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ABSTRACT
The Taminar, steady, horizontal flow past a hot or cold two-

dimensional body is examined; the fluid is unbounded, diffusive, and
viscous. The presence of significant ambient stable temperature (or
density) stratification, or significant buoyancy-induced convection,
or both, is considered. A detailed understanding of the fundamental
structure of such flows is obtained by developing effective analytical
and numerical solution procedures.

Chapter 2: This chapter considers the general problem of stably
stratified, Oseen flow at large distances upstream and downstream of a
body which is represented as a line sink of horizontal or vertical
momentum, or as a line heat source or heat dipole. The analysis is
focused on the general properties of the horizontal velocity component,
as well as on exnlicit calculation of the horizontal velocity profiles
and disturbance streamfunction fields for varying degrees of strati-
fication. For stab]e stratifications, the flow fields for all four
types of singularities exhibit the common feature of multiple recircu-
lating rotors of finite thicknesses, which Teads to an alternating jet
structure, both upstream and downstream for the horizontal velocity
component and to lee-waves in the overall flow. Self-similar formulae
for the velocity, temperature, and pressure at very large distances
upstream and downstream are also derived and compared with the Oseen
solutions

Chapter 3: The simultaneous forced and free convection flow of a
neutrally- or stably-stratified fluid past a hot or cold horizontal
flat plate is investigated by numerically solving the full equations of

motion and thermal energy subject only to the Boussinesq approximation.
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The solutions span the parameter ranges 10 < Re < 100, 0.1 £ Pr < 10,
-2.215 < Gt“/ReS/2 < +2.215, and 0 < Ri < 6.325, where Re, Pr, Gr, and
Ri are based on the overall plate length 2 and the ambient free stream
fluid properties evaluated at the plate level. For all degrees of
stfatification a hot plate causes an acceleration of the boundary flow
near the plate surface relative to the corresponding forced convection
flow, thereby increasing both the local skin friction and heat transfer
coefficients. On the other hand, the boundary flow adjacent to a cold
plate is decelerated and the local skin friction and heat transfer rate
are decreased. This deceleration effect is enhanced by either further
cooling or increasing the amount of ambient stratification, Ri, lead-
ing to boundary-layer separation in some cases. When the effect of

the ambient stratification dominates that of Tocal heating or cooling,
the boundary-layer displacement increases for decreasing Ri, due to

the buoyancy restoring force lessening, thus diminishing the drag. The
dimunition in the drag, for the same decrease in Ri, lessens (increases)
by slightly heating (cooling) the plate. When the effect of local
heating or cooling dominates that of the ambient stratification, the
drag is diminished by increasing Ri. A wave-structure exists only for
stably-stratified fluids, with the amplitudes and wavelengths of the

waves being decreased for increasing Ri.
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Chapter 1. The Physical Problem

The effects of ambient stable temperature (or density) strati-
fication and/or local buoyancy-induced convection are important to a
wide variety of natural and man-related geophysical phenomena occur-
ring in the ocean and atmosphere. Examples of such phenomena in the
ocean are thg intrusion of salt wedges into estuaries, and the beha-
viors of sediment-laden currents and the dispersion of molecular con-
taminants or heat. In the atmosphere, typical phenomena are the stag-
nation of air in the neighborhood of a mountain range whenever there
is a strong inversion, the formation of atmospheric waves in the lee
of mountains, the '"sea-breeze" at the interface of a large body of
water and land, the characteristics of the flow over an "urban heat
island'", the behavior of the dispersion of pollutants and heat, and
the "mushroom'" shaped smoke patterns above fires. Although geophysi-
cal flow situations are usually turbulent, we have considered only
laminar flows. Physically, we expect the resulting phenomena in both
laminar and turbulent flows to be qualitatively similar. Without in-
troducing additional complexities through a choice of a turbulence
model, we derive, for the better-defined laminar case, accurate solu-
tion procedures that enable us to understand the fundamental flow
structure. The same methods may also be useful in either obtaining
the solutions or illustrating potential difficulties for turbulent
flow problems. In order to explain in detail some of the physical
phenomena which can result due to ambient stable stratification and/or

buoyancy-induced convection, analytical and numerical techniques are
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developed to calculate velocity and temperature distributions for
stratified laminar flows.

We consider the laminar, steady, horizontal flow past a hot or
cold two-dimensional body of characteristic diameter £ . The incom—
pressible, Newtonian fluid is unbounded, diffusive, and viscous. A
typical flow system, including the horizontal and vertical dimensional
coordinates x' and y' respectively, is shown in Figure 1. As
x' » —o, we assume that the disturbance associated with the body can
be neglected, and thus we can specify the free stream velocity and tem-
perature (density) distributions at this upstream position. We assume
the free stream horizontal velocity at this upstream position to be
uniform and denoted by U_ . The corresponding free stream temperature
distribution Ts is assumed to increase linearly with vertical posi-
tion; d.ee;

T,= T (L+y'y') o,y 20 (1)

where T = is constant, the subscript <« represents the free stream
value at y' =0, and Yy' is the constant stratification parameter.
Thus, the ambient fluid is either neutrally-stratified (i.e., y' = 0;
also referred to as unstratified) or stably-stratified (i.e., y' > 0).
We invoke the usual Boussinesq approximation (Boussinesq, 1903; Spiegel
and Veronis, 1960; Mihaljan, 1962) : the density p 1is considered con-
stant at p_ , except in the gravitational body force term where it is

related to the temperature T through the thermodynamic state equa-

tion:

p=op1-8(T-T)] . (2)
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Here, B 1is the constant coefficient of thermal expansion. In general,
we shall assume that the body experiences a total drag force per unit
width, D , in the +x' direction, a total lift force per unit width, L ,
in the +y' direction, and, in addition, acts either as a heat source
of strength Q per unit width per unit time (corresponding to a wni-
form surface temperature T + AT , where AT > 0 and AT < 0 for
hot and cold bodies respectively), or as a heat dipole (doublet). As
pointed out by Redekopp (1970), the Boussinesq approximation produces
a viscosity, thermal conductivity, and heat capacity which are all
constant at values y_(=p_V ), k_, and pr respectively, and is
valid for AT/T_= A << 1 and Y'% =7y << 1. As pointed out by
Janowitz (1968) and List (1971), the linear free stream temperature
stratification (1) cannot apply over extreme rangesof y' wvalues, but
it is an approximation over a large enough distance that solutions can
be obtained representing, for example, the fluid flow in the center of
a hyperbolic tangent temperature profile.

It is convenient to consider separately two aspects of the full
problem: the "mear-field" region in which one is concerned
with the effects of ambient stratification and locally produced buoy-
ancy contributions on the velocity and temperature fields very close
to the hot or cold body; and the ''far-field" region in which the body
appears as a line singularity for both momentum and thermal energy
(heat) . The near-field solution depends on the precise body geometry
and surface temperature distribution. To date, the majority of the
near—-field solutions have been concerned with the case in which a

significant component of the buoyancy-induced body force is either
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parallel or antiparallel with the direction of the undisturbed fluid
motion (compare the work of Acrivos (1966), Merkin (1969), and others
on the combined forced and free convection past a vertical flat plate);
in this work we consider the flow past a horizontal flat plate of
finite length £ and constant surface temperature. The far-field prob-
lem may be considered simultaneously for the whole class of two-
dimensional bodies since the specific shape enters only indirectly
through the magnitude and direction of the line drag and 1lift forces,
and the magnitude of the line heat source. In Chapter 2, the far-field
solutions for 7Yy' > 0 are obtained by linear analysis. Chapter 3 is
devoted to the near-field numerical solution (for v' > 0) of the full
governing nonlinear partial differential equations representing the
momentum, mass, and thermal energy balances. In the near-field numer-
ical solutions, accurate outer boundary conditions are critical in
obtaining correct results; the far-field solutions of Chapter 2 are

found to provide these proper conditions.
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Figure 1l: The Physical System




Chapter 2. The Far-Field Solution: Wakes in Stratified Flow Past

a Hot or Cold Two-Dimensional Body

This chapter consists of an article submitted for publication
(with co-authors Dr. L. G. Leal and Dr. J. H. Seinfeld) to the
Journal of Fluid Mechanics. The tables and figures omitted in the

article for brevity are given in Appendix 2-A.



This paper considers the general problem of laminar, steady, hori-
zontal, Oseen flow at large distances upstream and downstream of a two-—
dimensional body which is represented as a line sink of horizontal or
vertical momentum, or as a line heat source or heat dipole. The fluid
is assumed to be incompressible, diffusive, viscous, and stably strati-
fied. The analysis is focused on the general properties of the hori-
zontal velocity component, as well as on explicit calculation of the
horizontal velocity profiles and disturbance streamfunction fields for
varying degrees of stratification. For stable stratifications, the
flow fields for all four types of singularities exhibit the common
feature of multiple recirculating rotors of finite thicknesses, which
leads to an alternating jet structure both upstream and downstream for
the horizontal velocity component and to lee-waves downstream in the
overall flow. The self-similar formulae for the velocity, temperature,
and pressure at very large distances upstream and downstream are also

derived and compared with the Oseen solutions.



j 7 INTRODUCTION

The fluid-mechanical interactions of ambient temperature (or
density) stratification and buoyancy-induced convection are important to
a wide variety of natural and man-related phenomena in the oceans and
atmosphere. The present paper is concerned with the horizontal motion
of a stably-stratified fluid past a heated (or cooled) two-dimensional
body. The disturbance motion induced in this case is fundamentally
different from that which would be observed under equivalent conditions
in a homogeneous fluid. The difference is primarily a result of an
additional mechanism for vorticity production in the stratified case,
leading to internal waves which are responsible for standing lee-wave
patterns downstream and the possibility of a greatly enhanced effect on
the flow upstream, when the free stream velocity is subcritical with
respect to the horizontal phase velocity of the waves.

A large number of studies, both theoretical and experimental, have
been reported for the stably-stratified flow past thermally inert bodies
of different shapes. Near the body where the body geometry has a éirect
influence on flow structure, the flow has been examined theoretically
for avertical flat plate in the non-diffusive (Janowitz, 1971) and dif-
fusive cases (Freund and Meyer, 1972), and for a circular cylinder in
the non-diffusive case, both theoretically (Graebel, 1969) and experi-
mentally (Browand and Winant, 1972).

Far from the body, the detailed body geometrymay be considered unim—
portant so that the body can be treated as a line source of horizontal and
vertical momentum and heat. Janowitz (1967, 1968) discussed the up-

stream and downstream wake structure for a horizontal momentum source
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(i.e. the disturbance motion induced by a body which is only experiencing
in an unbounded viscous, diffusive or non-diffusive stratified fluid with
the inertia effects approximated using an Oseen-type linearization. A
closely related analysis by List (1971) considered creeping flows
induced by horizontal and vertical momentum jets in a diffusive fluid.T
Very far upstream and downstream of the singularity, the disturbance
motion becomes self-similar, with the dynamics dominated by viscous
effects due to the vertical gradients of horizontal velocity and by
buoyancy due to the free stream ambient stratification. In the non-
diffusive case, Long (1959) calculated a similarity solution, which has
been verified experimentally (Pao, 1968; Laws and Stevenson, 1972) for
the horizontal flow far upstream of a body which is experiencing only
drag. Long (1959) could not obtain a corresponding disturbance flow
downstream. However, when density diffusion was retained, Long (1962)
found a new similarity solution which is valid both upstream and down-
stream of the body.

In the present study, we use the methods of Janowitz (1967) to con-
sider the two-dimensional Oseen and self-similar solutions for a line
source of vertical momentum, a line source of heat, and a vertically
oriented heat dipole.i In addition, for comparison purposes we also
repeat portions of Janowitz' (1967) analysis for the line source of
horizontal momentum. We consider both the horizontal component of the

velocity (with which Janewitz and most other investigators have dealt

_'..

Note that far from the body the disturbance motion induced by a body
considered as a point source is analogous to that created by a point
jet.

$ The motivation for our interest in the vertical heat dipole configura-
tion will be considered in the next section.

drag)
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exclusively) and the disturbance streamfunction fields which afford
additional physical insight into the alternating jet structure and
other interesting features of the horizontal velocity profiles. The

similarities and differences in the flow structure resulting from the

various types of singularities will be discussed.
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2. PHYSICAL PROBLEM AND BASIC EQUATIONS

We consider the steady, horizontal motion of an unbounded, incom-
pressible, Newtonian fluid past an arbitrary two-dimensional body of
finite cross-section. The flow is assumed to be laminar and, at large
distances from the body, uniform with magnitude U . In addition, the
corresponding temperature distribution far from the body, Ts, is assumed
to increase linearly with vertical position, i.e. TS = Tw(l + v'y")
with y' > 0, so that the ambient fluid is stably stratified. Here, y'
is the dimensional vertical coordinate measured from the center of the
body. The corresponding downstream horizontal coordinate will be denoted
as x'. The body itself is assumed to have a uniform surface temperature,
T + AT, and density diffusion (i.e. thermal conduction) is explicitly
included in the analysis.

The present work is specifically concerned with the velocity and
temperature fields at distances from the body which are sufficiently
large that the body-induced disturbance velocity components are small
in magnitude compared with the free stream speed U_. In this regime,
the Oseen-linearization of the convective operator is applicable, and
the effects of the body on the disturbance field are dominated by
appropriate force and heat singularities which are concentrated at the
origin, x' = y' = 0. For concreteness, we consider a body which is
held fixed and is thus subjected to a finite lift and/or drag force.

In this case, the dominant disturbance velocity fields are induced by
horizontal and vertical momentum sources. If, in addition, there is a

net heat transfer to (or from) the body (i.e. AT = 0), both a point heat

source and higher order heat singularities must also be included. Among
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these higher order singularities, the dominant contribution to the dis-
turbance velocity and temperature fields will be due to the vertically
oriented heat dipole. Indeed, if the body is symmetric about y' = 0,
and AT = 0 so that the net heat flux from the body is zero, the
only relevant heat singularity is the vertically oriented heat
dipole. We thus concentrate here on the vertical momentum
source, the heat source, and the vertically oriented heat dipole,
following the earlier analysis of Janowitz (1967, 1968) who considered
the horizontal momentum source.

The governing equations for the disturbance velocity, pressure and
temperature fields are the Oseen-linearized form of the Navier-Stokes
and thermal energy equations. Invoking the usual Boussinesq approximation
and nondimensionalizing these equations using the ambient fluid properties

evaluated at T=T (i.e. y' = 0), the free stream velocity U_, and the

o]

appropriate characteristic length scale (Janowitz, 1967, 1968)

N = U /80, T YD

where B is the coefficient of thermal expansion, we finally obtain

2 2

3% 3x | Re [ s T 3| - K828 G) (1
3 oy
2 2 )

v __ a1 [, 0% 15

ox oy @ Re [ 2 i 2 i Re ‘ KBG(X)é(Y) (&
he oy

Ju v _

—a;'i' 3y 0 (3)

- 72— 9.3
36 _ 1 (3%, 37%8| .,
5§-+ Vo= 3o {——E +'_TZ 4—&26(x)5(y) 4)
9x oy s

Here, u and v denote the disturbance velocity components in the x and y

(horizontal and vertical) directions, 6 = (T - TS)/Y'ATw, and p = (pd =
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2
P4 )/mew where Py represents the dynamic pressure. The two dimension-
oo

less parameters which appear are the Reynolds number,

1/3
2.4, 2
Re = mem)\/u°° = [pwUm/umBngYv

which is a measure of the relative magnitude of inertia compared with
viscous and buoyancy (due to the ambient stratification) forces and the
Peclet number,

Pe = PrRe with Pr = Cpm“w/km .
For convenience, we have incorporated the momentum and heat source con-
tributions directly into the governing equations (cf. Janowitz, 1967,
1968). The coefficients Ki can be related to the drag, lift and net
heat flux from the body, but here we shall consider only the funda-
mental solutions associated with Ki = 1. Since the equations are linear,
disturbance motions corresponding to each singularity type may be con-

sidered separately by simply decomposing the overall solutions u, v, p

and 6 in the form

B 1

u = Klul + K2 ﬁg-uzs + K3u3 (5a)

v = K,v, +K ~£—v + K.v (5b)
11 2 Re "2 3°3

s s

p =Kp, +K = p, + K.p (5¢)
11 ZSRe 2s 33

6 = Klel + KZSGZS + K363 (5d)

Although the vertically oriented heat dipole could have also been
explicitly included in equation (4), a more convenient method of obtain-
ing the corresponding disturbance fields is by simply differentiating

the source solutions with respect to y (Carslaw and Jaeger, 1959); e.g.



62 = —382 /3y, where the subscripts s and d will be used to denote heat
d

source and dipole solutions. Finally, it may be noted that y' - 0,

(A, Re, Pe, 6) - » for a homogeneous fluid; hence, in this case, the

governing equations must be nondimensionalized using a different charac-

teristic length, ¢ = uw/Uwpw, and temperature scaling, 6 = (T - TS)/AT.
In the following sections, we describe solutions of equations (1) -

(4), subject to the free-stream conditions

_ 9 9 1/2
u->0, v->0, p=>0, 6 ~>0as (x + v") > ®

For purposes of comparison, we include not only the vertical momentum
source, heat source, and heat dipole results, but also the solution for
a horizqntal momentum source (i.e. K1 =1, K2 = K3 = 0) which was pre-
viously obtained by Janowitz (1967). In view of our interest in the
relationships between flow structure and the degree of stratification in

a "diffusive" fluid, the explicit numerical computations which we will

describe were carried out for fixed Pr = 0.7 and various values of Re.
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3 SOLUTION PROCEDURE

The governing equations for each of the three fundamental problems
which are produced by the linear decompositions (5a-d) of equations (1)
- (4) are most conveniently solved using the standard methods of Fourier
transforms, as outlined in detail by Janowitz (1967, 1968) and List (1971).
A most interesting feature of this analysis in the present case is the
fact that both the solution form and a number of its general features
are precisely the same for all four singularity types. Thus, denoting
a typical unknown as r (e.g. any of Ups Uy 5 Ugy Vy, ...), it may be

s

shown that
-1 i A .
z(x,y) == JO[IC(kz, x; Re, Pe)/ZW]Jc(kz, y)dk, (6)

where

I;(kz; x; Re, Pe) = i J—w[Kg(kl, kz; Re, Pe)/ql(kl, kz; Re, Pe)]

. (7)
exp(lklx)dk1
and
2 2 [ g + kg i + k5
ql(kl, k2; Re, Pe) = —1(1{l + kZ)lel +———~§g——- 1kl +-——EE;——
k .
ik (8)

The subscript ¢ on IC’ JC and KQ is intended to indicate that the cor-
responding functional forms depend on the specific variable C.+

Explicit evaluation of equations (6) - (8) for a specific g is straight-
forward. For each k2’ the function IE is evaluated by residue theory,
after first determining its poles by solving for the roots of q; = 0,

14

The functions J_ and K_ are tabulated by Robertson (1975). Refer-
ences to Robertson (1975) in Chapter 2 are found in Appendix 2-A.
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i.e. the roots of the sixth-degree polynomial
£% + (Pe + Re)E” + (PeRe - 32)E" - (Pe + Re)2k3E’

+ (3k; + Pe - PeRekg)E2 + (Pe + Re)kgg - kg =0 9)

The physical space quantity ¢ is then determined by a numerical inte-
gration over kz.
The resultant solution clearly depends in detail upon the singularity
type and on the variable in question. This is in accord with expecta-
tions. In every case, however, the x-dependence of the solution is
completely contained in IC and the y-dependence in J§° Fur thermore,
and of greatest significance, the function 4 and its roots are inde-
pendent of ¢. Janowitz (1967) has shown, for the case of a horizontal
momentum source, that the general behavior of u; can be deduced from a
knowledge of the characteristics of the poles of IC’ without actually
carrying out the detailed integration of equation (6). Since the pre-
sent analysis has shown 9 to be independent of the singularity type,
the general far-field characteristics deduced by Janowitz are also rele-
vant for a vertical momentum source, heat source or heat dipole at the
origin. 1In view of the fundamental differences in the disturbance
fields induced near the body, this universality of solutions in the
Oseen-region is both surprising and of considerable interest.
Since 9y is a sixth-degree polynomial, its roots (and the poles of

IC) must be determined numerically for each set of values of k2’ Re and

Pe. Janowitz (1967) has described the general features of these roots,

which were also verified in the present work. Three roots, S15 Sy5 and
s., have positive real parts with 0 < s <sg, <s for k, > 0,+

3 1 2 3 2
T R R R

S and s denote the real and imaginary parts of s
0o ny n



while the remaining three roots, 84> Ss and 8¢ have negative real parts

with 0 > s4R >> 85R > s6R for k2 > 0. For all k2 2 0, sy is real,
whereas S, and 83 are real for k2 > kz* (Re, Pe) and complex conjugates,
s, = S + is, , s, = s - is, , with s > 0, for 0 £ k, < k,*; the

2 2R 2I 3 2R ZI 2I 2 2

critical wave number kz* increases for increasing amounts of stratifica-

tion (i.e. decreasing Re). For all k, 2> 0, s

9 is real, whereas s. and

5

may be real or complex conjugates, depending on the values of Re and

4

6

Pe. Finally, S and S, increase with increasing k
R

creases; s, and s, increase for decreasing Re and s
R I

near zero. In contrast, the real parts of all three roots s

1/2

> 0, while s de—
2I

1/2
n kg/Pe / for k

2

1 2

4° S5 and S¢

for k, near 0. The

3
N —kz/Pe )

decrease for increasing k2 > 0, with S

function IC for x > 0 (downstream of the body) is evaluated using the

poles with s, > 0, while the region x < 0 requires the poles with
R
s, < 0.
R
In the following discussion, we shall focus attention on the hori-

u, and u,. Taking account of the
2d 3

nature of the poles S1s S5 c+es Sps the general expression (7) for I

zontal velocity components u,, u

12 =2 7
s
C,
, Oor u,, may be written in the more specific forms

d 3

with ¢ = ups uzs, u,

2
1 = — — — — —_
E;-IE = ACRe exp ( slx)/{|s2 sl[ (sl 54)(31 SS)(sl 86)}
3
+ Re exp(—-s2 X) z B sin(s2 x + 61 + 84 + 65 + 66 - nez)/
R n=0 ¢ I

{521‘82 = syllsy = syllsy = sgllsy - Sel};

for x > 0 and 0 < k2 < k; (10a)
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1 _
21 Ic -

+ D
c

CCRe exp(—slx)/{(sl - 82)(51 - 83)(51 - 34)(81 - SS)(Sl - 86)}

Re exp(-—szx)/{(s2 - sl)(s2 - s3)(s2 - 34)(32 - 35)(52 - s6)}

+ ECRe exp(—s3x)/{(s3 - sl)(s3 - 82)(83 - 84)(53 - SS)(SS - s6)};

*
2 k

x > 0 and k2 9

for

F_Re exp(—s4x)/{(s4 - sl)ls

b2 _
o L T

+ GCRe exp(—-ssx)/{(s5 - sl)ls2

+ LCRe exp(—s6x)/{(s6 - sl)ls2 -

< k*

x < 0 and 0 < k2 5

for

1 _
'ZFI(;_

g 5412(54 = 8g)is, - 56)}

- Sslz(ss A 36)}

2
86‘ (86 - 84) (S6 - Ss) 9

(10b)

(11a)

MCRe exp(—séx)/{(s4 - sl)(s4 - sz)(s4 - 83)(84 - SS)(84 - 56)}

+ NgRe exp(-—ssx)/{(s5 - sl)(s5 - sz)(s5 - s3)(85 - s4)(s5 - 86)}

+ P
C

> k¥

x < 0 and k2 5

for

2

where |s, - s [ = s - s + s2
2 i 2 i 2

| R

1/2
!szl = S; + sg /
R 8
_ (

9, = tan |s, /s ]

2 ZI ZR
6, = tan -?2 /(s2 - s )l, i

Re'exp(—s6x)/{(s6 - sl)(s6 - 52)(36 - s3)(s6 - 54)(86 - SS)};

(11b)
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The coefficients A, B , B, , B, , B, , C
1 2 3
S
and PC’ which are functions of z, k

D E G L., M N

(A A

and Pe,

b ] L] F bl ]
C C C C
2> °1° 52> %3 54 S50 S¢
but not of x, are tabulated by Robertson (1975). For additional physi-

cal insight, we also calculate the disturbance streamfunction fields

wi (i = 1, 25, 2d’ 3) where:
=gt +E + K 12
v=y +Kb “2_ ke lbzs 3¥3 (12)
% = sP/ay, v = -3P/ox (13a)

u, = awi/ay, v, = —awi/ax; 1 =1, 28, 2d, 3 , (13b)
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4. SOLUTIONS

a. Self-Similar Solutions

Very far downstream and upstream of each singularity type, the

integrand for ¢ is non-negligible only near k, = 0; for example, ex-

2

pressions (10) and (11) for Iu , 1 =1, 2S,
i

first terms of equations (10a) and (1la) respectively, evaluated near

Zd’ 3, are dominated by the

_ _ - . . 2 _
k2 = 0. For k2 = 05 8, = s4 = 0 and equation (9 ) yields ]szl ScSp = Pe.

Since A % —k2 near k, = 0 and J = k2 cos k,y (Robertson, 1975), the
uy 2 2 uy 2 2
expression for u; very far downstream becomes
__Re [7 35 172
ul(x,y) = 1772 J k2 cos kzy exp( kzx/Pe )dk2
2mPe 0

As Janowitz has noted, this solution is identical to Long's (1962)
similarity solution for the far-wake motion generated by a source of

horizontal momentum in a diffusive, stratified fluid. Indeed this is

simply shown by substituting s3 for kgx/Pel/2 in the above exponential
to yield
u, = - Be s cosns exp(—sg)ds; n = Pel/6y/|x|l/3 (14)
1 1/6 2/3
2mPe |x| 0

One can analagously obtain self-similar solutions for all of the other
physical variables and singularity types, Z, and these are listed in
Table 1. The presence of two signs in some of the expressions corres-—
ponds to x > 0 (upper sign) and x < 0 (lower sign). The self-similar

solutions for Ups Vi Py and 6, were previously calculated by Janowitz

1
(1967) and Long (1962), and have been included here for comparison

purposes. Plots of the self-similar solutions for Ups Uy 5 Uy and u
d

are presented here in Figures 1-8; a complete set of plots of the

2 3
s
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similarity functions may be found in Robertson (1975).
It is significant that for each singularity type, the self-similar
regime is dominated by the same physical processes. Indeed, one can
easily show that the self-similar profiles, which were obtained as

approximations of the Oseen solutions at very large distances, are also

exact solutions of the equations

op _ 1 3w _

9x Re 2 Kié(X)S(Y)
oy

ip .1 5 _

by = Re ] K36(X)6(y)

(15)

du ov _

5}—{—4“8—}7‘—0
9

- 1 36

v =355 tK, §(x)8()

oy s

which were solved originally by Long (1962) for K, =

25 K3 = 0, Kl ¥ 0.

Note that, in all
wake self-similar

which lies closer

cases, inertia effects are unimportant in this far-
region, although significant in the Oseen regime

to the singularity (i.e. the body).+

In spite of the fact that the basic physics relating u, v, p, and
6 is similar in all cases, the detailed differences in the flows induced
nearer the body by the various types of singularities are still rather
strongly reflected in the solutions as far away as the self-similar
regime. This is true not only in the detailed profiles, but particu-
larly in the dependence on the parameters Re and Pe, and in the rates
of decrease of the magnitudes of the velocity, pressure and temperature

profiles with increasing distances [x . In the case of the horizontal

-[.<

Criteria, in terms of the required distances from the body, for the
validity of the Oseen and self-similar solutions are presented in
Appendix A.
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momentum source, the main velocity peaks in the similarity profiles up-
stream and downstream result directly from the horizontal flow induced

at the origin (for K. > 0, this flow is from right to left). Not sur-

i

prisingly, the horizontal velocity component uy is dominant over the
vertical component U In the cases of the vertical momentum source

and the heat source, the flow induced at the body is dominantly vertical,

upward for K2 > 0 and downward for K3 > 0. However, as we shall see
s

more clearly in the next section, the vertical near-body motions are
constrained by the ambient density stratification, and converted
efficiently into strong horizontal motions which are antisymmetric about
the x-axis (y = 0). As in the previous case, the magnitude of the hori-
zontal velocity component is larger than that of the vertical component

by 0([X!+2/3

) in this distant self-similar regime. The antisymmetry
and sign of the induced horizontal motions in the far-wake are easily

understood. For example, considering u the ambient stratification

39
causes the downward vertical motions near the body to be turned into
both upstream and downstream jet-like motions. Below the plane y = 0
these motions will be outward, whereas above they must be inward in
order to satisfy the entrainment requirements for the near-body flow.
One surprising feature, from the physical point of view, is the precise
upstream—-downstream symmetry in the self-similar regime. Mathemati-
cally, however, it is obvious from the equations (15), in which inertia
effects are neglected, that the solutions must exhibit this feature.
Nearer the body, however, where convective inertia effects cannot be

neglected for finite Re, the velocity and temperature fields would be

expected to show some degree of upstream-downstream asymmetry, and this
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will become apparent in the full Oseen solutions which we will discuss
next. Finally, the horizontal velocity profile for a heat dipole appears
qualitatively similar in shape to the profile for a horizontal momentum
source. For a sufficiently simple body geometry, such as the horizontal
flat plate (cf. Robertson, Seinfeld and Leal, 1973), this similarity
appears quite natural since the local density gradients induced by the
body acting as a heat dipole produce an effective horizontal pressure
gradient at the body surface which acts to accelerate the fluid in the
horizontal direction. The buoyancy effects which act to produce verti-
cal motions locally produce no net vertical motion for the heat dipole.
Thus, for a simple body geometry, the heat dipole appears as an effec-
tive source of horizontal momentum. Generalization of these simple
ideas to more complicated body geometries is, however, not obvious
although it is clear from the far-field similarity profile that, in an
averaged sense, the situation is unchanged. As might be expected
qualitatively, the far-wake self-similar disturbance flows are strongest

—2/3))

for the horizontal momentum and heat sources (O(Ix] and weakest
for the vertical momentum source (O(|x|_4/3ﬂ with the heat dipole falling

in between.

b. Oseen Solutions

From equations (10) and (11) for the functions Iu , 1=1, 2
i
3, we can ascertain the general behavior of the horizontal velocity com-

S, 2d’
ponents in the Oseen solution regime using the characteristics of the

poles s -» Sg, as indicated earlier. The case of a horizontal

l’ 82!
momentum source was discussed by Janowitz (1967). However, the general

features of the horizontal velocity profiles are clearly common to all

four of the singularity types which we have considered, since the
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general solution forms are similar and the behavior of the poles is
independent of the singularity type.
Downstream, in all four cases, Iu. displays terms which are both
i

wavelike in x due to the compilex conjugate poles S, and s3 for 0 < k2

< k*, and exponential due to the real poles 81 for kz > 0 and S, and 84

for k2 > kg. For moderate distances downstream, all terms are signifi-
cant in general, indicating the presence of lee-waves in the overall
velocity field. Since the real and imaginary parts of o both increase
with decreasing Re, equation (10a) indicates that increasing the degree
of ambient stratification will cause a decrease in the amplitude and
wavelength of these lee-waves. Both the pure exponential and wave-

like terms decrease in magnitude with increasing downstream distances.

However, since s, < s

1 9 s Very far downstream the first term of equation

(10a) dominates Iu. yiglding the diffusive self-similar wake solutions
which were discuss;d in the preceding section.

Upstream, Iu. is dominated for each singularity type by the term
containing the re;l root s4. Thus, upstream the horizontal velocity
distributions do not exhibit any appreciable wave-like character with
respect to x. However, as we shall see from the evaluation of the full
solutions, they do exhibit an alternating jet structure with y which
merges very far upstream with the diffusive self-similar wake solutions.

Finally, when the fluid is homogeneous, a similar analysis yields
all real poles for k2 > 0, thus indicating a complete absence of wave-
like terms in the horizontal velocity components.

In spite of these general features, which are common to all four

singularity types, substantial detailed differences do exist in the

Oseen region due to the contrasts in the flows which are induced nearer
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the body. Of course, we have seen differences even further out in the
self-similar regime which we considered in the last section, and it is
inconceivable that this intermediate region would not at least yield

differences of comparable severity. The horizontal velocity component
profiles, which we shall examine first, were calculated by integrating

equation (6) for ¢ = u, i=1, 2, 3

s 2d’
We begin by considering the variations in the upstream and down-
stream profiles with varying horizontal distance from the
body (i.e. the origin), and a constant degree of ambient stratification.
Profiles for the four singularity types are shown in Figures 1-4, to-
gether with the self-similar profiles which we discussed earlier. Tor
each singularity type, the Oseen and self-similar profiles both exhibit
the characteristic alternating jet structure which has been previously
noted for Uy by Long (1962) in the self-similar regime, and by Janowitz
(1967) for the Oseen region. These profiles broaden vertically and
weaken for increasing distances from the disturbances because of the
influence of viscosity. Furthermore, as expected qualitatively, the
deviations of the full Oseen solutions from the corresponding self-
similar profiles decrease with increasing distances from the singulari-
ties. Comparison of the Oseen and self-similar profiles for a specific
value of |x| shows that the former are more spread out vertically and
have magnitudes whichiare smaller upstream and larger downstream than
would be the case if the flow development were everywhere self-similar
(i.e. with negligible inertia). Comparing the Oseen profiles for the
four singularity types shows differences in the magnitudes and symmetry

about y = 0 which are similar to those exhibited by the similarity

solutions. Thus, disturbance flows symmetric about y = 0 are created
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by both the horizontal momentum source and the vertically oriented heat
dipole. Conversely, antisymmetric disturbance flows are created by both
the vertical momentum source, and the heat source as the vertically
induced motion near the body is converted by the ambient density strati-
fication into horizontal motions. Upstream, the profiles are qualita-
tively similar at all stations (though spread out and weakened as des-
cribed before). However downstream, one striking feature of the hori-
zontal velocity profiles is the apparent fact that they may be completely
reversed in sign from one streamwise position to the next.

The effect of varying the degree of ambient stratification on the
horizontal velocity component for fixed streamwise position
(x = * 2.5) is shown in Figures 5-8. As suggested by the qualitative
arguments at the beginning of this section, the velocity profiles for
all cases, both upstream and downstream, are decreased in magnitude and
strongly compressed vertically, as the degree of stratification is
increased. 1In contrast to the self-similar profiles which are qualita-
tively similar for all Re, the Oseen profiles downstream can again vary
strongly with Re, sometimes showing a complete reversal of sign.
Finally, by comparing Figures 1-4 for Re = 11.68 and Figures 5-8 for
Re = 6.325, it can be seen that the deviations of the Oseen solutions
from their self-similar forms, at a fixed streamwise position, are de-
creased with decreasing Re. This feature is expected qualitatively and
simply reflects the decreased importance of fluid inertia for lower
values of Re.

To date, nearly all of the theoretical work on the motion of
bodies through a stratified fluid has concentrated on the horizontal

velocity component (cf. Long 1962, Janowitz 1967, 1968). 1In order to
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gain additional physical insight into the alternating jet structure and
other interesting features of the horizontal velocity profiles, we also
carried out explicit calculations of the disturbance streamfunction fields
for the four types of singularities. Typical results are illustrated in
Figures 9-12 for various degrees of ambient stratification. The length
scale (both horizontal and vertical) in each case is indicated by marking
the points x = 0 and x = 3 for y = 0 in part (a) of the Figure, with the
origin being denoted on all plots as a large dot. The disturbance flow
consists of a pattern of rotors of finite vertical thicknesses for
stratified fluids (y' > 0) and an open streamline pattern for homogeneous
fluids (y' = 0). As explained by List (1971) for creeping flows, the
rotor structure for stratified fluids is a simple consequence of the fact
that the induced flows (and associated return flows) are constrained by
the ambient stratification to regions of finite vertical extent.

Both upstream and downstream of each singularity type, the alter-
nating jet structure of the horizontal velocity profiles for y' > 0O
(and its absence for y' = 0) may now be associated with the existence
for y' > 0 (and absence for y' = 0) of closed streamline rotor flows,
with each rotor being of finite vertical extent and rotating in the
opposite direction from its nearest neighbors. For each singularity
type, the rotors increase in number and decrease in strength and size
for increasing amounts of stratification; this is reflected in the de-
creasing magnitude and vertical wavelength of the alternating jet pro-
files for the horizontal velocity components. Finally, the disturbance
flow downstream can also exhibit a series of alternating, closed stream—

line flow patterns with increasing x, whereas upstream, the alterations
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in the sense of rotation are confined to the vertical direction. Hence,
the occurrence in some cases of changes in shape (e.g. the reversal in

sign of u uy and u, ) of the alternating jet structure with increas-
d s

ing downstream distances (or increasing y' > 0) and the contrasting

39

similarity in all of the upstream profile shapes may again be ascribed
to the existence of rotors of horizontally finite and semi-infinite
extent, respectively, in the disturbance flows.

Our Oseen solutions for the horizontal and vertical momentum sources
can be compared with the Stokes flow calculations of List (1971) for
y' > 0. List found the rotors to be symmetric (or antisymmetric) up-
stream and downstream. In contrast, the inclusion of the Oseen-type
convection term results in a skewing of the rotors towards the downstream
direction, as observed experimentally by Long (1959). Our solutions
also show the existence of a whole family of rotors, thus allowing
reversals in the flow direction as one moves either in the vertical or
horizontal (downstream) directions. Thus, we obtain jets for the hori-
zontal velocity profiles whose number depends on Re and x, as found in
Pao's experiments (1968), and which may change drastically in shape
between different downstream positions or different Reynolds numbers.
On the other hand, for y > 0 and y' > 0, List found only one rotor for
wl (corresponding to only two jets for ul) and a system of three rotors
for wB which change rotation directions vertically, but not horizontally.
Thus the creeping flow solutions could not account for the changes in
shape of the downstream alternating jet structure or for other differ-
ences between the upstream and downstream profiles.

Finally, the total streamline plots, created by adding the dis—.

turbance flow streamlines associated with a particular singularity to
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the ambient uniform flow streamlines $ = y, have been obtained by
Robertson (1975) and confirm the qualitative interpretation of the
presence of a periodic structure in us s, i=1, 28, 2d’ 3, with respect
to x for y' > 0 as indicative of lee-waves. The presence for y' > 0
(and absence for y' = 0) of the wave-like structure downstream is asso-
ciated with the corresponding presence for y' > 0 (and absence for vy'

= 0) of a series of alternating rotors with increasing downstream

distances in the disturbance streamfunction fields.
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Appendix A: Distance Requirements for Valid Solutions

Having discussed in detail both the self-similar and Oseen solu-
tions, we would also like to estimate a priori the distances from each
type of singularity required for the two solutions to be valid. For
the Oseen solution regime, we have considered distances so large that the
Oseen linearization of the convective operator is applicable; i.e.

]u! << 1 or

lu] < 0.1 (A1)
where < 0.1 corresponds, for numerical purposes, to << 1; qualitatively,
similar results‘would be obtained if a number other than 0.1 were chosen.
Since we do not have closed form Oseen solutions for the horizontal
velocity components, as they have to be evaluated by a numerical inte-
gration, we cannot calculate a priori explicit expressions for the dis-
tances required from the relation (Al). However, explicit expressions
which provide a conservative estimate of these distances can be obtained
by substituting the closed form self-similar expressions into the Oseen

condition (Al), thereby yielding the distance requirements:

g ! oy~

lx[ = (.61 for a horizontal momentum source,
|x| » 0.53 Rel/zPr_l/4 for a vertical momentum source,
and lxl > 0.50 Rel/zPrl/2 for a heat source or vertically oriented
heat dipole,
when Kl = K2 = K3 = 1. Figure Al illustrates the estimates of the

regimes of validity for the Oseen solutions due to each singularity
type for Pr = 0.7. For the horizontal momentum source, these estimates
are seen to approximate well the actual regimes of validity obtained
a posteriori by calculating the Oseen solution at various values of

le to find the value of [xl which must be exceeded for the Oseen
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condition (Al) to apply.

The behavior of the similarity solution regime is governed by
equations (15); hence, as well as by the relation (Al), additional
distance restrictions on the self-similar solutions are imposed by the
conditions |du/ax| << |dp/ox|, |0%u/ox?| << |a%u/oy?|, |av/ax| << |ap/ay],
|ReLo2u/ay?| << |ap/ay|, |Re To%v/ox?| << |ap/oy|, |98/8x| << |v],
and |32§/8x2| << 1825/8y2|. The most restrictive distance requirement
determined from all the above conditions is

2oy =il

|x| >> Re“Pr
for each singularity type and Pr = 0.7, resulting in each case from the
condition IBu/axl << laplaxl. For the self-similar solutions, the regime
of validity, which is further from each singularity than the correspond-
ing Oseen solution regime as expected, is illustrated in Figure 13. As

expected, for decreasing Re, the region in which the Oseen solution is

valid but the self-similar solution is not, decreases in size.

ol

In the large stratification (low Re) limit, Freund and Meyer (1972)
also derived this distance requirement for the validity of the simi-
larity solution in which the detailed body geometry is unimportant.
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Self-Similar Diffusive Wake Solutions
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Figure Captions

Figure 1: Gl(§,§) = 3.418 u (x = 3.418%, y = 3.418y) for Re = 11.68,

Pr = 0.7

Oseen solutions; —--- Self-similar solutions
(a) x = x/3.418 = 2.5, 25, 250
(b)’x = x/3.418 = -2.5, =25

Figure 2: 53(x,§) = 3.418 uy(x = 3.418%, vy = 3.418y) for Re = 11.68,

Pr = 0.7
Oseen solutions; —-—-- Self-similar solutions
(a) x = x/3.418 = 2.5, 25
(b) x = x/3.418 = -2.5, =25
Figure 3: sz(§,§) = 3.418 uzd(x = 3.418x, y = 3.418y) for Re = 11.68,
Pr = 0.7
Oseen solutions; ——-- Self-similar solutions
(a) x = x/3.418 = 2.5, 25, 250
(b) x = x/3.418 = -2.5, -25
Figure 4: GZ (x,y) = u, (x = 3.418%, y = 3.418y) for Re = 11.68,
PrS= 0.7 °
Oseen solutions; —--- Self-similar solutions
(a) x = x/3.4i8 = 2.5, 25, 250
(b) x = x/3.418 = -2.5, =25
- 20

Figure 5: Gl(§,§) Re ul(x = 40x/Re, y = 40y/Re) for Pr = 0.7;
Re = 6.325, 11.68, 25.2

Oseen solutions; --—— Self-similar solution for Re = 6.325

(a) x = xRe/40 = 2.5 (b) x = xRe/40 = -2.5
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Figure 6: u3(x,y) = ﬁg-u3(x = 40x/Re, y = 40y/Re) for Pr = 0.7;

Re = 6.325, 11.68, 25.2

——— Oseen solutions; —--— Self-similar solution for Re = 6.325
(a) x = xRe/40 = 2.5 (b) x = xRe/40 = -2.5
Figure 7: u, (x,y) = ég‘u (x = 40x/Re, y = 40y/Re) for Pr = 0.7;
2d Re Zd
Re = 6.325, 11.68
Oseen solutions; ——-—-- Self-similar solution for Re = 6.325

(a) x = xRe/40 = 2.5 (b) x = xRe/40 = =2.5

Figure 8: Gz (x,y7) = u, (x = 40x/Re, y = 40y/Re) for Pr=0.7; Re =6.325, 11.68
s s
Oseen solutions; =—--- Self-similar solution for Re = 6.325

(a) x = xRe/40 = 2.5 (b) x = xRe/40 = -2.5

Figure 9: @l(§,§) for Pr 0.7

(a) v' = 05 ¥, (x,¥) = ¥, (x, = 40x, y, = 40y) = -0.10, -0.15,

¢ ¢
-0.30, -0.35, -0.40, -0.425, -0.45 with -0.10 correspond-

ing to the lowermost streamline

1]

(b) Re = 25.2; ¥, (x,¥) = ¢, (x = 1.586x,y = 1.586y) = -0.001,
-0,1, -0.2, 0.3, -0.4, ~0.5, -0.6, -0.7; -0.8, =0.9,
-1.0 with -0.001 corresponding to the lowermost stream-
line

(c) Re = 11.68; @l(§,§) = Py (x = 3.418%,y = 3.418y) = -0.001,
-0.05, -0.1, -0.2, -0.3, -0.4, -0.5, 0.05, 0.10, 0.15
with -0.001 corresponding to the lowermost streamline

(d) Re = 6.325; §;(x,¥) = ¥;(x = 6.325%,y = 6.325y) = -0.001,
-0.05, -0.10, -0.15, -0.20, -0.30, 0.02, 0.04

with -0.001 corresponding to the lowermost streamline

Figure 10: $3(§,§) for Pr = 0.7



(a) y' = 0; @3(§,§) = = 40%, Yy = 40y) = -0.466, -0.366,

3 (%,
-0.316, -0.266, -0.216, -0.166, -0.116, -0.066, -0.016,

+0.014, 0.054 with -0.466 corresponding to the streamline
closest to the origin

(b) Re = 25.2; $3(§,§) =y, (x = 1.586x, y = 1.586y) = -0.40,

of
-0.30,; -0.20, -0.10, =0.05, ~0.001; 0.05, 0.10, 0.20,
0.30, 0.40 with -0.40 corresponding to the streamline
closest to the origin

(c) Re = 11.68;5 Y, (x,y) = ¥ (x = 3.418x, y = 3.418y) = -0.20,
=0.15,; =0.10, =0.05, =0.00%L, 0,05, 0.10, 0.20, 0.30 with
-0.20 corresponding to the streamline closest to the origin

(d) Re = 6.325; 63(§,§) =y (x = 6.325%x, vy = 6.325y) = -0.10,

3
-0.05, -0.001, 0.05, 0.125, 0.20 with -0.10 corresponding

to the innermost streamline just upstream of the origin

Figure 11: @2 (x,y) for Pr = 0.7
d

(a) ¥' =05 ¥, (x,) =¥ = 40x, y, = 40y) = 0.10, 0.15,
d

2470 ¢
0.20, 0.25, 0.30, 0.35, 0.40 with 0.10 corresponding to

(

the lowermost streamline

(b) Re = 25.2; mz (x,7) = by (x = 1.586x, y = 1.586y) = 0.001,
d d
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 with 0.001

corresponding to the lowermost streamline
(c) Re = 11.68; V., (x,y) = ¢, (x = 3.418x, vy = 3.418y) =
2d 2d
0.001, 0.1, 0.2, 0.3, 0.4, ~0.05, =0.10, =0.15; —-0.20
with 0.001 corresponding to the lowermost streamline
(d) Re = 6.325; ¥, (x,y) = ¥, (x = 6.325%, y = 6.325y) =
2d 2d
0.001, 0.05, 0.10, 0.20, -0.025, -0.05, -0.10 with 0.001

corresponding to the lowermost streamline just upstream
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of the origin

0.7

Re = 11.68; @2 (x,y) = v, (x = 3.418%, y = 3.418y)/3.418
S S
0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.001, -0.1, -0.2, -0.3,

-0.4 with 0.6 corresponding to the streamline closest to

the origin

Re = 6.325; Jz (x,y) = v, (x = 6.325%, y = 6.325y)/6.325
S S
0.10, 0.08, 0.06, 0.04, 0.02, -0.05, -0.075, -0.10 with

0.10 corresponding to the streamline closest to the origin

Figure A]: Minimum Distance Requirements for Valid Solutions; Pr = 0.7

(a)

(b)

(c)

(d)

|x| = ReZPr_l; for self-similar solutions for each singu-

larity type considered

5/4p,-1/4

|X| = 0.61 Re ; estimate for Oseen solution for

horizontal momentum source with K. =1

1
1/2Pr—l/4

lxl = 0«53 Re ; estimate for Oseen solution for

vertical momentum source with K, =1

3
1/2, 1/2,

lxl = 0.50 Re ; estimate for Oseen solution for

heat source or vertically oriented heat dipole singularity
with K2 =1

for Oseen solution for horizontal momentum source with
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Appendix 2-A: Additional Tables and figures

This appendix presents the Tables and Figures referred to in

but, for brevity, omitted from the main body of Chapter 2.



-

TABLE CAPTIONS

Table 1: Functions Jc(kz; y) and Kc(kl’ kz; Re, Pe) for the various
physical variables zZ.

Table 2: Functions AC’ BO - Bl 3 B2 " B3 s C » Dr’ EE’ FC’ GC’ LC’
* g B "z R % 7
c? NC’ and PC for the physical variables ¢ = uys uzs, u2d

and u3.

M
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TABLE 1
Z Jr(kz; y) Kc(k k,; Re, Pe)
9 ki+k§
uy k2 cos kzy 1kl + Po
uzh kz sin kzy 1kl
12 . ;
u, -k, cos &Zy 1k1
¢ (
ki + k5
u3 - k2 sin kzy 1kl 1&1 4 o
K+
B _— : A
vy k2 sin k,y 1k1 1k1 4 To
- s k k2
V2 cos ¥ 1
s
v - k, sin k k2
2 g B Sp¥ 1
d
I
9 ki + k
ik, +
Vg cos kzy kl 1kl P
k2 + k 1
Py cos kzy - 1kl 1kl + 1kl + Pa + e
ki + k;
pZS - kz sin k2y 1kl + Re
k2 + k2
k2 k ik, + L 2
Py g €08 Ky 1 Re
d
k2 + k2 - + k2
k, sin k ik, + : : L =
Eq 2 27 1 Re Pe
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TABLE 1 (continued)

4 JC(kZ; y) KC(kl’ k,; Re, Pe)
61 k2 sin kzy 1kl
ki " ki 2 2
82 - cos kzy 1k1 + Re kl + k2
s L J
ki + kg 2 2
82d - k2 sin kzy 1kl + e k1 + k2
2
83 - cos k2y kl
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TABLE 2

Function r = Uy = uzs, & = u C = Uy
2 2
AZ - k2 - Pe sl - Sl Pe sl - SlAul
2
BO k2 0 0
8
B - Pe|s,| - Pels | -|'s |k2
1C 2 2 2" 2
9 2
B2 —[szl 0 Pelszl
'
i 3
B, 0 0 s,
g
(.2 2
CC - k2 - Pe sl - Sl) Pe sl - sl Cu
2 2
DC - k2 - Pe s2 - SZ, Pe s2 - 92 Du
(2 4
EC - k2 - Pe s3 - 33/ Pe s3 - s3 hu
F k, - Pe s, - sz - Pe s - s, F
z 4 T4 4 4 u
(.2 2)
GC k2 - Pe 35 - 85, - Pe s5 - 55 Gu
2 2
LC kz - Pe s6 - 86) - Pe s6 - s6 Lu
M F F = F F
e U Uy ) Y3
s
\
N G G =G G
¢ ug Y Y2 Y3
s :
P L L (= L L
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FIGURE CAPTIONS

Figure 1: 1Integrals as a Function of the Similarity Variable n
a: f: cos ns exp(—sB)ds
bis f; S cos ns exp(—s3)ds
s f; 32 cos ns exp(—sB)ds
d: fz 53 cos ns exp(—s3)ds

e: fg s5 cos ns exp(—sB)ds

Figure 2: Integrals as a Function of the Similarity Variable n

a:s fg sin ns exp(—s3)ds

8

y 3
s sin ns exp(-s”)ds

b: fO

@i [; sz sin ns exp(—s3)ds
d: f; 33 gin ns exp(-s3)ds
e: fw 34 sin ns exp(-sB)ds

o)

Figure 3: 7y + 0.67;51(52, y) = 0.001, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0,
3.0, 4.0, with 0.001 corresponding to the lowermost
streamline, for Pr = 0.7.

(a) y'=0;7y+ o.s‘q?l&, y) = y,/40 + 0.6y (x, = 40 X,

g, = 40 )

(b) Re = 25.25 y + 0.6y, (x, y) = y/1.586 +

0.6y, (x = 1.586 X, y = 1.586 y)

(¢) — Re = 11.68; v + 0.6@'1(.3?, y) = y/3.418 +
0.6y, (x = 3.418 X, y = 3.418 ¥y)

___Y'=O
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(d) Re = 6.325; y + 0.6'\;71(52, y) = y/6.325 +

0.6y, (x = 6,325 X, ¥y = 6.325 y)

Figure 4: §+0.6$3('£, y) = -2.0, -1.0, -0.75, -0.60, -0.40, -0.25,
0.001, 0.25, 0.50, 0,75, 1.0, 2.0, with -2.0 corresponding
to the lowermost streamline, for Pr = 0.7,

(a) ' =03y +0.6050(x, ¥) =y, /40 + 0.69,(x, = 40 X,

y, = 40 ¥)

(b) Re = 25.2; v + 0.6153(2, y) = y/1.586 + 0.6y4(x =
1.586 x, v = 1,586 )

(c) Re =11.68; ¥ + 0.63,(x, y) = y/3.418 +
0.6y,(x = 3.418 X, v = 3.418 ¥)

(d) Re = 6.325; ¥ + 0.63,(x, y) = y/6.325 +

0.6y, (x = 6.325 X, ¥ = 6.325 )

Figure 5: vy + o.e,TJI2 (x,y) = 0.001, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0,
d
3.0, 4.0, with 0.001 corresponding to the lowermost

streamline, for Pr = 0.7.

(a) ' =057y +0.6y, (x,y) =y,/40 + 0.6y, (x, =40 X,
d ¢ 2a
=40y
e y)
(b) Re = 25.2; 5 + 0.632 (x, y) = y/1.586 + 0.6y, (x =

d d
1.586 X, y = 1.586 ¥y)

() Re=11.68; §'+ 0.652 (§;§)==Y/3.418 s
d
0.6, (x=3.418%, y=3.418y); ———— y' = 0
d
(d) Re=6.325; y + 0.6$2d(x,y) =y/6.325 +

0.61!)2d(x = 6.325x, y = 6.325y)



— 61—

Figure 6: y + o.eﬂE (x,y) = -2.0,-1.0,-0.75,-0.60,-0,40,-0.25,0.001,
0.25,0.50?0.75,1.0,2.0, with -2.,0 corresponding to the lower-
most streamline, for Pr = 0.7
(a) Re = 11.68; §+o.@2 (x,¥)= y/3.418+ 0.6y, (x=3.418x%,
y=3.418y)/3.418 ’ °
(b) Re = 6.325; §lyo.6aé (x,y7) = y/6.325+ 0.6y, (x=6.325§;
S S

y=6.325y)/6.325
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Figure 3
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Figure 4
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Chapter 3. The Near-Field Solution

This chapter investigates the effects of ambient stratification
and locally produced buoyancy contributions on the velocity and temper-
ature fields near a hot or cold horizontal flat plate of finite length.
The flat plate is considered to act as a heat dipole; i.e., if the upper
surface of the plate is at the uniform temperature T _ + AT, then the
lower surface is at a temperature d AT , corresponding to a situa-
tion in which there is no net heat transfer to the ambient fluid. The
chief advantage of this configuration is that it produces a velocity
field symmetric about the horizontal plamne of the plate (allowing con-
siderable savings of computation time), and exhibits many of the compu-
tational difficulties which are inherent in the more complicated heat
source geometry. Also, from boundary-layer theory, it can be antici-
pated that the detailed structure of the velocity and temperature

fields in the immediate vicinity of either the upper or lower surface

of the plate will be essentially the same for the heat source and heat
dipole problems, in spite of the fact that the structure of the down-
stream wake regions will be markedly different as seen in Chapter 2.
The numerical solution in the near-field of the full nonlinear
partial differential equations representing the momentum, mass, and
the thermal energy balances is discussed for neutrally-stratified
fluids in Appendix 3-A and stably-stratified fluids in Appendix 3-B.
Appendix 3-C details the finite-difference equations used in the near-
field numerical solutions. Appendix 3-D derives the analytical far-
field solutions used as the outer boundary conditions in the numerical

solutions of Appendix 3-A for neutrally-stratified fluids. Appendix



— 69—
3-E gives some near-field solutions for neutrally-stratified flows
when the boundary conditions on the horizontal plane of the plate are
different than for the heat doublet problem. Appendix 3-F indicates
that Redekopp's (1971) stably-stratified fluid, boundary-layer
analysis for the diffusive, inertia-viscous balance region reduces

exactly to Sparrow and Minkowycz' (1962) neutrally-stratified fluid

analysis.
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Appendix 3-A: Combined Forced and Free Convection Flow Past a

Horizontal Flat Plate for a Neutrally-Stratified
Fluid

This appendix consists of an article reprinted from the

A.I.Ch.E. J. 19, 998 (1973).
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Combined Forced and Free Convection Flow

Past a Horizontal Flat Plate

The problem of simultaneous forced and free convection flow of a New-
tonian fluid past a hot or cold horizontal flat plate is investigated by means
of numerical solutions of the full equations of motion and thermal energy
subject only to the Boussinesq approximation. These solutions span the pa-
rameter ranges 10 = Re = 100, 0.1 = Pr = 10, and —2.215 = Gr/Re%2? =
2.215 where Re, Pr, and Gr are based on the ambient free stream fluid
properties and the overall plate length I. When Gr > 0, the boundary flow
near the plate surface is accelerated relative to the corresponding forced
convection flow, with a resulting increase in both the local skin friction and
heat transfer coefficients. When Gr < 0, the boundary flow is decelerated,
the local skin friction and heat transfer are decreased, and the flow actually
separates for Gr/Re%2 < —0.8 when Pr = 0.7. In the latter circumstance,
an increasing degree of upstream influence is observed as Gr/Rc/2 is fur-
ther decreased.

SCOPE

G. E. ROBERTSON
J. H. SEINFELD
and L. G. LEAL

Department of Chemical Engineering
California Institute of Technology
Pasadena, California 91109

The buoyancy effects induced by a hot or cold body can
cause considerable deviations from the basic forced con-
vection flow which would exist when the body and free
stream fluid are at the same temperature. In some circum-
stances, such deviations mav be of significance primarily
because of the accompanying changes in the overall heat
transfer rate; however, in general, one would be inter-
ested in a detailed understanding of the chinges in flow
structure, and a considerable body of literature hias «rown
up in an attempt to achieve this goal. To date, the major-
ity of this work has been concerned with the case in which
a significant component of the buoyancy-indiced bhody

Correspondence concerning this paper should be addrewcd to L. G.
Lesl.

Page 998 September, 1973

force is cither parallel or antiparallel with the direction of
the undisturbed fluid motion [compare the work of Acri-
vos (1966), Merkin (1969), and others on the combined
forced and free convection flow past a vertical flat plate].

In this work, we utilize numerical solutions of the full
equations of motion and thermal energy, subject to the
Boussinesq approximation, to consider the laminar, two-
dimensional flow of a Newtonian fluid past the upper
surface of a hot or cold horizontal flat plate. The most
significant previous investigations of this problem arc the
born-dary-laver analyses of Sparrow and Minkowyez (1962)
and Leal (1973a). In these papers, it is shown that the
cross-stccam  buoyancy-induced  body force acts effec-
tively to produce a streamwise pressure gradient in the
fluid adjacent to the piate swface: favorable, in the usual

AlTHE Journal (Vol. 19, No. 5)
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boudary-liyer sense, when the plate is hot, and adverse
when the plate is cold. Hence, the local boundary flow is
either accelerated or decelerated relative to the corre-
sponding forced convection flow, and the local skin fric-
tion and heat transfer are predicted either to increase or
decrease depending upon whether the plate is hot or cold.
Although these results are of considerable interest, the
corresponding analyses are strictly limited to situations in
which the natural convection contribution remains as a
small correction to the basic forced convection flow. In
particular, although the basic boundary flow is dccelerated
near the plate surface and hence has the potential to

separate, an explicit prediction of this cficet is outside
the scope of the existing boundary-las cr analy ses.

The present paper is thus addressed to two main points.
First, what is the qualitative nature of the flow produccd
when the effect of buoyaney is not small; and. second,
what is the particular nature of the fluid motion when
the plate is sulficiently cold so that the boundary flow ac-
tually separates? Additionally, we consider the role of the
fluid Prandtl number in determining the flow structure
under these circumstances. In this paper, we concentrate
particularly on the region in the immediate vicinity of
the plate.

CONCLUSIONS AND SIGNIFICANCE

Numerical solutions of the full equations of motion and
thermal energy have been obtained subject to the Bous-
sinesq approximation for 10 = Re = 100, 0.1 = Pr <= 10,
and —2.215 = Gr/Re>’? = 2.215, where Re is the Reyn-
olds number, Pr the Prandtl number, and Gr the Grashof
number based on the ambient, free stream fluid properties
and the overall plate length I

For the intermediate values of Re investigated, the flow
structure erhibits the same qualitative features as predicted
by existing boundary-layer theories which are valid for Re
— 2 and |Gr/Re%? << 1. Thus, the gravitationally in-
duced streamwise pressure gradient produces either an
acceleration or deceleration of the boundary flow compared
with the corresponding forced convection case (Gr = 0)
depending on whether the plate surface is hot or cold.
When Gr > 0 and is increased, the local skin friction and
heat transfer coefficients increase over the plate surface,
and the flow structure remains qualitatively the same even
as |Gr/Re%? = 0(1). On the other hand, when Gr/Red/2
< —0.8 (for Pr = 0.7), the buoyancy-induced streamwise
pressure gradient actually causes the flow to separate and
a recirculating eddy develops adjacent to the plate sur-
face. As Gr is further decreased, the recirculating eddy in-
creases in size; but, more importantly, its leading edge
moves forward along the plate surface until, finally, the
reverse flow region is found to extend upstream beyond

the leading edge of the plate. As Re or Pr is decreased,
with Gr/Rc®? fixed, the size of the recirculating eddy is
increased, as is the extent of its upstream influence on the
flow. Finally, it should be noted that the onset of separa-
tion and growth of a large recirculating eddy is accompa-
nied by a rather remarkable decrease in the overall fric-
tional drag on the plate, as well as a smaller decrease in
the overall heat transfer coefficient.

The presence of a recirculating flow upstream beyond
the leading edge of the plate is, perhaps, the most in-
teresting and significant result of the present work. Care-
ful observation of the temperature, vorticity, and stream-
function fields in a time-dependent numerical solution
indicates that the mechanism for the progressive (in time)
upstream movement of the recirculating eddy lies in the
local stable density stratification which is produced as
the fluid adjacent to the plate surface is cooled below
the ambient, free stream temperature. It is, of course, well
known that the presence of a finite two-dimensional body
(in this case the recirculating eddy) can produce strong
upstream disturbances when the ambient fluid is stably
stratified; however, so far as we are aware, the presence
of significant upstream influence due to a locally induced
stratification has not hitherto been reported in the litera-
ture.

PHYSICAL PROBLEM AND BASIC EQUATIONS

We consider the laminar, two-dimensional motion of
Newtonian fluid past a hot or cold flat plate of length L
As indicated in Figure 1, the free stream velocity and
temperature are denoted by U, and T., the temperature
at the upper surface of the plate by T. + AT, and the
streamwise and normal coordinate directions by x and y.
We are primarily concered in this work with understand-
ing the role of the temperature induced buoyancy forces
in contributing to the flow structure in the immediate
vicinity of the plate surface. Hence, in order to simplify
the analysis, we consider the case in which the plate, as
a whole, acts as a heat dipole; that is, we consider the
temperature of the underside of the plate to be T, — AT,
corresponding to a situation in which there is no net heat
transfer to the ambient fluid. The advantage of this choice
is that the velocity field produced is thereby symmetric
about the plane y = 0. The alternate source problem, in
which the underside temperature is T. + AT is also of
interest; however, it can be anticipated from boundary-

AIChE Journal (Vol. 19, No. 5)

layer theory that the detailed structure of the velocity and
temperature fields in the immediate vicinity of either the
upper or lower surface of the plate will be essentially the
same for the source and dipole problems in spite of the

b
H
s !
ot !
AR 5
U m"_’ To+AT ; _________ o
L F . ]
——e
S,
——
Fig. 1. The physical system.
September, 1973 Page 999
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fact that the structure of the downstream wake regions
will be markedly different (a point which we shall con-
sider in detail in a later communication).

Nondimensionalizing the basic conservation balances
for momentum, mass, and thermal energy using the ambi-
ent (free stream) fluid properties, the free-stream velocity
U. and the plate length I, and invoking the usual Bous-
sinesq approximation (Boussinesq, 1903; Spiegel and
Veronis, 1960), we obtain the basic govering ditterential
equations

u " du du _ dp " 1 ( %u u )
ot ox 9y dx  Re \ ax? ay?
(1a)
dv v o
at % ay
2, 2 G
bl L(a°+___a")+__' 8 (b)
ay Re ax? ay? Re?
du oo
—_—t —=0 2
dx * oy @)
a0 a0 a0 1 9%0 9%
—t U—F—= —_—t (3)
at 0x dy  PrRe \ 0x? ay*
in which
oUel Cp. BRgATp.?
Re:ﬂU . P ”L", and Gr:—ﬂg——f——
Pa ® “_2

where 6 is defined as (T — T.)/AT, 8 is the coefficient of
thermal expansion, and the subscript oo represents the
free stream value.

With the prescat definition, it may be noted that Gr
> 0 corresponds to the case in which the upper plate sur-
face is hot relative to the ambient fluid, whereas Gr < 0
corresponds to the case in which it is cold. Clearly, the
relevant buoyancy parameter is Gr/Re? according to (1).
Leal (1973a) and Sparrow and Minkowycz (1962) both
show that the equivalent parameter in the boundary-layer
version of (1) to (8) is Gr/Re®2, a result which we shall
utilize at a later point.

In view of the symmetry of the dipole problem, these
equations need only be solved in the upper half plane.
The appropriate boundary conditions are simply

d 1

-53—2020'-:0 5 |x|>E—,y=0 (48)
1

u=0=0 =1 ; ]x]é—i-,yzo (4b)

u=>1, 020, -0, r=(22+y?) %> (4c)

For purposes of obtaining a numerical solution to this
problem, it is convenient to rewrite Equations (1) to (4)
in terms of the streamfunction ¢ and vorticity w, defined by
oy o o  ou
U= — =——, o
oy ox ax  dy

and to transform the resulting equations to an elliptical
cylindrical coordinate system (¢, 5) in which

1
%= % coshé cosn, y = Y sinh¢ sing (5)

hence yielding the governing equations
0% 9w
+

ag? 09%

i L dw B __1__
1““'(5,77) rT3 + Jo,0) = e (
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G a6
s ( sinh¢ cosn — — coshé¢ sing L4 ) (6)
9 an

2Re?
V] %y q
Sl o o S el =
Y E P + i (&,9) =0 (7)

1 a6 1 (o0 %
— M2 — = —
7 PG o F IO = e ( + 53 )

¢
(8)

where M2(¢,9) = Y (cosh2¢ — cos2y) and the nonlinear,
two-dimensional Jacobian is given by

The advantage of elliptical cylindrical coordinates is that
the region near the plate is effectively magnified, particu-
larly the singular regions near the ends of the plate which
are effectively resolved by a corresponding coordinate
singularity (Leal and Acrivos, 1969). In ilis cuutdinaie
system the plate is located at ¢ = 0, and the remaining
portions of the z-axis (|x| > %, y = 0) are given by 9 =
0 (x> %) and n = 7 (x < —%), respectively. Hence,
the boundary conditions (4) can be expressed as

y=w=0=0; p=0andn, all¢é>0 (9a)
d
T\:-=¢=O; 0=1;, £€=0, 0=n=g (9b)

and
0=yn=qx
(9c)

We shall be concerned, in this paper, with the numerical
solution of the problem represented by Equations (8) to

(9).

1
-,b->—2-sinhfsim7, w=>0, 6->0; ¢ oo,

NUMERICAL SOLUTION SCHEME

The basic numerical solution scheme utilized in this
work was based on the explicit, Gauss-Seidel pointwise
iteration applied to the appropriate finite-difference form
of the Equations (6) to (9), with 96/t and dw/dt set
equal to zero. This steady state iterative algorithm (which
is similar to that of Leal and Acrivos, 1969) converges
more rapidly to the final steady state than most standard
time-dependent schemes and hence was used to obtain all
of the steady state solutions which comprise the major
portion of the present investigation. The finite-difference
approximations of (6) to (8) were obtained using the
simple two-point central difference formula for spatial
first derivatives and the familiar five-point approximation
for the Laplacian operator. Hence they are accurate to
0(h?), where h is the computational mesh size in the (¢, 9)
plane. The more stable Arakawa (1966) eight-point ap-
proximation for the nonlinear Jacobians was also utilized
in several cases with no discernable change in results. The
influence of computational mesh size on the solution was
carefully documented in every instance, and the final
values used are listed in Table 1. Finally, it should be
noted that two minor modifications of the straightforward
iterative scheme were made to enhunce numerical stalility.
First, relaxation parumetars ag, ., wnd ay, chosen by nu-
merical experimentation. were introduced such that the
values of ¥, w, and @ retained at cach mesh point for use in
subsequent calculations were a weighted average of the
value from the provions iteration wnd the newly computed
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TABLE 1. NUMERICAL PARAMETERS

Re Gr/Re? Pr h N ay a, ag
10 +7 0.7 #/30 5.8(11.8) 1.1 04 0.4
10 +5 07 =#/30 5.8 1.1 04 0.4
10 0 07 #/30 5.8(11.6) 1.1 04 0.4
10 -5 0.7 #/30 11.6(17.4) 1.0 0.2 0.2
10 -7 0.7 #/30 11.6(17.4) 1.0 0.2 0.2
40 48 100 #/50 3.08 0.7 005 0.05
40 +8 0.7 #/50 3.08 1.1 04 0.4
40 +5 0.7 /50 3.08 1.1 04 04
40 0 100 #/50 3.08(1.54) 1.1 04 0.05
40 0 07 =/50 3.08(6.16) 1.1 04 0.4
40 -5 07 /50 6.16(3.08) 10 0.2 0.2
40 -7 0.7 #/50 9.24(6.16) 09 0.1 0.1
40 —8 07 #/50 9.24(12.32) 09 0.1 0.1
40 11 100 #»/50 3.08 0.7 0.05 0.05
40 =11 07 #/50 9.24(12.32) 09 0.1 0.1
40 —14 0.7 =#/50 9.24(12.32) 09 0.1 0.1

100 414 07 #/60 2.5 1.1 04 0.4

100 0 100 #»/60 2.5 1.1 04 0.025

100 0 07 «/60 2.5 1.1 04 0.4

100 0 01 #/60 175 1.1 04 1.5

100 -—11 07 /60 5.0(7.5) 10 02 02

100 —14 07 =/60 5.0(7.5) 1.0 02 0.2

100 —22.15 07 =#/60 5.0(7.5) 0.7 0.025 0.025

value; for example,
Wretained = Wold + Ay (wnew — ¢"cald) .

The values of ay, a5, and g, utilized in each case are listed
in Table 1. Secondly, the calculations were actually per-

formed in terms of /4\: rather than vy, where Q =y —
% sinh¢siny.

In applying the boundary conditions (9b), the no-slip
condition at the plate surface, 6y/9¢|e=0 = 0 was replaced
by an equivalent condition relating the surface vorticity
wg to the values of the streamfunction on adjacent rows
(Leal and Acrivos, 1969). Utilizing a Taylor series ex-
pansion, the value of the streamfunction ¢; at £ = h can
be expressed in terms of ¢ and its derivatives at the
plate surface as

h? 0%y
2l

ag?

il
Y1 = Yle=o + W

0(h3
¥ | e=0 o+()

(10)

Utilizing Equation (7) and the boundary conditions (9b),
and truncating series (10) after the term of 0(h?), we
obtain

&=

81
=——————+40(h
B o T L
Similarly, by including the term of 0(h3), a more accurate
condition can be derived in terms of ¥ and Yy (¥]¢=21),

o = 2(¢2 — 8yy)
7 ThEM2(0, )

However, for the fluid motion problem alone [that is,
Equations (8) and (7) with Gr = 0 and appropriate
boundary conditions], the expression (12) is less stable
than (11) in the numerical scheme (compare Thom and
Apelt, 1956; Janssen, 1957; Lcal and Acrivos, 1969).
Therefore, relation (11) was employed for the majority
of each calculation with the more accurate formula (12)
being used only as a check on the solution once conver-
gence was achieved.

The most troublesome feature of the present caleula-
tions, at least compared with the corresponding forced
convection problem, is the approximation of the houndary

(11)

+ 0(h?) (12)
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conditions (9c), since the region covered by the finite dif-
ference mesh system must obviously be restricted to finite
values of r. The simplest and most common approach,
which has been widely utilized in studies of fluid mechan-
ics alone (for example, Rimon, 1969; Son and Hanratty,
1969; Dennis and Chang, 1970; Masliyah and Epstein,
1970; Leal, 1973b), is simply to use the uniform stream
conditions (9c) applied at a large but finite value of r
(or equivalently, of ¢). Numerical experimentation
showed this method to be computationally feasible in the
present case also, provided Gr= 0. Unfortunately, how-
ever, for Gr <0 this simple approach was found to be
entirely unsatisfactory. In this case, as the fluid passes
above the plate, it is cooled and thus becomes stably
stratified. As a result the fluid in the wake region down-
stream is also stably stratified and hence exhibits the
phenomenon common to such flows of very strong up-
stream propagation of disturbances (see Long, 1953,
1955, 1972; Janowitz, 1968). For this reason, the solu-
tivn close v the plate becomes much more seusilive 0
errors in the downstream boundary conditions than for
the corresponding flow with Gr > 0. Thus, the uniform
stream conditions are not adequate for numerical solu-
tion at least in the sense that the values of £, required
to ensure an accurate solution near the plate are too large
to be economically feasible. After considerable trial and
error, ‘two alternative approaches were found to pro-
duce satisfactory results. The first involves the use of a
far-field correction to the simple free stream condition,
which is the first term of an infinite series expansion that
converges asymptotically for ¢ >> 1. Imai (1951) and
Chang (1961) have discussed this far-field correction in
some delail for the fluid mcchanics problem alone (Gr
=0), and we have utilized the formalism of Chang to
obtain a similar correction in the present case in which
the buoyancy contribution plays an important role. The
details of this calculation will be reported in a future
communication. For the present purposes it is enough
simply to quote the results

0 ~ Ayx~32 exp(— PrRey?/4x) + o(r™1/%); x> 0}( ;
14

0=0; <0
g+ tan—t __y_) ]
¥ y+("tan (x
ki
0
+\/Prﬂe{ g(0)
K, ] ( Re y)
- Pr erf \ —— —= 15
e i e - B R
P;
St (L)) o
1—Pr 2 x
; >0
'Il"’y"r—g-l-[—l+——tan“yx—], x<0’
=l =
‘”"Tﬁﬁ{ O -1—%
( Re y“) & PrK;
exp ( — — — -
4 x 1--Pr (16)
" P?'Re yz) e 16 P
e.\p( iz }+0(f )s
: x>0
w=0 x<0 J
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In the latter expressions, Nu is the overall Nusselt number
based on the total heat transfer at the upper surface of

the plate,
T 30
Nu= — —
ws- ), %

and Cq is the corresponding drag coefficient

dn (17)

§=0

X

1 [r
Csg=— _R—;J; wp siny dn (18)

Finally, in evaluating the expressions (14) to (16) at a
particular point (x, y), the value x, is utilized to denote
the x-intercept of the circular arc r = (x2 4 y?)"% = con-
stant. It should be noted that the parameter A vanishes as
xo = . In view of the definitions (17) and (18) it may
be seen that the parameters A and g(0) provide a direct
coupling between the far-field solutions (14) to (16) and
the numerical solution near the plate. The key idea in
utilizing the far-field corrections at a large but finite value
of r instead of the simple free stream conditions at the
same position is to minimize the difference between the
imposed values of y, , and §, and the values which would
exist at the same position if one had an exact solution.
Using (14) to (18), the choice of ¢. required for an ac-
curate solution near the plate was reduced to an economi-
cally feasible value in all cases. The values used are listed
in Table 1 (x. = Ycosh¢.). We estimate these as the
minimum value necessary to produce accurate solutions in
the vicinity of the plate. In most cases, these values were
actually confirmed by comparison with a similar solution
obtained using the somewhat larger (or smaller) values
listed in parentheses under x, in Table 1. For Gr = 0,
the values of x. chosen correspond to those independently
determined by Leal and Acrivos (1969) for a similar fluid
mechanics problem. In addition, we note that the values
listed in Table 1 are essentially equivalent to those utilized
by Takami and Keller (1969) for flow past a circular cylin-
der with a similar wake correction when account is taken
of the overall length of the cylinder plus the attached
closed-streamline wake. It is noteworthy that the required
distance decreases as Re increases, all else being fixed,
while generally increasing as Gr is decreased to negative
values or as Pris decreased.

As an alternative to the far-field correction, the recently
developed Milne’s extrapolation procedure was also util-
ized to produce boundary values at £, from the internal
solution itself. Denoting the value of 0 at & = ¢, — mh as
8x-m, Milne’s procedure for extrapolation outward in ¢
along a line of constant 5 is defined by
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On = 9N—5 = 50N—4 + 100N-3 = 100N~»2
+ 58n—1 + 0(h%) (19)

Similar expressions can be written for the streamfunction
and vorticity, This formula, which was first derived by
Lin and Apelt (1970), is based on the familiar Milne’s
predictor formula used to integrate ordinary differential
equations (Lapidus and Seinfeld, 1971). The chief ad-
vantage of (19) compared with extrapolation schemes
which have been previously proposed for estimating {, o,
and 6 at the outermost boundary (compare Thoman and
Szewczyk, 1969; Estoque, 1962; Yamada and Meroney,
1971), is that no explicit (and unjustified) assumption
need be made of the functional dependence of these vari-
ables on ¢ other than simple differentiability. The chief
disadvantage of the extrapolation formulation compared
with the scheme involving (14) to (18) is that the nu-
merical algorithm is less stable, and distortions in the fields
are produced if the initial fields are too inaccurate (Lin
and Apelt 1970; Yamada and Meroney, 1971). On the
other hand, the advantage of the extrapolation scheme is
that the solution near the outer boundary is not directly
coupled with that near the plate. In view of the unusually
strong interaction already inherent in the stably stratified
wake flow when the plate is cold, one may logically ask
whether, in using (14) to (18), an incorrect value for Cq
or Nu leading to an inaccurate boundary-value for ¢ = ¢,
at some intermediate point in the calculation might not
lead to further inaccuracies in Cq or Nu and hence to
some convergent but inaccurate solution in the vicinity of
the plate. In order to ensure that this possibility did not
actually occur, the calculations for the coldl plate were first
carried to near-convergence utilizing the stable far-field
approximations, and then run to completion using both
the far-field solutions and the extrapolation scheme inde-
pendently. In gencral, the solutions so obtained were vir-
tually identical. However, as Gr was made increasingly
negative some small (2 to 3%) differences were noted in
the vorticity distribution near the plate and, hence, by
(18), in the drag coefficients as well. In these instances,
the results reported here are based on the solution ob-
tained using the extrapolation procedure since these ap-
peared to introduce somewhat smaller disturbances in the
flow near £..

Finally, it should be mentioned that convergence was
achieved via an oscillatory mode similar to that described
previously by Leal and Acrivos (1969) and Leal (1973b).
Thus, for example, Cq was observed to oscillate with a
monotonically decreasing amplitude about a fixed mean
and a characteristic period of 0(100) iterations. Such
oscillatory convergence is very appealing as upper and
lower bounds on the various dependent variables are
available throughout the calculation. The solution was
generally assumed to have converged when these bounds
were within 0.05% of the average value for Cq and Nu.
However, the detailed fields for ¢, 6, and » were also ex-
amined carefully to ensure that the solutions were uni-
formly convergent throughout the (x,y) plane.

COMPARISON WITH PREVIOUS SOLUTIONS

A variety of detailed tests were performed o ensure the
accuracy of the solutions reported here. Considering first
of all the case of forced convection Gr = 0 in which the
fluid mechanics is uncoupled from the heat transfer prob-
lem, we may compare our results for Re = 10, 40, and
100 dircetly with those ohtained by Dennis and Dunwoody
(19¢6) who studicd the fluid mechanics problem alone.
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The values of Cq shown in F igure 2 for these cases are
virtually identical with those of Dennis and Dunwoody.
Furthermore, the variation of the local skin friction coeffi-
cient — wo, as a function of position along the plate agrees
closely with that reported by these authors.

There are no prior results of which we are aware for
forced convection heat transfer with # = 0 on y=0, x] >
1%. However, Dennis and Smith (1966) have considered
the case in which 36/dy = O on y = 0, |x| > Y. Hence,
we also solved this problem in order to provide a test for
the accuracy of our numerical algorithm. Again, the values
of Nu, which are reported in Table 2, and the variation
of the local heat transfer coefficient, —2 86/0¢|¢=o/siny,
with position along the plate surface, agree very well with
the results of Dennis and Smith. The numerical results for
the case in which # = O ony = 0 and Gr = 0 are also
qualitatively similar to those of Dennis and Smith. How-
ever, as expected on physical grounds, the actual numeri-
cal values for the local heat transfer coefficient are some-
what larger, particulaily nea: ihe ends of the plate.

A further test on the accuracy of our numerical scheme
is provided by examining the Reynolds number depen-
dence of 8, the dimensionless vertical distance between
the plate surface at x = 0 and the isotherm # = 0.1. &
is a measure of the thickness of the thermal layer and is
given in Table 3 for Pr = 0.7 and Gr = 0. It may be
seen that 8 is roughly proportional to Re~%, which is the
theoretically predicted boundary-layer behavior (though,
of course, quantitative agreement with boundary-layer
theory is not obtained or expected for Re = 100).

Finally, as indicated previously, we have obtained a
limited number of solutions for Pr = 10 and 0.1 in order
to evaluate the effect of this parameter on the overall flow
structure. In Figure 3, we have plotted the numerical re-
sults for Gr = 0 and Re = 100 together with the classi-
cal boundary-layer estimates for Pr << 1, Pr = 1, and
Pr >> 1. These provide further evidence for the validity
of the numerical scheme in the sense that the solutions for
Pr = 0.7 and Pr = 10 appear to be consistent with the
expected asymptotic trends. The result for Pr = 0.1 is
also qualitatively correct but appears to somewhat over-
estimate the actual value. The most likely explanation for

T T Ii
4.8 I
3.6 1
/2
C4Re
2.4} Re=10. =]
Re=40
12l —+1.328 (Re -+ ®) ]
Re=100
0 Laamanc Lt 1 L
-2.4 -2 o] 1.2 2.4
Gr,/Res/Z

Fig. 2. CyRe!'/2 gs a function of the boundary-layer parameter,
g o
Gr/Re2, for Pr == 0.7.
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TabLE 2. Nu FOR Gr = 0, Pr = 0.7, AND §8/3y = 0
oNy =0, x| >1/2

Investigators Re =: 10 Re = 40 Re = 100
Dennis and Smith 2.43 437 8.75
Present 2.43 4.32 8.74

TABLE 3. 8g FOrR Gr = 0, Pr = 0.7
Re 10 40 100
.7} 0.86 0.41 0.26

TaBLE 4. CqRe!/2 AND NuRe~1/2 For Pr = 10.0 AND Re = 40

Gr/Res/2 ~174 0 1.265
CaRel/2 1.56 2.00 2.22
NuRe~—1/2 1.85 1.94 1.98
T i\ i T T T T
2.0k 4
- |
////
1.0 “To.66apPr3 ]
NuRe 2 + 0685 (Rewa, Prai)
ost -7 (e ) s
1,
7 L3P
(Re—»m , Pr<<])
0.2} .
0.1 1 L 1 L 1 1 1
T 02 05 10 20 50 100
Pr

Fig. 3. NuRe=1/2 as a function of Pr for Gr = 0: comparison of the
numericol results for Re = 100 and the boundary-layer estimates for

Pr<< 1, Pr=1,and Pr >> 1,

this behavior is that the outer boundary (¢.) is not suffi-
ciently far away from the plate. This is suggested by the
fact that the solution still changed somewhat as x, was
increased from twice to three times its value at Pr = 0.7.
Unfortunately, the excessive computation times involved
for such large values of ¢, (at this Reynolds number and
Prandt]l number) preclude any attempt to consider larger
values of ¢, directly. We shall return to discuss these re-
sults in more detail in the next section of this paper.

RESULTS AND DISCUSSION

We previously mentioned the expected boundary-layer
flow structure for large Re, and |Gr/Re®/2|° suitably small.
In particular, we have noted that the cross-stream buoy-
ancy force acts effectively to produce a streamwise pres-
sure gradient at the upper plate surface which is favorable
in the usual boundary-layer sense when the plate is hot
and adverse when it is cold. Hence, the local boundary-
layer flow is either accelerated or decelerated relative to
the corresponding forced convection flow, with a concur-
rent increase or decrease in the local skin friction and
heat transfer rates, depending upon whether the plate is
hot or cold.

® Note that whereas the original Equation (1) depends on the param-
cters Re, Pr, and GrRe?, the corresponding laminar boundary-layer equa-
tions for Pr = O(1) contain only Pr and Gr, Re™ ¢ as explicit parameters,
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The main thrust of the present work has been to deter-
mine the effect of buoyancy on the flow structure and
temperature distribution under circumstances in which
Gr/Re’’? (and hence the natural convection contribution
to the flow) is not necessarily small, In the first part of
this section, we consider the effect of variable Re and
Gr/Re? at a fixed value of Pr = 0.7. In the second, we
briefly examine the change in flow structure as Pr is in-
creased to 10 and decreased to 0.1 with Re = 40 and 100,
and values of Gr/Re? equal to 8, 0, and —11. Finally, in
the last part of this section we consider, in some detail,
the structure of the recirculating eddy which results from
flow separation at sufficiently negative values of Gr/Re?

Effects of Gr and Re on Flow Structure; Fixed Pr = 0.7

In order to achieve a relatively complete description of
the dependence of the flow structure and temperature
distribution on Re and Gr/Re? we have obtained steady
state numerical solutions for Re = 10, 40, and 100 and
a variety of positive and negative values of Gr/Re? as
listed in Table 1. Typical streamline, vorticigr and tem-
perature plots are shown in Figures 4, 5, and 6, respec-
tively, for Re = 40, Pr = 0.7 and Gr/Re? = 8, 0, —5
and —14. The flow is from left to right. Three features
are worthy of special note. First, as expected from the
boundary layer analyses (Sparrow and Minkowyz, 1962;
Leal, 1973a), the gravitationally induced streamwise pres-

Fig. 4. Streamlines for Re —= 40 and Pr = 07; y = 05, 0.3,

0.1, 0.05, 0, —0.005, —0.01, and —0.015 with 0.5 corresponding

to the outermost streamline: (A) Gr/Re? =: 8; (3) Gr/Re? == 0; (C)
Gr/Re? = —35; (D) Gr/Re? =: —-14,
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sure gradient produces cither an acceleration or decelera-
tion of the flow near the plate with an accompanying
narrowing or thickening of the boundary-layer region de-
pending upon whether Gr is positive or negative (that is,
the plate surface is hot or cold). When the surface tem-
perature is sufficiently low (Gr sufficiently negative), the
boundary flow actually separates and a recirculating eddy
develops adjacent to the plate surface. Second, and per-
haps the most interesting result from the numerical solu-
tions, is the fact that this recirculating region can actually
extend considerably upstream beyond the leading edge of
the plate. Such a degree of upstream influence of the flat
plate upon the basic flow structure seems to be an unex-

(A)

Fig. 5. Equivorticity lines for Re = 40 and Pr == 0.7: (A) Gr/Re2 =

8 w= —4, —3, -2, -1,0,0.3, and 0.5 with —4 corresponding
to the innermost curve; (B) Gr/Re¢® = 0; w == -4, —3, =2, and —1
with —1 corresponding to the ortermost curve; (C) Gr/Re? = —5;
w = —4, -3, —2, and -1 ovur the front and rear of the plate;
w = 0 and 0.3 in the revcisz tHow region and downstreom from the
plate; (D) Gr/Re? = —14; w = —-4, —3, - 2, and -1 over the

front and rear of the plate; w == 0, 0.5, and 2.0 in the reverse flow
region and downstrecam from the plate.
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pected and highly significant feature of the present prob-
lem, which we shall discuss in more detail at the end of
this section. Thirdly, we note the existence, for Gr 0,
of closed equivorticity curves in the plots of Figure 5, in-
dicating the presence of internal (nonboundary) sources
for vorticity in these cases. The origin of these sources
is the temperature induced density variations in the fluid,
as can be easily seen from the vorticity transport equation
for two-dimensional flow, namely,

ow dw Jw 1 Gr 90
—tut—Fv—=— V2 e
ot ax oy Re Re?  ox

The rate of vorticity production by variations in fluid

density is given by (Gr/Re?) o In the upstream and
x

downstream portions of the field, 36/9x > 0 and 46/dx <
0, respectively (see Figure 6). Hence, we expect that posi-
tive (negative) vorticity will be created on the upstream
side for Gr > 0 (Gr < 0), and similarly negative (posi-
tive) vorticity on the downstream side for Gr > 0 (Gr <

©

)

 ———

Fig. 6. lIsotherms for Re = 40 and Pr = 0.7; 6 = 08, 0.6, 04,

0.3, 0.2, and 0.1 with 0.8 corresponding to the innermost isotherm:

(A) Gr/Re? = 8; (B) Gr/Re? = 0; (C) Gr/Re? = —5; (D) Gr/Re”
= --14,
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0): our results exhibit these features. The vorticity distri-
bution at steady state and Gr = 0 thus represents a bal-
ance between convection and diffusion of vorticity pro-
duced by the internal source at each point, as well as that
produced at the plate boundary. A discussion of vorticity
production in density stratified flow under more general
circumstances is available in Yih (19653, 1969).

The qualitative dependence of flow structure on Gr for
Re = 10, 100, and Pr = 0.7 is similar to that described
ahove for Re = 40. However, it is of interest to document
more fully the dependence of flow structure on Re in order
to provide an indication of the degree to which the small
Gr boundary-layer behavior (Pr = 0(1)) of Sparrow and
Minkowycz (1962) is preserved when Re is moderate
and the natural convection effects are not intrinsically as-
sumed to be small. Two overall parameters which have
been frequently used to characterize the gross flow struc-
ture in problems of this sort are the drag coefficient Cq4
and Nusselt number Nu which we have defined in Equa-
tions (17) and (18). Figure 2 shows the dependence of
Cy4Re'’? on ihe Loundary-layer parameter Gr/Re’? for the
various Reynolds numbers studied. For |Gr/Re®?| << 1
and fixed, and large Re, it is expected from boundary-layer
theory that C4Re!/? will be independent of Re. Surpris-
ingly, even for Re as small as 40-100, CqRe'/? appears to
be qualitatively consistent with this behavior not only in
the regime of small (positive) Gr/Re*? but throughout
the range studied up to +2.215. It should be noted, how-
ever, that Re = 100 is not sufficiently large to provide a
quantitative comparison with boundary-layer behavior as
evidenced by the fact that the value of CqRe!/? calculated
for Gr = 0, Re = 100 is still considerably above the theo-
retical boundary layer value of 1.328 (Dennis and Dun-
woody, 1966). The divergence of the curves for negative
Gr is viewed by us as a direct consequence of the ex-
istence of flow separation which corresponds to a total
breakdown of the boundary-layer type flow structure
which appears to be present for Gr > 0, even when Gr/
Re%? is not small. More interesting than the Reynolds
number dependence is the very strong dependence of
CaRe'? on Gr and particularly the very small although
positive values of Ca which result for Gr negative and
numerically large in absolute value. Although admittedly
unusual from the point of view of classical fluid dynamics,
the latter might be expected on physical grounds since the
existence of a large recirculating eddy of the type pictured
in Figure 4d implies that a large portion of the plate sur-
face is subjected to reverse flow and, hence, negative skin
friction. Figure 7 shows the calculated dependence of
NuRe~12 on Gr/Re%? for Re = 10, 40, and 100. Clearly,
the basic behavior is similar to that of the drag coefficient
although the dependence on Gr is weaker and the de-
pendence on Re somewhat stronger. The weak depen-
dence on Gr is consistent with the boundary-layer predic-
tions of Sparrow and Minkowycz (1962).

Effect of Pr on Flow Structure; Fixed Re and Gr/Re5/2

Recently, Leal (1973a) considered the asymptotic
boundary-layer structure for the present problem in the
limnits as Pr = o and Pr - 0, respectively for |Gr/Re®'?|
suitably restricted. The key qualitative result from this
work was the suppression or enhancement of the buoyancy
effect depending upon whether Pr >> 1 or Pr << 1,
respectively, which arises from the fact that the thermal
boundary luver is either very thin or very thick relative
to the wonwitnm boundary laver in these limits. When
Pr >> 1 and the thiaal layer is thin, the buoyancy driv-
ing force is coufined o sentially to the viscous layer near
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the wall, and its effect on the dynamics is thereby dimin-
ished compared with the case Pr = 1. On the other hand,
when Pr << 1, the thermal driving force is primarily ef-
fective in the nonviscous portion of the flow outside the
momentum boundary-layer and its effect is thereby en-
hanced.

It is of interest to compare the qualitative dependence
of the overall parameters NuRe~!/2 and CgRe!/? on Pr
with the theoretical predictions from the boundary layer
analysis of Leal (1973a). In Figure 3, we have plotted the
numerical results for Re = 100 and Gr = 0 as discussed
in the previous section. The finite value of Re is appar-
ently reflected in the uniform upward displacement of the
numerical results compared with the theoretical ones
which are evident in the plot. In order to ascertain the
practical effects of Pr on the flow dynamics for |Gr/Re%/?|
= 0(1), numerical solutions were obtained at fixed Re =
40 and Gr/Re%? = 1.265, 0, and —1.74; Table 4 gives
the results for C4Re!’?2 and NuRe~1'/2? with Pr = 10.0. A
dramatic example of the enhancement of the influence of
buoyancy on the flow stiuciure for decreasing Pr is that,
for Gr/Re®'? = — 1.74, no separation occurs for Pr = 10.0
whereas a reverse flow region develops for Pr = 0.7 as
will be evident from the next part of this section. For
large and increasing Pr, Leal predicts that the corrections
due to the buoyancy effect to the forced convection values
of C4Re'’? and NuRe~'/? should behave like Pr—2/3 and
Pr=1/3, respectively. It is somewhat surprising in view of
the restrictions on Gr which are implicit in the boundary-
layer analysis that our results for Gr/Re%2 = 1.263 exhibit
qualitatively the same behavior (although the theory only
requires that Pr >> 1 and Gr/Re®? << Pr*3). No at-
tempt was made to obtain results at Pr = 0.1, in addition
to the case Re = 100 and Gr = 0, in view of the large
values of x. required; however, it is expected that the re-

Re= 100

—+0.616(Re —»= ®)

0.5 ]

0 1 ] 1
-2.4 =12 o] 12, 2.4

Gr/ Re5/2

Fig. 7. NuRe—1/2 gs a function of the boundary-layer paramcter,
Gr/Re®/2, for Pr = 0.7.
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Fig. 8. 8* and I*, os a function of the boundary-layer parameter,
Gr/Re5/2, for Pr = 0.7.

sults would be qualitatively similar for Gr = 0 to those
predicted by lie boundary-layer analysis of Leal.

Structure of the Recirculating Eddy; Fixed Pr = 0.7

We have previously noted that when the plate is cold
and Gr is sufficiently large, the adverse pressure gradient
which is induced causes the boundary flow to separate
with the resultant formation of a recirculatin eddy whose
nominal dimensions may sometimes approach that of the
plate. In the remainder of this section, we return to a
more detailed consideration of the structure of this region
for Gr < 0 and Pr = 0.7. In particular, we consider three
geometric features of the recirculating eddy: the dimen-
sionless overall length between its leading and trailing
edges measured at y = 0 (I°), the dimensionless maxi-
murn vertical height 8°, and the dimensionless position of
its leading edge x°, again measured at y = 0. Since the
inception of the separation process for large Re is gov-
erned by the boundary-layer equations, it should be ex-
pected that all of these physical features would have a
common origin, independent of Reynolds number, when
plotted against the sole boundary layer parameter Gr/
Re%’%, provided only that Re is sufficiently large.

In Figure 8, we have plotted 8° as a function of Gr/
Red’? for Re = 10, 40, and 100. As expected, the numeri-
cal data do appear to collapse onto a universal curve for
small values of |Gr/Re%?|, with a common origin of ap-
proximately —0.8. The continued correlation at higher
|Gr/Red’?| is possibly fortuitous since the boundary-layer
theory is not directly applicable in this domain. The main
additional feature of interest in Figure 8 is the monotonic
increase in the vertical extent 8° as the plate is increasingly
cooled to lower temperatures. We have also observed very
similar behavior for the overall length of the recirculating
region I° as shown in Figure 8. Finally, we turn to the
streamwise position of the upstream edge of the recircu-
lating eddy x°, which is plotted as a function of Gr/Re5’?
in Figure 9. Clearly, as we have noted previously, the re-
circulating region does extend upstream beyond the lead-
ing edge of the plate for a sufficiently cooled plate. How-
ever, the most significant feature of this plot is the fact
that, at least through Gr/Re®? = — 2.3, x® is increasin
monotonically with increasing values of {Gr/ReWE
Whether this trend will continue as |Gr/Re®?| increases
is, of course, a question of some importance which the
present work cannot answer.

The phenomena of buoyancy induced upstream influ-
ence is, of course, \vidcly known to oceur ju circumstances
where the entire fluid is stably stratificd. A reasonably
comprehensive  discussion is presented by Yih (1965,
1469), following the initial, extensive work of Long (1933,

AIChE Journal (Vol. 19, No. 5)
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1955). However, so far as we are aware, the present in-
vestigation is the first to report such an effect which is
completely due to locally produced density gradients, In

T T T
X

-0.75} —
*
X

-0.50

-0.25|

-0.15 1 1 |

-0.7 -1.0 -1.5 -2.0 -2.3
Gr/Re”’?

Fig. 9. x* as a function of the boundary-layer parameter, Gr/Re5/2,
for Pr = 0.7.

t-0

—

w

the absence of this effect, one would expect the boundary
separation to occur somewhere on the plate surface, cer-
tainly downstream of its leading edge. A logical question,
therefore, is whether a mechanism is available which
could possibly account for the leading edge of the recir-
culating eddy flow moving upstream in such a dramatic
fashion. In order to investigate this point in detail, we
numerically studied the time-dependent development of
a reverse flow region for Re = 10 and Pr = 0.7 by start-
ing with the forced convection solution (Gr/Re? = 0) and
changing instantaneously at ¢ = 0 from this condition to
Gr/Re* = — 7. Several streamline and temperature plots
for subsequent points in time are shown in Figures 10 and
11. These appear to suggest the following explanation for
the locally-induced upstream influence effect. The fluid
directly above the plate is stably stratified as a result of
being cooled in passing over its surface. Initially the
streamwise variations in the density profile produce only
an adverse pressure distribution and the flow separates in
the usual manner. For Re = 10, Pr = 0.7, and Gr/Re? =
— 7, the initial separation point is approximately x, = —
0.25. This separation leads to a recirculating eddy of finite
cross section which the boundary flow must pass over.
However, the flow upstream of x, is stably stratified and
the recirculating eddy thus tends to block the flow. This
blockage (which is strictly a locally induced phenomenon)
causes the pressure distribution to be modified upstream
in such a way that the separation process is enhanced and

=15

//\
— =

1=35

)

Fig. 10.:Strcamlines for Re = 10, Pr = 0.7, and Gr/Re> = —7; ¢y = 0.5, 0.3, 0.1, 0.05, 0, —0.01, —0.025 with 0.5 corresponding to the

outermost streamline.
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Fig. 11. Isotherms for Re = 10, Pr = 0.7, and Gr/Re? = —17;
6 = 08, 0.6,04,03,0.2, 0.1, and 0.03 with 0.8 corresponding to the
innermost isotherm

occurs more quickly. Ultimately, the leading edge of the
eddy moves beyond the leading edge of the plate. At this
point, the stratified fluid upstream can only be a result
of local cooling. of the fluid outside the eddy by the fluid
inside. For a given fixed value of Gr, the upstream edge
thus attains a finite equilibrium position. It is indeed sig-
nificant from this point of view that the temperature field
precedes the recirculating eddy in moving upstream; it is
the region of stably stratified fluid that is produced which
apparently allows the reverse flow region to propagate
beyond the leading edge of the plate.

In conclusion, it will be of considerable interest to ex-
tend the present results to a locally induced flow stratifica-
tion of the type reported here, coupled with an ambient
free stream stratification. In this regard, it is of interest
to note that Estoque (1962), in a large-scale numerical
analysis of turbulent, stratified, boundary layer flow, pre-
dicted the presence of a recirculating region extending
over land for an imposed prevailing breeze from warm
land to a cool body of water.
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Appendix 3-B: Combined Forced and Free Convection Flow Past a

Horizontal Flat Plate for a Stably-Stratified Fluid

This appendix consists of a manuscript prepared for publication
(with co-authors Dr. L. G. Leal and Dr. J. H. Seinfeld). The
Figures omitted in the manuscript for brevity are given in Appendix

3-BB.
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The simultaneous forced and free convection flow of a stably-stratified
fluid past the hot or cold upper surface of a horizontal flat plate is in-
vestigated by numerically solving the full equations of motion and thermal
energy subject only to the Boussinesq approximation. The solutions for
Ri =0, 1 and 6.325, and -11 < Gr‘/Re2 < +8 are discussed when Re = 40 and
Pr = 0.7. For all stratifications, a hot plate accelerates the boundary
flow near the plate surface relative to the corresponding forced convection
flow, thereby increasing both the local skin friction and heat transfer
coefficients. For all stratifications, a cold plate decelerates the boundary
flow and decreases the local skin friction and heat transfer. The flow can
actually separate for sufficiently cold plates with the separation being
enhanced by further cooling or increasing the amount of ambient stratifica-
tion, Ri. When the effect of the ambient stratification dominates that of
local heating or cooling, the boundary-layer displacement decreases for in-
creasing Ri, due to the increasing buoyancy restoring force, thus increas-
ing the drag. The increase in the drag, for the same increase in Ri,
decreases (increases) by slightly heating (cooling) the plate. When the
effect of Tocal heating or cooling dominates that of the ambient stratifi-
cation, the drag is decreased by increasing Ri. A wave-structure exists
only for stably-stratified fluids, with the amplitudes and wavelengths of

the waves being decreased for increasing Ri.
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A. Introduction

An old and important problem is the simultaneous forced and free con-
vection heat transfer from a heated or cooled body to a fluid of constant
ambient temperature (and density). An example is the laminar, two-
dimensional flow past the hot or cold upper surface of a horizontal flat
plate, which we studied earlier (Robertson et al., 1973, hereafter de-
noted as I). Earlier boundary-layer studies (Sparrow and Minkowycz, 1962;
Redekopp, 1971; and Leal, 1973) had shown that the dominant buoyancy-
induced effect in the fluid near the plate is a streamwise pressure
gradient which can either accelerate or decelerate the flow depending
upon whether the upper surface of the plate is hot or cold relative to
the ambient fluid. When the plate is hot and the flow is accelerated,
the boundary layer analyses showed that the shear stress at the plate
surface is increased. Similarly, when the flow is decelerated, the shear
stress is decreased. More significantly, the induced adverse pressure
gradient in the latter case means that the boundary flow has the poten-
tial to separate. However, no explicit prediction of separation could
be obtained from the boundary-layer analyses since they were all re-
stricted to small buoyancy effects, i.e. to small Grashof numbers, Gr.

The purpose of our study in I was to extend the range of Gr in
order to investigate the changes in flow structure which occur when the
buoyancy effects are not small. Using numerical solutions of the full
Boussinesq approximated equations of motion, it was shown that the
various qualitative trends predicted by the boundary-layer theories

actually carry over for -2.215 < G\r/ReS/2 < 2.215, 10 < Re < 100, and
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0.1 £ Pr £ 10, where Re and Pr denote the Reynolds and Prandtl numbers,
respectively. In particular, flow separation was demonstrated for

Gr/Re”/?

< -0.8 when Pr = 0.7, with the result being a large region of
recirculating flow adjacent to the plate surface.

In the present paper we again use numerical solutions of the full
Boussinesq equations of motion and thermal energy to investigate the
additional effect of an ambient stable temperature (density) stratifica-
tion on the flow structure. The simultaneous presence of ambient strati-
fication and natural convection induced by local heat sources is a com-
mon characteristic of many natural and man-related geophysical fluid flows.
Qualitatively, it is well-known that the presence of a stable stratifi-
cation will tend to inhibit changes in vertical elevation of a fluid
element. Since such changes are a dominant feature of the flow induced
by a cooled plate in the absence of ambient stratification (see I), it
may be anticipated that substantial changes will occur in the flow
structure when the ambient density stratification is taken into account.
This is especially true for the separated flows which produce a large
recirculating eddy adjacent to the plate. Since the heat transfer from
the plate induces a local density stratification in the fluid, it may at
first seem that the dynamic effect of the local heating could be
accounted for by simply considering a somewhat enhanced or weakened
vertical stratification relative to the stratified flow which would
exist with no local heat transfer. As we shall see, however, this quali-
tative idea is overly simplified and, in fact, quite misleading in many
cases. The key to understanding the numerically observed behavior is to

remember that the dominant dynamical influence of the locally induced



stratification by itself is the horizontal (streamwise) pressure gradient
which arises from the streamwise gradients of density, rather than the

vertical gradients which at first seems more likely.

B. Physical Problem and Basic Equations

The physical system is the same as that studied earlier in I, except
that the free stream fluid is stably stratified, with the free stream
temperature distribution given by

To =T, (T +vy), Yy » 0
For convenience we have sketched the flow configuration in Fiqure 1. As
in our previous study, we confine our attention to the case in which the
temperatures at the upper and lower surfaces of the plate are T_ + AT
and T_ - AT, so that the plate acts as a heat dipole. This configuration
has the advantage of producing a velocity field which is symmetric about
y = 0, while still yielding a flow near the plate which is similar to
that for the more familiar problem in which the plate acts as a heat
source or sink of constant surface temperature.

The governing differential equations are the basic conservation
balances for momentum, mass and thermal energy heat, simplified by appli-
cation of the Boussinesq approximation. When these equations are non-
dimensionalized using the ambient fluid properties at y = 0, the free
stream velocity U_ and the plate length ¢, they can be simply expressed
in terms of the Cartesian coordinates of Figure 1 as

u
ot X Y X Re 2 ?

2 2
?ﬂ+u§£+v§_g_=_éﬂ+_]_ 3_y_+8_ (]a)
X 3y
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where 6 is defined as (T - TS)/AT. The four dimensionless parameters in
equations (1) and (3) are the Reynolds number, Re = U 2/v_, the Prandtl
3

number, Pr = cp uw/km, the Grashof number, Gr = ¢ BgAT/vi, and the

(o]

Richardson number, Ri = Bngzy/UzT The parameter 8 which appears in Gr
and Ri is the coefficient of thermal expansion. The Richardson number,
Ri » 0, provides a measure of the relative magnitudes of buoyancy forces
due to ambient stratification, and the inertia forces, whereas the
Grashof number, Gr, is a measure of the magnitude of the buoyancy forces
which are directly caused by the heat transfer from the hot (Gr > 0) or
cold (Gr < 0) upper surface of the plate. Equations (1) to (3) are valid
for all combinations of Ri and Gr, except for the limit Gr - 0, Ri > 0.
In that case the dimensionless temperature which we have used is inappro-

priate and must be replaced by 6 = iﬂ%-e + Ri y.

Re
Due to the symmetry of the heat dipole problem, equations (1) to (3)
need only be solved in the upper half plane. The appropriate boundary

conditions are

au 1 -
.é_y_:vze:O -, 'XI)—Z-,y—O (4&)
u=v=0, 6=1; x| €5, y=0 (4b)

T We note, for future reference, that the group RiReZ/Gr, which appears
in equation (3) may also be expressed as y/a, where A = AT/T_ .



u->1,v->0,0->0; r=(x"+y > ® (4c¢)
As in I, we shall restrict our investigation to the numerical solution
of equations (1) to (4). In order to focus on the coupled roles of
ambient and locally induced stratification, we shall consider only a
single intermediate combination of Reynolds and Prandtl numbers,

Re = 40 and Pr = 0.7, but allow Gr and Ri to vary over a moderately wide

range of values.

C. Numerical Solution Scheme and Preliminary Computational Experiments

The basic numerical solution scheme used in this work is described
in I. For present purposes we thus require only a brief recapitulation.
The numerical algorithm is based on the explicit, Gauss-Seidel
pointwise iteration applied to the steady-state, finite-difference form
of equations (1) to (4), transformed into elliptical cylindrical coordi-
nates (£, n) and expressed in terms of the streamfunction, ¥, vorticity,
w, and temperature, 6. The specific cases studied are Tisted in Table 1,
together with empirically determined (non-optimal) values for the
relaxation parameters aw, a and ag - Also listed are the same data from
I for the cases when Ri = 0. 1In all cases the computational mesh size
in the (£, n) plane was chosen to be h = n/50.

The freestream boundary conditions (4c) cannot be satisfied exactly,
since the computational domain is clearly limited to some large, but
finite, value of r (or equivalently of £). In general, the influence of

any errors associated with these conditions will depend upon the value of

£ chosen (gw), and the parameters Ri, Gr, Pr and Re. For the unstratified
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problem (Ri = 0), it has gradually become accepted that a solution valid
in the vicinity of the body may always be obtained by simply imposing
the free-stream conditions at some sufficiently large value of ¢_.
Although the free-stream condition does produce an error when applied
at a finite ¢_, the error is largely confined to the narrow wake-like
region behind the body. Because the governing differential equations
are almost parabolic in this region, the errors are not propagated very
efficiently back upstream into the interior of the computational domain.
Thus, although many studies, including I, have used higher-order (far-
field) corrections to the free-stream conditions for Ri = 0, it is
largely done as an economic measure rather than as a fundamental neces-
sity. However, for stably stratified fluids (Ri > O),the situation is
completely changed. In particular, errors introduced at &_ can be
propagated both downstream by convection (as in the unstratified prob-
lem), and upstream through the mechanism of internal traveling waves
(for some examples of buoyancy-induced upstream influence, see Long,
1959, 1962; Yih, 1965). Furthermore, it is possible that errors which
are introduced internally or at the upstream boundary may reflect at the
downstream boundary and be trapped in a resonant form inside the compu-
tational domain. For some values of the dimensionless parameters, .such
effects are known to occur (Klemp, 1972). In order to investigate the
potential difficulties in the present problem, a number of preliminary
computational experiments were carried out.

The first of these preliminary studies was intended to investigate
the possibility that an error introduced at some intermediate point in

the calculation could propagate through the solution in time to produce
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an apparent steady-state solution which is in error. In addition, it
was hoped that the preliminary calculation would provide some insight
into the efficiency of the reflection of information from the down-
stream boundary. The calculation was performed for Re = 40, Pr = 0.7
and h = 7/50 with uniform flow conditions (¢ = y, w = 0, 6 = Riy)
imposed at the outer boundary, x_ = %—cosh €.~ 3.08, and on y = 0 for
all x (i.e. the plate was not present). Initially, the uniform stream
conditions were also imposed at all interior mesh points except for a

large disturbance (y =y + 0.5, w = -0.5, and 8 = Riy + 0.5) which was

introduced in the interior of the field. The calculation was carried

out to steady state for three values of the Richardson number: Ri = 0.1

(aw = 1.1, a, = 0.4, a5 = 0.4); Ri =1.0 (a¢

and Ri = 10 (a, = 0.8, a, = 0.05, a5 = 0.05). In all cases, the dis-

=1.1,a =0.4, ag = 0.4);
¥
turbance was found to decay rapidly. A representative series of plots
for the decays of the vorticity and streamfunction disturbances with

Ri = 1.0 is shown in Figures 2 and 3. Initially the vorticity spreads
by diffusion and convection, as expected, but after some time has passed
the transport by these mechanisms begins to be dominated by the suppres-
sion of the disturbance by the ambient stratification. So far as we can
tell, the disturbance is almost completely damped before it has any
chance to reflect from the downstream boundary. Similar results were
also obtained for Ri = 0.1 and Ri = 10.0. However, as the ambient
stratification is increased (i.e. Ri from 0.1 to 1.0), the efficiency

of damping of the disturbance is increased, so that the disturbance at
any intermediate point in the calculation is decreased. In addition,

the wave length of the remaining disturbance is also slightly decreased.
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The decay of the disturbance can also be seen by observing Hm]lf

v - y||2 and |6 - Riyllz, with the norm calculated according to

)2

PRl P
j J

el =2 2(s
i
where the subscripts represent the finite difference mesh coordinates.
Figure 4 illustrates the decay of the various norms for Ri = 1.0. For
Ri = 1.0, Figure 2 illustrates that positive vorticity develops due to
the initially large negative vorticity disturbance, causing Hw!lz to

o0

increase initially in Figure 4, although fm J w dxdy is decreasing.
The second preliminary study was inte;:ed—io determine the qualita-
tive influence of a constant error at the outer boundary on the solution
in the vicinity of the plate. The particular question which we wished
to answer was whether, in the nresence of the plate, the use of a simple
free stream boundary condition at some large, but finite, value of £_,
could yield acceptably small errors in the region near the plate. In
order to answer this question, we assumed that an order of magnitude
estimate of the error produced in the 1qter10r of the field by using the
free stream conditions at £_ in the presence of the plate can be calcu-
lated by studying the case when the plate is absent and using the first-
order far-field corrections to the free stream profiles (which were
obtained by us in an earlier paper; Robertson et al., 1975) as if a
plate were present. Thus, numerical solutions of the full finite dif-
ference equations were obtained with this Oseen Tinearized correction
imposed at £_, with appropriate symmetry about y = 0 and in the absence
of the plate, for Ri = 1.0 and 6.325. A typical case is illustrated in

Figure 5, where we have x_ = 3.08, Re = 40, Pr = 0.7, and Ri = 1.0.
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Although the maximum disturbance is confined to the region near £_, there
is still a moderately strong wave-like structure induced in the interior
of the field. Similar results were obtained for other combinations of

Ri and g_ with the magnitude of the induced wave being decreased as £

is increased for a fixed value of Ri. However, it was found that no
value of £ generally existed where the wave-like disturbance was reduced
to an acceptable level and which was still sufficiently small for an
economical solution of the full nonlinear problem. Thus, the free stream
conditions applied at a large, but finite, value of £_ generally do not
produce an acceptable numerical calculation for Ri > 0.

The present numerical solutions were obtained using the accurate
Oseen far-field corrections to the uniform stream conditions which were
obtained by us in Robertson et al. (1975). The purpose of using this
correction issimply to minimize the error between the imposed values of
¥, w, and 6 at g_ and the values which would exist at the same position
if one had an exact solution. In this way it is hoped that any errors
introduced at the outer boundary are decreased in the interior of the
field to an acceptable level. Even with this more accurate estimate of
¥, w, and 6 at £_, it was still necessary to investigate carefully the
influence of the value of £ _(x_ ) on the solution near the plate for each
Gr and Ri. This was accomplished by actually calculating convergent
solutions at x_ = 3.08, 6.16, 9.24, ..., and comparing the results for
each case using visual comparison of the y, w, and 6 fields, plus the
additional requirement that the fractional change in CA (the drag co-
efficient) and Nu (the Nusselt number or dimensionless heat flux from

the plate) be less than .05. The values of X, listed in Table 1 represent



the minimum values, determined in this manner, required to obtain

acceptable solutions (2 to 3% accuracy) in the vicinity of the plate.

It is satisfying that these empirically established values for x_ com-
pare favorably with estimates given by Robertson et al. (1975) of the
minimum distances required for validity of the Oseen far-field correc-
tions, namely |x| » 4.75 for Ri = 1 and |x| > 3 for Ri = 6.325. The
latter values reflect only the magnitudes of the horizontal velocity
corrections which decrease as Ri increases (see Robertson et al., 1975),
and do not provide, in any sense, for the effect of Ri on the efficiency
of the propagation of errors from the boundaries.

Fina]Ty, it may be noted that convergence for fixed x_, Gr and Ri
was established by visual comparison of ¢, 6 and w fields at intervals
of 200 iterations. In addition, it was required that the fractional
change in the drag coefficient (Cd) and Nusselt number (Nu) be less than
0.05 after 200 iterations. Typical cases were found to converge in the
order of 1000 iterations, although wide variations were found depending
primarily on the accuracy of the initial guess for y, w and 6 throughout
the domain. Typical computation times on the IBM 370/155 were thus

15-20 minutes.
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D. Results

As we have indicated earlier in this paper, the primary goal of the
oresent study is to assess the role played by an ambient stable density
stratification on the flow structure for simultaneous forced and free con-
vection heat transfer from a horizontal flat plate. In keeping with that
objective, numerical solutions were obtained for fixed Re = 40, Pr = 0.7
and various values of Gr and Ri. A number of streamline plots are shown
in Figures 6 to 10. For convenience, we have also plotted the overall drag
coefficient

o= i [y, (B, 00
-1/2 y=0
as a function of Gr/ReZ for various Ri in Figure 11. A similar plot for the

Nusselt number

1/2
_ [ [ee

Nu = J [ay]y=0dx
-1/2

is shown in Figure 12.

1. The Effect of Gr on Flow Structure for Fixed Ri » 0

We have noted in the introduction that previous studies for Ri =0
(including I) have shown that the main dynamic effect of natural convection
near the plate is to induce a streamwise gradient of pressure along the
plate surface, which either accelerates or decelerates the flow compared
with the case Gr = 0, depending upon whether the plate is heated or cooled
with respect to the ambient fluid. When the flow is accelerated both the
drag coefficient and Nusselt number increase, as shown in Figures 11 and
12. When the flow is decelerated, both Cq and Nu are decreased also. The

present solutions for Ri = 1 and Ri = 6.325 show that the same qualitative
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effect of natural convection (Gr) is preserved even when the ambient fluid

is stably stratified. The streamline plots show an increasing degree of
acceleration for Gr increasing and positive, and of deceleration (with
separation in many instances) for Gr decreasing and negative. In addition,
the behavior of the drag coefficient and Nusselt numbers is qualitatively
similar for Ri =0, 1, or 6.325.

2. The Effect of Stratification for Fixed Gr

The effects of stratification on the flow structure for fixed values
of Gr is more complicated as may be seen by examination of either Figure
11 or 12. For purposes of discussion, it is convenient to consider
separately the cases Gr = 0, |Gr| small, and |Gr| large.

When Gr = 0, the plate is neither heated nor cooled with respect to
the ambient fluid at the same level, and the only influence of buoyancy
on the flow is due to the ambient stratification. Examination of either
Figure 6 or 11 shows that as Ri is increased, the flow near the plate is
somewhat accelerated compared to the Ri = 0 case, thereby increasing the
velocity gradients near the plate and therefore Cd. The physical explana-
tion for these changes is simb]y that the increasing degree of ambient
stratification causes the fluid elements (i.e. streamlines) to be displaced
less upward by the boundary-layer than they are for Ri = 0, thus producing
a local acceleration as observed in the numerical solutions.

For |Gr| nonzero, but small, the main effect of buoyancy on the flow
structure is still the ambient stratification. Thus, increasing Ri again
suppresses the vertical displacement of streamlines due to the boundary-
layer, and the flow is accelerated compared with the case Ri = 0. In this
case, however, the effective density stratification in the vicinity of the

plate is decreased by the local heating for Gr > 0 and increased by the
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local cooling for Gr < 0. This Tatter relatively subtle effect can be seen
in the drag coefficient and Nusselt number plots. For weak local heating'
(Gr > 0), the increase in eijther Cd or Nu is decreased for the same increase
in Ri as Gr is increased from zero. On the other hand, for Gr < 0, the
increase in Cd or Nu is actually increased at first for the same increase

in Ri as Gr is decreased from zero.

Finally, let us consider the effects of ambient stratification for |Gr|
moderate to large. In this case it may be seen from either Figure 11 or 12
that the dominant buoyancy effect is due to the natural convection associated
with the local heating or cooling of fluid by the plate. For Gr > 0, the
presence of an ambient temperature (density) gradient causes two competing
changes in flow structure: firstly, a reduction of the streamline dis-
placement (an accelerating effect), and secondly, a decrease in the stream-
wise temperature (or density) gradient (a decelerating effect). The net
result is a relatively small change in the local flow structure as can be
seen from the streamline plots of Figure 7 for Gr/Re2 = 5 or the Cy and Nu
plots of Figures 11 and 12 for Gr/Rezz ~ 5., For Gr < 0, the changes in
flow structure with Ri are more dramatic. In this case, the added ambient
temperature gradient yields both an increased adverse streamwise pressure
gradient, and a stronger degree of upstream influence, at least near the
plate. Hence, for Gr < 0 and moderate in magnitude, the degree of decelera-
tion is increased with increasing Ri, the drag coefficient and Nusselt
numbers are decreased, and flow separation occurs for less negative values
of Gr, and yields larger regions of recirculating flow for a given Grashof
number. Following the lead of our earlier investigation (I), we shall now
examine the physical dimensions of this recirculating flow regime in more

detail. In particular, we consider three geometric features of the reverse
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flow region: the dimensionless overall length between its leading and
trailing edges measured at y = 0, which we shall label 2*, the dimensionless
maximum vertical height, &%, and the dimensionless position of the leading
edge, x*, again measured at y = 0. In Figures 13 and 14 we have plotted

x*, 6%, and &* as functions of Gr/Rez. For Ri > 0, x*, &%, and 2* all
exhibit similar behavior, increasing as the plate is cooled to lower tempera-
tures, with the recirculating region eventually extending upstream beyond
the leading edge of the plate (i.e. x = -0.5). Our results appear to
suggest the following explanation for the occurrence and properties of

the steady-state recirculating eddy. The fluid directly above the plate

is stably stratified as a result of the local heat transfer from the cold
plate and the ambient stable stratification. Initially, the streamwise
variations in the density profile produce only an adverse pressure distribu-
tion and the flow separates somewhere on the plate surface. This separa-
tion leads to a reverse flow region of finite vertical extent over which

the boundary flow must pass. However, the flow upstream of the initial
separation point is stably stratified and tends to be blocked by the re-
circulating eddy. This causes the pressure distribution to be modified in
such a fashion that the separation process is enhanced and occurs more
quickly. Ultimately, the leading edge of the eddy moves beyond the Teading
edge of the plate, and attains a finite equilibrium position as the effect
of the body weakens with increasing upstream distance due to the influence
of viscosity. The effect of increasing Ri for fixed Gr in this regime is
two-fold. First, induced streamwise (adverse) pressure gradient is en-
hanced, thereby causing the initiation of separation to occur for less
negative values of Gr. Secondly, the local vertical gradients of density

are enhanced, thereby also enhancing the blocking mechanism for production
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of a recirculating eddy of maximum dimension and upstream extent (i.e. the

mechanism for attaining maximum values for x*, é* and 2*). These two
features, taken together, provide a rational explanation for the numerical
observations of Figures 8 - 14 for Gr < 0 and moderate to large in magni-
tude.

Finally, we may now return to a more detailed examination of the
streamline plots of Figures 8 to 10. In particular, we call attention to
the wave structure which exists in the overall flow when Ri > 0. It may
noted that the amplitudes and wavelengths of these waves decrease as Ri
is increased due to the increased stable restoring force (see also
Robertson et al., 1975). On the other hand, for fixed Ri > 0, the wave

Z is decreased from -4 to -5. As

structure becomes more evident as Gr/Re
Gr/Re2 is decreased, the reverse flow eddy is increased in size, thus
causing a greater vertical displacement near the plate and a stronger wave
structure. In order to verify further that the wave structure in our
solutions is induced by the displacement flow near the body, and not as
a result of inaccuracies in the outer (gm) boundary conditions, we have
compared the wave structure for various non-integral increments in g_ (i.e.
at g_ = 2.58, 3.27, and 3.45). In each case the wave structure is
unchanged and thus shows no explicit dependence of wavelength or magnitude
on the position of the outermost mesh points. A hint of the qualitative
nature of the flow structure which could be induced by errors in the outer
boundary, and especially the dependence of this structure on £_, was
implicit in the second preliminary experiment which we described earlier.
A final conclusive exhibition of the inadequacy of free-stream conditions

2

is shown in Figure 15. Here we have plotted the streamlines for Gr/Re” =

-5, Ri = 1 and free stream conditions applied at x_ = 6.16 where the more
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accurate Oseen far-field corrections yielded the solution discussed above
which was independent of g£_. Clearly, the results of Figure 15 are un-

realistic and unacceptable physically.
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Table 1: Numerical Parameters for Re = 40, Pr = 0.7, and h = w/50

Gr‘/Re2 Ri X, aw a a,
+8 0 3.08 1.1 0.4 0.4
+8 1 3.08 (6.16) 1.1 0.4 0.4
+8 6 .325 3.08 (6.16) 0.8 0.05 0.05
+5 0 3.08 1.1 0.4 0.4
+5 1 3.08 (6.16) 1.1 0.4 0.4
+5 6.325 3.08 (6.16) 1.1 0.4 0.4
+1 0 3.08 1.0 0.2 0.2
+1 1 3.08 1.0 0.2 0.2

0 0 3.08 (6.16) ksl 0.4 0.4
0 1 3.08 (6.16) 0.8 0.05 0.
0 6.325 3.08 (6.16) 0.8 0.05 0.
-3 1 6.16 1.0 0.2 0.2
-4 1 6.16 (3.08) 1.0 0.2 0.2
-4 6,325 6.16 (3.08) 0.6 0.01 Qs
-5 0 6.16 (3.08) 1.0 0.2 0.
-5 1 6.16 (9.24) 1.0 0. 0.
-5 6.325 6.16 (9.24) 0.6 0.01 0.
-8 0 9.24 (12.32) 0.9 0.1 0.
-8 1 9.24 (6.16) 0.6 0.01 0.
-11 0 9.24 (12.32) 0.9 0.1 0.
-11 1 9.24 (6.16) 0.6 0.01 0.
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Figure 2:
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FIGURE CAPTIONS

The Physical System

Decay of the Vorticity Disturbance for Re = 40, Pr = 0.7,
Ri = 1.0, h = n/50, x_ = 3.08, and no plate being present
(a) initial conditions: w = -0.5 disturbance everywhere

in the interior of the indicated region

(b) iteration 20
(c) iteration 40
(d) iteration 80
(e) iteration 120
(f) diteration 180

Decay of the Streamfunction Disturbance for Re = 40, Pr =
0.7, Ri = 1.0, h = n/50, x_ = 3.08, and no plate being
present; v = 1.25, 1.0, 0.85, 0.6, 0.3, and 0.1 with 1.25

corresponding to the outermost streamline

(a) initial conditions with disturbance
(b) diteration 10
(c) iteration 20
(d) iteration 40
(e) iteration 80
(f) dteration 120

Decay of leF, o - yIF, and ||6 - Riﬂlz for Re = 40, Pr =
0.7, Ri = 1.0, h = /50, x_ = 3.08, and no plate being

present
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Figure 5: Steady-state Solution for the Propagation of the Stream-

function Error on the Quter Boundary for Re = 40, Pr = 0.7,
Ri = 1.0, h = n/50, x_ = 3.08 and no plate being present;
v = y -y=-0.10, -0.08, -0.06, -0.05, -0.04 and -0.03
with -0.03 corresponding to the innermost streamline

Figure 6: Streamlines for Re = 40, Pr = 0.7, and Gr/Re2 =05 v =2,

1, 0.5, 0.3, 0.1, and 0.05 with 2 corresponding to the

outermost streamline (a) Ri = 0 (b) Ri = 6.325

Figure 7:  Streamlines for Re = 40, Pr = 0.7, and Gr/Re® = 5; ¢ = 2,
1, 0.5, 0.3, 0.7, and 0.05 with 2 corresponding to the

0 (b) Ri = 6.325

]

outermost streamline (a) Ri

0.7, and Gr/Re® = -5; y =

1
nNo

Figure 8: Streamlines for Re = 40, Pr

1, 0.5, 0.3, 0.1, 0.05, and O with 2 corresponding to the

outermost streamline (a) Ri = 0 (b) Ri =1

1]

Figure 9: Streamlines for Re = 40, Pr = 0.7, and Gr/Re2 = =53 ¢ = 3,

2, 1, 0.5, 0.3, 0.1, and 0 with 3 corresponding to the

1

outermost streamline (a) Ri =0 (b) Ri =1 (c) Ri = 6.325

Figure 10:  Streamlines for Re = 40, Pr = 0.7, and Gr/Re2 = -4; 9 = 3,

2, 1, 0.5, 0.3, 0.1, and 0 with 3 corresponding to the
outermost streamline (a) Ri =1 (b) Ri = 6.325

Figure 11:  The Overall Drag Coefficient Cd as a Function of Gr/Re2

when Re = 40 and Pr = 0.7; Ri =0, 1, 6.325
Figure 12:  The Overall Nusselt Number Nu as a Function of Gr/Re2 when

Re = 40 and Pr = 0.7; Ri =0, 1
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Figure 13: x* as a function of Gr/Re2 when Re = 40 and Pr = 0.7

—-—Ri =0
—— Ri =1
o Ri=6.325
Figure 14: 6* and &* as a function of Gr‘/Re2 when Re = 40 and Pr =
0.7
—-—Ri =0
—*—Ri =1
o Ri=6.325
Figure 15: Streamlines for Re = 40, Pr = 0.7, Gr/Re2 = -5, Ri =1,

X, = 6.16, and iteration 575 when the free stream outer
boundary conditions are employed; v = 2, 1, 0.5, 0.3, and

0.1 with 2 corresponding to the outermost streamline
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Appendix 3-BB: Additional Figures for Appendix 3-B

This appendix presents the Figures omitted from Appendix 3-B for

brevity.
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Decay of the Streamfunction Disturbance for Re = 40,
Pr =0.7, Ri = 0.1, h = n/50, x_ = 3.08, and no plate
being present; v = 1.25, 1.0, 0.85, 0.6, 0.3, and 0.1
with 1.25 corresponding to the outermost streamline
(a
(b

initial conditions with disturbance
iteration 10

(
(d
(e

)

)
c) iteration 20

) iteration 40

) iteration 80
Steady-State Solution for the Propagation of the Stream-
function Error on the Outer Boundary for Re = 40, Pr =
0.7, Ri = 1.0, h = «/50, x_ = 6.16 and no plate being
present; ¢ =y - y = -0.04, -0.03, and -0.01 with -0.01
corresponding to the innermost streamline
Steady-State Solution for the Propagation of the Vorti-
city Error on the Outer Boundary for Re = 40, Pr = 0.7,
Ri = 1.0, h = v/50, and no plate being present
3.08

—
Qv
~—
>
1

(b) x_ =6.16

Streamlines for Re = 40, Pr = 0.7, and Gr‘/Re2 = -8;

v =3, 2,1, 0.5, 0.3, 0.1, and 0 with 3 corresponding
to the outermost streamline (a) Ri = 0 (b) Ri =1
Streamlines for Re = 40, Pr = 0.7, and Gr/Re2 = -8;

p =2, 1, 0.5, 0.3, 0.1, 0.05, and 0 with 2 corresponding
to the outermost streamline (a) Ri=0 (b) Ri=1
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Figure 6: Equivorticity Lines for Re = 40, Pr = 0.7, and Gr/Re2 =0
(a) Ri =0 (b) Ri = 6.325
Figure 7: Equivorticity Lines for Re = 40, Pr = 0.7, and Gr/Re2

=5 (a) Ri =0 (b) Ri = 6.325
0.7, and Gr/Re® =

Figure 8: Equivorticity Lines for Re = 40, Pr

-5 (a) Ri =0 (b) Ri =1
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Appendix 3-C: Finite-Difference Equations for the Near-Field

Numerical Solutions
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The finite-difference equations used in the numerical solution
of the steady-state and time-dependent governing nonlinear near-field
equations will be given. We shall discuss equations (1) to (3) of
Appendix 3-B which are valid for all values of Ri and Gr/Rez, except
Gr/Re2 =0 with Ri > 0 . For this latter case, analogous finite-

difference representations of the valid formulation of the differential

equations in terms of 0 = 957-6 + Riy were employed and hence will
Re

not be reported here for brevity. We obtain the three dependent vari-
ables Y(= Y-y =1y - %—sinh £ sinn), 6 , and w in the elliptical
cylindrical coordinate system (§,n) by solving the following basic

governing differential equations:

2 27
L2+ 22y Latgmu = 0 &
3& an
%M(gn) + 300 1b)+%-sinh£ g?_- = %%)
~ > Gr/R

1 90 _y_ 1 326 826

- = cosh & sin n(=— - = ( ) (2)
2 on Gr/Re 2 Sn PrRe ag2. an2
l—M &, ) LA J(w w) + l-s h £ s o osh & sin n —
7 M n . 5 inh & cos 1 3£ 5 C n
1 0% 82w 16 36 30

= Eg-( > + 2)+-§- r2 (sinh & cos n EE-~ cosh & sin n Eﬁo (3)

& an Re
where MZ(E,n) = %—(cosh 28 - cos 2n) and the nonlinear, two-dimensional

Jacobian is given by:

99
3

J(a,0) = 39-

%la’

\fY‘(
QL
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Let the subscripts i and j be the finite difference coordinates for
& and n respectively, h be the size of the square mesh, and At
be the time step. Two alternative representations for the Jacobians
J(e,a) and J(m,@) were used: the four-point scheme using simple two-

point central differences for the spatial first derivatives:

A

2 A
41,9 " %41, Wi, 541 7 V4,50

4h Ji’j(e,w) = (B

~

. 41,5~ Vi-1,j

5 ) () )

i, j+1  Ti,3-1
and Arakawa's eight-point scheme (Arakawa, 1966; Molenkamp, 1968):

2 A
-12h Ji,j(e,w)

A

- ei—l,j—l(ii—l,j =W q-1?
ei—l,j(@i,j+1 * lI'1—1,j+1 B LApi,j—l - CUi-l,j—l)
e1—1,j+1@i,j+1 - $i—l,j)
* ei,j-l(@i-l,j * J’i—l,j—l - @i+1,j - II’i+1,j-1)
* ei,j+1(‘7’i+1,j * $i+l,j+l - II’i-l,j - @i—l,j+l)
+ ei+l,j—l($i,j—l B LI’i+1,j)
+ 8 3y 5o * J)i+1,j—1 =¥y g - biar, g1
+ 6 f v )

i+l,j+l(wi+l,j - wi,j+1

Note that Arakawa's expression for Ji j(w,¢) cannot be used when it
9
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would require the value of w at either of the two singular end points
(where w = ®) of the horizontal flat plate of finite length; the four-

point expression for Ji j(w,W) which avoids these singular points in
b

such cases must be used.

(1) The Steady-State Equations

Equations (1) to (3), with 936/9t = 0 and dw/dt = 0 , are
recast in finite-difference form using the simple two-point central dif-
ference formula for a spatial first derivative, the familiar five-point
approximation for the Laplacian, and one of the two above representations
for the Jacobians.

For Wy

known throughout the field, new values of wi are

»J
calculated by explicit Gauss-Seidel pointwise iteration from the follow-

b

ing finite-difference formulation of equation (1):

~ I A A

B Wy,
Uy 3 77% Wygg 3 T P53 ¥ g0 T Ve, 520

L .2 .2
+ g h Mi,j(g’n) iy
For known throughout the field, new values of 61 3 are calcu-
: ]

lated by explicit Gauss-Seidel pointwise iteration from the following

1,]

finite-difference representation of equation (2):

= &b
%1,5 77 Orn,3 015 F O 5k Y Oy 50
1 2 h
= Z PrRe h Ji’j(e:d})
- %E-PrRe h{sinh g4 cos n.[(@i+l ;= 61 1 .)—'—Ei—"' ($i+l d
J sJ B ¥ Gr/Re »J
o _ - I, ... =86, . )
by g 1 - cosh Eysin ng L0 54p = 0 5
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Ri i 05

Gr/Re2 (wi,j+l - wi,j—l)]}

~

For . . and 0., . known throughout the field, new values of w, .
1,] 1,] i,_‘]

are calculated by explicit Gauss-Seidel pointwise iteration from the

following finite-difference formulation of equation (3):

=1
w =2 )

+ + +
i, (B g T 91 T P e T g

2 A
—'z: Re h Ji,j(w,w)

- 1¢ Re h{sinh £;cos UNCHREER
- cosh £;sin nj(wi,j+l - wi,j—l)}
+ %B’%g h {sinh £,cos nj(ei+l’j - 91_1,j)
- cosh g;sin nj(ei’j+l - ei,j—l)}

(2) The Time-Dependent Equations

Since the elliptic equation (1) is time-independent, values of

~

wi,J

at any time t are calculated by the same method as used for the

steady-state scheme described above, knowing w at that particular

1,3

time ¢t .
In solving the time-dependent parabolic equations (2) and (3)

for the values of 64 i and w respectively at time t = (nt+l)At,
b

1y

S

having calculated the corresponding values at t = nAt and t=(n-1)At,
we use central-time differencing on the first time derivatives in con-

junction with the DuFort-Frankel (1953) expression for the Laplacians,
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central-space differencing at t = nAt for the first spatial deriva-
tives, and Arakawa's (1966) expression at t = nAt for the Jacobians.

Indicating the time step number (e.g., n) by a superscript, the result-

ing explicit numerical formulae for 62+; and w2+§ are:
b ¥

&
+1 -1 -1 -
B R e i e & St CR)
>3 hMy L (E,m)PrRe S (M) -

n n Ri .

1 . n n
= b sl £y008 nj{<ei+1,j‘ ei-l,j)"Gr/Rez Wig1,5” q’1-1,3')}

‘{(en n ) - Ri

1 ~n ~n
+ 5 h cosh &,sin n L .- 0. . W, .-, . )}
4 i i i,j+1 i,j-1 Gr/Re2 i,j+1 i,5-1

1 n n n

n n-1
Prie P11, 57 Cp-1, 4T Yt O 51 - 20,90

-1 _ A
wn+l -1+ 16At ) WP 1 + __8At [—thn j(w’w)

i,] 202 1,3 [0 1,
b*M; [ (E,n)Re h M (2,0

. n n
h sinh £, cos nj(wi+l,j - wi—l,j)

N =

o)

h cosh £.sin nj(wg iy 31

=

JJFL

1 n

4+ n T D—l
Re (Wi, t+ il

n
T D R U PR T I Rl

Gr 1 H
+ = {7 h sinh £;cos n, (@ 0

n
Re 4 i+1,3 i-1,j

n

1 n
-7 h cosh Eisin nj(ei’j+l— ei’j_l)}]

of course, since central-time differencing is used for the first time
derivatives, this scheme cannot be used for the first time step after

the initial conditions or a change in At . In such cases where we are
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advancing from t = nAt to

t = (ntl)At, the first time derivatives

are approximated by forward-time differences, the Laplacians by the

standard five-point formula at t = nAt, the first spatial derivatives

0by central-space differences at t = nAt, and the Jacobians by Arakawa's

(1966) formula at t = nAt . The resulting explicit numerical formulae
for en+l and wn+% are:
1,3 1,3
+1 4AE 2 e
B g =By % ——BE—— [n® o} NGRD
’ s h“M . . Iy
i,J(g P
Ri ~n on
- 5 h sinh £, cos n.{(@n =07 . ) ————=@ = U . )}
4 i 3 1 o i-1,3 Gr/Re2 i+1,3 i-1,3
n Ri ,’n “n
+ 2 h cosh g.sin n {(0F . .- 0, . )-———W; . -V, . D}
4 i N i,j+1 “i,j-1 Gr/Rez i,541  "4,4-1
1 n n n n n
+ — : ; 40, ., .+ 06, . .- 40, .
prre Prer gt Op-1,4" 01 g0t O1 41— 491 401
2 ~
w?+% « o it 24At [-h J? j(w,w)
5] ) h Mi (E’n) s
5]
4 h sinh ( n _ . n )
7 h elah Lye08 Nglilgyy 9 =M. g 4
o == h cosh £,sin n. (w5 — )
7 D oosh Egndo Wyl sy — @5 5
1 n n n n n
tRe @ipp, gt 1,5t Wi g4 T W 5o T My )
Gr I . n n
+ ——5-{Z-h sinh g, cos nj(ei+l’j ei_l’j)
Re
n n
- 7 h cosh £;sin n (0] 4= ei’j_l)}]
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Appendix 3-D: Far-Field Solutions by Chang's Linear Similarity

Theory for Neutrally-Stratified Free Stream Flow

Past a Symmetric Body Acting as a lHeat Dipole
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In determining the flow and temperature fields at large distances
upstream and downstream from a body symmetric about y = 0 and acting
as a heat dipole (doublet) in the presence of significant bupyancy, we
solve the following basic governing steady-state differential equations,
which are equations (1) to (3) of Appendix 3-A, for neutrally-stratified

uniform free stream flow:

2 2
du , ,du_ _3p 1 9u, 5u
u_8_>?+vayn_8x+Re(82+ 2) (La)
X oy
uaV+V3_V=_§P_+L(32V+32v)+Gre (1b)
ox 3y 3y " Re'. 2 8y2 -
ou , ov
oxX 9y 0 (2)
90 L) 1 /938 826
Uu-—+ v == ( + ) (3)
X 9y  PrRe 8X2 ayZ

by a similarity theory, after first linearizing the equations by follow-
ing the procedure documented by Chang (1961) for the momentum transfer
problem alone (i.e., Gr = 0). Coordinate expansions at large distances
are replaced by expansions in the small artificial parameter € dintro-
duced for convenience. The flow field at large distances 1s divided
into two regions: an outer region where the variables are described by
outer expansions (denoted by an underbar) and an inner viscous wake
region where the variables are described by inner expansions (denoted by
an overbar). Of course, the relations for the dependent variables must
match in the common region of overlap of the two regions.

In the outer region, let us make the transformation x = €x such

that for small € and large x , x is neither small nor large. All
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transformations in both the inner and outer regions are defined such
that the new variables are neither small nor large. We can also define
y = Eny , n > 0; the outer limit is defined as the limit as € - O
for x and y fixed. Let us also define v = E?X, q 2 0; note that

u 1is not "stretched" as it is 0(1l). Substituting these transforma-
tions into equation (2) yields n+q = 1, and into equation (3), while
assuming the convection of heat is more important than its diffusion in
the outer region, gives 6 = 0 . Hence, in the outer limit, the outer
equations reduce simply to those describing the potential flow outer

region studied by Chang (1961) with y = €y, and the following solution

expansions that converge asymptotically at large distances:

u=l+€}ll+... (48.)
v = €vy + ... (4b)
P = €py + e (4c)
where
b
4 = (5a)
1 2ﬂ(x2+_zz)
my
v, = (5b)
L ?_Tr(_)_c_2+ y)
P Ty (5¢)

and m d4s to be determined later from a matching condition.

In the inner region, we make the transformations ® = ex,'y = gry,
0 <r<n=1; the inner limit is defined as the limit as ¢ » 0 for
x and y fixed. Let us also define v = eV, a > 03 P=ep; B =c¢

¢ >0 . Substituting these transformations into equation (2), and into
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equation (3) while assuming that the diffusion of heat in the inner
region is as important as its convection, yields r = a = 1/2. Note
that the outer limit implies [x| » « and |y| » » along y/x =
constant, whereas the inner limit implies |[x| >« and |y| -~ along
yz/x = constant. Substituting the transformations into equation (la)
and retaining the horizontal pressure gradient term yields d = 0.

After a similar substitution into equation (1b), assuming that the buoy-
ancy contribution is as important as the transverse pressure gradient
gives ¢ = 1/2. 1In order to solve the inner equations, let us first
expand u,'v,'ﬁ, and 0 in infinite series expansions that converge

asymptotically at large distances. Let the expansion for u be

u=1+ gsﬁi + «.0, 8 >0 (6a)

Since ¢ 1is an artificial parameter, it must be eliminable from the

solution; it will be shown later that .El is of the similarity form

[ee]

ﬁi = ;ﬁqgf(§2/§3. As will be seen below, the integral [ 'Ei
0

be independent of x giving s = 1/2. Similarly, it can be shown

d; is to

that the other expansions are:

3=€l/23

NREE (6b)
p =23 + .o (6¢)
T =12 T o C6d)

Substituting the transformations and expansions into equations (1) to

(3) yields the following equations to be solved for the first correction
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terms to the uniform flow conditions:

o — 2__

Bul apl 1 3 uy

— s - T Yt T (7a)
oX oxX oy

3p.
-5 (7b)
oy Re

du, av.
EeE e ®
oxX oy

— 2__

361 _ 1 0 61 -
8;{— PrRe 8‘372

In solving for the flow structure at large distances from the body, we

replace the boundary conditions at the body by certain integral condi-
tions. Since the velocity field about a body symmetric around y = 0,
and acting as a heat dipole, is also symmetric about y = 0, we need to
consider a control volume only in the upper half plane. A horizontal
force balance on the control volume extending from far upstream at

X = =X where the uniform flow conditions are applicable to downstream
at x = X, gives

[oe]

[ (1 - u)dy - f p dy = %—Cd (10)
0 0

where Cd is the overall horizontal drag coefficient for the body.

Utilizing the inner and outer expansions for u and p in equation

(10) gives in the limit as € > O:
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S = LN |
- J uy dy - J Py dy = 5 Cd (11)
0 0

From this integral condition it is seen that both fm Ei dy and fm Ei dy

0 0
are to be independent of x . For matching of the inner and outer ex-
pansions for p at 0(81/2), Ei -~ 0 as §-+ o ., Hence, integrating
equation (7b) gives:
- Gr it i e
Re
¥
and hence we can calculate
— [ G-r T — s e -
J 1y = - ;;E-J d J el(x,yl) dyq (13)
0 0 v
The solution of equation (9) such that éi =0 on §'= 0, 6i(§;—§) =

—6i(§;§), and the integral in equation (13) is independent of x is:

A el

1 exp(-PrRe ;2/4§> (14)

where the constant A 1is determined from the following energy-rate

balance on the control volume:

© —1/2 XO
.1 30 3
J 6 dy = o (Nu - J | e J | dx) (15)
-X y= 1/2 y=

where Nu is the overall Nusselt number for the top surface of the body

whose leading and trailing edges are at x = -1/2 and x = +1/2

respectively.
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Using only éi in the limit as € > 0 since 6 = 0, the evaluation

of fw © dy in equation (15) yields:
0

1/2 -1/2 X
%5 96 ° 238
A = > (Nu - f By dx - J 5;- dx) (16)
X gl 172 170
o
It should be noted that the parameter A vanishes as X, e Sub -

stituting equation (12) into equation (7a), and utilizing equations

(9) and (14) yields:

— 2_..
Jou 0"u
L Ll - 5 et e — (17)
— 2 71 Re =2
ox 9y
Gr 2 :
where Kl A 5 PrRe and the similarity variable is defined as

Re

n = %- Pf#e . Assuming Ei is of the similarity form:
X
- S Iy
u, = x / g(n) (18)
equation (17) becomes
d ,Prd 1 — 1 ' ~—)
= -5-f§ +5n g =5K (1 ~2n) exp(~n") (19)
— Y 4 2 21
dn dn

In solving equation (19), the boundary conditions are provided by the

matching condition for u at 0(81/2), Gi -0 as y > « , and by the

symmetric flow condition dg/dﬁ-__ = 0 . The integration of equation
n=0
(19) gives:
K =2 =9
T (20)

=2
- _ -n“~/Pr
g = g(0) e e

where the constant g(0), obtained from equation (11), is:



c
g0y = - 2 [Rey g AV, (21)

Integrating equation (8) with the symmetric flow condition ;i =0

for y =0 , yields

v, = e 2 R 5 e (22)

which also satisfies the matching condition for v at 0(c); 4d.e.,
;l('i,?—m) =V (§=§,_y_+0+) = 0. Also, substituting equation (14) into

equation (12) gives

Ei = —’i;_l/z exp(-PrRe ;2/4;) (23)

To complete the specification of the behavior of the flow structure,
we must evaluate the constant m found in the solutions for the outer

region. In the outer and inner regions, define:

Y=ep=ytepy +oeer, oy o= oY,/9y, vy = -0y,/0x,

1/2- — o= =

1/2 U, /3%
4 wl-k... 5 ul = Bwl/ay, Vl =—3wl/3X5

P=e'y=y+e

The matching of the inner and outer expansions for 1 at O(EO) yields
e — —_ + T e _ .

by (xy>e) = Uy (x=x,y20) and U, (x,y>=) = Y, (x=x,y>0 ). Since
Q1(§f5;,1#0+) = yl(§f=§;z?0_) = -m (Chang, 1961), and wi(§;§;m) -

g o
P, (x,y> =0) = 2 f u.dy , then
1 0 1

m=—2/ [/l?fg(O)+K( ‘/ﬁ] (24)

PrRe 1 Pr
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By forming composite expansions of the solutions for the inner
and outer regions, we obtain the following overall flow and temperature
fields at large distances upstream and downstream from a body symmetric

about y = 0 and acting as a heat dipole in the presence of significant

buoyancy:
u=1+ ———3%?——§—~+ x_l/2 g(%— E%?E) + e, x>0 (25a)
2m(x"+ y7)
u=1+———m—’2‘—-2—+-- , x<0 (25b)
2m(x“+ y°)
v=_—__gl_2_+%yx”3/2 gF P2 + o, x>0 (26a)
2n(x"+ y7)
V=‘——Inz—“—-2"’“+ LELR PN X<0 (26b)
2T (x“+ yv7)
2
e o 2 exp(- 2y 4 L., x>0 (27a)
21 (x“+ y7)
p = _m}; .__2 + cc0, x<0 (27b)
2m(x“t y°)
-3/2 PrRe v°
8 = Ayx exp (- -—Z—-%;) + .0, x>0 (28a)
=0, x<0 (28b)

The corresponding overall stream function and vorticity fields are given
in equations (15) and (16) of Appendix 3-A. As expected, for the momen-
tum transfer problem alone, our results reduce to those of Chang (1961)

and Imai (1951) by setting Gr = Kl =0 .
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Appendix 3-E: Near-Field Solutions for Neutrally-Stratified Free

Stream Flow Past a Horizontal Flat Plate of Finite
Length when 96/30y =0 on y =0, |x| >1/2
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Dennis and Smith (1966) studied the forced convection case (i.e.,
Gr = 0) when the boundary condition for 6 on y = 0, [x[ > 1/2 was
96/3y = 0, rather than © = 0 which is discussed in Appendix 3-A. Two
physical situations in which we can study the flow in the upper half
plane with 36/3y =0 on y =0, |[x| > 1/2, while the other boundary
conditions (in particular, Qu/3y =v =0 for y =0, |x| > 1/2 and
u=v=0,¢0=1 for y=0, |x|] < 1/2) remain the same as in Appen-
dix 3-A are:

(a) a system of two fluids whose interface is at y = 0. The
less dense fluid on top is moving at free stream velocity U and
has a neutrally-stratified free stream temperature T and density
O, » and constant physical properties I, and k, . The more dense
fluid on the bottom is stationary and has a neutrally-stratified
free stream temperature, T, and density p_, and constant physical
properties (denoted by a superscript prime) ! <<, and
k! << k., « The top surface of the plate is at temperature T _ + AT,

whereas the bottom surface is at temperature T_ .

(b) a fluid flowing over a wall stretching from x = —° to
x =+4® at y =0 . For |x| > 1/2, the wall is considered insu-
lated and acting as a no shear stress surface, whereas the hot spot
on the wall for Ix! £ 1/2 1is considered at temperature T_ + AT

and acting as a no slip surface.

We considered combined forced and free convection by solving the

governing nonlinear equations, including significant buoyancy,
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numerically in the manner detailed in Appendix 3-A. We studied hot
plates (i.e., Gr > 0) for which the uniform flow outer boundary condi-
tions are satisfactory numerically, as indicated in Appendix 3-A. The
cases investigated with the corresponding values obtained for the over-
all drag coefficient, Cd’ and the overall Nussett number, Nu, are given
in Table 1. For Gr = 0, the forced convection heat transfer results
compare very well with those of Dennis and Smith (1966). For Gr > O,
the results given here for 96/3y =0 on y =0, |x| > 1/2 exhibit
qualitatively the same behavior as those calculated in Appendix 3-A for
©=0 on y=0, |x| >1/2. For example, when Gr > 0, the boundary
flow near the plate surface is accelerated relative to the correspond-
ing forced convection flow, with a resulting increase in skin friction

and heat transfer.
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1/2 L/% for 936/3y =0 on y =0, |x| > 1/2

Table 1: CqRe and NuRe

when Y' =0 and Pr =0.7

Re Gr/Re>! 2 CdRel/z HuRe 2
10 0 2.40 0.76
10 1.58 4.63 0.86
10 3.16 6.29 0.93
40 0 2.07 0.68
40 0.79 3.28 0.76
40 1.58 4.29 0.81
100 0 1.88 0.66
100 0.50 2.76 0.72

100 1.00 3.46 . 0.77
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Boundary-Layer Theories for the Uniform Flow Past a

Hot or Cold Horizontal Flat Plate: Reduction of

Redekopp's Stably-Stratified Fluid Analysis for the

Diffusive, Inertia-Viscous Balance Region with

1 <Ric< Rel/2 and |y/A| of 0(1) to Sparrow and

Minkowycz' Neutrally-Stratified Fluid Analysis
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This appendix shows that Redekopp's (1971) stably-stratified

fluid analysis for the diffusive, inertia-viscous boundary-layer balance

with 1 < Ri < Rel/?

and ly/A[ of 0(1) for the uniform flow past a
hot or cold horizontal flat plate reduces exactly to Sparrow and
Minkowycz' (1962) boundary-layer analysis for a neutrally-stratified
fluid (i.e., Ri = 0). The nomenclature of Chapter 3 will be used here,
as well as the subscripts R and SM to denote expressions employed
strictly in Redekopp's and Sparrow and Minkowycz' papers respectively.
For Ri = 0, Sparrow and Minkowycz found that the local skin friction
and heat transfer coefficients, including the small corrections to the

Blasius and Polhausen solutions, respectively, due to the effect of the

plate being hot or cold, are given by

1/2 _ 0.332 , Gr

Ce Re o £ (0) (L)
fR xl/2 Res/2 lSM
h1(0)
172 . ¥ 5. ~1i2 1 Gr
-~ ¢, PrRe t+ + Re ol + (-01  (0))
hR A X1/2 Re5/2 lSM (2)

respectively, where —hi(O) is the Polhausen solution and f! (0) and

Loy
(—Si (0)) are functions only of Pr and have been tabulated by
SM
Sparrow and Minkowycz. For 1 < Ri < Rel/2 and |y/A| of 0(1),
Redekopp found that:
e, Ret/? - o AN () (3)
R X Re R
h1(0)
_ /2 . ¥ o -1/2 _ _ "1 Gr Y (i
c, PrRe + x Re 77t 573 % (-h! (0)) (&)
R X Re R
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For a particular value of Pr, Redekopp calculated ng(O) and —th(O)
for various values of 7y/A by solving equations and boundary conditions
(3.19a-c) given in his paper, and has plotted these values for Pr = 1

in Figure 3 of his paper. However, by multiplying equations and bound-

ary conditions (3.19a-c) by 7Y/A , the resulting equations with
1/2 =

1 <Ri <Re , and therefore the solutions for the new functions fb ,
R
g and h given by
bR’ bR
> Y
£, =+ £
bR A bR
B =78
bR A bR
H =X.h
bR A bR

are independent of the value of vY/A and depend only on Pr. Conse-

A

—ﬁg (0) of equations (3) and (4) are independent of <Y/A and depend
a .

only on Pr. Hence, plotting fg (0) and —hg (0) for various values
R R

of Y/A 1is superfluous, as the correction terms %‘fg (0) and
R

%-(-hg (0)) are independent of Y/A and given by £f! (0) and
R

quently, the correction terms %—f; 0) = fg (0) and x-(—hg (0)) =
R R R

1SM

—61 (0) respectively for each value of Pr .
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Chapter 4. Conclusions

We have developed accurate analytical and numerical techniques to
calculate velocity and temperature distributions for stratified laminar
flows past hot or cold two-dimensional bodies. The resulting solu-
tions have been used to explain some of the physical phenomena which
can result due to ambient stable temperature (or density) stratification
and/or buoyancy-induced convection. It was found convenient to con-
sider separately two aspects of the full problem: the "near- and far-
field" regions. The "near-field" solution, which is calculated by
solving numerically the governing nonlinear equations, considers the
effects of ambient stratification and locally produced buoyancy contri-
butions very close to the body, and depends on the precise body-geometry
and surface temperature distribution. The "far-field" solution, which
is obtained by linear analysis, regards the body as a line disturbance
for both momentum and thermal energy, and is independent of the details
of the body shape and surface temperature distributions. In the near-
field numerical solutions, the accuracy of the outer boundary conditions
was found to be critical in obtaining correct results. The far-field
solutions were found to provide these proper conditions.

For stable stratifications, the Oseen flow fields at large dis-
tances from a line sink of horizontal or vertical momentum, or a line
heat source or heat dipole, exhibit the common feature of multiple re-
circulating rotors of finite thicknesses. The rotors produce an alter-
nating jet structure, both upstream and downstream, for the horizontal
velocity components and lee-waves in the overall flow. For each

singularity type and increasing amounts of stratification, the rotors
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increase in number and decrease in strength and size due to the increas-

ing buoyancy restoring force, thereby causing the Oseen horizontal
velocity profiles, both upstream and downstream, to decrease in magni-
tude and to be compressed more vertically. At very large distances
upstream and downstream, the velocity, temperature, and pressure fields
become self-similar. .

For the "near-field" solutions, we consider the flow past a hori-
zontal flat plate of finite length and constant surface temperature.
For all stratifications, the gravitationally induced streamwise pressure
gradient produces either an acceleration or deceleration of the bound-
ary flow compared with the corresponding forced convection case, depend-
ing on whether the plate is hot or cold. For sufficiently cold plates,
the buoyancy-induced adverse streamwise pressure gradient actually
causes the flow to separate, and this phenomenon is enhanced by further
cooling or increasing the amount of ambient stratification. A wave-
structure exists only for stably-stratified fluids, with the amplitudes
and wavelengths of the waves being decreased for increasing amounts of
ambient stratification.

The solution procedures developed in this dissertation may be use-
ful in analyzing other flow situations. Three-dimensional body geo-
metries may produce different physical phenomena than two-dimensional
bodies, as the fluid has the ability in the former case to flow past
the obstacle in the third direction. These techniques may also yield
more quantitative results and assist engineering predictions in the

study of various geophysical turbulent flows.





