
Alma Mater Studiorum · Università di Bologna

SCHOOL OF ENGINEERING AND ARCHITECTURE

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND INFORMATION
ENGINEERING ”GUGLIELMO MARCONI” (DEI)

MASTER DEGREE IN AUTOMATION ENGINEERING
8891

GRADUATION THESIS
in

MECHATRONICS SYSTEMS MODELING AND CONTROL M

Motion control development in the
TIA Portal for the MS260 binding and

wrapping machine

CANDIDATE: SUPERVISOR:
Andrea Balboni Eminent prof. Alessandro Macchelli

CO-SUPERVISOR:
eng. Michele Padovani

Academic year
2019/2020

Session
III





Ringraziamenti

Vorrei ringraziare, innanzitutto, il mio supervisore Michele Padovani per
il supporto e per avermi guidato durante lo sviluppo di questo progetto. Una
particolare menzione anche per il mio relatore Alessandro Macchelli per avermi
offerto questa opportunità e per la sua sempre presente disponibilità.

Vorrei ringraziare, inoltre, tutti coloro con cui ho potuto condividere questi
anni universitari e che da colleghi sono diventati amici di vita a tutti gli effetti;
da coloro con cui ho condiviso l’intero percorso universitario, Luca, Giova, Ros,
Lory, Martina, Euseb, chi ho conosciuto alla magistrale, Baruz, e chi con cui
ho trascorso solamente la triennale, Mula, Steve, Alle Alby e Shou.

Non dimentico, inoltre, chi ho avuto l’opportunità di conoscere durante
questi stessi anni al di fuori dell’università, Nick, Werther e Samu.

Vorrei ringraziare anche, troppi da poter menzionare tutti, coloro con cui
ho trascorso gli anni delle scuole primarie e gli anni da calciatore.

Ringrazio la mia ragazza Federica e la sua famiglia che, nonostante siano
entrati da poco nella mia vita, rappresentano una parte importante di essa
e con cui ho potuto condividere alcuni dei momenti più importanti del mio
percorso.

Infine, ma primi tra tutti, vorrei ringraziare in particolar modo la mia
famiglia, i miei genitori Carlo e Nadia e mia sorella Alice, per avermi sempre
sostenuto e per avermi dato la splendida opportunità di completare la mia
formazione. Ringrazio anche i miei zii, Luca e Cristina, mio cugino Matteo e
mia nonna Alba con cui ho avuto la possibilità di crescere.



Abstract

La MS260 è una macchina legatrice e avvolgitrice. È una macchina fine-
linea studiata e creata dalla IMA S.p.A e in particolare dalla divisione dedicata
ai fine linea, cioè IMA BFB.

Il lavoro di tesi è concentrato sullo sviluppo della macchina utilizzando es-
clusivamente hardware e software Siemens. In particolare la MS260 presa in
considerazione è suddivisa in due parti. La parte relativa al PLC è caratteriz-
zata da hardware Siemens con relativo algoritmo sviluppato tramite software
TIA Portal. Parallelemente la parte di motion control è interamente caratter-
izzata da elementi legati al mondo Schneider. Drive e motori appartengo alla
suddetta azienda, cos̀ı come l’algoritmo è sviluppato tramite il software nativo
MachineExpert.

L’obiettivo della tesi è, dunque, suddiviso in due parti. In primis, è nec-
essario studiare le caratteristiche della macchina. In questo modo è possi-
bile poter selezionare un hardware adeguato per il nuovo codice. Lo studio
delle performance dei motori consente un scelta ottimale degli azionamenti
dal catalogo Siemens. Inoltre la loro sostituzione richiede anche il cambia-
mento del PLC, passando a un componente capace di gestire un controllo
degli assi più avanzato. In secundis, l’algoritmo di motion control deve essere
sviluppato e integrato. Per farlo vengono sfruttate alcune librerie di Siemens
mentre altre devono essere sviluppate per poter realizzare funzioni non native.
L’integrazione finale comporta l’adattamento del codice PLC alla nuova orga-
nizzazione dell’algoritmo di motion e la modifica parziale del software HMI per
l’aggiunta delle nuove funzionalità.



Abstract

The MS260 is a biding and wrapping machine. It is an end-of-line ma-
chine designed and created by IMA S.p.A and, in particular, by the division
dedicated to the end-of-line, i.e. IMA BFB.

The thesis work is concentrated on the development of the machine by
exclusively using Siemens hardware and software. In particular, the MS260
analysed is divided into two parts. The PLC part is characterized by Siemens
hardware with the relative algorithm developed through the TIA Portal soft-
ware. At the same time, the motion control part is entirely characterized by
elements linked to the Schneider world. Drives and motors belong to the afore-
mentioned company, as well as the algorithm is developed through the native
software MachineExpert.

The objective of the thesis is, then, divided into two parts. First of all, it is
necessary to study the characteristics of the machine. This allows to select a
suitable hardware for the new code. The study of the motor performances allow
an optimal choice of the actuators on the Siemens catalogue. Furthermore, the
replacement of the drives requires also the change of the PLC, passing to an
hardware capable of handling more advanced control commands. Secondly,
the motion control algorithm must be developed and integrated. To do this,
some Siemens libraries are exploited while others must be created in order to
exploit non-native functions. The final integration foresees the adaptation of
the PLC code to the new organization of the motion algorithm and the partial
modification of the HMI software to add the new functionalities.



Contents

Introduction 10

1 Software architecture 12
1.1 Machine operative conditions . . . . . . . . . . . . . . . . . . . 13
1.2 PLC Siemens structure . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Structure of the Schneider motion control . . . . . . . . . . . . . 17

1.3.1 Machine module organization . . . . . . . . . . . . . . . 19
1.3.2 Sub-modules organization . . . . . . . . . . . . . . . . . 20

1.4 Schneider alarm managing . . . . . . . . . . . . . . . . . . . . . 24
1.5 PLC-Drive connection . . . . . . . . . . . . . . . . . . . . . . . 30

2 Hardware structure 34
2.1 Schneider catalogue . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 MS260 motors description . . . . . . . . . . . . . . . . . . . . . 36
2.3 Siemens hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Siemens PLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Siemens motor selection . . . . . . . . . . . . . . . . . . . . . . 45

3 Structure of the TIA Portal project 67
3.1 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Technology objects . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 TO Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.2 TO OutputCam . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.3 TO Cam . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.4 Organization blocks . . . . . . . . . . . . . . . . . . . . . 75

3.3 Drive unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1 Hardware definition . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Parameters access . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.1 IsAxisReady . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.2 LAxisCtrl . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.3 LCamHdl . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.4 Crank module . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Motion Control algorithm 96
4.1 Implementation of the motion control . . . . . . . . . . . . . . . 96
4.2 Motion structure . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5



4.2.1 MM Machine . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.2 Sub-modules organization . . . . . . . . . . . . . . . . . 99

4.3 Axis module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4 Initialization and blocks execution . . . . . . . . . . . . . . . . . 105
4.5 Sub-module bridges . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Motion control actions . . . . . . . . . . . . . . . . . . . . . . . 108

4.6.1 Motion block structure and management . . . . . . . . . 108
4.6.2 SM Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.6.3 SM Stretch . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Format change management . . . . . . . . . . . . . . . . . . . . 121
4.7.1 Layer sub-module format change . . . . . . . . . . . . . 121
4.7.2 Stretch sub-module format change . . . . . . . . . . . . . 124

4.8 Motion control logic . . . . . . . . . . . . . . . . . . . . . . . . 129
4.9 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.9.1 Error management FB . . . . . . . . . . . . . . . . . . . 132
4.9.2 Error logic . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.10 HMI panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.11 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Conclusions 146

A Crank module code 148

B HMI libraries 153

Bibliography 162



List of Figures

1.1 PLC Siemens Tree. . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Modules Organization. . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Modules Programs. . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Schneider Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Schneider program structure. . . . . . . . . . . . . . . . . . . . . 18
1.6 POUs Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 POUs SFC Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.8 Error Handler acquisition. . . . . . . . . . . . . . . . . . . . . . 25
1.9 Error Handler transmission. . . . . . . . . . . . . . . . . . . . . 25
1.10 Reaction Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.11 Reaction Table layer structure. . . . . . . . . . . . . . . . . . . 26
1.12 Reaction Table: layer composition. . . . . . . . . . . . . . . . . 26
1.13 Reaction Table: layer meaning. . . . . . . . . . . . . . . . . . . 27
1.14 Reaction Table: layer modification. . . . . . . . . . . . . . . . . 27
1.15 Error definition example. . . . . . . . . . . . . . . . . . . . . . . 28
1.16 Error handling example. . . . . . . . . . . . . . . . . . . . . . . 28
1.17 Example of exceptions transmission. . . . . . . . . . . . . . . . . 29
1.18 OM structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.19 Line Level structure. . . . . . . . . . . . . . . . . . . . . . . . . 31
1.20 Data Transmission Schneider. . . . . . . . . . . . . . . . . . . . 31
1.21 Data Transmission PLC. . . . . . . . . . . . . . . . . . . . . . . 32
1.22 Vitality-Check of PLC. . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 SH3 servo-motors nomenclature. . . . . . . . . . . . . . . . . . . 36
2.2 DT Configurator Initialization. . . . . . . . . . . . . . . . . . . 40
2.3 DT Configurator Parameters. . . . . . . . . . . . . . . . . . . . 41
2.4 DT Configurator Alternatives. . . . . . . . . . . . . . . . . . . . 41
2.5 SIZER Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 SIZER parametrization. . . . . . . . . . . . . . . . . . . . . . . 43
2.7 SIZER Motor Characteristics Curves. . . . . . . . . . . . . . . . 43
2.8 ET 200 SP Open Controller. . . . . . . . . . . . . . . . . . . . . 44
2.9 Advanced controllers. . . . . . . . . . . . . . . . . . . . . . . . . 45
2.10 Master of the layer axis at 55% speed in no load run. . . . . . . 48
2.11 Layer axis at 55% speed in no load run. . . . . . . . . . . . . . . 48
2.12 Master of the machine axes at 24 u/min in no load run. . . . . . 48
2.13 Pusher axis 24 u/min in no load run. . . . . . . . . . . . . . . . 49
2.14 Film Pull axis 24 u/min in no load run. . . . . . . . . . . . . . . 49

7



2.15 Crank axis 24 u/min in no load run. . . . . . . . . . . . . . . . 49
2.16 Virtual Crank axis at 24 u/min in no load run. . . . . . . . . . 50
2.17 Master of the layer axis at 75% speed in no load run. . . . . . . 50
2.18 Layer axis 60 u/min in no load run. . . . . . . . . . . . . . . . . 50
2.19 Master of the machine axes at 60 u/min in no load run. . . . . . 51
2.20 Pusher axis 60 u/min in no load run. . . . . . . . . . . . . . . . 51
2.21 Film Pull axis 60 u/min in no load run. . . . . . . . . . . . . . . 51
2.22 Crank axis 60 u/min in no load run. . . . . . . . . . . . . . . . 52
2.23 Virtual Crank axis at 60 u/min in no load run. . . . . . . . . . 52
2.24 Data sheet of 3070 Schneider actuator. . . . . . . . . . . . . . . 53
2.25 Data sheet of 3100 Schneider actuator. . . . . . . . . . . . . . . 54
2.26 Layer Operative Points. . . . . . . . . . . . . . . . . . . . . . . 56
2.27 Layer 1FK7040-2AK7. . . . . . . . . . . . . . . . . . . . . . . . 57
2.28 Layer 1FK7034-2AK7. . . . . . . . . . . . . . . . . . . . . . . . 57
2.29 Layer 1FK2204-5AF0. . . . . . . . . . . . . . . . . . . . . . . . 58
2.30 Pusher Operative Points. . . . . . . . . . . . . . . . . . . . . . . 59
2.31 Pusher 1FK7034-5AK7. . . . . . . . . . . . . . . . . . . . . . . 60
2.32 Pusher 1FK2204-6AF0. . . . . . . . . . . . . . . . . . . . . . . . 60
2.33 Crank Operative Points. . . . . . . . . . . . . . . . . . . . . . . 62
2.34 Crank 1FK7061-4CH7. . . . . . . . . . . . . . . . . . . . . . . . 62
2.35 Crank 1FK7060-2AH7. . . . . . . . . . . . . . . . . . . . . . . . 63
2.36 Crank 1FK7060-2AF7. . . . . . . . . . . . . . . . . . . . . . . . 63
2.37 Crank 1FK7064-4CF7. . . . . . . . . . . . . . . . . . . . . . . . 64
2.38 Film Pull operative Points. . . . . . . . . . . . . . . . . . . . . . 65
2.39 1FK7015-5AK7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.40 1FK7022-5AK7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Project structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 TO OutputCam Distance-based when start position is lower

than the end position. . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 TO OutputCam Distance-based when start position is greater

than the end position. . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 TO OutputCam Time-based. . . . . . . . . . . . . . . . . . . . 74
3.5 OB cycle priorities. . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.6 Topology view. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7 Network view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8 Device view of the PLC. . . . . . . . . . . . . . . . . . . . . . . 80
3.9 Device view of the drive. . . . . . . . . . . . . . . . . . . . . . . 81
3.10 Modules Telegram. . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.11 TO Axes Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.12 Example of Enable activation for MS Power. . . . . . . . . . . . 87
3.13 Example of LAxisCtrl FB. . . . . . . . . . . . . . . . . . . . . . 89
3.14 Crank module structure. . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Siemens motion control layers. . . . . . . . . . . . . . . . . . . . 98
4.2 Sub-module Structure. . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Drive error management. . . . . . . . . . . . . . . . . . . . . . . 104

8



4.4 Axis Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 Drive error management. . . . . . . . . . . . . . . . . . . . . . . 105
4.6 FB organization of the motion actions. . . . . . . . . . . . . . . 110
4.7 Bypass Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.8 Format Change Organization. . . . . . . . . . . . . . . . . . . . 122
4.9 Buffer geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.10 Layer axis cams. . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.11 Pusher axis cam. . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.12 Crank axis cam. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.13 Virtual Crank axis cam. . . . . . . . . . . . . . . . . . . . . . . 128
4.14 Film pull axis cam. . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.15 Interpolation code of the alternative cam. . . . . . . . . . . . . . 132
4.16 Fault activation examples. . . . . . . . . . . . . . . . . . . . . . 138
4.17 Show cam page. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.18 PLC FB for DB import-export. . . . . . . . . . . . . . . . . . . 142
4.19 HMI DB import-export page. . . . . . . . . . . . . . . . . . . . 143
4.20 PLC performances. . . . . . . . . . . . . . . . . . . . . . . . . . 145



Introduction

Motivations

This thesis project deals with the possibility of creating a complete Siemens
machine. Indeed, like many other machines created by IMA BFB, the MS260
analysed is characterized by a PLC control part built from Siemens software
and components and an actuation part realized with Schneider software and
hardware. Therefore, it was considered to convert the latter part by exploiting
the Siemens software and hardware.

State of the art

Nowadays, many software are available for the creation of PLC algorithms.
Especially in IMA BFB, three are used for the development of their end-of-line
machines: TIA Portal by Siemens, MachineExpert by Schneider and Rockwell.
In addition to them, many others are available, like the B&R software also used
in other divisions of IMA. Each of them is characterized by their organization of
the algorithm and languages. Moreover, each has functionalities not supported
or not implemented by the other software, like in this thesis is going to be
described for the two of them considered. Therefore, there is not a better
choice. In the IMA BFB division, the more exploited platforms are Siemens
and Schneider. They are coexistent in many machines developed, in particular
in the smaller ones. As the MS260 is one of them, it is composed of both,
making the development of a complete Siemens machine a new approach.

Proposed solution

For the realization of such a goal, some steps are followed. An initial study
of the machine was first performed. The components present and the oper-
ations they perform must be analysed to gain a better understanding of the
development possibilities. This represents, indeed, the first occupation of my
internship at IMA BFB. First, I studied the MS260 in its entirety. This is what
the opening chapters of this thesis describe. In the first one, the software part
is analysed. There, the two algorithms that the PLC and the drive execute are
presented. It is an important initial step to understand what and how it was
developed afterward. Then, in the second chapter, I enter into the detail of
the hardware part. This implies the description of the actuators and the PLC
mounted on the old version of the machine. This allows explaining the tests
performed to find out the performances of the motors. Their study makes it

10



possible to see the limits to select the proper alternatives. Indeed, the Siemens
actuators selection follows from them. I also introduced a little digression on
the new PLC choice, as it is forced to be more performant in order to execute
the new advanced motion control commands.

The successive step is dedicated to the study in depth of the TIA Portal
software. To take full advantage of its possibilities, you need to understand
how it manages the elements of the software and what it allows and does
not allow doing. This is what the third chapter tries to explain. There, in
parallel, I describe also the organization of the new motion control algorithm.
Therefore, it contains the integrated and custom libraries used.

This leads to the last chapter where the code realised is presented. It is
described step by step in all its functions by recalling the elements analysed
previously.

11



Chapter 1

Software architecture

The MS260 is a binding and wrapping machine, that is, it picks up the indi-
vidual packs from the upper machine and collects them in bundles of prede-
termined dimensions through a wrapping film.

To understand what was done in the motion control code developed for
the project, an analysis of the machine already built is first performed. In
particular, this chapter presents the operations of the machine to give an idea
of the work it does. Subsequently, the software control architecture of the
machine is analysed which is divided into two main parts:

• the first is represented by the Siemens PLC code. This is aimed at
checking the status and at managing machine alarms;

• the second contains the motion control executed by the Schneider drive.
Accordingly, this part is aimed at the control of the motors’ behaviour.

In parallel to these two, the HMI software is also present. It allows the
operator to access the machine status and behaviours from an external panel.
As it is for the first of the two parts mentioned above, the main structure is
not modified too much because it is not the main topic of the project. But,
similarly, how some changes are made to support the libraries built during
project development are also analysed.

In the last section of this chapter, the connection between the status and the
motion control parts is also described. This is very important as it represents
one of the main topics in terms of comparisons between the Schneider and the
entire Siemens project.

12



1.1 Machine operative conditions

The MS260 is a wrapping and binding machine. Consequently, its main task is
to take the individual packages coming from an upper machine through the in-
feed belt and to generate bundles of specified size and composition by wrapping
them with a film. The specifications of the bundle can be changed accordingly
to the selected format in the HMI panel. In particular, the number of layers
and the number of packages per layer are specified. To better understand the
functionality of the machine, the hardware components and how they relate
to each other will be discussed.

The MS260 analysed can be decomposed in two sub-modules. The first
is called SM Layering and the second is the SM Stretch. The former, as the
name suggests, has the job to create the layers of the bundle. To speed up the
machine operation, this is performed while the second part of the machine is
running. Therefore, a buffer is necessary between them. Within this buffer,
the layers are collected as long as their size allows. Before the total height
of the collected packages exceeds that of the buffer while the Pusher has not
yet finished its operations, the Layer is stopped until the axes of the second
part reach a waiting position. Thus, the layers are added to the buffer until
the bundle is completed. Only in this case, in fact, the layers are pushed
together out of the buffer. In the second part, the bundle is wrapped by the
film. To do so, three actuators and two pneumatic pistons are used. Starting
from the actuators, the first one is called Pusher. Indeed, its job is to push
the collected layers ready to be wrapped towards the sealing motors. One of
these is the Crank axis. It is used to seal and cut the film around the bundle.
The Pusher moves the bundle all the way to the exit position of the machine.
This coincides with a position beyond where the film is stretched. As a result,
when the Pusher performs its movement, the bundle has three out of four sides
covered by the film. At this point, the two pneumatic pistons are activated.
One blocks the bundle in its exit potion while the second blocks one side of the
film which is stretched between two reels. Therefore, this last actuator blocks
the part coming from the upper reel. At this point, the Crank starts its motion
to cut and seal the film. During this motion, also the last axis performs its job.
This one is called Film Pull. Indeed, in order to create a solid bundle, the film
must be pulled. This is the reason why the two pneumatic actuators where
activated before the motion of this axis. If not, this actuator, which pulls the
film of the lower reel, would also pull the bundle back from its correct position
under the Crank operation area. At the end of the process, the Crank has
sealed and cut the film, while the Film Pull is released and the pneumatic
motors are deactivated. The generated bundle is pushed to the exit by the
successive one as in this machine an exit belt control is not present.

13



1.2 PLC Siemens structure

As mentioned above, the PLC software part is organized in order to control
and manage the status of the machine.

Figure 1.1: PLC Siemens Tree.

The Fig. 1.1 shows how the software is organized inside the PLC folder
of the ProgramBlocks section. The folders of interest are: EM PD3 Infeed,
EM PD3 Stretch, OM AxisNetwork, OM Option and UM Machine. As the
names imply, there are different types of modules which allow a structural
composition of the PLC. These modules can be divided in three different cat-
egories: Overall Modules (OM), Unit Modules (UM) and Equipment Modules
(EM). They are organized as Fig. 1.2 shows.

Figure 1.2: Modules Organization.

The Overall Modules represent the upper level of the machine control.
Here, the information are managed in order to give to the lower levels of the
software reliable and structured data. The first one is the OM AxisNetwork. It
is going to be analysed after the presentation of the Schneider code. It, indeed,
contains the PLC-side code for the connection with the drive hardware. Then,

14



for simplicity it is explained along with the Schneider counterpart. The second
one is, instead, the OM Option. This section contains the management of
additional operation performed by the PLC which do not affect the execution
of the machine. An example is the AuditTrail program which is used in order
to store the alarms occurred and the related information. Another example is
the Teleservice.

The Unit Modules are the status control of the machine. In the PLC there
is only one UM. It contains most of the programs that the PLC processes.
Here, all the functionalities of the machine are analysed; from the warnings’
management to the the computation of the machine speed; from the read of the
physical inputs to the execution of the of format change initialization requested
by the HMI. This module contains all the required algorithms for the control
of the machine.

Below this part, the Equipment Modules are present. They are the soft-
ware programs that manage the action on the motors and act as extensions
of the main UM. In particular, in this case two different EMs are present.
The EM PD3 Stretch controls the status sensors linked to the StretchBand-
ing module of the Schneider motion control. In particular, there are different
programs (Fig. 1.3 on the following page). Cams is the piece of code which
analyses the positions of the sealing section axes. This is useful in order to
allow some controls such as the check of the films. The CrossSealerTempera-
ture generates, as the name suggests, the reference temperatures and acts as
a bridge between the sensors and the HMI. Then, the FilmBokenCheck and
FilmEndedCheck allow the control, the exclusion and the signaling of events
related to the film. Indeed, the status of the film is controlled along with the
exclusion or inclusion of the alarms related. The Reels program control man-
ages the reels where the film rolls are mounted. Lastly, the SM stretch program
is the core of this equipment module. Here the command to the motion control
are processed and generated. All the commands for the operative modalities
are activated and the outputs of the resulting movement of the axes are pro-
cessed. Moreover, alarms are activated and input data are modified for the
correct control by the drive. The EM PD3 Infeed is dedicated to the control
of the in-feed part of the machine and of the Layer axis. The two are grouped
under the same equipment module because they share the same access to the
products. Faults in one of the two parts affect the other. For example, a stuck
package near the Layer axes generates a stop for both the actuator and the
belt. This includes both the belt and the first part of the motion axes, namely
the Layer. Firstly, the activation of the belt is controlled and the reference
speeds are computed. This takes into account the state of the machine about
which this program takes information from the upper modules. In addition, all
the operative states of the Layer are controlled from here where the commands
are activated.

15



Figure 1.3: Modules Programs.

16



1.3 Structure of the Schneider motion control

In this section, as mentioned before, the organization and composition of the
Schneider motion control algorithm is described.

Figure 1.4: Schneider Tree.

First, Fig. 1.4 shows how the software is organized. It is divided in three
sections. Regarding the first one, the variables and variable structures used
inside the code are defined in the top. Then, the programs executed by the
software are present. They represent the core part of the software that later will
be analysed. At the end of the project, the Utilities folder which allows a better
organization and execution of the code is placed. The second section contains
the list of the hardware parts. In particular, for the correct functionality
of Schneider, the motors encoders are defined for each virtual and real axis
present in the machine. Below, the typologies of the motors are defined. The

17



last section regards the physical inputs and outputs of the drives. In this
chapter, the programs, which will be substituted in the Siemens software, are
analysed while the motor discussion is performed in the next chapter.

As Fig. 1.5 intuitively shows, there are four different programs generated
in order to perform different roles of the motion control:

1. The Line Level is the communication line, inside the Schneider soft-
ware, which has the role to establish, maintains and perform the connec-
tion and data exchange with the PLC. This POU will be analysed along
with the relative PLC FBs in the dedicated section;

2. The MM Machine manages the information coming from the Line Level
along with the feed-backs from the axis modules in order to maintain and
manage the status of the motion part;

3. The SM Layering and the SM StretchBanding are the two sub-
modules which convert the commands from the MM Machine into action
directly controlling the axes.

Figure 1.5: Schneider program structure.

Figure 1.6: POUs Tree.

18



1.3.1 Machine module organization

The MM Machine and the sub-modules have the same structure that is shown
in Fig. 1.6 on the previous page. In this way, it can be understood how the
modules are organized. Outside the parallel action, only few steps are present.
As soon as the machine starts running, they are executed in order to initialize
their relative POUs. Afterwards, the Schneider motion control loops inside the
parallel action.

At this point, different jobs are executed between the MM Machine and the
sub-modules. Starting from the first one, it is in charge to control and manage
the status of the Schneider software. In particular, it is the bridge between
the Line Level, which communicates with the PLC, and the axes modules.
This one manages also the actions carried out by the sub-modules. Indeed,
the synchronization of the axes during the nominal operative conditions are
automatically managed by the sub-modules as it will be explained later; but,
this POU allows communicating to them how the operative conditions need
to be executed. Talking about the structure, as it can be seen in the last
Fig. mentioned, this module is mostly operating inside the parallel actions.
The central part, namely the alternative sequence, is never used. Better to
say, the module crosses them in parallel to the execution of the other blocks
following the same logic that characterizes the management of the sub-module
actions, but does not perform any type of operation. The important parts of
this module are the blocks at the ends.

In the Input, the sub-modules underneath it are checked. This means that
if any change is detected from their definition inside the Line Level, they are
updated. Moreover, the bridge between the variables of the Line Level and of
MM Machine is present. After that, the error reaction that the sub-modules
must execute in case of faults is controlled. This coincides with the control
of their enabling status. The details of the alarms handling is explained in a
successive section.

Another important action is the Format Change. Inside this FB the size
change procedure of the axes is started. Every time the updating procedure of
the data in the HMI is completed and their validation in the PLC is success-
ful, this module performs the first step of their management. In particular,
the main data are processed in order to compile the new bundle dimensions.
After this, the MM Machine waits for the sub-modules to complete their own
procedure before ends its own.

At the end, likely the Input action also the Output represents a bridge be-
tween the locals and the global variables that will be accessed by the Line Level
and the sub-modules.

19



Figure 1.7: POUs SFC Tree.

1.3.2 Sub-modules organization

The sub-modules perform similar instructions to the MM Machine. In par-
ticular, the tree is organized in: Module managing actions, Format change
actions and Motion actions. The first one is the most similar between the
two sub-modules as it contains the way in which the axes are controlled. This
means that the communications actions with the upper modules, as long as
the alarms managing, is the same. Then, the format change actions start to
differentiate because the SM StretchBanding has a more complex system to
manage compared to the SM Layering. This aspect is the reason why the last
actions of the motions are more different.

Module managing actions

The Managing actions are divided in:

1. Input action

2. Error control action

3. AxisFB action

4. Output action

Input Action The Input action processes the input parameters. To enter
more in detail, as a communication channel is established between the drive
and the PLC, the information passing through it can change at any time. To
allow the drive to understand when this happens, inside this action a FB checks
whenever a variable alteration is performed, activating an updating procedure

20



of the variables. After this, the standard command inputs for the axes are
copied from the MM Machine variables to the internal sub-module variables.
Lastly, an update of the homing and the alarm reactions are carried out. In
particular, for every axis inside the sub-module, the related homeResetRq is
controlled at every cycle to activate the homing procedure whenever requested.
At the same time, regarding the alarms generated from the axes, this action
contains an instructions list that deactivates the module in case a certain error
condition occurs. This part related to the alarms will be analysed later.

Error control action The Error control action is just a routine step that
uploads the module alarms in a global library where they are processed and
handled. The way this is carried out is discussed in a different section. Here,
the Global Exceptions list is updated like it is in the two sub-modules.

AxisFB action In the AxisFB, complementary instructions to the input
action are present. In particular, while the Input action activates the home
requests for the axes, this step disables the bit because the request has already
been accepted inside the same CPU cycle in which it was generated.

Output action The output action has multiple roles like the Input one. In
particular, some control logic is executed here. Firstly, it has a filtering role. It
updates the Drive and the internal variables by processing the status bit of the
axes. Then, it counts the layers performed by the machine in order to commute,
for the SM Layering, the axis cam. Instead, for the SM StretchBanding, this
action analyzes the position of the axes in order to manage the synchronization
bits. Moreover, it checks the online cam parameters of the Crank and of Film
pull axes. In this way, the operator has the possibility to change the timing
between the motors during nominal operations.

Format change action

The Format change actions are performed every time a format change is re-
quested from the operator. If this happens, the logic stops the motion control
of the motors and activates the updating routine of the formats. In both the
sub-modules, these actions take the parameters of the new package and bundle,
prepared by the MM Machine module, in order to build the new cam profiles
that the axes will follow. The same approach for the updating procedure is
used in both the sub-modules. In the first action, the request of the format
change, which was successfully taken by the PLC logic, is processed. In this
way, the successive action is activated only in case of a correct update of the
parameters. Next, the SizeChange starts the computation of the cams. Firstly,
the new data are stored in the internal variables of the module. Then, the new
bundle dimensions are computed. Accordingly, the new positions of the cams
can be defined and set. At this point, the SM StretchBanding generates a
slightly more articulated algorithm in relation to the bundle dimensions. The
Pusher and the Crank axes are characterized by different cams. Along with

21



this procedure, also other parameters can be modified, such as the homing
positions or the speed limit of the gearboxes. At the end of the procedure, if
the homing positions were changed, a new homing request can be raised.

Motion actions

The core of the Schneider control is performed inside the actions of the al-
ternative sequence. The motion of the two sub-modules is managed in the
same way. The ModeSelect action allows the activation of one of the following
actions: Home, Man, Auto, Unbrake. Then, whenever the execution of one of
the previous steps is terminated, the motion continues in the ExitStep. Below,
what these actions perform is explained. From Fig. 1.6 on page 18 it can be
seen that also the action Jog is present. But, in this machine, this functionality
is executed by the Manual action and only for the SM StretchBanding.

ModeSelect As the name suggests, the ModeSelect allows selecting one of
the linked operations. This is achieved through a case that passes through
the states if the previous condition is not fulfilled. In this way, if the initial
condition to activate the motion is enabled, one of the actions can be activated.

Home The first block is performed in order to execute the homing of the
axes. In the SM StretchBanding this step is more complex than the other
because more axes are managed. Instead, the SM Layering is more simple
because only two axes are present and the homing is straightforward. In par-
ticular, apart from the homing, also the cleaning procedure of the sealer is
performed here. It consists of the positioning of the Crank axis in order to
allow the cleaning of the sealing part of the machine. This procedure is per-
formed in three successive phases after each of which the search for the axis
reference position is always required. So, this procedure has a strict interac-
tion with the homing. For this reason, it is executed inside the same action.
Moreover, if the SM Layering homing is performed by activating the homing
command for the axes, in the SM StretchBanding a longer case is present.
Firstly, the Crank axis is controlled because it is connected to the motion of
the pneumatic bundle presser. Then, also the other axes are homed if needed.

Man The second action of the alternative sequence is represented by the
manual procedure. This type of operative condition is performed during the
machine set-up, namely when the machine needs to be prepared. For this
reason, the manual action allows a slower motion of the axes along with dif-
ferent modalities with respect to the automatic mode. In particular, in each
sub-module two main modalities are present:

1. The autonomous motion with respect to the other modules of the axes;

2. The combination of modules motion through the Bypass mode.

22



For the SM Layering, in the first case, the axis is positioned through the
cam selection and, therefore, the master control. This positioning allows set-
ting the Layer axis in the two operative steps that it reaches during the nominal
operations: the middle position, where the Layer fills the buffer, and the top
position, where the bundle is pushed in its ready state.

Differently, in the SM StretchBanding the machine can execute two modal-
ities. One allows to move only the Crank axis and executes the welding cycle.
The second one controls all the axes synchronously like in nominal conditions,
but this motion is controlled with the ”Jog Button”. In this way, the oper-
ations are performed slowly and through a Start&Stop control. This allows
to understand at each angle of the master what is the position of every axis
and to better define the cam positions. The second modality is the bypass
mode. This is a particular condition where the layering axis is attached to
the SM StretchBanding master through the bypass cam defined in the Format
Change. Then, the motion is carried out by the same Start&Stop control.
With respect to the previous one, in this case, the Crank remains in an idle
position as it is also for the Film Pull axis. This modality allows the use of
products that are not wrapped by the film and the exit bundle is characterized
by only one layer.

Auto The nominal and automatic mode is performed inside the Auto action.
This is the main state of the motion control. Indeed, under normal conditions,
after the start-up, the machine reaches directly this step, making it the normal
waiting step of the machine instead of the Select case as it can be thought. Like
in the Manual action, inside this one, different modalities are present. One is
the Bypass mode which is executed with the same conditions as before. The
second is the nominal operative condition. For the SM StretchBanding, also
the Sealer emptying modality is present. This one is carried out every time the
sealing sensor detects an obstruction. Under such conditions, only the Crank
axis is moved. Regarding the nominal mode, it is composed firstly of some
synchronization steps for each sub-module. Then, the execution of the motion
is performed. In the SM Layering, the master runs continuously and the Layer
axis is directly attached to it whenever the conditions command it. The logic
through which the cam of the Layer is selected is executed inside the Output
action which is previously discussed. Here, only the conditions that allow the
modification of the variables in that logic are present. As it can be understood,
the only synchronization parameter with the other module is represented by
the position of the Pusher axis. When it is in its back position ready to be
loaded, the Layer performs its longest stroke. For the SM StretchBanding, the
number of axes is much higher, which makes the control of each one separately
more difficult. For this reason, the motors are directly coupled to the master
at the beginning of the action. Then, only the master is controlled through
Schneider controls in relation to the functionality of the Layer module. Indeed,
if the layer has performed its longest stroke and it has loaded the prepared
bundle, the master is allowed to perform an entire cycle. Otherwise, it stops
waiting for the products.

23



Unbrake The last action is the unbrake. This is used only in case a motor
is with a brake. In this machine, this is the case only for the Crank motor
which, actually, controls a vertical mechanic system. Therefore, this action is
executed only in case it is of interest to release the brake of the Crank system.

ExitStep When all of these actions are terminated, the logic passes through
the Exit step. It allows to reset the axes operations or even to stop their motion
in case one of the previous motion steps is terminated prematurely. Indeed,
this step removes all the motion control commands and allows the start of
the next motion step without operative conditions running. This step is very
important in case an alarm, error, or emergency stop has occurred during the
motion.

1.4 Schneider alarm managing

An important part of the Schneider motion control is the alarm generation
and handling. This tool is provided by the software FB ExceptionHandler
and the FC SetException. In particular, the code exploits these integrated
functionalities in order to make the drive able to self-manage the errors and
alarms which occur during the motion. This means that the alarms generated
are added to the alarm list and are read in order to execute the required
reactions. The functions used are called inside each of the modules of the
motion control algorithm inside the ErrorControl action. In addition, each
POU defines its own alarms in the initialization procedure while the machine
is started.

To enter the details, the FB works in two different modalities on the base
of the input variable i xLocalExceptionHandler :

1. If it is set to TRUE:
the Error Handler is configured as a local management block to the
sub-module and its function is to propagate towards the modules or sub-
modules from it controlled the list of reactions it receives from the upper
module.
In this configuration the iq stExceptionList is not a source for generating
reactions as the i stReaction input is used.The iq stExceptionList is read
by the module to get information about who has generated the error. In
the event that the error comes from the module to which the BF belongs
or from one of its sub-mudules, the q xError output becomes TRUE and
in q udiSubModuleInException we find the moduleId of the sub-module
in error. Fig. 1.8 on the next page can be considered as reference.

2. If it is set to FALSE:
In this case the FB ExceptionHandler is configured as a high level han-
dler; its task is to acquire from the iq stExceptionList the errors that
come there register and start the generation of the reactions to the other
modules or sub-modules.

24



In this case, the block generates an internal list of reactions starting
from the global error list which will then be transferred to the modules
it controls. The ErrorHandler transfers the reactions to the sub-modules
through the astSubModuleInterface structure whose address is passed to
him in the mail (i pstSubModuleInterface, i diSizeOfSubModuleInterface,
i diNumberOfSubModules). Fig. 1.9 can be considered as reference.

Figure 1.8: Error Handler acquisition.

Figure 1.9: Error Handler transmission.

The mechanism of translation and transfer of reactions by table is realized
through the stErrorReactionTable; for simplicity this can be seen as a cube
whose dimensions are:

Figure 1.10: Reaction Table.

Each box must be filled with a TRUE or a FALSE in order to perform
the translation errors. If we consider each plane of the cube associated with a
module, each of these will result associated with a square matrix as follows:

25



Figure 1.11: Reaction Table layer structure.

In order for the error translation to be carried out, the matrix must be ini-
tialized; to that purpose the library function TPL FC InitErrorReactionTable
must be used. Thanks to the library function, each layer of the cube (there-
fore each square matrix relating to a form) is filled on its diagonal with TRUE
while with FALSE in the others boxes.

Figure 1.12: Reaction Table: layer composition.

This means that the nth error reaction entering the Error Handler will be
transferred in the homonym error reaction directed to the module. Schemat-
ically it can be seen in Fig. 1.13 on the next page. If the assignment of the
reactions must be changed, a TRUE or FALSE as Fig. 1.14 on the following
page shows must be placed in the boxes in the matrix for each module with
the appropriate reaction desired.

26



Figure 1.13: Reaction Table: layer meaning.

Figure 1.14: Reaction Table: layer modification.

Each module needs to generate its own errors. Indeed, the Schneider soft-
ware allows to automatically manage the axes along with their drivers thanks
to the software definition it is given to them. But, from the machine point of
view, it is necessary to generate some errors useful for the correct function-
ality of the operations. To do this, it is sufficient to define the error in an
initialization phase and use the TPL FC SetError function. This is practi-
cally done inside one of the initialization states which anticipate the parallel
actions section. As Fig. 1.15 on the next page shows, for each error is defined
which reaction is required for this error, the message displayed when it oc-
curs and if it is reset automatically after its activation. The error definition
is present in each of the POUs. Moreover, as it was explained in the Error
Handler analysis, each of them also has the Error manager action. This is the
ErrorControl action present in each SFC tree. Fig. 1.16 on the following page
shows the function call needed in order to send to the Global Exception List
the new error generated inside the module. This is valid for all the modules,
sub-modules included.

27



Figure 1.15: Error definition example.

Figure 1.16: Error handling example.

28



Anyway, some differences are present between the modules. The first one
resides in the MM Machine. There, the reaction table is modified for the two
sub-modules. Indeed, the reaction required for them is selected in case the
error occurred in the other one. A second difference is the top module Line
Level. Being the master module for the Schneider software, it contains the
activation of the reaction transmission by reading and managing the Global
Error List if at least one error generated in one of the modules is present. The
only practical code is related to how the function is called, depending on the
variable i xLocalErrorHandler.

To sum up, the alarms are generated inside each module. Then, they are
added to the Global Exception List along with all of their details needed to
identify the type of alarm. Then, the Line Level examines the global list and
passes to the module/modules below it (in this case only the MM Machine)
the relative reaction it needs to execute. This one passes the reaction required
to its own sub-modules (SM Layering, SM StretchBanding) depending on the
Reaction Table which it modifies at the beginning of each cycle. In this way,
for each alarm generated in the modules, each sub-module can have its own
reaction to be performed leaving an important d.o.f. when more sub-modules
are present.

The Fig. below shows an example of this functionality. In this case, the
dashed line represents the starting signal of the error generated in the sub-
module. The code of the error is then processed in the TPL FB ErrorHandler
which sends to each sub-module the correspondent reaction defined in the
Reaction Table. This same process is then repeated in each sub-module which
analyzes the received reaction to communicate it to its underlying modules
through its table. This is executed until each module has received the reaction
correctly.

Figure 1.17: Example of exceptions transmission.

29



1.5 PLC-Drive connection

In this section how the communication is established and is performed between
the PLC and the Drive is analysed. Considering that the software control is
divided between two different domains, the Siemens TIA-Portal for the PLC
status control and the Schneider Machine Expert for the motion control, it
is necessary to have a dedicated part in both the algorithms to allow proper
communication between the two worlds.

Inside the PLC, there is an entire OM dedicated to this topic, which is
shown in Fig. 1.18. In particular, it contains, in addition to the program parts
which makes the connection possible, the Generale Axis V03 which acts as
the manager of the variable communication with the motion control. Inside
this FC, the PLC communicates to the motion software the conditions and
the instructions to which the it must answer. That is, the ready, the stop and
the modality that the drive activates. In addition to this, the communication
parts present are:

1. the FCs which copy the variables to and from the drive (which are re-
spectively PN Plc-Axis V00 and PN Axis-Plc V00 );

2. the FC which manages the format change variable transmission with the
motion controller, PN ChangeFormat Axis V00 ;

3. the programs which check the node of communication, PN Main V00
and Profibus.

There are also Data Blocks which contains all the variables used to pass and
receive the information with the Drive.

Figure 1.18: OM structure.

Inside the Drive, the POU Line Level previously mentioned in the Schnei-
der section is fully dedicated to communication managing. This one has a
different structure with respect to the other modules of the motion control.
As Fig. 1.19 on the following page shows, it has fewer actions and a simpler
structure. Only some of them are of interest. The ReadIn action performs a
variables update. This concerns the updating of the input main variables from

30



the DB Axis In of the PLC, the updating of the alarm reaction that this mod-
ule manages, the updating of the format variables coming from the PLC and
reading of the format-change conditions of the MM Machine. Next, the Error-
Control executes the alarm control previously discussed in the above section.
Lastly, the WriteOut updates the internal drive variables to the DB Axis Out
data block of the PLC along with all the information related to any error that
occurred during the last scan.

Figure 1.19: Line Level structure.

After the software parts have been described, how the communication oc-
curs is explained. Firstly, it is necessary to pass the data between the two
software. This is performed with Words transmission along the Profinet net-
work. Indeed, the data blocks are reorganised in Words variables. They are in
this way moved from the PLC to the drive and the other way around. These
operations are performed by PN Plc-Axis V00 and PN Axis-Plc V00 in the
PLC and in the ReadIn and ReadOut for the drive.

Figure 1.20: Data Transmission Schneider.

31



Figure 1.21: Data Transmission PLC.

Along with this, it is also necessary to control at every time if the connection
is working. The communication is established as soon as the machine is started.
From that instant on, a vitality-check bit is managed. This bit passes through
the two software and is modified at each cycle. Simply, the bit is raised at the
beginning of the initialization procedure. It is transferred to the motion control
which copies it again without modification inside a different PLC variable. This
last one allows checking if the connection is present. This is because if the bit
returned by Schneider is not TRUE for a sufficient amount of time, an alarm
is activated. Furthermore, these steps allow checking only if the connection is
successfully established at the beginning. To understand if the connection still
works, the PLC deactivates the initial bit only in the case the returned one is
TRUE. In this way, after the Machine Expert software resets its own variable
passed to the PLC, the process can be repeated. It comes with itself that if the
motion control does not reset the bit as the PLC did, the alarm is triggered
analogously. This simple but fundamental procedure allows understanding if
at any time the connection between the two worlds is active. This is only one
of the aspects that will be considered in the conclusions with respect to the
alternative motion control developed.

32



Figure 1.22: Vitality-Check of PLC.

33



Chapter 2

Hardware structure

In this chapter, the hardware structure of the machine is analysed in all of
its aspects. To start, the Schneider part is presented. To better understand
it, how the Schneider motor catalogue is organised is explained in the first
section. Therefore, the hardware configuration mounted in the MS260 is pre-
sented. This contains both the actuators and the motion control as well as the
composition of the mechanical systems that they actuate. At this point, the
tests performed during the machine operations are examined which represent
an important point in the comprehension of the motor mounted. Lastly, the
Siemens world is considered. As it is for Schneider, the actuator catalogue
is presented. Then, the considerations of the new alternatives are analysed.
These contain both the presentation of the tools available in order to perform
such analysis and the discussion of the possible solutions.

2.1 Schneider catalogue

The Lexium servo drive and the motors portfolio include a variety of ranges
with a power range up to 24 kW for independent or synchronized motion
control. Lexium products can adapt to demand high performance, power and
simplicity of use in motion control applications. The Lexium Drives come in
three different typologies: Lexium 32, Lexium 52, Lexium 62.

1. The Lexium 32 range of servo drives includes four servo drive models
with power ratings from 0.15 to 11 kW and the servo motor ranges BMH
and BSH series. This is the lower level of Schneider catalogue;

2. The Lexium 52 are Stand alone servo drives from 0.4 and 7 kW for Pac-
Drive based automation solutions. In a conventional stand-alone design
with an integrated 3-phase power supply, Lexium 52 series servo drives
are particularly well suited for the economical configuration of servo drive
solutions with self-contained single axes. The drives communicate via
Sercos with the PacDrive 3 controller and offer embedded digital I/O.
They are available in five different power levels, ranging from 1.5 to 24
A continuous current and 6 to 72 A peak current;

34



3. The Lexium 62 are multi axis servo drives and servo motors from 0,95 to
24 kW for PacDrive based automation solutions. These are the Schneider
solution for the increasing control cabinet space requirements and rising
costs for mounting and cabling. This represents the better solution for
machines with a large number of axes to control, which is not the case
of the MS260. In any case, some features are here reported.
The Lexium 62 series servo drives consist of single drives (1 axis) and
double drives (2 axes) of the same size. All of the single and double drives
within a group share a single power supply. This multi-axis approach
Lexium 62 is decreasing the required cabinet space and the installation
times in a sustainable manner.

Dynamic, highly efficient servo motors form the basis for servo solutions
with Lexium 52 and 62. The Lexium SH3, MH3, and the SHS stainless steel
servo motors cover a wide range of performance and flange sizes. All motors
are equipped with electronic nameplates, which is making them an integral
component of the PacDrive 3 automation system, too.

Lexium SH3 servo motors are a solution for dynamic performance, pro-
viding a continuous stall torque range from 0.2 to 94.4 Nm for speeds up to
9,000 rpm. Lexium SH3 servo motors are more compact and offer a higher
power density than conventional servo motors thanks to their new winding
technology.

Lexium MH3 servo motors provide excellent power density values to meet
the requirements of compact machines. With four flange sizes and three dif-
ferent lengths for each flange size, they are suitable for many applications,
covering a continuous stall range from 1.4 to 65 Nm for speeds up to 6,000
rpm. The Lexium MH3 servo motors have a medium inertia motor, which
means they are particularly suitable for high-load applications.

Lexium SHS servo motors are stainless steel servo motors that are based on
Lexium SH3 servo motors and designed for a high-torque output with relatively
low current consumption in a stainless steel jacket. Lexium SHS stainless steel
servo motors and hybrid cable are the ideal choices to meet the requirements
for dynamics, precision, and surroundings in the food and pharma industries.

35



2.2 MS260 motors description

It is important now to describe and analyse the motors present in the machine.
This is necessary to better understand the requirements of the machine and to
identify the limits of the actuators.

Among the possibilities shown in the previous section, the brushless mounted
on the machine are part of the Lexium 52 servomotors and in particular of the
SH3 family. In this category, the possibilities of servo-motors are limited. On
one side, Schneider offers the actuators needed to cover a wide range. On the
other, the degrees of freedom for the choice of the right motor are decreased by
the small number of alternatives as the flange sizes of the actuators are only
of 6 types. This is going to be one of the points of comparison with respect
to the Siemens offers. In particular, the axes are moved thanks to two differ-
ent types of brushless motors: SH30702P11A2000 and SH31002P11F2000. To
better understand the names, Fig. 2.1 shows what each term means.

Figure 2.1: SH3 servo-motors nomenclature.

So from this, it is possible to understand that the SH3070 is a 70 mm
shaft motor with an Absolute Single Turn encoder. Moreover, it is without
the holding brake and with a key on the output shaft. The SH3100, instead,
is characterized by a 100 mm flange, a holding brake, the same encoder as the
previous one and also a keyed shaft.

Accordingly to the machine described in the first chapter, there are four
different motors that allow the functionality of the machine. Three of them,

36



the Layering, the Pusher and the Film Pull, are moved thanks to the smaller
of the two actuators defined, the SH3070. On the other hand, the Crank is
actuated by SH3100. The reason behind this choice is related to a practical
one. Indeed, to maintain the costs low and reduce the number of differences of
the machine hardware components, the three jobs are made with the same size
of the actuator. The larger actuator, instead, needs to move a crank system.
For this reason, the larger one is needed.

Gearboxes are paired with the actuators. In this case, as it is for the motors,
two typologies are present: Neugart PLE and Neugart PLFE. The first one is
a planetary gearbox. It is a very light product and at the same time extremely
performing, also ideal for heavy production cycles thanks to the design with
low friction bearing and optimized lubrication. It is paired with the Layer and
the Pusher axes because they need to run across long distances. In addition
to this, they are characterized also by a belt each which allows transforming
the rotational motion of the gearbox output shaft into longitudinal motion
of the piston. Differently, the sealing part is performed through a heavier
system, the crank. The PLFE gearbox is a planetary gearbox with a compact
flanged output shaft. You save more than a third of the space with a decidedly
torsional stiffness higher in order to support the higher torques of the system.
Instead, for the Film Pull, the motor is directly attached to the output shaft
which actually comes into contact with the film.

In relation to the characteristics, the table below shows how these compo-
nents are mechanically built. It can be seen that the Layer axis has a gearbox
with a ratio of 1/7 and a belt with a ratio of 280 mm/rev. The last one means
that the piston translates of 280 mm per revolution of the output shaft of the
gearbox. The Pusher axis has a gearbox with a ratio of 1/7 as the Layer, but
it has a shorted belt ratio which is only 200 mm/rev. The Film Pull has only
a gearbox of ratio 18/30 as it has no belt. Lastly, the Crank has a two-stage
reducer with a ratio of 1/20. As any belt is present in this case, the trans-
formation between the output gearbox and the longitudinal translation of the
crank is performed manually inside the software. This will be an object of
discussion in the next chapter.

Layer Pusher Crank Film Pull
gearbox (GearIn/GearOut) 1/7 1/7 1/20 18/30

Motion conversion type belt belt crank none
Motion conversion ratio 200 280 360 360

37



2.3 Siemens hardware

In this section, how the possible alternatives to the Schneider actuators are
analysed. In particular, how Siemens organizes its actuators is shown in order
to better understand how the analysis of the possible substitutions is made.

Siemens motors catalogue

To start, it is discussed how the Siemens motor catalogue is articulated. It
offers a large variety of actuators for every use and situation. In addition
to this, each category allows selecting different sizes of the motor in order to
perfectly fulfil the requirements desired.

1. SIMOTICS S - Servomotors for exact positioning and high dynamics as
well as for precise motion control.
Whether for positioning in pick-and-place applications or for cyclic drives
in packaging machines or for continuous path control in handling de-
vices and machine tools. Wherever highly dynamic and precise mo-
tion sequences are required, high-efficiency, permanent magnet-excited
SIMOTICS servo motors are the best choice. Depending on the applica-
tion, they are available with various integrated transducers - from simple
resolver up to absolute high resolution transducer. SIMOTICS S motors
are also optionally available with gearboxes.

2. SIMOTICS M - Main motors for regularity of rotation of rotary axes and
main drives.
These are the main motors for applications that mainly require contin-
uous and precise axis rotation. With a power range from 2.8 to 1340
kW, they cover virtually every possible application. Therefore, they are
suitable as main drives for presses, roller drives for printing machines,
textiles, paper and plastic processing machines. They are also used as
drives for winders as well as in machine tool spindles and lifting devices.

3. SIMOTICS T - Torque motors for the direct and gearless drive of rotary
axes.
The torque motors are optimized for high torques with low rated revo-
lutions. Thanks to high precision and dynamics as well as low wear (ab-
sence of mechanical transmission elements) they are ideal as integrated
motors for rotary table transfers, rotary tables or swivel and rotary axes,
eg. for machine tools. This also applies to complete torque motors,
which are used, for example, as roller drives or winders in converting
applications.

4. SIMOTICS L - Linear motors for maximum dynamics and precision of
linear movements
These linear motors are the ideal solution when linear movements must
be performed with maximum dynamics and precision. The reason: the
effects of elasticity, play and friction as well as natural oscillations in

38



the kinematic chain are largely avoided since the use of linear motors
eliminates mechanical transmission elements such as ball screws, joints
and belts. This simplifies the design of the machine and reduces wear.

5. Customized solutions for specific applications
Application-specific solutions could be needed. Therefore, Siemens al-
lows to design and implement application-specific motor solutions per-
fectly tailored to the design and the performance required.

6. System solutions perfectly matched to each other
The SIMOTICS motors are perfectly matched to the drive systems of the
SINAMICS family. Thanks to the integrated encoder with redundant
traces and the safety functions integrated into the drive, modern safety
concepts can easily be implemented. The use of additional external safety
components is therefore completely unnecessary.

From this, it is possible to understand the large number of possibilities that
the Siemens catalogue offers. Moreover, in each category, there are very dif-
ferent actuators that allow executing the same task with different alternatives
so as not to limit the customer.

For the porpoise of the MS260 project, the SIMOTICS S is the family to
which take reference. It contains different sub-categories: 1FT7, 1FK2, 1FK7,
1FL6. The first ones are servo motors are permanent magnet synchronous
motors with very compact dimensions and attractive design. They can be
distinguished into two categories: the Compact category, thanks to their low
torque ripple, are predestined for use on machine tools that must ensure a very
high quality finish and excellent machining results. Thanks to their compact
design, they find a place even in confined installation spaces. The High dy-
namic motors have very low rotor inertia to allow extremely high dynamics
and very short cycle times. These motors are available with forced ventila-
tion and water cooling types, so they are capable of delivering considerable
power in continuous service. The second class contains compact synchronous
motors with permanent magnet excitation. The motors are sized for operation
without external ventilation and dissipate heat through their external surface.
SIMOTICS S-1FK2 motors are characterized by high power density, degree of
protection and overload-ability. The third motors are compact synchronous
motors with permanent magnet excitation. With the available options, gear-
boxes and encoders as well as the expanded product range, the SIMOTICS
S-1FK7 motors can be perfectly adapted to any application. They therefore
also meet the ever-increasing requirements of new machine generations. To-
gether with the SINAMICS S120 drive system, the SIMOTICS S-1FK7 motors
form a powerful system with high functionality. The integrated transducer
systems for the regulation of the n. of turns and position can be chosen ac-
cording to the application. The last one SIMOTICS S-1FL6 servomotors are
permanent-magnet synchronous motors and designed for operation without ex-
ternal cooling. The heat is dissipated through the motor surface. They have a
300% overload capability and can be combined with the SINAMICS V90 servo

39



drives to create a powerful servo system with high functionality. Incremental
or absolute encoders can be selected depending on the application. SIMOTICS
S-1FL6 motors have a high degree of dynamic performance, wide speed control
range and high shaft end and flange precision.

Motors selection tools

Under these circumstances, the stand-alone choice of motors is very difficult.
For this reason, Siemens offers two different methods to size and select the
right actuator.

DT Configurator The first one is on an online configurator called DT Con-
figurator. It allows identifying the Siemens servo-motor that fulfil the require-
ment. But, in this case, the ideas related to the motor must be very detailed
regarding the type and dimension of the motor. With respect to the second
tool that will be presented, in this case, the first things that must be specified
are the class of the motor among those defined above and also the sub-class,
as Fig. 2.2 shows.

Figure 2.2: DT Configurator Initialization.

Then, as 2.3 on the next page shows, all the specific parameters of the
motor must be added. At this point, the configurator shows, on the top, the
name of the motor as the parameters are selected and, on the bottom, the
alternatives that fulfil the specifics among the servo-motors on the catalogue.

40



Figure 2.3: DT Configurator Parameters.

For example, it is inserted the motor 1FK7034-2AK71 which is one of
those that will be discussed later and in Fig. 2.4 can be seen the alternatives
proposed with all the main characteristics along with the speed-torque curves
in the different operative conditions for the one selected.

Figure 2.4: DT Configurator Alternatives.

41



SIZER for Siemens Drives The second method available is more ad-
vanced. It is a downloadable tool called SIZER for Siemens Drives which
allows a more articulated selection of motors considering different aspects of
the mechanisms where it will be mounted. To start off, the SIZER asks to
create a project. Then, a new drive system must be added. This allows gen-
erating a new axis that can be sized. This comes with the definition of the
properties of the new system that must be modelled. From Fig. 2.5, it can be
seen how the specifications are articulated. The system must be defined by
the type of drive system. For this project, the choice is a multi-axis system.
Then, the type of module and lastly the motor family are identified along with
the type of load it must move.

After the initial properties are set, the motor must be found. To do so, a
window guides through the different steps. Initially, the load data are inserted
defining the nominal torque that is necessary along with the maximum num-
ber of rpm. Also, the maximum torque can be added along with some other
points of interest in the curve of the load. Then, some characteristics of the
physical motor are also added such as the type of the encoder, the cooling and
the presence of the brake. At this point, in the third step, all the compatible
actuators are shown. Here, they can be filtered or ordered dependently on
the types of torques, dimensions and speeds. Finally, the motor curves are
represented in a speed-torque graph with respect to the points specified in the
first point. These steps can be repeated until a motor is selected.

Figure 2.5: SIZER Initialization.

42



Figure 2.6: SIZER parametrization.

Figure 2.7: SIZER Motor Characteristics Curves.

43



2.4 Siemens PLC

Regarding the PLC, the version of the MS260 analysed is characterized by the
ET 200 SP controller. It allows the execution of basic functionalities in terms
of motion control. Indeed, it is performed by the Schneider drives and the PLC
has only a role of supervisor. When it comes to the execution of the control of
the whole machine, a new PLC must be selected. The one used is the upgraded
version of the previous one: ET 200 SP Open Controller. It is the first con-
troller of this type to combine the functions of a PC-based software controller
with visualization, PC applications, and central I/Os in a compact device.
The installed and preconfigured SIMATIC S7-1500 Software Controller, the
PC-based version of SIMATIC S7-1500, is used for control. This controller is
operated independently of Windows and thus ensures high system availability.
It facilitates the controller’s rapid start-up and supports Windows updates and
reboot during ongoing operation. Even a failure of Windows does not impact
the controller.

Figure 2.8: ET 200 SP Open Controller.

It is also possible to use different types of PLCs as Fig. 2.9 on the following
page shows. In particular, those belonging to the family of the technology
CPU. They are more dedicated to the execution of advanced motion control
commands. Indeed, the Siemens PLCs for this porpoise are classified accord-
ingly to the number of axes and components that they can manage. Among the
class mentioned above, PLCs for large and small machines are both available.
However, for the machine under analysis, they are excessively or too less pow-
erful. Namely, the components that they can handle are not in line with the
ones needed. The Open Controller, instead, meets the requirements without
exceeding too much from the boundaries. Moreover, the computation speeds,
if compared, show that the former is near the performances of the larger CPU
of the technology family. Lastly, the Windows dedicated part can be exploited
for future developments.

44



Figure 2.9: Advanced controllers.

2.5 Siemens motor selection

In order to better understand the functionality of the machine and to find the
correct alternatives for the actuators, I performed some tests. In particular,
they have the purpose of knowing the functioning of the actuators during the
operating conditions. This machine provides, for the formats stored in the PLC
memory, two operational speeds: 24 ups/min and 60 ups/min. So, I performed
the tests while the machine was running in both scenarios. Moreover, as the
machine allows it and because it is more convenient, I considered the case of
a No-Load-Run, which means that the machine runs without the presence of
products. A test with products was performed in the case of 24 ups/min but
there are not many differences with respect to the No-Load-Run. The products
considered for the tests are 45x45x80 packages which need to be grouped into
bundles of two layers and five products per layer. The Figures below show
the results of the tests performed. In particular, the values on the ”y” axes
are in units. These units are those used to measure the type of motion of the
axis moved by the motor-gearbox system. For a linear motion of the axis, the
units are in millimetres, while for rotating one it is in degrees. This concept is
applied for all the motion traces: position, velocity, acceleration and tracking
error. Therefore, they are not be considered always in motor degrees. Instead,
the current is measured in milliampere. On the X axis, the time is present.

The traces showed are:

• Blue traces: the position trajectory

• Green traces: the velocity profile

• Light green traces: the acceleration profile

• Grey traces: current usage by the motor

• Red traces: tracking error

45



From Fig. 2.10 on page 48 to Fig. 2.16 on page 50, the dynamic charac-
teristics of the motors during the 24 ups/min scenario are shown. Instead,
from Fig. 2.17 on page 50 to Fig. 2.23 on page 52 the 60 ups/min scenario is
shown where the acceleration of the axes replaces the tracking error. I took
these traces during the motion of the machine thanks to the Schneider software
which allows monitoring the online execution of the processes. From these Fig-
ures, I made some considerations in order to understand the limits of operation
of the actuators. In particular, it is possible to identify the displacement that
each axis travels. In the case of the Layer, it is characterized by two different
strokes. The longest is related to the push of the layers out of the buffer to the
waiting position in front of the Pusher. The shortest, instead, is required to
load the buffer. In Figures 2.11 on page 48 and 2.18 on page 50, two of them
are present, as the bundle used for the tests is composed only of two layers.
Then, one is used to load the first layer in the buffer and the other is used to
push the whole bundle out (last and first layer). The other three axes have
only one stroke each, characterized by the work they perform.

From the considerations on the position and the velocity, from the mechan-
ical composition of the motions and from the analysis of the current traces, it
is possible to determine the maximum and nominal values of both the veloci-
ties and the torques of each motor. The table below shows the result of such
considerations.

1. 24 u/min and 55% speed of Layer axis;

Layer Pusher Crank Film Pull
Stroke Long 147 485 64 116

Maximum Torque (Nm) 2.31 1.54 2.541 0.308
Maximum Speed (rpm) 2100 2835 1400 411
Nominal Torque (Nm) 0.85 0.329 0.78 0.12
Nominal Speed (rpm) 747 942 397 64.5

Stroke short 68 – – –
Nominal Torque (Nm) 0.55 – – –
Nominal Speed (rpm) 747 – – –

2. 60 u/min and 75% speed of Layer axis.

Layer Pusher Crank Film Pull
Stroke Long 147 335 64 116

Maximum Torque (Nm) 4.389 5.39 15.73 0.77
Maximum Speed (rpm) 2940 6300 3333 833
Nominal Torque (Nm) 1.1 1.05 2.15 0.12
Nominal Speed (rpm) 1377 1858 1053 156

Stroke short 68 – – –
Nominal Torque (Nm) 1.05 – – –
Nominal Speed (rpm) 1377 – – –

46



For the rpm values, it was necessary to perform a computation considering
the hardware architecture of the motion axes. The values displayed in the
traces for the velocity are derivatives calculation computed run-time by the
software on the base of the actual position of the axis. The position is referred
to the actual position of the motor that is performing the action on the pack-
ages. Then, these parameters must be reported to the actual values of the
actuator which is the input of the gearbox. To do so the following operation
was used:

RPM =
[grad/s]

[grad/rev]
∗ 60 ∗ GOut

GIn
(2.1)

Thanks to this, it was possible to obtain the actual velocities of the brush-
less. To consider the maximum velocity reached by the actuators, it is consid-
ered the maximum peak of the axes velocity trace and then converted to the
motor speed accordingly to the equation above.

For the torques, it is necessary to analyse the currents. In the traces, these
are the actual currents circulating in the motors making it only necessary to
apply to each maximum current reached during the cycle the Constant Torque
(Nm/A) of the motor itself. At this point, the maximum values of torque
and speed are found. To obtain the nominal values of them it is necessary to
consider the rms of both the speed and the torque. Unfortunately, Schneider’s
software does not allow to obtain such values of a single part of the trace.
Therefore, I performed a manual computation of these parameters by approx-
imating in appropriated small intervals of the traces the values of speed and
current for each axis in both the operative condition of the machine tested. As
a result:

Axis speed Nominal Torque Estimation at 100%
Layer 55% 0,844 1,535

75% 1,099 1,465
Pusher 24 u/min 0,33 0,824

60 u/min 1.05 –
Crank 24 u/min 0,779 1,947

60 u/min 2.149 –
Film Pull 24 u/min 0,12 0,298

60 u/min 0,115 –

At this point, the considerations on the performances of the Schneider
actuators are completed. These are now used in order to perform the analysis
of the possible Siemens alternatives in the next section.

47



Figure 2.10: Master of the layer axis at 55% speed in no load run.

Figure 2.11: Layer axis at 55% speed in no load run.

Figure 2.12: Master of the machine axes at 24 u/min in no load run.

48



Figure 2.13: Pusher axis 24 u/min in no load run.

Figure 2.14: Film Pull axis 24 u/min in no load run.

Figure 2.15: Crank axis 24 u/min in no load run.

49



Figure 2.16: Virtual Crank axis at 24 u/min in no load run.

Figure 2.17: Master of the layer axis at 75% speed in no load run.

Figure 2.18: Layer axis 60 u/min in no load run.

50



Figure 2.19: Master of the machine axes at 60 u/min in no load run.

Figure 2.20: Pusher axis 60 u/min in no load run.

Figure 2.21: Film Pull axis 60 u/min in no load run.

51



Figure 2.22: Crank axis 60 u/min in no load run.

Figure 2.23: Virtual Crank axis at 60 u/min in no load run.

On the base of these information, now how the new motors were chosen is
presented. Two different approaches are used. The first one is related to main-
tain the same motors sizes already mounted on the MS260. This is in line with
industry policy to limit component diversity in the magazine. For this reason,
the results obtained from the tests show a low level of use of the capabilities
of the motor. This is mostly the case of the Film Pull actuator. The values of
speed and torque reached are very far from the nominal and, in particular, the
maximum values. To limit the need for a larger warehouse, some actuators are
oversized compared to real needs. Therefore, the Schneider motors character-
istics are used in order to find compatible actuators in the Siemens catalogue.
They are added in the DT Configurator which, as mentioned, allows to find the
motor when the properties are already known. For the SH3070, the main data
can be taken from its data-sheet displayed in Fig. 2.24 on the next page. From
these, the result obtained is identified with the motors 1FK7034-2AK71 and
1FT7034-5AK71. The same procedure can be considered also for the Crank

52



Figure 2.24: Data sheet of 3070 Schneider actuator.

53



Figure 2.25: Data sheet of 3100 Schneider actuator.

54



axis motor, SH3100. The data taken for the data-sheet in Fig. 2.25 on the
preceding page allow finding the correspondent motor in the 1FK7061-4CH71.
The second approach, on the other hand, consists in starting from the data
collected during the tests and identifying the best actuators that meet the
parameters obtained. Of course, the data considered are relative to the most
stressful operative condition of the machine which is related to the 60 u/min
and the 75% speed.

The data collected in the tables above are meaningful only to understand
the limits of the actuators in the different conditions. Indeed, they can not be
inserted directly in the SIZER as they do not happen at the same time. For this
reason, below is explained how the choice was made. To start, the Layering axis
is analysed. From Fig.s above, it is possible to see that the more important
cycle is the longest one. Indeed, during that the higher speeds are reached
(1400 units/sec during the returning phase which coincides with 6300 rpm of
the motor) and the higher torques (almost 6 A of current when the motion is
inverted). These data are fundamental for the choice of the alternative. They
can be used to identify the operative points that are inserted in the SIZER.
Moreover, the nominal values of the torque are important. In the case of the
tests, the Layer axis was set at speed of 55% and 75%. Therefore, the results
of the nominal torques in both cases are not entirely correct. Considering the
proportion between them, a nominal torque value at 100% functionality of 1.5
Nm has been estimated.

Point @MAX Torque Point @MAX Speed
Speed (units/sec) 764 1375

Speed (RPM) 1600 2887
Current (A) 5.7 1.2
Torque (Nm) 4.39 0.924

Adding the data to the configurator, it is possible to see from Fig. 2.26 on
the next page that they are displayed in the Torque-Speed plane. At this point
the tool allows you to apply a filter search to find compatible actuators, such
as sorting by size, nominal speed or torque. The first two motors presented
are similar in performances. The 1FK7040-2AK7 and the 1FK7034-2AK7,
both belonging to the family of the 1FK7 actuators, despite the different shaft
dimension (48mm in the first case and 36mm in the second), offer almost
the same characteristics. By the way, as the table of data and the Figures
show, the first one gives a little less maximum torque. Considering the curves
with respect to the operative conditions added, both have almost overlapped
nominal values with the 100% speed condition of the motor. However, these
conditions exit the nominal values only for the higher speed where, as the
point at the maximum speed of the 75% condition shows, it is lower than the
expected nominal torque. For this reason, both motors are a good alternative.
Instead, for the third motor presented in the table and in Fig. 2.29 on page 58,
the characteristics are slightly oversized with respect to the previous two. Both
the nominal and the maximum torques are larger than before and, for the job
that the Layer axis needs to perform, this motor is excessively powerful. To

55



conclude, this is the first alternative presented by the SIZER after the previous
two in terms of torques. This means that all the other possible solutions are
even bigger in those terms. So, the only possible solutions are the first two.

P-nom M-nom n-nom M-max n-max
1FK7040-2AK7 0,69 kW 1,10 Nm 6000 rpm 5,10 Nm 9000 rpm
1FK7034-2AK7 0,63 kW 1,00 Nm 6000 rpm 6,50 Nm 9000 rpm
1FK2204-5AF0 0,75 kW 2,40 Nm 3000 rpm 7,50 Nm 7500 rpm

Figure 2.26: Layer Operative Points.

56



Figure 2.27: Layer 1FK7040-2AK7.

Figure 2.28: Layer 1FK7034-2AK7.

57



Figure 2.29: Layer 1FK2204-5AF0.

The second axis discussed is the Pusher. As it is also for the Crank and the
Film Pull, they are not affected by a parameter that sets the speed, but instead
they are affected only by the number of bundles the machine must produce.
As a result, among the initial tests on the performances of the motor, the
interesting ones are the conditions at 60 u/min for these axes. Therefore,
by evaluating more in detail the traces of the Pusher, the operative points
requested for the actuator selection can be found. In particular, the table
below shows them. It is possible to see how they are different with respect to
the Layer axis. In both the points, the maximum value considered is higher in
this case than in the previous. Indeed, the torque is 5.4 Nm compared to 4.39
and the speed is 6300 rpm compared to 2887 rpm. Looking at these data it
is possible to suppose that the motor required is larger than before. However,
considering also the nominal torque reached by the axis during the 60 u/min,
it is possible to see from the table below that it is slightly lower. This is
due to the fact that the cycle of the second part of the machine controlled by
the MCV Master is longer than the cycle of the Master Layer. As a result,
when the data are inserted in the SIZER ( 2.30 on the next page) the motors
compatible are the same as before except for one. The 1FK7034-5AK7 motor
covers very well the operating conditions having a wide range of speeds covered
together with a not too high torque range. Instead, the 1FK2204-6AF0 allows
as before grater levels of torques at the expense of the speed. The nominal
values are really close to the ones reached by operative conditions leaving a
small margin, while the levels of torques are really far from those reached.

58



Point @MAX Torque Point @MAX Speed
Speed (units/sec) 2300 4200

Speed (RPM) 3450 6300
Current (A) 7 1.4
Torque (Nm) 5,4 1,08

Figure 2.30: Pusher Operative Points.

59



Figure 2.31: Pusher 1FK7034-5AK7.

Figure 2.32: Pusher 1FK2204-6AF0.

60



For the third axis considered, that is the Crank, a larger motor was mounted
on the machine. The data collected from the traces are referred to as the
output shaft of the gearbox. This is important to be underlined because, as
is mentioned in the first chapter, the sealing procedure is performed with two
axes, a virtual and a real one. The virtual is used in order to follow the cam
representing the linear motion that the mechanics should do. These results in
position, velocity and acceleration are dependant on the Crank system moved
by the motor. Moreover, the virtual axis traces show only values of position,
velocity and acceleration and the current is not present. For this reason, it
is considered the real axis. From it, the operative points are obtained. As
the table below shows, they are characterized by really high values of torque
in both cases. This is the consequence of the system attached to it which is
characterized by a two-stage gearbox and a crank.

Point @MAX Torque Point @MAX Speed
Speed (units/sec) 780 1068

Speed (RPM) 2600 3560
Current (A) 13 6,2
Torque (Nm) 15,7 7,5

From the data many motors are compatible. In particular, starting from
the plots it is possible to see that two of them are perfectly compatible with-
out reaching the limit of tension area (1FK7060-2AH7 and 1FK7064-4CF7).
Instead, in the case of the third compatible motor (1FK7060-2AF7), only the
voltage limit without mains surges is not reached. Anyway, this does not
affect the compatibility of the motor. The last one, the 1FK7061-4CH7, is
the one that was suggested on the base of the Schneider motor but, as the
graph 2.34 on the following page shows, the maximum torque requested dur-
ing the 60 u/min is not possible without exceeding the field of weakening. For
the compatible motors, a further comparison can be carried out. Indeed, the
1FK7060-2AH7 and the 1FK7060-2AF7 are similar motors in terms of maxi-
mum torque and speed. For the 1FK7064-4CF7, instead, the maximum torque
is higher while the speed is lower. This does not give any possible range of
exploiting better the performances of the motor in case a higher speed of the
machine is requested. On the contrary, the other two motors could allow an
increased performance as a higher operating speed of the motor that would
bring higher values of torques can be covered up. Especially, this is the case
of the 1FK7060-2AH7 motor in which the limit area has not yet been reached.
To conclude, these are only the firsts suggested by the SIZER filtered with
respect to the torque.

P-nom M-nom n-nom M-max n-max
1FK7015-5AK7 0,10 kW 0,16 Nm 6000 rpm 1,00 Nm 8000 rpm
1FK7022-5AK7 0,38 kW 0,6 Nm 6000 rpm 3,40 Nm 9000 rpm

61



Figure 2.33: Crank Operative Points.

Figure 2.34: Crank 1FK7061-4CH7.

62



Figure 2.35: Crank 1FK7060-2AH7.

Figure 2.36: Crank 1FK7060-2AF7.

63



Figure 2.37: Crank 1FK7064-4CF7.

The last axis to be considered is the Film Pull. It has the lowest values
in terms of torques and speeds reached. The job done by it is very light
compared to the other axes. Moreover, the mechanics attached that it needs
to move is very small compared to the other cases. As a result, from the traces
taken during the tests and reported in the table below it is possible to see how
oversized is the SH3070 mounted. With respect to the Layer and the Pusher
which reached values of 4,39 Nm and 2887 rpm in the first case and 5,4 Nm
and 6300 rpm in the second, this one has the maximum values of 0,74 Nm and
840 rpm. They correspond to the 15% of torque and 29% of the speed in the
worst case. This allows telling that the actuator, presented in the previous
discussions and dimensioned on the base of the SH3070, is oversized.

Point @MAX Torque Point @MAX Speed
Speed (units/sec) 1830 3020

Speed (RPM) 508 840
Current (A) 960 0.35
Torque (Nm) 0.74 0.27

By adding to the SIZER the operative points computed as shown in the ta-
ble, the resulting motors validate these data. The two smallest motors available
are presented. One is the 1FK7015-5AK7 and the other is the 1FK7022-5AK7.
The first gives a good alternative. Indeed, the nominal values available cover
the nominal operative points of the axis while the peaks reached during the

64



work are lower than the maximum allowed. In the second alternative, the
higher dimensions of the shaft make the nominal and maximum torque of the
motor greater. In this case, the nominal curve is sufficient to cover all the
operative points as 2.40 on the next page shows. This makes the motor al-
ready oversized and therefore not necessary unless under other circumstances.
Indeed, the choice of the motor does not rely only on the operative conditions,
but also on the cost of it. In case the prices are the same or close to each other,
the physical dimension of the motor and the necessity of different gearboxes
can make the difference in the choice of one or the other. Therefore, under
these circumstances, the motor 1FK7015-5AK7 should appear better for per-
formances, but in case it is not convenient this choice an even larger motor
than the 1FK7022-5AK7 can be made. For example, 1FK7034-5AK7 can be
used. Indeed, this is the same case of the Schneider version where the SH3070
is used for all the three smaller axes of the machine.

P-nom M-nom n-nom M-max n-max
1FK7015-5AK7 0,10 kW 0,16 Nm 6000 rpm 1,00 Nm 8000 rpm
1FK7022-5AK7 0,38 kW 0,6 Nm 6000 rpm 3,40 Nm 9000 rpm

Figure 2.38: Film Pull operative Points.

65



Figure 2.39: 1FK7015-5AK7.

Figure 2.40: 1FK7022-5AK7.

66



Chapter 3

Structure of the TIA Portal
project

In this chapter, the organization of the solution developed for the new motion
control of the MS260 is presented. It covers multiple components of the TIA
Portal project and therefore this chapter is divided into different sections where
they are analysed one by one. Fig. 1.1 on page 14 shows the whole project
tree of the new algorithm. It allows showing the organization of the new
motion control before starting to enter in the detail of each part. However,
only the PLC folder was considered in the first chapter because it contains
the presentation of the previous machine code. Now, in this chapter, all the
project tree is analysed. To this porpoise, Fig. 3.1 on page 69 shows the other
important parts exploded to better appreciate the different aspects.

3.1 Code structure

Before entering the details, the structure of the project tree must be explained.
In Fig. 1.1 on page 14, a major division can be done. One of them contains the
algorithm. It is organised in different parts each of them with a different key
role. The Program Blocks folder contains all the programmable blocks used
for the control algorithm of the machine. Fig. referenced above shows how it
is organized. The first chapter entered the details of the PLC folder which is
the only part transferred from the old project control algorithm of the MS260.
In addition to it, Fig. allows identifying three additional folders. By looking
at Fig. 3.1 on page 69, they are:

• The Motion folder is the central topic that is going to be explained in
this chapter and analysed in the next one. It contains the new motion
control algorithm. It takes advantage of several pre-made libraries from
Siemens and, in some specific cases, built ad-hoc for the functionalities
not supported by the software.

• The ReadCam folder is an additional functionality added to the PLC
that allows to transfer and show on the HMI screen the cams active. It

67



is not fundamental for the motion control and it affects mostly the HMI.
Therefore, it is discussed in the next chapter.

• The DB SD Export Import folder is, likely the previous, an additional
functionality. It allows transferring Timers and System data from the
PLC to and SD card and the other way around. It is similar to the
previous one for the work done in relation to the PLC. Therefore, it is
also analysed in the next chapter.

The Technology objects contains the representation of real objects in the
controller. They are necessary for the execution of the motion control and
they are going to be analysed later. The remaining folders of interests are the
PLC data types and the PLC Tags. In the case of the former, it contains the
definition of the structures used inside the code and, in the case of the latter,
the constants or global variable to be accessed.

The second division contains the physical hardware that is attached to the
main controller and then must be added and configured in the project (Drive
unit in Fig. 3.1 on the following page). Along with the virtual objects required
by the PLC (Technology objects), it represents the interface between the new
hardware components and the PLC. It is an important aspect because it pre-
pares to understand how Siemens manages the axes and the drives. Therefore,
the two components are presented before the actual motion control algorithm.

The successive sections show the code and its libraries. Entering in the
detail of the motion control is the core part of the newly designed control. In
Fig., under the Program blocks the main programs (in purple) that are called
cyclically by the CPU can be seen. Then, the successive folders contain, from
the top, the libraries used during the development of the code. The Motion
folder, instead, contains the main code written for the motion control and it
is analysed after the other parts.

68



Figure 3.1: Project structure.

69



3.2 Technology objects

Technology objects represent real objects (e.g. a drive) in the controller. The
functions of the technology objects are called by means of Motion Control
instructions in the user program.

The technology objects provide open- and closed-loop control of the move-
ment of the real objects and report status information (e.g. the current po-
sition). The configuration of the technology objects represents the properties
of the real object. This is stored in a technology data block. The following
technology objects are available for Motion Control:

• Speed axis technology object:
The speed axis technology object (TO SpeedAxis) is used to specify the
speed for a drive;

• Positioning axis technology object:
The positioning axis technology object (TO PositioningAxis) is used to
position a drive with closed-loop position control;

• Synchronous axis technology object:
The synchronous axis technology object (TO SynchronousAxis) includes
all functions of the positioning axis technology object. The axis can
also be interconnected with a leading value so that the axis follows the
position change of a leading axis in synchronous operation;

• External encoder technology object:
The external encoder technology object (TO ExternalEncoder) detects
a position and makes it available to the controller;

• Measuring input technology object:
The measuring input technology object (TO MeasuringInput) detects
actual positions quickly, accurately and event triggered;

• Output cam technology object:
The output cam technology object (TO OutputCam) generates switch-
ing signals depending on the position of an axis or external encoder. You
can evaluate the switching signals in the user program or feed them to
digital outputs;

• Cam track technology object:
The cam track technology object (TO CamTrack) generates a switching
signal sequence depending on the position of an axis or external en-
coder. In this process, up to 32 individual cams are superimposed and
the switching signals are output as a track;

• Cam technology object (S7-1500T):
The cam technology object (”TO Cam”) defines a function f(x) by means
of interpolation points and/or segments. Missing function ranges are
interpolated;

70



• Kinematic technology object (S7-1500T):
The Kinematic technology object (TO Kinematics) is used to intercon-
nect positioning axes to a kinematic. This allows to configure the kine-
matics technology object and to interconnect the axes in accordance with
the configured kinematics type.

3.2.1 TO Axes

Regarding the axes choice, these type of TO must be parameterized when
added to the project. This procedure is very simple and intuitive. Opening
the ”Configuration” page of the newly added axis, different windows can be
opened. The ones of interest are mostly: the Basic parameters and the Me-
chanics. In the first one, the nature of the axis is defined. Specifically, if it
is a real or virtual axis is defined. In addition to this, in case the real axis
is not actually physically implemented in the mechanical configuration of the
system, the ”Simulation” setting can be enabled. In this way, it is treated as a
virtual axis but the components of the drive that are defined and linked to it
inside the project can be left in the project even if they are not present in the
machine. In this window, the axis must be also set as a linear or rotating one
along with the units of measure that characterize its control. Moreover, the
”Modulo” setting is present. When an axis moves in only one direction, the
position value continually increases. To limit the position value to a recurring
reference system, this setting can be enabled. When the ”Modulo” setting is
activated, the position of the Technology Object is mapped onto a recurring
modulo range. The modulo range is defined by the start value and length. For
example, in case of a virtual master, to limit the position value, the modulo
range can be defined with start value = 0o and length = 360o. As a result, the
position value is mapped onto the modulo range 0o to 359.999o. In the second
window, the mechanical components attached to the motors are defined. In
particular, the gearbox ratio and the ”Leadscrew pitch” are present. The lat-
ter is required only in case a linear motion is defined in the ”Basic parameters
window”. Indeed, these last two elements allow the software to calculate the
conversion between the motion required to the final axis of the mechanical
system and the motion that the actuator must perform to satisfy that request.

Looking at the definition above, the axes of interest are re-conducted to the
TO PositioningAxis and TO SynchronousAxis. These are the only two which
allow a positioning and a cam coupling of the axes. In addition to them, in
the project are also exploited the TO OutputCam through which it is possible
to establish the synchronization of the axes with the pneumatic actuators and
the check of the operative conditions. Lastly, the recently added objects with
the new version of the PLC are exploited. In particular, this is the case of the
TO Cam which allows the definition of electronic cams paired with the motion
of the real axes. Accordingly to the structure of the machine and to the
project choices made in the motion control algorithm, the technology objects
displayed in Fig. 3.1 on page 69 are used. In particular, as it is explained
in the previous chapter, the machine motion control is organized into two

71



different sub-modules (SM Layer and SM Stretch) which contain respectively
one virtual and one real axes and two virtual and three real axes.

In the first case, the axes of reference are the virtual MasterLayer and
the real Layer. Considering the definitions of technology objects, the virtual
axis should be defined as a positioning one. Indeed, its main goal is to drive
the real axis through a cam coupling. However, in the project, it is built as
a synchronous axis. This choice is made on the base of a specific operative
condition that is explained successively when the motion algorithm is analysed.
Namely, this is a condition where the first sub-module is directly connected
to the virtual axis of the second. This requires manipulation of the virtual
MasterLayer as a synchronous axis. In any case, the alternatives related to this
solution are analysed in the next chapter. For the definition of the parameters
of this axis, it is sufficient to specify only its virtual nature along with the
mechanical structure through which it drives the paired axes. Namely, it is
defined as a rotating axis with default dynamic and limit values as, for the
virtual axes, the software does not consider them as strict bounds and executes
whatever action is commanded him. An important parameter in the definition
of a virtual axis is the ”modulo” setting that here is set to 360o. For the
Layer axis, some parameters need instead to be defined. This is required from
the mechanical composition of the piston that the actuator needs to move.
As a result, it is defined as a linear motor and the units of measure related
are in mm, mm/s, Nm and N. For what concerns the driving axis of this
synchronous object, it is paired with the MasterLayer. Indeed, as mentioned
above, this last one is then paired with the MCV Master. In this way, by
transition, it controls the real axis that here is considered. Regarding the
remaining mechanical parameters, the gear ratio of the reducer and the belt
motion conversion one defined and explained in the previous chapter are also
added.

In the second case, the virtual axes present are the MCV Master, Virt Crank
and the real ones are the Crank, Film Pull and the Pusher. The virtual axis
MCV Master is managed as the one presented before. Indeed, it is a ro-
tating axis with modulo 360o. About the mechanical settings, nothing is
defined as it is, indeed, a virtual axis. Differently than before, it is built
as a TO PositioningAxis as it is not driven in any circumstances by other
axes. As a result, there is no need to make use of PLC resources for a
TO SynchronousAxis that is not exploited. The second virtual axis is analysed
with the Crank axis. These two are a pair of axes linked to the same mechan-
ical part of the machine, namely the sealer. The real axis is used to control
the actuator that moves the crank. The virtual one instead is used only for
displaying porpoises. The managing of this complex mechanical system of the
machine requires a specific library developed during the creation of the code.
Indeed, the TIA Portal software does not cover the necessity to transform the
linear motion of one end of a crank system to the rotating motion of the other.
For this reason, the library I developed allows creating immediately a rotating
cam profile paired to the linear one requested by the machine motion. The
specifics of the library are exposed in a different section of this chapter. To

72



clarify the use of the two axes, while the real one follows the rotating cam
profile, the virtual axis follows the linear one. However, the virtuality of the
latter is a necessity because it is controlled in parallel with the real axis but
its motion does not affect any other machine component. The position of the
virtual axis is used to display the movement of the linear motion of the sealer.
As a result, the virtual axis is defined as a TO SynchronousAxis. Regarding
the parameters, it is set as a linear motor without a modulo, while no spec-
ifications are present for the mechanical one. In the case of the Crank, it is
defined as the previous one and linked to the MCV Master. Differently, it is
set a rotating axis with the specified gear-ratio of the gearbox used. No further
parameters have to be set yet. The Pusher is the second axis for importance
in this part of the machine. It is required to push the bundle in the sealing
position. Then, for its settings, it is still defined as a TO SynchronousAxis
linked to the MCV Master and with a linear motion. For the mechanical part,
the data shown in the second chapter are inserted in the relative spots. Lastly,
the Film Pull follows the same steps as it is for the Crank. Namely, a real
rotating axis linked to the MCV Master with a specified ratio related to the
gearbox mounted on the machine.

3.2.2 TO OutputCam

Apart from the axes, other technology objects are implemented as Fig. 3.1 on
page 69 shows. The more marginal ones are the TO OutputCams linked to the
MCV Master. The output cam technology object generates switching signals
depending on the position of an axis or external encoder. The switching states
can be evaluated in the user program and fed to digital outputs. The following
output cam types can be used:

• Distance output cam:
Distance output cams switch on between the start position and end po-
sition. Outside this range, the distance output cam is switched off. The
switch-on range of distance output cams is basically defined by the start
position and end position. When the start position is less than the end
position, the switch-on range begins with the start position and ends
with the end position. Instead, when the start position is greater than
the end position, there are two switch-on ranges:

– Switch-on range beginning with the start position and ending with
the positive range end (e.g. positive software limit switch, end of
modulo range)

73



Figure 3.2: TO OutputCam Distance-based when start position is lower than
the end position.

– Switch-on range beginning with the negative range end (e.g. nega-
tive software limit switch, start of modulo range) and ending with
the end position

Figure 3.3: TO OutputCam Distance-based when start position is greater than
the end position.

• Time-based output cam:
Time-based output cams switch on for a defined time period when the
start position is reached.

Figure 3.4: TO OutputCam Time-based.

An output cam can be switched depending on the motion direction of the
interconnected technology object. It is possible to output an output cam with
positive or negative motion direction only or even independent of direction.
The main difference for this setting between the two types of TO OutputCam
is that for the time-based one the direction of motion influences the activation
according to the direction in which the starting position is reached, while no
effects there are on the time duration. In the case of the distance-based one,
the activation is affected as the time-base cam but in relation to its distance
properties. Moreover, in this case, the cam is deactivated in the case of an
inversion in the motion direction of the axis. This type of TO is required to
be directly added in the axis of which they look at the position (like Fig. 3.1
on page 69 shows). The details of the different TO OutputCam added in the
project will be analysed later with the code.

74



3.2.3 TO Cam

The last TOs used in the project are the cams. They allow establishing the
master-slave coupling between an axis and its driving one.

The cam technology object defines a transfer function y = f(x). The depen-
dency of an output value on an input value is described in this transfer function
in a unit-neutral manner. A cam technology object can be used multiple times.
You define the function y = f(x) in the configuration of the technology object
using interpolation points and/or segments. Ranges between interpolation
points and segments are interpolated using the Motion Control instruction
”MC InterpolateCam”. The settings can be changed/redefined during run-
time of the user program with the Technology DB according to the appendix
Tags of the cam technology object.

Commonly, the cam technology object is configured with an editor. The
cam is created using a diagram, a table containing the elements of the curve
and the properties of the elements. Transitions are calculated between the
individual elements of the cam (e.g. points, lines, polynomials). The curve
reflects the path-related dependency between the leading axis (leading values,
abscissa in the chart) and the following axis (following values, ordinate in
the chart). To use a cam in the user program, it must be interpolated after
downloading to the CPU. Following the interpolation, the gaps between the
defined interpolation points and segments of the cam are closed. The cam
is interpolated from the minimum value in the leading value range to the
maximum value. To have a faster and easier approach to the cam definition a
specific library is available that is going to be presented later.

In the motion control project for the MS260, several cams are used. Their
number is related to the number of functions an axis can execute during nor-
mal operations. Indeed, the cams can be used multiple times and can even be
redefined. Therefore, in order to have a faster approach and to avoid interpo-
lation of the same cam each time a new command is requested, the different
operations have different cams. Moreover, as Fig. 3.1 on page 69 shows, the
Crank and the FilmPull axes are characterized by an A and a B version of
the same cam. This is required because the TIA Portal does not allow the
interpolation of the cam while it is in use. Then, to maintain the possibility
that the two axes mentioned can have a run-time motion update, a new cam
is interpolated and passed to the axis when ready. This alternating process
between two cams was not present in the Schneider version. In the case of
the Crank, the cams present are the result of the complex motion conversion
explained before.

3.2.4 Organization blocks

The technology object section of the project is not independent of the pro-
grammable part. In Fig. 1.1 on page 14, the structure is composed of particular
blocks called OB. These are the blocks executed by the CPU dependently on
their nature. A detailed overview is performed in the motion control section
presented later in this chapter. To be known for the moment is that, among

75



those present in Fig. previous referenced, three are strictly linked to the TO
just described: MC-Servo, MC-Interpolator, MC-PostServo.

• When a technology object is created for S7-1500 Motion Control, the
organization blocks ”MC-Servo [OB91]” for processing the technology
objects are created automatically. The motion control functionality of
the technology objects creates its own priority class and is called in the
SIMATIC S7-1500 execution system according to the application cy-
cle. The MC-Servo OB is write-protected and the contents cannot be
changed.

The position control algorithms of all technology objects configured for
motion control on the CPU are calculated within the MC-Servo OB.
This means that every time the code needs to control the position of the
motors and send the new commands and positions to the drive, this OB
is executed. In relation to this, the application cycle and the priority of
the organization block in accordance with the project requirements for
control quality and system load.

Regarding the application cycle, in which the MC-Servo OB is called, is
set in the properties of the organization block:

– Synchronous to the BUS The MC-Servo OB is called synchronously
with a bus system. The send clock is editable in the properties of the
selected bus system. Two bus systems can be selected: Isochronous
PROFIBUS DP, Isochronous PROFINET IO.

– Cyclical The MC-Servo OB is called cyclically with the specified
application cycle.

The selected application cycle must be long enough to allow all the tech-
nology objects for motion control to be processed in one cycle. If the
application cycle is not observed, overflows occur. In this case, the CPU
switches to STOP mode.

• When a technology object is created for S7-1500 Motion Control, the or-
ganization block ”MC-Interpolator [OB91]” for processing the technology
objects are created automatically. The motion control functionality of
the technology objects creates its own priority class and is called accord-
ing to the application cycle of the MC-Servo OB in the execution system
of the SIMATIC S7-1500. The MC-Interpolator OB is write-protected
and the contents cannot be changed. The evaluation of the motion con-
trol instructions as well as the monitoring and the set-point generation
for all technology objects configured on the CPU (motion control) is
performed within the MC-Interpolator OB.

The MC-Interpolator OB is called at the end of the processing of the
MC-Servo OB.

76



When the application cycle of the MC-Servo OB is set, it must be long
enough to allow all the technology objects for motion control to be pro-
cessed in one application cycle. If the application cycle is not observed,
overflows occur. Note the following response to overflows: - The CPU tol-
erates a maximum of three consecutive overflows of the MC-Interpolator
OB. -The processing of an MC-Interpolator OB can be interrupted by the
calling of the MC Servo OB, at most. If more overflows or interruptions
occur, the CPU switches to STOP mode.

• the organization block MC-PostServo [OB95] can be programmed and
is called in the application cycle configured for the MC-Servo OB. MC-
PostServo [OB95] is called directly after MC-Servo [OB91].

When processing the Motion Control functionality, the organization blocks
MC-Servo [OB91] and MC-Interpolator [OB92] are called and processed in
each application cycle (processing also occurs in the STOP operating state of
the CPU). The remaining cycle time is available for the processing of your
user program. For error-free program execution, the following rules must be
considered:

• In each application cycle, MC-Servo [OB91] must be started and executed
completely.

• In every application cycle, the relevant MC-Interpolator [OB92] must at
least be started.

The following figure shows an example of the error-free operational se-
quence for the processing of organization block OB1:

Figure 3.5: OB cycle priorities.

If the set application cycle is not adhered to, for example, because the ap-
plication cycle is too short, overflows can occur. An overflow of the MC-Servo
[OB91], MC-Interpolator [OB92], MC-PreServo [OB67] and MC-PostServo
[OB95] is entered in the diagnostic buffer of the CPU and results in setting the
CPU to STOP. MC-PreServo, MC-Servo, MC-PostServo and MC-Interpolator
are stopped. If necessary, you can evaluate the entry in the diagnostic buffer
via a time error OB (OB80).

77



3.3 Drive unit

3.3.1 Hardware definition

The hardware configuration of the machine is built inside the topology, the
network and device view of the project tree. There, the physical modules of the
machine are selected, defined and configured and the connection is established
between them.

The topology view is a working area of the hardware and network editor.
The main task here is to establish the way the PLC sends and receive infor-
mation. The construction, for example, of a ring that exits from one port of
the PLC end enters in the other one must be managed otherwise it does not
know where the data must be sent. The following tasks in topology view can
be made:
- Displaying the Ethernet topology
- Configuring the Ethernet topology
- Identify and minimize differences between the desired and actual topology

The graphic area of the topology view displays Ethernet modules with
their appropriate ports and port connections. Here, additional hardware ob-
jects can be added with Ethernet interfaces. The table area, instead, displays
the Ethernet or PROFINET modules with their appropriate ports and port
connections in a table. It corresponds to the network overview table in the
network view, 3.7 on the following page.

Figure 3.6: Topology view.

The network view shows the devices and their components with interfaces
to the sub-nets. In connection mode, the communication paths of configured
connections can be made visible. The following information about connections
is then available:
- The devices between which connections have been created
- Which connection types have been created for a device
- The devices that have unspecified connections

78



Figure 3.7: Network view.

The table area of the network view consists of several tables:

• Network overview: The table for the network overview supplements the
graphical network view with the following functions: - detailed informa-
tion on the structure and parameter settings of the devices. - Using the
”Subnet” column, components capable of communication can be con-
nected with created sub-nets.

• Connections: Communication connections are displayed in this table.
Some aspects of the connections displayed here can be edited directly in
the table. Selected connections are displayed in the Inspector window
and can be edited there.

• Relations: Logical connections of the HMI client-server relation are dis-
played here.

• I/O communication: Device communication via PROFIBUS DP and
PROFINET IO is configured and displayed in this table. In the I/O
communication table, only those interfaces of a device are displayed that
can be used for communication via PROFIBUS DP or PROFINET IO.

• VPN: Properties of the VPN user groups and their assigned security
modules are displayed here.

79



The device view is one of three working areas of the hardware and network
editor. The following tasks can be made:
-Configuring and assign device parameters
-Configuring and assign module parameters
-Editing the names of devices and modules

Figure 3.8: Device view of the PLC.

The graphic area of the device view displays hardware components and if
necessary the associated modules that are assigned to each other via one or
more racks. In the case of devices with racks (for example the PLC structure),
there is the option of installing additional hardware objects from the hardware
catalogue into the slots on the racks. The table area of the device view gives
you an overview of the modules used and the most important technical and
organizational data.

The hardware components presented and discussed in the previous chap-
ter are added. Starting from the PLC, Fig. 3.8 shows the device view of its
configuration. As said, the one chose is the ET200sp Open Controller where
the input-output modules of the old PLC are inserted. The motion drives are
attached to it. On one side, there are the infeed belt actuators already present
in the previous machine. On the other, the new Siemens motors are inserted.
The network is created in the network view 3.7 on the preceding page, where
the hardware posts are configured in order to share the same IP address. The
port to be used, instead, is specified in the topology view, 3.6 on page 78.

80



Figure 3.9: Device view of the drive.

The configuration is created in the ”Device view”. This is where the in-
dividual components are inserted and connected. Fig. 3.9 shows both the
graphical implementation and the list of the used components. In particular,
regarding the discussion on the new motor choices developed in the second
chapter, the equivalent to the Schneider motors are inserted. For the config-
uration, firstly the drive S120 is inserted and connected to the PLC in the
network view by configuring the IP address. Then, passing to the device view
of the drive, four distinct motor modules are added. Their configuration con-
sists of the selection of the type of module; namely, the characteristics that
it should be able to give to the related motor connected. For the project
porpoises, their parameters are reported in the table below.

81



Rated power Rated current supply voltage
Layer 1.60 kW 3.00 Arms 510-620 VDC

Pusher 1.60 kW 3.00 Arms 510-620 VDC
Film pull 1.60 kW 3.00 Arms 510-620 VDC

Crank 4.80 kW 9.00 Arms 510-620 VDC

Then, the desired motor is selected from the hardware catalogue and as-
signed to the relative module. This comes with an automatic connection of
the inputs between them. In addition to this, the telegrams that establish
a communication politics with the software must be specified. The standard
choice is the telegram 105 how Fig. 3.10 shows.

Figure 3.10: Modules Telegram.

Fig. 3.9 on the preceding page shows the list of components implemented at
the end. An additional step consists of the activation of the IRT (Isochronous
Real Time) mode. The fast and reliable reaction time of a system operating in
isochronous mode is based on the fact that all data are provided just-in-time.
The basis for this is a constant bus cycle. The isochronous mode function
guarantees synchronization of the following at constant time intervals:
- Signal acquisition and output by the central and distributed I/O
- Signal transmission via backplane bus, PROFINET IO or PROFIBUS DP
- Program execution in the CPU in local time, in time with the constant bus
cycle time

The result is a system that acquires its input signals, processes them and
outputs the output signals at constant time intervals. Isochronous mode guar-
antees precisely reproducible and defined process reaction times as well as con-
stant bus cycle and synchronous signal processing for central and distributed
I/O.

82



To exploit this functionality, the modality must be enabled in the S120
drive. Moreover, in the MC-Servo OB automatically created by the software
when a TO axis is added, its cycle must be set. The ”synchronous to the bus”
mode must be selected allowing the OB execution to be synchronous with the
network. Then, the interval of the call must be also specified.

At this point, the motors generated must be assigned to the TO axis of the
project. This is performed by specifying in the TO configuration the encoder
that the axis is going to move.

3.3.2 Parameters access

Once the configuration of the hardware is terminated, it is necessary to under-
stand how to access their information. This is required, in particular, for the
managing and the displaying of the faults.

In Fig. 3.10 on the previous page it is possible to appreciate the ordering
number assigned to each component. They are assigned depending on the order
of creation of the components. From them, additional variables related to the
newly added components are generated. They represent the addresses that
point to the physical components allowing access to their internal variables.
This is what is going to be used for the managing of the faults activation
explained in the fourth chapter. In addition to this, another aspect must be
considered. The modules are characterized by parameters that act as inputs
and outputs of the module. In this way, it is possible to use those of interest.
The two used are:

• p2111 tells the number of alarms active since the last reset;

• p3981 is an acknowledge bit that allows to reset the alarms active in the
module when it is set to one. Then, it returns to zero at the end of the
acknowledge.

By taking advantage of them, you can perform error handling. They allow us
to see only the active number of faults and to reset them. In order to see the
information about the active ones additional parameters are used:

• r2131 displays the code of the oldest active fault;

• r2132 displays the code of the last alarm that occurred.

They are accessed directly by the HMI panel which reads the information
available. To do this the parameter address of interest must be built. It com-
prises parameter number, index and DB number:

DB<parameter number>.DB<a>data block offset

• The data block number corresponds to the parameter number.

83



• the data block offset is formed from the DO number and the parameter
index as follows:

Data block offset (binary): x15 x x x x x10 x9 x x x x x x x x x0

The first six digits refer to the drive object number, while the last ten is
the parameter index. In detail, the offset is built in this way:

Data block offset = 1024*drive object No. + parameter index

• the <a> value is assigned as a B, D or W depending on the parameter
type

As a result the addresses used in the HMI panel dedicated to the the drive
error are:

Axis Parameter 2131 Parameter 2132
Layer DB2131.DBW2048 DB2132.DBW2048

Pusher DB2131.DBW3072 DB2132.DBW3072
Film pull DB2131.DBW4096 DB2132.DBW4096

Crank DB2131.DBW5120 DB2132.DBW5120

84



3.4 Libraries

The Libraries folder contains 4 different pre-made Siemens Libraries. They
can be added through the Global Library section in the TIA Portal software.
Each library contains in addition to the blocks also the tags and the data types
that must be included in the relative project folders.

3.4.1 IsAxisReady

This library allows to safely and correctly activate the drives of the machine.
This is a really useful tool because before a technology object can be enabled
without error via ”MC Power”, all the necessary sensors (encoders) and actu-
ators (drives) must be available for the technology object. Below is explained
the procedure that must be done in order to successfully enable the TO. Af-
terwards, the library itself is reported.

Description:
Using the Motion Control instruction ”MC POWER” it can be enabled or
locked a technology object via the ”Input” parameter. Before setting the ”En-
able” parameter to True, the parameterized sensors (encoders) and actuators
(drives) should be available for the technology object.

The following requirements must be met to enable the technology object
with the MC Power instruction:

• The technology object has been correctly configured.

• The cyclic BUS communication has been established between controller
and sensor (TO.StatusSensor[..].State).

Since the CPU usually starts up faster than the connected IOs, in most
cases the technology object cannot be enabled immediately after the CPU
startup. Data transfer (online) can only happen if the communication connec-
tion between CPU and drive has been established.

The complete availability of a technology object can be checked via the
variable ”CommunicationOK” in the following structured data types:

• Sensors (encoders): ”TO Struct StatusSensor”

• Actuators (drives): ”TO Struct StatusDrive”

The variable ”CommunicationOK” does not confirm the availability of a
technology object, but whether a cyclic communication has been established
between the technology object and the drive. This means that the availability
of the connected drives (actuators) and encoders (sensors) must be controlled.

85



Special features :

• TO ExternalEncoder: There is no actuator (drive) on this technology
object.

• TO SpeedAxis: There is no sensor (encoder) on this technology object.

The following figure shows the details view when the ”DB Editor” technol-
ogy object of a ”TO PositioningAxis” is selected in the Project Tree.

Figure 3.11: TO Axes Sensors.

The status of the variable ”CommunicationOK” shows you whether the
encoder or drive is ready for cyclic communication with the technology object.
If the status value is not True, the cause is displayed in the diagnostics buffer.

Example for safely triggering ”MC Power”:
Triggering of the input ”Enable” of the Motion Control instruction ”MC Power”
can then be done as Fig. below shoes. In particular, the code in Fig. 3.12 on
the following page reports that the technology object is enabled only when the
user enable signal is set and the corresponding sensor (encoder) and actuator
(drive) are available for the technology object.

Note:
If the technology object is enabled via the ”MC Power” instruction before the
sensor and actuator interfaces (”CommunicationOK”) receive the True sig-
nal, then, depending on the configuration, there might be alarm messages like
”Encoder driver/actuator driver not initialized during startup” or ”Adjust-
ment cannot be restored”, for example.

The ”IsAxisReady” function block is used to check whether a technology
object can be enabled or referenced. This function block checks the named
criteria and returns the value ’True’ if the technology object is ready for use.
This can be used for the start of ”MC Power”.

86



Figure 3.12: Example of Enable activation for MS Power.

For checking, the Motion Control instructions ”MC Power” and ”MC Home”
can be linked with the ”Enable/Execute” signal. These instructions are exe-
cuted only if the technology object is ready for use. As an additional crite-
rion, the input parameter ”includeActorSensorErrorCheck” can be set to True
on the ”IsAxisReady” function block. In this way, the actuator and sensor
are checked in addition for faults. Note that with the interconnection with
”MC Power.Enable” the axis enable might be removed in the case of a fault.
In the case of motors without holding brake there is then a risk of diminution of
the load. The library used in the project includes the ”IsAxisReady” function
block for the technology objects ”TO SpeedAxis”, ”TO ExternalEncoder”,
”TO PositioningAxis” and ”TO SynchronousAxis”. In this case, it is exploited
for ”TO PositioningAxis” and ”TO SynchronousAxis” only.

3.4.2 LAxisCtrl

The library LAxisCtrl is the centre of the Siemens motion control software
structure. It implements FBs for simple and central control of the basic motion
control functions of axes (technology objects) of a SIMATIC S7-1500 or S7-
1500T. The central view of each axis via this standard application enables easy
programming, fast commissioning and direct testing of the project.

The standard application with the blocks of the ”LAxisCtrl” library enables
to easily control extensive motion control functions of the axis type technology
objects. By viewing the axis via a central block, programming and commis-
sioning of axes can be made considerably easier. Technological peculiarities,

87



e.g. when replacing cam disc synchronization, are taken into account inter-
nally in the module. A separate function module is available for each axis
type (speed, positioning, synchronous axis, external encoder), whose interface
is respectively tailored to the available functions of the axis type. The axis
blocks, therefore, contain the sum of the inputs and outputs of the integrated
PLCopen blocks. The uniform configuration of the different axis blocks makes
it easy to switch between the different axis types.

Due to the extensive functionality, the configuration of the commands, e.g.
for dynamics and position specifications, is not via individual block inputs,
but via a variable structure of the ”LAxisCtrl typeAxisConfig” data type.

The ”AxisCtrl” axis function block is also used as a basis in higher-level
technological software modules, such as multi belt control, which are published
as industry-specific standard applications in Industry Online Support.

Explanation of the blocks The interfaces and the controlling of the LAx-
isCtrl function blocks are based on the PLCopen standard with taking into
account the behavior of executing and enable inputs. The function blocks are
implemented in Structured Control Language (SCL). They are programmed
for use in a cyclic task. These blocks implemented acts as a ”General Axis”
FB for the TO Axis dedicated. Indeed, in parallel to the logic of managing for
the FB, all the motion Control FBs available by Siemens are present for the
compatible axis FB contained in the library. This allows a faster managing
and control of the axes used in the code.

Activation and deactivation of the function blocks :
The axis function blocks are activated via the enable input. This input is level
sensitive. With a falling edge the functionality of the FB is stopped and the
technology object (TO) will be disabled if it is active.

Selection of the functionality :
The functionalities of the axis function blocks are divided into three groups:

• General axis functions (enable axis, reset axis, passive/direct homing,
torque limiting)

• Functions in the basic coordinate system (positioning, move axis at ve-
locity set-point, jogging, stop, fast stop, active homing, all synchronous
motion commands)

• Functions in the superimposed coordinate system (superimposed posi-
tioning)

88



Figure 3.13: Example of LAxisCtrl FB.

To use the commands a configuration is necessary, e.g. for dynamics
or positions. The configuration is done by adding a variable with LAxisC-
trl typeAxisConfig data type in a memory section and connecting it to an
instance of an axis control function block. In this way, by accessing to these
structured data, it is possible to modify the behaviour of the axis. If the in-
puts of the FBs allow to start the operation requested, through this variable
is possible to affect that very operation. For example, by modifying the set-
points of position, velocity and acceleration it is possible to obtain different
Move Velocity or Pos Absolute. Another example is the modification of how
the TO SyncronousAxis executed the cam coupling with the master, simply by
changing how the cam is activated. This structure contains all the parameters
that are set as input for every Motion Control FB implemented in the TIA
Portal software.

In addition to the mere control of the axes, this library adds also some
status control FBs. Indeed, if the axes FBs already have a diagnostic output
for both errors and state of the axis, some additional and specific FBs are
present. For example, it is the case of the LAxisCtrl GetAxisStatusWord which
gives direct access to the decomposed bits of the axis ”Status Word”. This
allows a simpler on-line analysis during the motion control. Furthermore, a
different but very useful FB is represented by the LAxisCtrl BrakeControl.

89



The previous FBs are used to act on the technology object defined in the
project. So, the self-generated OB MC-Servo communicates with the physical
drives. Instead, to allow access on the drives and the actuator this latter FB
allows direct control of the motor brake to enable or disable it.

3.4.3 LCamHdl

Motion sequences in modern production machines are realized with electronic
cam disks instead of former mechanical cam disks. Advantages are optimiza-
tion possibilities regarding jerk-free movements, maximum acceleration, re-
duced vibrations, reduced wear and reduced downtime when changing for-
mats. The creation, as well as the modification of the cam disk, should also be
possible during the normal operation of the machine to adapt to the current
product. This shall be as simple and performant as possible.

The LCamHdl library for SIMATIC and SIMOTION provides function
blocks that support the user in creating high-quality and jerk-free cam disks.
The necessary calculations of the segments of different profile types especially
of polynomial coefficients and standardizations are done by the function blocks.
This library introduces different ways to implement a cam profile in the soft-
ware.

LCamHdl CreateCamBasic A fully defined cam disk shall be created at
runtime. Points in the cam disk and the according dynamics are known. Tran-
sitions can be made via straight lines and 5th degree polynomials, taken into
account velocity and acceleration. In this case, the CreateCamBasic function
block eases the cam disk creation for cam disks with interpolation algorithms
up to 5th degree polynomials. The leading value of the first point defines the
start of the cam disk and the leading value of the last point defines the end
of the cam disk. As the indexes in the cam profile increase also the accord-
ing leading values have to increase. A maximum number of 51 points can be
used in a cam profile to define a cam. The FB CreateCamBasic first fills the
necessary segments in the cam technology object and then interpolates the
cam.

CamHdl CreateCamAdvanced The function block CreateCamAdvanced
can be used to merge working ranges and motion transitions into one cam disk
at run-time. Unlike directly assigning the cam’s data block, the FB can be
used without having to calculate the polynomial coefficients before. The FB
is based on the motion rules for cam mechanisms. The cam profile configu-
ration of the position as well as the geometric derivations is made in the real
section (e.g. velocity, acceleration, jerk). There are different mathematical
functions available for the motion transitions (elements), subsequently called
profile types. Besides polynomials of 3rd, 5th and 7th degree further profiles can
be implemented such as: straight line, quadratic parabola, basic sine, modified
acceleration trapezoid, modified sine, etc. In addition to that, it is also pos-
sible to transfer single points, which makes it possible to generate cam disks

90



with combined ranges consisting of transition functions and of single points.
Differently from the CreateCamBasic block the function block CreateCa-

mAdvanced works segment based. This allows gaps (filled by run-time inter-
polation) between segments and also the usage of the points array in the cam
technology object. So, the FB CreateCamAdvanced fills the necessary seg-
ments and points in the cam technology object starting at startSegmentIndex
and startPointIndex. A maximum number of 50 segments and 1000 points in a
cam profile can be used to define a cam. The function block can be configured
to delete preceding or successive cam points and cam segments. In addition it
is possible to interpolate the cam disk at the end with the ”interpolateCam”
configuration bit.

LCamHdl CreateCamBasedOnXYPoints A cam disk based on interpo-
lation points is to be created at run-time. Only the X and Y coordinates of
the interpolation points are known (where X defines the master position and Y
the slave one). In this case should be used the CreateCamBasedOnXYPoints
function block. It eases the cam disk creation for cam disks consisting of just
interpolation points. The interpolation mode (linear/C splines/B splines) can
be defined through the FB settings. By exploiting this FB a maximum number
of 1000 points can be used in a cam profile to define a cam.

Several cams are used in the Motion Control project as part of the repre-
sented technology object. To manage them easily and at run-time you need
to use this library. Indeed, one fundamental part of the motion control is
the Format change. As it is presented later, this requires an online update of
the cam points and a successive interpolation. This procedure is not possible
without using the library shown. In particular, the most exploited FB is the
LCamHdl CreateCamAdvanced. It is used for almost all the cam creation of
the project. In the case of rotary and linear cams acting on the complex crank
structure mentioned earlier in this chapter, the point-to-point conversion of the
rotary cam requires the use of the LCamHdl CreateCamBasedOnXYPoints.
Indeed, as the following library section will explain, the newly created master-
slave positions must be merged and this FB solve the problem.

3.4.4 Crank module

This library is a custom set of FB and FCs created to perform the conver-
sion between the linear and the rotating motions of a crank mechanism. This
comes from the necessity to convert the linear cam provided for the motion of
the sealer axis with the cam of the motor that should move it. Indeed, this
operation in the Schneider algorithm is performed through native software
functionalities, allowing an automatic conversion between the two worlds. In
Siemens, such a possibility is not available, making it difficult to use the pro-
vided linear cams in the motion control.

91



This library is developed after the consideration of different possible solu-
tions:

• online conversion inside the MC-PreServo of the position setpoint that
the linear cam gives in relation to the master degree.

• offline creation of a table of positions then used online for the matching
of the cam positions

• development of an offline polynomial conversion for the creation of the
rotating cam from the linear positions

The first solution is more intuitive. The software controls the motors by
sending a position target created by the motion control logic to the drive which
automatically converts it to speed control. Therefore, the online conversion of
the linear position to the rotating degree could be a good solution. Unfortu-
nately, the servo cycle must be as small as possible, making long computations
not particularly suitable. This solution, then, could become a source of over-
flow problems for the cycle.

The second solution overcomes the problem that can arise in the previous
scenario. A table computed offline makes the matching of the linear position
into a rotating one much faster. However, this would imply the exact knowl-
edge of the value of each linear position that is in the linear cam profile. The
table or more specifically the array should be very long and not reliable in case
of large changes in the cam profile.

The last solution merges the positive aspect of both the previous without
introducing particular problems. The cam computed offline allows the fast and
reactive tracking of the rotating profile. Therefore, this library consists of es-
sential functions which are called inside each other. The structures is composed
of the main FB called Poly5 360 crank which allows converting the cam profile.
This one exploits the computations performed by the FC Crank Translations
which contains the two FCs that actually compute the conversion: Transla-
tionToRotation Compact which computes the angles from the linear position
and RotationToTranslation Compact which computes the linear displacement
from the angle. Starting from the last ones, they are built in a similar way.
They are divided in parts that allow computing different parameters from the
inputs. Apart from the value to be converted, both have as input the geometry
parameters of the crank which are passed through a custom structure variable
composed of:
- Radius length
- Rod length
- Start offset
- Vertical offset
- Window

These parameters are shown in Fig. 3.14 on the next page where it is
possible to appreciate their meaning. The two lengths are the main structure
of the crank mechanism. The two offsets represent respectively the initial

92



position and the displacement between the center of the motor and the level
of motion for the rode. These are the mechanical parameters of the machine.
The Window instead is an arbitrary section of angles around the dead centres;
in the case of the MS260, due to geometry, they are around 0o and 180o.

Figure 3.14: Crank module structure.

Motion conversion FCs The TranslationToRotation Compact allows ob-
taining the two angles that coincide with the linear position. In addition, the
two extremes of the linear motion are computed. These are performed in dif-
ferent parts of the code. Firstly the linear position is computed adding the
starting position. Then, the check of the mechanical components is performed.
In case one of them is a negative value or the vertical offset is lower than the
sum of the rod and the radius, an error is raised. Then, the first part is dedi-
cated to the computation of the extremes of the linear motion. To do this, the
relation of the length of rod and radius is performed in order to understand the
mechanical structure. For this reason, different formulas can be used. Basi-
cally, they rely on Pythagoras’s theorem. Next, the two angles are computed.
The previous parameters are used to identify the truthfulness of the linear
position. In case it exceeds one of the two extremes, an error is raised. If
this does not happen, the temporary angles of the system are computed. In
particular, the hypotenuse between the linear point position and the centre
of the crank computed through the Pythagoras’s theorem is used for Carnot’s
theorem. Consequently, thanks to them and to the mechanical parameters, it
is possible to identify different scenarios of the crank configuration, making it
possible to find the correct angles. In Appendix A, the code implemented is
reported.

The parallel block, the RotationToTranslation Compact, is organised in a
similar way. After the initial code for the check of the input parameters, the
extreme angles are defined. Also in this case, using the geometry of the system
it is possible to find the two angles. In this case, instead, the theorem of sine
and cosine applied to the triangle are exploited. The two angles are then used
for the principal goal of finding the linear displacement. Firstly, they define a
range in which the input angle must be contained, otherwise an error is raised.
Then, the formula of the crank system is applied in order to find the linear

93



position. The final value is controlled in order to be sure that it is greater than
zero. As before, Appendix A contains the code implemented.
Coming to the next FC, the Crank Translations allows to call the previous two
by merging their computations by having common inputs and outputs that are
passed from outside.

Cam conversion computation FB The last and more important function
is the Poly5 360 crank. This FB is used in the motion control algorithm for
the definition of the crank rotating cam profile. The inputs are the geometry
of the mechanism, window of the dead centres and the segments of the cam
profile. The latter is an array of a custom structure that allows defining all
the parameters for the definition of the profile. Each segment is characterized
by the start and end position of the master, along with its velocity, and the
start and end values of the position, velocity and acceleration of the slave.
All of these information are necessary for the definition of the cam segments.
Indeed, this FB is based on the application of a polynomial function of 5th

order. Giving the extremes of a segment, it is possible to find the resulting
function that merges the two points. The FB must be called inside a ”for
cycle” in order to compute the profile of each segment. The Cam Track out-
put of the block is a particular custom structure. It contains the structure
”Points” and two integers (LastIndex Linear and LastIndex Rotative) which
define the last elements used in the linear and rotating arrays. The struc-
ture ”Points”, instead, contains two different arrays (one for the linear and
one for the rotating cam) of type LCamHdl typeXYPoint which generates an
”X” and ”Y” element for each point of the array. This definition implies the
use of the LCamHdl CreateCamBasedOnXYPoints FB for the interpolation
of the cams. As the LCamHdl dedicated section describes, this FB works
on the interpolation of single points. This is different with respect to the
LCamHdl CreateCamAdvanced used for the other cams. In this case, the pro-
files come from the definition of points on the base of a polynomial function.

The code starts with the definition of the slopes of velocity and acceleration
that are wanted for the segment extremes. They are computed, indeed, from
the start and the end velocities and acceleration of the slave and the velocity
of the master. Then, the coefficients of the polynomial are defined. They come
from the computation of the interval (T) of the segment in terms of master
degrees and the initial values computed. The former is computed from the
master start and end positions defined for the segment. They are the key to
the creation of the profile as below it is described. What follows is the effective
computation of the points of the two output arrays.

The arrays are filled through the use of a ”for cycle”. It covers the interval
(from zero to T) previously computed by increasing the index by one per cycle.
This allows computing with an accuracy of one degree, relatively to the master
positions, the profile of the cam. Then, each element of the output arrays is
a point of the cam. The elements of the arrays to be filled follow the sum of
the index and a shift value. This last one is always updated before the start
of the cycle. In the case of the linear cam, this coincides with the master

94



start position. So, each cycle starts at the master start position (defined in
the input segment) and ends at the master end position (sum of the ”for”
index and of the shift value). This results in the filling of 361 elements of the
linear array (as the master degrees go from 0o to 360o). In the case of the
rotating cam, the shift value is the last array index used in the ”for cycle” of
the previous segment. Obviously, for the first segment, it is modified to zero.
This is possible because the master positions are always increasing in the cam
profile. Therefore, they allow to safely define the elements of the arrays to be
filled.

Once it is clear how the arrays are filled, the computation of the proper
points follows. Thanks to the ”for” index it is possible to compute the value of
the polynomial function. Indeed, the parameters are defined at the beginning
of the FB with the whole interval length. So, the single index defines the value
of the function inside that interval T. This value computed is then added to
the Y element of the linear array, while the X is filled with the correspondent
master degree. At this point, the rotating array is filled. Firstly, the Y point
is converted to the correspondent angle by the Crank Translations FC. This
allows filling the rotating array with the angle found in the Y element of the
rotating array, while in the X is set the master degree. Lastly, the window pa-
rameter is finally used. The dead centres of the crank are critical points, where
large variations of the degrees are matched with little variations of the linear
displacement. Therefore, the conversion from linear position to angle became
useless. For this reason, the window defines a range of angles where the crank
conversion is not applied. In case the angle is inside this window, it is actu-
ally not added to the array and a counter of points not stored is incremented.
This is done in order to let the LCamHdl CreateCamBasedOnXYPoints FB
to merge the points with the spline in order to let the rotating axis to be free
with respect to the linear profile. The only exceptions are the first two and
the last two elements of a segment. This allows to give the starting and ending
directions of the spline in case the segment start or ends in the window. The
most relevant case is when a constant cam profile is defined inside this range.
Not adding all the elements would be a loss of information as no points would
result. At the same time, only the first and the last points would not give
enough information to the spline to maintain the constant profile. Therefore,
two points at the beginning and at the end of a constant segment impose a
sufficient amount of information to maintain the desired profile. The counter
used to detect the points not stored is used in order to avoid empty spaces in
the array. It allows decreasing the ”for” index exclusively for the array element
that must be filled along with the definition of the last index used at the end
of the code.

95



Chapter 4

Motion Control algorithm

In this chapter, the motion control code developed is analysed. The Motion
folder showed in Fig. 3.1 on page 69 contains the actual algorithm for the
motion control. It is divided into folders and FBs for a better organization
of the code. The blocks are related to sections of the algorithm in common
with all the sub-modules. The two main parts are represented by the folders
SM Layering, namely the sub-module dedicated to the first part of the ma-
chine, and the SM Stretch dedicated to the second part where the sealing is
performed. The Libraries folder (already discussed in the previous chapter)
and the FC/FB Utilities folder (covered with the explanation of the code) are
added to them. After an introductory section where the project choices and
the main piece of code are explained, the following ones cover the actual code
developed.

4.1 Implementation of the motion control

Starting from the main programs executed by the PLC, the OB blocks are
the initial step to be considered. Organization blocks (OBs) are the interface
between the CPU operating system and the user program. They are used
to execute specific program sections: at CPU startup, in cyclic or clocked
execution, whenever errors occur, whenever hardware interrupts occur. Orga-
nization blocks are executed according to the priority they have been allocated.
Regarding those present in the project, they are of two categories. One of them
contains OBs linked to the technology objects and they are treated in the sec-
tion above dedicated. Instead, the other OBs are the main ones executed by
the CPU cyclically, every time they are terminated, or by call. Among these,
the one of interest is the Block management or OB1. The operating system of
the S7 CPU executes OB 1 cyclically. When it has been executed, the operat-
ing system starts executing OB1 again. Namely, a cyclic execution is started
after the startup has been completed. OB1 has the lowest priority of all OBs
that are monitored for run-time. With the exception of OB90 all other OBs
can interrupt its execution. The following events cause the operating system
to call OB 1: end of startup processing, the execution of OB1 (the previous
cycle) has finished. When OB1 has been executed, the operating system sends

96



global data. Before restarting it, the operating system writes the process image
output to the output modules, updates the process image input, and receives
any global data for the CPU. S7 monitors the maximum cycle time, ensuring a
maximum response time. If the program exceeds the maximum cycle time for
OB1, then the operating system calls OB80 (time error OB). If OB 80 has not
been programmed, the CPU changes to STOP mode. Apart from monitoring
the maximum cycle time, it is also possible to guarantee a minimum cycle
time. The operating system will delay the start of a new cycle (writing of the
process image output to the output modules) until the minimum cycle time
has been reached.

The OBs were already present in the Siemens-Schneider version of the
MS260 and they are kept. This comes from the project choice to maintaining
the modular structure that was present in the old version. Indeed, in this case,
the motion control is not incorporated in the PLC status control of the machine
that was communicating with the Schneider drive. Instead, it is added as a
modular section of the code that interfaces itself with communication bridges.
Anyway, this approach is still different with respect to the previous one. As
it is explained in the section dedicated to the communication between PLC
and Drive of the first chapter, this requires more resources than a simple
bridge. Indeed, it was explained that a word construction system is used in
both codes for the internal variables used and in the PROFINET connection.
Consequently, maintaining the modular structure, the new motion control can
exchange information directly with the PLC variables stored in the DB Axis IN
and DB Axis OUT previously used in the PROFINET network. By applying
this to the PLC code, a reduction in the FCs called is achieved. Indeed, the
parts eliminated from the main OB are related to the maintenance of the
network and to the construction and deconstruction of the word passed. In its
place, the new FBs computing the motion control are instead added.

4.2 Motion structure

The organization of the new code is composed of three main FBs called inside
the OB 1 like the beginning of this chapter underlines. They represent the
whole structure of the motion control and are divided into two layers as Fig.
below shows.

Each module is coded using the Ladder language for a continuity line with
the previous PLC organization. Indeed, this language allows a better debug-
ging procedure with respect to a structured one. However, it is used only
for the structure directly inside the three modules. Especially for the two
sub-modules, many different FBs are present inside them. This code allows
a visual disposition of the blocks and a better understanding of the active or
faulty ones. Instead, inside each programmable block called by the two sub-
modules the Structured Text language is used. The reason behind this choice
is that the managing of the axes control is easier.

97



Figure 4.1: Siemens motion control layers.

4.2.1 MM Machine

Starting from the first of them, the MM Machine acts as an overlay level. It
has the role of computing the instructions that are in common between the
two sub-modules. Indeed, from this FB no commands are generated for the
two sub-modules. They are directly obtained from the PLC variables through
the bridge. Instead, the MM Machine performs a merging procedure of some
outputs coming from the two sub-modules and allows to initialize some pro-
cedures. It is organised in six networks according to the Ladder structure
specified above. In particular, four different jobs are here performed.

The first two networks combine the states of the two machine parts in order
to notify a unique state to the status control part of the PLC. In particular, as
will be shown later in the dedicated sections, the two sub-modules have in the
outputs also the status of their operative conditions. So, instead of passing
directly these outputs directly to the PLC variables, the MM Machine merges
the states into a single variable in common between them.

An important common operation of the two sub-modules is the format
change. This operation requires to compute the new cam of the axes from the
data inserted in the HMI relative to the new package dimension and bundle
data. To start, this operation needs the new dimensions of the bundle. To
avoid the redundancy of their computation and of the data transferring, this is
directly performed in this module. Then, the newly defined variables are passed
to the sub-modules through the stModulesInOut common DB. Moreover, this
first step of the format change allows recognizing the successful request from
the HMI of a new format. Indeed, when this happens, the data inserted in
the HMI are processed by the PLC. Only in case they are not faulty, they
can be processed by the motion control. In this FB, the check control of the
successful format change request is processed. In this way, the sub-modules
which control the motion of the axes are not disturbed.

In parallel with the status management described above, also the errors
that occurred in the two sub-modules of the motion control must be trans-
mitted. For this reason, another job executed by this FB is related to alarms
handling. The errors generated in the sub-modules are merged with the error

98



that eventually occurred in the drive. This is performed because the drive
is a common component of the actuators and therefore of the sub-modules.
Then, the control of its faults is performed inside these lasts networks of the
MM Machine. The logic used for this operation relies on the use of the Sina-
ParaS FB that is also used in the sub-modules for the actuators faults. The
explanation of it is then described below. To avoid redundancies for the data
transmission, the result of the reading procedure is directly added to the info
displayed on the HMI. Indeed, after the drive error control, the sub-modules
faults are taken from the ”Modbus” common DB and the information are
printed on the variables accessed by the HMI.

4.2.2 Sub-modules organization

The two sub-modules are structured in the same way between them. In par-
ticular, they are coded using the ladder language (with the advantages of this
coding choice as previously mentioned) and organised in a SFC-like structure.
This is slightly different with respect to the Schneider motion control described
in the first chapter. Even if the parallel work performed by the different core
functionalities is kept, the requirements and the steps to reach that point are
different. Indeed, Fig. below summarizes the structural idea behind the choices
made for the organization.

Figure 4.2: Sub-module Structure.

Each block reported here is a programmable block that can be either a FC
or a FB. In particular, the Axes modules and the Axes control actions are a
group of programmable blocks, but they are covered later. Regarding the two
types of blocks mentioned they have significant differences and reasons to be
used:

• A function block (FB) is a block ”with memory.” It is assigned a data
block as its memory (instance data block). The parameters that are

99



transferred to the FB and the static variables are saved in the instance
DB, while temporary variables are saved in the local data stack.
The data saved in the instance DB are not lost when the execution of
the FB is complete. However, the data saved in the local data stack are
lost when the execution of the FB is completed.
An FB contains a program that is always executed when the FB is called
by a different logic block. Function blocks make it much easier to pro-
gram frequently occurring, complex functions.
An instance data block is assigned to every function block call that trans-
fers parameters. By calling more than one instance of an FB, you can
control more than one device with one FB. An FB for a motor type, can,
for example, control various motors by using a different set of instance
data for each different motor. The data for each motor (for example,
speed, ramping, accumulated operating time etc.) can be saved in one
or more instance DBs.

• A function (FC) is a logic block ”without memory.” Temporary variables
belonging to the FC are saved in the local data stack. This data is then
lost when the FC has been executed. To save data permanently, functions
can also use shared data blocks.
Since an FC does not have any memory of its own, actual parameters for
it must always be specified. Moreover, initial values for the local data of
an FC cannot be assigned.
In function blocks (FB), a copy of the actual parameters in the instance
DB is used when accessing the parameters. If an input parameter is
not transferred or an output parameter is not write accessed when a FB
is called, the older values still stored in the instance DB /Instance DB
= memory of the FBs) will be used Functions (FC) have no memory.
Contrary to FBs, the assignment of formal parameters to these FCs is
therefore not optional, but rather essentially. FC parameters are accessed
via addresses (pointers to targets across area boundaries). When an
address of the data area (data block) or a local variable of the calling
block is used as an actual parameter, a copy of the actual parameter
is saved temporarily to the local data area of the calling block for the
transfer of the parameter.

The possibility to have internal variables dedicated only to one function
block allows keeping a clean and simple project. This is a great difference with
respect to the Schneider one. There, the variables were all set as global inside
the sub-module making really complex its understanding.

About the blocks shown in Fig., they can be organised in two categories.
The blocks that execute the motion control logic and the blocks that manage
the data. In the first category, there are: Axes control actions, Format change
management and Motion control logic. They perform the logic necessary for
the execution of different operations. In the second one, there are the remain-
ing blocks: Axes modules, Initialization, Input and Output management and

100



Alarm handling. They allow managing the data making them available for the
previous category or for the other parts of the project control algorithm, either
the PLC or the above layer MM Machine.

4.3 Axis module

The first element present in both the SM is the Axes modules. Depending on
the number of axes that it manages, an equal number of FBs is used in the
initial networks of the modules. In this sense, the SM Layer is characterized
by an FB for the master and one for the Layer axis. The SM Stretch has five
different FBs for Master of the module, Pusher axis, Film pull axis and the two
axes related to the Crank. Being both real and virtual axes and also indepen-
dent or dependent, the FBs are not the same calls but with different instances.
Apart from a similar organization, they have different blocks inside them. To
start, these blocks are coded using the ladder language. Having themselves
FB calls inside, allows a more visual expression of the active or faulty parts.
In the firsts networks the LaxisCtrl library blocks, explained in a previous
chapter, are used. In particular, they allow activating the motions needed by
directly raising an input and also permit to see the operative state by looking
at the outputs. To exploits these possibilities from a different part of the code,
a structure must be used. Indeed, inside each Axis module two UDTs (user
data types) are defined: Axis Ctrl and AxisStatusWord. They come from a
structure defined in the ”PLC data types” folder of the project tree in relation
to the inputs and outputs of the block used from the library. The first one
has actually two alternatives. Indeed, as the structure is kept the same for
all the FB generated for the different axes, the structure variable is repeated
in each of them. Therefore, it is defined as PosAxisCtrl and SyncAxisCam-
mingCtrl, namely the two types of axis control FBs took from the library. In
addition, each Axis Ctrl structure is paired with the configuration structure
AxisConfig. This one, differently, is an already defined data type from the
library and simply added to the code. As mentioned in the section dedicated
to the libraries, this variable allows managing all the parameters necessary for
the motion blocks used by the library FBs. These parameters set the operative
conditions for the motion action that is selected, such as position, velocity and
acceleration. After this, the Axis module continues until the end with networks
dedicated to the management of the errors. The details of the motion control
error management will be covered later. In the code, only the faults activation
and reset are defined. Therefore, only this is for now described. The outputs
related to the axis error are checked. In particular, three different errors are
present; Technology object error, Drive error, LaxisCtrl error. Obviously, the
second one is only present for the real axes as the virtual ones do not have a
dedicate piece of hardware. First of all, in case one of the errors named above
is present, the generic error bit is raised. It is also an output value of the Axes
module FB making it available for the rest of the sub-module. For example, it
is used in the action selection FB for the managing of the axes when an error

101



occurs. The errors reset follows in the networks. It is organised in more steps.

1. Depending on the LaxisCtrl library management of the errors, a config-
uration bit must be modified in order to reset a technology object error.
For this reason, the first step is to set the bit high in case the related
variable which checks if the error occurred is raised.

2. Before the reset command is activated, in the second step, the output
resetActive is controlled. Indeed, this avoids problems inside the same
cycle of the OB1. This approach allows to activate the reset and then
check if the reset has been performed only during the next FB call,
namely in the successive cycle of the OB1. So, in this step, if the output
of the library FB is high, the reset command is deactivated along with
the bit of the previous step. Even in the case of the reset called not for
a technology object error, this reset does not affect the configuration of
the axis because it would set the same value to the bit, namely 0.

3. In the third step the reset command is activated. This depends on the
presence of one of the errors mentioned above and the activation of the
reset call from the HMI panel. Under these conditions, the bit is set high
until the activation of the previous network resets it.

The three errors are generated through the use of custom FBs. If an error
occurs at a technology object (e.g. approaching a hardware limit switch), a
technology alarm is triggered and indicated. The impact of a technology alarm
on the technology object is specified by the alarm reaction. Technology alarms
are divided into three classes:

• Acknowledgeable warning
The processing of Motion Control job is continued. The current motion
of the axis can be influenced, e.g. by limiting the current dynamic values
to the configured limit values.

• Alarm requiring acknowledgement
Motion jobs are aborted in accordance with the alarm reaction. You
must acknowledge the alarms in order to continue the execution of new
jobs after eliminating the cause of the error.

• Fatal error
Motion jobs are aborted in accordance with the alarm reaction.

To be able to use the technology object again after eliminating the cause
of the error, you must restart the technology object.

In the case of the Technology object error detection, the block related is
always enabled. This FB takes as inputs two important parameters directly
linked to the TO analysed: TO.ErrorDetail.Number TO.ErrorDetail.Reaction.
In particular, inside the block the detail reaction is first checked. Depending
on the value displayed, if it is different from zero an error to be handled has

102



occurred. Consequently, the number would be analysed in order to select a
value from a defined structure of strings where in every position is described
the meaning of the fault occurred. After this, through a concatenation of
strings, in an output variable of the block the number followed by description
is stored. In case of a detail reaction different from zero, the output related
to the presence of an error would be also raised, TecnologyObject.xError. This
allows notifying in the Axes module FB the occurrence of a fault.

The LaxisCtrl error, instead, is linked to an error that occurred during
a Motion Control instruction. This means that something has failed during
the execution of one of the instructions controlling the motion blocks of the
LAxisCtrls FB. Errors in Motion Control instructions are signaled using the
output parameters of the FB itself ”Error” and ”ErrorID” or by the LAxisC-
trl GetAxisStatusWord error output.
Under the following conditions, ”Error” = TRUE and ”ErrorID” = 16#8xxx
are indicated for the Motion Control instruction:

• Illegal status of the technology object, which prevents the execution of
the job.

• Illegal parameter assignment of the Motion Control instruction, which
prevents the execution of the job.

• As a result of the alarm reaction for a technology object error.

In this case, the error activation FB is enabled when the error output of
the library FB is active. After this, the block takes as input the diagnostic
output structure of the FB itself by looking at the variables ”Status” and ”Sub-
functionStatus”. Respectively. they store the status of FB when error that
occurred (namely the general error that the FB detects) and the ErrorID of
called sub-function (namely the specified error of the motion block that failed
its execution). The subsequent string conversions and concatenation of the
two codes allow storing on output variables the information that are going to
be displayed in the HMI. In parallel, the output LAxisCtrlFB.xError is raised
for the error management.

The last error is the drive one. This management appears only in the Axis
modules of the real axes, namely the Layer, the Pusher, the Film pull and the
real Crank axes. This error control needs a more structured code. Indeed, the
previous errors are linked to software parts of the project. Instead, in this case
hardware access is required. In order to perform such actions, a dedicates FB,
the SinaParaS, is required. This FB allows performing an hardware access in
order to read or write the parameters of the hardware indicated. Moreover,
it is an acyclic block. This means that a positive raise of the enabling input
must be detected in order to be activated. From this, the following Fig. shows
the code for its activation. Firstly, if the block is not running and the start
is not present, the new rising edge is set. Otherwise, the enabling input is
reset. These lines allow maintaining low the enabling input until the previous

103



operations are terminated. At this point, the mode management of the block
is performed. In case the block is in reading mode (namely SinaMode = 0)
and has terminated its operations, the relative read elements are controlled. If
some errors are detected in one of the two variables SinaRead 1 or SinaRead 2,
the writing procedure is enabled. This occurs only in case the reset command
is in the first place activated and the FB is not in a busy condition. In this
way, a new cycle of the FB can be activated. Indeed, SinaOperating is reset
and the start command can be set to one. After the termination of the error
reset (SinaMode = 1 AND SinaDone), the cycle is restarted from the reading
stage.

Figure 4.3: Drive error management.

The parameters that the block reads and writes are two specific values of the
drive hardware, namely NumberOFActiveDriveAlarms = 2111 and DriveAlar-
mAcknowledge = 3981. These two are found by looking at the parameters
section of the motor. They are respectively linked to the ”Alarm counter” and
to the ”Acknowledge drive object faults”. To these, it is important to add
also the two FB inputs displayed in Fig. before ”AxisNo” and ”hardwareid”.
As they were explained in the drive section before, they allow identifying the
hardware we want to access.

Figure 4.4: Axis Parameter.

104



Figure 4.5: Drive error management.

4.4 Initialization and blocks execution

An important aspect of the organization of the two sub-modules is how the dif-
ferent blocks in Fig. 4.2 on page 99 are executed. Two conditions are present:
Axes successfully enabled and Initialization terminated. Both are necessary to
be TRUE in order to activate the rest of the motion control FBs.

The first one is a requirement linked to the activation of the axes. As
described in the Axes module part, in each of them there is a FB dedicated
to axis motion management. However, even if the block is enabled during
the first cycle of the OB1, the activation of the axis occurs only if a positive
signal is detected in the ”EnableAxis” input. Therefore, the activation of the
block is performed only after some proper conditions related to the axis are
present. This, indeed, requires the library described in the previous chapter,
IsAxisReady SyncAxis. To perform the axes activation, multiples networks are
used. In the first one, the library FBs are called. One for each axis of the sub-
module, the one inserted must coincide with the typology of the axis to be
controlled, either a PosAxis or a SyncAxisCamming. The inputs are the name
of the axes to be controlled and a bit variable to select or not the check of the
sensors of the motor. From these, the computation explained in the previous
chapter are carried out, leading to a single output that notifies the possibility
to enable the axis. In the code, this output is directly linked, through the

105



structure explained before, to the LAxisCtrl FB input that enables the axis.
The results of the axes activations are used, in sequence, for the enabling of
the sub-modules blocks.

The Initialization block condition comes after the termination of its execu-
tion. This programmable block is an FC. After its execution it is never used
again until a complete reset of the machine. Therefore, no memory is required
to be store in it. To perform its compilation only once, a first scan bit is set.
Indeed, it is initialized at TRUE in the first call of the FB. Then, at the end
of its first call it is reset to zero, leaving inaccessible the initialization block.
Regarding its functionality, it is used to initialize some parameters that are
going to be used throughout the code. In particular, it is divided into two
parts:

• Configuration parameters
Inside this part, some configuration parameters of the LAxisCtrl library
are set. Among them, the most important ones are those linked to hom-
ing of the motors, such as typology of homing, input sensor, direction,
homing position and dynamic parameters. This aspect is very impor-
tant because the homing procedure is more complex than Schneider’s.
Indeed, as the related section will explain more in detail, in this case
Multiturn Absolute encoders are present on the motors. This results in
a dedicated procedure for the absolute homing of the axes. Then, a sec-
ond part is used in order to perform the re-phasing operations that can
be required in some conditions. In addition to these parameters, some
elements linked to the axes motion are present. They, however, are set at
generic values to be initialized. Indeed, during the motion control steps,
they are modified.

• Alarms definition
The second part is used in order to initialize the alarms of the sub-
module. The details of the fault managing are reported later in this
chapter. Here, the specifics of each alarm that is used are inserted. They
consist of:

– type = this allows dividing the alarms for importance in different
categories

– code = this gives an ordered list of the faults. It is used for the
ordering also between the alarms of the same type.

– message = this is the detail of the specific alarms that occurred in
order to have some information about it in the HMI display.

– reaction = this specifies for the motion control algorithm the pro-
cedure to be used in the case that alarm occurs

After this, the custom FB created for the fault handling is called. Indeed,
this step is used as an initialization procedure also for that. This is the

106



reason why the alarms are inserted here. The details about these calls
are reported in the Error handling section.

At the end of these steps, the status variable ”Init Done” is set high. This
is the last value missing for the activation of the sub-module blocks along
with the enabling states of the axes. Indeed, they are set in sequence for the
activation of the ”Parallel Actions” variable. It enables the blocks making it
possible to be executed by the CPU.

4.5 Sub-module bridges

The input and output bridges are used to match the PLC variables with the
motion control ones. This allows working inside the algorithm with internal
variables that are copies of the PLC values. These functions are built as
FCs because there is no necessity for storing internal data. Indeed, on one
side there are PLC variables stored in dedicated DBs, while on the other the
motion parameters are stored in DBs dedicated to the sub-module. About the
input bridge, it is divided into two sections. The first is focused on the simple
copying of the variables, acting as a bridge. Among this class, there are the
commands that the PLC passes to the motion such as the automatic or the
manual modality of action. Moreover, there are some synchronization variables
like the termination of the pushing phase. These, as the following description
presents, are output variables of the module passed between each other. The
second section contains some ladder logic. Therefore, it works as a filter where
both the PLC and the motion parameters are combined for the activation
of some variables dependently on the operative conditions. For example the
conditions for the activation of the starting command of the layering axis.

With this FC, also another one is present. It is a FC dedicated to the
management of the homing request and the motion enabling. The first requires
the knowledge of the homing mechanism used for the sub-modules. Here,
the logic executed in the SM Layer is briefly described. A homing request
performed by the PLC is passed through the variable x107 LayeringResetHome
in the first section of the the bridge. When this happens, the status of the
axes is controlled. If the module is already homed and a homing procedure
is not already running, the request is processed through the deactivation of
the homing status and the enabling of the iq xHomeRequested that notify its
acceptance. Then, the latter bit starts the motion termination procedure,
which is explained in details in the next section of this chapter related to the
motion actions. These consequences are executed in the same OB cycle of
the request acceptance. During the next one, if this procedure is completed
successfully, the iq xHomeRequested is deactivated in order to let the motion
action automatically start the homing reset.

These same steps are also performed by the SM Stretch. The only differ-
ence is that in this case two types of homing reset are present. The first one
affects the homing of the Crank axes and their master. Indeed, as the next
section will describe, a dedicated homing procedure is present. The second one

107



is dedicated to resetting of all the axes of the sub-modules. For this reason,
here two homing status bits are present: one for the first case xCrankHomed
and the second for the other xCrankHomed. The layer module is only affected
by the xOutputHomeOK bit that is set at the end of the homing procedure.
For the SM Stretch, instead, it is set to TRUE at the end, but only when
the other two are high as well. The module enabling part of the action FC
is used for the deactivation/activation of the motion actions. It is set as follows:

xModuleEnable := xInputModuleEnable AND xInputDelayedMainPower AND
xNewDataCycleDone AND FaultStopRequested

The variable xInputModuleEnable is a PLC bit passed through the bridge
and is used in it in order to set from the control logic the enabling of the motors
actions. The second variable xInputDelayedMainPower is a safety related bit.
In this machine, the safety is managed with additional hardware dedicated to
that functionality. Then, only if it send a positive status about safety, the
motion is enabled. The xNewDataCycleDone is the status bit related to the
format change. If it is TRUE, it means that the format parameters and the
axes cams are successfully loaded, namely the machine can produce the desired
bundle. The last variable, FaultStopRequested, is negated. It is linked to the
custom faults management internal to the sub-module. This bit is activated
only in case an error has occurred in some part of the machine. Therefore, this
allows starting the stopping procedure of the motion algorithm.

4.6 Motion control actions

The core of the motion control logic resides in this block or, more specifically,
in this group of blocks. Indeed, it contains multiple FBs that allows to select
and execute the operation requested. This group characterizes both the sub-
modules and, even if the structure is the same, the motion actions are different
among the two. Obviously, this comes from the difference in the number of
axes they have and the operational complexity that they must perform. To
start, the common structure of the block is presented. As said, this is equal
in both the SMs. This allows introducing, at first, the management of the
actions and, then, to describe the specific computations and operations that
they performs.

4.6.1 Motion block structure and management

The motion actions are structured as Fig. 4.6 on page 110 shows. The first
FB to be executed in the networks sequence is the SelectAction. Here, the
commands that come from the PLC are processed to enable the relative op-
eration mode. Moreover, after the termination of one of them, forced or for
the rising of a different command, this FB manages the stop and the ending
of the active process. To perform such operations, this FB is characterized by
different inputs. The most relevant ones are: the direct PLC commands that

108



are passed through the input bridge, the enabling bit of the motion actions
FB (iq xHome. iq xMan, iq xAuto) and the faults reactions requests. This FB
is coded with a ST case statement which allows having waiting moments and
the execution of the command that characterize this specific block. Moreover,
this allows its division in the two functionalities described above.

The first one is dedicated to the activation of the FBs. To perform such an
operation, the first state processes the possibility for one of them to be active.
This depends on the status of the motion algorithm and the commands of the
PLC.

i xModuleEnable AND NOT i xHomeRequested AND (i xInputRqMan OR
i xInputRqAuto OR i xInputRqJog OR (i xInputHomeEnabling AND NOT
i xOutputHomeOk))

The i xModuleEnable is computed in the Input action described in the
previous section. This allows establishing the circumstances that permit the
motion to be performed or to continue. So, in the case of a FALSE state of this
variable, the actions can not be activated. The same reason affects the specific
action requests variables. To proceed in the SelectAction FB cases, indeed,
at least one of them must be active. This affects also the homing starting
procedure that, more specifically, can only be performed in case the axes are
also not homed. For the other conditions, it is also related to the homing
request, i xHomeRequested. It was also described in the previous section along
with the module enabling bit. In particular, it is used for the termination
of action but, here, it is necessary to not allow a new action to be executed
until the activation cycle of the home request is terminated. In case an action
can be activated, the case proceeds in order through the enabling states of
the actions. This allows giving, by project choice, importance to the different
conditions. Firstly, the homing state is checked. If a request is pending, the
homing action is enabled through the bit iq xHome. Otherwise, the control
passes to the manual state. Here, if its PLC command is active, the bit iq xMan
is used to enable the correspondent FB action. The last case follows from a
negative response to the previous where the automatic operation is activated
with iq xAuto if requested. The possibility for one of the states to not be
active is present. In that case, the FB returns to the initial state. Differently,
if one of the states is active, the case switches to a new waiting state. Every
time one of the motion action is active, this is the condition in which the
SelectAction FB is. Here, the activation by the motion FBs of the variable
iq xSelectCase ExitAction allows to continue to the second part. The logic for
the activation of this variable is described later.

The second section oh this FB is used to manage the axes after the ter-
mination of one of them. The axes are directly controlled by giving to the
LAxisCtrl FBs instructions through the control structures defined. Depending
on the sub-module, a different number and type of axes can be controlled.
However, the logic performed is valid for both cases. The motion stop takes
into consideration different possibilities. A PLC request to terminate comes

109



Figure 4.6: FB organization of the motion actions.

because a new operation needs to be executed or the one active is no more
required. So, in both the SMs the master motion is controlled. Indeed, if
it is moving, it is stopped and a positioning command is given to finish the
operations in the starting angle, i.e. 0.0 degrees. Since the configuration pa-
rameters of the masters LAxisCtrl FBs could have been modified during the
nominal operations, here they are re-defined in order to successfully completed
the one required. After this or, eventually, if the axis was already not moving,
the logic passes to the finals steps of the procedure where the stop commands
for all the axes in the sub-module are enabled to fully terminate any other
possible pending command. This is performed to allow a safe return to the
initial state of the FB by having the ”standstill” status active in all the axes
which leads to the FALSE value of the output variable i xOutputAxesMooving.
In case of a fault termination request, one or more of the reactions (xAuto-
matic Stop Request, xImmediate Stop Request, xPhase Stop Request) provided
by the alarm management explained in one of the section below can be active.
Again as for the motion activation, the priority is provided by the order of
processing used. From the less threatening one, the phase stop requires the
completion of the active motion; namely, the command is terminated in case
of the homing or the manual action active, or the operation cycle in case of
the automatic action. For this reason, here the master is controlled again. It
is allowed to terminate the positioning command in case of an Absolute or a
Relative one. If it is moving at a constant speed, instead, that command is
terminated by the call of a new positioning request in the zero angle. The
final states describe before are then executed for the correct termination. The
immediate and automatic stop, instead, requires the direct stop of every type
of motion. However, they need a different initial logic due to their different
nature. The latter is a fault provided by the error of the moving elements
while the former is a specified condition. This implies that the automatic stop
does not call a command for a faulty axis. As a matter of fact, the immediate
stop calls directly the stop of all the axes in the SM and then the terminal
states are executed. In the other case, the axis errors are controlled for every-
one, leading to a stop call only for the active ones. A different ending state
follows this scenario. Indeed, the check of the successful ”standstill” status of
the axes is performed only for those that received the stop command. Then,
only the check of i xOutputAxesMooving is performed before returning to the
initial state.

110



The homing procedure is different in respect to that used in the Schneider
project. There, homing is performed as a reset and re-positioning of the axes,
also performed at each start. This necessity comes from the hardware of the
machine. The Schneider motors are characterized by a single turn absolute
encoder. This means that the position of the axes is known only while the
machine is running. Also, from this the software can not store the informa-
tion retentively. Differently, the new Siemens actuators are composed of a
multi-turn absolute encoder. The resulting absolute homing procedure is then
performed only once. Consequently, the position defined as ”home” is stored
in the memory and saved. In this sense, to keep the re-phasing modality, a
new piece of code is added.

The homing is managed in the TIA Portal in different ways. Homing is a
requirement for displaying the correct position for the technology object and
for absolute positioning. It can occur by means of an independent homing
motion (active homing), the detection of a homing mark during a motion
initiated on the user side (passive homing) or a direct position assignment. A
distinction is made between the following types of homing:

• Active homing
Active homing initiates a homing movement and performs the necessary
homing mark approach. When the homing mark is detected, the actual
position is set to the value specified in the retentive memory. It is possible
to specify a home position offset.

• Passive homing
The homing job does not perform its own homing motion. When the
homing mark is detected during a motion initiated on the user side, the
actual position is set to the value specified in the memory.

• Direct homing
With the homing job, the actual position is set directly to the value
specified in the memory or is offset by this value.

• Absolute encoder adjustment
The absolute encoder adjustment compares the existing absolute actual
value with the value specified in the configuration parameter of the hom-
ing block.

The direct and the absolute encoder are the only ones of interest. The
former is the one necessary for the absolute homing of a multi-turn encoder.
However, it needs the movement of the axis by the logic or by the operator.
The latter allows storing the position indicated in the parameters as homing
position to the axis. They are both implemented. In particular, in order to
perform both homing and re-phasing, a dedicate FB for the homing is created.
In this way, the logic created for the homing of the axes is kept, especially
for the SM Stretch. This FB is divided in two different sections depending
on the modality to be executed. The first state of the case is used for the

111



modality selection. This is performed through an integer that is equal to
the number of the modality to be performed. In the case of the absolute
homing of the actuators, the motors must be moved. Indeed, in this case the
homing command is launched as direct only to store the actual position of the
motor. Then, the motors are moved through a speed motion until the homing
sensor is triggered. At this point, the true absolute homing is activated and
the real position of the axis is stored. In case of a re-phasing motion, the
axis is controlled through a positioning to the real homing position. This
is necessary in some cases when the homing is used for specific porpoises.
These are explained later. This procedure allows you to emulate the homing
movement while, in fact, it is not. Indeed, if a new homing of the axis is
actually requested, the procedure activated by a specific input allows executing
the previous algorithm.

4.6.2 SM Layer

The layering module is the simpler one for the number of axes and operations
it must execute. As a result, the action FBs are less complex than the other
case.

Homing FB Starting from the Home FB, it is used for the homing of the
axes. By exploiting the procedure previously described, here it is only required
the activation of the inputs. Indeed, in the first state the master and layer
homing commands are activated. For the former, a normal direct homing is
triggered. Being a virtual axis, the position at zero degrees is directly imposed.
For the latter, the custom FB input is enabled. It executes autonomously the
procedure until completion. Then, the last state modifies the homed axis
variable to allow the start of all the motions.

Manual FB The manual operations are performed in order to execute the
set-up of the machine. The functionalities and, therefore, the code can be
divided into two main types of operations. However, the second is the execution
in bypass mode of the nominal operation. It is also present, coded with the
same logic, in the automatic action. In this sense it is explained with the rest
of the ”Auto” FB. In any case, its presence is required for the combination of
the layering motion with the specific operations that the SM Stretch executes
in its manual action. Regarding the first part of the layer manual operation
it affects only the layer axis. Namely, it is necessary to set up the mechanical
elements of the machine. The layer axis is required to execute two different
positioning operations: one to reach the lower part of the buffer (namely the
first trap) and the second to reach the second trap that coincides with the
bundle ready position. To perform these operations, absolute positionings
performed by the master are exploited with the salve coupled through the
cam. Firstly, in the case states the check of the bypass mode selection is
performed. This allows leading the logic to the bypass states rather than to
the manual positionings. In the latter case, the master is first returned to the

112



zero position. Then, the Layer axis must be linked to the master with the
cam. For such a goal, the MC GETCAMFOLLOWINGVALUE is exploited
in order to get the position to be reached in relation to that of the virtual
axis. The absolute positioning of the layer ends the initialization phase and
starts the actual manual operation logic. Here, two variables are processed:
xInputManCorsaPrestr and xInputManCorsaStrat. They are PLC commands
filtered by the bridge that activates respectively the short and the long stroke
of the layer axis. In particular, they are modified by the HMI panel where
the operator can call off the positionings. When one of them is enabled the
code assigns the related layer stroke to the cam input of the LAxisCtrl FB
along with the position that the master must reach. Then, the cam coupling
is enabled for the layer and the absolute positioning of the master follows. At
the end of the motion, the machine waits for the command of the HMI selected
to be deactivated. In this way, the machine returns to the initial state where
the initialization is performed again.

Automatic FB The automatic action is the principal operation performed
by the machine. Here, cooperation with the other sub-module is necessary.
The code is organised again accordingly to the functionalities it has. They
are performed after an initialization phase. To start, the layer axis is moved
through an absolute motion in its starting positions, the lower possible one.
This is not performed for the master because during these operations it is
not used for a reference position like it is in the other SM. So, after this,
the job selection takes place. In particular, like the previous action, it is
divided into two operations performed: nominal and bypass modes. The first
one allows the machine to work automatically without the necessity of the
operator in order to produce the bundle required by the format. The second
allows the operation of the machine linked to the SM Stretch, performing only
one layer per bundle and the push of the layer out without the film cutting
and sealing. Therefore, the mode selection case is built around the value of
the i xInputByPassModeSelection variable that allows switching to the bypass
mode if active. In normal conditions the case proceeds with the nominal
automatic operation. Firstly, the configuration parameters of the axes FBs are
set. Regarding the master, the reference velocity is defined. This represents
the speed of the virtual motor to which the layer axis is going to be attached
through the cam. Indeed, the idea behind this build is to enable the motor cam
when the packages are ready to push a layer. In this way, it is easy to manage
the axis as only one is present in this sub-module. Instead, as the description
of the next one will show, the management of the axes is different. Therefore,
the layer axis configuration parameters defined are the profile reference and
the cam mode that here are defined with the respective values of 2 and 0.
They represent the direct coupling of the cam to the master independently
to its value and the single cam execution to have the profile not be repeated
when its end is reached. At this point, the start of the operation is waited.
Before the real motion, the master must be activated. This occurs when the
automatic command from the PLC is enabled and the start command is active.

113



The latter is the one that allows distinguishing between the different types of
automatic cycles. One is the empty load run, where the machine runs without
the presence of products. The other is the nominal operation. Their selection
is also filtered by the input button on the HMI panel that allows the start of the
operations. When the master is running at the reference speed, the layer axis is
controlled. Here, the logic is used to chose between the short and the long cam
strokes and it depends on different parameters. The former is selected when the
machine can stuck multiple layers inside the buffer as the loading procedure.
The latter, instead, is used only to empty the buffer while also adding the
last layer. For this reason a dedicated logic is built. The start command,
that enables the master motion, and the layer axis is ready to be used are the
two main conditions that are necessary for both circumstances. The product-
related conditions and logic are added to this. The short cam is firstly used
when the number of layers stacked in the buffer (G iOutputNrOfPreLayers) is
lower than their maximum number (diInputBufferPreLayerNr computed in the
format change block) that it can contain. The first term is updated cyclically
by the motion logic block described in a different section of this chapter. The
short cam is used until the last layer is reached. In case the number of layers
prepared already is larger then the maximum for the buffer, an alternative
condition is used. Indeed, the synchronization with the rest of the machine
must be active. Namely, the bundle is not completely formed and the pusher is
in its back position. About the long cam, instead, it is used when the last layer
is reached and the lasts conditions described of the short cam hold. This logic
allows assigning to the axis input cam the one needed. Moreover, the values
required for the counting of the layers are updated. In case the automatic
command is reset while on this state of the case, a stop command is given
to the master and the logic returns to the configuration parameters definition
where, indeed, this variable must be TRUE. The continuous of the layer motion
is composed of the direct activation of the cam command for the FB that is
held until the synchronous status is reached. At this point, the operation
is almost terminated. Indeed, as soon as the motion is completed thanks to
the cam configuration parameters, the logic returns to the cam selection state
where a new run can be performed.

Bypass mode The bypass mode is a modality that implies the use of the
machine in order to produce only one layer of the bundle without the film
operations. Indeed, during this mode, the Crank and the Film pull axes are
idle while the film itself is removed from its standard position across the bundle
motion path. To simplify such operation the two sub-modules works with a
level of communication higher than in the previous scenario. This mode comes
with a new project choice with respect to the Schneider software. There, the
layer axis is directly attached to the SM Stretch master. This is performed
in the format change section. Indeed, in the MS260 machine, the enabling
bit of the bypass mode is modified as a format parameter, requiring a new
computation when it is changed. This type of operation can not be performed
in the Siemens software because of the management of the LAxisCtrl FB.

114



Figure 4.7: Bypass Solution.

Indeed, to perform such modification, a variable should be assigned in the
master axis input of the desired axis, as it is done for the cam. However,
among the variable types the TO PosAxis allows to define an axis technology
object but it does not allow to change the reference axis assigned to it, leading
to an error during compilation. A solution that allows performing such an
operation, namely to change the master axis of a slave, is to use a complex
custom FB. Figure 4.7 shows how it should be structured. The organizations
is divided among several functions and variables. The external FB requires
as inputs all the variables necessary for the management of an axis, like the
structure AxisCtrl defined in the previous sections or the cams linked to an
axis. Then, the masters that need to lead the axis are also inserted and
defined as DB Any (general definition of a DB). Then, as internal variables
other DB Any should be defined along with the instances of the LAxisCtrl
that contains the variables of the FB used to manage an axis. Therefore, the
masters are passed through a specified logic to the input of the FC. It also
takes as input-output variables the FB instances. These variables are, in this
way, passed to the FBs. Especially, the master can be known as defined for
the salve axis. This approach is too much articulated and rather useless for
the linking of the layer axis to the SM Stretch master.

An alternative could be the control of the layer linked to its standard
master. This one is then controlled through a velocity set-point equal to that
of the SM Stretch master. However, the mutual interconnection of the sub-
modules for this operative mode is lost requiring a more complex condition
logic for the synchronization.

A simple and direct solution is used. The SM Layer master is defined
during its creation as a SynchronousAxis instead of a PosAxis. This allows
exploiting the positioning features of the latter while also allowing to couple

115



it to the motion of another axis. So, the master of the layer is used as a
slave itself in relation to another axis. Its master is, in this sense, defined as
the virtual control axis of the SM Stretch. This leads by commutation to the
dependence of the layer to that axis.

Now, it is possible to explain the code used for the bypass mode execution.
Once the initial states have defined the active condition of the bypass mode,
the configuration parameters related to the acceleration and the velocity of the
layer are defined. This allows for executing absolute positioning. The position
is computed from the one specified by the actual degree of the master in the
bypass cam. The master degrees are zero for the initial positioning imposed on
it. Then, after its completion, the layer is controlled to be linked with such cam
to the master. In this case, the cam configuration parameters mode and profile
reference are defined 1 and 2; i.e. a direct coupling of the axis to the master
and a cyclic execution of the cam to repeat it until a new command is sent.
At this point the synchronization variables for the motion are checked. The
master configuration position is defined with 130 degrees of phase shift with
respect to the SM Stretch master. This is required as the bypass cam provided
consists of a profile for the pusher and one for the layer which is shifted of such
quantity. Namely, the resulting positions of the axis are such that when the
former is in its back position, the latter is in its extension phase. When the
variables allow the continuation of the operations, namely the stretch sub-
module axes are standstill and the start input is active, a positioning is called
for the master. This drives the layer to its top position due to the phasing
shift defined before. Then, a gearing coupling between the layer master and
the master of the other sub-module is activated with a ratio of 1:1. In this
way, the two masters start moving at the same speed, resulting in a fictitious
coupling of the layer with the other master. This coupling is stopped when
there is not a new start command from the product sensor. This implies that a
new layer is no more available to be pushed. So, the gearing is interrupted by
a new absolute positioning command for the master of the layer. This allows
to end the current cycle of it and then stop the axis at zero degree which is
when the layer is in its lower position. In the end, the logic returns to the
state where the start is waited and the new position of the master is defined.
This operation has an advantage. Apart from simplifying the master selection
problem, the cam coupling of the layer is never broken. The only axis that is
controlled is the master as the positioning and gearing commands are related
to it. The axis to be controlled is only one through operations more simple
and less problematic as a cam coupling.

116



4.6.3 SM Stretch

The stretch module is more complex for the number of axes and operations it
must execute. As a result, the action FBs are more articulated than the other
case.

Home FB Starting from the Home FB, it is used for the homing of the
axes. By exploiting the code described in the MM Machine section, here only
the management of the axes and the activation of the commands are required.
Moreover, this block is more articulated than the SM Layering. Here, two
parts are present: one dedicated to the pure homing, the other to the homing
related action which is the sealer cleaning. The first is articulated in different
steps. This SM is composed of multiple real axes among which the Crank is
connected to a pneumatic actuator. Then, its motion implies the movement
also of the other that is characterized only by a brake which must be disabled.
In this sense, at the beginning the status of such actuator is controlled. A
successful result allows enabling the Crank homing procedure through the
custom FB developed dependently on the modality required. Then, the homing
of the other axes is performed. Again, like in the SM Layering, the master is
controlled though a position definition of zero degree. Then, the Crank is
moved to the starting position and the homing status variables are modified.
In the second part, three steps are repeated. Each of them consists of the
deactivation of the pneumatic actuator linked to the Crank and the successive
absolute positioning of the last. From this, the sealer can be cleaned and a
new homing request is raised.

Automatic FB The automatic action is the principal operation performed
by the machine. Here, cooperation with the other sub-module is necessary.
One of the principal characteristics of this module is the cam management
performed for the Crank and the Film pull axes. They have an A and B
cam regarding the motion. This is a requirement for the online update of
their trajectory which is explained in detail, later, in the motion logic block.
There, the creation of the new cam is performed and the selection variable
ChangeCrankCam is managed. The latter is set to TRUE only in case the cam
stroke needs to be changed at run-time. In the code, the cam management
is divided into two different parts. Outside of the case, the condition relative
to the ChangeCrankCam is always checked. When it is active, the cam in
input to the LAxisCtrl FB of the slave is modified. This does not affect the
actual motion of the axis which, instead, continues to execute the old one.
After this, the condition variable is reset along with the activation of the
WaitToChange CrankCam or WaitToChange FilmCam. They are used in the
second part of the related code. This is performed inside the case, especially
inside the active states. They are those in which the code can be stuck for
some time while waiting for a condition to be verified. Therefore, during that
time much larger than that required for a transition state, the cam-change
takes place. A particular output bit of the LAxisCtrl FB communicates if the

117



cam selected is active. In this way, the input that enables the cam coupling
can be always reset if the output is high. From this, it is possible to give
a new positive edge to that input in order to start a new coupling. This is
used as a condition for the activation of the online defined cam instead of the
one used a the beginning of the case. Indeed, the input that enables the use
of the latter is reset right after the synchronization of the axes trough it has
occurred. The next condition for the online cam change is activated when the
master reaches the phase stop position (that is at zero degrees when a new
cycle starts), and the WaitToChange xxx is activated. When this happens,
the ”change” variable is reset and the command for the cam coupling is raised.
This sequence of conditions is fundamental because in this way it is possible
for the slave to follow the new cam at the beginning of the successive OB1
cycle. Lastly, the cam input is reset as before as soon as the old ones have
been processed in order to be ready to repeat the logic if required.

In parallel, the motion algorithm is organised again accordingly to the
functionalities it has: the nominal and the bypass modes. The former is used
as main logic. It allows the creation of bundles in synchronization with the
SM Layering. The initialization performs a set-up of the axes conditions to
allow a good start. In this sense, the Crank must be specifically controlled.
One of the first states is dedicated to the configuration of the cam commands.
Mode, profile reference and positions are defined. In particular, the simpler
case defines a direct and cyclic cam for the Pusher and the Film pull and the
latter also for the Crank. In the case of the Crank axes, different scenarios are
possible. The bypass mode sets the axis in an idle position that is calculated
during the format change. It coincides with the highest position of the cam
profile in order to allow the bundle ready to pass. The master in the starting
position allows initializing the axis in the higher state. This is mostly per-
formed after the homing procedure or at the end of a cycle where the Crank
is in the lower position on the base of the cam profile. Then, the master can
be in a different position allowing to directly activate the cam coupling. Af-
ter the configuration, the axes are positioned accordingly to the master angle
thorough the MC GETCAMFOLLOWINGVALUE FB. The one related to the
Crank is only executed in case one of the previous actions commands it. Other-
wise, the positioning is performed to the upper state. Lastly, the initialization
terminates with the cam activation for all the axes. Also the Crank is man-
aged here but, in one circumstance, the cam is followed only from a specific
master degree. The proper control algorithm is executed afterwards. When
the automatic conditions arise, the master is activated to execute one cycle.
This considers both cases where it is at zero degrees or in a different position.
In the latter, the master follows a positioning command to reach the starting
angle and then, as in the former case, the automatic cycle state is reached.
The starting inputs are related to the correct completion of the bundle by the
first sub-module and the start from the PLC is available. This allows you to
first set the speed parameters and then to give the input command. The oper-
ations are then terminated when a new input does not arrive, especially from
the ready bundle, allowing to perform an absolute positioning which cancels

118



the previous constant speed command so that the cycle currently in progress
can be terminated.

The bypass mode is performed in the second part of the case. This works
in direct connection with the layering module. At first, the Pusher is linked to
the new cam to be tracked. Then, the Crank axes are positioned at their idle
states. The last states are used for the motion. As the previous part of the
bypass in the SM Layering described, the coupling is essential. Here, indeed,
the master velocity parameters are defined waiting for the synchronization
with the other axes. This allows the start of the master. It drives also the
Layer coupled with its master that operates in gearing 1:1 with the current
master. As in the nominal conditions, the cycles continues until the Layer
stops, imposing a stopping to speed with a positioning. Then, the system
returns to its waiting position to restart the cycle.

Manual FB The manual operations are performed in order to execute the
set-up of the machine. The functionalities and, therefore, the code can be di-
vided into two main types of operations: the jog motion and the welding cycle.
The first one is related to the activation and control of the axes for the mechan-
ical set up of the machine. This operation is performed through a ”Jog” motion
of the axes. This means that the motion is directly controlled by the operator
which moves them through small displacements through the trigger of a panel
button. This modality merges both the operative conditions of the layering
module, namely the nominal and the bypass mode. Both are performed under
these circumstances, but still taking into account their differences. Below, the
former one is described, but the passages are used also for the latter with the
difference that its peculiarities are applied. This code contains the same axes
initialization that is used for the automatic action and, therefore, there it is ex-
plained. For completeness, the initialization is dedicated to the selection of the
Crank operative condition, the positioning and the cam activation of the axes.
About the latter, the management of the A and B cams, like for the Film pull
axis, is necessary. Again, this is used likewise in the automatic FB. After the
start-up, the master axis is taken into account. The positioning configuration
parameters (position/distance, acceleration, deceleration) are defined. They
affect both the absolute and the relative motions. Indeed, in this state the Jog
activation is processed and, in the case of positive input, the axis is moved.
This comes under two circumstances. In one case, the master is already at zero
degrees making a new absolute motion in that position impossible. Therefore,
a 360 degrees relative positioning is used. This allows completing a full cycle
if it is allowed. In case the master is not in its starting position, the absolute
motion is performed with zero degrees as the target. Once one of the two
commands is activated by the input sent by the operator, the logic waits for
the release of the Jog button. This implies the enable of the stop command
for the master. Then, the case returns to the master activation state where
one motion between the absolute or the relative is activated. This code logic
allows performing only one operative cycle at a time. Indeed, when the master
returns in the starting position, the axes are standstill waiting for the release

119



of the button. This meets the project choice made for the Schneider version of
the MS260. A different solution would have been the use of the Jog modality
implemented in the LAxisCtrl FB that controls the axes. In this circumstance,
the input signal could have been directly connected to the FB input making the
control easier. However, the direct connection would have made the managing
of the axis directly dependent on external input from the case logic. Therefore,
to compensate for this, the implementation of the ”one cycle at time” charac-
teristic would have been less intuitive. The solution adopted comes from the
necessity of better adapt the Schneider version. There, the start and stop mo-
tion is velocity-dependent through a condition external to the case. In it, the
relation to the activation of the input from the operator, the axis velocity is
set at a reference value or at zero. Therefore, the motion is made through the
modification of the speed that allows to stop or move the axis. This approach
does not exploit the features of the motion logic, making mechanical a rather
simple motion.

The welding cycle is the motion in the second part of the manual case. It is
implemented to perform a cycle with the Crank axis without the Pusher and
the Film pull. For the sake of mechanical set-up, this allows to directly control
that axis. The implementation is performed by adding a jump condition in the
state for the master configuration described before. If the welding request is
active, the case passes to the relative states. Moreover, an external condition
to the case set the reference speed of the master for this motion. This is
used also for the Jog mode in order to set the velocity of both the absolute
and the relative commands. In this modality, differently from the previous,
the master is only controlled through a relative motion. Indeed, the cycle is
performed entirely without stops. Therefore, the same conditions evaluated
previously apply again as it starts from zero degrees. The initial states of this
mode affect teal axes management. For the two not used in this mode, they
are stopped and the ”idle” cam is activated for the Pusher. This is not a
mandatory condition as the positioning performed before it is sufficient. The
cam does not impose any motion. The Crank, instead, executes its cam. This is
valid for both of the technology objects. Then, the states activate immediately
the master without leaving any waiting state between the activation and the
end. Finally, the case returns to the beginning.

Un-Brake FB The last motion action present end executed in the SM Stretch
is the brake release. In the second chapter where the actuators have been dis-
cussed, there was described how the Crank motor must be provided of a brake.
This is required for the vertical motion of the mechanism attached to it. There-
fore, it is fundamental to have a brake when the motor is not in torque. This
condition could be modified by an external request of releasing the brake. To
do so, the PLC command drives the ”Select action” FB to the activation of
the ”Unbrake” FB. This one allows enabling the request to release the brake
from the Crank motor. Depending on how the hardware is managed in the
TIA Portal, this control cannot be performed normally inside the motion logic.
Instead, direct access to the drive parameters must be executed. To do so, a

120



specific FB of the library LAxisCtrl called ”Brake Control” allows giving as
input the technology object and the Execute command in order to access the
drive parameter that controls the brake. This FB must be specifically used
inside the MC-PostServo, a specific OB that is called at the end of the MC-
servo execution. In this, the FB performs the command giving feedback on the
success of the operation in order to exit from the Un-brake FB and to return
the control to the Select action.

4.7 Format change management

The format change is performed in both the sub-modules in a dedicated FB,
SizeChange Layer in one case and SizeChange Stretch in the other. The acti-
vation of the block execution is performed in the same way. The starting point
comes from the MM Machine module previously described. As was mentioned
before, the dimensions of the packages and bundles are computed. The pa-
rameters are passed to both the sub-modules through the common data block
stModulesInOut. The MM Machine does not provide only the dimensions but
also stabilizes the start of the dedicated format change computations. Fig. 4.8
on the following page shows how this is performed. In particular, the variables
NewDataOnline and NewDataCycle are used. The same logic structure is ex-
ploited in all the modules for their application. The first one communicates
the start and the end of the MM Machine format change. This variable is
always TRUE when the computation in this module is not running; namely,
there is no request for format change from the HMI. It is set to FALSE only in
case a new one has arrived. This change of values allows in the initial states
of the sub-modules Format change FB to recognise that a format change is in
action. There, depending on NewDataOnline, the variable NewDataCycle is
managed. As will be shown, it is used the enable the motion action. Namely,
if this variable is not TRUE, it means that format parameters are not avail-
able and computation is required by the PLC. Therefore, the format change
block waits in its first state until a FALSE is detected from NewDataOnline.
This event triggers the modification to FALSE as well of NewDataCycle that
coincides with the ending procedure of the axes motion. Then, when a new
positive value is sent from the MM Machine, the computations of the sub-
modules instructions is performed. This ends with the activation by them of
the NewDataCycle that allows a restart of the axes operations.

The computations performed by the sub-modules are described separately
because, even if it performs similar jobs, the conditions in which they work are
different.

4.7.1 Layer sub-module format change

The states of the format change after the initialization are dedicated to the
computations of the new cams. This sub-module is characterized by only one
axis that is moving with a cam coupling, namely the Layer. It is paired with
the master of this sub-module and here its cams are defined. The first part of

121



Figure 4.8: Format Change Organization.

the machine is aimed at the stacking of the product in layers for the preparation
of the bundles. To do so, a buffer is placed between the two machine sections,
allowing to stuck as many layers as possible before interfering with the second
part. In this sense, the first instructions are aimed at the definition, on the
base of the new packages and bundles, of the relations between the products
and the machine buffer dimensions. Indeed, the geometry parameters that
compose the buffer are taken from the system values stored in the PLC (such
as the buffer high and the distance between the waiting products and the
buffer) along with the new data that were not used by the MM Machine as it
is for the product margin. With these parameters, it is possible to compute
the number of layers that can be stored inside the buffer. Accordingly to the
number of layers per bundle, the maximum number of layers can be stored
until the number that composes the bundle with one less. In this way, the
PLC sub-module knows how many travels it must perform before pushing the
last layer along with those stored in the buffer to the bundle waiting position.
Fig. 4.9 on the next page shows such conditions.

At this point, the cam positions are defined. Only two are necessary for this
axis: the first trap position and the second trap position. The former is used
to load the buffer, the latter to push the whole bundle. As a consequence,
only trap distances are necessary for this job. In parallel, also the master
positions are defined. In this case, they are kept from the PLC variables as
the input of the format change block. The axis, then, is characterized by two
main cams with 4 points each: the short cam and the long cam. They allow
the operations just described. An additional one is present that is used for the
special operative condition called bypass. It is similar to the long cam as the
axis must push the layer of packages to the second trap. The only difference
relies on the angles of the master that is paired to the axis. To create the cams
the LCamHdl library is exploited. The properties of such block are explained in
details in the previous chapter in the section dedicated to the libraries. Briefly,
the cam points are defined with the advanced elements of the FB which are
composed of the starting and ending position of a segment where the type of

122



Figure 4.9: Buffer geometry.

segment is specified. The details of the segments are reported in the table
below.

Short cam Segment 1 Polynomial of 5th order
Segment 2 Polynomial of 5th order
Segment 3 Constant function

Long cam Segment 1 Basic sine function
Segment 2 Polynomial of 5th order
Segment 3 Constant function

Bypass cam Segment 1 Polynomial of 5th order
Segment 2 Polynomial of 5th order
Segment 3 Constant function

The last step is the interpolation of the points. The array of elements just
defined and the TO of the cam that must be interpolated with these charac-
teristics are passed as inputs to the FB CreateCamAdvanced. The enable to
the FBs is activated only when all the previous instructions are terminated.
Then, at the end of all the interpolations, the cams in Fig. 4.10 on the fol-
lowing page are ready. As it is possible to notice, they are similar to those
shown in the tests presented in the second chapter. Lastly, the status variable
NewDataCycle is set to TRUE and the case returns to its initial state waiting
for a new cycle. The FB calls are inserted at the end of the case statement
that composes the format change routine.

123



Figure 4.10: Layer axis cams.

In addition to these instructions, an ”if” statement is present outside the
case. This is because its instructions must be computed at every OB1 cycle.
It is added to the block of the sub-module because it is strictly linked to the
cams here defined. This piece of code is linked to the functionality of the HMI
added to this project to show on the panel, when requested, the cams running
on the motion control. The details of such code are described in the HMI
chapter because it is not a fundamental functionality of the motion control
algorithm.

4.7.2 Stretch sub-module format change

The format change in this sub-module is more articulated than the previous.
This is a natural consequence of the higher number of axes present and moved
by a cam; three in this case: Pusher, Film pull, Crank. Again the logic is
organised with a case.

Pusher About the first axis, it is managed as the Layer. Three cams are
used for it: one for the normal operating conditions, one for the bypass modal-
ity and one for an idle state when the axis must stay still. At the beginning,
the operative conditions regarding the new bundles are defined (on the base of

124



two margins, one for the length and one for the high of the packages). In this
case, the resulting dimensions lead to four possibilities for the pusher motion
of the nominal operative state. For this porpoise, the high and length of the
bundle are used to identify if they are greater or less than a standard margin
related to them. This, indeed, leads to four scenarios:
- package high ≤ HighMargin AND package length ≤ LengthMargin
- package high ≤ HighMargin AND package length > LengthMargin
- package high > HighMargin AND package length ≤ LengthMargin
- package high > HighMargin AND package length > LengthMargin

The differences rely on the master positions at which the pusher ones are
paired. About the positions computed, instead, they are left unchanged and
they affect: back position (where the axis waits for the bundle from the layer)
forward position (where the bundle is left in its sealing position). The definition
is performed inside a case in which the state to be executed is selected by the
computation above. The other two cams are instead univocally defined from
the pusher positions. To define the cams, again the CreateCamAdvanced FB
is used. Then, the segments are defined as for the Layer axis and the table
below shows their definitions.

Nominal cam Segment 1 Modified sine function
Segment 2 Polynomial of 5th order
Segment 3 Constant function

Bypass cam Segment 1 Basic sine function
Segment 2 Constant velocity function
Segment 3 Polynomial of 5th order
Segment 4 Polynomial of 5th order
Segment 5 Constant function

Idle cam Segment 1 Constant function

The interpolation is executed immediately after the definition of the seg-
ments. A dedicate FB for each cam is present in order to speed up the com-
putations. So, as soon as they are terminated, the profiles shown in Fig. 4.11
on the next page are loaded and the format change block continues with the
computation of the Crank axis.

125



Figure 4.11: Pusher axis cam.

Crank The Crank is the most articulated axis of the machine. This is the
result of its mechanical composition that affects also the cam definitions. Dif-
ferently from the Schneider software, the automatic management of the con-
version between the linear motion of the Crank and the rotating one of the
motor attached is not present. This requires the use of the custom library de-
veloped Crank Module. It is described in the previous chapter among the other
libraries and in this block, it is exploited. In this case, two axes are managed:
the real and the virtual. The former is related to the rotating motion of the
motor, the latter to the linear axis in the machine. A cam dedicated to each
one is present but, differently from the previous axes, they are only affected by
one type of motion. To start, the positions of interest of the linear motion are
computed thanks to the bundle dimensions and the static PLC parameters.
They are specific for the three positions that the Crank follows. The traces
in the second chapter allows us to appreciate them. The initial position is
the ”top” one. It is reached when the bundle is pushed by the first axis of
the module. Then, the Crank gets down until the ”low” position is reached.
Here, the sealing and the cut of the film are performed. This action represents
the central functionality of the machine. Indeed, specific parameters can be
defined in the HMI in order to design the sealing phase as desired. Moreover,
as the successive code computes, from this phase other positions are derived in
order to build the motion of the machine accordingly to this core functionality.
The last step is the ”blow” position. After the sealing, the Crank moves up
the sufficient space in order to retreat the blade. Here, the machines blow air
in the sealing spot to cool down the sealed film. This operation requires a time
specified from a format variable. So, this continues also at the beginning of
the next cam cycle when later the Crank start to return to the ”top” position.
After this part, the cam segments are defined inside a case. As for the Pusher
axis, this one is divided in the four alternatives described above depending on
the bundle dimensions. To define the segments an array of custom structures
is used. The relative reasons are explained in the Crank Module library sec-
tion since in this case the standard segments can not be used. At this point,
before terminating this part some additional instructions are performed. The

126



first is the computation of the master position relative to the Pusher one. It
is performed through the Siemens FB MC GETCAMLEADINGVALUE. By
specifying the following position of the slave axis, the block allows determin-
ing the first master angle that coincides with that in the cam provided as
input. This operation leads to the exact moment in which the Crank should
be in its upper position allowing the bundle to reach the sealing position. This
is performed relative to the Crank position description above. The sealing and
the successive blowing phases are the central functionality of the operations.
Therefore, it is allowed for the Crank to remain in those phases for all the time
possible. This leads to the computation of the Pusher position counting also
the bundle dimension and some safe space in order to find to master degrees
in which the sealer must leave the ”blow” position. Then, the initial master
angles of the Crank segments can be changed accordingly to the result. If the
master position found is later than the one defined, the points are moved. To
this, the computation of the rotating cam is performed by the custom library
and the two cams are interpolated. Figures 4.12 and 4.13 on the next page
show the two cams defined with this logic. At this point, some other positions
are requested to be defined through the FB MC GETCAMLEADINGVALUE.
The first one detects the exact master angle when the Crank moving from the
”top” to the ”low” position passes through the ”blow” position. This is used
later for the Film pull axis. Indeed, this position coincides with the instant in
which the film must be pulled at its maximum in order to tighten the bundle.
So, the master degree found is used later for the Film pull cam definition.
Then, the Crank master angles are managed to find the midpoint of one of the
segments, namely when it moves from the ”low” to the ”blow” position. This
is then used to trigger the outputCam related to the blower of the machine.
In addition to this, also other angles related to the Crank rising and before
rising output cams are found. Lastly, the custom library FBs are exploited in
order to define the important positions for the rotating axis that are used in
the motion control block for positionings.

Figure 4.12: Crank axis cam.

127



Figure 4.13: Virtual Crank axis cam.

Film pull The simpler format change is relative to the Film pull axis. The
points of its cams are directly computed from the data coming from the PLC
and its motion is exclusively controlled with one type of cam. Its role is to pull
the film and this operation leaves the axes unused if not requested. The points
of interest in this case are the starting angle and the maximum rotation to be
reached. The latter is defined in the previous part of the block. The former is
a static value defined by project choice. The interpolation is executed like for
the Layer and the Pusher. The array of advanced segments is defined and then
passed as input to the dedicated CreateCamAdvanced FB where the film pull
cam is also specified. So, the resulting cam is loaded in the PLC as Fig. 4.14
shows it.

Figure 4.14: Film pull axis cam.

128



4.8 Motion control logic

The PLC logic block in the two sub-modules is a piece of code dedicated to
additional computations that need to be carried out in parallel to the motion
control algorithm that is executed in the block previously described. In par-
ticular, inside the structure of the module, this block is called after the motion
algorithm that manages the axes. This is because after the motion of the axes
the control variables are updated and the outputs are generated. These blocks
perform specific instructions dedicated to their operations.

Layering module In the SM Layering, the motion logic is mainly aimed
at the computation of the bundle layers produced by the axis. This is di-
vided into logic for the bypass and logic for the nominal conditions. In-
deed, the former mode requires only one layer to be pushed and so different
computations. For the latter case, the instructions allow to manage, on the
base of the format change parameters computed in first place, the variables
G iOutputNrOfPreLayers or G iOutputNrOfLayers. These integers show the
number of layers that have been added during one cycle of the machine to the
buffer and to the bundle waiting position. This works in parallel to the movtion
block. The specific logic used by the motion algorithm is treated in the dedi-
cated section. To be mentioned is that, in parallel to this logic, on the base of
the cam executed by the Layer axis, short or long stroke, two variables are set:
iActualPreLayer and iActualLayer. They are integers variables that are used
to update the two number of layers mentioned above. A dedicated network in
the output filter combines the total number of layers executed in the variable
iLayersDone to match the maximum number needed. This, indeed, activates
a reset for both the G iOutputNrOfPreLayers and the G iOutputNrOfLayers
which allows a new counting for the successive bundle. These logic instruc-
tions are paired with some triggers and timers. Such functions are exploited
in order to detect alarms or to enable the reset of the above variables under
certain operative status.

Stretch module In the SM Stretch, the logic is dedicated mainly to the
parallel work of the motion control linked to the cams. This block is not
used for the help of the logic of motion control. Instead, the axes positions
and the active cams are controlled. Starting from the former, this block is
filled with function calls that use the output cams stored and defined in the
axis MCV Master described in the technology objects section of the previous
chapter. In particular, the ones used are:

• SealerRising This is the output cam dedicated to the detection of the
master degree when the Crank axis is in its rising phase, namely between
the position of sealing and the top position of the cam when the bundle
passes underneath.

129



• Sealer Before Rising In addition to the previous output cam, this is used
for the detection of the Crank when it is not in the zero position.

• PhaseStop In contradiction to what the name suggests, this output cam is
used for the detection of the starting point of the Crank motion, namely
when it is in the stop angles. This indeed is used for the check of scenarios
of the motion algorithm when the stop of Crank is requested and waited.

• PressBulkPhase This is one of the output cam used for the control of
an external motor not defined through the Technology Objects. As the
initial descriptions of the machines said, several pneumatic actuators are
used in the second part of the machine. One of them is dedicated to the
press pf the bundle when it reaches the sealing position. This operation
is necessary because, as it was described in the first chapter, the film
must be pulled to have a firm bundle as output. Then, if a blocker is not
used, the Film pull would bring the bundle out of its correct position.
As a result, this output cam detects when the virtual master reaches the
interval between the positions defined among the PLC system param-
eters. In addition to the other functions, ON and OFF compensation
times are added in input. This is necessary because the pneumatic actu-
ator cannot reach the dynamic performances of an electric motor. Then,
to match perfectly the angles of the master to the activation and de-
activation instants of the pneumatic actuator, compensation timers are
added.

• Pusher FRW Phase This is the only output cam used in relation to the
motion of the Pusher axis. it is used for the detection of the pusher
extending motion. Namely, when the master is in the angles that define
the motion of the pusher between the back and the extended position, a
bit is raised in order to let it know to the PLC through a status bit.

• LowerFilmPhase analogously to the previous output cam, this is the only
one dedicated to the Film pull axis control. Moreover, the detection is
dedicated to the phase of the axis when it pulls the film between the
master angles related to the rest and the maximum rotation of the axis.

• WelderBlow This is the output cam dedicated to the blow of the cooling
air in the sealing spot of the machine. This is activated thanks to the
master angle, computed in the format change of this sub-module, related
to the reaching of the Crank axis of the zero position after it has raised
to let the bundle pass. This is only applied to the triggering of a variable.
Then, it is used inside an OFF Timer where the time is taken again from
a system PLC variable.

The second part of this block is dedicated to the management of the cams.
The Crank axes and the Film pull one is characterized by two cams each, A
and B. This comes from the necessity to change at run-time the cam followed
by the axis. The Schneider cam management allows doing such operations

130



automatically. Indeed, a request of this type is performed by modifying the
specifications of the points of the cam that must be different and adding a
request of NewCam. Then, the code provides the execution of the new cam
when the old one is terminated. This functionality is not present in the Siemens
software but must be kept as availability to the machine logic. Indeed, the cam
used by the axis can not be modified and a different one must be used. For
this reason, an handling routine is added inside this block.

Starting from the Film pull axis, the fundamental cam parameters (such as
lrLowerFilmPullOn that represents the starting angle of rotation of the axis)
are at each OB1 cycle updated from their definition variables in the HMI.
This allows the operator to modify them while the machine is running and
to find the perfect ones. This implies a re-building of the cam used. When
a parameter is modified with respect to the value of the previous cycle, the
array of advanced segments used for the cam definition are computed again.
This also triggers the modification call of the new cam. Fig. 4.15 on the next
page shows the code implemented. Firstly, in such a condition, the cam to be
modified must be selected. If the axis is not in ”synchronous state” then the
A cam is passed to the interpolating FB by default. Contrary, the one not
used is selected among the two and the bit which communicates the necessity
of a cam change is raised. The second state activates the interpolating FB. In
addition, on the base of the bit, the module variable is activated if a change
is requested or the A cam is assigned by default to the cam entrance of the
LAxisCtrl FB that control the axis.

The logic for the Crank axes follows the same steps. In this case, the
activation variable for the new interpolation is the degrees by which the axis
must remain in the weld position. This is controlled by the welding time and
the machine operative speed. Both of them can be modified from the HMI
panel. After the new definition of the cam segments, a similar case of Fig. 4.15
on the following page is executed. The cam management and interpolation
are executed like the previous one as also for the output variables of the last
state for the cam execution in the motion control. Only a few differences are
present. The first one is that the cam selection implies the definition of both
the linear and the rotating cams. Then, the custom ”Poly5 360 crank” FB
for the conversion of the cam points for the rotating cam is executed. Lastly,
the terminating state of the case must interpolate the new points for two cams
instead of one.

This piece of code, as described, provides only the management of the new
cam on the base of the active one. Indeed, the online cam change logic is
directly added in the motion algorithm and it is described in the dedicated
section.

131



Figure 4.15: Interpolation code of the alternative cam.

4.9 Errors

A similar library to the Schneider error management is not available for Siemens.
This implies the development of a custom routine. To do this, I developed the
FB Fault Signal Management that allows centralizing the management of the
faults of the module in which it is called. In particular, this FB is the same
for both the sub-modules and, by exploiting the Siemens FBs properties, two
different instances are created that make the error handling independent in
the two Error blocks of the structure of the module. In addition to this, some
other logic is present inside the motion control algorithm to support this man-
agement and leaving to it only the job of handling the faults. The alarm
definitions, activations and successive reactions are treated as the below parts
describe.

4.9.1 Error management FB

To start, here it is described the basics of the faults handling inside the FB in
order to better understand how it is used and the exact logic that it contains.
It is defined as a case block where each of the five states contained execute a
precise operation.

To better understand the functionality of this management, it is important

132



to underline the most important variables that characterize the FB. Specifi-
cally, it is organized through the use of two sets of variables:

Static variables Active variables
Signals ActiveSignalCodes

FirstSignalIndex FirstActiveSignalIndex
LastSignalIndex LastActiveSignalIndex

NumberOfAlarms NumberOfActiveAlarms
NumberOfAnomalies NumberOfActiveAnomalies

The former is dedicated to the static storing of the information about the
active faults. Indeed, the array Signals is an array of bits. Its dimension is
set to a number larger than the maximum number of faults present in the
sub-module where the function is called. This allows matching the bit in each
position of the array with the code of the faults. Then, it is used to set the bit
in relation to the active state of the fault itself. Consequently, the codes of the
active faults are always known along with their order of importance. In addi-
tion to it, the numbers related to the first and last faults active are present. By
updating them at every function call, the exact extremes of the array can be
passed as output. About the latter, the active variables are dedicated to the
dynamic handling of the faults. Starting from the array ActiveSignalCodes,
as the name suggests, it contains the codes of the active faults. The main
difference is that each position contains an integer and no holes are present
when it is filled. In particular, this array is divided into the same number of
categories present in the definition of the fault and each of them has as many
positions in the array as the number of faults in the relative category. This
results in a proper distinction between them. While filling the array, the new
faults detected would modify only the relative category without interfering
with the others. This allows more efficient management of the faults because
the ordering can be considered only for one group at time. The additional
variables of this set are dynamic information of this array. The first and the
last indexes allow knowing exactly the extreme positions, while the numbers
of active faults tell the exact number per category. In parallel to the last ones,
the total number of faults per category are present. The difference resides in
the fact that these tell the total number per category while the former only the
active ones, These are important numbers. As will be discussed below, they
are used in order to properly access the two arrays.

The block state mentioned above is an input that must be specified when
the block is called. This makes the states of the FB different codes that are
executed only when they are called with their number specified in the input.
The states are organised in two groups: one is used inside the Initialization
block, the second in the Error block. In particular:

1. the states 0 and 10 are the two used for the initialization procedure of
the logic. As mentioned, the call of the FB is performed by specifying
the state it must perform. The first calls are used to reset the internal

133



variables of the FB in order to clean the content. Then, the alarms de-
fined before in the Initialization block are processed. Therefore, the first
function call implies that the initial state (namely 0) is specified. Then,
the next function call follows inside a ”for cycle” after the state input
value is changed to the second one, namely 10. Inside the ”for cycle”,
the SignalType variable of each alarm is passed. This allows storing in
the internal variables of the FB the number of alarms for each category.
These numbers are going to be fundamental for the faults management
later in the successive states. About this, one of the principal advan-
tages of this approach is the possibility to define an arbitrary number of
alarms. Indeed, the only requirement is to re-initialize the PLC as the
block must be reset. Otherwise, no limit is set to the number of alarms
that can be added.

2. the states 100, 110 and 120 contain the proper faults handling. They
are the core of alarms management. Taking into consideration the state
110, it is the more relevant one. Here, the alarms are organised and the
resulting reaction is set as output. Its routine can be divided into four
steps:

• As a first step, the activation signal of the fault processed is checked
along with the static array of signals. If the fault was activated dur-
ing this cycle of the OB1, namely the activation variable is TRUE
while the bit of the static array in the relative code position is not,
it is added to the FB variables. Firstly the static array is updated.
Then, depending on the category it belongs to, it increases the
variable of active faults. By exploiting these new values, the active
array is updated through a for cycle by scrolling the static one.

• The second step consists in enabling the reset. If it results that the
fault was already active in the previous OB cycle, the variable that
enables the reset call is activated. Namely, if a call is requested, the
FB can reset the faults.

• The third step is used to update the first and the last positions
of both the static and active arrays. In the first case, they are
initialized both at zero. Then, scrolling the static array, they are
updated. This means that the first index is modified only at the
first active fault, while the last index is updated every time a new
one is found. In the second case, the numbers of active faults per
category is considered. For example, considering this project where
only alarms and anomalies are present, firstly the NumberOfAc-
tiveAlarms is controlled to define the FirstActiveSignalIndex. If it
is grater than zero, it means that a fault in the more important
category is present, resulting in the first bit of the active array to
be filled. Contrary, if it is zero while the NumberOfActiveAnoma-
lies is not, the first element would coincide with the first position of
them and so on. For the LastActiveSignalIndex a similar procedure

134



is applied but inverted. Starting from the number of elements in
the less important category, they are processed towards the more
important. These variables do not consider the difference between
the faults categories. Instead, they specify the more important and
the less one active.

• The last step is used for the computation of the reaction. It must be
considered how the reactions are defined in order to understand this.
They are defined through a binary constant variable. This one is
structured to have only one bit different from zero. In this way, each
reaction can be identified with a bit of a binary variable. Below in
this section the faults definition is treated and also the reaction used
and their meaning are present along with it. With this structure,
if the fault treated by the FB is active, its reaction is added to the
OutputSignals binary variable through an ”OR operation”. In this
way it is possible to know at once all the reactions required by the
faults.

Regarding the states 100 and 120 they are used for operations of com-
pleteness. The first is only used to reset at each new cycle of the OB1
the reset and the output variable. The second one resets the values of all
the variables used in the state 110 for the fault management. This acts a
total clear of the faults even in case they are not solved. This coincides
with a project choice that follows from the previous machine politics. To
perform such operation and to avoid useless computations, if a successful
reset request has been preformed, the static and the active signals array
are reset with a for cycle only if the related last index is different from
zero.

4.9.2 Error logic

In addition to the FB, additional support logic is present. The faults are in-
deed handled in two distinguished parts of the code.

Initialization block They are at first defined inside the initialization phase
in a dedicated array of structure Generic Fault Definition. This structure is
articulated as follow:

Variable type Meaning
SignalType Integer Alarm category
SignalCode Integer Alarms specification code

SignalMessage String Synthetic alarm description
ActivationSignal Bool Variable that enables the error

Reaction Dword Procedure to be execute when the
error occurs

Detail String More specific description of the alarm

135



It allows defining an array of alarms inside each sub-module where all the
information about them are saved. In this way, they can then be accessed
every time it is necessary. In the description of the Initialization block before
in this chapter, it is specified how the alarms are defined. There are two
main categories specified in both the sub-modules: Alarms and Anomalies.
The firsts are the worst events that can occur in the machine. They imply
the faults of the motion parts of the control logic. This means the faults of
everything linked to the axes: technology objects, drives and motion FBs of
the library LAxisCtrl. The immediate stop call from the PLC is also added to
them. The Anomalies category contains all the least threatening errors that
could occur in the code. This means: gearbox speeds too high, fail in the
computation of the cam points, fail in the cam interpolation, interference in
some part of the machine, failed acquirement of axes positions from the read
of the cam.

As the alarm structure shows, each fault is characterized also by a reaction.
They are three: AUTOMATIC STOP, IMMEDIATE STOP, PHASE STOP.
The first is the reaction linked to the fault of the pieces of hardware linked to
the axes. Indeed, when such errors occur, the Siemens software autonomously
stops the motors safely. Then, the detection of these types of alarms, which
all belong to the worst ones, implies an automatic reaction from them. In
this sense, it is only necessary to execute the stopping procedure for the code.
Namely, the code understands the presence of the automatic stop from the
axes and then puts itself in a waiting state where a reset is expected to restart
the operations. The IMMEDIATE STOP is performed only for the last Alarm
remained the immediate stop call from the PLC. In this case, the system is
brought to an immediate stop of the axes by quitting the operations and re-
setting the commands of the axes. The difference with respect to the previous
case is how the axes are stopped. Indeed, this stop allows controlling all the
motors, while the previous required to control only those that did not enter in
a faulty state. The last reaction is more light. Namely, in this case its allowed
for the motors to terminate their operation before be stopped. The details
of how the reactions are executed are described more precisely in the motion
section. Indeed, this part only describes the alarms definition, and handling
and the choice of the type of reaction.

Error FB The real management of the faults is centralized in the second
part of the code, namely the Error management block. About the definition
of the alarms, it is described above how only 5 out of the 6 terms contained
in the Generic Fault Definition structure are used. This is because the Acti-
vationSignal is used exclusively inside this block. In particular, it is coded as
the Axes modules by using the ladder language and the ST language. This
choice was made because the first allows a better debugging and visualisation
of one of the two parts that define this FB, while the second allows a simpler
coding of the function call and cycles that would have been articulated to be
performed in ladder.

136



The first part mentioned is the one that uses the ActivationSignals. Indeed,
at the beginning of the block, all the alarms initialized are reported. More
specifically, each network contains the logic that pairs the activation variables
with the states of the algorithm that should enable them. Depending on the
type, each network activates the error in a different way. Fig. below shows the
three different cases. For the elements linked to the motors, the code only looks
at the relative error variable generated by the Axis module (here the Master of
the layer motor is considered). This enables the ActivationSignal of the alarm
linked by reference to its position in the array of structure and in parallel it
enables also the Word-To-String conversion of the detail number that the FB
gives. This last operation is necessary for the information that are reported
along with the alarm that is going to be shown later. The second case is related
to the excessive speed of the Layer gearbox. This is computed with the specific
FB GearboxSpeedCheck described in one of the previous sections. The last case
is analog to the first. This is dedicated to the fault of the interpolation for one
of the Layer axis cams.

137



Figure 4.16: Fault activation examples.

The second part of the Error block, analogously to the initialization block,
is where the fault management custom FB Fault Signal Management is called.
As the first instruction, the reset request is performed. It remains active only
for one cycle. This implies the use of a supporting variable that is updated
every time the physical button is pressed. Before this, the FB input is mod-
ified through the ”OR operation” between the button variable itself and the
negated value of the support one. In this way, the request is passed only in case
the physical input was FALSE in the previous cycle. After this, the FB call is
performed. Firstly, specifying the state 100 for the preparation of the new cy-
cle. Then, with the state 120 for the reset in case the request was successfully
performed. Lastly, state 110 is specified in the input of the FB. In this way,
the call of the FB that follows inside a ”for cycle” would bring the new inputs
to that state. In this part, indeed, all the faults are processed by the FB in
order to establish the activation of the new ones and the reaction requests of
the active ones. In addition to this, the creation of the environment for the
execution of the reactions takes place. After the FB calls, the output variable
related to the reactions is filtered in order to update the reaction variables.
This operation is performed by checking if the reaction constants, used for
the definition of the faults in the Initialization block, are equal to the filtering
through an ”AND operation” between the output and the constant itself. For
example, the phase stop request is performed as follows:

((OutputSignals AND ”ON PHASE STOP”) = ”ON PHASE STOP”);

138



In case one of the stop requests is active, a variable is updated. This allows
the operative motion blocks described above to quit their operations and enter
in the stop phase depending on the reaction active. Moreover, the properties
of the more important faults active must be notified. In particular, the code,
the reaction, the message and the detail are passed to the output variables of
the Error block. These are then used in two ways. One is to send the data
to the HMI panel for notification to the operator. The second is to use those
information for the other modules. Indeed, the reaction and the presence of a
fault in one sub-module are shared with the other one. This allows generating
a reaction even if a fault did not occurr. In particular, this always implies the
activation of the phase stop.

4.10 HMI panel

The HMI is the bridge between the operator and the machine. It allows to send
commands to the PLC and to receive the status feed-back and the operative
conditions of the axes and sensors. The panel is a TP900 Comfort Panel.
Therefore, the code of the HMI is still implemented in the TIA Portal software.
As the project is developed in a different file with respect to the PLC and
motion control one, it is necessary to insert an instance of the PLC itself. Then,
in the project views (topology and network) a communication link between the
two must be created. In this way, it is possible to configure the IP address of
the panel in order to allow a connection path. The HMI code is not so much
influenced as it is the PLC from the new motion control algorithm. In this
case, indeed, only a few parameters had to be changed, specifically related to
the new functionalities and management of the code. The more relevant parts
that required a new code development are the two brand new functionalities
added to the MS260. They are the cam profile viewer and the Timer-System
DB import and export. Both of them required the creation of new pages in
the HMI in order to exploit the new codes generated.

Cam show The Cam show functionality allows printing in a dedicated page
for each axis the cam currently used by them. It performs also the computation
of the velocity and the acceleration profiles linked to the cam profile, making
them available on the HMI. The execution of this functionality is characterized
exclusively by a FB used inside the format change action of the sub-modules.
This relies on the utilization of a single FB call in the actions that is inserted
outside of the case. This allows performing the block call even if a format
change is not present, leaving this functionality always available. This FB
allows, in the first place, to perform the change of the cam selected and the
computation of the cam points to be shown. Their trigger relies on the activa-
tion of the buttons on the dedicated HMI page. In Fig. 4.17 on the next page
it shows the structure of the page dedicated to all the real axes of the motion
control, but in this case the one dedicated to the Layer axis is reported. The
two buttons on the top allows enabling the two operations above mentioned.
The square below shows the DB number of the cam currently selected and the

139



Figure 4.17: Show cam page.

name was given to it. Then, the remaining buttons bring to different pages
where the profile of the cam is depicted. Three alternatives are possible: the
position, the velocity and the acceleration trajectories.

The first operation is performed when the button Next Cam is pressed.
It activates the input cam1or2switch of the FB. From this, the internal FB
HMICamHdl ChangeCam allows performing the change of the cam selected
giving to the DB number and the name of the new ones. This FB called
in the SM Layering is anticipated by an additional piece of code. The cam-
change allows to perform only the switch between two cams that are passed
to the input. However, in the case of the Layer, it is characterized by three
possible cams. Therefore, the HMI button does not trigger the FB input
directly. Instead, it increases a counter with a maximum value of 3 which
allows passing to the FB inputs the related cam information, namely: DB
number, name, cam DB and cam TO.

The second operation is more complex. When the Execute is triggered,
the FB computes the following information related to the cams: the values of
master and slave positions, values of slave velocity and acceleration, minimum
and maximum of position velocity and acceleration. In this way, the HMI
graphs can show the slope of each trajectory with the values of minimum and
maximum at the extremes.

DB import and export This functionality allows moving the parameters
of the system and of the timers DBs between the SD card of the PLC and the
PLC memory. Thanks to this, it is possible to copy these two sets of variables
in a dedicated text file on the SD card. Moreover, the inverse movement can be
performed. The data defined in a target text file can be read and stored in the
DBs variables as long as the structure of the file is correct. These operations
are divided between some instructions performed in the PLC and others in the
HMI.

The former is dedicated to the management of the DBs variables. They,

140



indeed, must be stored in a support array that is then used for the variable
transmission with the HMI. These operations are performed by a single FB
called Hmi FileConnection. It is called at the end of the OB1 as it does not
depend on the functionality of any part of the machine and can be performed
at every time. Fig. 4.18 on the following page shows the FB call with the
relative inputs and outputs. In particular, apart from the Execute that is used
for the block activation, the others are configuration variables. Select Sys DB
and Select Timer DB are used to select on which DB the operations must be
performed and are exclusively inputs. The WriteDataToHMI is used to select
the operation with which the DBs are written on the text file, otherwise, they
are read from it. The Array Dimension and Array are input-output variables
and are used for the communication of the data with the HMI. Through them,
the PLC can communicate with the HMI the array of data and its dimension
and the other way around. The two outputs Done and Error are only used
for debugging porpoises. Inside the FB, a case logic is used. The initial state
is the organization one. Here, the activation of the Execute is detected. As it
is not an Enable, the operations are terminated, namely the outputs are reset
and a new cycle can be performed, when a negative value of it is detected. The
cycle, instead, starts only with a positive edge. Then, in the same state, the
operation is driven to the one to be performed on the base of the configuration
inputs. In any case, the DB dimension is computed in order to initialize the
”for cycle” index. Within the two DBs there can be many parameters and
these values must be copied into an array; this is particularly necessary for
the Timer DB because the type ”timer” used for the definition of its elements
must be converted to an integer in order to be used for the export. Therefore,
keeping stuck the OB1 in a cycle for many computations is not ideal. This is
not an essential operation to be performed and therefore the cycle is divided
into smaller ones of a maximum number of 19.

The cycle states are one for each circumstance: write and read of the system
parameters and write and read for the timers. The writing and reading opera-
tions are slightly different between them. For the former, firstly the ”for cycle”
is performed for all of the 19 elements or until the end value is reached. In the
end, if the index is equal to the array dimension, the dimension is passed to
the input-output variable and the case passes to the end state. Otherwise, the
cycle extremes are updated to the successive 19 parameters. For the reading
case, an initial state is used to detect if discrepancies are present between the
HMI and the PLC dimensions. In case, an error is raised otherwise a similar
state to the previous case is executed; the ”for” is performed until the end and
the extremes are updated to the next 19 parameters before switching to the
ending state. There, the done is raised and the case returns to the initial state.

The HMI operations are performed through scripts that are executed when
the button of the page is pressed. Fig. 4.19 on page 143 shows how it is
organised. On the left, the buttons trigger the export of the DBs to the text
files, while on the right the inverse operation. The circle in the center allows
understanding when the computations are terminated.

141



Figure 4.18: PLC FB for DB import-export.

The former is performed through a single VB script. The inputs are de-
fined while the button is pressed. Indeed, the VB script allows to set them
depending on where it is called. Therefore, the difference between the system
DB readings and the timer DB reads depends on the definition of the input.
At the beginning of the script, the PLC FB configuration inputs are defined
on the base of the script inputs. Then, a waiting command is started in order
to let the PLC terminate the loading of the array. The wait ends when the
Done/Error is raised by the FB or the time expired. In a successful scenario,
the script continues. Then, a ”Xor” debugging is performed. This operation
consists of the creation of an array composed of elements where everyone comes
from the ”Xor” operation between one DB parameter of the just loaded array
and a filter variable. This is required essentially for the inverse operation in
order to avoid the direct copy of the values of the text file into the sensitive
software DBs. If differences are detected between the DB values and the file
values, consent to continue the operation is required. This is particularly use-
ful if the structure of the file is not the one expected. Lastly, the text file is
created, if not present, and it is loaded with the array elements.

The reading operation is articulated between more scripts. The first one
is the one called from the press of the buttons and contains the configuration
values definition. In the beginning, the script checks the existence of the file to
be read. Then, the lines of the file are stored and decomposed and the values
are copied in a temporary array. This allows performing the ”Xor” check
previously described. If an operation was not performed on the DB under
analysis, namely the ”Xor array” is empty, the writing script is called to be
executed and it ends immediately after the ”Xor check” without the writing

142



of the file. In this way, the text parameters can be controlled. As soon as one
difference is detected, the control is aborted and a pop-up page is shown on
the panel. It asks for the continuation of the operation. If a positive answer
is given, a new script is called. Here, the ”Xor check” is restarted in order to
store the new filtered values in the ”Xor array”. In the end, the last script is
executed. Finally, it performs the copy of the file parameters to the transfer
array that will be used by the PLC FB. This operation is more complex than
the previous one. Indeed, the bus can run into an overflow if too many values
are passed by the ”for cycle”. Therefore, only 50 cycles are executed before
introducing a wait of 300 ms. Then, the Execute of the PLC FB is raised and
after its termination, it is reset to be ready for the next operation call.

Figure 4.19: HMI DB import-export page.

4.11 Simulation

At the end of the development, some tests are performed. Unfortunately,
since the drives and the actuators were not available, a real machine on which
performing them was not present. Therefore, the tests are actually simulations
that allow checking the correct functionality of the algorithm. To do them, two
are the tools available: the simulation of TIA Portal (called SIM-Advanced)
and the PLC. Indeed, the Simatic et200sp Open Controller selected as new
PLC was kindly provided by Siemens for this porpoise. Therefore, the tests
that can be done are:

• Hardware in the Loop:
HIL is a technique for validating the control algorithm, running on an
intended target controller, by creating a virtual real-time environment
that represents your physical system to control. It helps to test the
behavior of the control algorithms without physical prototypes.

• Software in the Loop:
A SIL simulation compiles the generated source code and executes the

143



code as a separate process on the host computer.

The former is possible thanks to the PLC provided, while the latter is al-
ways possible with the TIA Portal simulator. They have significant differences
and are necessary both to understand different aspects. Two different projects
are generated. One is defined by the Simatic et200sp Open Controller but no
additional hardware is added. The second is characterized by a different PLC
(S7-1515T) and the actuators are also inserted. This substantial difference
comes from the related two necessities.

For the HIL simulation, the PLC is directly connected to the PC through
the Ethernet ports. So, the additional hardware of the drive and the motors
that should be contained in the project, are in reality not connected to the
physical ports of the PLC. Therefore, the PLC itself would generate an error.
From this comes the necessity of the first project where, consequently, the TO
axes are all defined as virtual.

For the SIL simulation, instead, the second project is mandatory. The PLC
used is an equivalent of the Open Controller with the substantial difference
that it is more simple. As it is described in the second chapter, the Simatic
et200sp Open Controller is characterized by a side component where Windows
OS is installed, making it possible to connect a screen directly to it. For this,
the simulation of such PLC through SIM-Advanced is not possible. So, the
S7-1515T is mandatory for the SIL simulations. It has similar abilities to
handle several TOs while having comparable speeds. In the project, then, the
hardware can be added and the axes connected to their encoders considering
as real and in simulation and not virtual.

Also, the HMI is simulated. It helps to visualize the machine status and to
give the commands for the operations. So, for both the tests, the TIA Portal
allows to run it with the internal simulation tool of the software in parallel to
the PLC. The HMI project comes also in two forms. In it, indeed, an instance
of the PLC must be added and in the project views, it must be connected to
the panel. Therefore, to use the HMI in both the simulations two of them must
be present. To complete the simulation, bypass variables are inserted in the
PLC code regarding the physical inputs and outputs of the sensors connected.
In this way, the operative conditions of the machine can be forced to act as
they should.

From the simulations, only a few but important results can be get. Indeed,
the correct functionality of the motion algorithm coincides with the expected
behavior. In particular, the nominal automatic mode, the bypass mode and
the manual operations were all successfully executed. However, even with
the possibilities described above, something about the algorithm could not
be tested. They are the cleaning cycle of the sealer and the drive errors.
The former requires the response from the safety system implement in the
machine. It is characterized by physical contacts that react to certain events.
It is impossible to force the expected behavior of them while the sealer cleaning
steps are followed. About the latter, not having the direct response from the
drives, possible faults that can come from them and their reset can not be

144



simulated. Examples of successful simulations are the Figures of cam profiles
presented in chapter four. They are the result of the format change completed
without errors. During the tests, it was also possible to look at the correct
behavior of the alarms system. On a dedicated page of the HMI, the properties
of the active faults are visible and the subsequent reset allows a restart of the
operations.

Regarding the PLC, Fig. 4.20 shows its performances. In particular, the
most important is the duration of the cycle. The average length is less than
one millisecond during operating conditions making it really fast despite the
number of axes to be controlled. About this, the values on the bottom show
how loaded is the memory.

Figure 4.20: PLC performances.

145



Conclusions

Main results

This project has the main objective of creating a machine completely built and
controlled by Siemens. A machine of this type can offer a lot of advantages.

Firstly, the Siemens catalog presented in the second chapter gives a larger
choice about the actuators to be used. Very different motors can be mounted
on a machine generating a perfect sizing for the application needed. This
aspect, however, suffers from an economic and technical drawback. The cost
of the motors is variant concerning the technology used and the dimension
with which it comes but is not true for all the cases. So, the use of smaller
motors for applications that requires lower specifics could allow a reduction of
the costs but not so significantly with respect to a larger one. In addition to
this, the application of different types of motors encounters the necessity of a
greater part of the industrial warehouse dedicated to the replacement parts.
So, the possibility to have specifically designed motors must be analysed also
under other technical aspects.

Then, the comparisons between the old algorithm presented in the first
chapter and the new one in the fourth chapter allow finding the real benefits
of a project of this type. The simpler and more intuitive aspect is that the
software complexity is greatly reduced. The debugging and the code manage-
ment became more direct. Indeed, being the code fully contained in a single
project simplifies, in first place, its handling. Moreover, from this aspect comes
out also a more technical reason. By running the machine control algorithm
in one computer center instead of two, the probabilities of fault are restricted
to the single PLC.

Regarding, instead, the technical data, the unification of the motion con-
trol and the machine status management gives a faster communication channel
between the two parts. Having the data always stored in the PLC memory
makes faster and safer the management of the motion control data and, there-
fore, the execution of the operations by the motors. The eventual drawback of
a too much loaded PLC for the execution of both the projects is not present.
The HIM simulation discussed in the last chapter shows the really good per-
formances in terms of milliseconds per cycle of the PLC under these circum-
stances.

146



Future developments

On one hand, the next phase of this project relies on the tests on the real ma-
chine. Once it is built, the last functionalities must be analysed to check their
correct execution. Then, the machine can be considered complete. Regarding
the PLC used, the Windows OS leaves open the possibility of a new type of
HMI. The software can, indeed, be generated and executed inside Windows
and, exploiting the OS functionalities as a distinct PC, a dedicated panel for
the execution of the interface can become an excess.

On the other, at IMA BFB, many types and versions of machines that are
controlled likely the MS260 considered are present. Therefore, this same con-
cept can be applied to the other machines to benefit from the same aspects.
Indeed, the structure used for this goal was built keeping a modular structure.
This allows exporting and adapting the motion control to other types of oper-
ations, making this project the reference point for the new ones that could be
converted to the motion Siemens.

147



Appendix A

Crank module code

In this appendix, the code realized for the Crank module library is reported.
As described in chapter three, this library contains three FCs and one FB.
Below the code is divided for each function described in the section related to
keeping the same order used.

Rotation to Translation FC

148



Translation to Rotation FC

149



150



Crank conversion FC

151



Polynomial FB for cam point generation

152



Appendix B

HMI libraries

In this appendix, the code used for the implementation of the HMI libraries
described in the fourth chapter is reported. It contains both the show cam
library and the DB import and export.

Show cam library

153



154



DB import and export

PLC FB

155



156



HMI write script

157



158



HMI read script

159



160



161



Bibliography

[1] ELAU (2008), PacDrive TPL-FB-ErrorHandler.

[2] Schnider Electric, https://www.se.com/it/it/product-subcategory/2935-
servoazionamenti-e-servomotori/

[3] Siemens, https://mall.industry.siemens.com/mall/en/WW/Catalog/
Products/10239894

[4] Siemens (2017), SIMATIC S7-1500 and S7-1500T Motion Control V4.0
in TIA Portal V15.

[5] Siemens (2017), Creation of cam disks at runtime for S7-1500T. [Library
Advanced cam creation].

[6] Siemens (2017), Creation of cam disks at runtime for S7-1500T. [Library
LCamHdl - Cam creation based on XY points ].

[7] Siemens (2020), Creation of cam disks at runtime for S7-1500T. [Library
LCamHdl - Basic cam creation].

[8] Siemens (2020) Configuring a SINAMICS S120 with Startdrive.

[9] Siemens, (2020) SINUMERIK, Parameter description.

[10] Siemens, (2014) SINAMICS G/S: HMI direct access. [SINAMICS G120
SINAMICS S120 ].

[11] Siemens, (2017) Axis Control Blocks for S7-1500 / S7-1500T. [LAxisCtrl
for SIMATIC ].

162


