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3 HIGH LEVEL SUMMARY 

In the last few decades, great strides were made in predicting pharmacokinetic drug properties to reduce 

attrition rates of drug projects in the clinical phase due to unfavorable pharmacokinetic characteristics. 

Nonetheless, capability gaps still remained and emerged during the past years. Optimization of the 

metabolic stability of drugs to avoid metabolism by the cytochrome P450 enzymes led to increasing 

relevance of alternative drug metabolizing enzymes and routes of clearances. On a related note, the 

importance of UDP-glucuronosyltransferases as metabolizing enzymes for new chemical entities 

increased, which formed the challenge of determining and translating the metabolism of a less well-

established enzyme family. Furthermore, novel in silico and in vitro test systems are constantly adopted 

in the pharmaceutical industry with the promise to improve the quality of the pre-clinical data, whereas 

the systems must be fundamentally evaluated and assessed before routine application during the drug 

development. 

The aims of the PhD project was to address current capability gaps to enhance the confidence in the 

prediction of human clearance and to evaluate a novel in vitro hepatocyte system. We investigated the 

translatability of UGT-mediated drug clearance by using a promising hepatocyte co-culture and 

physiologically based pharmacokinetic modelling and simulation. In addition, we aimed to advance the 

adoption of novel in vitro hepatocyte system that potentially offers new capabilities of determining more 

complex research questions during the drug development. These studies resulted in three published 

manuscript and in one on-going work that is planned to be finalized and submitted in the near future: 

1. In Vitro to In Vivo Extrapolation of Metabolic Clearance for UGT Substrates Using Short-

Term Suspension and Long-Term Co-Cultured Human Hepatocytes 

2. Construction and Verification of Physiologically Based Pharmacokinetic Models for Four 

Drugs Majorly Cleared by Glucuronidation: Lorazepam, Oxazepam, Naloxone, and 

Zidovudine 

3. Application of New Cellular and Microphysiological Systems to Drug Metabolism 

Optimization and Their Positioning Respective to In Silico Tools 
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4. Optimization of a Liver-on-Chip System for DMPK Application and Combination with 

Modelling and Simulation 

We demonstrated for the first time that an improvement is achieved upon the application of a hepatocyte 

co-culture for the in vitro to in vivo extrapolation of metabolic clearance. We could further identify and 

discuss current limitations for physiologically based pharmacokinetic modelling and simulation based 

on well-constructed models. With the review, we reported the state of the art for the application of 

conventional and more advanced hepatocyte systems as parts of the value chain during drug 

development in relation to computational approaches. Finally, we evaluated a microphysiological 

system (i.e. liver-on-chip device) for the application of DMPK determination. Overall, the studies have 

a positive impact on the decision-making process during the pre-clinical drug development and increase 

the confidence in the application of the hepatocyte co-culture and PBPK modelling for UGT substrates. 

To the structure of the thesis: The introduction will familiarize the reader to the elements that were key 

to the PhD program: metabolic clearance and factors affecting the drug metabolizing enzymes, in vitro 

hepatocyte systems for the determination of DMPK properties, and physiologically based 

pharmacokinetic modelling (i.e. computational approaches) and its relevance in the pharmaceutical 

industry. The introduction will further highlight the current gaps and limitations that exist in the field 

and elaborates on the outline and plans of the studies conducted during the project. The results section 

contains the manuscripts that report the core studies conducted in the past three years. Finally, the 

“Summary and Future Investigations” section papers summarizes the work with an emphasis on the 

impact of the studies for the pharmaceutical industry and complements the thesis with next 

investigations that should be conducted in order to extend the work. 
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4 ABBREVIATIONS 

 

ADME    Absorption, Distribution Metabolism, Excretion 

AhR    Aryl hydrocarbon receptor 

AKR    Aldo-keto reductase 

AO    Aldehyde oxidase 

APR    Albumin production rate 

AUC    Area under the curve 

BCRP    Breast cancer resistance protein 

BCS    Biopharmaceutic classification system 

Caco-2    Colon carcinoma cell line 

CADD    Computer-aided drug design 

CAR    Constitutive androstane receptor 

CES    Carboxylesterases 

CLint    In vitro intrinsic clearance 

Cmax    Maximum plasma concentration 

CYP    Cytochrome P450 

DDI    Drug-drug interactions 

DME    Drug metabolizing enzymes 

DMPK    Drug metabolism and pharmacokinetics 

ECCS    Extended clearance classification system 

EIH    Entry into human 

EMA    European Medicines Agency 

EPH    Epoxide hydrolase 

ER    Endoplasmic reticulum 

F    Bioavailability 

fa    Fraction absorbed into enterocytes 

FDA    U.S. Food and Drug Administration 

fDP    Fraction of drug entering the portal vein 

FIH    First in human 

FMO    Flavin-containing monooxygenase 
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fu,p    Fraction unbound in plasma 

GFR    Glomerular filtration rate 

GST    Glutathione-S-transferase 

HLM    Human liver microsomes 

IM    Intermediate metabolizers 

IVIVE    In vitro to in vivo extrapolation 

KI    Inhibition constant 

KM    Michaelis constant 

Kp    Tissue-to-plasma partition coefficient 

LC-MS   Liquid chromatography-mass spectrometry 

logD    Distribution coefficient 

logP    Partition coefficient 

M&S    Modelling and simulation 

MAO    Monoamine oxidase 

MBDD    Model based drug development 

MPS    Microphysiological System 

MRP    Multi-drug resistance-associated protein 

MW    Molecular weight 

NAT    N-acetyltransferase 

NCE    New chemical entity 

NDA    New drug application 

OATP    Organic anion transporting polypeptide 

OoC    Organ-on-Chip 

PBPK    Physiologically based pharmacokinetic modelling 

PD    Pharmacodynamic 

P-gp    P-glycoprotein 

PK    Pharmacokinetics 

pKa    Acid dissociation constant 

PM    Poor metabolizer 

PXR    Pregnane X receptor 

rhCYP    Recombinant human cytochrome P450 

rhUGT    Recombinant human UDP-glucuronosyltransferase 

SULT    Sulfotransferase 
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Tmax    Time of maximum plasma concentration 

UDPGA   Uridine diphosphate glucuronic acid 

UGT    UDP-glucuronosyltransferase 

URM    Ultra-rapid metabolizer 

Vmax    Maximum velocity 

VSS    Steady state volume of distribution 

XO    Xanthine oxidase 
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5 INTRODUCTION 

5.1 DRUG METABOLISM AND PHARMACOKINETICS 

5.1.1 Drug Development in the Pharmaceutical Industry 

The process from drug discovery to entry into market of a drug takes several years and is very costly 

(Figure 1). A high interest and expense is therefore invested into the refinement of predictive tools with 

the tenet “to fail early and fail cheap” to avoid late attrition of a drug candidate. Discontinuance of the 

drug development is mostly due to poor efficacy of the therapy, observed toxicity in animals, adverse 

events in human, commercial reasons, or inappropriate human pharmacokinetics (PK) (1). Latter was 

with 39.4% of the attritions the most frequent source of drug failure between 1964 and 1985 (2). 

Nevertheless, this has been substantially improved in the following decades and the number of drug 

attritions due to pharmacokinetics was reduced to 10% in the years from 1991 to 2000 (3). This 

improvement came from the standard incorporation of pharmacokinetics assessments into early drug 

discovery, a better knowledge of the underlying mechanisms based on enzymes involved in the 

disposition of the drug, a better knowledge of the differences between subjects and species, and finally, 

the improvement of pharmacokinetic properties optimization as strategy during drug discovery and 

development (4). 

Information about the time course of drug concentrations at different sites in the body and the design of 

an appropriate dosing regimen to evoke the desired therapeutic effect requires expertise from 

pharmacokinetics. In the best case, the therapeutic drug is at sufficiently high concentrations in order to 

attain the desired effect but remains at the same time at low enough concentrations to avoid any toxic 

effects (Figure 2). This therapeutic concentration range is usually described as ‘therapeutic index’ or 

‘therapeutic window’ and is substantially determined by the pharmacokinetics of a drug. Hence, drug 

metabolism and pharmacokinetics (DMPK) properties have to be reliably assessed as early as possible 

during the preclinical drug development process and were recognized as vital elements for the 

progression of a drug candidate to ensure appropriate pharmacokinetics and, in addition, to design the 

dosage regimen for entry into human (EIH) clinical studies (5-7). Although progress was made in the  
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Figure 1 - Drug Development in the Pharmaceutical Industry. A) Timeline showing different stages of the drug development and the associated cycle time, cost per launch, 

and number of molecules included in the screening. After target discovery and validation, the ability of molecules to bind to the target is assessed in a high-throughput screening in 

the target to hit stage. Hit to lead is the process of creating a short-list of most promising candidates among the hit series based on ‘drug-like’ characteristics. Lead optimization is 

the stage where lead compounds are selected by iteratively testing and modifying the chemical structure of the compounds. Safety and pharmacokinetic/pharmacodynamics testing 

and determination of the initial human dose are the main investigations in the preclinical drug development stage. The objective of Phase I trials are the assessment of the tolerable 

dose limit and the PK/PD characteristics. Phase II trials involve the demonstration of efficacy and the optimal use in the target population. Phase III trials is employed to demonstrate 

safety and efficacy for the clinical use. Red areas mark “1” filing of an investigational New Drug Application (IND) with the FDA for safety review and “2” submission of New 

Drug Application (NDA) to the FDA for market approval. B) Important DMPK screenings conducted for small molecules and number of participants in the clinical trials per phase. 

Data and descriptions are based on (4, 8-11). 
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last decades, predictions of DMPK properties during the preclinical drug development is yet a 

monumental task for the project teams since the behavior of a drug as determined in the preclinical 

models is only a modest and often one-dimensional description of the actual complexity of drug behavior 

in the human body. This is also true for in vivo animal studies (e.g. mice, rats, rabbits, dogs, or monkey), 

which are similarly complex like humans, but where the translation might still be limited by inter-species 

variability. For example, Cao and colleagues reported poor correlation of observed bioavailability in 

human and in rat due to inter-species differences in the intestinal enzyme expression (12). A similar 

finding was made by Akabane and colleagues for the translation of bioavailability, which was 

significantly lower in monkeys compared to human (13). In addition to the limited translatability, animal 

models cannot be deployed at earlier stages of the drug development because studies are cost intensive 

and not ethical. Hence, a big effort is made to introduce and evaluate preclinical in vitro models with 

high translational value. 
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Figure 2 - Therapeutic Index and Therapeutic Window. The grey area indicates the therapeutic window of a 

drug in which the drug elicits its therapeutic effect without toxicological response. A) Description of the 

therapeutic index showing the pharmacological (blue) and toxicological (red) response plotted against the plasma 

drug concentration. B) Plasma concentration-time profile of an orally administered drug within the therapeutic 

window. 

  

Important DMPK in vitro studies during the pre-clinical drug development investigate metabolic 

stability, metabolite identification, reaction phenotyping, and drug-drug interactions for which mostly 

hepatocyte-derived tissues are required. Furthermore, transporter activity and permeability studies using 

either hepatocyte-derived tissues or transfected cell lines (e.g. Caco-2), protein binding studies using 
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plasma, as well as studies to determine physico-chemical properties such as the acid dissociation 

constant (pKa), distribution coefficient (logD), and aqueous solubility are necessary (4).  

5.1.2 Drug Metabolizing Enzymes 

About 73% of marketed drugs undergo metabolism as primary route of clearance (14), hence, a key 

study of pharmacokinetics is the in vitro assessment of drug metabolism to determine the type of 

metabolizing enzymes and to predict the rate and site of drug clearance. The screening for the assessment 

of drug metabolism and the interpretation of the results prerequisites a fundamental understanding about 

the metabolizing enzymes involved in the metabolism. 

Metabolic transformation is relevant to detoxify the organism from xenobiotic drugs and to modify the 

structures for subsequent elimination via renal or biliary clearance. In addition to facilitated excretion, 

the drugs are usually reduced in the biological activity (e.g. lower affinity to target protein) during 

biotransformation, whereas in some cases, the drug is converted to a more potent drug or a highly 

reactive metabolite. Examples are the 100-fold higher affinity of morphine-6-glucuronide to the µ-

opioid receptor compared to unchanged morphine (15) or the formation of the acyl glucuronide of 

gemfibrozil which induces idiosyncratic hepatic injury (16). The transformation process can also be 

exploited by the design of so-called prodrugs, where the prodrug has beneficial properties e.g. for oral 

absorption (i.e. increased bioavailability) with subsequent transformation to the pharmacologically 

active drug. This is exemplified by the ester prodrug mycophenolate mofetil, which is almost completely 

metabolized by carboxylesterases 1 and 2 to the pharmacologically active mycophenolic acid. The 

utilization of the prodrug enhances the oral bioavailability of mycophenolic acid (17-19). 

Common biotransformation reactions of drug metabolizing enzymes (DMEs) are oxidation, reduction, 

hydrolysis, and conjugation of and at functional groups of the molecule (14). Enzyme families that 

catalyze the introduction of functional groups to reduce the lipophilicity via oxidation are cytochrome 

P450 (CYP), aldehyde oxidase (AO), xanthine oxidase (XO), monoamine oxidase (MAO), and flavin-

containing monooxygenase (FMO). DMEs involved in the reduction reactions are the aldo-keto 

reductase (AKR), azo-reductase, or nitro-reductase, and DMEs catalyzing the hydrolysis reactions are 

the epoxide hydrolase (EPH), carboxylesterases (CES), or peptidases. Conjugation reactions of the drug 

with a polar moiety to increase its hydrophilicity is mediated by UDP-glucuronosyltransferases (UGT),  
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Table I – Common Drug Metabolizing Enzymes 

Drug Metabolizing Enzymes 
Common 

Abbreviation 
Reaction Main Cofactor 

Examples of  

Chemical Classes 

Examples of  

Xenobiotic Substrates 

Cytochrome P450 CYP Oxidation 
Nicotinamide adenine dinucleotide 

phosphate (NADPH) 

alkanes, furans, aromatic 

hydrocarbons, aromatic 

amines, thiocarbonyls 

Phenacetin, Efavirenz, 

Midazolam, Caffeine, 

Tolbutamide, Omeprazole 

Flavin-containing monooxygenase FMO Oxidation 
Nicotinamide adenine dinucleotide 

phosphate (NADPH) 

Secondary amines, tertiary 

amines, hydrazines, thiols, 

sufides, thiones 

Cimetidine, Ranitidine, 

Benzydamine, Albendazole 

Monoamine oxidase MAO Oxidation H2O 

Primary, secondary, and 

tertiary amines (e.g. 

phenethylamine or 

benzylamine) 

Citalopram, Sumatriptan, 

Milacemide 

Aldehyde oxidase AO Oxidation H2O 
Amides, xanthines, putines, 

phthalazines 

Carbazeran, Zoniporide, O6-

Benzylguanine 

Xanthine oxidase XO Oxidation H2O 

Purines, xanthines, 

acetaldehydes, 

benzaldehydes, pteridines 

Caffeine, Theophylline, 6-

Mercaptopurine 

Carboxyl esterase CES Hydrolase H2O Carboxylic esters 
Temacapril, Cocaine, 

Doxazolidine 

Uridine diphospho-

glucuronosyltransferase 
UGT Conjugation 

Uridine diphosphate glucuronic 

acid (UDPGA) 

Phenols, arylamines, 

alcohols, carboxylic acids 

Estradiol, Trifluoperazine, 

Propofol, Morphine, 

Naloxone, Zidovudine 

Sulfotransferase SULT Conjugation 
3’-phosphoadenosine-5’-

phosphosulfate (PAPS) 

Phenols, alcohols, 

heterocyclic amines, 

arylamines  

Acetaminophen, minoxidil, 1-

Naphtol 

N-acetyltransferase NAT Conjugation Acetyl coenzyme A (Acetyl-CoA) Amines, alcohols, thiols 

Isoniazid, Procainamide, 

Hydralazine, Dapsone, 

Sulfasalazine 

Glutathione S-transferase GST Conjugation Glutathione (GSH) 
Epoxides, aldehydes, 

halogens, organic peroxides 

Ethacrynic Acid, 

Chlorambucil 

Information is based on (20) 
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sulfotransferases (SULT), N-acetyltransferase (NAT), and glutathione S-transferase (GST). Table I lists 

common enzymes for drug metabolism, the catalyzed reactions, involved cofactors, and example drugs. 

The enzyme families are further subdivided into sub-families and isoforms. Based on the percent amino 

acid sequence identity, the CYP super-family in human is divided into 14 families (>40% amino acid 

identity) and 20 subfamilies (>55% amino acid identity). In total, 57 genes are encoded in the human 

genome that express different CYP isoforms with varying relevance for drug metabolism (21, 22). 

Families CYP1, CYP2, and CYP3 are responsible for 70-90% of all phase I drug metabolism with 

CYP1A2, CYP3A4/5, CYP2C9, CYP2C19, CYP2D6, and CYP2E1 as most important isoforms (23). A 

compound can be a specific substrate of a single enzyme isoform or metabolized by multiple enzyme 

isoforms. For example, dextromethorphan is mainly metabolized by CYP2D6 with only minor 

contribution from CYP3A4 or other CYP isoforms (24). Contribution to metabolism can also be more 

evenly distributed to different enzyme isoforms as observed for diclofenac which is metabolized mainly 

by UGT2B7 and CYP2C9 (25) or for tramadol which is metabolized by a combination between different 

CYP enzymes (26, 27). 

Several factors affect the function and phenotype of drug metabolizing enzymes. DMEs can be inhibited 

or induced by perpetrator drugs and dietary chemicals that impacts the systemic or oral clearance of a 

victim drug due to increased or decreased metabolic activity. These drug-drug interactions (DDIs) can 

have a significant impact on drug exposure and therefore on the efficacy or toxicity of a therapy. 

Inhibition of metabolizing enzyme can be reversible (competitive, uncompetitive, and non-competitive, 

mixed inhibition), quasi irreversible, or irreversible (e.g. time-dependent inhibition) and leads to the 

decrease in reaction velocity and/or the reduction in the affinity of the substrate to the enzyme (28). As 

a consequence, less drug is metabolized per unit of time that leads to a decrease in systemic or oral 

clearance and an increase in drug exposure. A severe example is the interaction between terfenadine, 

which is rapidly and completely metabolized by CYP3A4 in the intestinal wall, and ketoconazole, a 

potent inhibitor of CYP3A. Terfenadine is a prodrug and not intended to reach systemic circulation. 

However, inhibition of CYP3A4 in the intestine by ketoprofen causes systemic availability of 

terfenadine, potentially resulting in fatal torsade de pointes due to inhibition of the potassium ion channel 

in the heart (29, 30). In contrast, enzyme induction reduces the drug exposure due to an increase in 
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enzyme expression in the body. An inducing agent causes de novo synthesis of DMEs via binding and 

activation of nuclear receptors including the aryl hydrocarbon receptor (AhR), pregnane X receptor 

(PXR), and the constitutive androstane receptor (CAR) that control the expression of DMEs (31). The 

onset of enzyme induction is not an acute process like enzyme inhibition and requires several days to 

elicit the full effect. An example for this type of DDI is the induction of CYP3A4-mediated clearance 

of verapamil by rifampicin. After daily administration of 600 mg rifampicin for 24 days, the 

bioavailability of the S-enantiomer of verapamil was 25-fold lower compared to the non-induced state, 

which was due to a 32-fold increase in the apparent oral clearance of the drug by CYP3A4. As a 

consequence, the pharmacological effect of verapamil is almost completely abolished (32). 

Another clinically relevant factor for DME activity are enzyme polymorphisms, which are based on 

differences in genotypes due to one or several mutant alleles and can have a marked effect on the 

observed metabolic clearance. Different phenotypes due to polymorphisms are defined that divides a 

population into poor metabolizers (PM), intermediate metabolizers (IM), extensive metabolizers (EM), 

and ultra-rapid metabolizers (URM) (33). The prevalence and occurrence of polymorphisms are strongly 

depending on the demographic composition and the ethnicity (34). The CYP2D6 enzyme is well-known 

as a highly polymorphic enzyme for which about 70 variant alleles have been identified that cause up to 

200-fold variability in drug metabolism (34, 35). The frequency of variant alleles of CYP2D6 correlated 

with ethnic groups: Polymorphisms resulting in lack of metabolic activity are more prevalent in 

Caucasians (5-10%) compared to Asians (ca. 1%) (36). As an example, polymorphisms of the CYP2D6 

enzyme has an important clinical implication for the treatment with codeine which is enzymatically 

transformed to its active metabolite morphine. Individuals that are lacking CYP2D6 activity (i.e. PMs) 

experience a poor analgesic effect since no or almost no morphine is formed, while ultra-rapid 

metabolizers experience exaggerated or at worst critical opioidergic effects (37). Polymorphisms are, 

however, not only limited to the CYP2D6 isoform, but further affect other CYP isoforms (34, 38) or 

other enzyme super-families (33, 39-41).  

The section above highlights inter-individual differences in DMEs due to inherited sequence variation. 

Nevertheless, inter-individual variability is also a result of variations in enzyme expression that is driven 

by different gene expression due to exposure to endogenous and exogenous regulatory factors (Figure 
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3). Exogenous regulatory factors can be enzyme inducing drugs, as discussed in the DDI section, 

environmental factors, or diet/nutrition. Endogenous factor describes the varying expression and 

function of DME as a function of age, sex, natural physiological cycles, pregnancy, as well as diseases 

and/or organ impairment (42-44). 

 

Figure 3 - Factors for Inter-Individual Variability of Drug Metabolizing Enzymes. Different extrinsic and 

intrinsic factors that affect drug metabolism in human. Diagram is based on (44). 

 

5.1.3 UDP-Glucuronosyltransferases 

About 50% of therapeutic drugs are metabolized via oxidative metabolism by CYP enzymes, among 

which the CYP3A4 isoform is most frequently involved in the metabolism of marketed drugs (14). In 

the past decades, however, the aim in pharmaceutical industry was to increase the metabolic stability 

and, thus, to reduce the rate and extent of metabolism. The higher metabolic stability of the drug has 

beneficial effects on the frequency of administration (i.e. avoiding short duration of action) and on the 

oral bioavailability (i.e. avoiding extensive first-pass metabolism) (45). In order to meet the desired 

pharmacokinetic properties, the metabolic stability of new chemical entities (NCEs) is optimized during 

drug discovery with high throughput screening to avoid vulnerable moieties within the structure, with a 

focus on reducing oxidative metabolism mediated by CYP enzymes (46). Hence, chemical structures 

proceeding in the drug development have little to no oxidative metabolism, but are instead more prone 
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to alternative transformation reactions. 

Enzymes that are increasingly important and mediate the primary metabolism of a growing number of 

drugs are the UGT enzymes. UGTs typically catalyze the conjugation of a glucuronic acid to a suitable 

functional group utilizing uridine diphosphate glucuronic acid (UDPGA) as a cofactor. Other sugars like 

UDP-xylose, UDP-N-acetylglucosamine, UDP-galacturonic acid, UDP-galactose, or UDP-arabinose 

might serve as cofactors as well (47). The reaction with the UDPGA is depicted in Figure 4. The 

conjugation reaction prepares the xenobiotic substrate for subsequent excretion via urine or bile 

mediated by active transport, e.g. organic anion transporting polypeptide (OATP) or multi-drug 

resistance-associated protein (MRP) (48). The types of substrates undergoing UGT-mediated 

conjugation reaction typically contain electron-rich nucleophiles such as phenols, alcohols, carboxylic 

acids, amines, or N-containing heterocycles. Most common reactions are O- and N-glucuronidation (41). 

Substrates are versatile and involve many endogenous molecules (e.g. bilirubin, bile acids, steroid 

hormones, or fatty acids), non-drug xenobiotics (e.g. environmental and nutrition chemicals), as well as 

xenobiotic drugs from many therapeutic areas (49). 

 

Figure 4 - Chemical Reaction mediated by UGT Enzymes. Schematic representation shows the enzyme reaction 

mediated by UGT enzymes. The conjugation reaction of the nucleophilic substrate and the sugar moiety follows a 

bimolecular substitution (SN2) mechanism to form the substrate glucuronide and uridine diphosphate as reaction 

products. The description and illustration are based on (41) and chemical structures were drawn using Chemspace 

(www.chem-space.com). 

  

The enzyme superfamily is highly conserved in the evolution and can be found in animals, plants, fungi, 

and bacteria (50). UGTs are transmembrane enzymes located at the membrane of the endoplasmic 

reticulum (ER) where the luminal domain constitutes the major part of the polypeptide chain and 

contains the metabolically active site (51). The simplified topology of UGT enzymes at the membrane 

is depicted in Figure 5. Although the complete crystalline structure of a mammalian UGT is not available 
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yet, a topological model is generally accepted where the N-terminal of the protein is responsible for 

substrate binding and the C-terminal is responsible for binding of the UDP-glucuronic acid (52).  

Figure 5 - Topology of UGT Enzymes in the Endoplasmic Reticulum. Endogenous and exogenous substrates 

permeate through the membrane of the endoplasmic reticulum (ER), while UDPGA is transported into the ER via 

active transport. Conjugation reaction occurs in the ER mediated by UGT enzymes and substrate glucuronides are 

actively transported out of the ER. Figure and description are based on (41, 53-55). 

 

In human, UGT enzymes are classified in four families (UGT1, UGT2, UGT3, and UGT8) based on the 

gene sequence. The families UGT1 and UGT2 enzymes are most important for the detoxification of 

xenobiotics (56, 57). Cases are present where the UGT3 family is involved in the metabolism of 

xenobiotics (with a negligible role), whereas no xenobiotic substrates are known for UGT8 (54, 58). 

The gene for the UGT1 family is located on chromosome 2q37 and encodes nine distinct UGT isoforms 

(1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10), which are variants due to alternate splicing of the 

exon at the N-Terminal domain of the sequence (57, 59). In contrast, UGT isoforms of the UGT2 family 

are encoded in separate genes located on the chromosome 4q13 and are further divided into two 

subfamilies comprised of ten different isoforms (A1, A2, A3 and B4, B7, B10, B11, B15, B17, B28) 

(57) (Figure 6). Among these 19 different UGT isoforms in the families UGT1 and 2, seven isoforms 

are clinically most relevant for the metabolism of drugs (1A1, 1A3, 1A4, 1A6, 1A9, 2B7, and 2B15), 

whereas other UGT isoforms (e.g. UGT1A10, UGT2B4 or UGT2B10) are also often involved in drug 

metabolism (60). 



 

24 
 

 

Figure 6 - Schematic Representation of Human UDP-Glucuronosyltransferase Enzymes Gene Loci and 

Encoded UGT Proteins. UGT1 enzymes are encoded on chromosome 2, share four common exons (Exons 2-5), 

and differ due to alternative splicing of the first exons. In contrast, different genes encode UGT2 enzymes. All 

UGT enzymes have a conserved region at the C-terminal for the UDPGA binding domain and a transmembrane 

domain for the protein, but differ in the substrate-binding domains at the N-terminal. The graphics and description 

are based on (41, 52) 

 

Almost all enzymes in the UGT1A and UGT2B families are expressed to a greater or lesser extent in 

hepatic tissue with exception of a few UGT isoforms (UGT1A5, 1A7, 1A8, and 1A10) (41, 57). 

UGT2B7, which is most frequently involved in the glucuronidation of drugs (56) has the highest 

abundance in hepatic tissue (61, 62). Glucuronidation in renal tissue is predominantly due to the UGT 

isoforms 1A9, 2B7, and 1A6, creates an important extra-hepatic site of clearance in the systemic 

circulation (63). An example for a compound undergoing excessive extra-hepatic glucuronidation is 

propofol which is a substrate of UGT1A9 (64) and for which the contribution from renal glucuronidation 

almost accounts to 40% of total clearance (65). Glucuronidation activity is also present in the 

gastrointestinal tract due to expression of UGT1A1, 1A3, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B7, 2B15, 

and 2B17 (66, 67). UGT enzymes in the stomach, small intestine, and/or colon are relevant for the first-

pass metabolism and potentially lower the bioavailability of a drug. An example here is the very poor 

bioavailability of raloxifene, which is a result of gut metabolism by UGT1A1, 1A8, 1A9, and 1A10 (68, 

69). UGT expression is also found in many other tissues such as lungs, skin, or reproductive organs and 

contribute to local metabolism of UGT substrates in these tissues (66).  

It is well recognized that, although the qualitative expression patterns of UGT enzymes in the body are 

quite well defined, quantitative data about protein abundance is yet limited (62, 70). Traditional 

quantitative methods to determine enzyme expression levels, like Western blotting and enzyme-linked 

immunosorbent assay (ELISA), only provide variable and imprecise measurements. This is due to the 

inherently high sequence homology between UGT enzymes which results in cross-reactivity in the 
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assays (70). More recently, the liquid chromatography-mass spectrometry (LC-MS) isotope-labelled 

standard targeted method was developed as more quantitative methodology for the determination of 

protein abundance (71). Nevertheless, heterogeneity is still observed between studies with quite variable 

enzyme expression levels reported in hepatic and/or other tissues (62, 70).  

Strong polymorphisms have been observed for UGT enzymes with clinical relevance in drug therapy 

(41, 72). Polymorphisms of the UGT1A1 isoform are probably the most extensively studies since the 

UGT1A1*28 (mainly among Caucasians) and UGT1A1*6 (mainly among Asians) polymorphism have 

severe consequences. The UGT1A1 isoform is responsible for conjugation and detoxification of 

bilirubin. Complete or almost complete deficiency observed for the two mutant alleles leads to the fatal 

Crigler-Najjar’s syndrome due to reduced bilirubin clearance (73). Other cases are reported where 

polymorphisms of UGT1A1 have a critical impact on the clinical outcome after drug dosing. Irinotecan 

is a prodrug of the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38) used for anti-

cancer treatment. SN-38 can cause diarrhea and myelosuppression at higher doses, whereas the 

compound is usually detoxified by the UGT1A1 isoform (74). However, poor metabolizers due to 

UGT1A1*28/UGT1A1*6 polymorphism might experience life-threatening side effects, since the 

detoxification by UGT1A1 is inactive (75, 76). UGT1A1 polymorphism does further affect the 

pharmacokinetics of other drugs like etoposide (anticancer drug) or raltegravir (HIV integrase inhibitor) 

(72). Polymorphisms are also reported for other enzymes that belong to the UGT1A family (73, 77). 

The UGT1A4*2 variant is associated with a higher and the UGT1A4*3 variant is associated with a 

lower serum concentration of lamotrigine, while polymorphisms of the UGT1A3 isoform have an effect 

on the pharmacokinetics of e.g. telmisartan and atorvastatin (78). Among the UGT2B family, 

polymorphisms have been reported for UGT2B7, UGT2B10, UGT2B15, and UGT2B17 (72, 79-84). 

The polymorphism of the UGT2B15 enzyme has a major impact on the pharmacokinetics of oxazepam 

and caused relatively high inter-individual variability (79). The importance of considering (UGT) 

polymorphism during drug development can be demonstrated with two studies, which both obtained 

significant impact of the polymorphisms on the drug clearance. Fowler and colleagues reported 136-

fold above average systemic exposure to the parent drug in a subject of African origin during the first 

clinical trial and finally detected reduction in metabolic clearance due to UGT2B10 polymorphism as 
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main cause (80). Wang and colleagues (84) investigated the genetic polymorphism of UGT2B17 in a 

first-in-human (FIH) study and found that homozygous carriers of the UGT2B17*2 allele had a 25-fold 

higher drug exposure compared to carriers of the wild type. 

For CYP enzymes, selective inhibitors (e.g. furafylline for CYP1A2, montelukast for CYP2C8 or 

ketoconazole for CYP3A4/5) and substrates (bupropion hydroxylation by CYP2B6, S-mephenytoin 4’-

hydroxylation for CYP2C19, or midazolam 1’-hydroxylation by CYP3A4) have been identified and are 

widely established and evaluated (85). Contrarily, UGT substrates are usually metabolized by multiple 

isoforms, while inhibitors miss specificity for individual UGT isoforms (86). Nevertheless, appropriate 

substrates have been proposed for UGT1A1 (ezetimibe, SN-38, β-estradiol), UGT1A3 (telmisartan, 

desacetylcinobufagin, chenodeoxycholic acid), UGT1A4 (trifluoperazine, midazolam/1-

hydroxymidazolam), UGT1A6 (serotonin, 5-hydroxytryptophol, deferiprone), UGT1A9 (propofol, 

mycophenolic acid), UGT1A10 (dopamine), UGT2B4 (canagliflozin), UGT2B7 (zidovudine, 

morphine, gemfibrozil), UGT2B10 (amitriptyline, cotinine), UGT2B15 (S-oxazepam), UGT2B17 

(testosterone) (54, 56, 60, 87-89). Similarly, selective inhibitors have been identified for UGT1A1 

(atazanavir, erlotinib, nilotinib, regorafenib), UGT1A4 (hecogenin), UGT1A9 (niflumic acid, 

magnolol), UGT2B7 (fluconazole), and UGT2B10 (desloratidine) (54, 60, 90-92). Selective substrates 

and inhibitors are yet unknown or only poorly defined for other UGT isoforms (56, 88). 

Characterization of oxidative metabolism by CYP enzymes is relatively advanced in contrast to the 

uncertainties present for the UGT-mediated metabolism due to the predominant role in the metabolism 

of small molecules. The low evaluation state of UGT-mediated metabolism is a general issue and 

requires increasing focus on the functions and characteristics of UGT enzymes to improve confidence 

in the progression throughout all drug development stages. A successful example about adaptation to in 

vitro testing of UGT substrates is the improved incubation methodology with liver microsomes: The 

luminal location of the active site of UGT enzymes causes a latency of the activity, because substrates 

and cofactors first need to pass the ER membrane. This was overcome with the addition of alamethicin, 

a pore-forming peptide, which increases the reaction rate by several fold compared to untreated 

microsomes (93). In addition, it was demonstrated that fatty acids inhibit some UGT isoforms (e.g. 

UGT2B7 and UGT1A9) which consequently led to under-prediction of the metabolic clearance. The 
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problem could be resolved by addition of bovine serum albumin (BSA) that bind the inhibitory fatty 

acids which ultimately lowers the apparent unbound Km for substrates of UGT1A9 and UGT2B7 (94). 

Nevertheless, other knowledge gaps remain and have a significant impact on the in vitro to in vivo 

extrapolation of drug metabolism mediated by UGT enzymes. Shortage of well-defined and validated 

inhibitors and substrates for the UGT isoforms negatively impacts the quality of reaction phenotyping 

(86), while under-prediction of the drug metabolism for UGT substrates has been reported using primary 

human hepatocytes and/or human liver microsomes (46).  

5.2 IN VITRO HEPATOCYTE SYSTEMS 

5.2.1 Subcellular Fractions and Recombinant Enzymes 

Human liver microsomes (HLM) are a convenient in vitro tool with low cost and simple handling (Figure 

7B). The presence of UGT and CYP enzymes in the incubation allows for the high-throughput screening 

of the metabolic activity by the clinically most important drug metabolizing enzymes during drug 

discovery (4, 95). Alternatively, cytosol or S9 fractions could be deployed in addition to complement 

the investigations with DMEs that are not expressed in the microsomal incubations. Besides the 

screening for metabolic stability, HLMs are applied to identify the types of enzymes involved in the 

metabolism of the drugs and to assess DDIs due to enzyme inhibition. Microsomal incubations can 

further derive from other species to evaluate the translatability of the drug metabolism from in vitro to 

the in vivo animal models or can be applied to investigate the metabolism in other tissues such as the 

intestine (human intestine microsomes) or the kidneys (human kidney microsomes). 

Quantitative identification of enzymes responsible for drug metabolism is usually conducted with 

reaction phenotyping that relies on the deployment of combined studies using microsomes and 

heterologously expressed recombinant enzymes. Recombinant human CYP enzymes (rhCYP) or UGT 

enzymes (rhUGT) (Figure 7A) are produced with expression of transfected cDNA coding for the enzyme 

of interest using cells from bacteria, yeast, insects, or mammalian cells (96). The reaction phenotyping 

approach involves the examination of the drug metabolism in the absence and presence of specific 

enzyme inhibitors, detection of drug metabolism using isolated recombinant enzymes, and the 
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correlation between rate of metabolism between HLM and rhCYP/rhUGT using a specific marker 

reaction (i.e. specific substrate) (86). 

Figure 7 - Hepatic In Vitro Test systems. 

 

 
In Vitro Test 

System 
Purpose Subcellular/Cellular 

Incubation 

Term 
Throughput Validation 

A 
Recombinantly 

Expressed DMEs 

Kinetic Analyses 

and Reaction 

Phenotyping 

Subcellular Minutes High  

B Liver Microsomes 

Metabolic Stability, 

Drug-Drug 

Interactions 

(Inhibition) 

Subcellular Minutes High  

C 
Suspended 

Hepatocytes 

Metabolic Stability, 

Active Transport, 

DDI Studies 

(Inhibition) 

Cellular Hours High  

D 
2D-Plated 

Hepatocytes 

Metabolic Stability, 

DDI Studies 

(Induction) 

Cellular Days Intermediate  

E 
Co-Cultured 

Hepatocytes 

Metabolic Stability 

(Low Clearance), 

DDIs (Induction) 

Cellular Weeks Low  

F 
Sandwich-Culture 

Hepatocytes 

Active Transport, 

Biliary Clearance 
Cellular Weeks Low  

G Liver Spheroids 

Multiple Endpoint 

Studies, 

Toxicological 

Response 

Cellular Weeks Low  

H 
Microfluidic 

Liver-On-Chip 

Devices 

Multiple Endpoint 

Studies 
Cellular Weeks Low  

 

Although HLM and recombinantly expressed enzymes are relatively convenient and very useful for the 

dedicated purpose, a disadvantage is the lack of a complete cell complement. However, during the 
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candidate selection and characterization, more comprehensive PK properties of drug candidates will be 

determined, including protein binding, blood-to-plasma partitioning, hepatocyte stability, drug-drug 

interactions, mechanism-based inactivation, and metabolite identification. Whole cell systems like 

primary human hepatocytes are systems of choice for some of these studies since primary cells include 

all relevant hepatic uptake/efflux transporters, metabolizing enzymes and signaling cascades (97). 

5.2.2 Hepatocyte Systems 

Historically, experiments with hepatocytes could only be conducted with freshly prepared cells. This 

had the strong disadvantage that fresh hepatocytes are not readily available from humans and that the 

liver preparation could only be used once, leading to low flexibility for the experimenter and high inter-

occasion variability since different experiments were based on different organ donors. A breakthrough 

was achieved when the cryopreservation technique was developed that allows to store the samples over 

a long time period, to use the hepatocytes “on-demand”, and to avoid cells with poor quality. It was 

shown that the metabolic function of cryopreserved hepatocytes resembles that of freshly thawed 

hepatocytes (98). Although primary hepatocytes are most frequently cultivated as suspension (Figure 

7C), different cultivation techniques were developed in the last few decades with remarkable progress 

in the understanding of the underlying mechanisms to form viable and physiologically relevant 

hepatocytes. Nonetheless, hepatocytes in suspension have the advantage of convenient and immediate 

utilization after the thawing process and provide already a decent system for the investigation of drug 

metabolism and active transport for most of the drugs tested in an intermediate-high throughput 

screening. A major limitation of the suspended hepatocytes is the quite rapid loss of activity which limits 

the incubation time to 2-4 hours (99). First of all, this does not allow to investigate long-term processes 

such as enzyme induction, which is a process that shows full effect only after about three days, and 

secondly, the application of suspended hepatocytes could not keep pace with the trend of developing 

compounds with a higher metabolic stability. 

The fast decrease of activity is owed to the unnatural environment present for the hepatocytes (100). 

The liver is a complex organ composed of different types of cells in a highly organized structure, 

whereas hepatocytes constitute only about 60% of the cells (which is 85% of liver mass) (97, 100). The 

remaining 40% are non-parenchymal cells that are responsible for several tasks such as secondary 
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response upon an initial damage to hepatocytes. Furthermore, hepatocytes are spatially organized in the 

so called liver lobules in a hexagonal shape, encompassing the arteries, veins and the bile ducts (97). On 

a cellular level, hepatocytes are tightly connected and have a polarized structure where the basolateral 

membrane faces the liver sinusoidal endothelial cells and the apical membranes form the bile canaliculi. 

Upon isolation, primary human hepatocytes lose intercellular connections and their polarity, leading to 

dedifferentiation and finally to a loss of phenotype/activity (101). In addition, recovered hepatocytes in 

suspension undergo apoptosis and necrosis, which is demonstrated in a decrease of viable cells (101). 

One approach to prolong the activity of hepatocytes is to seed the cells in a collagen-coated plate (Figure 

7D), where the cells adhere to the surface of the plate to re-aggregate and to establish intercellular 

contacts after a few hours (99, 102). This cultivation technique prolongs the activity of the cells to at 

least 24 hours, allowing for more advanced investigations like the determination of enzyme induction. 

However, a substantial loss in baseline enzyme activities was observed for plated hepatocytes already 

after 24 hours (99, 103). Another approach with the aim to mimic physiological condition is to cultivate 

the cells in a two-dimensional co-culture together with non-parenchymal cells (Figure 7E), which 

prolongs the activity of the hepatocytes up to four weeks, depending on the incubation conditions (104, 

105). Examples for such systems are HµREL and HepatoPac, which are a co-culture between human 

hepatocytes and stromal cells. Latter is introduced in more detail in Figure 8. Similarly, long-term 

activity over several weeks can be attained when the hepatocytes are seeded in a three-dimensional 

format as demonstrated with spheroids (Figure 7G), which is in addition often combined with co-

cultivation (106, 107).  

The augmented physiological-like conditions for the hepatocytes with the cultivation techniques 

introduced novel possibilities to investigate drug candidates and to conduct mechanistic studies. Enough 

resolution could be achieved in recent studies to test the metabolic clearance of metabolically stable 

drugs in some example studies (108, 109). Furthermore, in a study from Kratochwil et al. 2018 (110), a 

hepatocyte co-culture was successfully applied to simultaneously assess compound clearance, 

metabolism, and DDIs. Finally, by the application of primary human hepatocyte cultivated as spheroids, 

Mizoi and colleagues observed CYP1A2-mediated metabolic toxicity from dacarbazine metabolism 
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(111). These studies demonstrate the usefulness of more advanced hepatocyte cultivation techniques, 

which slowly established in the value chain of drug development in the past years. 

 

Figure 8 – HepatoPac® Co-Culture. The co-culture between human hepatocytes (blue area) and stromal 3T3-J2 

mouse fibroblasts (grey area) in a micro-patterned arrangement supports the hepatocytes to maintain its phenotypic 

functions for several weeks. Microscope picture (right) shows a single hepatocyte island surrounded by the 

fibroblasts. Description and schematic are based on (105), picture was taken in our laboratory. 

5.2.3 Microphysiological Systems 

The next advancement is to cultivate the hepatocytes (or any other tissue type) in so called 

microphysiological systems (i.e. organ-on-chip, body-on-chip) which are designed to recapitulate 

functional units of human organs (112) (Figure 7H). The systems often involve a microfluidic model 

that has a positive effect on the polarization by introducing a shear stress to the cells and has further the 

advantage that different tissues can be interconnected to mimic the systemic circulation. Using such an 

approach creates the possibility to trigger organ-specific features such as bile canaliculi formation (113) 

or zonation (114) in the liver, absorption in intestinal epithelial cells (115, 116), malignant tumor 

invasion in mammary epithelial cells (117), or the epithelial barrier function in corneal epithelial cells 

(118) to mention only a few. The promise of the organ-on-chip systems is that the more sophisticated in 

vitro methodologies, mimicking organs, tissues, or whole organisms, might be deployed to resolve 

questions where current in vitro systems are limited (119). The potential of microphysiological systems 

(MPS) is appealing and led to a progressive adaptation by the pharmaceutical industry and to an 

increasing number of publications that provide examples of promising applications for the systems. 

A merit might be achieved with the combination of gut and liver tissues as exemplified by Tsamandouras 
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and colleagues in 2017 (120). They developed a fluidic platform that integrates both tissues to 

investigate the organ crosstalk on the pharmacokinetics, where the drug was administered at the apical 

side of the gut trans-well to mimic oral administration or directly into the centrally circulating medium 

to mimic intravenous administration. The same group tried to quantitatively investigate population 

variability using a liver-on-chip device (121). Another example is the assessment of toxicity due to 

complex immune responses as investigated by Sarkar and colleagues in 2017 (25). By co-cultivation of 

primary human hepatocytes and cryopreserved human Kupffer cells, they simultaneously studied the 

metabolic profile of diclofenac and the toxicological responses of the metabolites. The examples are 

numerous and not only limited to pharmacological investigations, but further include other applications 

such as investigations of pathogenesis of neurodegenerative diseases (122), assessment of organ 

impairments (123, 124), or even in vitro modelling of human disease progression in microgravity (125). 

Although the applications of these newly evolving in vitro systems are manifold and sometimes 

sensational, the application of MPS is yet in the proof-of-concept phase and several challenges have to 

be resolved before the implementation into drug development – also for assessments of DMPK 

properties of drug candidates (126). A clear merit has to be shown for single cell systems (i.e. 

hepatocytes) over standard cellular tools compared to the conventional in vitro methodologies which are 

established/accepted by the pharmaceutical industry and the regulatory agencies (127). For multi-organ 

devices, where two or more tissues are combined within one chip, a big challenge is to optimize 

incubation condition (e.g. relative organ sizes, flow distribution among organs, or liquid-to-cell ratios) 

that allows for a stable activity and phenotype over time for all tissues involved (128-130). In addition, 

reproducibility and translatability of the results have to be shown in order to increase the confidence in 

the systems (129). From the perspective of a pharmaceutical industry, the application of these 

sophisticated in vitro systems is probably not feasible for investigations during the drug discovery since 

the number of substrates require a high-throughput screening for DMPK properties, whereas the MPS 

lack high-throughput capability in favor of high quality. Nevertheless, such high-quality systems elicit 

the higher potential at later stages of the drug development where the clinical candidate has to be selected 

from a reduced number of lead compounds and where pre-clinical animal testing might be partly 

replaced in future.  
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Finally, the data generated in MPS are more complex compared to results generated in microsomal 

incubations or other straightforward in vitro system. Hence, data analysis might require the support from 

more sophisticated computational approaches to interpret the results and translate the findings to the 

expected outcome in human (128, 131, 132). The before mentioned study from Tsamandouras and 

colleagues (120) demonstrates the combination between an integrated gut and liver MPS and 

computational model-based analysis to derive the intrinsic parameters such as intestinal permeability 

and hepatic metabolism. Other examples exist that used a similar approach of capturing the complexity 

of multi-organ MPS by the application of mathematical modelling and simulation (133-135). 

5.3 COMPUTATIONAL APPROACHES IN DRUG RESEARCH 

5.3.1 Predictions of Drug Properties 

Predictions can be made based on classification systems where physico-chemical properties are defined 

and applied to have first estimates of a drugs behavior. The classification tools can be quite simple like 

the extended clearance classification system (ECCS) which classifies chemical structures into 6 different 

classes and subclasses to assign metabolism (Class 1A and 2), hepatic uptake (Class 1B and 3B), and 

renal clearance (Class 3A, 3B, and 4) as most likely rate-determining routes of clearance (136, 137). 

The assignment is based on the permeability, the molecular weight, and the ionic class of the compounds 

(Figure 9A). Another useful classification system is the biopharmaceutic classification system which 

classifies compounds based on their aqueous solubility and intestinal permeability into four different 

classes (Figure 9B) (138, 139). Depending on the classification, a strategy for the development of the 

oral dosage form can be designed where e.g. surfactants are most likely required in the formulation for 

compounds in Class 2 that have a high permeability and low solubility. 

Other prediction tools come with a much higher complexity and require the deployment of a computer-

based approach. This intersection to cheminformatics aims towards the extraction and processing of 

drug properties based on a chemical structure and a learning process based on past observations. In silico 

predictions offer valuable information during drug discovery with the merit to reduce the financial 

expenditure and valuable time on later testing stages, e.g. for in vitro and in vivo experiments, and 
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Figure 9 - ECCS and BCS Classifications. A) Extended clearance classification system (ECCS). B) 

Biopharmaceutical Classification System. Diagram is based on (136-139). 

provide insights for compounds not yet synthesized (140). This computer-aided drug design (CADD) is 

deployed to reduce large molecule libraries into smaller and more promising sets of active molecules 

for the therapeutic target, to optimize ADME properties, and to avoid safety risks (141). The 

methodology for the in silico predictions can either be ‘molecular modeling’, where the predictions are 

made based on the three-dimensional structure of proteins together with the ligand, or ‘data modelling’, 

where the predictions depend on a statistical approach based on molecular descriptors (142). Latter uses 

molecular descriptors of numerous structures and their defined properties to generate a statistical model 

to predict the respective properties of novel compounds (142). An application is shown in a publication 

of Zhang and colleagues from 2009 (143) in which they constructed a statistical model for solubility 

and lipophilicity with a large ‘training set’ of structures (n = 1202 for solubility and n = 7324 for 

lipophilicity) with known properties to generate the model. Using a ‘test set’ of structures to validate the 

prediction model, they could demonstrate high prediction accuracy for both parameters. Another 

example is the prediction of renal clearance rate as conducted by Paine and colleagues in 2010 (144). 

They developed an in silico model using a human renal clearance data set of 349 drugs and concluded, 

after validation of the predictions with the test set, that the model delivers at least approximations of the 

human clearance. 

Those prediction models are widely established in the pharmaceutical industry and are valuable as 

supporting tools during drug development. However, it has to be considered that these models rely on 
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the quality and quantity of the data used to develop the models. In addition, the appropriateness of the 

models is limited in case where the structures of interest are outside the chemical space that was used to 

train the models (142). 

5.3.2 Physiologically Based Pharmacokinetic Modelling 

5.3.2.1 Compartmental Modelling and Simulation 

Another in silico approach applied during the drug development process is the modelling of the kinetic 

processes underlying the compounds pharmacokinetics and pharmacodynamics in so-called 

pharmacokinetic- (PK) or pharmacokinetic/pharmacodynamics- (PK/PD) modelling and simulation 

(M&S). PK and PK/PD models are, among other types of models (e.g. disease models), an integral part 

of the model-based drug development (MBDD) approach that is adopted by the pharmaceutical industry 

and is recommended by regulatory agencies (145, 146). The overall objectives of modelling and 

simulation in the preclinical stage of drug development are manifold and involve the guidance of the 

developmental strategy, the design of PK/PD experiments in preclinical species, the prediction of human 

PK based on in vivo and in vitro data, and/or the integration of ADME, efficacy, and toxicology 

measures for projection of first-in-human dose. At the clinical stages, the models are applied to quantify 

the variability of PK and PD between individuals and populations (i.e. assessing the impact of 

covariates), to optimize the study designs of the clinical trials (i.e. design dosing and sampling schemes), 

and to establish dose-response relationships in the target population (8). Ultimately, M&S approaches 

can help to reduce costs and cycle times during drug development and to improve success rates of the 

development projects (147). 

Traditional PK and PK/PD-models usually consist of compartments as basic elements which are 

conceptual representation of the system designed without any physiological or anatomical relevance 

(148-151). On a mathematical basis, the models are described by differential equations to simulate the 

rate of change for the drug concentrations and/or effects over time. Figure 10 introduces different types  
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Figure 10 - Compartmental Models. The models consist of compartments as basic elements, which are a representation of the system designed. The mass transfer between the compartments is 

described with differential equations to simulate changes in drug concentration over time. A) Mono-exponential concentration-time profile after IV administration (no apparent distribution phase) is 

described with a one-compartmental model. 2) Bi-exponential concentration-time profile (with initial distribution phase) after IV administration of a drug. The central (C1) and peripheral (C2) can be 

regarded as systemic circulation combined with tissues where the drug distributes immediately and the sum of tissues where compound distribution is not immediate, respectively. C) In case the 

concentration-time profile shows a tri-exponential decay after IV administration, a three-compartmental model might be most feasible. D) An additional compartment is usually integrated for models 

to describe oral administration of a drug to account for the drug absorption and bioavailability. PK/PD models (not shown) complement an effect compartment that is used to describe the time course 

of a drugs’ pharmacodynamics and to link the effect to the pharmacokinetic profile. C1: central compartment; C2: first peripheral compartment; C3: second peripheral compartment; CA: absorption 

compartment; k: rate constant of transfer between different compartments (e.g. k12 → transfer from C1 to C2; k10 → clearance rate). Based on (152). 
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of compartmental PK models, as well as their structures and mathematical representation. Given that a 

PK/PD profile of a study population (human or preclinical species) is present, PK/PD parameters and 

information about population variability can be derived from the observed data – a process often referred 

to as ‘top-down’ fitting.  

Compartmental models as described in Figure 10 are mainly empirical and descriptive. Although quite 

pragmatic and helpful for the intended purpose, application of such models are only of limited 

translational value, since the underlying mechanistic processes causing differences between species and 

individuals are not considered, which forces the operator to use empirical scaling factors and/or 

allometric scaling (e.g. scaling based on the bodyweight of the different species) to project the PK/PD 

properties (147). The lack of mechanistic insight with the PK- and PK/PD-models as well as the growing 

knowledge about biological processes and tissue compositions led to a more advanced in silico 

approach: the physiologically based pharmacokinetic modelling and simulation. 

5.3.2.2 Introduction to PBPK Modelling 

Physiologically based pharmacokinetic (PBPK) models consist of different compartments similar to the 

PK- and PK/PD-models. The difference is the higher level of complexity of PBPK modelling, where 

the compartments have a physiological relevance and are usually representations of body organs and 

tissues. As an example: GastroPlus™, a commercial PBPK modelling and simulation platform, assumes 

in the standard model thirteen different systemic tissues (lung, liver, spleen, adipose, muscle, heart, 

brain, kidney, skin, reproductive organs, red bone marrow, yellow bone marrow, and rest of body) which 

are interconnected by the systemic circulation (Figure 11). 

The main merit of PBPK over PK and/or PK/PD modelling and simulation is the predictive power and 

the mechanistic nature that allows conferring the optimized PBPK model from one species to another 

species of interest by replacing physiological parameters (147, 153). Consequently, application of PBPK 

modelling and simulation is of high value for the prediction of human PK/PD based on pre-clinical 

species to aid designing first-in-human studies (154-157). An example of a FIH dose prediction 

supported by PBPK modelling and simulation is provided by a cholesteryl ester transfer protein (CETP)  
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Figure 11 - Compartments in Physiologically Based Pharmacokinetic Models. Different Compartments 

describe individual (or merged) tissues in the body. The red and blue areas represent the arterial and venous blood, 

respectively. The ACAT model simulates the drug absorption process. 

 

inhibitor developed by Bayer: PBPK modelling was applied to estimate the effective dose in human, 

which was used as a basis for the FIH dose-escalation study (158). The appropriateness of the selected 

doses (5 – 50 mg) could be demonstrated in the subsequent FIH studies (159). Besides FIH dose 

predictions, PBPK modelling is employed for several other applications during the development that 

involve (but are not limited to): 1) decision making in during the lead optimization stage to estimate the 

potential of a drug based on predicted PK properties, 2) evaluation of subpopulations of risk (e.g. due 

to enzyme polymorphisms or organ impairment) prior to clinical trials, 3) preclinical and clinical DDI 

predictions, and 4) simulations and assessments of alternative routes of administration (160).  

The drawback of PBPK modelling and simulation is that the mechanistic approach is relatively data-

hungry, requiring numerous system- and drug-specific parameters. System-dependent data involves a 

large number of physiological measures such as the tissue volume, tissue compositions, blood flows in 

the respective tissues, enzyme and transporter expression levels in various organs, pH in different 

segments of the gastro-intestinal tract, and many more. Compound-specific data include physico-

chemical properties such as pKa, logP, solubility, molecular weight (MW), permeability, as well as other 

drug properties like metabolic clearance inhibition properties, rates of metabolite formation and 

involvement of active transport processes. In addition to the strong requirement for model input, only 

sparse data about the drug are present in the early discovery stage, which initially limits the 

appropriateness of the PBPK model. During the development process, newly generated data can be 
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integrated into the model to improve the simulations. As a consequence, PBPK models usually progress 

iteratively during the development process, involving multiple cycles of ‘predict, learn, confirm’ as 

newly generated data are available and can be integrated into the model (161).  

The development itself can be based on the bottom-up, middle-out, or top-down approach. Bottom-up 

PBPK modelling makes use of knowledge about pharmacological mechanisms to predict in vivo 

pharmacokinetics of a drug and relies on the quality of data generated in vitro and in pre-clinical species. 

Contrarily, top-down approach involves the fitting of the model parameters based on observed in vivo 

data. In most cases, the PBPK modelling approach resembles the middle-out approach which is a 

combination between bottom-up predictions and top-down fitting. This includes the preclinical stage of 

drug development where the model predictions are verified with observed data from preclinical species 

to assess potential mismatches and to refine the model based on the model assumptions and the accuracy 

of input parameters as well as the clinical phases where the PBPK model is optimized based on observed 

clinical data in human (162, 163). 

Over the last two decades, PBPK modelling has been developed and established in the pharmaceutical 

industry and reached acceptance by the regulatory agencies. The U.S. Food and Drug Administration 

(FDA) and the European Medicines Agency (EMA) both suggest the application of PBPK modelling to 

support the drug development (164). An increasing number of submissions for new drug applications 

(NDA) are complemented with analyses from PBPK simulations with a total of 110 submissions to the 

FDA from 2008 to 2017. Of these analyses in the submissions, 60% were about DDIs of metabolizing 

enzymes, 15% about simulation of pediatric populations, 7% about DDIs based on transporter activities, 

6% about hepatic impairment, 4% about renal impairment, 4% about absorption and/or food effect, 2% 

about pharmacogenetic assessments, and 2% about other aspects (164). Examples of PBPK 

investigations that informed the prescription drug labeling are: the effect of a strong inhibitor on 

intravenous sildenafil exposure, the significance of OATP1B1/3 transporter on the simeprevir 

disposition was assessed, or the effect of alectinib and its metabolites on the pharmacokinetics of 

CYP2C8 substrates (164). 
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5.3.2.3 Theoretical Considerations and Simulations of PBPK Modelling 

The assumptions and calculations of PBPK modelling are based on the core elements of 

pharmacokinetics: Absorption, Distribution, Metabolism, and Excretion (ADME) (Figure 12). 

 

Figure 12 - Absorption, Distribution, Metabolism, and Excretion (ADME). ADME is a fundamental concept 

of pharmacokinetics and mechanistically describes the route of the drug in the body. Absorption describes the 

transfer of the compound and its metabolites from the site of absorption to the systemic circulation and is relevant 

for drugs that are not administered by the intravenous route (e.g. oral, nasal, or subcutaneous administration). 

Distribution is the process by which absorbed compound and its metabolites partition between blood and various 

tissues in the body. Metabolism is the process by which a drug is transformed by metabolizing enzymes, while 

excretion of unchanged drug or the metabolites is the elimination process via the liver, kidneys or other minor 

excretory organs such as the lung or skin. Figure and description are based on (152). 

 

Since a drug is most frequently administered via the oral route, implementation of an absorption model 

in PBPK modelling is essential. The model should be capable of simulating and predicting the fractions 

and time courses of the compound absorbed into enterocytes (fa), entering the portal vein (fDP), and 

finally entering the systemic circulation (i.e. bioavailability). The transfer of the compound to different 

compartments (e.g. stomach, duodenum, jejunum, ileum, caecum, and colon) as depicted in Figure 13 

is simulated under consideration of varying physiological conditions such as transit times, volumes, pH 

values, and bile salt concentrations (165, 166). In combination with formulation and drug-specific input 

(e.g. pH-dependent ionization state, solubility, particle size radius, permeability, etc.), the absorption 

model is able to simulate the dissolution of the drug and its transfer into enterocytes. Once permeated 

into the enterocytes, the drugs can subsequently proceed to the portal vein or might be subject to first-

pass metabolism in enterocytes or can be actively transported back to the gut lumen by efflux 

transporters, e.g. by P-glycoprotein (P-gp). The advantage of implementing this mechanistic model into 

PBPK is the possibility to simulate different scenarios such as the food effect on drug absorption, the 

impact from different formulations on bioavailability (i.e. bioequivalence studies), or the extent and 

impact from first-pass metabolism, transporter activity including DDIs (167-170). 
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Figure 13 - Advanced Compartmental Absorption and Transit Model (ACAT). The ACAT model 

mathematically describes key processed present in the gut for simulation of absorption after oral administration of 

a drug. The compartments describe sections through the gastro-intestinal tract and different states of the drugs 

from the unreleased form to the dissolved form. Red arrows indicate luminal degradation of the dissolved drug 

and metabolic clearance of drug absorbed into the gut wall. Unabsorbed drug is subject to excretion via feces. The 

diagram is adapted from SimulationPlus®. 

The fraction of the drug entering the systemic clearance from any site of administration undergoes 

distribution into the different tissues (mathematically: compartments), which is taken into account in the 

PBPK model (171). Different tissues have different properties such as tissue composition, volume, 

membrane permeability, or transporter expression patterns and the distribution is therefore regarded for 

each tissue individually. The steady state volume of distribution is the results of the sum of all 

individually calculated distribution volumes (plus the volume of the systemic circulation). The basic 

measures for the partitioning of the compound into the compartment are the tissue-to-plasma partition 

coefficients (Kp) which depend on tissue- and plasma protein binding of the drug, tissue composition 

and the ionization state, lipophilicity and pKa of the drug and might be driven by active uptake or efflux 

by transporter proteins (Figure 14) (172-175). It is further considered that the partitioning into tissues is 

limited by the blood flow for compounds with a high permeability (mostly lipophilic molecules) and 

limited by the permeability for compounds with low permeability (mostly hydrophilic and/or large 

molecules) (171).  

Compound clearance can be integrated into the PBPK model if the clearance and the responsible 

DME(s) and transporter proteins are defined and, in addition, expression levels in the eliminating tissues 

are known. Total plasma clearance of a compound is the result of the combination between the metabolic 

clearance in respective tissues, drug excretion in the kidneys and biliary clearance in the liver. 

Hepatobiliary clearance is mediated by active transport of the parent drug (or metabolites) by efflux 

transporters, e.g. P-gp, breast cancer resistance protein (BCRP), or MRP2. Upon incorporation of biliary 
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clearance, the models might be extended to simulate enterohepatic recycling (176), which occurs when 

the compound after excretion from the bile pocket into the gut is reabsorbed into the enterocytes and 

finally reaching again the systemic clearance (177). The mechanistic model for renal excretion is a 

combination between filtration clearance, fraction unbound in plasma (fu,p) * glomerular filtration rate 

(GFR), and active transport into the tubule under consideration of passive permeability from the 

capillary to the tubule and/or reabsorption to the capillary.  

 

Figure 14 - Tissue to Plasma Partitioning of a Drug. The diagram shows a simplified scheme of the partitioning 

of a drug from the plasma into the tissue that is used as a basis for predictions of steady state volume of distribution. 

Only unbound drug in the unionized state can permeate through the membrane, whereas ionized drug might 

passively diffuse depending on the degree of ionization and the potential difference across the membrane. The 

ionization of a drug is depending on the pKa and on the pH of the respective tissues. Besides passive diffusion, 

compounds can be subject of active uptake or efflux. Descriptions and diagram are based on (173, 174). 

 

The advantage of this mechanistic approach of estimating drug distribution and clearance is that drug 

concentrations in excretory tissues and at sites of action can be simulated at varying conditions (e.g. 

changes in blood flow, organ impairment, DDIs, etc.) and related to compound clearance and the 

observed therapeutic effect, respectively (171, 178-180). The input for enzyme kinetics of drug 

metabolizing enzymes and transporter proteins is usually a saturable process that follows a Michaelis-

Menten kinetics described by the reaction velocity achieved at saturating concentrations of the drug 

(Vmax) and the Michaelis-constant (KM), which is the concentration of the substrate at half of the 

maximum velocity. This allows for the assessment of non-linearity due to DMEs or transporter proteins 

with PBPK modelling (181, 182). 
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5.3.2.4 Specific Applications of PBPK Models 

Besides FIH dose predictions, evaluation of DDI risk is essential for the application of PBPK models in 

the pharmaceutical industry with a high regulatory impact (164). The mechanisms underlying the DDI 

effects are complex and time-dependent. A PBPK model is capable of stimulating the complex and time-

dependent mechanisms underlying the DDI effects of the perpetrator on the victim drug, which makes 

it valuable for the drug development for the simulation of DDI risk assessments. Especially useful are 

prospective DDI predictions after FIH clinical studies: After FIH PK data give confidence in modelling 

the effect of clearance modifications due to DDIs, the simulations can be used as a waiver of clinical 

studies (162, 183). A case study where PBPK modelling was used for simulation of DDI due to 

inhibition is provided by Chen and colleagues (184). They demonstrated the use of PBPK modelling to 

predict the formation of and the inhibition by the inhibitory metabolite of amiodarone, mono-desethyl-

amiodarone, on the PK of simvastatin, dextromethorphan, and warfarin. Yee and colleagues published 

in 2020 (185) a PBPK model to simulate the effect of CYP3A induction mediated by rifabutin on the 

doravirine and its major metabolites. Based the model simulations, they were able support the common 

dose adjustment performed in the clinical practice from 100 mg doravirine once daily to 100 mg twice 

daily when co-administered with rifabutin. Another, more complex model shows the attempt to 

simultaneously predict the effect of CYP3A/CYP2C9 induction and OATP inhibition due to rifampicin 

and using glibenclamide as probe substrate (186). The simulated results with the PBPK model were in 

accordance with the observed data, which shows the utility of using the approach for quantitative 

predictions of complex DDIs. 

Another application for PBPK modelling is the simulation of PK (or PD) in different populations. 

Populations or subpopulations can be healthy volunteers/diseased patients for which the impact of the 

disease or other co-morbidities on the pharmacokinetic is simulated, different ethnicities with a different 

genotype/phenotype, subject of different ages which impacts the PK of a drug, or subjects of different 

gender. In a clinical setting, PK analysis of different populations and sub-populations require a large 

number of subjects which is consuming time and money. Therefore, PBPK modelling can be used to 

complement the population analysis by the simulation of a virtual population specified in the model. 

Zhou and colleagues (187) generated a model to assess PK differences in Caucasian and East Asian 
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populations with distinct CYP2C19 genotypes and successfully predicted the observed exposures in 

84.4% of the cases. A model for a pediatric population with renal failure was generated by Ye and 

colleagues in 2020 (188) in which they simulated a significant increase in the AUC after oral 

administration of ertapenem in children with renal impairment to suggest a dose adjustment for this 

population. Also interesting is the application of PBPK modelling for the selection of an optimal 

mefloquine dose for young Caucasian children as conducted by Johnson and colleagues (189) which 

had to account for the developmental physiology and enzyme ontogeny and finally proposed a weekly 

dose of 62.5 mg for the prevention of malaria (in infant population from 5-10 kg). The impact of hepatic 

impairment was assessed for the PK of alectinib by Morcos and colleagues (190) which supports the 

dose adjustment in a population with severe hepatic impairment. 

PBPK models are often combined with an effect compartment to simulate the fundamental relationship 

between drug concentration and pharmacodynamics effect in a physiologically base pharmacokinetic-

pharmacodynamics (PBPK-PD). Knowing the pharmacokinetics of a drug and the pharmacodynamics 

effect, the time course of the therapeutic effect can be simulated. The combination of PBPK and PD is 

advantageous due to the mechanistic and quantitative derivation of the effect, which allows for better 

extrapolation capability and hypothesis testing and offers a valuable opportunity to explore the impact 

of physiological or drug-specific variability on the effect of the treatment. In addition, potential delay 

of the effect compared to the drug concentration that results in hysteresis in an effect concentration plot 

can be mechanistically assessed with a PBPK-PD model where e.g. distributional delay into the target 

tissue causes a lag time of activity. Application of a PBPK-PD models is demonstrated in a publication 

of Chetty and colleagues in 2014 (191), which linked PBPK and PD models to investigate the impact of 

variable PK on drug response. They successfully predicted the observed changes in drug response due 

to variations in phenotypes of metabolizing enzymes, drug formulations, drug receptor binding, and 

ethnic differences. 
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5.4 OUTLINE AND AIMS OF THE STUDIES 

The introduction specifies the importance of predicting the hepatic clearance based on in vitro 

hepatocyte tools. Conventional and well-established in vitro tools with less complexity (e.g. human liver 

microsomes or suspended hepatocytes) lack sufficiently long incubation times and could not keep pace 

with the trend of developing drugs with a higher metabolic stability. This limitation was overcome with 

the adoption of a co-cultured hepatocyte system (HepatoPac) which offered the possibility to measure 

the in vitro intrinsic clearance for metabolically stable drugs and which showed in addition improved 

prediction of hepatic clearance. However, the studies that investigated the performance of the in vitro to 

in vivo (IVIVE) extrapolation with the system, mainly focused on CYP-mediated clearance, which 

leaves an important gap to the current drug development process: An increasingly high number of 

compounds is primarily biotransformed by UGT enzymes and not by CYP enzymes, hence, it was not 

known whether the findings for CYP substrates could be transferred to UGT substrates. We 

hypothesized that we can achieve improved predictions using the hepatocyte co-culture likewise for 

UGT enzymes, but further reflected that the scaling of glucuronidation clearance is connected to certain 

challenges owed to particularities of the UGT enzyme family such as extra-hepatic glucuronidation in 

the intestine and renal tissue, or the enterohepatic recirculation. To test and prove our hypothesis, we 

aimed to determine the performance of the hepatocyte co-culture for UGT enzymes and were keen on 

identifying possible sources of outlier behavior. Important to the significance of the study was a solid 

methodology throughout the work that included 1) multiple independent measurements of the in vitro 

intrinsic clearance for selected UGT substrates, 2) current state-of-the-art methodology for clearance 

scaling by accounting for the unbound fraction, and 3) thorough literature search for observed values of 

the hepatic clearance in human for the comparison to predicted values. The study resulted in the 

publication with the title “In Vitro to In Vivo Extrapolation of Metabolic Clearance for UGT Substrates 

Using Short-Term Suspensions and Long-Term Co-Cultured Human Hepatocytes”. 

We also aimed on extending the work to the application of PBPK modelling for UGT substrates. As 

introduced in previous sections, the difficulty for UGT-mediated clearance is to define well-validated 

specific substrates and inhibitors which, as a result, impede the quantification of the contribution of 

individual UGT enzymes to the overall compound clearance. Furthermore, reported UGT expression 
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levels are yet connected to a high uncertainty. Based on the knowledge and on the expected quality of 

in vitro intrinsic clearance data determined in the hepatocyte co-culture, we concluded that we might 

use the in vitro intrinsic clearance as input in the PBPK models to achieve reasonable simulations. 

Hence, we were interested in learning about the potential of the HepatoPac system as a system for high 

quality input in the mechanistic modelling approach. Furthermore, we scrutinized the impact of 

extrahepatic glucuronidation on the oral and systemic clearance and wanted to demonstrate the current 

limitations and possibilities of PBPK modelling and simulation in regard of the uncertainties associated 

with UGT-mediated clearance. This thorough assessment is reported in-depth in the publication with 

the title “Construction and Verification of Physiologically Based Pharmacokinetic Models for Four 

Drugs Majorly Cleared by Glucuronidation: Lorazepam, Oxazepam, Naloxone, and Zidovudine”. 

While having a special focus on UGT-mediated clearance, we also intended to advance in the adoption 

of novel hepatocyte in vitro systems. A big number of in vitro hepatocyte systems is meanwhile 

established and well-validated for assessments of ADME properties of compounds that differ in 

characteristics such as complexity, cost, throughput rate, and quality of the generated data. Furthermore, 

the repository is increasingly complemented with novel and potentially more sophisticated in vitro tools. 

In order to sort out the question: ‘at what development stage should which in vitro system be deployed’, 

we aimed to access and summarize the current strategy of using the value chain of in vitro systems. We 

also recognized the opportunity of using the HepatoPac co-culture to demonstrate potential merits that 

can be achieved with more sophisticated cultivation techniques by adding data about in vitro intrinsic 

clearance determinations, induction, and time-dependent inhibition as demonstration example. This 

thorough literature research accessorized with own in-house generated data resulted in the review with 

the title: “Application of New Cellular and Microphysiological Systems to Drug Metabolism 

Optimization and Their Positioning Respective to In Silico Tools”. 

As next part, we aimed to evaluate a micro-physiological system which we purchased from the CN Bio 

Company. The system is a microfluidic liver-chip platform which has the advantage that shear stress on 

the hepatocytes can be generated that might have a beneficial effect on the metabolic stability and 

viability of the cells. Hence, the promise of the MPS is that it can be deployed for long-term incubations 

and to study complex research questions. Nevertheless, we first required to conduct a basic evaluation 
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of the system in which we demonstrate the capability of the system to maintain the fundamental 

phenotype of hepatocytes in order to allow for more advanced studies. We also acknowledged the higher 

sophistication of the system by combining the MPS with modelling and simulation approaches. The 

work is yet ongoing, whereas the modelling and simulation part needs to be finalized. Hence, the report 

with the working title “Optimization of a Liver-on-Chip System for DMPK Application and 

Combination with Modelling and Simulation” demonstrates the first part of the evaluation process which 

was conducted to assess the metabolic stability of the cells and which proposes an approach of 

quantifying the data generated on the liver-chip. 
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Introduction 

Investigations of the pharmacokinetics are key studies during the drug development and rely on several 

in vitro systems that are routinely deployed to investigate and translate DMPK properties of a drug (4). 

Well established in vitro tools are optimized for the intended purposes, but still leave a gap that have to 

be addressed by the introduction of novel cell culture techniques (126). Microphysiological systems 

(MPS) are incrementally introduced in the pharmaceutical industry as novel cutting-edge in vitro 

systems that hold a high promise in addressing more complex questions due to the possibility of 

mimicking specific organ functions and organ-organ crosstalk (192-194). The promise in the field of 

ADME (absorption, distribution, metabolism, excretion) is to use the chips for assessments of first-pass 

after oral drug administration, for investigations of drug-drug interactions (DDIs), for studies about 

metabolite-driven toxicity, disease modelling, and/or special populations (126). In addition, multiple 

time points can be integrated into the in vitro experiments based on long-term incubations as achieved 

with microphysiological systems and used as high quality input for physiologically based 

pharmacokinetic modelling and simulation or other computational approaches (195).  

However, integration of the MPS is yet in an exploratory stage and requires evaluation of adequate 

systems where the engineered platforms need to meet predefined specifications (e.g. low non-specific 

binding of lipophilic drugs and/or low volume loss due to evaporation and/or sampling) and the 

cultivated cells need to prove a physiological-like and stable phenotype (126, 196). For cultivating 

hepatocytes in a MPS, minimum prerequisites are active and stable activities of clinically relevant DMEs 

(e.g. CYP, UGT, AO) and transporter proteins (e.g. P-gp, OATP) (126). The fourth manuscript, which 

is currently in preparation, aims towards the evaluation of a promising microfluidic MPS, the CN Bio 

system (Figure 15). 

The CN Bio system (Figure 15) is a microfluidic MPS that is currently undergoing proof-of-concept 

studies in which the merit of the system over conventional in vitro hepatocyte systems has to be 

demonstrated. However, before the application for complex in vitro studies, the system has to show 

stable metabolic activity towards probe substrates in order to qualify as adequate hepatocyte in vitro 

system for DMPK studies. In addition, certain challenges have to be resolved along the way: 1) 
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quantification of in vitro DMPK data is currently limited by the unknown number of hepatocytes 

residing the scaffold after the seeding and the pre-incubation of the cells, and 2) demonstration of the 

approach of combining the in vitro experiments with modelling and simulation techniques to overcome 

the complexities associated with the system (i.e. evaporation over longer incubation periods).  

 

Figure 15 – Schematic of the CN Bio Liver Chip. A) Pressure and vacuum are produced in the controller by a 

compressor and vacuum pump. In addition, operations such as control of the fluid flow can be instructed with the 

controller. Docking station is linked to the controller and can house the MPS drivers. The MPS driver integrates a 

series of pneumatic solenoid valves to induce the flow to the incubation medium. B) Longitude section of the wells 

showing an up-flow of the medium (blue area) through the scaffold containing the hepatocytes (red area). The 

collagen-coated scaffold is shown as schematic (grey area). The microscope picture was taken in our laboratories 

and shows hepatocytes attached to the surface of the scaffold. 

 

Materials and Methods 

Materials 

Ketoprofen (K-1751), zidovudine (A-2169), dextromethorphan (D-2531), dextrorphan (D-127), 

diclofenac (D-6899), repaglanide (R-9028), carbazeran (SML-0308), irinotecan (I-1406), telmisartan 

(T-8949), and quinidine (Q-3625) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Lorazepam (L469850), naloxone (N284995), diclofenac-glucuronide (D436475), 3-hydroxy-quinidine 



 

59 
 

(H953230), 4-hydrocy-carbazeran (H884125), naloxone-glucuronide (N285010), efavirenz (E425000), 

telmisartan-glucuronide (T017010), and posaconazole (P689600) were purchased from Toronto 

Research Chemicals (Toronto, Canada). Cryopreserved hepatocyte recovery medium (CM7000), 

William’s E medium (A12176-01), primary hepatocyte plating supplements (CM3000), primary 

hepatocyte maintenance supplements (CM4000), and human hepatocytes (lot: Hu8264) were purchased 

from ThermoFisher Scientific (Grand Island, NY, USA). Oxazepam, midazolam, and 1-

hydroxymidazolam were synthesized at F. Hoffmann-La Roche Ltd. (Basel, Switzerland). All CN Bio 

components (controller, docking station, and drivers) and consumables (LC-12 plates) were acquired 

from CN Bio Innovations (Cambridge, UK). 

Preparation of LC-12 Plates and Seeding of Cryopreserved Human Hepatocytes 

The diagram in Figure 16 depicts the time scale of the process from plate preparation to the experiment. 

Detailed descriptions about the priming of the plates, the seeding process of the hepatocytes, and the 

media exchange program are provided in a later section (“Protocol: CN Bio” Liver Chip). 

 

Figure 16 - Time Scale of Plate Preparation and Experiment. 

 

Five days before the start of the treatment (Day -5), LC-12 plates were primed by flooding the 

microchannels with plating medium (William’s E medium containing 5% fetal bovine serum, 1 µM 

dexamethasone, 100 U/mL penicillin, 100 µg/mL streptomycin, 4 µg/mL human recombinant insulin, 2 

mM GlutaMAX™, 15 mM HEPES). The day after (Day -4), hepatocytes were seeded on the scaffolds 

in the LC-12 plates. Briefly, primary cryopreserved hepatocytes (one vial per LC-12 plate) were thawed 

and suspended in cryopreserved hepatocyte recovery medium. Supernatant was aspirated after 

centrifugation (100 G for 10 minutes) and hepatocytes were re-suspended in 3 mL plating medium. Cells 

were counted with a hemocytometer (Bioswisstec Ltd., Switzerland) and seeded at between 400,000 and 

650,000 hepatocytes per well. Plates were incubated at 37°C in a 5% CO2 atmosphere overnight to allow 
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for the attachment of hepatocytes. The medium was changed after attachment of the cells on the scaffold 

(at Day -3) to maintenance medium (William’s E medium containing 0.1 µM dexamethasone, 50 U/mL 

penicillin, 50 µg/mL streptomycin, 6.25 µg/mL human recombinant insulin, 6.25 µg/mL human 

transferrin, 6.25 ng/mL selenous acid, 1.25 mg/mL bovine serum albumin, 5.35 µg/mL linoleic acid, 2 

mM GlutaMAX™, 15 mM HEPES) and cells were pre-incubated without media exchange for three 

days at 37°C in a 5% CO2 atmosphere for three days until the first treatment day (Day 0). 

In addition at Day -4 and in each experiment, the remaining hepatocyte suspension after the seeding 

process was used to investigate the total protein content per millions of hepatocytes, which is a relevant 

parameter for quantification of the cell number as described in the chapter below (“Quantification of 

Cell Number”). The remaining hepatocyte suspension was diluted with 20 mL PBS and centrifuged at 

100G for 10 minutes. The supernatant was aspirated and the hepatocyte pellet was lysed with 5 mL PBS 

containing 1% Triton-X for twenty minutes. Total protein content was measured using the Pierce™ 

BCA Protein Assay Kit (Thermo Fisher Scientific) and correlated with the known number of cells in the 

remaining hepatocyte suspension (known from counting with the hemocytometer during the seeding 

process) to calculate the total protein yield per one million hepatocytes. 

Quantification of Cell Number 

The number of cells attached to the scaffold at Day 0 relative to the number of cells seeded at Day -4 

(i.e. seeding efficiency) is unknown and had to be derived by using control wells in each experiment 

where the hepatocytes were lysed to determine the number of hepatocytes. The identified number of 

hepatocytes in the control wells were used to calculate an albumin production rate (APR) based on the 

albumin concentration in the medium of respective wells at Day 1 (24 hours after media exchange at 

Day 0) as depicted in Equation 1: 

𝐴𝑃𝑅 (µ𝑔𝐴𝐿𝐵 ∗ 𝑑𝑎𝑦−1 ∗ 10−6𝑐𝑒𝑙𝑙𝑠) =  
[𝐴𝐿𝐵24ℎ]∗𝑉𝑚𝑒𝑑

𝑁𝐻
∗ 106     (1) 

ALB24h is the concentration of albumin in the medium after 24 hours, Vmed is the volume of medium, 

and NH is the number of hepatocytes determined in the lysates from the control wells. The average APR 

calculated from the control wells could then be used to derive the number of hepatocytes in the 
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remaining wells with measured albumin concentrations in the medium of the respective wells using 

Equation 2: 

𝑁𝐻 =  
[𝐴𝐿𝐵24]∗𝑉𝑚𝑒𝑑

𝐴𝑃𝑅
∗ 106         (2) 

The albumin concentration was measured with the Human Albumin ELISA kit (Immunology 

Consultants Laboratory, Inc., Portland [insert where]) and total protein was measured using the Pierce™ 

BCA Protein Assay Kit (Thermo Fisher Scientific, what, where). A detailed protocol about the lysis of 

the hepatocytes in the scaffolds of the control wells is provided in the next section. 

Lysis of Hepatocytes Attached on the Scaffolds 

The scaffolds in the control wells were removed, washed twice in 1000 µL PBS and subsequently placed 

into 500 µL PBS containing 1% Triton-X. The surface of the scaffold was then thoroughly scratched 

with a pipette tip to ensure maximal retrieval of contained cells, and the lysing process was continued 

for half an hour. This process was repeated twice to ensure complete detachment and lysis of the cells. 

After the scaffold was washed and removed from the cell lysate, total protein content measured with the 

Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific), and the cell number estimated. For the 

measurements, it was assumed that all attached cells were alive and metabolically active, while dead 

cells were detached and removed from the scaffold during the washing steps.  

In Vitro Intrinsic Clearance Measurements 

The in vitro intrinsic clearance was determined for eleven substrates of CYP, UGT and AO enzymes 

(Table III). At the first treatment day (Day 0), the maintenance medium was replaced with fresh 

maintenance medium containing the probe substrates with a total volume of 1.8 mL medium (0.2 mL 

dead volume plus 1.6 mL added volume). Afterwards, no medium exchange was conducted during the 

time course of the experiment. The medium was first allowed to distribute into the whole well for at 

least half an hour before starting sampling. At respective time points, media samples were removed and 

quenched in acetonitrile containing internal standard (128 ng/mL D6-Midazolam), centrifuged at 6200 

G for 10 minutes at 4 °C and stored at -20 °C until preparation for measurement in liquid 

chromatography tandem mass spectrometry (LC-MS/MS). Compound depletion was measured in 
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triplicate for each drug in one occasion.  

To determine the depletion of the probe substrates, the natural logarithm of the drug concentration in 

the incubation samples was plotted against time and linear regression analysis was applied using 

GraphPad Prism version 7.04 for Windows (GraphPad Software, La Jolla, CA). The in vitro CLint was 

calculated from the depletion rate constant (k) of the linear regression (min-1) for each well individually: 

𝐼𝑛 𝑉𝑖𝑡𝑟𝑜 𝐶𝐿𝑖𝑛𝑡(µ𝐿/min/106 ℎ𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒𝑠)  =  
−𝑘∗ 𝑉𝑚𝑒𝑑 ∗ 106

𝑁𝐻
     (3) 

Where Vmed was 1800 µL, and NH is the number of cells estimated from the measured albumin 

production rate in the respective wells. 

 

In addition, the metabolic activity in the hepatocytes was determined over the time period of four days 

by repeating the measurement each day with an intermediate washout step after every 24h hours. This 

measurement was conducted for midazolam (1-hydroxymidazolam formation via CYP3A4), diclofenac 

Table III – Probe Substrates and Metabolism 

Compounds 
Marker 

Enzyme(s) 

Marker  

Reaction(s) 
Product Formed Ref. 

Midazolam CYP3A4/5 1-hydroxylation 1-hydroxy-midazolam (197) 

Dextromethorphan CYP2D6 O-demethylation Dextrorphan (198) 

Diclofenac 
CYP2C9, 

UGT2B7 

4-hydroxylation, 

O-glucuronidation 

4-hydroxy-diclofenac 

Diclofenac-O-glucuronide 

(199, 

200) 

Quinidine CYP3A4/5 3-hydroxylation 3-hydroxy-quinidine (201) 

Carbazeran AO1 4-hydroxylation 4-hydroxy-carbazeran (202) 

Repaglanide 
UGT1A1, 

UGT1A3 
O-glucuronidation Repaglanide-O-glucuronide (203) 

Telmisartan UGT1A3 O-glucuronidation Telmisartan-1-O-glucuronide (204) 

Posaconazole UGT1A4 N-glucuronidation Posaconazole-N-glucuronide (205) 

Naloxone UGT2B7 O-glucuronidation Naloxone-O-glucuronide (206) 

Zidovudine UGT2B7 O-glucuronidation Zidovudine-O-glucuronide (207) 

Lorazepam 
UGT2B7, 

UGT2B15 
O-glucuronidation Lorazepam-O-glucuronide (208) 
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(4-hydroxydiclofenac formation via CYP2C9 and diclofenac-glucuronide formation via UGT2B7), 

dextromethorphan (dextrorphan formation via CYP2D6), quinidine (3-hydroxyquinidine formation via 

CYP3A4), carbazeran (4-hydroxy-carbazeran formation via AO1), repaglanide (repaglanide-

glucuronide formation via UGT1A1/1A3), and naloxone (naloxone-glucuronide formation via 

UGT2B7). The evaluation involved comparison of the depletion rate constant for the parent drugs and 

comparison of the area under the curve (AUC) of the concentration time profile for the metabolites. 

Detailed Protocol: CN Bio Liver Chip 

Device Set-Up and Priming of the LC-12 Plates 

At Day -5, the LC-12 plate was primed with plating medium to avoid dry spots in the channels and to 

acclimatize the media and the components of the system to the incubator temperature. The LC-12 plates 

and the PhysioMimixTM MPS Drivers were first wiped with 70% ethanol and afterwards combined. The 

plating medium was pre-warmed to 37°C and was added (500 µL) to the reservoir side of the reservoir 

chamber (see Figure S-1). The drivers were slid into the PhysioMimixTM Docking Station to run the 

“Prime” Program, which induces an up-flow of 2.5 µL/s for 3 minutes to the medium in the wells. After 

this step, the wells were filled with 1100 µL to cover the whole surface of the well with medium. The 

plate was returned to the docking station to run the “Incubate” Program, which induces an up-flow of 

2.5 µL/s to medium in the wells until the seeding at Day -4. 

Media Exchange  

The plates were removed from the incubator and the medium in the wells was aspirated until the 

remaining dead volume of 200 µL. Then, 400 µL of pre-warmed (37 °C) maintenance medium was 

added to the wells and the LC-12 plates were returned to the docking station to run the “Media 

Exchange” program, which induces a down-flow of 1.0 µL/s for 3 minutes. After the 3 minutes, the 

plates were removed from the docking station and the medium was again aspirated until the remaining 

dead volume of 200 µL. Then, 1400 µL of plating medium was added to each well and plates were 

returned to the docking station to run the “Incubate” program. 

Seeding of the Cells 
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At Day -4, the hepatocytes were seeded on the scaffold of the wells in the LC-12 plate. For the process, 

the cryopreserved hepatocyte recovery medium (CHRM) and plating medium were pre-warmed to 37 

°C in the water bath. Hepatocytes vial(s) were thawed and the cells were transferred and suspended into 

50 mL of CHRM. The cell suspension was centrifuged at room temperature at 100G for 10 minutes, and 

afterwards, the supernatant was carefully aspirated. Hepatocyte pellet was loosened by gently tapping 

the falcon tube and re-suspended in 3.0 mL (for two vials of hepatocytes) of plating medium. 50 µL of 

cell suspension was transferred to 0.1% Trypan Blue for the cell count with the hemocytometer. 

The primed plates were removed from the incubator and the medium in the wells was removed as 

described in the media exchange program, with the difference that the medium added in the last step 

was not 1400 µL maintenance medium, but 300 µL plating medium in order to prepare the plates for the 

seeding process. The prepared hepatocyte suspension was now equally distributed to the different 

scaffolds (100 µL for each well). Note: Important to ensure a well-mixed hepatocyte suspension and to 

disperse the hepatocytes over the whole scaffold to avoid inter-well variability. Afterwards, the plates 

were returned to the docking station to run the “Seed” program, which induces a down-flow of 1.0 µL/s 

for 2 minutes. The plates were removed and 1000 µL of plating medium was very slowly added to the 

wells to cover the surface of the wells. Finally, plates were returned to the docking station to run the 

remaining “Seed” program that runs for another 7 hours and 58 minutes and automatically changes to 

the “Incubate” program afterwards. 

 

Results and Discussion 

Quantification of the number of hepatocytes was assumed to be achieved via the use of albumin as 

marker that can be applied to correlate the cell number present during the incubation. Hence, first 

experiments were dedicated to evaluate the appropriateness of using albumin as marker and to provide 

a methodology in determining the hepatocyte number with sufficient confidence. Subsequent 

experiments tested metabolic activity of the hepatocytes incubated with the system to evaluate the 

potential for metabolism studies using specific probe substrates and/or marker reactions. In addition, the 

calculated number of cells per well was used to calculate in vitro intrinsic clearance values (in 
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µL/min/106 hepatocytes) and to reduce the inter-well variability due to differences in seeding density in 

the wells. 

Measurement of Total Protein and Correlation with Number of Hepatocytes 

Quantification of hepatocyte number in the wells was based on the albumin production rate measured 

in dedicated control wells, which required measurement for albumin concentrations in the medium and 

determination of the hepatocyte number in the control wells. Relevant for latter was the determination 

of the total amount of protein per one million hepatocytes. The amount of total protein determined with 

the BCA kit was compared to the number of cells counted on seven independent analyses and was 

consistent (between 1.015 and 1.078 mg /106 hepatocytes) in six samples with one exceptional outlier 

(1.302 mgtotal protein/106 hepatocytes). Linear regression showed a strong correlation (R2 = 0.995) between 

the amount of total protein and the number of cells, with a mean value of 1.051 ± 0.019 mgtotal protein/106 

hepatocytes, excluding the outlier (Figure 17A). This mean value was similar to the total amount of 

protein per one millions hepatocytes applied in other publications (108, 209) and was applied for 

determination of cell number attached to the scaffold in the control wells. 

Seeding Efficacy after Preincubation 

Varying amounts of hepatocytes were initially seeded in the different experiment at Day -4, which was 

depending on the total revenue of hepatocytes per vial provided by the vendor. The measured number 

of hepatocytes at Day 1 in the control wells (n = 15) from each experiment (n = 5) was in average 260000 

± 25000 (CV: 9.3%) and ranged from 230000 to 310000 hepatocytes. Comparison of the number of 

hepatocytes measured in the control wells with the initial seeding number resulted in an average seeding 

efficiency of 52.0 ± 7.1% (CV: 13.6%) with values ranging from 39.0 to 66.5% (Figure 17B). Hence, 

about half of the cells remained attached on the scaffold after the pre-incubation. This is an important 

finding when considering the potential for under-prediction of DMPK properties (i.e. intrinsic clearance) 

based on the assumption that all seeded hepatocytes remained attached and viable during the pre-

incubation and the experiment. Nevertheless, encouraging is the consistency of the seeding efficacy over 
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the different experiments, which increased the confidence in the methodology used for hepatocyte 

seeding and remaining plate manipulation procedures. 
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Figure 2 - Results from Total Protein Analysis and Albumin Correlation to Hepatocyte Number. A) 

Correlation between total protein and number of cells. B) Seeding efficiency of the experiments by comparing the 

initial amount of hepatocytes seeded and the measured total protein amount at Day 1 of the experiment in control 

wells. Different colours indicate data from different experiments. C) Albumin production rate measured in 

dedicated control wells in five different experiments. D) Measured (black dots) and interpolated (red dots) number 

of cells in different wells. 

Albumin Concentration and Albumin Production Rate 

The mean albumin concentration in all experiments (n = 5) and wells (n = 120) was 10.32 ± 3.73 µg 

(CV: 36.1%). The mean albumin production rate (APR) was calculated using the known number of cells 

from protein analysis in the control wells (n = 15) and was 38.95 ± 8.40 µg/day/106 hepatocytes (CV: 

21.6%) with values ranging from 23.2 to 58.3 µg/day/106 hepatocytes. The mean APR differed between 

the experiments and was 27.0 ± 2.8 (CV: 10.4%), 38.0 ± 3.0 (CV: 7.8%), 45.3 ± 9.3 (CV: 20.4%), 39.6 

± 2.8 (CV: 7.1%), and 37.2 ± 0.9 (CV: 2.5%) µg/day/106 hepatocytes in the experiments 1, 2, 3, 4, and 

5, respectively (Figure 17C). The APR in experiment 1 was significantly different (independent samples 
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T-test) from the APR in experiment 2 (p-value = 0.007), in experiment 4 (p-value = 0.008), and in 

experiment 5 (p-value = 0.039). Nevertheless, the overall mean APR from this study lies within the 

estimated albumin output of a human liver of 37 to 105 µg/day/106 hepatocytes as reported by Baudy 

and colleagues (210). Of note: It was considered to apply a global APR for all experiments that can be 

used to correlate the number of hepatocytes in each well. Due to the inter-experiment differences of the 

albumin production rate, a global APR value could not applied. This had the disadvantage that three 

wells always had to be dedicated for the quantification of the cell number, but the advantage that the 

APR is reflecting altered incubation conditions (i.e. adaptation of the medium composition) for each 

experiment individually and/or other hepatocyte donors which will result in different values of APR. 

The measured number of hepatocytes in the control wells in combination with the albumin 

concentrations in the respective wells could then be used to calculate the albumin production rate. The 

albumin production rate could in turn be used to derive the number of hepatocytes in the remaining wells 

based on the albumin concentrations in the media. An exemplary depiction of extrapolated and measured 

values for cell numbers is shown in Figure 17D. 

Compound Depletion and Calculation of In Vitro Intrinsic Clearance 

In the second part of the study, the metabolic activity of major drug metabolizing enzymes was 

determined by measuring the depletion of four CYP substrates, six UGT substrates and one AO 

substrate. Depletion of the parent drug and metabolite formation was observed for all eleven drugs tested 

(Figure 18). Hence, the hepatocytes within the microfluidic system seem to retain their activity at least 

during the pre-incubation period which demonstrates the positive impact of the medium flow (i.e. shear 

stress) on the functionality of the hepatocytes. In comparison, a significant loss of activity is obtained 

for 2D-monocultured hepatocytes only 24 hours after the seeding (99).  

Concentration time profiles of parent depletion were described by a linear regression curve and in vitro 

intrinsic clearance values were calculated based on the correlated number of cells. Rate of depletion and 

calculated in vitro intrinsic clearance values are summarized in Table IV. Mean intrinsic clearance 

values ranged from 1.81 ± 0.37 to 56.6 ± 1.3 µL/min/106 hepatocytes for zidovudine and naloxone, 

respectively. The intrinsic clearance was below 3 µL/min/106 hepatocytes for four compounds and 
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above 10 µL/min/106 hepatocytes for five compounds. Inter-well variability of the calculated depletion 

rate constant had an average CV of 12.7% (range from 2.7 to 26.9%) and was similar compared to the  
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Figure 18 - Depletion of the Compounds over Time. Graphs describing the log-transformed concentrations of 

the compounds over time. Symbols represent the observed concentrations in the wells 1-3 and solid lines represent 

the linear regression curve. Parent depletion was described as the slope of the linear regression curve. Of note: 

differences in the experiment durations were due to differences in the metabolic stability of drugs. 
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mean CV of 11.8% (range from 2.3 to 21.3%) for in vitro intrinsic clearance values after normalization 

by the correlated cell number. 

Metabolic Activity over Time 

In order to determine the stability of the metabolic activity, we repeatedly measured compound depletion 

and metabolite formation over four days (i.e. day 0, day 1, day 2, and day 3) with an intermediate 

washing step before each measurement to wash out the compounds from the previous day. The 

measurement was conducted for seven out of eleven substrates. The stability of metabolic activity was 

assessed by comparing the depletion rates for the parent drugs and the area under the curve for metabolite 

formation at the different days (Figure 19). The rate of parent depletion at Day 4 compared to the initial 

depletion rate was 51.9% for midazolam, 79.9% for diclofenac, 63.7% for dextromethorphan, 48.2% for 

carbazeran, 84.2% for naloxone, 46.0% for repaglanide, and 42.3% for quinidine. The AUC of formed 

metabolites at Day 4 compared to the initial value at Day 0 was 72.1% for 1-hydroxymidazolam, 52.0% 

for 4-hydrocydiclofenac, 99.2% for diclofenac-O-glucuronide, 116.7% for dextrorphan, 27.0% for 4-

hydroxy-carbazeran, 120.4% for repaglanide-O-glucuronide, 85.6% for naloxone-glucuronide, and 

98.4% for 3-hydroxyquinidine. 

Hence, the loss of activity was mainly observed for oxidative metabolism mediated by CYP enzymes 

and for oxidation mediated by the aldehyde oxidase. In contrast, the activity of UGT enzymes appeared 

to be stable over the time course of the experiment. Reasons for the loss of activity over time is most 

probably a combination of different factors. Firstly, the decrease in metabolic activity might be due to 

the loss of viable cells during the medium change or during the incubations. This was evident from total 

protein measurements at the final day of the experiment (data not shown) which showed a lower number 

of cells compared to Day 1 of the experiment in tendency. Secondly, a loss of phenotype is apparent 

when considering differences in decrease of metabolic activity for oxidative metabolism and 

glucuronidation activity. The problem might be solved by using a different hepatocyte lot or adapting 

the incubation conditions such as the flow rate of the medium or the medium composition. 
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  Table IV – Parent Depletion and Bound In Vitro Intrinsic Clearance Values 

Compound Well 

Decay Constant from Linear 

Regression in hours-1 (95% 

Confidence Interval) 

Number of Cells 
In Vitro Intrinsic Clearance 

(µL/min/106 cells) 

Average In Vitro CLint 

± SD (µL/min/106 cells) 

Inter-Well 

Variability (CV) 

Midazolam 

1 -0.2127 (-0.2400 to -0.1854) 233300 27.3 

28.1 ± 2.40 8.7% 2 -0.1908 (-0.2246 to -0.1570) 223200 25.6 

3 -0.2133 (-0.2469 to -0.1797) 204000 31.4 

Diclofenac 

1 -0.0361 (-0.0466 to -0.0256) 267800 6.45 

5.10 ± 1.02 20.0% 2 -0.0185 (-0.0322 to -0.0048) 330700 3.97 

3 -0.0348 (-0.0403 to -0.0292) 231400 4.90 

Dextromethorphan 

1 -0.1423 (-0.1487 to -0.1359) 279400 15.3 

13.7 ± 1.1 8.3% 2 -0.1090 (-0.1326 to -0.0855) 259500 12.6 

3 -0.1212 (-0.1303 to -0.1121) 272600 13.3 

Carbazeran 

1 -0.0976 (-0.1213 to -0.0739) 307900 9.5 

10.0 ± 0.4 4.5% 2 -0.1158 (-0.1308 to -0.1008) 328800 10.6 

3 -0.1180 (-0.1360 to -0.0998) 347100 10.0 

Repaglanide 

1 -0.0290 (-0.0373 to -0.0207) 452200 1.92 

2.10 ± 0.47 22.4% 2 -0.0247 (-0.0371 to -0.0123) 452100 1.64 

3 -0.0379 (-0.0450 to -0.0308) 413900 2.75 

Quinidine 

1 -0.0806 (-0.1414 to -0.0199) 304700 7.9 

10.7 ± 2.3 21.3% 2 -0.1135 (-0.1610 to -0.0660) 315300 10.8 

3 -0.1213 (-0.1623 to -0.0803) 270000 13.5 

Telmisartan 

1 -0.0763 (-0.1053 to -0.0472) 231000 9.91 

9.57 ± 1.02 10.6% 2 -0.0620 (-0.0805 to -0.0434) 227100 8.19 

3 -0.0849 (-0.1019 to -0.0678) 240200 10.61 

Posaconazole 

1 -0.0154 (-0.0209 to -0.0099) 238100 1.94 

1.96 ± 0.10 4.9% 2 -0.0163 (-0.0198 to -0.0128) 234000 2.09 

3 -0.0163 (-0.0186 to -0.0141) 262800 1.86 

Naloxone 

1 -0.4335 (-0.5670 to -0.3040) 223200 58.3 

56.6 ± 1.3 2.3% 2 -0.4000 (-0.4739 to -0.3262) 217900 55.1 

3 -0.4457 (-0.5384 to -0.3531) 236700 56.5 

Zidovudine 

1 -0.0152 (-0.0237 to -0.0066) 244700 1.86 

1.81 ± 0.37 20.2% 2 -0.0109 (-0.0237 to -0.0018) 244800 1.34 

3 -0.0200 (-0.0353 to -0.0046) 269000 2.23 

Lorazepam 

1 -0.0161 (-0.0180 to -0.0142) 250100 1.93 

2.07 ± 0.13 6.2% 2 -0.0151 (-0.0174 to -0.0129) 222000 2.04 

3 -0.0190 (-0.0222 to -0.0158) 254500 2.24 
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Figure 19 - Measured Metabolic Activity over Time. Change in metabolic activity over time determined via 

depletion rate of parent drugs and the AUC of formed metabolite. All depletion constants are given in min-1 and 

area under the curve is displayed in µmol*hours*mL-1. 
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Conclusion and Preview on Modelling and Simulation 

We successfully showed the approach of using albumin as a marker for the number of hepatocytes within 

the wells and could use the methodology for calculation of the in vitro intrinsic clearance. Metabolic 

activity was measured for the clinically relevant metabolizing enzymes which increases the confidence 

in the system for the application of DMPK assessments during the drug development. However, the 

activity did not remain stable mainly for oxidative metabolism and incubation conditions might be 

optimized and/or hepatocyte donors might be identified that demonstrate improved stability of the 

metabolic activity. Finally, the combination of the in vitro investigations with modelling and simulation 

techniques is key to the current work, but was not included in this manuscript yet, since the models 

require finalization. However, data indicate that the quality of the calculated in vitro intrinsic clearance 

was substantially improved by the application of a non-linear model that accounts for loss of activity 

during the incubation time due to evaporation and sampling. In addition, fraction metabolized values 

were derived for diclofenac (fm,CYP and fm,UGT) and oxazepam (fm,UGT2B15 and fm,UGT1A9) that compare well 

with reported mass balance studies in vivo. 
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7 SUMMARY AND FUTURE INVESTIGATIONS 

The publication with the title “In Vitro to In Vivo Extrapolation of Metabolic Clearance for UGT 

Substrates Using Short-Term Suspension and Long-Term Co-Cultured Human Hepatocytes” (211) 

investigated the accuracy and precision of the hepatic clearance for UGT substrates. Based on recent 

literature and research, we hypothesized that we could achieve improved prediction accuracy of the 

metabolic clearance using the HepatoPac system compared to suspended hepatocytes. Previous studies 

that used HepatoPac for IVIVE were quite specific on CYP-mediated metabolism, whilst disregarding 

generalization to other DMEs like UGT enzymes. Our investigations aimed to extend the previous work 

to the prediction of hepatic clearance for UGT-mediated metabolism. The results successfully proved 

the hypothesis by conducting an array of extensive in vitro experiments to investigate the in vitro 

clearance and by scaling and comparing the results to observed in vivo clearance, which showed 

improved predictions of the hepatic clearance using the hepatocyte co-culture. This was an important 

gap to fill and will have a positive impact on the confidence in the application of the system during drug 

development for UGT substrates. In addition, we clearly defined the protein binding and high inter-

study variability as sources for uncertainty of the predictions and discussed potential reasons for the 

outlier behavior mainly regarding non-metabolic routes of clearances and/or other sites of metabolism 

(i.e. renal and intestinal tissues). The aspects are discussed in more depth in the manuscript. 

We extended the work about the evaluation of UGT-mediated clearance further by generating and 

evaluating PBPK models for four of the substrates used in the clearance scaling publication. The work 

aimed to address previous reports that noticed low confidence in the application of PBPK modelling and 

simulation for UGT substrates. Hence, the aim of the study was to investigate current possibilities and 

limitations of PBPK modelling for UGT substrates, which is addressed in the publication with the title 

“Construction and Verification of Physiologically Based Pharmacokinetic Models for Four Drugs 

Majorly Cleared by Glucuronidation: Lorazepam, Oxazepam, Naloxone, and Zidovudine” (212). We 

successfully generated well-verified models for all of the UGT substrates and were able to simulate the 

PK profile of the parent drugs and their metabolites. Importantly, the systemic clearance was predicted 

within 1.5-fold of observed systemic clearance, while almost all of the remaining PK parameters (AUC0-
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inf, Cmax, Tmax, VSS) were predicted within 2-fold. By using these generated and validated PBPK models, 

we defined areas that require improvement to reach higher confidence in the application of PBPK 

modelling for UGT substrates. Major gaps that we identified were the estimation of fraction metabolized 

values for specific isoforms, the prediction of intestinal glucuronidation, and the prediction of the 

clearance of glucuronide metabolites. In addition, we related the importance of high quality input for 

UGT expression levels in different tissues and the identification of specific substrates and inhibitors of 

UGT isoforms to the uncertainty and variability reported in the literature. We finally concluded that The 

uncertainty of these parameters have to be improved in order to allow for higher confidence in bottom-

up simulations of drug metabolism and pharmacokinetics using PBPK modelling and simulation. These 

and more limitations regarding UGT-mediated metabolism are reported in more detail in the publication. 

Taken the two studies together, we could increase the confidence in translating UGT-mediated clearance 

based on the HepatoPac system and PBPK modelling and simulation. Yet, knowledge gaps remain for 

UGT enzymes and prediction of the metabolism in human. In the clearance scaling publication, a 

relatively low number of compounds (n = 13) was used for the investigations, which had the advantage 

that the quality of the generated data was high and that we could gain a mechanistic understanding about 

each of the drugs involved. This allowed us to assess the prediction accuracy for each of the compound 

and to discuss potential reasons for miss-predictions. The disadvantage of the approach was that the 

reduced number of drugs prevents a trend analysis to find statistical regularities for the success or failure 

of IVIVE. A high number of substrates can be applied to determine a more apparent impact on IVIVE 

from the uncertainty of protein binding values, from the physico-chemical properties, from the ECCS 

classification, and/or from the rate of hepatic extraction observed in vivo. Nevertheless, these types of 

studies have already been conducted in recent publication and was not in the scope of the study (137, 

213, 214). More interesting and at the same time a suggestion for a future study is to correlate the bias 

of the IVIVE prediction for substrates of renally expressed UGT enzymes to determine the impact of 

extra-hepatic glucuronidation with a wider set of UGT substrates which might have an impact on the 

success of IVIVE as discussed in the publication. The challenge for this analysis would be to select an 

appropriate set of drugs since most UGT enzymes are metabolized by multiple UGT isoforms and 

significant renal glucuronidation is only expected for substrates of UGT1A9, UGT2B7, and UGT1A6. 
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Furthermore, the prediction bias seen with hepatocyte suspension could be improved by the use of the 

hepatocyte co-culture, nevertheless, a general bias towards under-prediction of the clearance remains. 

The general under-prediction of hepatic clearance is not only obtained in the current study, but has been 

reported in several studies beforehand (109, 215, 216). Two recent reviews addressed and discussed this 

limitation further (213, 217). Benet and Sodhi (217) discussed potential reasons for the poor predictions 

of metabolic clearance and declared three relevant factors that negatively impact the success of the 

predictions, which are: poor assay conditions for in vitro intrinsic clearance determinations, the 

assumption that the in vitro cells can be regarded as equivalent to in vivo hepatocytes, and poor 

methodology for the determination of fraction unbound. Importantly and related to their second point, 

we assumed that the pooled in vitro hepatocytes in both cellular tools have a comparable enzyme 

expression level to hepatocytes in vivo which, however, was not determined with quantitative 

proteomics in the hepatocyte co-culture due to the missing reference expression levels from the clinical 

studies and due to the difficulties of determining UGT enzyme expression levels. 

The studies about PBPK modelling for UGT substrates could be extended by further investigating the 

potential and prediction of drug-drug interactions for UGT substrates. In fact, induction of CYP enzymes 

mainly via activation of PXR (e.g. rifampicin), AhR (e.g. omeprazole), and CAR (e.g. phenobarbital) is 

widely assessed. Although in vivo induction of the UGT enzymes is reported, the effect of inducers on 

the glucuronidation tend to be smaller than on CYP mediated clearance. This is also true for in vivo 

inhibition of the UGTs with an area under the curve (AUC) ratio typically of less than 2 when comparing 

the pharmacokinetics with and without concomitant administration of the inhibitor. Reasons for the 

weaker DDI effect for UGT enzymes might be 1) the metabolism, which is mediated by several UGT 

isoforms, leading to less weight of inhibition/induction of an individual UGT isoform, 2) the inhibitor 

concentration which is well below the KI (inhibition constant) leading to a weak inhibition effect, 3) low 

hepatic extraction of the drug, or 4) a much higher KM compared to intracellular concentrations in the 

liver at the site of metabolism (218). In order to increase the confidence in the prediction of DDIs, more 

examples showing successful predictions of DDI mediated by UGT enzymes have to be reported and 

current lines have to be drawn where the field is currently limited.  

In addition to DDIs, an increasing amount of data is available about inter-individual variability of 
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metabolic clearance due to UGT enzymes and can be combined with PBPK modelling in order to 

improve the confidence in the approach and to strengthen the regulatory impact (161). Badée and 

colleagues (219) thoroughly investigated age-dependent changes in glucuronidation activity of ten 

different hepatic UGT isoforms (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10, and 2B15) from 

pediatric to adult donors which was an important study due to the limited knowledge about the postnatal 

ontogeny of individual UGT enzymes. The newly generated data can be integrated into PBPK modelling 

and potentially improve the dosing recommendation and study designs in children (220). Finally, inter-

individual variability due to polymorphisms are known and described for UGT enzymes. However, 

generation and validation of PBPK models describing differences in PK due to genetic polymorphisms 

is only poorly reflected in the literature. 

Besides the HepatoPac co-culture, numerous in vitro systems are currently introduced in the 

pharmaceutical industry. The cultivation techniques might differ between the in vitro system, but the 

general promise for all the new systems is to prolong the cultivation period and to extend the possibilities 

which are limited by the current in vitro tools. These newly emerging systems (e.g. HepatoPac, 

spheroids, MPS) together with the well-established and routinely applied in vitro screening tools (e.g. 

HLM, suspended/plated hepatocytes) provide a plethora of in vitro test systems that can be applied 

during the drug development. However, deployment of the individual systems have to be reasonable 

and tailored to the respective development stages due to the distinct demands for data quality and 

throughput rate. The review with the title “Application of New Cellular and Microphysiological Systems 

to Drug Metabolism Optimization and Their Positioning Respective to In Silico Tools” (195) sorted out 

the value of advanced and conventional in vitro cultivation techniques for DMPK assessments during 

drug discovery and development. We accessorized the statements with results generated in the 

laboratory to show the improvement that comes from the application of the hepatocyte co-culture over 

suspended/plated hepatocytes for the determination of in vitro intrinsic clearance of metabolically stable 

drugs and for the study of drug-drug interactions due to time-dependent inhibition and induction. In 

addition, we reviewed other promising in vitro systems and in silico tools for DMPK assessments with 

the focus on applications where the systems can offer a merit over conventional tools. Importantly, we 

discussed that the adoption of new experimental systems is driven by the demonstration of clear added 



 

78 
 

value by 1) increasing the experimental capacity, 2) improving the quality of the measurements for 

ADME properties, and 3) enabling measurements that were not previously possible. 

This was also a relevant consideration for the adoption of a novel micro-physiological system that we 

aimed to introduce to Roche. Basic evaluation of the system for minimal prerequisites had to be done 

first in order to demonstrate the appropriateness of the system. The last manuscript with the title 

“Optimization of a Liver-on-Chip System for DMPK Application and Combination with Modelling and 

Simulations” describes an evaluation of an MPS (CN Bio Liver Chip) that might be applied for more 

complex DMPK assessments. We achieved to exploit the albumin production rate as a marker for the 

cell number and demonstrated the presence of clinically relevant metabolizing enzymes. In addition, we 

calculated in vitro intrinsic clearance values based on the correlated number of hepatocytes. Hence, the 

work showed promising results for the application of the MPS for determinations of the metabolic 

clearance. Nevertheless, the system is currently limited by the apparent decrease in metabolic activity 

over the incubation time. This decrease in metabolic activity has to be addressed in an additional 

evaluation step in which 1) the incubation conditions (e.g. medium composition, medium flow rate, 

seeding density) are optimized and/or 2) more suitable hepatocyte donors are identified that remain a 

stable metabolic activity.  

After the optimization of the metabolic stability in the hepatocytes, subsequent investigations need to 

include an in vitro to in vivo scaling of the measured intrinsic clearance to assess translatability to human 

clearance. This was not conducted because we used a single donor that hinders a reasonable comparison 

of the predicted clearance to observed clearance measured in a clinical study within a population. 

Instead, a pool of hepatocytes or multiple single donors should be applied for a proper IVIVE study like 

demonstrated in the publication describing the IVIVE of metabolic clearance for UGT substrates (211). 

The promise of the system is to combine multiple endpoints, describing different DMPK properties of 

a drug in one experiment. For example, simultaneous assessments of drug metabolism, active transport, 

and drug-drug interactions as demonstrated by Kratochwil and colleagues using HepatoPac (110) must 

be demonstrated. In addition, DMPK assessment can also be combined with safety risk assessments as 

investigated by Sarkar and colleagues (25) that simultaneously assess biotransformation and toxicity of 

diclofenac and its metabolites. However, in order to enable these types of studies, the MPS model needs 
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further characterization (i.e. mitochondrial and biochemical synthesis, mRNA expression of ADME 

genes, etc.) and requires to meet pre-defined specifications (196). 

Finally, the medium flow has a positive effect on the hepatocytes (97), but can further be exploited by 

combining multiple tissues. In the longer term, the combination between liver and gut tissue is appealing 

because it offers the opportunity to assess the continuous communication between the tissues and to 

investigate the PK process after oral drug administration (120). Such applications have the potential to 

reduce the usage of preclinical animal models which are costly and unethical and might be, in 

combination with modelling and simulation, a powerful tool that find broad applicability in pre-clinical 

drug development (128). 
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8 CONCLUSION 

The PhD project aimed to evaluate hepatocyte in vitro systems and PBPK modelling and simulation 

with a strong focus on UGT-mediated clearance. We demonstrated for the first time that an improvement 

is achieved upon the application of the HepatoPac co-culture for the in vitro to in vivo extrapolation of 

metabolic clearance for UGT substrates. We also identified and discussed current limitations in PBPK 

modelling and simulation based on well-constructed PBPK models regarding the bottom-up prediction 

of hepatic and extra-hepatic glucuronidation. Taken these studies together, we could increase the 

confidence in the development of UGT substrates when it comes to the static and mechanistic translation 

of metabolic clearance. The number of compounds undergoing metabolism via UGT enzymes is 

increasing and assessments as well as optimization of the current and also future test systems for UGT 

mediated metabolism is substantial for a successful drug development. Hence, the studies have a positive 

impact on the decision-making process in the pre-clinical drug development and, in addition, for dose 

predictions in first-in-human studies. 

The review discussed the state of the art for the application of conventional and advanced hepatocyte 

systems, which were placed within the value chain of drug development and in relation to supporting 

computational approaches. Furthermore, we aimed to adopt a liver-on-chip device for the determination 

of DMPK properties ourselves. As demonstrated, the application of the systems in the pharmaceutical 

industry is yet in a relatively exploratory phase and more assessments and optimization have to be made 

before definite incorporation into the drug development. 

The studies conducted during the PhD project can be complemented with additional assessments 

regarding the general improvement of the clearance scaling approach, as well as the prediction of drug-

drug interactions, polymorphisms, and/or ontogeny based on UGT-mediated metabolism. Current and 

future in vitro systems and PBPK modelling and simulation can yet be improved to allow for mechanistic 

bottom-up modelling to describe the ADME behavior of a drug in human already in the pre-clinical 

phase of the drug development. Ultimately, this will be a step forward that accelerates the drug 

development process and that can potentially reduce the costly and unethical animal studies. 
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