ]≡ 1
3

(
f∗
mp

)2
a1+2α

[
(α−2)ẼK+αẼG+(α+1)ẼV

]
,

ẼK ≡ 1
2a2α

∑
i

〈
π̃2
i

〉
, ẼG≡ 1

2a2
∑
i,k

〈
(∇̃kφ̃i)2

〉
, ẼV ≡

〈
Ṽ ({φ̃j})

〉
.

(4.96)

Scheme II :



a′= b ,

φ̃′i = a−(3−α)π̃i ,

π̃′i =Ki[a,{φ̃j}] ,

b′=Ka[a,ẼK , ẼG, ẼV ] ,
Ki[a,{φ̃j}]≡ a1+α∇̃2φ̃i−a3+αṼ,φ̃i ,

Ka[a,ẼK , ẼG, ẼV ]≡ 1
3

(
f∗
mp

)2
a1+2α

[
(α−2)ẼK+αẼG+(α+1)ẼV

]
,

ẼK ≡ 1
2a6
∑
i

〈
π̃2
i

〉
, ẼG≡ 1

2a2
∑
i,k

〈
(∇̃kφ̃i)2

〉
, ẼV ≡

〈
Ṽ ({φ̃j})

〉
.

(4.97)

The Gauss-Legendre integrator works in both schemes, since it can deal with field kernels
that either contain or do not contain conjugate momenta. Adapting algorithm (3.118) into
program variables, we arrive at

π̃
(l)
i ≡ π̃i(n, n0) + δη̃

∑s
m=1 blmk

(m)
i ,

b(l) ≡ b(n0) + δη̃
∑s
m=1 blmk

(m)
a ,

φ̃
(l)
i ≡ φ̃i(n, n0) + δη̃

∑s
m=1 blmπ̃

(m)
i ,

a(l) ≡ a(n0) + δη̃
∑s
m=1 blmb

(m) ,

k(l)
a ≡ Ka

[
a(l), K̄(l), Ḡ(l), V̄ (l)

]
,

k(l)
i ≡


Ki[a(l), b(l), {φ̃(l)

j }, π̃
(l)
i ] (Sch. I) ,

Ki[a(l), {φ̃(l)
j }] (Sch. II) ,


l=1,2,...,s

=⇒



∆̃+
0 φ̃i(n, n0) = ∑s

m=1 cmπ̃
(m)
i ,

∆̃+
0 a(n0) = ∑s

m=1 cmb
(m) ,

∆̃+
0 π̃i(n, n0) = ∑s

m=1 cmk
(m)
i ,

∆̃+
0 πa(n0) = ∑s

m=1 cmk
(m)
a ,

(4.98)

where we note again that here blm’s are coefficients, whereas b(l)’s represent the l-th version
of the time derivative of the scale factor b ≡ a′. The coefficients {blm} and {cm} are listed
in table 3 of the appendix for the cases of s = 2, 3, 4 and 5 number of sub-steps [recall that
a method with s-substeps has an accuracy of O(δη2s)].

As both schemes I and II have field amplitudes and conjugate momenta living at the
same (integer) time, the Hubble constraint can be written in both schemes simply as

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
(
ẼK + ẼG + ẼV

)
, (4.99)

evaluated at any integer time.
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4.4 Observables

To conclude this section, we collect the main observables of interest, such as energies and
power-spectra. In the case of scalar fields, we are mostly concerned with the fields and
conjugate momenta themselves, φ̃i and π̃i. In particular, we typically monitor their mean
value, quadratic mean value, and variance,

φ̃i ≡
〈
φ̃i
〉
, φ̃2

i ≡
〈
φ̃2
i

〉
, σ2

φ̃i
≡
〈
φ̃2
i

〉
−
〈
φ̃i
〉2

. (4.100)

4.4.1 Energy components

We typically monitor the kinetic energy density of each field

ẼφiK = 1
2ap

〈
(π̃i)2

〉
,

[
p = 2α if π̃i ≡ φ̃′i ; p = 6 if π̃i ≡ a(3−α)φ̃′i

]
(4.101)

and the gradient energy densities for each field,

ẼφiG = 1
2a2

∑
j

〈
(∆̃+

j φ̃i)2
〉
. (4.102)

The total potential energy is given by

ẼV =
〈
Ṽ ({φ̃i})

〉
. (4.103)

As in most cases, the potential can naturally be written as a sum of p different terms
V ({φ̃i}) = ∑

a Va({φ̃i}), which are typically the different mass terms and interactions of
the fields, we also measure each term

ẼVa =
〈
Ṽa({φ̃i})

〉
. (4.104)

4.4.2 Spectra

We also consider the power spectrum of each individual field. Following our conventions in
eq. (3.13), we define

P̃φ̃i(k̃(ñ)) = k̃3(ñ)
2π2

(
δx̃

N

)3 〈
|(φ̃i)(ñ)|2

〉
R(ñ)

, (4.105)

P̃π̃i(k̃(ñ)) = k̃3(ñ)
2π2

(
δx̃

N

)3 〈
|π̃i(ñ)|2

〉
R(ñ)

, (4.106)

where

k̃(ñ) ≡ k(ñ)
ω∗
≡ kIR

ω∗
· (ñ1, ñ2, ñ3) , ⇒ k̃(ñ) ≡ |k̃(ñ)| ≡ kIR

ω∗

√
ñ2

1 + ñ2
2 + ñ2

3 . (4.107)

We note that these dimensionless power spectra are related to their dimensionful counterparts
by Pφi ≡ P̃φ̃if

2
∗ , and Pπ̃i ≡ P̃πif2

∗ω
2
∗.
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5 Lattice formulation of gauge fields, part I: U(1) interactions

We move now into the lattice formulation of a U(1)-interacting gauge sector, which amounts
to developing an appropriate discretization scheme for eqs. (2.37) and (2.39), together with
the Friedmann equation (2.52). In particular, we will generalize the staggered leapfrog algo-
rithm from section 4.2.1, the velocity-Verlet algorithm from section 4.2.3, and their higher-
order generalizations introduced in section 4.3.2. For simplicity, we restrict the presentation
to the case of a single charged scalar field ϕ, coupled to a single Abelian gauge field Aµ.
Generalization to a larger number of charged scalars and/or gauge fields is straightforward.
Note also that for simplicity, we present explicitly only the velocity-Verlet version of the
Verlet algorithms, as the position-Verlet algorithm is straightforwardly obtained by inverting
the roles of momenta and fields, as explained in section 4.2.3.

5.1 Continuum formulation and natural variables

We define the following program variables for the U(1)-charged scalars and the Abelian gauge
fields as

ϕ̃ = 1
f∗
ϕ, Ãµ = 1

ω∗
Aµ . (5.1)

The normalization of the charged scalar is identical to the one of singlet scalars, introduced in
eq. (4.3). The gauge field is however normalized with respect to ω∗, so that it cancels out the
normalization factor of δx̃µ in the argument of the link variable, i.e. Vµ ≡ e−igAQ

(ϕ̃)
A δxµAµ =

e−igAQ
(ϕ̃)
A δx̃µÃµ ≡ Ṽµ. The continuum equations of motion in these variables, in the temporal

gauge Ã0 = 0, are

(a3−αϕ̃′)′ − a1+α ~̃D
2
A ϕ̃ = −aα+3 Ṽ,|ϕ̃|

2
ϕ̃

|ϕ̃|
, (5.2)

∂̃0(a1−αF̃0i)− aα−1∂jF̃ji = a1+αJ̃Ai , (5.3)

where all field and spacetime variables are program variables, and as such, are indicated with
a ‘∼’. By inspecting these equations, we can naturally identify appropriate definitions for the
conjugate momenta of the field variables as

π̃ϕ ≡ a3−αϕ̃′ , (5.4)
(π̃A)i ≡ a

1−αF̃0i . (5.5)

We define the program kinetic energies of the fields as

ẼϕK = 1
a6

〈
π̃2
ϕ

〉
, (5.6)

ẼAK = 1
2a4

ω2
∗
f2
∗

3∑
i=1

〈
(π̃A)2

i

〉
, (5.7)

where we note that the physical expression of the gauge kinetic energy density relates to the
dimensionless one via EAK = ω2

∗f
2
∗ Ẽ

A
K . This is equivalent to the standard relation for scalar
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fields, which relate as e.g. EϕK = ω2
∗f

2
∗ Ẽ

ϕ
K). For convenience, let us also define the following

kernels for each of the amplitudes and momenta,

(π̃ϕ)′ = Kϕ[a, ϕ̃, Ãj ] , (5.8)
(π̃A)′i = KAi [a, ϕ̃, Ãj ] , (5.9)

Kϕ[a, ϕ̃, Ãj ] ≡ −aα+3 Ṽ,|ϕ̃|
2

ϕ̃

|ϕ̃|
+ a1+α ~̃D

2
A ϕ̃ , (5.10)

KAi [a, ϕ̃, Ãj ] ≡ a1+αJ̃Ai + aα−1∂̃jF̃ji , (5.11)

as well as the kernel for the scale factor [recall eq. (2.52) and that b ≡ a′],

b′ = Ka
[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
, (5.12)

Ka
[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
(5.13)

≡ a2α+1

3
f2
∗
m2
p

[
(α− 2)(ẼϕK + . . . ) + α(ẼϕG + . . . ) + (α+ 1)ẼV + (α− 1)(ẼAK + ẼAG)

]
.

We reproduced only the terms directly relevant to the U(1) gauge sector; the dots are here
simply to remind the reader that other contributions will enter if some other sectors are
present (e.g. scalar singlets). The same applies for the Gauss law

b2 = 1
3

(
f∗
mp

)2

a2(α+1)
[
ẼϕK + ẼϕG + ẼV +

(
ẼAK + ẼAG

)
+ . . .

]
. (5.14)

5.2 Non-compact Lattice formulation(s)

We first present here a spatial discretization of the kernels using non-compact variables,
which means that the variables to evolve are the field amplitudes and momenta themselves,
{ϕ̃, π̃ϕ, Ãi, (π̃A)i}. Using our U(1)-toolkit (3.31), we write

Kϕ[a, ϕ̃, Ãi] = −aα+3 Ṽ,|ϕ̃|
2

ϕ̃

|ϕ̃|
+ a1+α∑

i

D̃−i D̃
+
i ϕ̃ , (5.15)

KAi [a, ϕ̃, Ãj ] = a1+α
(

2gAQ(ϕ̃)
A

δx̃

f2
∗
ω2
∗
Im[ϕ̃∗Ṽiϕ̃] + . . .

)
+ aα−1∑

j

(
∆̃−j ∆̃+

j Ãi − ∆̃−j ∆̃+
i Ãj

)
,

(5.16)

where the dots indicate that any other U(1)-charged field coupled to the gauge field Aµ, would
contribute to its kernel through the gauge current. For example, an SU(N)-doublet Φ̃ charged
under U(1), would add a contribution +2gAQ(Φ̃)

A Im[Φ̃†(̃Vi)Q
(Φ̃)
A /Q

(ϕ̃)
A Φ̃]. Here Q(ϕ̃)

A , Q
(Φ̃)
A are

the Abelian charges of ϕ and Φ, respectively. Note here a subtlety. To recover the correct
covariant derivative for the doublet, one need to compute a “new” link (Vi)Q

(Φ̃)
A /Q

(ϕ̃)
A as some

power of the original link variable.
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We discretize the gradient and potential energies as follows,

ẼϕG = 1
a2

∑
i

〈
(D̃A +

i ϕ̃)∗(D̃A +
i ϕ̃)

〉
, (5.17)

ẼAG = 1
2a4

ω2
∗
f2
∗

∑
i,j<i

〈
(∆̃+

i Ãj − ∆̃+
i Ãj)2

〉
, (5.18)

ẼV =
〈
Ṽ (ϕ̃, . . . )

〉
, (5.19)

whereas the kinetic energies ẼϕK , ẼAK are given by eqs. (5.6) and (5.7). Note that here again,
as for the gauge field kinetic (electric) energy densities, the dimensionless and physical gauge
field gradient (magnetic) energy densities are related to each other through EAG = ω4

∗Ẽ
A
G.

Finally, a crucial quantity to monitor is the Gauss law, which must be obeyed at all times
during the simulation. It is written in the continuum in eq. (2.41). In terms of program
variables, we can discretize it as follows,

−
∑
i

∆−i (π̃A)i = 2gAQ(ϕ̃)
A

f2
∗
ω2
∗
Im[ϕ̃∗π̃ϕ] . (5.20)

5.2.1 (Staggered) leapfrog

Let us now consider the time evolution of the above equations. We first present an adaptation
of the staggered leapfrog algorithm of order O(δη2). We consider momenta evaluated at
semi-integer times, while fields living at integer times. If needed, by means of interpolation
momenta can be evaluated at integer times, and field amplitudes at semi-integer times.
This is required, in particular, in the scale-factor kernels, which now depend on ẼϕK ≡
(Ẽϕ

K,−0̂/2 + Ẽϕ
K,+0̂/2)/2 and ẼAK ≡ (ẼA

K,−0̂/2 + ẼA
K,+0̂/2)/2.

The algorithm to evolve the fields and their momenta by one time step reads then as
follows:

Non-Compact Staggered Leapfrog

IC :
{
a, ϕ̃, Ãi

}
at η̃0,

{
b−1/2, (π̃ϕ)−1/2 , (π̃A)i,−1/2

}
at η̃0 −

δη̃

2 . (5.21)

(π̃ϕ)+1/2 = (π̃ϕ)−1/2 + δη̃Kϕ[a, ϕ̃, Ãi] , (5.22)

(π̃A)i,+1/2 = (π̃A)i,−1/2 + δη̃KAi [a, ϕ̃, Ãj ] , (5.23)

b+1/2 = b−1/2 + δη̃Ka
[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
, (5.24)

a+0 = a+ δη̃b+1/2 , (5.25)
a+1/2 = (a+0 + a)/2 , (5.26)

ϕ̃+0 = ϕ̃+ δη̃a
−(3−α)
+1/2 (π̃ϕ)+1/2 , (5.27)

Ãi,+0 = Ãi + δη̃a
−(1−α)
+1/2 (π̃A)i,+1/2 , (5.28)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
[
ẼϕK + ẼϕG + ẼV + ẼAK + ẼAG

]
, (5.29)

– 51 –



J
C
A
P
0
4
(
2
0
2
1
)
0
3
5

where the last line corresponds to the Hubble constraint. We see that the scale factor needs
to be interpolated, as it enters into the relation between the conjugate momenta and the
fields’ time derivative. Note also that this scheme can be obtained from an action principle,
similar to the analogous singlet scalar case.

5.2.2 Velocity-Verlet

The equations can be also solved with a velocity-Verlet scheme of order O(δη̃2), similarly to
the analogous singlet scalar case. The algorithm to update the system proceeds as follows,

Non-Compact Velocity-Verlet VV2

IC :
{
a, b, ϕ̃, π̃ϕ, Ãi, (π̃A)i

}
at η0. (5.30)

(π̃ϕ)+1/2 = π̃ϕ + δη̃

2 Kϕ[a, ϕ̃, Ãj ] , (5.31)

(π̃A)i,+1/2 = (π̃A)i + δη̃

2 KAi [a, ϕ̃, Ãj ] , (5.32)

b+1/2 = b+ δη̃

2 Ka
[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
, (5.33)

a+0 = a+ δη̃b+1/2 , (5.34)

a+1/2 = a+0 + a

2 , (5.35)

ϕ̃+0 = ϕ̃+ δη̃
(π̃ϕ)+1/2

a3−α
+1/2

, (5.36)

Ãi,+0 = Ãi + δη̃
(π̃A)+1/2

a1−α
+1/2

, (5.37)

(π̃ϕ)+0 = (π̃ϕ)+1/2 + δη̃

2 Kϕ[a+0, ϕ̃+0, Ãj,+0] , (5.38)

(π̃A)i,+0 = (π̃A)i,+1/2 + δη̃

2 KAi [a+0, ϕ̃+0, Ãj,+0] , (5.39)

b+0 = b+1/2 + δη̃

2 Ka
[
a+0, Ẽ

ϕ
K,+0, Ẽ

ϕ
G,+0, Ẽ

ϕ
V,+0, Ẽ

A
K,+0, Ẽ

A
G,+0

]
, (5.40)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
[
ẼϕK + ẼϕG + ẼV + ẼAK + ẼAG

]
, (5.41)

where the last line is again the Hubble constraint. Note that a similar integrator, based on
the position-Verlet method, has been also presented in ref. [159].

5.2.3 Velocity-Verlet nth order

In order to construct the higher order integrators VV4, VV6, VV8 and VV10, we simply
need to apply the procedure described in section 3.4.1. Explicitly, by choosing ωp’s in table 2
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of the appendix, we can write an algorithm as follows

π̃
(0)
ϕ ≡ π̃ϕ(n, n0)
ϕ̃(0) ≡ ϕ̃(n, n0)

Ã
(0)
i ≡ Ãi(n, n0)

(π̃A)(0)
i ≡ (π̃A)i (n, n0)
a(0) ≡ a(n0)
b(0) ≡ b(n0)


=⇒ (5.42)

=⇒



(π̃ϕ)(p)
1/2 = π̃

(p−1)
ϕ + ωpδη̃

2 Kϕ
[
a(p−1), ϕ̃(p−1), Ã

(p−1)
j

]
(π̃A)(p)

i,1/2 = (π̃A)(p−1)
i + ωpδη̃

2 KAi
[
a(p−1), ϕ̃(p−1), Ã

(p−1)
j

]
b
(p)
1/2 = b(p−1) + ωpδη̃

2 K
(p−1)
a

[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
a(p) = a(p−1) + ωpδη̃b

(p)
1/2

a
(p)
1/2 = a(p)+a(p−1)

2

ϕ̃(p) = ϕ̃(p−1) + δη̃
(π̃ϕ)(p)

1/2(
a

(p)
1/2

)3−α

Ã
(p)
i = Ã

(p−1)
i + ωpδη̃

(π̃A)(p)
1/2(

a
(p)
1/2

)1−α

(π̃ϕ)(p) = (π̃ϕ)(p)
1/2 + ωpδη̃

2 Kϕ
[
a(p), ϕ̃(p), Ã

(p)
j

]
(π̃A)(p)

i = (π̃A)(p)
i,1/2 + ωpδη̃

2 KAi [a(p), ϕ̃(p), Ã
(p)
j ]

b(p) = b
(p)
1/2 + ωpδη̃

2 K
(p)
a

[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]


p= 1, ..., s

(5.43)

=⇒



π̃ϕ(n, n0) ≡ π̃(s)
ϕ

ϕ̃(n, n0) ≡ ϕ̃(s)

Ãi(n, n0) ≡ Ã(s)
i

(π̃A)i (n, n0) ≡ (π̃A)(s)
i

a(n0) ≡ a(s)

b(n0) ≡ b(s) ,

(5.44)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
[
ẼϕK + ẼϕG + ẼV + ẼAK + ẼAG

]
. (5.45)

where, to ease notation, we have used K(p)
a

[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
≡ Ka

[
a(p), Ẽϕ

(p)

K , Ẽϕ
(p)

G ,

Ẽϕ
(p)

V , ẼA
(p)

K , ẼA
(p)

G

]
.
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5.3 Compact Lattice formulation(s)

As presented in section 3.2.2, the link variables Vi can also be used as the “fundamental”
variables to solve for in the EOM, instead of the gauge field amplitudes Ai. This leads to a
‘compact’ discretization of the U(1) gauge sector. In this approach, we keep the same defi-
nitions for momenta as before, (5.4) and (5.5). However, we take for the gauge fields’ kernel,

KAi [a, ϕ̃, Ṽj ] = a1+α
(

2gAQ(ϕ̃)
A

δx̃

f2
∗
ω2
∗
Im[ϕ̃∗Ṽiϕ̃] + . . .

)
+ aα−1

δx̃3gAQ
(ϕ̃)
A

∑
j

(
Ṽij − Ṽij −j

)
,

(5.46)

where the second term in the r.h.s. is a backward discretization of ∂̃jF̃ji, which appears natu-
rally from a discrete action made out of a plaquettes. The kinetic energy is given by eq. (5.7),
whereas the magnetic energy can be approximated by

ẼAG = 1
a4δx̃4g2

AQ
(ϕ̃) 2
A

∑
i,j<i

(1−Re(Ṽij)) , (5.47)

which again represents its physical counterpart in units of ω4
∗ (and not ω2

∗f
2
∗ , like in the case

of scalar field energy densities).
The last difference with respect to the non-compact formulation is how the link variables

are evolved in time. There are two different approaches which can be followed. We will see
that we can compute the drifts directly from the conjugate momenta, as in the previous cases
but we can also compute them by reconstructing the plaquette from the conjugate momen-
tum. We present below both approaches as they can both be of interest when generalizing
to other non-Abelian groups.

Drifts from momenta. In order to write down the drifts directly from the conjugate
momenta let us first compute the continuum time derivative of a link

(Ṽi)′ = ∂0e
−igAQ

(ϕ̃)
A δx̃Ãi = −igAQ(ϕ̃)

A δx̃(Ãi)′Ṽi , (5.48)

or in terms of the conjugate momenta,

(Ṽi)′ = −i
gAQ

(ϕ̃)
A δx̃

a1−α (π̃A)i Ṽi . (5.49)

This equation can be solved explicitly by a discrete scheme, as follows. We approximate
the right hand side by a centered semi-sum, and get

Ṽi,+0 − Ṽi
δη̃

= −igAQ
(ϕ̃)
A δx̃

a1−α
+1/2

(π̃A)i,+1/2
1
2
(
Ṽi,+0 + Ṽi

)
, (5.50)
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and the drift is then given as

Ṽi,+0 =

1 + i
gAQ

(ϕ̃)
A δη̃δx̃

2a1−α
+1/2

(π̃A)i,+1/2

−11− igAQ
(ϕ̃)
A δη̃δx̃

2a1−α
+1/2

(π̃A)i,+1/2

 Ṽi (5.51)

=

1− igAQ
(ϕ̃)
A δη̃δx̃

2a1−α
+1/2

(π̃A)i,+1/2

2

Ṽi +O(δη̃2) . (5.52)

Here, the last expansion is not necessary but will prove useful in the non-Abelian case.

Drifts from plaquettes. In some cases, it can also be useful to think directly in terms
of plaquettes instead of conjugate momenta. We first construct the plaquette Ṽ0i from the
momenta, for instance, using the relation

Im{Ṽ0i[(π̃A)i]} = −gAQ(ϕ̃)
A δx̃δη̃

1
a1−α (π̃A)i +O(δη̃2, δx̃3) , (5.53)

together with the constraint |Ṽ0i| = 1, we can construct Ṽ0i[(π̃A)i]. The drift is then given
using the definition of the plaquette

Ṽ0i[(π̃A)i] = Ṽi,+0Ṽ
∗
i =⇒ Ṽi,+0 = Ṽ0i[(π̃A)i]Ṽi . (5.54)

5.3.1 (Staggered) leapfrog

In this case, the only difference with respect to the non-compact formulation is how the drifts
are given. The algorithm is

Compact Staggered Leapfrog

IC :
{
a, ϕ̃, Ṽi

}
at η0,

{
b−1/2, (π̃ϕ)−1/2 , (π̃A)i,−1/2

}
at η0 − δη/2. (5.55)

(π̃ϕ)+1/2 = (π̃ϕ)−1/2 + δη̃Kϕ[a, ϕ̃, Ṽj ] , (5.56)

(π̃A)i,+1/2 = (π̃A)i,−1/2 + δη̃KAi [a, ϕ̃, Ṽj ] , (5.57)

b+1/2 = b−1/2 + δη̃Ka
[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
, (5.58)

a+0 = a+ δη̃b+1/2 , (5.59)

ϕ̃+0 = ϕ̃+ δη̃
(π̃ϕ)+1/2

a3−α
+1/2

, (5.60)

Ṽi,+0 =

1− igAQ
(ϕ̃)
A δη̃δx̃

2a1−α
+1/2

(π̃A)i,+1/2

2

Ṽi or Ṽi,+0 = Ṽ0i[(π̃A)i,+1/2]Ṽi , (5.61)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
[
ẼϕK + ẼϕG + ẼV + ẼAK + ẼAG

]
. (5.62)
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5.3.2 Velocity-Verlet

Again, only the drifts differ in the velocity-Verlet algorithm with respect to the non-compact
case. We get

Compact Velocity-Verlet VV2

IC :
{
a, b, ϕ̃, π̃ϕ, Ṽi, (π̃A)i

}
at η0. (5.63)

(π̃ϕ)+1/2 = π̃ϕ + δη̃

2 Kϕ[a, ϕ̃, Ṽj ] , (5.64)

(π̃A)i,+1/2 = (π̃A)i + δη̃

2 KAi [a, ϕ̃, Ṽj ] , (5.65)

b+1/2 = b+ δη̃

2 Ka
[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
, (5.66)

a+0 = a+ δη̃b+1/2 , (5.67)

a+1/2 = a+0 + a

2 , (5.68)

ϕ̃+0 = ϕ̃+ δη̃a
−(3−α)
+1/2 (π̃ϕ)+1/2 , (5.69)

Ṽi,+0 =

1− igAQ
(ϕ̃)
A δη̃δx̃

2a1−α
+1/2

(π̃A)i,+1/2

2

Ṽi or Ṽi,+0 = Ṽ0i[(π̃A)i,+1/2]Ṽi , (5.70)

(π̃ϕ)+0 = (π̃ϕ)+1/2 + δη̃

2 Kϕ[a+0, ϕ̃+0, Ṽj,+0] , (5.71)

(π̃A)i,+0 = (π̃A)i,+1/2 + δη̃

2 KAi [a+0, ϕ̃+0, Ṽj,+0] , (5.72)

b+0 = b+1/2 + δη̃

2 Ka
[
a+0, Ẽ

ϕ
K,+0, Ẽ

ϕ
G,+0, Ẽ

ϕ
V,+0, Ẽ

A
K,+0, Ẽ

A
G,+0

]
, (5.73)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
[
ẼϕK + ẼϕG + ẼV + ẼAK + ẼAG

]
. (5.74)

5.3.3 Velocity-Verlet nth order

The higher order integrators VV4, VV6, VV8 and VV10 for the compact formulation are
also obtained by a simple modification of the drifts,

π̃
(0)
ϕ ≡ π̃ϕ(n, n0)
ϕ̃(0) ≡ ϕ̃(n, n0)

Ṽ
(0)
i ≡ Ṽi(n, n0)

(π̃A)(0)
i ≡ (π̃A)i (n, n0)
a(0) ≡ a(n0)
b(0) ≡ b(n0)


=⇒ (5.75)
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=⇒



(π̃ϕ)(p)
1/2 = π̃

(p−1)
ϕ + ωpδη̃

2 Kϕ
[
a(p−1), ϕ̃(p−1), Ṽ

(p−1)
j

]
(π̃A)(p)

i,1/2 = (π̃A)(p−1)
i + ωpδη̃

2 KAi
[
a(p−1), ϕ̃(p−1), Ṽ

(p−1)
j

]
b
(p)
1/2 = b(p−1) + ωpδη̃

2 K
(p−1)
a

[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
a(p) = a(p−1) + ωpδη̃b

(p)
1/2

a
(p)
1/2 = a(p)+a(p−1)

2

ϕ̃(p) = ϕ̃(p−1) + δη̃
(π̃ϕ)(p)

1/2(
a

(p)
1/2

)3−α

Ṽ
(p)
i =

(
1− igAQ

(ϕ̃)
A δη̃δx̃

2(a(p)
1/2)1−α

(π̃A)(p)
i,1/2

)2

Ṽ
(p−1)
i

or Ṽ
(p)
i = Ṽ0i[(π̃A)(p)

i,1/2]Ṽ (p−1)
i ,

(π̃ϕ)+0 = (π̃ϕ)+1/2 + δη̃
2 Kϕ[a+0, ϕ̃+0, Ṽj,+0] ,

(π̃ϕ)(p) = (π̃ϕ)(p)
1/2 + ωpδη̃

2 Kϕ
[
a(p), ϕ̃(p), Ṽ

(p)
j

]
(π̃A)(p)

i = (π̃A)(p)
i,1/2 + ωpδη̃

2 KAi [a(p), ϕ̃(p), Ṽ
(p)
j ]

b(p) = b
(p)
1/2 + ωpδη̃

2 K
(p)
a

[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
,


p= 1, ..., s

(5.76)

=⇒



π̃ϕ(n, n0) ≡ π̃(s)
ϕ

ϕ̃(n, n0) ≡ ϕ̃(s)

Ṽi(n, n0) ≡ Ṽ (s)
i

(π̃A)i (n, n0) ≡ (π̃A)(s)
i

a(n0) ≡ a(s)

b(n0) ≡ b(s) ,

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
[
ẼϕK + ẼϕG + ẼV + ẼAK + ẼAG

]
, (5.77)

where, as before, we have introduced K(p)
a

[
a, ẼϕK , Ẽ

ϕ
G, Ẽ

ϕ
V , Ẽ

A
K , Ẽ

A
G

]
≡ Ka

[
a(p), Ẽϕ

(p)

K , Ẽϕ
(p)

G ,

Ẽϕ
(p)

V , ẼA
(p)

K , ẼA
(p)

G

]
, to ease the notation. As we will see in the next section, an advantage

of the compact formulation is that it directly generalizes to non-Abelian groups, contrary to
the non-compact one. However, before moving on, let us introduce some relevant observables
for the U(1) gauge sector.
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5.4 Observables
We list here some observables with mean value of interest (as usual 〈. . .〉 denotes volume
averaging),

U(1)-charged matter:〈Re[ϕ̃]〉 , 〈Im[ϕ̃]〉 , 〈Re[π̃ϕ]〉 , 〈Im[π̃ϕ]〉 ,
〈
|ϕ̃|2

〉
,
〈
|π̃ϕ|2

〉
, (5.78)

electric fields:
〈∣∣Ẽ∣∣2〉 , with Ẽi = 1

a1−α (π̃A)i , (5.79)

magnetic fields:
〈∣∣B̃∣∣2〉 , with


B̃i =∑jk εijk∆̃+

j Ãk , non−compact

B̃i = i

δx̃2gAQ
(ϕ̃)
A

(Im(Ṽjk)) , compact
(5.80)

Note that, as presented in the U(1)-toolkit in eq. (3.31) in section 3.2.2, other expressions
for the magnetic field are also possible.

5.4.1 Energy density components
We collect here the different expressions for the energy components of the system,

U(1) matter: ẼϕK = 1
a6

〈
π̃2
ϕ

〉
, ẼϕG = 1

a2

∑
i

〈
(D̃A+

i ϕ̃)∗(D̃A+
i ϕ̃)

〉
. (5.81)

U(1) gauge fields, non-compact: ẼAK = 1
2a4

ω2
∗
f2
∗

3∑
i=1

〈
(π̃A)2

i

〉
,

ẼAG = 1
2a4

ω2
∗
f2
∗

∑
i,j<i

〈
(∆̃+

i Ãj − ∆̃+
i Ãj)2

〉
. (5.82)

U(1) gauge fields, compact: ẼAK = 1
2a4

ω2
∗
f2
∗

3∑
i=1

〈
(π̃A)2

i

〉
,

ẼAG = 1
a4δx̃4g2

AQ
(ϕ̃) 2
A

ω2
∗
f2
∗

∑
i,j<i

(1−Re(Ṽij)). (5.83)

Potential: ẼV =
〈
Ṽ (ϕ̃, . . . )

〉
. (5.84)

5.4.2 Spectra
The last quantities of interest are the power spectra, which according to the discrete expres-
sion of eq. (3.13), we define as follow,

P̃ϕ̃(k̃(ñ)) = k̃3(ñ)
2π2

(
δx̃

N

)3 〈
|Re(ϕ̃)(ñ)|2 + |Im(ϕ̃)(ñ)|2

〉
R(ñ)

, (5.85)

P̃π̃ϕ(k̃(ñ)) = k̃3(ñ)
2π2

(
δx̃

N

)3 〈
|Re(π̃ϕ)(ñ)|2 + |Im(π̃ϕ)(ñ)|2

〉
R(ñ)

, (5.86)

P̃Ẽ(k̃(ñ)) = k̃3(ñ)
2π2

(
δx̃

N

)3 〈∑
i

|Ẽi(ñ)|2
〉
R(ñ)

, (5.87)

P̃B̃(k̃(ñ)) = k̃5(ñ)
2π2

(
δx̃

N

)3 〈∑
i

|Ãi(ñ)|2
〉
R(ñ)

, [non-compact] , (5.88)

P̃B̃(k̃(ñ)) = k̃3(ñ)
2π2

(
δx̃

N

)3 〈∑
i

|B̃i(ñ)|2
〉
R(ñ)

, [compact] , (5.89)
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where 〈. . .〉R(ñ) represents angular averaging in k-space, cf. eq. (3.13), and the electric and
magnetic fields are defined as in equations (5.79) and (5.80). The extra powers of k(ñ) in the
non-compact magnetic field spectra come from the spatial derivative of Ãi. We note that the
dimensionless power spectra are related to their dimensionful counterparts by Pϕ ≡ P̃ϕ̃f2

∗ ,
Pπϕ ≡ P̃π̃ϕf2

∗ω
2
∗, PE ≡ P̃Ẽ ω

4
∗, and PB ≡ P̃B̃ ω

4
∗.

6 Lattice formulation of gauge fields, part II: SU(N) interactions

We introduce now a set of Gauss-preserving evolution algorithms for a SU(N) gauge sector
with self-consistent expansion of the universe. We will follow closely what has been done
for the compact U(1) formulation. As in the previous section, when it comes to Verlet
integrators, we use only the velocity-based one; the corresponding position-Verlet algorithms
can be straightforwardly obtained.

6.1 Continuum formulation and natural variables
We define the following program variables for a scalar doublet and a non-Abelian gauge field,

Φ̃ = Φ
f∗
, B̃a

µ =
Ba
µ

ω∗
, (6.1)

following closely the normalization criteria we used for the U(1) gauge sector, see eq. (5.1).
Our lattice formulation will be based in these variables.

We start again by identifying an appropriate set of conjugate momenta. This is achieved
as in the U(1) case, by writing the continuum equations (2.38) and (2.40) appropriately. In
the temporal gauge, they are

(a3−αΦ̃′)′ − a1+α ~̃D
2
Φ̃ = −aα+3

Ṽ
,|Φ̃|
2

Φ̃
|Φ̃|

, (6.2)

∂0(a1−α(G̃0i)a)− aα−1(D̃j)ab(G̃ji)b = a1+αJ̃ai . (6.3)
From here, we identify the conjugate momenta as

π̃Φ = a3−αΦ̃′ , (6.4)
(π̃B)ai = a1−αG̃a0i . (6.5)

The associated kinetic energies of the two field sectors become

ẼΦ
K = 1

a6

〈
π̃†Φπ̃Φ

〉
, (6.6)

ẼBK = 1
2a4

ω2
∗
f2
∗

∑
a,i

〈
((π̃B)ai )

2
〉
, (6.7)

which, as in the U(1) case, are related to their physical counterparts as EΦ
K = f2

∗ω
2
∗Ẽ

Φ
K and

EBK = f2
∗ω

2
∗Ẽ

B
K , respectively. Finally, we define the following kernels as

(π̃Φ)′ = KΦ[a, Φ̃, Ũj ] , (6.8)
((π̃B)ai )

′ = KBai [a, Φ̃, Ũj ] , (6.9)

KΦ[a, Φ̃, Ũj ] ≡ −aα+3
Ṽ
,|Φ̃|
2

Φ̃
|Φ̃|

+ a1+α ~̃D
2
Φ̃ , (6.10)

KBai [a, Φ̃, Ũj ] ≡ a1+αJ̃ai + aα−1(D̃j)ab(G̃ji)b , (6.11)
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which allows us to proceed with the discretization and time evolution of the EOM. Notice
that the gauge field kernel can also be written in matrix form, omitting the internal non-
Abelian indices,

(π̃B)′i = KBi [a, Φ̃, Ũj ] , KBi [a, Φ̃, Ũj ] ≡ a1+αJ̃i + aα−1D̃jG̃ji . (6.12)

6.2 (Compact) Lattice formulation(s)

For non-Abelian gauge fields, we do not have the choice between compact and non-compact
variables: the compact formulation is required to maintain gauge invariance. We then dis-
cretize the kernels as follows,

KΦ[a, Φ̃, Ũj ] = −aα+3
Ṽ
,|Φ̃|
2

Φ̃
|Φ̃|

+ a1+α∑
i

D̃−i D̃
+
i Φ̃ , (6.13)

KBi [a, Φ̃, Ũj ] = a1+α

gBQ(Φ̃)
B

2δx̃
f2
∗
ω2
∗
Im[Φ̃†σ̃aUiΦ̃]σa + . . .


+ aα−1

δx̃3gBQ
(Φ̃)
B

∑
j

(
Ũij − Ũ †j,−jŨij −jŨj,−j

)
, (6.14)

where the second term in the SU(N) gauge field kernel is a backward finite difference ap-
proximation of the gauge covariant derivative D̃iG̃ij . We use matrix notation for conciseness.
Note also that we expressed the group generators T a = σa

2 in terms of the Pauli matrices.
Using our SU(N)-toolkit (3.32), we see that the magnetic energy can be written as

ẼBG = 2
a4δx̃4g2

BQ
(Φ̃) 2
B

ω2
∗
f2
∗

2−
∑
i,j<i

〈
Tr(Ũij)

〉 , (6.15)

again related to its physical counterpart via EBG = ω2
∗f

2
∗ Ẽ

B
G .

As in the compact U(1) case, the drifts can be written down following two approaches:

Drifts from momenta. We start again from the continuum relation

(Ũi)′ = ∂0e
−igBQ

(Φ̃)
B δx̃B̃i = −igBQ(Φ̃)

B δx̃(B̃i)′Ũi +O(δx̃) , (6.16)

which in terms of the conjugate momenta is

(Ũi)′ = −i
gBQ

(Φ̃)
B δx̃

a1−α (π̃B)i Ũi +O(δx̃) , (6.17)

with no sum intended. Note that due to the non-commutativity, this relation is only valid at
leading order in δx̃. Neglecting higher order corrections, we again find an implicit equation
for the drifts. Similarly as in eq. (5.52) of the Abelian case, eq. (6.17) can be solved by a
discretized scheme as

Ũi,+0 =

1− igBQ
(Φ̃)
B δη̃δx̃

2a1−α
+1/2

(π̃B)i,+1/2

2

Ũi +O(δη̃2) . (6.18)
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Drifts from plaquettes. In the non-Abelian case, one can also in principle evolve the
links as

Ũi,+0 = Ũ0iŨi , (6.19)

if one is able to construct straightforwardly the map U0i as a function of (π̃B), which needs
to be done in a case by case basis. In the SU(2) case can be done using the parametrization
detailed in eqs. (3.33)–(3.34), together with the relation

Ũ0i − Ũ †0i = −2igBQ
(Φ̃)
B δx̃δη̃

a1−α (π̃B) +O(dx̃3
µ) . (6.20)

This fixes the coefficients c1, c2 and c3 of Ũ0i and hence also c0 as a function of the latter.
Finally, irrespective of the chosen drifts, a crucial quantity to monitor is the Gauss law,

which must be obeyed at all times during the simulation. Based on the continuum expression
in eq. (2.42), we discretize it in matrix notation as

−
∑
i

(π̃B)i,−i − U
†
i,−i (π̃B)i,−i Ui,−i
δx̃

= gBQ
(Φ̃)
B

2
f2
∗
ω2
∗
Im[Φ̃†σaπ̃Φ]σa . (6.21)

6.2.1 (Staggered) leapfrog
Let us now consider different evolution algorithms to solve the field dynamics in the compact
formulation, following closely the same procedure as we did for a U(1) gauge sector. We
start with a straightforward generalization of the staggered leapfrog algorithm, which can be
written in this context as follows
SU(N) Staggered Leapfrog

IC :
{
a, Φ̃, Ũi

}
at η0,

{
b−1/2, (π̃Φ)−1/2 , (π̃B)i,−1/2

}
at η0 −

δη̃

2 . (6.22)

(π̃Φ)i,+1/2 = (π̃Φ)−1/2 + δη̃KΦ[a, Φ̃, Ũj ] , (6.23)

(π̃B)i,+1/2 = (π̃B)i,−1/2 + δη̃KBi [a, Φ̃, Ũj ] , (6.24)

b+1/2 = b−1/2 + δη̃Ka
[
a, ẼΦ

K , Ẽ
Φ
G, Ẽ

Φ
V , Ẽ

B
K , Ẽ

B
G

]
, (6.25)

a+0 = a+ δη̃b+1/2 , (6.26)

a+1/2 = a+0 + a

2 , (6.27)

Φ̃+0 = Φ̃ + δη̃
(π̃Φ)+1/2

a3−α
+1/2

, (6.28)

Ũi,+0 =

1− igBQ
(Φ̃)
B δη̃δx̃

2a1−α
+1/2

(π̃B)i,+1/2

2

Ũi or Ũi,+0 = Ũ0i[(π̃B)i,+1/2]Ũi , (6.29)

(π̃ϕ)+0 = (π̃ϕ)+1/2 + δη̃

2 Kϕ[a+0, ϕ̃+0, Ṽj,+0] , (6.30)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
[
ẼΦ
K + ẼΦ

G + ẼV + ẼBK + ẼBG

]
. (6.31)

In particular, note that the scale factor kernel is evaluated using semi-sums of the different
kinetic energies, as usual in the staggered leapfrog.
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6.2.2 Velocity Verlet

Mimicking the algorithm developed for the analogous U(1) gauge sector, we obtain

SU(N) Velocity Verlet VV2

IC :
{
a, b, Φ̃, π̃Φ, Ũi, (π̃B)i

}
at η0. (6.32)

(π̃Φ)+1/2 = π̃Φ + δη̃

2 KΦ[a, Φ̃, Ũi] , (6.33)

(π̃B)i,+1/2 = (π̃B)i + δη̃

2 KBi [a, Φ̃, Ũi] , (6.34)

b+1/2 = b+ δη̃

2 Ka
[
a, ẼΦ

K , Ẽ
Φ
G, Ẽ

Φ
V , Ẽ

B
K , Ẽ

B
G

]
, (6.35)

a+0 = a+ δη̃b+1/2 , (6.36)

a+1/2 = a+0 + a

2 , (6.37)

Φ̃+0 = Φ̃ + δη̃
(π̃Φ)+1/2

a3−α
+1/2

, (6.38)

Ũi,+0 =

1− igBQ
(Φ̃)
B δη̃δx̃

2a1−α
+1/2

(π̃B)i,+1/2

2

Ũi or Ũi,+0 = Ũ0i[(π̃B)i,+1/2]Ũi (6.39)

(π̃Φ)+0 = (π̃Φ)+1/2 + δη̃

2 KΦ[a+0, Φ̃+0, Ũi,+0] , (6.40)

(π̃B)i,+0 = (π̃B)i,+1/2 + δη̃

2 KBi [a+0, Φ̃+0, Ũi,+0] , (6.41)

b+0 = b+1/2 + δη̃

2 Ka
[
a+0, Ẽ

Φ
K,+0, Ẽ

Φ
G,+0, Ẽ

Φ
V,+0, Ẽ

B
K,+0, Ẽ

B
G,+0

]
, (6.42)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
(
ẼΦ
K + ẼΦ

G + ẼBK + ẼBG + ẼV
)
. (6.43)

6.2.3 Velocity Verlet nth order

The higher-order integrators VV4, VV6, VV8 and VV10 are also obtained by a simple mod-
ification of the drift,

π̃
(0)
Φ ≡ (π̃Φ) (n, n0)

Φ̃(0) ≡ Φ̃(n, n0)

Ũ
(0)
i ≡ Ũi(n, n0)

(π̃B)(0)
i ≡ (π̃B)i (n, n0)
a(0) ≡ a(n0)
b(0) ≡ b(n0) ,



=⇒ (6.44)
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=⇒



(π̃Φ)(p)
1/2 = (π̃Φ)(p−1) + ωpδη̃

2 KΦ
[
a(p−1), Φ̃(p−1), Ũ

(p−1)
j

]
(π̃B)(p)

i,1/2 = (π̃B)(p−1)
i + ωpδη̃

2 KBi [a(p−1), Φ̃(p−1), Ũ
(p−1)
i ]

b
(p)
1/2 = b(p−1) + ωpδη̃

2 K
((p−1)
a

[
a, ẼΦ

K , Ẽ
Φ
G, Ẽ

Φ
V , Ẽ

B
K , Ẽ

B
G

]
a(p) = a(p−1) + ωpδη̃b

(p)
1/2

Φ̃(p) = Φ̃(p−1) + δη̃
(π̃Φ)(p)

1/2

a
(p) 3−α
1/2

Ũ
(p)
i =

(
1− igBQ

(Φ̃)
B δη̃δx̃

2(a(p)
1/2)1−α

(π̃B)(p)
i,1/2

)2

Ũ
(p−1)
i

or Ũ
(p)
i = Ũ0i[(π̃B)(p)

i,1/2]Ũ (p−1)
i

(π̃Φ)(p) = (π̃Φ)(p)
1/2 + ωpδη̃

2 KΦ
[
a(p), Φ̃(p), Ũ

(p)
i

]
(π̃B)(p)

i = (π̃B)(p)
i,1/2 + ωpδη̃

2 KBi [a(p), Φ̃(p), Ũ
(p)
i ]

b(p) = b
(p)
1/2 + ωpδη̃

2 K
(p)
a

[
a, ẼΦ

K , Ẽ
Φ
G, Ẽ

Φ
V , Ẽ

B
K , Ẽ

B
G

]
,


p= 1, ..., s

(6.45)

=⇒



(π̃Φ) (n, n0) ≡ (π̃Φ)(s)
i

Φ̃(n, n0) ≡ Φ̃(s)

Ũi(n, n0) ≡ Ũ (s)
i

(π̃B)i (n, n0) ≡ (π̃B)(s)
i

a(n0) ≡ a(s)

b(n0) ≡ b(s) ,

(6.46)

HC : b2 = 1
3

(
f∗
mp

)2

a2(α+1)
(
ẼΦ
K + ẼΦ

G + ẼBK + ẼBG + ẼV
)
, (6.47)

where, once again, we used K(p)
a

[
a,ẼΦ

K , Ẽ
Φ
G, Ẽ

Φ
V , Ẽ

B
K , Ẽ

B
G

]
≡Ka

[
a(p), ẼΦ(p)

K , ẼΦ(p)
G , ẼΦ(p)

V , ẼB
(p)

K , ẼB
(p)

G

]
,

to ease the notation.

6.3 Observables

Finally, we write here several observables that are of interest. Let us start with the following
mean values (as usual 〈. . .〉 denotes volume averaging)),

SU(2) matter:
〈

Φ̃a
〉
, 〈(π̃Φ)a〉 ,

〈
|Φ̃|2

〉
,
〈
|π̃Φ|2

〉
. (6.48)

SU(2) gauge fields:
〈∣∣ẼB∣∣2〉 =

∑
a,i

〈(
Ẽai
)2
〉
,
〈∣∣B̃B∣∣2〉 =

∑
a,i

〈(
B̃ai
)2
〉
, (6.49)

Ẽai = 1
a1−α (π̃B)ai , B̃ai = εijk

2δx̃2gBQ
(Φ̃)
B

Tr[(iTa)(Ũjk − Ũkj)]. (6.50)
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6.3.1 Energy components
The different energies associated to the SU(N) gauge sector are

SU(2) matter: ẼΦ
K = 1

a6

〈
π̃†Φπ̃Φ

〉
, ẼΦ

G = 1
a2

∑
i

〈
(D̃+

i Φ̃)∗(D̃+
i Φ̃)

〉
. (6.51)

SU(2) gauge fields: ẼBK = 1
2a4

ω2
∗
f2
∗

∑
a,i

〈
((π̃B)ai )

2
〉
,

ẼBG = 2
a4δx̃4g2

BQ
(Φ̃) 2
B

ω2
∗
f2
∗

2−
∑
i,j<i

〈
Tr(Ũij)

〉 . (6.52)

Potential: ẼV =
〈
Ṽ (Φ̃, . . . )

〉
. (6.53)

6.3.2 Spectra
We also define the associated power-spectra of each field sector as follows,

P̃Φ̃(k(ñ)) = k̃3(ñ)
2π2

(
δx̃

N

)3〈∑
a

|Φ̃a(ñ)|2
〉
R(ñ)

, (6.54)

P̃π̃Φ
(k(ñ)) = k̃3(ñ)

2π2

(
δx̃

N

)3〈∑
a

| (π̃Φ)a (ñ)|2
〉
R(ñ)

, (6.55)

P̃Ẽ(k(ñ)) = k̃3(ñ)
2π2

(
δx̃

N

)3〈∑
i,a

|Ẽai (ñ)|2
〉
R(ñ)

, (6.56)

P̃B̃(k(ñ)) = k̃3(ñ)
2π2

(
δx̃

N

)3〈∑
i,a

|B̃ai (ñ)|2
〉
R(ñ)

, (6.57)

where 〈. . .〉R(ñ) represents angular averaging in k-space, cf. eq. (3.13), and the electric and
magnetic fields are defined as in equations (6.50). We note that the spectra are summed
over all directions field-space. As usual, these dimensionless expressions are related to the
dimensionful power spectra by PΦ ≡ P̃Φ̃f

2
∗ , PπΦ ≡ P̃π̃Φf

2
∗ω

2
∗, PE ≡ P̃Ẽ ω

4
∗, and PB ≡ P̃B̃ ω

4
∗.

7 Initial conditions

In this section we describe how to set the initial conditions of the different fields, both in the
continuum and in the lattice. The initial condition of any field consists of a homogeneous
mode, over which a given spectrum of fluctuations is added on top. In particular, let us denote
the initial time of our simulations as η∗, so that we will add the subindex “*” to any quantity
evaluated at such time. The initial conditions of e.g. a scalar singlet can be written as

φ(x, η∗) ≡ φ̄∗ + δφ∗(x) , (7.1)

φ̇(x, η∗) ≡ ¯̇φ∗ + δφ̇∗(x) , (7.2)

where the bar denotes here the homogeneous component of a given variable. The numerical
values of φ̄∗ and ¯̇φ∗ depend on the details of the specific field model we want to simulate.
For example, in section 8, we take the scalar field φ as the inflaton field responsible for an
accelerated expansion in the early universe, so in this context, φ̄∗ and ¯̇φ∗ can be conveniently
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chosen as the inflaton amplitude and derivative towards the end of inflation, i.e. just before
the inflaton starts oscillating around the minimum of its potential.

In this section we focus on how to set the initial fluctuations of the different fields. We
first explain in section 7.1 how to set a spectrum of scalar fluctuations in the lattice, so that
they recover the expected distribution of fluctuations in the continuum limit. After that,
we explain in section 7.2 how to set the initial fluctuations of charged scalar fields and the
corresponding (Abelian and non-Abelian) gauge fields they interact with, putting a special
emphasis in preserving the Gauss constraint(s) up to machine precision.

7.1 Stochastic spectrum of scalar fluctuations

Let us consider the scalar field given in eqs. (7.1)–(7.2). Assuming the homogeneous modes
φ̄∗ and ¯̇φ∗ are already fixed (based on the details of the model to be simulated), we want to
create an appropriate set of classical fluctuations δφ∗(x) and δφ̇∗(x) at time η = η∗, in order
to mimic some known spectrum of fluctuations. In the continuum, we write〈

δφ2
〉

=
∫
d log k Pδφ(k) , 〈δφkδφk′〉 ≡ (2π)3 2π2

k3 Pδφ(k)δ(k− k′) , (7.3)

where 〈· · · 〉 represents here an ensemble average, and Pδφ(k) is the power spectrum. Although
these quantities must obviously be evaluated at the time η = η∗, here we have dropped the
“∗” to simplify notation, as we will do in the remainder of this section. For initial conditions
given by quantum vacuum fluctuations (in the continuum), we have

Pδφ(k) ≡ k3

2π2
1

2a2ωk,φ
, ωk,φ ≡

√
k2 + a2m2

φ , m2
φ ≡

∂2V

∂φ2

∣∣∣
φ=φ̄

, (7.4)

where ωk,φ is the comoving frequency of the mode, and mφ is the effective mass of the field,
evaluated in terms of the homogeneous field components. If we set a∗ = a(η∗) = 1, as it is
customary, we can simply omit the scale factors in the above expression.

In the lattice, we want to set the fluctuations of the scalar field so that expression (7.3)
is recovered in the continuum limit. In the discrete we substitute the stochastic expectation
value by a volume average as〈

δφ2
〉
V

= δx3

V

∑
n
δφ2(n) = 1

N6

∑
ñ
|δφ(ñ)|2 , (7.5)

where we have used eq. (3.6). Decomposing the summation into radial and angular parts,
we obtain 〈

δφ2
〉
V

= 1
N6

∑
|ñ|

∑
ñ′∈R(ñ)

|δφ(ñ)|2 = 4π
N6

∑
|ñ|
|ñ|2

〈
|δφ(ñ)|2

〉
R(ñ)

, (7.6)

where 〈(· · · )〉R(ñ) ≡
1

4π|ñ|2
∑

ñ′∈R(ñ)(· · · ) is an angular average over the spherical shell of
radius ñ′ ∈ [|ñ|, |ñ|+ ∆ñ, with ∆ñ] a given radial binning. This leads to〈

δφ2
〉
V

= 4π
k3

IRN
6

∑
|ñ|

∆ log k(ñ) k3(ñ)
〈
|δφ(ñ)|2

〉
R(ñ)

= 1
2π2

∑
|ñ|

∆ log k(ñ) k3(ñ) L
3

N6

〈
|δφ(ñ)|2

〉
R(ñ)

, (7.7)
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where ∆ log k(ñ) ≡ kIR
k(ñ) , k(ñ) ≡ kIRñ and kIR ≡ 2π

L . In order to mimic in the lattice the
continuum stochastic initial condition, we impose〈

δφ2
〉
V

=
∑
|ñ|

∆ log k(ñ) Pδφ(k(ñ)) (7.8)

from where we identify 〈
|δφ(ñ)|2

〉
R(ñ)

= 2π2

k3(ñ)

(
N

δx

)3
Pδφ(k(ñ)) . (7.9)

With this choice, we reproduce the continuum correctly,〈
δφ2

〉
V

=
∑
|ñ|

∆ log k(ñ) Pδφ(k(ñ)) −→
∫
d log k Pδφ(k) . (7.10)

The key point of the identification made in eq. (7.9), is that
〈
δφ2〉

V in eq. (7.10) should
not depend explicitly on the volume V = (N · δx)3, if we were to reproduce correctly the
continuum limit.

The initial variance of the Fourier modes in the lattice, expressed in the program vari-
ables of eq. (4.3), must be taken therefore as∣∣∣δφ̃(ñ)

∣∣∣2 ≡ 2π2

k̃3(ñ)

(
ω∗
f∗

)2 (N
δx̃

)3
P̃δφ(k̃(ñ)) , (7.11)

where P̃δφ ≡ ω−2
∗ Pδφ is the (dimensionless) power spectrum in program units. For quantum

fluctuations with variance (7.4), we shall write∣∣∣δφ̃(ñ)
∣∣∣2 ≡ (ω∗

f∗

)2 (N
δx̃

)3 1
2a2

√
k̃2(ñ) + a2m̃2

φ

, m̃2
φ ≡

∂2Ṽ

∂φ̃2 (φ̃ = ˜̄φ) , (7.12)

where k̃ ≡ k/ω∗ and m̃φ ≡ mφ/ω∗ are the momentum and effective mass in program variables.
Let us note that the ratio ω∗/f∗ enters in eq. (7.12).

The above expression eq. (7.12) gives an account of the appropriate amplitude for the
modulus of the fluctuations in the lattice. We still need to consider the fluctuations of
the phase of the mode, as well as of the time derivative of the mode itself. We will deal
with these two problems together, as follows. We first note that field modes deep inside
the horizon (i.e. with k/a � H, H = ȧ/a the Hubble rate), have a time-dependence as
δφk ∼ (1/a)e±i(ωk/a)t, where t is the cosmic time, and we are implicitly assuming that the
initial conditions are set in an adiabatic regime ω̇k � ω2

k. Taking the time-derivative of
the field mode, we get δφ̇k ≈ 1

a(±iωk − aH)δφk. Choosing one sign in this expression
is equivalent to choosing a preferred direction in position space (say a right- or left-moving
wave), so even though this effect should be irrelevant once the non-linearities of the dynamics
kick in, we follow the prescription of LatticeEasy to define ‘isotropic’ initial conditions [251],
by the superposition of left- and right-moving waves. In particular, at each lattice point in
momentum space, we add to the field amplitude a sum of left-moving and right-moving waves,
as follows,

δφ̃(ñ) = 1√
2

(|δφ̃(l)(ñ)|eiθ(l)(ñ) + |δφ̃(r)(ñ)|eiθ(r)(ñ)) , (7.13)

δφ̃′(ñ) = 1
a1−α

[
iω̃k√

2

(
|δφ̃(l)(ñ)|eiθ(l)(ñ) − |δφ̃(r)(ñ)|eiθ(r)(ñ)

)]
− H̃δφ̃(ñ) . (7.14)
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Here we have used dη̃ = a−αω∗dt, and introduced the frequency of the mode and the Hubble
rate in program units, ω̃k ≡

√
k̃2(ñ) + a2m̃2

φ, and H̃ ≡ aαH/ω∗. In these expressions, θ(l)(ñ)
and θ(r)(ñ) are two random independent phases which vary uniformly in the range [0, 2π)
from point to point in the reciprocal Fourier lattice. It is precisely in this way that the
phase of each mode is taken care of. On the other hand, |δφ̃(l)(ñ)| and |δφ̃(r)(ñ)| are two
amplitudes that also vary from point to point, according to a Rayleigh distribution with
expected square amplitude given by (7.12). Altogether, the uniform randomly generated
phases and the moduli created according to a Rayleigh distribution,10 make δφ̃(ñ) and δφ̃′(ñ)
Gaussian random variables. Note that we draw |δφ̃(l)(ñ)| and |δφ̃(r)(ñ)| independently from
each other, avoiding the additional constraint |δφ̃(l)(ñ)| = |δφ̃(r)(ñ)| imposed by LatticeEasy
at each reciprocal lattice site: otherwise δφ̃(ñ) will not correspond to a Gaussian random
variable, as pointed out in [253], since the left- and right-moving waves would be correlated
through their modulus, and hence the resulting fluctuation δφ̃(ñ) will not be Gaussian, as it
would not be the sum of two independent Gaussian realizations. We will typically consider
a∗ = a(η∗) = 1 initially, so we can simply omit the scale factors in eq. (7.14).

7.2 Charged scalars and gauge fields
Let us now consider the initial conditions for the gauge fields, as well as of the charged
fields coupled to them. In this work we are considering scalar fields charged under U(1) and
SU(N)×U(1) gauge groups, which we denote as ϕ and Φ respectively. We recall that these
fields are composed of multiple real components: 2 in the case of ϕ, and 2N in the case of
Φ. As the potential only depends on the absolute value of these fields, we can set the same
initial amplitude to the homogeneous modes of all their components. In particular, we set
for each real component ϕn of a doublet Φ (n = 0, 1, . . . 2N − 1),

ϕn(x, t∗) ≡
|Φ∗|√
N

+ δϕn∗(x) , (7.15)

ϕ̇n(x, t∗) ≡
|Φ̇∗|√
N

+ δϕ̇n∗(x) , (7.16)

where |Φ∗| and |Φ̇∗| are the initial homogeneous values of the multi-field norm and its time
derivative (which depend on each specific model), and δϕn∗(x) and δϕ̇n∗(x) are the initial
mode fluctuations of each field component and its derivative. For simplicity, we will drop
again the “∗” notation from now on. Following the same procedure as with the scalar singlet
fluctuations (7.13)–(7.14), we consider the following fluctuations for charged scalar fields in
a lattice,

δϕ̃n(ñ) = 1√
2

(
|δϕ̃(l)

n (ñ)|eiθ
(l)
n (ñ) + |δϕ̃(r)

n (ñ)|eiθ
(r)
n (ñ)

)
, (7.17)

δϕ̃′n(ñ) = a1−α
[ 1√

2
iω̃k,n

(
|δϕ̃(l)

n (ñ)|eiθ
(l)
n (ñ) − |δϕ̃(r)

n (ñ)|eiθ
(r)
n (ñ)

)]
− H̃δϕ̃n(ñ) , (7.18)

with ω̃k,n ≡ ωk,n/ω∗ =
√
k̃2 + a2(∂2Ṽ /∂ϕ̃2

n) the initial effective frequency in program units of
each field component mode. Thus, for a charged field with 2N real components, there are 8N

10We remind the reader that if a complex variable fk = Rk + iIk is said to be Gaussian (i.e. both their
real and imaginary parts, Rk and Ik, follow each a Gaussian random distribution), mathematically this is
equivalent to its modulus |fk| ≡

√
R2
k + I2

k following a Rayleigh distribution, and its phase ϕ = arctan(Ik/Rk)
following a uniform distribution in the range [0, 2π).
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functions to be fixed (|δϕ̃(l)
n (ñ)|, |δϕ̃(r)

n (ñ)|, θ(l)
n , and θ(r)

n , with n = 0, 1, . . . 2N − 1). Again, if
we fixed the initial value of the scale factor to unity, we could omit it from the expression of the
derivative fluctuations. In principle, all the functions {|δϕ̃(l)

n (ñ)|, |δϕ̃(r)
n (ñ)|, θ(l)

n , θ(r)
n } should

be randomly generated, independently at each lattice point, again by Rayleigh sampling each
modulus |δϕ̃(l,r)

n (ñ)| with expected square amplitude given by eq. (7.12), while uniformly
sampling each phase θ(r)

n within the range [0, 2π). However, as we shall see, we will need to
impose certain relations among these functions if we want to preserve the Gauss constraint(s)
initially (we speak about the Gauss constraints, in plural, as we consider here the general
case of a charged scalar under various gauge groups, e.g. SU(2)×U(1)).

Let us now consider the fluctuations of the Abelian and non-Abelian gauge fields. We
will consider first the fluctuations in the continuum, and generalize to the discretized case
afterwards. For the gauge fields we shall impose

Ai(x, t∗) ≡ 0 , (7.19)
Ba
i (x, t∗) ≡ 0 , (7.20)
Ȧi(x, t∗) ≡ δȦi∗(x) , (7.21)
Ḃa
i (x, t∗) ≡ δḂa

i∗(x) , (7.22)

i.e. we impose the amplitude of the gauge fields to be exactly zero at all lattice points, while we
set an initial spectrum of fluctuations to their time-derivatives (over vanishing homogeneous
values). Because of this, initially the magnetic energy is exactly zero, while there will be some
amount of electric energy, due to the fluctuations of the time-derivatives. The fluctuations of
the charged scalars and gauge fields must be imposed in such a way that the Gauss constraint
is initially preserved. If this is achieved, then the dynamical evolution of the field EOM will
guarantee the preservation of the Gauss constraint at later times. The Gauss constraints for
a SU(2)×U(1) gauge-invariant theory are given by [see. eqs. (2.41)–(2.42) and (2.16)–(2.17)],

∂iF0i(x) = JA0 (x) , JA0 (x) ≡ 2gAQ(ϕ)
A Im[ϕ∗ϕ′] + 2gAQ(Φ)

A Im[Φ†Φ′] , (7.23)
(Di)ab(G0i)b(x) = Ja0 (x) , Ja0 (x) ≡ 2gBQBIm[Φ†TaΦ′] . (7.24)

where we have set the initial scale factor to a = 1 for simplicity. By Fourier transforming
both sides of these equations, we get

kiA′i(k) = JA0 (k) , kiBa′
i (k) = Ja0 (k) , (7.25)

where JA0 (k) and Ja0 (k) are the Fourier transforms of each current. One particular solution
to each of these equations, for k 6= 0, can be written like

A′i(k) = i
ki
k2J

A
0 (k) , Ba′

i (k) = i
ki
k2J

a
0 (k) . (7.26)

The complex scalar field fluctuations δϕ∗(x) and δϕ̇∗(x) are given by eqs. (7.17)–(7.18),
and generate fluctuations on the currents JA0 (x), and Ja0 (x). Therefore, we can impose
fluctuations to the gauge fields in momentum space via eqs. (7.26), and then transform back
to position space to obtain δȦi∗(x), δḂa

i∗(x).
The above procedure should, in principle, initially preserve the Gauss constraint(s).

However, we must guarantee that the imposition of eq. (7.26) does not add a global charge in
the system: i.e. we must impose the vanishing of the zero mode of the zero component (charge)
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of the gauge currents, JA0 (k = 0) = Ja0 (k = 0) = 0 (note that this is explicitly implied by
eq. (7.25) for k = 0). For concreteness, let us consider the case of a doublet Φ charged under
a U(1) × SU(2) gauge group (a U(1)-charged field ϕ would be just a particular case, as we
explain below). The homogeneous modes of the Abelian and non-Abelian currents (7.23)
and (7.24) can be written in terms of the complex field fluctuations as

JA0 (k = 0) =
∫
d3xJA0 (x)∝

∫
d3kRe[ϕ∗0(k)ϕ′1(k)−ϕ′0(k)ϕ∗1(k)+ϕ∗2(k)ϕ′3(k)−ϕ′2(k)ϕ∗3(k)] = 0 ,

J1
0 (k = 0) =

∫
d3xJ1

0 (x)∝
∫
d3kRe[ϕ∗3(k)ϕ′0(k)−ϕ′3(k)ϕ∗0(k)+ϕ∗1(k)ϕ′2(k)−ϕ′1(k)ϕ∗2(k)] = 0 ,

J2
0 (k = 0) =

∫
d3xJ2

0 (x)∝
∫
d3kRe[ϕ∗0(k)ϕ′2(k)−ϕ′0(k)ϕ∗2(k)+ϕ∗1(k)ϕ′3(k)−ϕ′1(k)ϕ∗3(k)] = 0 ,

J3
0 (k = 0) =

∫
d3xJ3

0 (x)∝
∫
d3kRe[ϕ∗1(k)ϕ′0(k)−ϕ′1(k)ϕ∗0(k)+ϕ∗2(k)ϕ′3(k)−ϕ′2(k)ϕ∗3(k)] = 0 .

A simple way of guaranteeing that these conditions hold is to set all the integrands to zero. By
solving the corresponding system of linear equations, we get the following three conditions,

Re[ϕ′m(k)ϕ∗0(k)− ϕ′0(k)ϕ∗m(k)] = 0 , m = 1, 2, 3 , (7.27)

which mix the different real components of the doublet. These conditions are in general
not verified when all the functions |δϕ(l)

n (ñ)|, |δϕ(r)
n (ñ)|, θ(l)

n , and θ(r)
n in the scalar fluctua-

tions (7.17) and (7.18) are generated randomly, independently from each other. However, by
substituting into eq. (7.27) the expressions of each ϕn in terms of moduli and phases of left-
and right-moving waves, we can show that the conditions in eq. (7.27) are verified when the
following relations hold,

|δϕ(l)
n (k)| = |δϕ(r)

n (k)| , n = 0, 1, 2, 3 , (7.28)

θ(r)
m (k) = θ

(r)
0 (k) + θ(l)

m (k)− θ(l)
0 (k) , m = 1, 2, 3 . (7.29)

The first relation imposes the same amplitude to the left- and right-moving waves of the
fluctuations of each real scalar component (four in total). The second line consists in a set of
three different constraints that must be imposed to the eight phases appearing in the four real
components of the doublet. Therefore, in the case of a SU(2)-charged doublet, one can simply
generate randomly |δϕ(l)

0 |, |δϕ
(l)
1 |, |δϕ

(l)
2 |, |δϕ

(l)
3 |, and e.g. θ(l)

0 , θ(r)
0 , θ(l)

1 , θ(l)
2 , and θ(l)

3 according
to their appropriate probability distributions, and then obtain |δϕ(r)

0 |, |δϕ
(r)
1 |, |δϕ

(r)
2 |, |δϕ

(r)
3 |,

θ
(r)
1 , θ(r)

2 and θ
(r)
3 via eqs. (7.28)–(7.29). This procedure guarantees that the homogeneous

mode of the charge vanishes initially, and hence that the Gauss laws are preserved.11

Let us remark that a similar procedure can be applied to the simpler case of a U(1)-
charged field ϕ. In this case, to set up the initial fluctuations we proceed similarly as with the
SU(2) case, using (7.17) and (7.18), and following the procedure explained below those, except
that there are now only two real scalar components, δϕ0(k) and δϕ1(k). This implies that

11Another possibility to verify the constraints (7.27) would be to just impose the relations ϕ′m(k) =
ϕ′0(k)ϕ∗m(k)/ϕ∗0(k), m = 1, 2, 3, where the functions in the r.h.s. of this expression are to be generated accord-
ing to the procedure explained below (7.17) and (7.18), without imposing the constraints (7.28) and (7.29).
However, using this procedure, the fluctuations generated for the 0th-component have very different ampli-
tudes than the other components, typically one or even more orders of magnitude of difference. Furthermore,
the spectra of the 0th-component depends very much on the particular random realization of the fields. This
makes us prefer the procedure described in the bulk text.
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now, instead of the seven constraints in eqs. (7.28), (7.29), there are only three constraints to
be imposed: δϕ(l)

0 (k) = δϕ
(r)
0 (k), δϕ(l)

1 (k) = δϕ
(r)
1 (k), and θ(r)

1 (k) = θ
(r)
0 (k)+θ

(l)
1 (k)−θ(l)

0 (k).
Finally, let us consider the translation of this procedure developed in the continuum

to the lattice. For charged scalar fields, the only difference is that the different functions
|δϕab| and θab are only defined in each lattice point, instead of being continuum functions.
Therefore, the randomly generated amplitudes must be imposed at each lattice site ñ, ac-
cording to the corresponding probability distribution, while the other amplitudes must be
imposed at each lattice site via the constraint equations, e.g. (7.28)–(7.29) for SU(2). On
the other hand, for gauge fields we must start from the discrete Gauss law equations. As
we are not imposing fluctuations to the amplitude of the gauge fields, the discrete Gauss
constraints (5.20) and (6.21) simply become, in position space and in physical variables,∑

i

∆−i ∆+
0 Ai(n) = JA0 (n) ,

∑
i

∆−i ∆+
0 B

a
i (n) = Ja0 (n) , (a = 1, 2, 3) . (7.30)

By taking a discrete Fourier transform in both sides of the equation, we can write lattice
equations, analogous to (7.26) in the continuum, as

∆+
0 Ai(ñ) = i

k−Lat,i

(k−Lat,i)2J
A
0 (ñ) , ∆+

0 B
a
i (ñ) = i

k−Lat,i

(k−Lat,i)2J
a
0 (ñ) , (a = 1, 2, 3) . (7.31)

Note that, as we are taking the backward spatial derivative ∆−i in eq. (7.30), it is the
corresponding complex lattice momentum k−Lat,i that must appear in eq. (7.31) after Fourier
transforming, cf. eq. (3.25). Therefore, in order to set the fluctuations of the gauge field
derivatives in the lattice, we first add the fluctuations to the real components of the charged
scalar fields, and compute their corresponding currents. After that, we transform these to
momentum space, and impose expressions (7.31) to the gauge field initial derivatives. Finally,
we transform the gauge field derivatives back to position space.

8 A working example: the SU(2)×U(1) gauge invariant inflaton

In order to illustrate some of the techniques and concepts explained in the previous sections,
we dedicate this section to study the dynamics of a scalar-gauge field theory model using lat-
tice simulations. In particular, we are going to consider an observationally viable single-field
inflationary model, with monomial potential V (φ) ∝ |φ|p around the minimum, and flatten-
ing ‘wings’ at large field amplitudes. We will study the post-inflationary stage of preheating,
which is triggered by the inflaton oscillations around the minimum of its potential. In order
to apply the gauge-invariant lattice techniques presented before, we will couple the inflaton
to both scalar and gauge fields, all of which will be denoted collectively as the daughter fields.
We will study the transfer of energy from the inflaton into such daughter fields.

The structure of this section is as follows. First, in section 8.1, we present the details
of how inflation and preheating proceed in the model under consideration. In particular, we
review the basis of the two excitation phenomena that govern the post-inflationary dynamics:
parametric resonance of the daughter field(s), and self-resonance of the inflaton. After that,
we present the results of our lattice simulations, fully capturing the non-linear regime of the
dynamics. In section 8.2 we consider the case of a U(1) gauge invariant inflaton, coupled to
an Abelian gauge field through a covariant derivative. In section 8.3 we consider the case
of a SU(2)×U(1) gauge invariant inflaton, coupled simultaneously to a SU(2)×U(1) gauge
sector (formed by Abelian and non-Abelian gauge fields) and a light scalar singlet.
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8.1 Model details

Let us begin by considering a singlet scalar field φ with the following potential energy,

V (φ) = Λ4

p
tanhp

( |φ|
M

)
, (8.1)

where Λ and M have dimensions of energy, and p is a positive number obeying p > 1. The
particular form of this potential is based on α-attractor models of inflation, see ref. [277].
The potential is a function of the absolute value of the field (which in the case of a gauge
charged field, naturally with more than one real component, it will be its modulus). The
potential has always a minimum at φ = 0, independently of the choice of p. Similarly, the
potential develops a plateau V (φ) → Λ4/p at large field amplitudes |φ| � M . We consider
a scenario where φ is the inflaton field responsible for the inflationary period. Without loss
of generality, we will study scenarios with φ > 0 during inflation. We will then study in
detail the stage of preheating following inflation, during which the sign of φ will alternate
within each semi-oscillation. The values of the model parameters (Λ, M , p) are related by
the observed amplitude of the scalar perturbations in the CMB, i.e. Λ = Λ(M,NCMB , p), with
NCMB = 50 − 60 the number of e-folds between the end of inflation and horizon crossing of
the relevant perturbations.

The potential (8.1) can be expanded around the minimum as the following monomial
function,

V (φ) = 1
p
λµ4−p|φ|p , λµ4−p ≡ Λ4M−p , (8.2)

where λ is dimensionless and µ has dimensions of energy. The product of parameters λµ4−p

in eq. (8.2) is fixed in terms of (Λ, M , p) to match the exact potential (8.1) in the limit
|φ| � M . The field value that separates the monomial and plateau regimes in the exact
potential can be estimated by computing its inflection point, i.e. the amplitude at which
V,φφ(φi) = 0. It is given by

φi = Marcsinh
(√

p− 1
2

)
. (8.3)

The monomial potential (8.2) is a very good approximation to the exact potential (8.1) for
field amplitudes |φ| � M . In particular, in the limit M → ∞, the inflaton potential (8.1)
recovers the monomial function (8.2) exactly, recovering this way the well-known chaotic
inflation scenario.

Inflation takes place during the slow-rolling of the inflaton at large field amplitudes,
heading towards the minimum of the potential. The inflaton acquires a sizable acceleration
when the slow-roll conditions break down, and as a consequence, it starts oscillating around
the minimum of its potential. The field amplitude φ∗ when the slow-roll parameter becomes
unity εV ≡ m2

plV
2
,φ/(2V 2) = 1, is

φ∗ ≡
M

2 arcsinh
(√

2pmpl
M

)
−−−−→
M→∞

pmpl√
2
, (8.4)

where we have also written the corresponding value in the limit M → ∞. In this model,
inflation happens for field amplitudes |φ| & φ∗, while the oscillatory regime which follows
takes place for |φ| . φ∗. Therefore, the field amplitude |φ| = φ∗ constitutes a natural initial
condition for our lattice simulations. If M & mp, we have that φ∗ � φi, so the inflaton
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is already in the positive-curvature region of the potential when the slow-roll regime breaks
down, and does not enter into the tachyonic region (with V ′′ < 0) during the subsequent
inflaton oscillations. In that case, we can safely take the monomial potential (8.2) as a very
good approximation to the exact potential (8.1) during preheating. On the other hand, if
M . mp we have that φ∗ � φi, so the inflaton enters into the tachyonic region at least during
some of the first oscillations. Here we consider only the first scenario, so our results do not
depend very much on the details of the transition between the monomial function and the
plateau. In particular, we will fix the value M = 10mp in the lattice simulations.

The equation of motion of the homogeneous part of the inflaton modulus in the limit
M →∞ is

φ̈+ 3Hφ̇+ Ω2(|φ|)φ = 0 , Ω(|φ|) ≡
√
λµ

4−p
2 |φ|

p−2
2 , (8.5)

which corresponds to an oscillator with time-dependent effective frequency Ω(|φ|) and friction
term ∝ 3Hφ̇, induced by the expansion of the universe. Note that for multi-component fields
there will be an equation of this type for each component.12 The oscillation frequency
of the field is constant for p = 2, but depends explicitly on the field amplitude (and is
time dependent) for any other value p 6= 2. This equation can be solved together with
the Friedmann equation (2.51) in the homogeneous approximation, with initial conditions
deep inside slow-roll. During inflation we have |φ| � |φ∗|, or equivalently, H(|φ|) � Ω(|φ|).
Eventually, when the field amplitude becomes approximately φ ' φ∗, the condition H(φ) =
Ω(φ) holds, and the inflaton starts oscillating. The solution for the homogeneous inflaton
can be approximated during the oscillatory regime as [278]

φ(t) ' Φ(t)F (t) , Φ(t) = Φ∗
(
t

t∗

)−2/p
, (8.6)

a(t) ∝ a∗
(

1 + 3p
2 + p

H∗t

) 2+p
3p
∼ t

2+p
3p , (8.7)

where we have also provided the oscillation averaged scale factor. In eq. (8.6), F (t) is an
oscillatory function that is periodic for p = 2 and non-periodic for p 6= 2, whereas Φ(t) is a
decaying amplitude that starts at the time t∗ with initial amplitude Φ∗, so that |φ| = Φ∗ (in
the case of a multi-component field with various real components, we will split evenly the
initial value among the different components). The quantities a∗ and H∗ are the scale factor
and Hubble parameter at time t = t∗. Note that for times H∗t � 1, this field configuration
gives rise, in particular, to a matter/radiation-dominated equation of state for p = 2, 4,
respectively.

In order to do lattice simulations of this system, we have to fix the program variables
(f∗, α, ω∗), defined in eq. (4.3). First, we want to use variables that guarantee that typical
numbers of certain physical quantities (such as field amplitudes or range of excited momenta)
are of order unity. And second, as the evolution algorithms discussed before assume a constant
time step, we want to use a program time variable that guarantees an approximately constant
oscillation frequency. In this way, each oscillation period will be well resolved independently
of how long the simulation takes. In this regard, we get from eqs. (8.6) and (8.7) that the

12In that case, the initial velocity of the field is typically considered only within a radial trajectory in field
space, i.e. if we decompose φ into modulus and phases, the velocity of the phases are taken to be vanishing
initially, so that |φ| oscillates radially, maintaining constant phases in its own field space.
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inflaton oscillation frequency (defined in eq. (8.5)) scales with the scale factor as

Ω(φ) ∼ ω∗
(
t

t∗

)4/p−2
∼
(
a

a∗

)−3(p−2)
(p+2)

, ω∗ ≡
√
λµ

4−p
2 φ

p−2
2∗ , (8.8)

where ω∗ is the oscillation frequency at the onset of oscillations. A convenient choice of
program variables is therefore

α = 3
(
p− 2
p+ 2

)
, f∗ ≡ φ∗ , ω∗ ≡ Λ2M−

p
2φ

p−2
2∗ . (8.9)

Note that for this choice of variables, program time corresponds to cosmic/conformal time
for p = 2, 4 respectively, up to a dimensionful constant factor. The corresponding program
potential Ṽ (φ̃) of our model, defined in eq. (4.4), can be then written as

Ṽ (φ̃) ≡ 1
f2
∗ω

2
∗
V (φ̃) = 1

p

(
M

φ∗

)p
tanhp

(
φ∗|φ̃|
M

)
, (8.10)

and its first and second derivatives are

∂Ṽ

∂φ̃
= 2

(
M

φ∗

)p−1 tanhp(φ∗|φ̃|/M)
sinh(2φ∗|φ̃|/M)

sgn(φ̃) , (8.11)

∂2Ṽ

∂φ̃2 = 4
(
M

φ∗

)p−2 (
p− cosh(2φ∗|φ̃|/M)

) tanhp(φ∗|φ̃|/M)
sinh2(2φ∗|φ̃|/M)

, (8.12)

where sgn(φ̃) is the sign function.

8.1.1 Preheating
Let us now see how preheating proceeds in this model. The post-inflationary dynamics of
an inflaton with potential (8.1) has been studied with lattice simulations in the past: in the
absence of inflaton interactions to other species in [170, 190], with interactions to a second
scalar field with non-canonical kinetic terms in [192], and more recently, with quadratic
interactions to a daughter field in [193]. In all of these studies, the fields involved were real
scalars. Here, in order to illustrate the gauge-invariant lattice techniques introduced in the
previous sections, we will also consider coupling the inflaton field to a gauge structure.

Let us start by considering a light scalar singlet χ as the only daughter field, coupled
to the inflaton via a quadratic interaction. The potential of such a theory can be written as

V (φ, χ) = 1
p
λµ4−p|φ|p + 1

2g
2φ2χ2 , (8.13)

where g is a dimensionless coupling constant, and we have taken the limit M → ∞ in
the inflaton potential. When inflation ends at the amplitude φ = φ∗, the energy budget
of the universe is dominated by the homogeneous component of the inflaton. Therefore,
the evolution of the inflaton amplitude and scale factor can be described approximately by
eqs. (8.6)–(8.7) during the first inflaton oscillations. Using the program variables defined
in (8.9) in this context, the program potential (again in the limit M →∞) reads

Ṽ (φ̃, χ̃) ≡ 1
f2
∗ω

2
∗
V (φ̃, χ̃) = 1

p
|φ̃|p + 1

2q∗φ̃
2χ̃2 , (8.14)
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where the resonance parameter q∗ is defined as the following dimensionless ratio,

q∗ ≡
g2φ2
∗

ω2
∗
. (8.15)

The first and second derivatives of the program potential with respect to the two fields are

∂Ṽ

∂φ̃
= |φ̃|p−2φ̃+ q∗χ̃

2φ̃ ,
∂Ṽ

∂χ̃
= q∗φ̃

2χ̃ , (8.16)

∂2Ṽ

∂φ̃2 = (p− 1)|φ̃|p−2 + q∗χ̃
2 ,

∂2Ṽ

∂χ̃2 = q∗φ̃
2 . (8.17)

During the first stages of preheating, the linearized fluctuations of both fields have time-
dependent effective masses, induced by the oscillations of the inflaton homogeneous mode.
These masses vary non-adiabatically each time the inflaton crosses zero, which triggers an
exponential growth of the amplitude of the field modes for certain bands of momenta. More
specifically, the post-inflationary dynamics is governed by the interplay of two different reso-
nant phenomena, which may or may not be present for certain choices of model parameters.
These are:

• Self-resonance of the inflaton. The inflaton has a time-dependent effective mass m2
φ ∝

|φ|p−2 for p 6= 2, see eq. (8.13). In these cases, the (conformally rescaled) inflaton fluc-
tuations can grow exponentially during this regime as |δφ̃k|2 ∝ e2νkz, where Re(νk) > 0
for certain momenta bands, and νk ≡ νk(k; p) is the corresponding so-called Floquet
index. These bands are always narrow for all reasonable values of p, ∆k/k̄ . 0.1 (with
k̄ the average momentum inside the band), and the maximum Floquet index within
each band is Re(νk) . 0.035.

• Parametric resonance of the daughter field. Similarly, the daughter field also has a
time-dependent mass m2 = g2χ2 for any of choice of p as long as the quadratic inter-
action is present, see eq. (8.13). Due to this, the (conformally rescaled) daughter field
fluctuations can also grow exponentially as |δχ̃k|2 ∝ e2µkz, with Re(µk) > 0 for certain
ranges of momenta, and µk ≡ µk(k, q∗; p) the corresponding Floquet index. The key
parameter signaling the strength of the resonance is the effective resonance parameter
qres, which is a time dependent function as

qres ≡ q∗a
6(p−4)
p+2 , (8.18)

which evolves with the expansion of the universe as indicated. If qres & 1, the parametric
resonance is broad: the width of the resonance bands for all values of p is ∆k/k̄ ∼ 1,
and the maximum Floquet index within those bands is typically Re(µk) ∼ 0.1 − 0.2.
In this case, the maximum momenta excited by the main resonance band (before the
dynamics become non-linear) scales as k ∼ q

1/4
res ω∗, modulo some multiplicative scale

factor power. On the other hand, if qres � 1, the width of the bands is very small
∆k/k̄ � 1, and we say that the resonance is narrow. This second effect cannot be
typically captured in the lattice due to lack of resolution. We note that as qres changes
with time, the type of resonance may also change during preheating: decreasing with
time for p < 4, growing for p > 4, and remaining constant for p = 4. Therefore, the type
of parametric resonance (either broad or narrow) can change as the universe expands.

– 74 –



J
C
A
P
0
4
(
2
0
2
1
)
0
3
5

If broad parametric resonance of the daughter field is present (i.e. if qres > 1), it is almost
always a stronger effect than the inflaton self-resonance. However, parametric resonance
eventually becomes narrow for p < 4, even if it was broad initially. This contrasts with
inflaton self-resonance, which is always present independently of the value of p, as long as
p 6= 2. The different behaviour of these phenomena for different model parameters is key to
understand how energy distributes between the different field sectors during preheating, and
the evolution of the equation of state after inflation.

Let us now consider a scenario in which the inflaton is coupled to a SU(2)×U(1) gauge
sector via a gauge-invariant covariant derivative. We take the inflaton as the scalar doublet
Φ with potential

V (|Φ|) = 2p/2
p
λµ4−p|Φ|p . (8.19)

The prefactor 2p/2 is included to compensate the
√

2 factor in the definition of the doublet,
see eq. (2.8). For example, for p = 4 we get V (|Φ|) ≡ λ|Φ|4 = (λ/4)(ϕ2

0 + ϕ2
1 + ϕ2

2 + ϕ2
3)2,

which recovers the scalar singlet expression (8.2) for one component when the other three
are set to 0, e.g. V (|Φ|) = (λ/4)ϕ4

0 for ϕ1, ϕ2, ϕ3 → 0.
Fortunately, the simpler singlet scalar theory described before constitutes an excellent

proxy for this more complicated gauge model, as the dominant interaction term generated by
the gauge interaction is also quadratic in the inflaton and daughter (gauge) fields. In order
to see this, let us consider the covariant derivative term in action (2.7), which contains the
interaction between the inflaton and the gauge fields. It can be expanded as

( ~DµΦ)†( ~DµΦ) = (∂µΦ)†∂µΦ +Q2
Ag

2
A|Φ|2| ~A|2 + 1

4Q
2
Bg

2
B|Φ|2

∑
a

| ~Ba|2

+ 2QAgAQBgB
∑
a

~A · ~Ba(Φ†TaΦ) . . . , (8.20)

where we have ignored terms of the type ∼ (∂µΦ)Φ, which are subdominant during the early
linear regime of parametric resonance. The first term in eq. (8.20) gives rise to the usual
Laplacian in the field equations. The second and third terms constitute quadratic interactions
between the inflaton and the Abelian and non-Abelian gauge fields, respectively. These are
analogous to the quadratic interaction of eq. (8.13) between the inflaton and a secondary
scalar field, with the identification g → QAgA and g → QBgB/2 in each case. Mimicking the
notation of eq. (8.15), it is then natural to define the resonance parameters of the Abelian
and non-Abelian gauge fields as

qA∗ ≡
Q2
Ag

2
Aφ

2
∗

ω2
∗

, qB∗ ≡
Q2
Bg

2
Bφ

2
∗

4ω2
∗

, (8.21)

where φ∗ ≡
√

2|Φ∗| with |Φ∗| the amplitude of the inflaton norm at the end of inflation,
and ω∗ is given in eq. (8.8). Therefore, we can use the scalar theory as a proxy to study the
equivalent U(1) or SU(2) gauge-invariant theories, at least during the initial linear regime. In
particular, in the gauge scenario the inflaton develops fluctuations via self-resonance, while
the gauge fields are also excited via parametric resonance. However, once non-linearities be-
come relevant at later times, important differences between singlet scalar and gauge theories
may appear. Finally, the fourth term in eq. (8.20) appears when the inflaton is coupled to a
full SU(2) × U(1) gauge sector. One can prove that the effect of such term is to couple the
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Simulation p M/mp Λ4 q∗ N k̃IR δt̃

U(1) 2 10 1.8 · 1065 4 · 104 128 4 5 · 10−3

U(1) 4 10 4.3 · 1065 102 128 0.6 10−2

U(1) 6 10 6.8 · 1065 1 128 0.15 7 · 10−4

SU(2) × U(1) + χ 2 10 1.8 · 1065 4 · 104 128 4 3 · 10−4

SU(2) × U(1) + χ 4 10 4.3 · 1065 102 128 0.6 10−2

Table 1. Benchmark model and lattice parameters used in the U(1) and SU(2) × U(1)+χ gauge
simulations.

EOM of the Abelian and non-Abelian gauge fields, so that they experience parametric reso-
nance with a common resonance parameter qeff∗ = qA∗ + qB∗. The details of the parametric
resonance process in the presence of Abelian and non-Abelian gauge fields, as well as the
relevance of that term, will be discussed in more detail in an upcoming work [279]. This goes
beyond the objective of this manuscript, which is mainly to illustrate lattice gauge-invariant
techniques in a specific physics model.

8.2 Lattice simulations: U(1) gauge interactions

We now proceed to discuss the results from our lattice simulations. We start by considering
the post-inflationary dynamics of a complex inflaton field ϕ ≡ 1√

2(ϕ0 + iϕ1) with potential
energy (8.1) [where we must substitute |φ| →

√
2|ϕ|], coupled to an Abelian gauge boson Aµ

via a gauge-invariant covariant derivative. The model and lattice parameters considered in
the simulations are provided in table 1. We have chosen a set of three representative power-
law coefficients, p = 2, 4, 6. In each case, the resonance parameter qA∗ is fixed to guarantee
broad parametric resonances at the onset of the inflaton oscillatory regime. We have fixed the
value M = 10mp as a benchmark, which guarantees that the inflationary slow-roll condition
breaks down in the positive-curvature region of the potential. As described above, the initial
exponential growth of the gauge field modes during broad parametric resonance takes place
mainly within an infrared band of width p . p∗ ≡ q1/4

A∗ ω∗ (modulo a multiplying scale factor
power). However, when the energy transferred to the gauge fields is large enough, they
backreact onto the inflaton homogeneous condensate, which triggers a propagation of power
in the spectra of all fields towards the ultraviolet. Due to this, the minimum momenta k̃IR and
number of points per lattice side N are chosen, in each case, to guarantee that both the initial
infrared growth and the following ultraviolet excited scales are well resolved in the lattice.

We start by showing in figure 1 the evolution of the volume-averaged inflaton norm |ϕ|,
equation of state w ≡ p/ρ, and scale factor as a function of program time η̃ [dη̃ ≡ a−αω∗dt,
cf. (4.3)], for each of the three power-law coefficients p = 2, 4, 6. As described above, the
inflaton can be approximated as a homogeneous condensate during its first oscillations, and
the evolution of the inflaton amplitude and scale factor are approximately given by eqs. (8.6)–
(8.7). From these expressions, we deduce that the amplitude of the inflaton oscillations scales
initially as |ϕ| ∼ a

−6
p+2 , so |ϕ| ∼ a−3/2, a−1, a−3/4 for p = 2, 4, 6, respectively. Therefore, in the

figure we have multiplied the inflaton norm by the inverse of these factors, so the amplitude
of the rescaled inflaton oscillations is initially constant. Although the inflaton homogeneous
regime holds qualitatively well during the first inflaton oscillations, the energy stored in
gauge fields and inflaton gradients grows exponentially due to broad parametric resonance.
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Figure 1. Average values of the scalar field norm, equation of state w, and scale factor as a function
of time, for three U(1) gauge simulations with p = 2 (top row), p = 4 (middle row), and p = 6 (bottom
row). The backreaction time η̃br in indicated for the first two quantities with a vertical dashed line.
In the scale factor panels we have added the prediction a ∼ η̃

p+2
6 , coming from the linear regime of

homogeneous inflaton oscillations.

Eventually, the fraction of transferred energy is so large that they backreact onto the inflaton,
destroying the homogeneity of the condensate. We identify this time scale as the backreaction
time η̃br. From the simulation, we get η̃br ' 130, 40, 70 for p = 2, 4, 6 respectively. Let
us now focus on the post-inflationary evolution of the equation of state w ≡ p/ρ, i.e. the
ratio between the (volume-averaged) pressure and energy densities of the system. Initially,
the inflaton oscillates coherently around the minimum, which gives rise to similar oscillations
in the equation of state in the range −1 < w < 1. From eqs. (8.6)–(8.7), we can compute
that the effective (i.e. oscillation-averaged) equation of state in this regime is approximately
w̄ ≡ (p− 2)/(p+ 2). This corresponds to w̄ = 0, 1/3, 1/2 for p = 2, 4, 6 respectively, which
agrees with our lattice results, see the middle column of figure 1. After backreaction, the
equation of state stops oscillating, and slowly evolves towards the asymptotic values w → 0
(for p = 2) and w → 1/3 (for p = 4, 6). We will be able to understand these results better in
light of the evolution of the energy distribution, which we discuss below. We also show the
scale factor as a function of program time in the right panels of figure 1. We know that during
the initial linear regime, the scale factor evolves in cosmic time as a ∼ t

2+p
3p [cf. (8.7)]. By

substituting this expression in the program time definition (4.3), we get that the scale factor
evolves as a ∼ η̃

p+2
6 in terms of program time, in agreement to what we see in the lattice.
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We can understand better the evolution of these quantities if we focus on the evolution
of the energy distribution. In the left panels of figure 2 we show the total energy of the system
as a function of time (eq. (2.48)), for the considered power-law coefficients p = 2, 4, 6. We
also depict the evolution of each of its individual contributions: the kinetic, gradient, and
potential energies of the inflaton, as well as the electric and magnetic energies of the gauge
fields (see eq. (2.50) for their exact expressions). As described above, the effective equation
of state during the initial linear regime is w̄ ' (p − 2)/(p + 2), so the total energy decays
during the initial regime as ρ ∼ a−3(1+w̄) = a

−6p
p+2 , which corresponds to ρ ∼ a−3, a−4, a−4.5

for p = 2, 4, 6, respectively. Therefore, we have multiplied the energies by the inverse of those
factors, so that the rescaled total energy is constant initially. We also depict in the right
panels of figure 2 the evolution of the energy ratios εi ≡ ρ̃i/ρ̃ for the same simulations, i.e. the
relative contribution of each of the energy components to the total energy. By construction,
the sum of all ratios is one.

As expected, the energy budget of the universe is initially dominated by the ki-
netic and potential energies of the inflaton, while the other energies are subdominant,
i.e. 〈EAK〉, 〈EAG〉, 〈E

ϕ
G〉 � 〈E

ϕ
K〉, 〈EV 〉. However, a very small fraction of the initial energy

is stored in the electric and inflaton gradient energies, due to the spectrum of fluctuations
imposed to ϕ and Ȧi. In contrast, the initial magnetic energy is exactly zero (up to machine
precision), as we do not set fluctuations to the amplitude of the gauge field Ai, see eqs. (7.19)–
(7.22). In any case, these energies soon start growing exponentially due to parametric res-
onance, as seen in the three simulations. These energies become sizable approximately at
the backreaction time η̃ ' η̃br, and the inflaton homogeneous condensate gets destroyed via
backreaction effects. From then on, non-linear effects become relevant, and the system even-
tually achieves a stationary regime at late times. Remarkably, we observe that the inflaton
gets virialized very quickly after inflation, with their oscillation-averaged energies satisfying
the relation 〈EϕK〉 ' 〈E

ϕ
G〉 + p

2〈EV 〉, for the three cases p = 2, 4, 6. Similarly, we observe
equipartition between the electric and magnetic energies at late times, 〈EAK〉 ' 〈EAG〉.

It is very interesting to analyze how the energy is distributed at very late times in the
simulation, i.e. well within the non-linear regime. This was studied recently in ref. [193] in
the context of a real singlet inflaton with the same potential as here, coupled to a massless
scalar singlet via a quadratic interaction. Although here we are considering a gauge sector,
the explanation developed in ref. [193] also applies here. In particular, we find that the energy
distribution at late times is determined by the choice of p in the inflaton potential. For p = 2,
the inflaton cannot get excited via self-resonance, but the daughter field does get excited via
broad parametric resonance because qA∗ > 1. However, the effective resonance parame-
ter (8.18) decreases with time, so parametric resonance eventually becomes narrow. After
that, the inflaton kinetic and potential energies dilute as matter, while the other ones dilute
as radiation or faster. Due to this, at very late times we get the energy ratios εϕ

K
, εV → 0.5,

with the other ratios becoming negligible. This explains why the effective equation of state
goes to w → 0 at late times in figure 1. On the other hand, for p = 4, 6, both the inflaton
and the gauge fields are always being excited resonantly at late times: inflaton self-resonance
is always present for p > 2, while parametric resonance is always broad at late times because
qres is either constant (for p = 4) or grows with time (for p > 4). Therefore, the energy
contributions of both field sectors are sizeable at late times. In the case p = 4, the inflaton
possesses 60% of the total energy of the system at very late times (divided by half between
kinetic and gradient energy), while the gauge fields possess the other 40% (divided also by
half between electric and magnetic energy). Moreover, the inflaton potential energy becomes
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Figure 2. Left panel: evolution of the total energy ρ̃ ≡ ρ/(f2
∗ω

2
∗) for the U(1) gauge simulation and

p = 2, 4, 6, as well as of each of its individual contributions: kinetic, gradient, and potential energies
of the inflaton, as well as electric and magnetic energies of the gauge field. These quantities are
multiplied by the factor ∼ a

6p
p+2 . Right panel: evolution of the energy ratios εi ≡ ρ̃i/ρ̃ for the same

simulations as in corresponding left panel. The sum of all ratios is one.

negligible, which explains why the effective equation of state goes to w → 1/3 at late times
in figure 1. We expect this final distribution to be quite independent on the choice of q∗, as
will be seen in ref. [279] in a slightly different context. This contrasts with the simulations of
the analogous scalar theory simulated in ref. [193], where the energy is distributed 50%-50%
between the inflaton and the daughter field. On the other hand, in the gauge simulations for
p = 6 we do observe equipartition between inflaton and gauge energies at late times, although
the simulation is not long enough in this case to determine if this distribution will hold for
later times, or if it will slowly evolve towards the 60%-40% distribution observed for p = 4.
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Figure 3. Spectral evolution of the electric field k̃3|Ẽk|2 (left panels) and magnetic field k̃3|B̃k|2 (right
panels), as a function of k̃ ≡ k/ω∗, for the U(1) gauge simulations with p = 2, 4, 6. Each line shows
the spectra at different moments of the evolution, going from red lines (early times) to purple lines
(late times).

Finally, we show in figure 3 the spectra of the electric and magnetic fields for the three
power-law potentials p = 2, 4, 6 considered here. As expected from the linear analysis,
mainly field modes within an infrared band k̃ ≡ k/ω∗ . q

1/4
∗ grow exponentially during the

initial linear regime, at times η̃ < η̃br. However, when backreaction happens at time η̃ = η̃br,
the growth of the infrared band saturates, and the different fields start populating modes
of increasingly high momenta due to rescattering. The spectra eventually saturate, showing
a peak at larger scales. This process is qualitatively similar for the different choices of p
considered here.
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Figure 4. Comparison of “energy conservation” in the U(1) gauge simulation with p = 4, for different
evolution algorithms: velocity-Verlet (orders 2, 4, 6, 8, and 10), as well as staggered leapfrog (order 2).

8.2.1 Accuracy tests

In flat space and in conservative systems, energy conservation can be used to monitor the
precision of evolution algorithms. However, we are now considering an expanding universe,
and in particular, we are using the second Friedmann equation (5.12) to evolve the scale
factor. In this context we can instead check that the first Friedmann equation (5.14) holds
during the evolution. However, contrary to the Gauss law (which is preserved by design
when the discretized equations are gauge invariant), the first Friedmann’s law will be only
approximately respected. We will loosely refer to this first Friedmann’s equation being re-
spected as “energy conservation”, in analogy to the flat case. In particular, we require that
the relative difference between the left and right hand sides of eq. (5.14), which we denote by
∆e, obeys always ∆e � 1. The better the accuracy of the evolution algorithm used to solve
the lattice equations, the better the energy is “preserved”. In order to illustrate this, we show
in figure 4 the evolution of ∆e as a function of time, for the case p = 4. The lattice equations
have been solved with different accuracy orders of the velocity Verlet algorithm, introduced
in section 3.3.2. As expected, the higher the order, the better the conservation of energy is
preserved: the violation of energy conservation at time η̃ ' 400 is ∆e ' 3 · 10−3, 2 · 10−4,
7 · 10−7, 5 · 10−11, and 6 · 10−12, for VV2, VV4, VV6, VV8, and VV10 respectively. This
means that “energy conservation” improves by factors ∼12, 360, 104, and 8, as we increase
the order of the integrator from one to the next one, i.e. from VV2 to VV4, VV4 to VV6,
etc. Interestingly, the value of ∆e saturates for VV10: in that case, the error in the scale
factor constraint is due exclusively to an accumulation of machine precision errors, so using
velocity-Verlet algorithms of higher-orders than VV10 will not improve the energy constraint
anymore. Of course, the negative side of using higher-order iterators is the increase of the
required computation time. Finally, we have also solved the field dynamics with a second-
order staggered leapfrog algorithm (see iterative scheme III or IV in section 4.2.1), which we
denote as LF2. Remarkably, this algorithm slightly improves “energy conservation” at late
times with respect VV2, as observed in the figure.

Let us now focus on the conservation of the Gauss constraint, given by eq. (2.41) in
the continuum. As already mentioned, the Gauss constraint must be always satisfied up to
machine precision, independently of the accuracy of the integrator, as it is a direct consequence
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Figure 5. Conservation of the Gauss law as a function of time for the U(1) gauge simulation
with p = 4.

of the lattice equations of motion: a violation of the Gauss constraints is a violation of gauge
invariance. We show in figure 5 the relative difference between the left and right hand sides
of eq. (2.41) as a function of time, which we denote as ∆g. At the onset of the simulation we
get ∆g ∼ 10−9, which is explained by the ∼ 7 orders of magnitude of difference between the
amplitudes of the inflaton homogeneous mode and its fluctuations. After backreaction, the
relative difference decreases down to ∆g ∼ 10−13, and starts increasing slowly from then on,
due to a constant accumulation of machine precision errors.

8.3 Lattice simulations: SU(2)×U(1) gauge interactions

We now consider a scenario in which a complex doublet Φ with potential (8.1) [where we must
substitute |φ| →

√
2|Φ|] acts as an inflaton field, simultaneously coupled to 1) a SU(2)×U(1)

gauge sector via a gauge-invariant covariant derivative, and 2) a massless singlet scalar field χ
via a quadratic interaction Vint(|Φ|, χ) ≡ g2|Φ|2χ2, with g a dimensionless coupling constant.
The strength of the parametric resonance is determined, in each case, by the corresponding
resonance parameters: q∗ for the singlet scalar field (defined as in eq. (8.15) with φ∗ ≡√

2|Φ∗|), and qA∗ and qB∗ for the U(1) and SU(2) gauge fields (see eqs. (8.21)). Here we fix
qA∗ = qB∗ = q∗ for illustrative purposes, with q∗ > 1 to have broad parametric resonance
for all daughter field sectors. We have simulated the preheating process for the power-law
coefficients p = 2, 4, and studied the post-inflationary dynamics of the system. The lattice
and model parameters chosen for the simulations are given in table 1, and are similar to the
analogous U(1) simulations. In particular, we choose again M = 10mp, which ensures that
the inflaton always oscillates in the positive-curvature region of its potential. Similarly, the
number of points and volume of the lattice are chosen, in each case, to resolve well both the
infrared resonant bands, as well as the following propagation of the spectra towards the UV
after backreaction.

The evolution of the inflaton amplitude, equation of state, and scale factor are, in
this case, qualitatively similar to the examples shown for the U(1) gauge simulation in the
previous section. Therefore, we proceed to consider directly the evolution of the energy
distribution, which differs in some aspects with respect to the U(1) case. We show in figure 6
the evolution of the total energy of the system during preheating, as well as of each of its
different contributions, for p = 2, 4. These are the kinetic and gradient energies of the scalars
Φ and χ, the electric and magnetic energies of the U(1) and SU(2) gauge sectors, the inflaton
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potential energy Ṽpot ≡ ˜|Φ|4, and the interaction energy Ṽint ≡ q∗|Φ̃|2χ̃2 between Φ and χ. As
in the U(1) case, we have multiplied the different energies by the appropriate scale factor term,
so that the (oscillation-averaged) total energy is constant during the initial linear regime. We
also show the evolution of the energy ratios εi ≡ ρ̃i/ρ̃, which sum one by construction.

As expected, the energy budget is dominated by the inflaton homogeneous mode ini-
tially, so the kinetic and potential energies of the inflaton dominate over all the other energy
contributions. However, the kinetic and gradient energies of all daughter fields grow expo-
nentially due to broad parametric resonance, as well as the inflaton gradient energy due to
self-resonance. These contributions become sizeable enough at a certain time scale, destroy-
ing the inflaton homogeneous condensate via backreaction effects. As before, we denote this
time scale as the backreaction time η̃br. From the simulations, we get η̃br ' 60, 40 for p = 2,
4 respectively. From then on, the non-linearities of the field EOM can no longer be ignored,
as they affect the dynamics of the system, and lead eventually into achieving a stationary
regime at late times. As in the U(1) gauge simulation, we observe that the system gets viri-
alized very quickly, with the inflaton energies obeying 〈EΦ

K〉 ' 〈EΦ
G〉+ p

2〈EV 〉+ 〈Eint〉 when
averaged over oscillations. Also, we also have equipartition between the kinetic and gradient
energies of all daughter field sectors at late times, as can be observed in the figure.

Let us now comment about how the energy distributes at very late times. Let us consider
first the case p = 2. Here we observe a qualitatively similar behaviour than in the equivalent
U(1) simulation: although the inflaton kinetic and potential energy ratios decay around
backreaction time, at later times they start growing again. The reason is the same as in the
U(1) simulations: the inflaton does not get excited via self-resonance for p = 2, while the
parametric resonance of the daughter fields eventually becomes narrow (because the effective
resonance parameter (8.18) decreases with time). Therefore, at very late times neither of
the two resonant phenomena is present, and the inflaton slowly recovers all the energy of the
system due to the different dilution rates of the energy contributions (the inflaton behaves
as matter, while the daughter fields as radiation). Due to this, although our simulations are
not long enough to observe this effect, we expect that εϕ

K
, εV → 0.5 at asymptotically late

times. Moreover, this energy configuration also gives rise to a matter-dominated equation of
state at late times, w → 0.

Let us focus now on the simulation with p = 4. In this case, the effective resonance
parameter (8.18) remains constant. Therefore, as we have fixed q∗ = qeff > 1 for all daughter
field species (scalar χ, Abelian and non-Abelian gauge bosons), they experience a broad
parametric excitation during the whole time evolution of the system, including at late times.
Similarly, the inflaton is also being excited due to the oscillations of its own homogeneous
mode, and develops fluctuations via self-resonance. Neither of the two effects dies out, which
could explain why neither of the two field sectors (inflaton or daughter fields) possesses 100%
of the total energy at asymptotically late times. In our particular scenario, we observe that
at the end of the simulation, the inflaton possesses ∼30% of the total energy, the scalar
singlet ∼4%, the U(1) gauge sector ∼16%, and the SU(2) gauge sector ∼50%. In each of the
four cases, the energy is divided half and half between kinetic and gradient contributions.
These results are in contrast with the analogous U(1) simulation, which show that ∼60%
of the total energy remains in the inflaton at late times. From this result, we can conclude
the (somewhat expected) result that the larger the number of daughter fields, the larger
the amount of energy that gets transferred to them from the inflaton. Finally, let us also
observe that the inflaton potential and inflaton-χ interaction energies go to zero at late times,
εV , εint → 0, as in the analogous U(1) gauge simulation. Due to this, the effective equation
of state goes to w → 1/3 at late times.
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Figure 6. Left panel: evolution of the total energy in program units, ρ̃ ≡ ρ/ω∗, as well as of each
of its energy contributions, for the SU(2) × U(1)+χ gauge simulations with p = 2, 4. Quantities are
multiplied by the factor ∼ a

6p
p+2 . Right panel: evolution of the energy ratios for the same simulations

as in the left panels.

We also show in figure 7 the evolution of the spectra of all fields involved: the norm of
the inflaton |Φ|, the scalar singlet χ, and the electric and magnetic energies of the U(1) and
SU(2) sector. We observe in all cases the same qualitative behaviour: first an exponential
growth of the field modes within an infrared band, which saturates at backreaction time,
followed by a propagation of the spectra towards the UV, populating modes of higher and
higher momenta. The initial infrared growth of the gauge fields is in agreement with the
linear analysis presented above, except in the case of the inflaton, which does not experience
broad parametric resonance. The inflaton growth is, instead, triggered by backreaction effects
from the daughter fields.

8.3.1 Accuracy tests
Finally, it is always important to check that both “energy conservation” and the Gauss
constraints are preserved at all times during the simulation. Let us consider first the left of
panel of figure 8, where we show the relative difference between the left and right hand sides
of the 1st Friedmann equation as a function of time (denoted as ∆e), for p = 4. Naturally,
we require ∆e � 1 in order to trust the results of our simulations. For illustrative purposes,
we have solved the field dynamics with velocity-Verlet evolution algorithms of orders 2 and
4, for the same lattice and model parameters. As expected, the higher the accuracy of the
integrator, the better the energy is preserved: at time η̃ ' 340 we get ∆e ' 2.2 · 10−3 for
VV2, and ∆e ' 1.1 · 10−4 for VV4, i.e. VV4 preserves energy a factor ∼ 20 better than
VV2. However, the negative side is that the required simulation time for VV4 increases with
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Figure 7. Spectral evolution of all the fields involved in the SU(2) × U(1)+χ lattice simulations as
a function of k̃ ≡ k/ω∗, for p = 4. From left to right and from top to bottom, we show the inflaton,
the massless scalar χ, the electric and magnetic fields of the U(1) gauge sector, and electric and
magnetic fields of the SU(2) gauge sector. Each line shows the spectra at different times during the
field evolution, from red (early times) to purple (late times).

respect VV2, as expected. In principle, one should be able to improve the accuracy of the
integrator arbitrarily up to machine precision, as in the analogous U(1) gauge simulation
shown in figure 4. This can be useful if one wants to apply this algorithm to any particular
scenario requiring extremely good energy conservation. This is always at the expense, of
course, of longer simulation times.

Let us also mention a subtlety arising from our discretization and evolution schemes of a
non-Abelian sector. As observed before in the absence of non-Abelian fields, the discretized
Hubble law is satisfied up to corrections of O(δη̃p), but it is exact in the lattice spacing.
Of course, the expressions differ from the continuum ones by some power of the lattice
spacing, but the conservation is exact. This comes about from the fact that this discretized
conservation law may be derived as a conserved quantity associated to a discrete action
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Figure 8. Left panel: evolution of the relative error in “energy conservation” for the SU(2)×U(1)+χ
simulation with p = 4, obtained for the VV2 and VV4 algorithms. Right panel: evolution of the
relative error in the Gauss constraints of the U(1) and SU(2) gauge sectors, for the same simulation.

as written down in section 4.2.1. A discretized action can also be written for the non-
Abelian case, but its obvious discretization in terms of plaquettes and lattice covariant gauge
derivatives does not lead to the naive continuum discretization of the equations of motion
eqs. (6.8)–(6.12). Instead it leads to a more involved discretized matter current. As we
showed in this section, using the naive discretization does lead however to perfectly functional
algorithms. We do expect nonetheless to have a contamination of O(δx̃) in the Hubble’s
conservation law. This is manifested as a violation of the conservation law, which cannot
reach machine precision, no matter the smallness of δη̃ or the accuracy of the evolver.

In the right panel of figure 8 we show how the Gauss laws are preserved during the sim-
ulation. In this case there are two Gauss laws that must be satisfied: one for the U(1) sector,
cf. eq. (2.25) in the continuum, and another one for the SU(2) sector, cf. eq. (2.26) in the con-
tinuum. We measure this by the parameter ∆g which, as defined before, is the relative differ-
ence between the left and hand sides of the corresponding Gauss constraints. As explained be-
fore, these constraints must be preserved up to machine precision independently of the chosen
evolution algorithm, as they are a direct consequence of the gauge invariance that our careful
discretization techniques maintain in the lattice equations. We observe a similar behaviour
as in the analogous U(1) gauge simulations: before backreaction we have ∆g ∼ 10−9 for both
gauge sectors, due to the large relative difference between the amplitudes of the inflaton ho-
mogeneous mode and its fluctuations. After backreaction we get ∆g ' 10−13, and from then
on, the error slowly grows due to a constant accumulation of machine precision errors in each
time step. At time η̃ ' 340 we get ∆g ∼ 10−12 for both U(1) and SU(2) gauge sectors, which
shows that both Gauss constraints are exceptionally well preserved during the simulation.

9 Summary and outlook

The present document represents Part I of our dissertation on lattice techniques for the
simulation of non-linear dynamics in the early universe. Here we have focused on the lattice
treatment of canonical scalar-gauge field theories in an expanding universe, considering an
arbitrary number of interacting (real and complex) scalars and (Abelian and non-Abelian)
gauge fields. This suffices to describe the majority of physically relevant scenarios in the
early universe. In addition, we plan to discuss methods for non-canonical interactions in an
upcoming Part II [260], like those in theories with non-minimal gravitational couplings, or
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in general with non-minimal kinetic terms, as well as non-canonical interactions defined by
the product between field variables and their conjugate momenta.

We summarize now the content of the present work. In section 2 we reviewed first the
field dynamics of scalar-gauge theories in a continuum space-time, both with and without
expansion of the universe. We considered a theory containing different kinds of scalars
(singlets, U(1)-charged, and SU(N)× U(1)-charged scalars) and (Abelian and non-Abelian)
gauge fields. We wrote explicitly the EOM of such theory, as well as introduced the notation
later used throughout the document. We then introduced in section 3 basic concepts of
lattice techniques, with a special emphasis on how to discretize appropriately gauge theories
to preserve gauge invariance on the lattice. We then introduced basic evolution algorithms
for the integration of the field EOM: staggered leapfrog and Verlet methods, with accuracy
O(δt2), and (explicit) Runge-Kutta methods with accuracy up toO(δt4). We also showed how
some of these basic algorithms can be used as building blocks for the higher-order Yoshida
and Gauss-Legendre integrators, with accuracy up to O(δt10).

In the following three sections we focused on developing lattice formulations for the
different field sectors of the canonical theories considered here. In section 4 we considered
the case of multiple interacting (singlet) scalar fields. We introduced a set of dimensionless
field and spacetime variables, which we have called the lattice or program variables. When
thoughtfully defined, these variables can be very useful when working on a lattice. Our lattice
algorithms are therefore written in terms of these variables. We explained how to apply differ-
ent evolution algorithms to solve the scalar EOM, as well as define different useful observables.
In section 5 we developed the same ideas for gauge theories with U(1) interactions, and in
section 6 for gauge theories with SU(N) interactions. In section 7 we described how to set
the initial conditions for the different type of fields, both in the continuum and in the lattice.
For scalar fields, we imposed a spectrum of vacuum fluctuations, which mimics the expected
spectrum of quantum fluctuations in a FLRW universe. For gauge fields, we discussed how
to set their initial conditions so that the Gauss constraint is preserved from the beginning.

Finally, in section 8 we simulated the dynamics of a specific scalar-gauge field model
with CosmoLattice, to illustrate some of the techniques presented in the previous sections.
In particular, we considered the preheating dynamics of a charged inflaton, with monomial
shape around the minimum of its potential. We considered two different scenarios: 1) a
U(1)-charged scalar coupled to an Abelian gauge field, and 2) a SU(2)×U(1) charged scalar
coupled to Abelian and non-Abelian gauge fields simultaneously, as well as to a scalar singlet.
We considered different model parameters, and in particular, we studied different power-
law coefficients in the monomial function. We studied the evolution during preheating of
several relevant observables: the inflaton mean amplitude value, the evolution of the scale
factor and of the equation of state, the energy distributions among field components, and
the relevant field spectra. We showed explicitly how each Gauss constraint is preserved to
machine precision during the evolution of the system. We also demonstrated the power of
the higher-order Verlet evolution algorithms implemented in CosmoLattice, which can be
used to obtain energy conservation up to machine precision in simulations of scalar-gauge
theories in an expanding universe.

Let us emphasize here that, to the best of our knowledge, we are presenting for the
first time an algorithm for non-Abelian SU(N) gauge theories, which is symplectic, explicit
in time, and preserving exactly the Gauss constraint, while solving for the expansion of the
universe self-consistently. Furthermore, it can be made of arbitrary order. Besides, we also
present higher-order integration algorithms for Abelian U(1) gauge theories, also demonstrat-
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ing explicitly their numerical implementation for the highest orders, including O(δt4), O(δt6),
O(δt8) and O(δt10). Similarly, we also present higher-order integration algorithms for inter-
acting scalar theories, going also to higher-orders, again including explicit implementations
for O(δt4), O(δt6), O(δt8) and O(δt10).

The concepts and techniques discussed in this dissertation, in particular the explicit-
in-time algorithms presented in sections 4–6, are already implemented in our present code
CosmoLattice, a user-friendly and highly modular C++ MPI-based code, for lattice simu-
lations of non-linear classical dynamics in an expanding universe. CosmoLattice is publicly
available at http://www.cosmolattice.net. Most of the algorithms presented in this work
are bundled in a high-level interface which allows the user to add almost effortlessly models
with different interaction potentials, and easily add new integration algorithms. Moreover,
the library has been designed in such a way to allow the user to use complex, vectorial and
matricial representation of fields, to keep the lattice equations resembling as much as possible
to the continuum ones. This level of abstraction is achieved through the use of compile-time
code generation, using C++ expression templates, so that performance is never sacrificed.

The aim of this manuscript has been to illustrate different concepts of lattice gauge-
invariant techniques and of general integration methods, which we have then specialized and
adapted for their use in the context of canonical scalar-gauge field theories. We expect that
the work we have developed so far here (soon to be complemented by Part II [260]) shall
be useful for a large fraction of the research community interested in the early universe,
let it be completely inexperienced researchers in lattice field theory simulations, or very
experienced ones.

To conclude, we comment on several aspects that we plan to explore in forthcoming
works (either in Part II or elsewhere), both in the near and mid-term future:

• The development of lattice techniques for the discretization of theories with non-
minimal kinetic terms. As the drift and kick functionals in these theories typically
contain a linear combination of conjugate momenta of other fields, explicit-in-time
symplectic integrators (such as staggered leapfrog or Verlet integrators) are not appro-
priate. However, one can resort to explicit (non-symplectic) Runge-Kutta methods like
those presented in section 3.3.3 (this has been done in e.g. [257]), or even to higher-
order implicit (yet symplectic) integrators like the Gauss-Legendre methods, presented
in section 3.4.2. As mentioned before, we postpone a specialized discussion of these
problems to Part II of our dissertation on lattice techniques [260]. The implementation
of the corresponding algorithms in CosmoLattice will also be made publicly available
in that moment.

• In a similar spirit, the axial couplings of a pseudo-scalar field with a gauge sector is
also of great interest. An implicit method for the interaction of an axion-like field φ
with a U(1)-gauge sector through a shift invariant coupling φFµνF̃µν , has been in fact
explored in [95–101]. In particular, an exactly lattice-shift-symmetric formulation was
developed in [101], and was later on generalized to an expanding background in [98].
We would like to revisit and generalize this kind of approaches in light of the algorithms
presented here in section 3, coming possibly with many potential outlooks. We plan to
present a specialized discussion on these interactions in Part II [260].

• The creation of tensor perturbation representing gravitational waves [99, 100, 114, 139–
156], as well as the dynamics of scalar metric perturbations [120–129] (possibly leading

– 88 –

http://www.cosmolattice.net


J
C
A
P
0
4
(
2
0
2
1
)
0
3
5

to the formation of primordial black holes [130–138]) are all topics of great interest in
recent times. In the case of tensor perturbations, we plan to follow [267] (based on the
technique proposed in [142]), as this methodology allows for considering generic gravita-
tional wave sources independently of the field content of the theory studied. Regarding
a general solver for scalar metric perturbations, one possibility would be to follow [255].

• The inclusion of fermions in the simulations. Of course, the notion of ‘classical fermions’
does not exist due to Pauli-blocking, and hence a straightforward discretization and evo-
lution of the Dirac equation would not be useful. However, as first realised in [265],
one can still study real-time fermions’ dynamics in a semi-classical formulation of the
out-of-equilibrium Schwinger-Keldysh formulation, see also references [240, 242, 280].
Combining the lattice implementation proposed in [265], with the ‘low cost’ fermions
introduced in [266], refs. [261–264] have succeeded in simulating out-of-equilibrium dy-
namics of classical scalar fields coupled to quantum fermions. These simulations are
however very costly in terms of computer memory, and only very small lattices have
been considered until now.

• The addition of other initialization procedures. Depending on the problem, initializing
fields in real space might be more convenient than imposing a certain mode spectrum
in Fourier space, as we did in section 7. As mentioned in the introduction, to simu-
late e.g. the dynamics of field string networks or any other type of cosmic defects, one
needs to create in first place the defect network in configuration space, see e.g. [160–
167, 215, 216, 268], and then evolve the field configuration from then onward (typically
after a diffusion phase to force the system to reach a scaling regime as fast as possible).
Although different problems may require completely different initializers, it might be
useful to consider making a library for specialized ones, such as cosmic strings, other
topological defects, and other circumstances.

• The addition of ‘cooling’ algorithms for the initialization of gauge fields. Instead of im-
posing the Gauss constraints from the beginning as we have done in section 7.2, one can
impose completely unconstrained fluctuations to the gauge fields, and then remove the
unwanted transverse degrees of freedom by a minimization procedure [281, 282]. For
thermal initial conditions, one can also thermalize the system while exactly preserving
the Gauss law through some Langevin dynamics [283]. Studying such algorithms will al-
low us to consider different initial conditions and thus study another variety of scenarios.
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A Coefficient tables for higher order integrators

We provide in table 2 the weights of the time steps required in the construction of higher
orders of the velocity Verlet algorithms, see section 4.3.2. We also show in table 3 the Butcher
tableaux used in the implicit Runge-Kutta methods, see section 4.3.3.

Name Order wi = δti
δt q

V V 4 O(δt4) w1 = w3 = 1.351207191959657771818
w2 = −1.702414403875838200264 3

V V 6 O(δt6)

w1 = w7 = 0.78451361047755726382
w2 = w6 = 0.23557321335935813368
w3 = w5 = −1.1776799841788710069

w4 = 1.3151863206839112189

7

V V 8 O(δt8)

w1 = w15 = 0.74167036435061295345
w2 = w14 = −0.40910082580003159400
w3 = w13 = 0.19075471029623837995
w4 = w12 = −0.57386247111608226666
w5 = w11 = 0.29906418130365592384
w6 = w10 = 0.33462491824529818378
w7 = w9 = 0.31529309239676659663
w8 = −0.79688793935291635402

15

V V 10 O(δt10)

w1 = w31 = −0.48159895600253002870
w2 = w30 = 0.0036303931544595926879
w3 = w29 = 0.50180317558723140279
w4 = w28 = 0.28298402624506254868
w5 = w27 = 0.80702967895372223806
w6 = w26 = −0.026090580538592205447
w7 = w25 = −0.87286590146318071547
w8 = w24 = −0.52373568062510581643
w9 = w23 = 0.44521844299952789252
w10 = w22 = 0.18612289547097907887
w11 = w21 = 0.23137327866438360633
w12 = w20 = −0.52191036590418628905
w13 = w19 = 0.74866113714499296793
w14 = w18 = 0.066736511890604057532
w15 = w17 = −0.80360324375670830316

w16 = 0.91249037635867994571

31

Table 2. Weights of the time steps required to construct higher-order velocity Verlet algorithms. A
given algorithm requires q iterations. The coefficients are symmetric, in each case, with respect to
the intermediate ωi parameter. Note that we reported here only the algorithms of a given order with
the minimal number of steps. For others, see ref. [275].
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√
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√
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√
70

1080

)
ω±5 = 8ω±2

(
23∓
√

70
405

)
, ω±6 =ω±2 −2ω±3 −ω±5 , ω±7 =ω±2

(
308∓23

√
70

960

)
,



Table 3. Butcher tableaux for the implicit RK methods with s sub-intervals and accuracy O(δt2s).
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