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ABSTRACT

This thesis presents two physics analyses using 137 fb−1 proton-proton collision data
collected by the CMS experiment at

√
B = 13 TeV, along with a series of machine-

learning solutions to extend the physics program at the LHC and to address the com-
putational challenges in the High-Luminosity LHC era. The first analysis searches
for nonresonant Higgs boson pair production in final states with two photons and two
bottom quarks, with no significant deviation from the background-only hypothesis
observed. The observed (expected) upper limit on the product of the Higgs boson
pair production cross section and branching fraction into bbWW is 0.67 (0.45) fb,
corresponding to 7.7 (5.2) times the Standard Model prediction. The modifier of the
Higgs trilinear self-coupling is constrained within the range −3.3 < ^_ < 8.5. The
modifier for coupling between a pair of Higgs bosons and a pair of vector bosons,
along with the 2-dimensional constraint of the modifiers of Higgs self-coupling and
Yukawa coupling, are also reported. A graph-based algorithm to identify boosted
H → bb jets to improve future Higgs search is presented. The second analysis
searches for long-lived supersymmetry particles decaying to photons and gravitinos
in the context of gauge-mediated supersymmetry breaking model. Results are pre-
sented in terms of 95% confidence level expected exclusion limits on the masses and
proper decay lengths of the neutralino, which exceed the limits from the previous
searches by up to 100 GeV for the neutralino mass and by five times for the neu-
tralino proper decay length. A strategy for model-independent new physics searches
is presented with an anomaly trigger based on unsupervised learning algorithms
that can be deployed in both the high-level trigger and the Level-1 trigger in CMS.
Three other machine-learning solutions are presented to address the computational
challenges in the HL-LHC era: a layer based on multi-modal deep neural networks
that can reduce the false-positive events selected by the trigger by over one order of
magnitude while retaining 99% of signal events, a full-event simulation algorithm
based on recurrent generative adversarial networks that has potential to replace
traditional simulation method while being five orders of magnitude faster, and a
fast simulation algorithm for specific analyses based on encoder-decoder architec-
ture that would result in about an order-of-magnitude reduction in computing and
storage requirements for the collision simulation workflow.
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INTRODUCTION

The past century has witnessed an unprecedented progress of humanity in studying
the fundamentals of the universe. The creation of the Standard Model of particle
physics, along with the development of experimental high energy physics, set a
milestone in understanding the universe at the submicroscopic level via a remarkable
interplay between theory and experiments on a global scale. The discovery of
the Higgs boson in 2011 by the ATLAS and CMS collaborations at the Large
Hadron Collider (LHC) completed the 47-year-old prediction of the last piece of the
Standard Model, confirming its success in describing the fundamental matters and
their interactions.

After the Higgs was observed, major efforts in the particle physics community have
been dedicated to studying its properties via precision measurements and comparing
the results with the StandardModel predictions to test the limits of the theory. While
most results have been so far consistent with theory’s predictions, the Higgs self-
coupling parameter, which encapsulates key information to describe the shape of the
Higgs potential that has strong implication on the stability of the universe, has never
been measured. Setting limit on this parameter is one major goal of this thesis.

Despite its tremendous success, the StandardModel does not explain all the physical
phenomena, such as the nature of dark energy and dark matter, the dominance of
matters over antimatters, or the unnatural fine-tuning in the formulation of the
Higgs mass. Supersymmetry (SUSY) theory emerges as a beautiful solution to the
fine-tuning problem, with implication on the nature of dark matter as the lightest
SUSY particle. This is also known as the “WIMP miracle.” The last decade of
experimental results has ruled out the existence of SUSY in most phase space,
yet still leaves out the possibility of SUSY particles with long lifetimes. In the
context of collider physics, these long-lived particles, created from proton-proton
collisions, travel within the detector before decaying, inducing unique signatures in
the detector’s responses. A major part of this thesis is dedicated to searching for
one type of these long-lived particles with the signature of “delayed photons,” i.e.,
photons that decay from these long-live particles and do not point to the collision
vertex.

Given the null results so far in the quest of searching for physics beyond the Standard
Model, one might take a step back and rethink the whole pipeline of new physics
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searches. From one billion proton-proton collisions per second at the LHC, the
current technology only allows for saving up to one thousand collision events per
second for offline analysis. This drastic reduction requires us to carefully select
only physics events whose signatures are most likely associated with new physics
based on our own assumptions of how new physics should look like. But what
if our assumptions are wrong? Have we been chasing the unicorn while ignoring
the dragon? This question motivated us to explore a model-independent search
strategy: let’s catch anything that looks strange enough and examine it later. This
idea materializes into a proposal for an anomaly trigger, which uses unsupervised
learning algorithms trained on Standard Model processes to catch physics events
that do not resemble Standard Model. This thesis will discuss the detail of the
proposal and practical considerations in terms of implementations.

The LHC era coincides with the breakthrough of the deep learning era, largely
due to the realization that general-purpose graphics processing units can speed up
deep learning algorithms by several orders of magnitude. Since then, numerous
deep learning algorithms have been developed with significant impacts across many
scientific domains. This thesis will introduce several algorithms developed for
high energy physics, where domain knowledge is particularly crucial in creating
efficient algorithms for our highly complex data. More importantly, the next decade
of the LHC will observe its biggest upgrade into the so-called High-Luminosity
LHC, with ten times higher integrated luminosity collected over twelve years. This
significant upgrade imposes unprecedented challenges to the computing system,
where the required computing resources are projected to increase by more than fifty
folds while the budget stays relatively flat. As a powerful universal approximator,
a deep learning algorithm can replace some classical algorithms by providing an
approximate solution at a fraction of the computing cost. Furthermore, deep learning
can outperform many state-of-the-art traditional solutions, especially in the regime
of supervised learning, due to its flexibility in the retrieval of non-tabular input
data, which is ubiquitous in high energy physics, in combination with its powerful
learning capability for very high dimension manifolds via backpropagation and
stochastic gradient descent.

This thesis is organized into five parts. Part I lays the theoretical foundation for this
thesis, including a summary of the StandardModel and themotivation tomeasure the
Higgs self-coupling via double Higgs production in Chapter 1. Chapter 2 describes
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SUSY as the solution for the hierarchy problem introduced by the Standard Model,
motivating the searches for new physics in Part IV.

Part II describes the machines used in our experiments. In particular, Chapter 3
gives a brief description of the Large Hadron Collider in the CERN accelerator
complex. Chapter 4 describes the CMS detector and its components, along with the
trigger system and global data processing infrastructure.

In Part III, we focus on the studies of the Higgs bosons. Chapter 5 presents the
results of the searches for nonresonant double Higgs production in theHH → bbWW
final state using CMS data collected in Run 2. Chapter 6 proposes a novel boosted
H → bb jet identification technique based on graph interaction networks that takes
as input the jet constituents along with secondary vertex parameters. This technique
can be used for futureHiggs searches that benefit fromfinal states including energetic
Higgs bosons decaying into pairs of bottom quark-antiquark.

Part IV is dedicated to new physics searches. Chapter 7 describes the search
for long-lived particles in the context of gauge-mediated supersymmetry breaking
framework with delayed photon signatures using CMS Run 2 data. Chapter 8
describes the aforementioned proposal for an anomaly trigger in pursuit of model-
independent new physics searches based on unsupervised learning algorithms and
their implementations in the high-level trigger and Level-1 trigger systems in CMS.

Finally, Part V proposes a series ofmachine-learning solutions to address the compu-
tational challenges in theHigh-Luminosity LHC era. These challenges are explained
in Chapter 9, where the opportunities for deep-learning solutions arise thanks to a
novel heterogeneous computing platform being installed in the next run of the LHC.
Chapter 10 addresses the noisy selection in the current trigger system and proposes
an additional cleanup layer that can retain 99% signal while reducing the background
by over one order of magnitude. Chapter 11 describes our efforts in replacing full-
event simulation with recurrent generative adversarial networks, starting with the
generation of pileup events. Chapter 12 introduces a more practical approach for
fast simulation, where we use the encoder-decoder architecture to regress recon-
structed event information from generator level, skipping the intermediate classical
simulation step, which would result in about an order-of-magnitude reduction in
computing and storage requirements for the collision simulation workflow.



Part I

Theoretical foundation

4
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C h a p t e r 1

THE STANDARD MODEL OF PARTICLE PHYSICS

The Standard Model (SM) of particle physics is a renormalizable quantum field
theory describing the interactions of all the known elementary particles, governed
by the gauge symmetry group SU(3)2 × SU(2)! ×U(1). , where the subscript 2 refers
to the conserved quantum numbers for color, ! for left-handedness, and . for the
hypercharge. There are three classes of particles in the SM: (1) the force-carrying
particles, which are bosons of spin one, transmitting the electromagnetic, weak,
and strong forces; (2) the matter particles, including quarks and leptons, which are
fermions of spin one half; and (3) the Higgs particle, which is a boson of spin
zero. Fermions are grouped into three generations: (a4, 4, D, 3), (a`, `, 2, B), and
(ag, g, C, 1). Fig. 1.1 summarizes the particle content of the SM.

Figure 1.1: The catalog of elementary particles in the Standard Model [1].

The SU(3)2 group corresponds to the local symmetry where “gauge-ing,” i.e., re-
quiring the Lagrangian is invariant under continuous space-time-dependent phase
changes (local gauge transformation), gives rise to quantumchronodynamics (QCD),
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where the strong interaction is invariant under rotations in color space. The glu-
ons, which mediate the strong force, arise from the eight generators of the SU(3)
symmetry group, which are also known as the Gell-Mann matrices [2].

Formally, starting with the Dirac equation for a free quark:

(8W`m` − <)k(G) = 0, (1.1)

where W` are the Dirac matrices and k(x) is the SU(3)2 triplet for the quark field,
one imposes the local SU(3)2 transformation:

k(G) → 4
86B

_ 9

2 \ 9 (G)k(G), (1.2)

where 6B is the strong coupling constant, _ 9 are the Gell-Mann matrices, and \ 9 (x)
are the rotation angles.

The invariance of the Dirac equation under such a local phase transformation is only
possible by introducing the covariance derivative:

�` = m` − 8
6B

2
_ 9�

`

9
(G), (1.3)

where �`

9
(G) are the gauge vector fields corresponding to the eight gluons. Conse-

quently, the QCD Langrangian density becomes:

LQCD = k̄(G) (8W`�
` − <)k(G) − 1

4
�9 ,`a�

`a

9
, (1.4)

where �`a
9
is the field strength tensor:

�
`a

9
= m

`
�
a
9 − m

a
�
`

9
− 6B 5 9 :;�

`

:
�
a
; . (1.5)

The non-abelian nature of the SU(3)2 group has profound consequences on the phe-
nomenology of QCD. Quarks and gluons exhibit a phenomena called confinement,
where they can neither be isolated nor observed directly [3]. Instead, they must
group together to form hadrons, which can be either mesons (comprising one quark
and one antiquark) or baryons (comprising three quarks). Since the Pauli exclusion
principle forbids identical fermions to occupy the same quantum state, all hadrons
are color singlets. Finally, as the strong coupling constant changes its value as
a function of energy, the strong force becomes weakened at high energy, making
quarks appear to be “free” when probed by high energy photons. This property is
called asymptotic freedom [4].



7

Similarly, gauge-ing the SU(2)! × U(1). group, associated with the electroweak
interaction, gives rise to a collection of massless spin 1 gauge bosons. However, the
experimentally verified mediators of the weak forces, the,± and / bosons, do have
mass. Additionally, the fermion’s mass term <k̄(G)k(G) in Eq. 1.4 is not gauge
invariant. To solve this problem, the electroweak theory introduces an additional
complex SU(2)! doublet of spin zero fields that will keep the full Langrangian
invariant under SU(2)! × U(1). via the Brout-Englert-Higgs (BEH) mechanism
[5–13]. The field is defined as:

q(G) = 1
√
2

(
q1 + 8q2
q3 + 8q4

)
, (1.6)

where q8 (i = [1..4]) are normalized scalar fields. This field is introduced in the BEH
mechanism via the BEH scalar part of the SM Lagrangian density:

LBEH = (�`
q)†(�`q) −+ (q). (1.7)

The renomalizability and invariance of SU(2)! × U(1). require the BEH potential
+ (q) to be of the form:

+ (q) = −`2q†q + _(q†q)2, (1.8)

where _ and `2 are positive. At lower values of q, the potential is dominated by the
first term, exhibiting a concave downwards behaviors. As q goes higher, the second
term in Eq. 1.8 dominates the potential value, trending the function + (q) upwards.
This results in the characteristic “Mexican hat” shape of the BEH potential, as
illustrated in Fig. 1.2.

The BEH potential has a set of degenerate minima lying on a ring in the complex
plane with the radius:

|q0 | =
√
q
†
0q0 =

√
`
2

2_
≡ 3

√
2
, (1.9)

where 3 is known as the vacuum expectation value (vev) of the scalar potential
+ (q). Each ground state on the ring is asymmetric under the U(1) symmetry of
the Lagrangian. Therefore, the global U(1) symmetry is spontaneously broken: all
ground states result in the same physical observables, but differ in their mathematical
descriptions.

The non-zero vev allows for perturbative expansion of the field around the minimum
by shifting the q field by an amount of 3, so that the new field ℎ = q − 3 is centered
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Im(q)
Re(q)

V(q)

Figure 1.2: The “Mexican hat” shape of the Brout-Englert-Higgs potential + (q) as
a function of the complex scalar field q.

at the vacuum, i.e., 〈ℎ〉 = 0. Additionally, we can choose the coordinates for q(G)
in Eq. 1.6 such that

〈
q1

〉
=

〈
q2

〉
=

〈
q4

〉
= 0,

〈
q3

〉
= 3 + 〈ℎ〉 , so that the field

becomes:

q(ℎ) = 1
√
2
exp

(
8b0f

0

3

) (
0

3 + ℎ

)
, (1.10)

where b0 are the fields and f
0 are the Pauli matrices with 0 summed over 1 to 3.

This expression is equivalent to Eq. 1.6 in the infinitesimal fluctuations around the
vacuum up to linear order. Under the SU(2)! gauge transformation:

q → exp
(
8_
0
! (G)

f
0

2

)
q, (1.11)

by choosing the rotation angles _0! (G) = −2b0
3
, the field becomes:

q(ℎ) = 1
√
2

(
0

3 + ℎ

)
. (1.12)

The gauge transformation has entirely removed the dependence on b0, or equivalently
q1, q2, q4. The only physical degree of freedom left is the real scalar field ℎ(G) that
corresponds to the a massive physical field, called the Higgs field. This gauge choice
is called unitary gauge.

Expanding the unitary gauge field into the kinetic term in Eq. 1.7, we obtain:

(�`q)
†(�`

q) ⊃ 6
2
3
2

4
,

+
`,

−` + (62 + 6′2)32

8
/`/

`
, (1.13)
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where the covariant derivative takes the form:

�` = m` − 8
6
′

2
�` − 8

6

2
,
0
`f

0
, (1.14)

where ,± and / fields are linear combinations of the SU(2)! and U(1). gauge
bosons:

,
±
` =

,
1
` ∓ 8,

2
`√

2
, /` =

6,
3
` − 6

′
�`√

6
2 + 6′2

, (1.15)

and 6 and 6′ are the gauge couplings for the gauge groups U(1). and SU(2)! ,
respectively.

For a real vector field � with the mass term <, L ⊃ 1
2<
2
�`�

`. Therefore, Eq. 1.13
gives rise to the mass of,± and / bosons:

<
2
, =

6
2
3
2

4
, <

2
/ =

(62 + 6′2)32

4
. (1.16)

Now expanding the unitary gauge field into the BEH potential in Eq. 1.8, we obtain:

+ = _3
2
ℎ
2 + _33ℎ

3 + 1
4
_4ℎ

4 + const. (1.17)

For a real scalar field q with mass <, + ⊃ 1
2<
2
q
2. Therefore, the first term in

Eq. 1.17 gives rise to the Higgs mass:

<ℎ =

√
2_32. (1.18)

The second and third terms in Eq. 1.17 describe the Higgs trilinear and quartic
self-couplings. In the SM, _3 = _4 = _SM = <

2
ℎ/(23

2). Any deviation from the SM
will start from the cubic and higher terms of the self-couplings, since any change in
O(ℎ2) will be absorbed into a redefinition of <ℎ.

Moreover, in view of the renormalization group (RG) method [15, 16], where the
coupling parameters _ are “running” parameters depending on the energy scale `
via the beta function:

V(_) = 3_

3 log `
, (1.19)

one can compute the one-loop beta functions for the Higgs quartic coupling:

16c2
3_

3 log `
= 12(_2 + _H2C − H

4
C ) + O(64) + O(62_), (1.20)

where HC is the Yukawa coupling between the Higgs field and the fermion fields that
also runs on the energy scale `. The negative quartic term in Eq. 1.20 implies that
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Figure 1.3: The RG evolution of the SM Higgs self-coupling as a function of the
energy scale [14].

the Yukawa coupling HC can drive the Higgs self-coupling _ to negative values at
some high energy scale ` ∼ 1010GeV, as shown in Fig. 1.3. The negative Higgs
self-coupling then creates a region with potential energy lower than the current
electroweak vacuum found in Eq. 1.9, rendering it a metastable “false vacuum.”
Consequently, at some point in the universe, the false vacuum can decay to the true
minima via bubble nucleation to favor the lower energy state [14, 17, 18].

The Higgs boson self-coupling therefore plays a crucial role in understanding the
fate of the universe as well as in the search for any deviation from the SM, yet has
never been directly measured. Measuring the Higgs trilinear self-coupling is the
focus of Part. III of this thesis.
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C h a p t e r 2

PHYSICS BEYOND THE STANDARD MODEL

In the effective field theory approach of the Standard Model, the Yukawa interaction
between the Higgs and fermion fields induces quadratic corrections to the Higgs
mass that go up to the ultraviolet cutoff scale ΛUV [19]:

<
2
ℎ = <

2
0 + Δ<

2
ℎ,

Δ<
2
ℎ ⊃ − |Hf |

2

8c2
Λ
2
UV,

(2.1)

where <0 is the bare Higgs boson mass and Δ<
2 are the loop corrections, which are

dominated by the top quark loop. The ΛUV cutoff scale is on the order of the Planck
scale, M% ∼ O(1019) GeV, while the mass of the Higgs is experimentally measured
to be ∼ 125GeV. This turns Eq. 2.1 into a subtraction of two extremely large
numbers that precisely differ by the square of the Higgs mass, which is 34 orders of
magnitude smaller. This enormous fine-tuning inherently conflicts with the idea of
naturalness [20], which suggests that physical parameters of a theory should be of
the same order. In this case, physics at a lower energy scale (electroweak) should
not be sensitive to the physics at a much higher energy scale (Planck scale). This
conflict is known as the hierarchy problem, a key motivation for a new physics
theory called supersymmetry (SUSY) [19].

SUSY theory posits a new spacetime symmetry between fermions and bosons, where
each particle in the SM has a superpartner. In this scenario, every fermion loop in
the Higgs mass correction in Eq. 2.1 is accompanied with a new scalar loop induced
by the superpartner, as shown in Fig. 2.1.

ℎ

5

ℎ

ℎ

5̃

ℎ

Figure 2.1: Example Feynman diagrams for the loop corrections of the Higgs boson
mass in SUSY theory. The left diagrams shows the SM fermion loop, while the
addition of the scalar superpartner correction is shown on the right diagram.
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Figure 2.2: Illustration of the particle content in the MSSM as an extension of the
Standard Model [21].

The new scalar superpartner, along with the SM fermion loops, contribute to the
correction of the SM Higgs mass as:

Δ<
2
ℎ ≈

1
16c2

(
−2|Hf |

2 + _S
)
Λ
2
UV, (2.2)

where _S is the coupling of the Higgs field with the scalar superpartner. If |Hf |
2
=

_S/2, the quadratic contribution of the ΛUV cutoff would be exactly cancelled out in
the Higgs mass correction, elegantly solving the hierarchy problem. There are many
extended models of the SM that realizes supersymmetry. This thesis focuses on the
Minimal Supersymmetric Standard Model (MSSM), the simplest extension of the
SM where a minimum amount of new particle states and interactions are added to
remain consistent with experimental results in the SM.

The naming conventions of SUSY particles are follows: superpartners of SM
fermions are bosons with “s-” prefixing to the SM fermion counterpart, e.g., the su-
perpartner of tau lepton is “stau slepton”; superpartners of SM bosons are fermions
with “-ino” appending to the SM boson counterpart, e.g., the superpartner of Higgs
is called “Higgsino” and the “-on” is dropped if the boson’s name ends with it,
e.g., gluon becomes “gluino.” To denote the superpartner fields or particle states, a
tilde is added on their SM counterparts, e.g., the top quark “t” has the superpartner
called stop squark “̃t.” An illustration of particle content in the MSSM with the
superpartners of the SM is shown in Fig. 2.2.
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In constructing the MSSM, to allow the symmetry algebra to close off-shell, pre-
serving SUSY as a quantum theory, additional fields called “auxiliary” fields must
be added. These are bookkeeping fields to ensure that the number of degrees of
freedom for boson and fermion fields are the same at higher orders in perturbation
theory [19].

If the symmetry in SUSY theory is unbroken, each superpartner would have the
exact same mass and charge as its SM counterpart. Since no such particles have
been discovered, supersymmetry needs to be a broken symmetry in the vacuum state
to drive the superpartners’ masses to the unexplored TeV scale. The Lagrangian
term that “breaks” SUSY, i.e., introduces the difference between particles and their
superpartners, must not contain dimensionless coupling parameters to preserve the
exact cancellation of theΛ2UV term in Eq. 2.1 from the unbroken SUSY. The effective
Lagrangian of the MSSM therefore takes this form:

L = LSUSY + Lsoft, (2.3)

where LSUSY contains all the gauge and Yukawa interactions that do not break
supersymmetry and Lsoft contains only mass terms and coupling parameters with
positive mass dimension that violate supersymmetry. The contribution of Lsoft to
the Higgs mass correction is of the form [19]:

Δ<
2
ℎ ⊃ <

2
soft

(
_

16c2
log

ΛUV
<soft

)
, (2.4)

where<soft is the largest mass scale associated withLsoft. As this finite contribution
depends only logarithmically on ΛUV, any modification of physics at higher energy
scale does not significantly affect physics at the electroweak scale, preserving nat-
uralness, assuming <soft is on the TeV scale. This process is therefore called soft
supersymmetry breaking (where the “softness” comes from the fact that only physics
processes with low energies are being changed from supersymmetry breaking).

Different frameworks have been proposed to generate terms in Lsoft that sufficiently
break supersymmetry. As there is no appropriate field in theMSSM that can acquire
the non-zero vev to be the primary source of SUSY breaking, additional fields must
be added to the MSSM in which breaking can occur. These fields can only come
from a hidden sector, where the spontaneous symmetry breaking effects are then
mediated to the visible sector, which is the MSSM, via a messenger sector. A
framework of interest in this thesis to describe the mediating interactions is called
gauge-mediated supersymmetry breaking (GMSB) [22–31].
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In GMSB, assuming the vev acquired in the hidden sector is 〈�〉, the scalar and the
auxiliary fields in MSSM will acquire vev’s 〈(〉 and 〈�(〉, respectively, such that:

〈�(〉 . 〈�〉 � "% . (2.5)

The masses of the gauginos will take the form:

<0 ∼
6
2
0

16c2
Λ, (2.6)

where 60 are parametrization of the SMgauge couplings: 6B, 6, and 6
′;Λ = 〈�(〉/〈(〉

is the effective SUSY breaking scale. The scalar masses for the MSSM fields are
given by:

<̃
2 ∼ 2Λ2

3∑
0=1

�0, (2.7)

where �0 is the quadratic Casimir invariant of the relevant MSSM scalar [32]. The
lightest supersymmetric particle (LSP) is the gravitino, whose mass takes the form:

<
�̃
=

〈�〉
√
3"%

. (2.8)

An important property of the MSSM is the conservation of the R-parity:

%' = (−1)3(�−!)+2B, (2.9)

where � is the baryon number, ! the lepton number, and B the spin of the particle.
All SM particles have even R-parity (%' = +1) while all the supersymmetric
particles (sparticles) have odd R-parity (%' = −1). Conservation of R-parity
requires that every interaction vertex contains an even number of odd R-parity
%' = −1. Consequently:

• The LSP must be absolutely stable.

• Decay products of sparticles other than the LSP must contain an odd number
of sparticles.

• In a pp collision, the sparticles are always pair produced.

In GMSB, sparticles decay into a gravitino plus other SM particles with the decay
rate:
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Γ( -̃ → �̃-) =
<
5
-̃

16c〈�〉2

[
1 −

(
<-

<
-̃

) 2] 4
, (2.10)

where -̃ is a sparticle and - is its SM counterpart. For large vev 〈�〉 in the hidden
sector, the decay rate of the sparticle -̃ could be very small, resulting in a long
lifetime. Searching for such long-lived sparticles in the GMSB model is the focus
of Ch. 7 in Part IV of this thesis.
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C h a p t e r 3

THE LARGE HADRON COLLIDER

The Large Hadron Collider (LHC) [33] is the world’s most powerful particle accel-
erator. Constructed by the European Organization for Nuclear Research (CERN), it
consists of a 26.7-kilometer ring of superconducting magnet located on the border
between Switzerland and France that circulates two counter-rotating hadron beams
and delivers proton-proton (pp) collisions at center-of-mass energies up to 14 TeV
with a peak crossing rate of 40 MHz in its most common configuration. Its goal is
to provide the data needed for physicists to test different theories of particle physics,
to understand the mechanism of electroweak symmetry breaking through measure-
ments of properties of the Higgs boson, and to search for evidence of new particles
beyond the Standard Model, such as supersymmetry and dark matter.

The LHC is located within the CERN accelerator complex, which is a series of
machines that accelerate particles to increasingly higher energy. The protons start
from a bottle of hydrogen gas, where an electric field strips the electrons out of
hydrogen atoms to produce the protons. These protons go through the Linac 2
accelerator to achieve an energy of 50 MeV, and then pass through the Proton
Synchrotron Booster (PSB), the Proton Synchrotron (PS), and the Super Proton
Synchrotron (SPS), which boost the proton beams to 1.4 GeV, 25 GeV, and 450 GeV,
respectively, before transferring to the two beamlines of the LHC. The layout of the
CERN accelerator complex is shown in Fig. 3.1.

Inside the LHC, the two counter-rotating beams are captured, accelerated, and stored
with the 400 MHz superconducting radio-frequency cavity system. The beams take
approximately 20 minutes to reach their maximum energy of 6.5 TeV before they
are brought to collision at four collision points that house the four main experiments
at the LHC: ATLAS, ALICE, CMS, and LHCb. The two beams collide at a half
crossing angle of 150 microradian (`rad) at the start of the collisions, and then
reduce by 10 `rad every few hours down to a minimum of 120 `rad as the beams
lose their intensity. During the Run 2 data-taking period (from 2016 to 2018), the
interval between two consecutive collisions is 25 ns.
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Figure 3.1: The schematic layout of the CERN accelerator complex [34].

For any physics process occurring at the LHC, the number of events produced #exp
is the product of the experimental cross section fexp and the integrated luminosity:

#exp = fexp

∫
L(C)3C, (3.1)

where L(C) is the instantaneous luminosity, defined as [33, 36]:

L =
#
2
1=1 5revWA
4cn=V

∗ ', (3.2)

where #21 is the number of protons per bunch, =1 is the number of bunches per beam,
5rev is the revolution frequency, WA is the relativistic factor, n= is the normalized
transverse beam emittance (measuring the average spread of the beam), V∗ is the
beta function at the collision point (measuring the transverse size of the beam), and
R is the geometric luminosity reduction factor due to non-zero crossing angle at the
collision point, defined as:
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Figure 3.2: Cumulative luminosity versus day delivered to CMS during stable beams
for pp collisions at nominal center-of-mass energy during the Run 2 data-taking
period [35].

' =

[
1 +

(
\2fI

2f∗

) 2] − 12
, (3.3)

where \2 is the full crossing angle at the collision point, fI is the RMS bunch length
and f∗ is the transverse RMS beam size at the collision point.

The designed peak luminosity of the LHC is L(C) = 1034 cm−2s−1 [36]. Fig. 3.2
shows the integrated luminosity delivered to the CMS experiment during the Run
2 data-taking period, which is about 41.6 fb−1, 49.8 fb−1, and 67.9 fb−1 during
2016, 2017, and 2018, respectively. Note that the LHC also delivered around
4.3 fb−1 to CMS during 2015, but this small amount of data is not considered in
most physics analyses since adding them would involve substantial computational
resources regarding data processing, simulation, and calibration with insignificant
gain.

An LHC collision occurs when two proton bunches from the two beams pass through
each other. As each bunch contains up to 1.15 × 1011 protons, there are multiple
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Figure 3.3: Distributions of average number of interactions per crossing (pileup) for
pp collisions in each year during the Run 2 data-taking period [35].

collisions happenwithin one bunch crossing. Each collision event therefore contains
many superposed particle interactions, in which typically at most one interaction of
interest triggers the system to be saved for downstream processing. The other inter-
actions, called pileup interactions, are parasitic background processes that mainly
consist of low transverse momentum particles in the events. These pileup interac-
tions require further efforts to simulate, characterize, and reduce in analyses. The
average number of pileup per bunch crossing can be computed as follows:

#pileup =
finelL
5

, (3.4)

where finel is the inelastic pp scattering cross section (measured to be 71.3 mb at 13
TeV [37]), L is the usual instantaneous luminosity, and 5 is the frequency of bunch
crossings (with nominal value of 28.7 MHz for 2018). The pileup distributions for
each year during the Run 2 data-taking period are shown in Fig. 3.3.
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C h a p t e r 4

THE COMPACT MUON SOLENOID EXPERIMENT

The CompactMuon Solenoid (CMS) is one of the two general-purpose detectors op-
erating at the LHC. Its most outstanding features include a superconducting solenoid
magnet coil that produces a magnetic field of 3.8 Tesla, wrapping a system of hadron
calorimeter, electromagnetic calorimeter, and a silicon-based pixel and strip tracker.
Outside the solenoid magnet coil is a muon chamber system interspersed with iron
return yoke. The total system has a cylindrical structure that spans 28.7 m long,
with a radius of 7.5 m, and weighs 14 000 tonnes. A cutway diagram of the CMS
detector is shown in Fig. 4.1, and Fig. 4.2 shows a cross-sectional-slice view illus-
trating the interactions of various particle types with different detector components.
More detailed description of the CMS detector can be found in [38].

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

PRESHOWER
Silicon strips ~16 m2 ~137,000 channels

SILICON TRACKERS

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic field

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

Pixel (100x150 μm2) ~1 m2 ~66M channels
Microstrips (80–180 μm) ~200 m2 ~9.6M channels

Figure 4.1: Cutway diagrams of the CMS detector [39].

CMS adopts a Cartesian coordinate system with the origin located at the nominal
interaction point. The x- and z-axes lie on the horizontal plane, with the positive
x-axis points toward the center of the LHC ring, the positive z-axis points along the
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Figure 4.2: A cross-sectional-slice view of the CMS detector illustrating the inter-
actions of various particle types with different detector components [40].

counter-clockwise beam at the intersection point westward of CMS. The positive
y-axis points vertically upward. Alternatively, CMS also commonly uses a modified

cylindrical coordinate system, with the radial distance d =

√
G
2 + H2, the azimuthal

angle q defined in the transverse x-y plane measured from the +x axis, and the polar
angle \ measured from the +z axis. In hadron collider physics, the pseudorapidity
[ ≡ − ln

[
tan \2

]
is used instead of \. The pseudorapidity is equivalent to the

rapidity of a particle in the limit ? � <, where ? and < are the momentum and
mass, respectively, of the particle. The rapidity H is defined as:

H ≡ 1
2
log

� + ?I
� − ?I

. (4.1)

Expanding H in terms of [ and U = </pT, where pT = ? sin \, we obtain:

H =
1
2
log

√
cosh2 [ + U2 + sinh [√
cosh2 [ + U2 − sinh [

≈ [ − 1
2
U
2 tanh [ + O(U3) U→0−−−−→ [.

(4.2)

The rapidity H is used to define the angular separation between particles, Δ' ≡√
(ΔH)2 + (Δq)2, which is Lorentz invariant under a boost along the longitudinal
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axis: 3H I−boost−−−−−→ 3H. While the rapidity depends on both the particle mass and polar
angle, the pseudorapidity only depends on the polar angle and is approximately
Lorentz invariant under I boosts for energetic particles (? � <), which are of
interest to CMS.

4.1 The superconducting solenoid

Figure 4.3: The magnetic field values (left) and the magnetic field lines (right)
produced by the superconducting solenoid magnet of the CMS detector [41].

The superconducting solenoid magnet of CMS is the central component of the
detector. It creates a 3-m radius and 12.5-m length free bore, composed of 2179
turns of superconducting wire braid made of NbTi wire wound in 4 layers, producing
a central homogeneousmagnetic field of 3.8 T along the beam line inside the solenoid
[38, 42–44]. It is embraced by a 10 000-ton return yoke made of construction steel.
The return yoke includes 5 dodecagonal wheels in the barrel and six disks at the
endcaps. Each barrel wheel except the central one has three layers of steel, divided
in 12 sectors in the transverse plane. The central barrel wheel has an extra layer of
steel. The map of the magnetic field in the H − I plane is shown in Fig. 4.3.

4.2 The tracker
The silicon tracking system is designed to record the trajectories of charged particles
coming from interaction points, thus measuring their momenta as well as primary
and secondary vertices. This subdetector system, located closest to the collision
points, consists of an inner pixel detector and an outer strip tracker, with an outer
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Figure 4.4: Diagram of the CMS inner tracker in one r-z quadrant, with the collision
point at the origin. Green lines depict the pixel detector, while the single-sided and
double-sided strip trackers are shown in red and blue, respectively [45].

radius of 110 cm and total length of 540 cm, covering the range |[ | < 2.5. Fig. 4.4
shows the layout of the CMS inner tracker.
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of reconstructed hits that is not associated with any simulated hit (ghost hits) is less than
0.01%. Both the reconstruction efficiency and the ghost rate quoted here do not take into
account readout inefficiencies.

Typical simulated resolutions, for unirradiated sensors, are better than 15 µm in the barrel
in the transverse direction and vary between 15–30 µm for the barrel longitudinal direction
and for the endcap disks. The position resolution before and after irradiation was measured
in test beams with prototype sensors and a 3 T magnetic field. Along the r-φ direction the
measured resolution is between 4 and 15 µm for clusters of more than 1 pixel, depending of
the impact angle and on the irradiation fluence. To estimate the position resolution in CMS
conditions a sensor simulation was implemented which used the electric field profile mea-
sured with irradiated sensors and trapping of charge carriers. A detailed description of the
simulation program and of the data analysis can be found in [173]. Figure 6.7 shows the spa-
tial resolution along the r-φ direction as a function of the angle between the track direction
and the normal to the sensor plane. The position resolution before irradiation depends only
weakly on the impact angle. After a fluence of Φ = 6.7 × 1014 n cm−2, the bias voltage is in-
creased to compensate for the charge losses. Due to the decreased amplitude of the Lorentz
deflection, the resolution degrades at large φ angles. A bias voltage of 450 V provides the
best position resolution at this fluence. At a fluence of Φ = 9.7 × 1014 n cm−2 the resolution
further deteriorates, however the optimal bias voltage is still below 600 V.

 (degrees)φ
-10 -5 0 5 10

m
)

µ
S

p
a
ti
a
l 
re

s
o
lu

ti
o
n
 (

0

5

10

15

20

25

30 =150 V
b

, V
2

/cm
eq

=0 nΦ
=300 V

b
, V

2
/cm

eq
 n1410×=6.7Φ

=450 V
b

, V
2

/cm
eq

 n1410×=6.7Φ
=600 V

b
, V

2
/cm

eq
 n1410×=6.7Φ

=450 V
b

, V
2

/cm
eq

 n1410×=9.7Φ
=600 V

b
, V

2
/cm

eq
 n1410×=9.7Φ

Figure 6.7: Pixel position resolution along the r-φ direction as a function of the angle between
the track direction and the normal to the sensor plane. The resolution is calculated for an
unirradiated sensor (solid line) and for sensors exposed to an irradiation fluence of Φ =
6.7 × 1014 n cm−2 (dashed lines) and Φ = 9.7 × 1014 n cm−2 (dotted lines). For the irradiated
sensors, the position resolution is calculated at different bias voltages.

In the default mode the pixel simulation is tuned to unirradiated sensors, therefore the best
position resolution is used in most physics studies.

Figure 4.5: Spatial resolution of the pixel along the A − q direction as a function of
the angle between the track direction and the normal to the sensor plane [38].

The inner pixel detectors compose of a total of 66million silicon sensors, each with a
pixel size of 100×150`<2 in Aq×AI. The barrel region contains three layers of pixels
at radii of 4.3, 7.3, and 10.4 cm, consisting of 48 million pixels. The remaining
18 million pixels are in the four disks of the endcap. As the peak luminosity
approaches two times the nominal design value during Run 2, the inefficiencies of
the pixel detectors increase by 16% due to a limited readout bandwidth [46]. To
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maintain the high tracking efficiency, the CMS collaboration installed a new pixel
detector in March 2017 as part of the Phase I upgrade, with four barrel layers and
six endcap disks, containing 79 million pixels in the barrel and 45 million pixels in
the endcap. The spatial resolution for the inner pixel detectors is shown in Fig. 4.5.

The outer strip tracker consists of 9.3 million strip sensors. Its barrel region includes
2 parts: a Tracker Inner Barrel (TIB) and a Tracker Outer Barrel (TOB), while its
endcap region is divided into the Tracker End Cap (TEC) and Tracker Inner Disks
(TID). The TIB consists of 4 layers of 320-`m-thick silicon sensors and a strip pitch
of 80 to 120 `m. The TOB includes 6 layers of 500-`m-thick sensors and a strip
pitch of 120 to 180 `m. As the TOB is farther away from the collision points, the
particle flux and radiation levels are smaller compared to TIB, thicker sensors can
be used to maintain a good signal over noise ratio for longer strip length and wider
pitch. The TEC comprises 9 disks of 320 `m silicon sensors and the TID comprises
3 small disks of silicon sensors of the same thickness that fill the gap between the
TIB and TEC.
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Figure 4.6: Transverse momentum resolution as a function of pT (left) and [ (right)
for single, isolated muons in the barrel, transition, and endcap regions of the tracker
[47].

Fig. 4.6 shows the transverse momentum resolution as a function of pT and [ of
the tracker. The best resolution (less than 1%) is achieved with particles having
transverse momenta close to 1 GeV and trajectories on the transverse plane.

4.3 The electromagnetic calorimeter
The electromagnetic calorimeter (ECAL) is a hermetic, homogeneous calorimeter
surrounding the tracker. It is made of lead tungstate (PbWO4) crystals, which have
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Chapter 4

Electromagnetic Calorimeter

4.1 Description of the ECAL
In this section, the layout, the crystals and the photodetectors of the Electromagnetic Calor-
imeter (ECAL) are described. The section ends with a description of the preshower detector
which sits in front of the endcap crystals. Two important changes have occurred to the ge-
ometry and configuration since the ECAL TDR [5]. In the endcap the basic mechanical unit,
the “supercrystal,” which was originally envisaged to hold 6×6 crystals, is now a 5×5 unit.
The lateral dimensions of the endcap crystals have been increased such that the supercrystal
remains little changed in size. This choice took advantage of the crystal producer’s abil-
ity to produce larger crystals, to reduce the channel count. Secondly, the option of a barrel
preshower detector, envisaged for high-luminosity running only, has been dropped. This
simplification allows more space to the tracker, but requires that the longitudinal vertices of
H → γγ events be found with the reconstructed charged particle tracks in the event.

4.1.1 The ECAL layout and geometry

The nominal geometry of the ECAL (the engineering specification) is simulated in detail in
the GEANT4/OSCAR model. There are 36 identical supermodules, 18 in each half barrel, each
covering 20◦ in φ. The barrel is closed at each end by an endcap. In front of most of the
fiducial region of each endcap is a preshower device. Figure 4.1 shows a transverse section
through ECAL.

y

z

Preshower (ES)

Barrel ECAL (EB)

Endcap

= 1.653

= 1.479

= 2.6
= 3.0

ECAL (EE)

Figure 4.1: Transverse section through the ECAL, showing geometrical configuration.

146

Figure 4.7: Layout of the CMS electromagnetic calorimeter in one r-z quadrant
[38].

short radiation length and Moliére radius (-0 = 0.85 cm, '" = 2.19 cm) [38, 48],
allowing for better shower position resolution and a compact calorimeter. The ECAL
central barrel region (EB) contains 61 200 crystals with pseudorapidity coverage up
to |[ | < 1.48, closed by the two endcaps (EE) with 16 468 crystals, extending the
coverage up to |[ | < 3.0. Crystals are positioned slightly off-pointing with an
angle of ∼ 3◦ relative to the interaction point to avoid cracks aligned with particle
trajectories. Additionally, a preshower detector (ES) made of 4288 sensors and
137 216 silicon strips is placed in front of the endcaps to identify neutral pions (c0)
and improve granularity. Fig. 4.7 shows a geometrical layout of the ECAL.

In the barrel region, two avalanche photodiodes (APDs), each with an active area of
5 × 5 mm2, are glued to the back of each crystal. The APD has rise time less than
2 ns, with an operating voltage between 340 − 430 V and a typical dark current of
3 nA. Photodetectors in the endcaps are vacuum phototriodes (VPTs). Each VPT,
measured 25mm in diameter, is glued to the back of each endcap crystal. When
an electron or photon hits the ECAL crystals, a light signal is produced via the
scintillation process. This scintillation light produces ADP/VPT pulses that are
recorded and further processed by the readout electronics system.

The energy resolution of the ECAL is parameterized as a function of energy [38]:(f
�

) 2
=

(
(
√
�

) 2
+

(
#
√
�

) 2
+ �2, (4.3)

where ( is the stochastic term, related to statistic fluctuations in the signal, # the
noise, related to electronics noise and pileup, and � the constant term, related
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resolution, measured by fitting a Gaussian function to the reconstructed energy distributions,
has been parameterized as a function of energy:

(
σ

E

)2

=
(

S√
E

)2

+
(

N

E

)2

+ C2, (1.2)

where S is the stochastic term, N the noise and C the constant term. The values of these
parameters are listed in the figure.
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Figure 1.7: ECAL supermodule energy resolution, σE/E, as a function of electron energy
as measured from a beam test. The upper series of points correspond to events taken with
a 20×20 mm2 trigger and reconstructed using a containment correction described in Sec-
tion 4.3.2.2. The lower series of points correspond to events selected to fall within a 4×4 mm2

region. The energy was measured in an array of 3×3 crystals with electrons impacting the
central crystal.

1.5.4 Hadron calorimeter

The design of the hadron calorimeter (HCAL) [3] is strongly influenced by the choice of mag-
net parameters since most of the CMS calorimetry is located inside the magnet coil (Fig. CP
1) and surrounds the ECAL system. An important requirement of HCAL is to minimize
the non-Gaussian tails in the energy resolution and to provide good containment and her-
meticity for the Emiss

T measurement. Hence, the HCAL design maximizes material inside the
magnet coil in terms of interaction lengths. This is complemented by an additional layer
of scintillators, referred to as the hadron outer (HO) detector, lining the outside of the coil.
Brass has been chosen as absorber material as it has a reasonably short interaction length, is
easy to machine and is non-magnetic. Maximizing the amount of absorber before the mag-
net requires keeping to a minimum the amount of space devoted to the active medium. The
tile/fibre technology makes for an ideal choice. It consists of plastic scintillator tiles read
out with embedded wavelength-shifting (WLS) fibres. The WLS fibres are spliced to high-

Figure 4.8: ECAL energy resolution as a function of electron energy measured in a
3 × 3 crystal cluster [38].

to the uncertainties associated with channel-by-channel calibration, leakage, dead
material, etc. These terms are measured with a parametric fit to the resolutions
obtained from Gaussian fits to the reconstructed energy distributions in different
energy bins, with the values shown in Fig. 4.8. Note that while the momentum
resolution of the tracker increases linearly with pT, as shown in Fig. 4.6 (since it
depends on curvatures of the particle trajectories in the magnetic field), the energy
resolution in the ECAL improves with higher energy and is below 1% for electrons
above 30 GeV. Additionally, the ECAL is the only source of information for charged
particles in the forward region (|[ | > 2.5), where the tracker does not cover.

4.4 The hadron calorimeter
In between the ECAL and the superconducting solenoid lies the hadron calorimeter
(HCAL), which is made to measure the energy of the hadrons produced from parti-
cle showers. Unlike the homogeneous ECAL, the HCAL is a sampling calorimeter,
meaning it is made of alternating layers of dense absorber and tiles of plastic scin-
tillator. When a hadronic particle hits the brass absorber, cascades of secondary
particles are produced and interact with the alternating layers of active scintillation
material, causing them to emit blue-violet light. A tiny optical wavelength-shifting
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The effect of this radiation damage on physics quantities, such as missing transverse energy1

and jet energy resolution, can be mitigated by replacing the HPDs with SiPMs. A key SiPM feature2

in this respect is the three times better photon detection efficiency compared to HPDs, which will3

directly increase the signal size. They are also much smaller, meaning that we can fit more channels4

in the same physical space. In the current system, the 17 detector layers are read out in 1–3 groups5

or ‘depths’, where the light from layers in any given group is optically added together by sending it6

to a single HPD. Therefore, having more channels allows for a finer depth segmentation, as shown7

in figure 2, which is ideal to perform a more precise calibration of the depth-dependent radiation8

damage. With the increased light yield and better calibration, the performance for physics quantities9

is recovered. For example, the upgrade results in an improvement of the jet energy resolution of10

>50% at |η | ≈ 2.8–3 after 500 fb-1 of integrated luminosity is delivered by the LHC.11
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Figure 2. The HCAL depth segmentation in the current (left) and upgraded (right) system. Light from
layers that are depicted with the same color are optically added together before reaching the photosensors.

3 The Phase-I readout chain12

The upgraded HB and HE detectors consist of three main components: the active scintillator13

material, the on-detector or ‘front-end’ electronics, and the off-detector or ‘back-end’ electronics.14

The front-end electronics are organized into readout boxes, of which there are 36 for HE and 36 for15

HB. Each readout box contains four readout modules, a calibration unit, and a clock, control and16

monitoring unit (CCM). Each HE (HB) readout module consists of 48 (64) SiPMs in their thermal17

enclosure, an optical decoder unit (ODU) that maps the detector layers onto the SiPMs, a SiPM18

control card, and four front-end readout cards, as shown in figure 3. The calibration unit allows us19

to send LED light to the SiPMs, and the CCM handles the distribution of the clock and fast reset20

signals, as well as the control and monitoring of the front-end readout cards and SiPM control card.21

The HE readout chain, shown schematically in figure 4, starts with the scintillation light from22

the active material that is wavelength-shifted and then sent to the SiPMs via clear optical fibers.23

The charge output from the SiPMs is then fed into the front-end readout cards, which each include24

twelve QIE11 ASICs [8] and one Microsemi Igloo2 FPGA. Each QIE11 integrates charge from one25

SiPM at 40MHz without dead time. Each Igloo2 FPGA serializes and encodes the data from the26

twelve QIE11 channels. The encoded data is optically transmitted to the back-end electronics via27

the CERN Versatile Twin Transmitter (VTTx) [9] at 4.8Gbps. The back-end electronics buffer the28

data, form trigger primitives, and ship the appropriate data to the central data-acquisition system29
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layers that are depicted with the same color are optically added together before reaching the photosensors.
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Figure 4.9: Layout of the CMS hadron calorimeter in one r-z quadrant before (top)
and after (bottom) the SiPM upgrade. “FEE” indicates the Front End Electronics’
locations. Light from layers depicted with the same color are optically added
together before reaching the photosensors. The superior photon detection efficiency
and response of SiPMs allow for an increased longitudinal granularity with up to 7
depths in HE and 4 depths in HB after the upgrade [49].

fiber in each tile absorbs this light and carries it to the readout system. The pho-
todetectors in the HCAL are hybrid photodiodes (HPDs), which can amplify the
calorimetry signals by approximately 2000 times. As part of the Phase I upgrade,
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HPDs were replaced by silicon photomultipliers (SiPMs) in HE (2017) and HB
(2019) as they offer 2.5 times higher photon detection efficiency and 400 times
higher response while being insensitive to magnetic fields [49–51].
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1.5.4.4 Hadron forward

Coverage between pseudorapidities of 3.0 and 5.0 is provided by the steel/quartz fibre
Hadron Forward (HF) calorimeter. Because the neutral component of the hadron shower
is preferentially sampled in the HF technology, this design leads to narrower and shorter
hadronic showers and hence is ideally suited for the congested environment in the forward
region. The front face is located at 11.2 m from the interaction point. The depth of the ab-
sorber is 1.65 m. The signal originates from Cerenkov light emitted in the quartz fibres,
which is then channeled by the fibres to photomultipliers. The absorber structure is created
by machining 1 mm square grooves into steel plates, which are then diffusion welded. The
diameter of the quartz fibres is 0.6 mm and they are placed 5 mm apart in a square grid.
The quartz fibres, which run parallel to the beam line, have two different lengths (namely
1.43 m and 1.65 m) which are inserted into grooves, creating 2 effective longitudinal sam-
plings. There are 13 towers in η, all with a size given by ∆η ≈ 0.175, except for the lowest-η
tower with ∆η ≈ 0.1 and the highest-η tower with ∆η ≈ 0.3. The φ segmentation of all
towers is 10◦, except for the highest-η one which has ∆φ = 20◦. This leads to 900 towers and
1800 channels in the 2 HF modules.

1.5.4.5 Performance of the hadron calorimeter

In Chapter 11 the simulated single particle energy response and resolution is compared with
test beam data from all 3 geographic parts of the HCAL. However, for gauging the perfor-
mance of the HCAL, it is usual to look at the jet energy resolution and the missing trans-
verse energy resolution. The granularity of the sampling in the 3 parts of the HCAL has
been chosen such that the jet energy resolution, as a function of ET, is similar in all 3 parts.
This is illustrated in Figure 1.8. The missing transverse energy (Emiss

T ) resolution is given by
σ(Emiss

T ) ≈ 1.25
√

ΣET, if energy clustering corrections are not made.
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Figure 1.8: The jet transverse energy resolution as a function of the simulated jet trans-
verse energy for barrel jets (|η| <1.4), endcap jets (1.4< |η| <3.0) and very forward jets
(3.0< |η| <5.0). The jets are reconstructed with the interative cone R = 0.5 algorithm. See
Section 11.4 for further details.

Figure 4.10: The transverse energy resolution as a function of the simulated jet
transverse energy for barrel jets (|[ | < 1.4), endcap jets (1.4 < |[ | < 3.0), and
forward jets (3.0 < |[ | < 5.0) [38].

The HCAL consists of 4 components: the hadron barrel (HB) with 32 [ towers
covering the pseudorapidity region |[ | < 1.4 , the hadron outer (HO) containing
10-mm-thick scintillators outside the outer vacuum tank of the coil covering the
region |[ | < 1.26, the hadron endcap (HE) with 14 [ towers covering the region
1.3 < |[ | < 3.0, and the hadron forward (HF) covering the region 3.0 < |[ | < 5.0
with steel/quartz fiber. The structure of the HCAL is sketched in Fig. 4.9. Fig. 4.10
shows the jet energy resolution of different HCAL components as functions of
transverse energy (�T).

4.5 The muon system
As muons can penetrate several meters of iron without interacting, they are not
stopped by CMS calorimeters. A dedicatedmuon detector system is therefore placed
at the very edge of the experiment, outside the solenoid, to identify muons. Based in
gas ionization chambers, the muon system consists of 3 different technologies: drift
tube chambers (DTs), cathode strip chambers (CSCs), and resistive plate chambers
(RPCs). The DTs cover the barrel region with the pseudorapidity range up to
|[ | < 1.2, where the neutron induced background is small, the muon rate is low
and the residual magnetic field in the chamber is low; the CSCs cover the endcap
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regions. These RPCs are operated in avalanche mode to ensure good operation at high rates
(up to 10 kHz/cm2) and have double gaps with a gas gap of 2 mm. A change from the
Muon TDR [4] has been the coating of the inner bakelite surfaces of the RPC with linseed
oil for good noise performance. RPCs provide a fast response with good time resolution
but with a coarser position resolution than the DTs or CSCs. RPCs can therefore identify
unambiguously the correct bunch crossing.

The DTs or CSCs and the RPCs operate within the first level trigger system, providing 2
independent and complementary sources of information. The complete system results in a
robust, precise and flexible trigger device. In the initial stages of the experiment, the RPC
system will cover the region |η| < 1.6. The coverage will be extended to |η| < 2.1 later.

The layout of one quarter of the CMS muon system for initial low luminosity running is
shown in Figure 1.6. In the Muon Barrel (MB) region, 4 stations of detectors are arranged in
cylinders interleaved with the iron yoke. The segmentation along the beam direction follows
the 5 wheels of the yoke (labeled YB−2 for the farthest wheel in −z, and YB+2 for the farthest
is +z). In each of the endcaps, the CSCs and RPCs are arranged in 4 disks perpendicular to
the beam, and in concentric rings, 3 rings in the innermost station, and 2 in the others. In
total, the muon system contains of order 25 000 m2 of active detection planes, and nearly
1 million electronic channels.
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Figure 1.6: Layout of one quarter of the CMS muon system for initial low luminosity running.
The RPC system is limited to |η| < 1.6 in the endcap, and for the CSC system only the inner
ring of the ME4 chambers have been deployed.

Figure 4.11: Layout of the CMS muon system in one r-z quadrant [38].

region 0.9 < |[ | < 2.4, where the muon rate, the neutron induced background rate,
and the magnetic field are all high; the RPCs are deployed in both the barrel and
endcap, operating in avalanche mode to ensure good operation at high rates since
they have coarser position resolution, but finer time resolution than DTs and CSCs.
In the barrel region, four DT stations are interleaved with the iron return yoke of the
magnet, each DT is also coupled with an RPC. In each of the endcaps, the CSCs
and RPCs are arranged in 4 disks perpendicular to the beam. The schematic layout
of the muon chamber system is shown in Fig. 4.11.

Fig. 4.12 shows the performance of the DT in terms of spatial resolution for recon-
structed hits for DT q and \ superlayers. Each superlayer comprises four staggered
layers of parallel drift cells. The spatial resolution is defined as the width of the
distribution of residuals between the reconstructed and expected hit positions ob-
tained from segment fit. The mean spatial resolution in each CSC station and ring
is shown in Table 4.1.
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Figure 3: Reconstructed hit resolution for DT f superlayers (squares) and DT q superlayers
(diamonds) measured with the 2016 data, plotted as a function of station and wheel. The un-
certainties in these values are smaller than the marker size in the figure.

and the direction of the magnetic bending of the muon. This procedure is repeated for each
layer. These residuals are approximately Gaussian and the residual widths are converted to
position resolution by using standard analytical factors [26]. The spatial resolution of the CSC
strip measurement depends on the relative position at which a muon crosses a strip: it is better
for a muon crossing near a strip edge than at the center because then more of the induced
charge is shared between that strip and its neighbor, allowing a better estimate of the center
of the charge distribution. To benefit from this fact, alternate layers in a CSC are staggered
by half a strip width, except in the ME1/1 chambers where the strips are narrower and the
effect is small. Resolutions are measured separately for the central half of a strip width (sC)
and the quarter strip-width at each edge (sE) [1]. The layer measurements are combined to
give an overall resolution s per CSC station by 1/s2

station = 6/s2
layer (ME1/1 chambers) and

1/s2
station = 3/s2

C + 3/s2
E (chambers other than ME1/1). Table 2 summarizes the mean spatial

resolution in each CSC station and ring. The design specifications for the spatial resolutions in
the CSC system were 75 µm for ME1/1 chambers and 150 µm for the others. These resolutions
were chosen so that the contribution of the chamber spatial resolution to the muon momentum
resolution is less than or comparable to the contribution of multiple scattering.

The precision of the CSC measurements is dominated by systematic effects, and the statistical
uncertainties arising from the fits to the residual distributions are small (<0.2%). The preci-
sion is controlled by the size of the induced charge distribution on the strip plane, which is

Figure 4.12: The spatial resolution for DT hits in q superlayers (squares) and \
superlayers (diamonds) [52].

4.6 The trigger system
The LHC collides 40 million bunch crossings every second at the LHC. Processing
and keeping all of those collision events in CMS is impractical due to limitations
in bandwidth and processing capability. The trigger system is used to make real-
time decisions to keep or discard events under strict latency constraints. The CMS
trigger system comprises 2 stages: the Level-1 (L1) trigger and the high-level trigger
(HLT). Out of 1 billion pp collisions per second at the LHC, the L1 trigger selects
approximately 100 thousand events. These events are then passed to the HLT, where
it does further real-time processing on CPU and only keeps ∼ 1000 events per
second, which are saved to disk for offline processing.

The L1 trigger
The L1 trigger operates on custom ASIC chips and FPGA cards. With signal
information received from the detector for an event, the L1 trigger performs basic
reconstruction of physics objects and makes a trigger decision with a typical latency
under 4 `B. Constrained by the CMS readout electronics limits, the output rate of
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Table 4.1: The transverse spatial resolution per CSC station [52].

Station/ring
Spatial resolution (`m)
Run 1 Run 2
2012 2015 2016

ME1/1a 66 48 45
ME1/1b 57 54 52
ME1/2 93 93 90
ME1/3 108 110 105
ME2/1 132 130 125
ME2/2 140 142 134
ME3/1 125 125 120
ME3/2 142 143 135
ME4/1 127 128 123
ME4/2 147 143 134

the L1 trigger must not exceed 100 kHz. Fig. 4.13 shows a diagram of the decision
workflow of the L1 trigger with signal inputs from the detector. There are two main
components of the L1 trigger system: calorimeter trigger and muon trigger.

The calorimeter trigger consists of two layers, namely Layer-1 and Layer-2. Layer-1
receives, calibrates, and sorts the local energy deposits, which are called “trigger
primitives” (TPG), in the HCAL and ECAL. Layer-2 uses these calibrated trigger
primitives to reconstruct and calibrate physics objects, such as electrons, tau leptons,
jets, etc. DuringRun 2, theL1 trigger has been upgraded fromconventional trigger to
time-multiplexed trigger [53–55]. In a conventional trigger, regional segmentation
information is kept separated in the processing stage in synchronization, requiring
sharing links to make decision based on multiple segments, such as a reconstructed
jet spanning multiple calorimeter towers. The limitations on the number of sharing
links and link speed impose boundary constraints on reconstructed physics objects.
The time-multiplexed trigger is designed to overcome this limitation. In this new
design, the TPG data are time-multiplexed, i.e., multiple TPG data sources are
sent to a single destination (node) for assembly and event processing, so that each
node has access to the whole event information. The node, run by an FPGA
card, takes time equivalent to 10 bunch crossings to process the data. Therefore
there are 10 FPGA nodes running in a round robin fashion to handle every bunch
crossing. This design also allows for the flexibility to add nodes as required by more
complex trigger algorithms. The processed event information is then re-formatted
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Figure 4.13: Diagram of the L1 trigger system during Run 2 [53].

by a demultiplexer (DeMux) board for the global trigger (`GT) processing. The
architecture of the time-multiplexed calorimeter trigger system is shown in Fig. 4.14.

The muon trigger system consists of three muon track finders (MTF), which recon-
struct muons in the barrel (BMTF), overlap (OMTF), and endcap (EMTF) regions
of the muon system. A global muon trigger (`GMT) is included for the final muon
selection. The BMTF uses information in the barrel region (|[ | < 0.83) from DT
and RPC chambers, the OMTF uses information from all three muon subsystems in
the overlap region between barrel and endcap (0.83 < |[ | < 1.24), and the EMTF
uses information in the endcap (1.24 < |[ | < 2.4) from CSC and RPC chambers.
The BMTF uses look-up tables (LUTs) for track finding to assign pT, q, and [ of
a track from the bending angle and the quality of an inner station’s superprimitives
(i.e., the combination of trigger primitives from DT and RPC). The OMTF collects
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Figure 4.14: The time-multiplexed architecture of the upgraded calorimeter trigger
in L1 trigger [53].

up to four reference hits from all three muon subsystems, favoring hits from inner
layers with better resolutions, and associates these hits with patterns generated from
simulated events. There are 26 patterns for each muon change, corresponding to
different pT bins ranging from 2 to 140 GeV, with probability density functions of
hits spreading in q in each layer. The best matched patterns, along with the reference
hits, are sent to the internal muon sorter to remove possible duplicates. Three best
muon candidates per board are then sent to the `GMT, resulting in a maximum of
36 muon candidates. The EMTF builds tracks using a similar pattern recognition
algorithm. Additionally, a boosted decision tree (BDT) is also used to calculate the
track pT based on the bending angles in q and \ of the muon track. The BDT is
trained with Monte Carlo simulation of single-muon events, and its output values
are stored in a LUT loaded in a memory module for fast look-up. Up to 108 muon
candidates are sent from the three muon track finders to the `GMT. The `GMT then
sorts the muons and removes duplicates, sending up to 8 muons to the `GT. More
detailed information of the muon track finders can be found in Ref. [53].
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The HLT
After events are selected by the L1 trigger, they are sent to the HLT on a single
processor farm at LHC Point 5 for further selection with finer grained reconstruction
and reducing the event rate to ∼ 1000 Hz. There are a few hundred trigger paths,
each selecting for a particle physics signature, running in parallel for each physics
event. An event is accepted if it is selected by any path. Constrained by the total
CPU time needed to process an event, the HLT reconstruction and event selection
are optimized by rejecting events as early as possible along the paths. For example,
a path searching for an electron requires the reconstruction of an ECAL cluster, the
matching of pixel hits, and the subsequent reconstruction of a full charged particle
track in the tracker. Events without ECAL clusters are rejected immediately in this
path without considering further information from pixel and tracker. Following this
partial event reconstruction strategy, the majority of CPU budget can be spent on
the most expensive reconstruction tasks, mainly track and vertex reconstruction, at
the end of the sequences.

For some measurements and calibration studies that do not require the full statistics
of data, the corresponding HLT paths are prescaled. A prescaled trigger with a
prescale factor # only runs on one in every N events entering the HLT. For some
trigger paths where the selection would result in prohibitively high event rate, such
as dĳet trigger, they are also prescaled to ensure proper resource allocation.

For electron and photon, the HLT selection is done in 3 steps. The first step uses the
calorimeter information alone. The second step requires hits in the pixel detectors.
If the hits in the pixel detector match the energy in the ECAL, an electron candidate
is found, otherwise it is considered a photon candidate given the energy is above
a certain threshold. The third step, which is required for an electron candidate,
reconstructs the full track using information from the tracker with seeds from pixel
hits.

The HLT selects muon in 2 steps. The first step involves muon reconstruction from
the muon chamber information, which confirms the L1 decision and refines the
pT measurement with more precise information. The second step extends the muon
trajectory to include hits in the silicon tracker system, which further improves the
pT measurement. After each step, isolation requirement is applied to the muon
candidates, since the integrated rate of muons at LHC is dominated by muons from
b, c, K, and c decays, which are generally accompanied by other nearby particles
[56].
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To reconstruct and identify jet objects, the HLT uses an iterative clustering algorithm
named anti-:) [57] with cone size parameter ' = 0.5 [58]. The inputs for the jet
clustering algorithm can be either the calorimeter towers (CaloJet), allowing for fast
reconstruction, or the reconstructed Particle Flow objects (PFJet), which require
significantly more CPU consumption. Generally, single PFJet paths would require a
matching between CaloJet and PFJet and have preselection based on CaloJet objects.

Many important physics processes require the identification of b jets, such as the
identification of the Higgs decaying into 2 b jets, where the long lifetime of b quark
results in the characteristic secondary vertex of the jets. At the HLT, b jets are
identified with a b jet tagging algorithm, which is Combined Secondary Vertex
(CSVv2) before 2018 and DeepCSV in 2018 [59].

HLT paths sharing a similar purpose and having the same output event content are
grouped into data streams. For example, streams for hardware calibration only save
the relevant parts of the raw data for further processing, such as ECALdata for ECAL
calibration, while physics streams save the full raw event information for offline
analysis. Streams are further divided into different primary datasets, which have the
same event format and are processed the sameway in offline processing. The primary
datasets are mainly defined based on the particle candidate reconstructed in the event
final state by the HLT, such as SingleMu, DoubleElectron, SinglePhoton, etc.

4.7 The globally distributed data processing system
Data selected by the HLT farm are sent from LHC Point 5 directly to CERN com-
puting center, also known as Tier-0 (T0). T0 performs the first pass reconstruction
on RAW data, namely prompt reconstruction, which produces reconstructed data
(RECO), Analysis Object Data (AOD), and reduced AOD data (MiniAOD). From
T0, data are distributed to the next stage—Tier-1 (T1) resources. There are seven
T1 sites globally, which are large regional computing centers in CMS collaborating
countries: Fermilab (United States), IN2P3 (France), PIC (Spain), ASGC (Taiwan),
CLRC (United Kingdom), GridKa (Germany), and INFN (Italy). Two copies of
RAW data are saved, one at CERN T0, another at a T1. The T1 sites are gener-
ally used for large-scale, centrally organized computing activities, providing data
to and receiving data from Tier-2 (T2) sites in local regions. T2 sites are local
computing centers, such as universities, but with substantial CPU resources, mainly
serving local communities. This distributed hierarchical model follows MONARC
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recommendations [60], running on GRID distribute infrastructures, also known as
the Worldwide LHC Computing GRID [61].

Figure 4.15: Global HTCondor pool size in number of CPU cores averaged daily
during Run 2 in CMS [62].

Centralized workflows such as data reconstruction and the generation of simulated
events over the computing grid are managed by the CMS workload management
(WM) system. TheWM system, based on the concept ofWMAgent framework [63],
handles tasks such as workload splitting into jobs, job assignment to appropriate
computing sites, job priority adjustment, retrial of unsuccessful jobs, merging output
files, and log collection [64]. The CMS Submission Infrastructure [62] performs
resource allocation by employing GlideinWMS [65], a tool built on top of the
HTCondor batch system [66–68] that matches jobs to resources. Over the Run 2
data-taking period, more resources have been added to the global HTCondor pool,
including the HLT farm for offline processing when not in data-taking mode, as
well as cloud and HPC resources [69], resulting in a total of 250 000 cores running
routinely, with a peak of 300 000 cores, as shown in Fig. 4.15.

The CMS infrastructure model requires input data to be locally present at the
processing site with the assumption of poor connectivity between sites. As a result,
each dataset may have multiple copies scattered around different sites. While this
ensures reliable local read for processing sites, the dataset multiplicity imposes
significant stress on storage. Some Monte Carlo simulation workflows require
reading pre-made pileup datasets remotely, as these pileup datasets are too gigantic
to fit in any local storage. The remote data access service, namely AAA (Any
Data, Anytime, Anywhere) [70], is a CMS-customized implementation based on
the XRootD framework [71] that allows for analyzing CMS data remotely without
downloading to local storages. Recently, there are R&D programs experimenting
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with new storage models, such as DataLake [72], which allows for centralization
of storage into fewer and bigger sites and enables remote access via streaming and
caching, due to general improvements of connectivity between sites, reducing the
stress on storage capacity.

Table 4.2: CMS data formats for physics analyses [73].

Data format Mainly used for the period Size (kB/event)
RECO 2010–2011 3000
AOD 2011–2015 400

MiniAOD 2016–2019 50
NanoAOD 2019- 1

Table 4.2 summarizes the evolution of main input for physics analyses over the years.
The drastic reduction in data size comes from the increased understanding of the
accelerator conditions, detector calibrations, and analysis patterns. For Monte Carlo
simulation events, instead of RAW data tier, there are GEN, SIM, and DIGI data
tiers: GEN contains information about generated Monte Carlo event, SIM contains
energy depositions of the generated particles in detector, also known as sim hits,
DIGI contains the detector responses converted from sim hits. The content of DIGI
data tier is basically the same as the RAW output of the detector.
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C h a p t e r 5

SEARCH FOR NONRESONANT HIGGS BOSON PAIR
PRODUCTION IN FINAL STATES WITH TWO BOTTOM

QUARKS AND TWO PHOTONS

The discovery of the Higgs boson by the CMS and ATLAS experiments in 2012
opened up a new portal to deepen our understanding of the electroweak symmetry
breaking mechanism. While this final missing piece of the StandardModel has been
found, many questions still follow with numerous implications on physics beyond
the Standard Model (BSM), the origin of the matter-antimatter imbalance in early
universe, and the meta-stability of the universe. Understanding of the structure of
the Higgs potential could provide the answers to some of these questions; and the
Higgs trilinear self-coupling, which could be measured through the production of a
pair of Higgs boson, is a direct probe to the Higgs potential structure.

The production of di-Higgs is an extremely rare process, with an expected total
cross section at 13 TeV of less than 35 fb [74–76], roughly 3 orders of magnitude
less than that of single Higgs production. Even though we do not expect to see the
Standard Model di-Higgs production during the LHC Run 2, many BSM theories
suggest the presence of heavy additional particles that couple to theHiggs boson pair,
modifying the Higgs boson’s couplings and could end up significantly amplifying
the cross section.

Using an effective field theory (EFT) framework, these BSMeffects can be described
to leading approximation with the following Lagrangian [77]:

LHH = ^__
SM
HHH3H

3 −
<t

3

(
^CH + 22

3
H2

) (
tLtR + h.c.

)
+ 1
4
UB

3c3

(
26H −

226

23
H2

)
G`aG`a,

(5.1)

where 3 ≈ 246 GeV is the Higgs vacuum expectation value and <t ≈ 173 GeV
is the top quark mass. The BSM effects are parametrized with 5 parameters:
^_ = _HHH/_

SM
HHH and ^C = 2C/2

SM
C are the modifiers of SM values of the Higgs

trilinear self-coupling, _SMHHH ≡ <
2
H/(23

2) ≈ 0.129, and the Yukawa coupling,
2
SM
C ≡ <t/3 ≈ 0.7, respectively, and three additional coupling parameters not
present in the SM. These include the contact interactions between two Higgs bosons
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and two gluons (26), between one Higgs boson and two gluons (226), and between
two Higgs bosons and two top quarks (22), which are illustrated in the bottom
diagrams in Fig. 5.1. tL and tR are the top quark fields with left and right chiralities,
respectively. H denotes the Higgs boson field, G`a is the gluon field strength tensor,
and h.c. denotes the Hermitian conjugate.
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Figure 5.1: Feynman diagrams for ggHH processes. Top: Contributions from
Standard Model processes at leading order, referred to as box and triangle diagrams,
respectively. Bottom: BSMprocesses that describe contact interactions of twoHiggs
bosons with two top quark (left), between the Higgs boson and gluons (middle and
right).
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Figure 5.2: Feynman diagrams that contribute to the production of SM Higgs boson
pairs via VBF at LO. The left diagram involves a HHH vertex (_HHH) and a HVV
vertex (2V), the middle diagram involves two HVV vertices (2V), and the right
diagram involves a HHVV vertex (22V).

To avoid a huge number of BSM samples to be generated in this analysis, we use
twelve possible combinations of the five parameters above in such a way that they
are representative of the full phase space, following the recommendation from [77].
Further details on these parameters are described in Sec. 5.1.
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We also investigate vector-boson fusion (VBF) HH production mode, which gives
access to _HHH , as well as to the coupling between two vector bosons and the
Higgs boson (HVV) and the coupling between a pair of Higgs bosons and a pair of
vector bosons (HHVV), as illustrated by the Feynman diagrams in Fig. 5.2. While
_HHH is mainly constrained by measurements of HH production via ggF, and the
HVV coupling modifier (2V) is constrained by the measurements of vector boson
associated production of a single Higgs boson and the decay of the Higgs boson
to a vector boson pair [78], the HHVV coupling modifier (22V) is only directly
accessible via VBF HH production.

Previous searches for nonresonant production of a Higgs boson pair via ggF were
performed by both the ATLAS and CMS Collaborations using the LHC data col-
lected at

√
B = 8 and 13 TeV [79–89]. Searches in the bbWW channel performed by

the ATLAS [79] and CMS [89] Collaborations using up to 36.1 fb−1 of pp collision
data at

√
B = 13 TeV set upper limits at 95% confidence level (CL) on the product

of the HH cross section and the branching fraction into bbWW . The observed upper
limits are found to be 24 (30 expected) and 26 (20 expected) times the SM expec-
tation for the ATLAS and CMS searches, respectively. Statistical combinations of
search results in various decay channels were also performed by the two experiments
[80, 90]. Recently, the first search for HH production via VBF was carried out by
the ATLAS Collaboration in the bbbb channel [91].

This chapter describes the search for double Higgs production in the HH → bbWW
decay channel, where one Higgs bosons decays into a pair of photons and the other
Higgs boson decays into a bottom quark-antiquark pair, using a data sample of 137
fb−1 collected by the CMS experiment from 2016 to 2018. The high branching
ratio of the H → bb decay, along with the high signal over background ratio of the
H → WW decay, provides this channel with an expected high sensitivity. The bbWW
final state has a combined branching fraction of 2.63 ± 0.06 × 10−3 for a Higgs
boson mass of 125 GeV [92].

The chapter is organized as follows: Sec. 5.1 describes the data and simulated
samples used in this search. In Sec. 5.2, we describe the algorithms used for recon-
struction of physics objects and the preselection criteria of the analysis. Sec. 5.3
presents the analysis strategy. Sec. 5.4 describes the resonant background reduction
technique, namely the ttH tagger. Nonresonant background reduction procedures
are shown in Sec. 5.5. Sec. 5.6 describes the event categorization. Signal and back-
ground modeling for data-driven background estimation are described in Sec. 5.18
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Table 5.1: Parameter values of the 12 BSM benchmarks along with the Standard
Model point.

Benchmark ^_ ^C 22 26 226
1 7.5 1.0 -1.0 0.0 0.0
2 1.0 1.0 0.5 -0.8 0.6
3 1.0 1.0 -1.5 0.0 -0.8
4 -3.5 1.5 -3.0 0.0 0.0
5 1.0 1.0 0.0 0.8 -1.0
6 2.4 1.0 0.0 0.2 -0.2
7 5.0 1.0 0.0 0.2 -0.2
8 15.0 1.0 0.0 -1.0 1.0
9 1.0 1.0 1.0 -0.6 0.6
10 10.0 1.5 -1.0 0.0 0.0
11 2.4 1.0 0.0 1.0 -1.0
12 15.0 1.0 1.0 0.0 0.0
SM 1.0 1.0 0.0 0.0 0.0

and 5.9, respectively. Sec. 5.10 describes the systematic uncertainties in this analy-
sis. Results are shown in Sec. 5.11. Finally, Sec. 5.12 provides a summary of this
search.

5.1 Event samples
This search is performed on the full Run 2 data collected by the CMS experiment
over the data-taking period of 3 years from 2016 to 2018, corresponding to an
integrated luminosity of 137 fb−1. Events are selected with double-photon triggers
that require the photons’ transverse momenta to be above 30 GeV for the leading
photon and 18 (22) GeV for the second photon for the data collected during 2016
(2017 and 2018).

To produce signal samples for the gluon-fusion (ggF) HH process at NLO [93–97],
Powheg 2.0 is used to generate samples with different values of ^_ that include the
full top quark mass dependence [98]. MadGraph5_aMC@NLO [99–101] is used
to generate samples for BSM benchmark hypotheses and the vector-boson fusion
(VBF) HH processes at LO. The parameter values of the 12 BSM benchmarks are
shown in Table 5.1.

Dominant background processes in this analysis are irreducible prompt diphoton
production (WW+jets), which is modeled with Sherpa v.2.2.1 at LO [102], and the
reducible background from W+jets events, where the jets are mistagged as isolated
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photons and b jets. This reducible background process is modeled with Pythia
8.212 at LO [103].

Resonant background processes, which contain single Higgs boson production,
where the Higgs decays into two photons, are simulated at NLO with Powheg
2.0 [93, 104–106] for ggF H and VBF H, and with MadGraph5_aMC@NLO for
Higgs production associated with a top quark-antiquark pair (ttH), vector boson
associated production (VH), and production associated with a single top quark.
The cross sections and decay branching fractions are taken from Ref. [92]. The
contribution from the other single H decay modes is negligible.

Parton showering and fragmentation are simulated via Pythia interface with the
standard pT-ordered parton shower (PS) scheme for all simulated samples. Un-
derlying events are modeled with CUETP8M1 tune for 2016 and the CP5 tune
for 2017-2018 [107, 108]. Parton distribution function sets are generated from
NNPDF3.0 [109] NLO for 2016 and NNPDF3.1 [110] NNLO for 2017 and 2018.
The CMS detector responses are simulated with Geant4 toolkit [111].

The simulated VBF HH samples are further simulated with initial-state radiation
and final-state radiation with the Pythia dipole shower scheme to take into account
the structure of the color flow between in-coming and outgoing quark lines. The pre-
dictions of the simulation are in good agreement with the NNLO QCD calculation,
as reported in [112].

5.2 Physics object reconstruction
All physics objects are reconstructed with the particle-flow (PF) algorithm [113].
This search uses photons, b jets, and VBF jets.

Photon candidates are identified from clusters of reconstructed hits in the ECAL
crystals. A photon identification technique (photon ID) based on multivariate anal-
ysis with boosted decision tree is developed to separate photons from jets. Further
details of this photon ID can be found in [114]. Photons falling in the gap between
the barrel and ecap region of the ECAL (1.442 < |[ | < 1.566) are excluded in
this search because the performance of the photon reconstruction in this region is
not optimal. Additional requirements on the photon shower shapes, energy, and
isolation are imposed to improve the selection efficiency. Table 5.2 summarizes the
selection criteria on the photon candidates in this search.

Once two photon candidates are found, we compute their invariant mass and require
100 < <WW < 180GeV, ?

W1
T /<WW > 1/3, and ?

W2
T /<WW > 1/4. When there are more
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Table 5.2: Photon selection criteria on photon candidates.

Requirements Leading Photon Subleading Photon
pT > 30 GeV > 20 GeV
|[ | 0 < |[ | < 1.442 or 1.566 < |[ | < 2.5
R9 > 0.8

Charge isolation < 20
H/E < 0.08

BDT score > −0.9

than two photon candidates, the photon pair with the highest transverse momentum
?
WW

T is selected to construct the Higgs boson candidate.

Jet candidates are selected from PF candidate clusters undergoing the anti-:) al-
gorithm with a distance parameter of 0.4. We require the jet candidates to have
pT> 25 GeV and |[ | < 2.4(2.5) for 2016 (2017-2018) (the new CMS pixel detector
installed during the Phase-1 upgrade allows for the extended [ range for jet candi-
dates in 2017 and 2018). The candidates are also required to be outside of the cone
radii 0.4 centered on the identified photons.

Once jet candidates are identified, a deep neural network (DNN)-based algorithm
called DeepJet [115, 116] is deployed to identify jets from the hadronization of b
quarks. Furthermore, a b jet energy regression algorithm [117] is used to correct
the energy and improve the energy resolution of the b jets.

If an event has more than 2 jets, we select the jet pair with the highest b tagging
scores to construct the Higgs boson. The invariant mass of the dĳet system is
required to be 70 < <jj < 190 GeV. Another multivariate regressor is developed to
improve the mass resolution of the reconstructed Higgs boson that decays into 2 b
jets.

Once the jet pair and photon pair are identified, an event is selected. Table 5.3
summarizes the baseline selection criteria for photons and jets in each event in this
analysis. The expected number of SM HH signal events after these selections for
each data-taking year is listed in Table 5.4.

5.3 Analysis strategy
This search relies on the peaks in the invariant mass distributions of the dĳet and
diphoton system, <jj and <WW , respectively, around the value of the Higgs boson
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Table 5.3: Summary of the baseline selection criteria for HH → bbWW events.

Photons Jets
?
W1
T > <WW/3 pT [GeV] > 25.
?
W2
T > <WW/4 Δ'W j > 0.4

|[ | < 2.5 |[ | < 2.4
<WW [GeV] ∈ [100, 180] <jj [GeV] ∈ [70, 190]
Select pair of highest ?WWT Select pair of highest

DeepJet score

Table 5.4: Expected number of SM HH signal events after the baseline preselection
for each data-taking year (scaled according to luminosity) and full Run II.

Year Expected SM HH events
2016 1.14
2017 1.26
2018 1.84
Run 2 4.24

mass (125 GeV). Therefore, we extract the number of signal and background events
using a simultaneous parametric fit on <WW and <jj.

There are two types of backgrounds in this analysis: non-resonant background and
resonant background. For the non-resonant background, mainly WW+jets and W+jets,
both <WW and <jj exhibit a falling spectrum. For the resonant background, where a
single SM Higgs boson is produced, <WW is peaking at the Higgs boson mass. After
the preselection criteria described in Sec. 5.2, the two most relevant processes are
gluon-gluon fusion (ggH) and associated production with top quarks (ttH), where
the Higgs bosons decay into a pair of photons.

To improve the sensitivity of this search, we first reduce the resonant background
with a deep-learning based classifier. Afterwards, MVA techniques are used to
distinguish the ggF andVBFHH signal from the dominant nonresonant background.
The outputs of theMVAclassifiers are then used to definemutually exclusive analysis
categories targeting VBF and ggF HH production.

The distribution of "̃X, defined as:

"̃X = <jjWW − (<jj − <H) − (<WW − <H) (5.2)
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Figure 5.3: The invariant mass distributions of the reconstructed Higgs boson can-
didates <WW (left) and <jj (right) in data and simulated events. Data, dominated
by the WW and W+jets backgrounds, are compared to the SM ggF HH signal sam-
ples and single H samples (ttH, ggH, VBF H , VH) after imposing the selection
criteria described in Sec. 5.2. The error bars on the data points indicate statistical
uncertainties. TheHH signal has been scaled by a factor of 103 for display purposes.
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Figure 5.4: Distributions of "̃X. The SM ggF HH signal is compared with several
BSM hypotheses listed in Table 5.1 (left), and the SM VBF HH signal is compared
with two different anomalous values of 22V (right). All distributions are normalized
to unity.

is particularly sensitive to different BSM parameters defined in the introduction of
this chapter. The "̃X distribution is less dependent on the dĳet and diphoton energy
resolutions than <jjWW if the dĳet and diphoton pairs originate from a Higgs boson
decay [118]. In Fig. 5.4, the distribution of "̃X is shown for several BSMbenchmark
hypotheses affecting ggF HH production (described in Table 5.1) and for different
values of 22V affecting the VBFHH production mode. The SMHH process exhibits
a broad structure in "̃X, induced by the interference between different processes
contributing to HH production and shaped by the analysis selection. The signals
with 22V = 0 and 22V = 2 have a much harder spectrum than the SM VBF HH
signal, as shown on the right of Fig. 5.4.
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5.4 Resonant background reduction
Single Higgs boson production is an important resonant background in the bbWW
final state, with ttH production being dominant in high purity signal regions. To
reduce ttH background contamination, a dedicated classifier is developed. The
classifier is trained on a mixture of SM HH events and events generated for the 12
BSM benchmark hypotheses (described in Table 5.1) as signal, and ttH events as
background.

Event classification using a combination of high-level information from event kine-
matics and low-level information from individual particles has been demonstrated
as the most performant among popular neural-network-based classification tech-
niques [119]. Thus, for the ttH discriminator, we use physics objects reconstructed
and calibrated, including electrons and muons, as the low-level information, and
kinematic variables as the high-level information to train the networks.

The kinematic variables used in training can be described in three groups: angular
variables, variables to discriminate semi-leptonic W bosons produced in the top
quark decay, and variables to discriminate hadronic W boson decays.

Angular variables
The angular separation (ΔR(W, jet)) between the photon and b-tagged jet in the
event is used since the photon and b jets are expected to be well separated for signal
events. The angle cos (\CS) in the Collins-Sopper frame between the reconstructed
dĳet and diphoton candidates and angle cos (\bb) between the two b jets are shown
as powerful discriminants between signals and backgrounds, as shown in Fig. 5.5,
thus are used as training variables.

Variables to reject events with a leptonic-decay W boson
Events with a leptonic-decay W boson are expected to have significant pmissT due
to the presence of neutrinos. To maximize the probability of having the neutrino
coming form W boson decay, the azimuthal angle separations between the pmissT

and the two b jets (Δq(pmissT , jet1), Δq(p
miss
T , jet2)) are used as training variables.

Leptonic-decay W boson event also could have leptons reconstructed in the final
state. Thus the four momenta of reconstructed leptons with pT > 10 GeV are also
included in the training. The distributions of most of these variables are shown in
Fig. 5.6.
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Figure 5.5: Angular variables used in the training, from left to right: ΔR(W, jet),
cos (\CS), and cos (\bb). These variables are used for the training of the ttH
discriminant.

Figure 5.6: Major variables used in the training to reject events with a leptonic-decay
W boson, from left to right, top to bottom: pmissT , Δq(pmissT , jet1), Δq(p

miss
T , jet2),

and the transverse momentum of the leading and subleading electrons and muons.
In signal events, there is no subleading electron, which explains its absence in the
subleading electron’s pT distribution plot.

Variables to reject events with a hadronic-decay W boson
To reduce ttH events with hadronic-decayW bosons, we use j2t , defined as:

j
2
t =

(
mW − <jj
0.1 ×mW

) 2
+

(
mt −mbjj
0.1 ×mt

) 2
, (5.3)
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Figure 5.7: j2t variables in training to reject events with a hadronic-decayW boson,
for events with at least 2 additional jets (left) and 4 additional jets (right) besides the
two b jets.

where mW and mt are the true mass values of theW boson and the top quark, taken
to be 80.3 GeV and 173.5 GeV, respectively. The value of j2t distributes towards
zero if there is a hadronic-decayW boson from a top quark decay in the event. This
variable is calculated for events with at least 2 additional jets and 4 additional jets
besides the two b jets, and the distributions in these cases are shown in Fig. 5.7.

Network architecture
The ttH discriminant is implemented with a multimodal neural networks (NN)
combining a feed-forward and a recurrent NNs, based on the topology-classifier
architecture introduced in [119]. The momenta (pT, [, q) and identities of the
physics objects (2 leading electrons, 2 leading muons, 2 b jets, diphoton) and
the pmissT are fed into the recurrent layers, ordered by their transverse momentum
amplitudes. The objects’ momenta are normalized such that they have means of
zero and standard deviation of one. Objects that do not appear in the events (such
as subleading leptons) are padded with matrices of zeros, which are filtered out
before the recurrent layers. The output of the recurrent layers is combined with
the high-level information from event kinematics through fully-connected layers,
activated with rectified linear unit functions. The final output layer, which indicates
the probability of the event being or signal or background, is activatedwith a sigmoid
function. Figure 5.8 illustrates the overall architecture of this multimodal neural
network.

The network hyperparameters are optimized with the Bayesian optimization tech-
nique, where the average over 3-fold cross-validation accuracy is used as the figure
of merit. The network is implemented inKeras [120] on the TensorFlow platform
[121].
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Object1 Object2 Object#. . .

Masking

Recurrent NN pmissT Δq(pmissT , jet1) minΔ'(jets, W). . .

Merge

Fully connected

Output

Figure 5.8: The multimodal network architecture for the ttH tagger. Object1..#
contain the kinematic and identity information of the reconstructed PF objects,
ordered by their transverse momenta. The masking layer filters out the zero-padded
object, i.e., if an object does not exist in a given event, that object’s information does
not enter the network. The output of the recurrent neural network is merged with
the high-level information, such as pmissT , Δq(pmissT , jet1), etc., and then goes through
a fully connected block to compute the output prediction.

Performance
The output scores of the ttH tagger for both HH → bbWW signal and the ttH
background are shown on the left plot of Fig. 5.9. Its performance in terms of signal
efficiency (true positive rate) and background contamination (false positive rate) is
shown on the right plot of Fig. 5.9 and on Table 5.5.

Agreement between data and simulation
In order to get the best upper limits on the signal cross section, a cut on the ttH
tagger score is optimized simultaneously with the MVA categorization that will be
described later in this chapter.
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Figure 5.9: The performance of the ttH tagger. Left: the output score on HH →
bbWW signal and ttH background. Right: Performance in terms of signal efficiency
and background contamination in a receiver operating characteristic (ROC) curve.

Table 5.5: Performance of the ttH tagger. The uncertainty in background efficiency
is obtained from k-fold cross-validation.

ttH score HH → bbWW signal efficiency (%) ttH background contamination (%)
0.1618 97.04 28.31 ± 0.77
0.2528 94.98 21.14 ± 0.36
0.3627 91.96 15.39 ± 0.11
0.7560 75.36 4.42 ± 0.32
0.8938 57.77 1.58 ± 0.06
0.9587 38.37 0.41 ± 0.01

The comparison of the ttH tagger score distributions for data and MC simulation
is studied. For MC simulation, we combine all background processes, normalized
to cross section times total luminosity over 2016 and 2017 (77.4 fb−1). As shown
in Fig. 5.10, the agreement between data and MC simulation for the ttH tagger is
reasonable.

Expected improvement with the ttH tagger
We study the expected improvement on the final limit as a function of the selection
on the ttH tagger score cut. As shown in Fig. 5.11, we optimize the cut on the ttH
tagger score to minimize the 95% CL upper limit on the product of the HH cross
section and its branching ratio to bbWW . The best ttH score threshold is determined
to improve the upper limit by 11% compared to not using the ttH tagger, i.e., setting
the threshold to zero.
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Figure 5.10: Comparison for ttH tagger score distributions between data and MC
simulation normalized to cross section times total luminosity over 2016 and 2017.

5.5 Nonresonant background reduction
Background reduction in the ggF HH signal region
An MVA discriminant implemented with a boosted decision tree (BDT) is used
to separate the ggF HH signal and the dominant nonresonant WW + jets and W
+ jets backgrounds. We select several discriminating observables to be used in
the training. They can be classified in three groups: kinematic variables, object
identification variables, and object resolution variables. The first group exploits
the kinematic properties of the HH system, the second helps to separate the signal
from the reducible W + jets background, and the third takes into account the resonant
nature of the WW and bb final states for signal. The following discriminating variables
were chosen:

• The H candidate kinematic variables: pWT/<WW , p
j
T/<jj for leading and sub-

leading photons and jets, where pWT and pjT are the transverse momenta of the
selected photon and jet candidates

• The HH transverse balance: pWWT /<jjWW and pjjT/<jjWW , where pWWT and pjjT are
the transverse momenta of the diphoton and dĳet candidates

• Helicity angles: | cos \CSHH |, | cos \jj |, and | cos \WW | where | cos \
CS
HH | is the

Collins-Soper angle [85] between the direction of the H → WW candidate and
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Figure 5.11: ttH score cut optimization with Monte Carlo simulation. The vertical
axis indicates the percentage improvement on the 95%CL upper limit on the product
of the HH cross section and its branching ratio to bbWW . The horizontal axis
corresponds to different thresholds for the ttH tagger score.

the average beam direction in the HH center-of-mass frame, while | cos \jj |,
and | cos \WW | are the angles between one of the Higgs boson decay products
and the direction defined by the Higgs boson candidate

• Angular distance: minimum ΔRWj between a photon and a jet, ΔR
min
Wj , con-

sidering all combinations between objects passing the selection criteria, and
ΔRWj between the other photon-jet pair not used in the ΔR

min
Wj calculation

• b tagging: the b tagging score for each jet in the dĳet candidate

• photon ID: photon identification variables for leading and subleading photons

• Object resolution: energy resolution for the leading and subleading photons
and jets obtained from the photon [114] and b jet [117] energy regression, the
mass resolution estimators of the diphoton and dĳet candidates.

The BDT is trained using the xgboost [122] software package using a gradient
boosting algorithm. The WW + jets and W + jets MC samples are used as background,
while an ensemble of SM HH and the 12 BSM HH benchmark hypotheses listed in
Table 5.1 is used as signal. Training on an ensemble of BSM and SM HH signals
makes the BDT sensitive to a broad spectrum of theoretical scenarios. During the
training, signal events are weightedwith the product of the inversemass resolution of
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Figure 5.12: The distributions of the ttH tagger score (left) and MVA output for
nonresonant background in the ggF HH signal region (right) in data and simulated
events. Data, dominated by WW + jets and W + jets backgrounds, are compared to
the SM ggFHH signal samples and singleH samples (ttH, ggH, VBFH, VH) after
imposing the selection criteria defined in Sec. 5.2. The error bars on the data points
indicate statistical uncertainties. The HH signal has been scaled by a factor of 103

for display purposes.

the diphoton and dĳet systems. These resolutions are obtained using the per-object
resolution estimators provided by the energy regressions developed for photons and
b jets. In the training, the mass dependence of the classifier is removed by using
only dimensionless kinematic variables. The inverse resolutionweighting at training
time improves the performance by bringing back the information about the resonant
nature of the signal. Independent training and testing samples are created by splitting
the signal and background samples. The classifier hyperparameters are optimized
using randomized grid search and a 5-fold cross-validation technique. The BDT is
trained separately for the 2016, 2017, and 2018 data-taking years. The BDT output
distribution is very similar among the three years, leading to the same definitions
of optimal signal regions based on the BDT output. The BDT output distribution
is very similar among the three years, leading to the same definitions of optimal
signal regions based on the BDT output. Therefore, during the event categorization,
a single set of analysis categories is defined using data from 2016-2018. The
distributions of the BDT output for signal and background are very well separated.
In order to avoid problems of numerical precision when defining optimal signal-
enriched regions, the BDT output is transformed such that the signal distribution
is uniform. This transformation is applied to all events, both in simulation and
data. The distribution of the MVA output for data and simulated events is shown in
Fig. 5.12 (right).
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Background reduction in the VBF HH signal region
Similarly to the ggF HH analysis strategy, an MVA discriminant is employed to
separate the VBF HH signal from the background. As for the ggF case, the WW +
jets and W + jets processes are the dominant sources of background. For the VBF
production mode, the ggF HH events are considered as background. About a third
of the ggF HH events passing the selection requirements described in Sec. 5.2 also
pass the dedicated VBF selection criteria. The distinctive topology of the VBF
HH process is used to separate the VBF HH signal from the various sources of
background. In additional to the discriminating features of the HH signal described
in Sec. 5.3 and in ggF HH part above, the following set of VBF-discriminating
features were identified:

• VBF-tagged jet kinematic variables: ?VBFT /<VBFjj , [
VBF for VBF-tagged jets

• VBF-tagged jet invariant mass: <VBFjj

• Rapidity gap: product of the difference in the pseudorapidity of the two
VBF-tagged jets

• Quark-gluon likelihood [123, 124] of the two VBF-tagged jets. A likelihood
discriminator used to distinguish between jets originating from quarks and
from gluons

• Kinematic variables related to the HH system: "̃X and the transverse mo-
mentum of the pair of reconstructed Higgs bosons

• Angular distance: minimum Δ' between a photon and a VBF-tagged jet, and
between a b jet and a VBF-tagged jet

• Centrality variables for the reconstructed Higgs boson candidates:

�H = exp
−

4
([VBF1 − [VBF2 )2

(
[
H −

[
VBF
1 + [VBF2
2

) 2 , (5.4)

where H is the Higgs boson candidate reconstructed either from diphoton or
dĳet pairs, and [VBF1 and [VBF2 are the pseudorapidities of the two VBF-tagged
jets

We split events into two regions: "̃X < 500 GeV and "̃X ≥ 500 GeV. While the
region of "̃X ≥ 500 GeV is sensitive to anomalous values of 22V, the "̃X < 500
GeV region retains the sensitivity to SM VBF HH production.
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Figure 5.13: The distribution of the twoMVAoutputs is shown in data and simulated
events in the two VBF "̃X regions: "̃X > 500 GeV (left) and "̃X < 500 GeV (right).
Data, dominated by the WW + jets and W + jets backgrounds, are compared to the
VBF HH signal samples with SM couplings and 22V = 0, SM ggF HH and single H
samples (ttH, ggH, VBFH, VH) after imposing theVBF selection criteria described
in Sec. 5.2. The error bars on the data points indicate statistical uncertainties. The
HH signal has been scaled by a factor of 103 for display purposes.

A multi-class BDT, using a gradient boosting algorithm and implemented in the
xgboost framework, is trained to separate the VBF HH signal from the WW + jets,
W + jets, and SM ggF HH background. A mix of VBF HH samples with the SM
couplings and quartic coupling 22V = 0 is used as signal. Training on the mix
of samples makes the BDT sensitive to both SM and BSM scenarios. Although
the kinematic properties of different BSM signals with anomalous values of 22V
are similar, the cross section of the signal with 22V = 0 is significantly enhanced
with respect to that predicted by the SM. Therefore, the signal samples used for the
training were chosen to maximize sensitivity of the analysis to a range of potential
signals. Signal events are weighted with the inverse of the mass resolution of the
diphoton and dĳet systems during the training, as it is done for the ggF MVA. The
BDT is trained separately for each of the three data-taking years in the two "̃X
regions. As it is done for the ggF MVA output, data from 2016-2018 are merged to
create a single set of analysis categories based on the BDT output. The BDT output
is transformed such that the distribution of the mix of the VBF HH signals with SM
couplings and quartic coupling 22V = 0 is uniform. The transformation is applied to
all events in the two "̃X regions. The distributions of the MVA outputs for data and
simulated events are shown in Fig. 5.13.
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Agreement between data and simulation
For the final signal extraction, the background is estimated in a data-driven way. The
Monte Carlo simulation is only used to train the MVA. Nevertheless, WW + jets and W
+ jets simulation is known not to describe data very well because the MC simulation
is done at LO while high order corrections are not negligible. We perform a check
on the agreement between data and simulation for the input variables of the MVA
classifier, as well as for the final MVA output. Figs. 5.14-5.16 show the comparison
between data and simulation for MVA inputs, and Fig. 5.17 shows the distribution of
the discriminator outputs. The only variable where the agreement is not good is the
photon ID; however, this is only due to the fact that QCDMC is not included in these
plots. In QCD processes the fake photon contributions would populate the region
where photon ID < 0. The photon identification was thoroughly validated within
the CMS working group; therefore, the disagreement between data and simulation
for photon ID shown in Fig. 5.14 is well understood and does not affect the analysis.

5.6 Event categorization
In order to maximize the sensitivity of the search, events are split into different
categoreis according to the ouptut of the MVA classifier and the mass of the Higgs
boson pair system "̃X. The "̃X distribution changes significantly for different BSM
hypotheses, as shown in Fig. 5.4. Therefore, a categorization of HH events in "̃X
creates signal regions sensitive to multiple theoretical scenarios. In the search for
VBFHH production, the categories in "̃X are defined before the MVA is trained, as
described in Sec. 5.5. For the categories that target ggF HH production, categories
in "̃X are defined after the MVA is trained.

The categorization is optimized by maximizing the expected significance estimated
as the sum in quadrature of S/

√
B over all categories in a window centered on <H:

115 < <WW < 135 GeV. Here, S and B are the numbers of expected signal and
background events, respectively. Simulated events are used for this optimization.
The SM HH process is considered as signal, while the background consists of the
WW + jets, W + jets, and the ttH processes. The MVA categories are optimized
simultaneously with a threshold on the value of the ttH tagger score. Two VBF
and three ggF categories are optimized based on the MVA output. For ggF HH in
each MVA category, a set of "̃X categories is then optimized. The optimization
procedure leads to 12 ggF analysis categories: four categories in "̃X in each of the
three categories in the MVA score. The optimized selection on ttH tagger score >
0.26 corresponds to 80 (85)% ttH background rejection at 95 (90)% signal efficiency
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Figure 5.14: Distributions of input variables for non-resonant background in simu-
lated SM HH sample and data for full Run II.

for the 12 ggF (2 VBF) categories. The categorization is summarized in Table 5.6.
The VBF and ggF categories are mutually exclusive, as we only consider events that
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Figure 5.15: Distributions of input variables for non-resonant background in simu-
lated SM HH sample and data for full Run II.

do not enter the VBF categories for the ggF categories. Events with the VBF MVA
scores below 0.52 (0.86) for "̃X > 500 ("̃X < 500) GeV are not considered in the
VBF signal region. Because of the overwhelming background contamination, such
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Figure 5.16: Distributions of input variables for non-resonant background in simu-
lated SM HH sample and data for full Run II.
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Figure 5.17: Distributions of outputs of MVA and ttH tagger for non-resonant
background in simulated SM HH sample and data for full Run II.

events do not improve the expected sensitivity of the analysis. Similarly, events with
ggF MVA scores below 0.37 are not considered in the ggF signal region.

5.7 Combination of the HH and ttH signals to constrain +, and + t

As discussed in the introduction of this chapter, the HH production cross section
depends on ^_ and ^C . The production cross section of the single H processes
also depends on ^_, as a result of the NLO electroweak corrections [125]. The
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Table 5.6: Summary of the analysis categories. Two VBF- and twelve ggF-enriched
categories are defined based on the output of theMVA classifiers and the mass of the
Higgs boson pair system "̃X. The VBF and ggF categories are mutually exclusive.

Category MVA "̃X (GeV)
VBF CAT 0 0.52–1.00 > 500
VBF CAT 1 0.86–1.00 250–500
ggF CAT 0 0.78–1.00 > 600
ggF CAT 1 510–600
ggF CAT 2 385–510
ggF CAT 3 250–385
ggF CAT 4 0.62–0.78 > 540
ggF CAT 5 360–540
ggF CAT 6 330–360
ggF CAT 7 250–330
ggF CAT 8 0.37–0.62 > 585
ggF CAT 9 375–585
ggF CAT 10 330–375
ggF CAT 11 250–330

ggH and ttH production cross sections additionally depend on ^C . Therefore, the
HH → bbWW signal can be combinedwith the singleH productionmodes to provide
an improved constraint on the ^_ and ^C parameters. In the case of anomalous values
of ^_, the single H process with the largest modification of the cross section is
ttH. For this reason, additional orthogonal categories targeting the ttH process
are included in the analysis: the “ttH leptonic” and “ttH hadronic” categories,
developed and optimized for the measurement of the ttH production cross section in
the diphoton decay channel [126]. The events that do not pass the selections for the
HH categories defined in Table 5.6 are tested for the ttH categories. This ensures
the orthogonality between the events selected by the HH and ttH categories.

The H → WW candidate selection is the same as described in Sec. 5.2. The ttH
leptonic categories target ttH events where at least oneW boson, originating from
the top or antitop quark, decays leptonically. At least one isolated electron (muon)
with |[ | < 2.4 and pT > 10 (5) GeV, and at least one jet with pT > 25 GeV are
required. The ttH hadronic categories target hadronic decays of W bosons. In these
categories at least 3 jets are required, one of which must be b tagged, and a lepton
veto is imposed. In order to maximize the sensitivity, an MVA approach is used
to separate the ttH events from the background, dominated by WW + jets, W + jets,
tt + jets, tt + W, and tt + WW events. A BDT classifier is trained for each of the
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two channels using simulated events. The variables used for the training include
kinematic properties of the reconstructed objects, object identification variables, and
global event properties such as jet and leptonmultiplicities. TheBDT input variables
also include the outputs of other machine learning algorithms trained specifically to
target different backgrounds. These include DNN classifiers trained to reduce tt+WW
and WW + jets background, and a top quark tagger based on a BDT [127]. The output
scores of the BDTs are used to reject background-like events and to classify the
remaining events in four subcategories for each of the two channels. The boundaries
of the categories are optimized by maximizing the expected significance of the ttH
signal.

5.8 Signal modeling
In each of the HH categories, a parametric fit in the (<WW , <jj) plane is performed.
In the ttH categories, the <jj distribution is fitted to extract the signal. When the
HH and ttH categories are combined, both the HH and ttH production modes are
considered as signals.

The shape templates of the diphoton and dĳet invariant mass distributions are
constructed from simulation. In each HH and ttH analysis category, the <WW
distribution is fitted using a sum of, at most, five Gaussian functions. Figure 5.18
(left) shows the signal model for <WW in the VBF and ggF CAT 0 categories, which
are categories with the best resolution.

For theHH categories, the<jj distributions are modeled with a double-sided Crystal
Ball (CB) function, a modified version of the standard CB function [128] with two
independent exponential tails. Figure 5.18 (right) shows the signal model for the
<jj in the VBF and ggF categories with the best resolution.

For the HH signal, the final two-dimensional (2D) signal probability distribution is
a product of the independent <WW and <jj models. The possible correlations are
investigated by comparing the 2D<WW–<jj distributions in the simulated signal sam-
ples with the 2D probability distributions built as a product of the one-dimensional
(1D) ones. With the statistical precision available in this analysis, the correlations
have been found to be negligible.
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Figure 5.18: Parametrized signal shape for <WW (left) and <jj (right) in the best
resolution ggF (upper) and VBF (lower) categories. The open squares represent
simulated events and the blue lines are the corresponding models. Also shown
are the feff value (half the width of the narrowest interval containing 68.3% of the
invariant mass distribution) and the corresponding interval as a gray band, and the
full width at half the maximum (FWHM) and the corresponding interval as a double
arrow.
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5.9 Background modeling
Single Higgs background modeling
The SM single H background shape is constructed from the simulation following
the same methodology as used for the signal model described in Sec. 5.8. For each
analysis category and singleH productionmode, the<jj distributions are fitted using
a sum of, at most, five Gaussian functions. The <jj modeling in the HH categories
depends on the production mechanism, and a parametrization is obtained from the
simulated distributions: for the ggH and VBF H processes, the <jj distribution is
modeled with a Bernstein polynomial. This is motivated by the fact that there is
no intrinsic mass scale for the jet production in these processes; we expect a falling
spectrum. For VH production, a CB function is used to model the distribution of
the hadronic decays of vector bosons. For ttH, where the b jets are produced from
top quark decay, a Gaussian function with a mean around 120 GeV is used. The
minimal mass of a system of 2 top quarks is 350 GeV, and the bb system typically
takes 1/3 of this energy. Like the signal modeling, the final 2D SM single-Higgs
boson model is an independent product of models of the <WW and <jj distributions.

Due to the limited statistics left in the single Higgs simulation after the categoriza-
tion, it is impractical to construct single Higgs shapes in each individual category
per year. In case of<WW distribution for all single Higgs production modes, a narrow
Higgs peak is observed. Therefore, if there is not enough MC statistics in a given
category, the <WW shape constructed for ttH process is used. ttH is chosen because
of simulation statistics in all categories.

For <jj modeling, where <jj model depends on the production mechanism, we
merge 3 data-taking years and in addition merge 12 (3 MVA × 4 "̃X) categories
into 3 MVA categories and fit the shape in each of the 3 MVA categories. Then the
fitted shape is propagated to the 12 categories used in the analysis with the correct
normalization in each category. Fig. 5.19 shows the models for ggH, VBF H, VH,
and ttH processes in one of the MVA categories.

Nonresonant background modeling
Themodel used to describe the nonresonant background is extracted from data using
the discrete profiling method [129] as described in Ref. [130]. This technique was
designed as a way to estimate the systematic uncertainty associated with choosing
a particular analytic function to fit the background <jj and <WW distributions. The
method treats the choice of the background function as a discrete nuisance parameter
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Figure 5.19: Parametrized background shape for<jj distributions for ggH (top left),
VBF H (top right), VH (bottom left), and ttH (bottom right) in one of the MVA
categories. The open squares represent simulated events and the blue lines are the
correspondingmodels. Also shown are thefeff value (half the width of the narrowest
interval containing 68.3% of the invariant mass distribution) and the corresponding
interval as a gray band, and the full width at half the maximum (FWHM) and the
corresponding interval as a double arrow.

in the likelihood to fit the data. We consider three families of analytic functions:
polynomials in the Bernstein basis, sums of exponentials, and sums of power-law
functions. An F-test is used to select the representative functions from each of these
families to proceed with discrete profiling. To choose maximum orders of functions
in each family, we fit the data sequentially, increasing the function order and the
difference of negative log-likehood (2ΔNLL) between two consecutive fits. This
2ΔNLL is distributed as a j2(=) distribution, where the degrees of freedom = equal
to the difference in the number of free parameters between two consecutive orders.
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We continue to increase the function order until the p-value of having a 2ΔNLL
higher than the one calculated before it becomes larger than 0.05. This means that
the function with the next order gives no significant improvement to the fit to the
data. We perform this procedure for <WW and <jj variables separately, and then
use all combinations of functions chosen for <WW and <jj projections for discrete
profiling method.

5.10 Systematic uncertainties
The systematic uncertainties only affect the signal model and the resonant single
H background, since the nonresonant background model is constructed in a data-
driven way with the uncertainties associated with the choice of a background fit
function taken into account by the discrete profiling method described in Sec. 5.9.
The systematic uncertainties can affect the overall normalization, or a variation in
category yields, representing event migration between the categories. Theoretical
uncertainties have been applied to the HH and single H normalizations. The
following sources of theoretical uncertainty are considered: the uncertainty in the
signal cross section arising from scale variations, uncertainties on US, PDFs and in
the prediction of the branching fractionB(HH → bbWW). The dominant theoretical
uncertainties arise from the prediction of the SM HH and ttH production cross
sections. In addition, a conservative parton shower (PS) uncertainty is assigned to
the VBF HH signal, defined as the full symmetrized difference in yields in each
category obtained with simulated samples of VBF HH events interfaced with the
standard pT-ordered and dipole shower PS schemes.

The dominant experimental uncertainties are:

• Photon identification BDT score: the uncertainty arising from the imperfect
MC simulation of the input variables to the photon ID is estimated by rederiv-
ing the corrections with equally sized subsets of the Z → ee events used to
train the quantile regression BDTs. Its magnitude corresponds to the standard
deviation of the event-by-event differences in the photon ID evaluated on the
two different sets of corrected input variables. This uncertainty reflects the
limited capacity of the BDTs arising from the finite size of the training set.
It is seen to cover the residual discrepancies between data and simulation.
The uncertainty in signal yields is estimated by propagating this uncertainty
through the full category selection procedure.



68

• Photon energy scale and resolution: the uncertainties associated with the
corrections applied to the photon energy scale in data and the resolution in
simulation are evaluated using Z → ee events [131].

• Per-photon energy resolution estimate: the uncertainty in the per-photon
resolution is parametrized as rescaling of the resolution by ±5% around its
nominal value. This is designed to cover all differences between data and
simulation in the distribution, which is an output of the energy regression.

• Jet energy scale and resolution corrections: the energy scale of jets is mea-
sured using the pTbalance of jets with Z bosons and photons in Z → ee,Z →
``, and W + jets events, as well as using the pTbalance between jets in dĳet
and multĳet events [124, 132]. The uncertainty in the jet energy scale and
resolution is a few percent and depends on pT and [. The impact of uncer-
tainties on the event yields is evaluated by varying the jet energy corrections
within their uncertainties and propagating the effect to the final result. Some
source of the jet energy scale uncertainty are fully (anti-)correlated, while
others are considered uncorrelated.

• Jet b tagging: uncertainties in the b tagging efficiency are evaluated by
comparing data and simulated distributions for the b tagging discriminator
[59]. These include the statistical uncertainty in the estimate of the fraction
of heavy- and light-flavor jets in data and simulation.

• Trigger efficiency: the efficiency of the trigger selection ismeasuredwithZ →
ee events using a tag-and-probe technique [133]. An additional uncertainty
is introduced to account for a gradual shift in the timing of the inputs of the
ECAL L1 trigger in the region |[ | > 2.0, which caused a specific trigger
inefficiency during 2016 and 2017 data taking. Both photons, and to a greater
extent, jets can be affected by this inefficiency, which has a small impact.

• Photon preselection: the uncertainty in the preselection efficiency is computed
as the ratio between the efficiency measured in data and in simulation. The
preselection efficiency in data is measured with the tag-and-probe technique
in Z → ee events [133].

• Integrated luminosity: uncertainties are determined by the CMS luminosity
monitoring for the 2016–2018 data-taking years [134–136] and are in the
range of 2.3–2.5%. To account for common sources of uncertainty in the
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luminosity measurement schemes, some sources are fully (anti-)correlated
across different data-taking years, while others are considered uncorrelated.
The total 2016–2018 integrated luminosity has an uncertainty of 1.8%.

• Pileup jet identification: the uncertainty in the pileup jet classification output
score is estimated by comparing the score of jets in events with a Z boson and
one balanced jet in data and simulation. The assigned uncertainty depends on
pTand [, and is designed to cover all differences between data and simulation
in the distribution.

Most of the experimental uncertainties are uncorrelated among the three data-taking
years. Some sources of uncertainty in the measured luminosity and jet energy
corrections are fully (anti-)correlated, while others considered uncorrelated. This
search is statistically limited, and the total impact of systematic uncertainties on the
result is about 2%.

5.11 Results
An unbinned maximum likelihood fit to the <WW and <jj distributions is performed
simultaneously in the 14 HH categories to extract the HH signal. A likelihood
function is defined for each analysis category using analytic models to describe the
<WW and<jj distributions of signal and background events, with nuisance parameters
to account for the experimental and theoretical systematic uncertainties described
in Sec. 5.10. The fit is performed in the mass ranges 100 < <WW < 180 GeV and
70 < <jj < 190 GeV for all categories apart from ggF CAT 10 and CAT 11. In
those two categories, a small but non-negligible shoulder was observed in the <jj
distribution. Therefore, the <jj fit range is reduced to 90 < <jj < 190 GeV to avoid
a possible bias with minimal impact on the analysis sensitivity.

In order to determine ^C and ^_, the HH and ttH categories are used together in a
simultaneous maximum likelihood fit. In the ttH categories, a binned maximum
likelihood fit is performed to <WW in the mass range 100 < <WW < 180 GeV.

The data and the signal-plus-background model fit to <WW and <jj are shown in
Fig. 5.20 for the best resolution ggF and VBF categories. The distribution of events
weighted by S/(S+B) from all HH categories is shown in Fig. 5.21 for <WW and <jj.
In this expression, S (B) is the number of signal (background) events extracted from
the signal-plus-background fit.
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No significant deviation from the background-only hypothesis is observed. We set
upper limits at 95% CL on the product of the production cross section of a pair
of Higgs bosons and the branching fraction into bbWW , fHHB(HH → bbWW),
using the modified frequentist approach for confidence levels (CLs), taking the LHC
profile likelihood ratio as a test statistic [137–140] in the asymptotic approximation.
The observed (expected) 95% CL upper limit on fHHB(HH → bbWW) amounts
to 0.67 (0.45) fb. The observed (expected) limit corresponds to 7.7 (5.2) times the
SM prediction. All results were extracted assuming <H = 125 GeV. We observe
a variation smaller than 1% in both the expected and observed upper limits when
using <H = 125.38 ± 0.14 GeV, corresponding to the most precise measurement of
the Higgs boson mass to date [141].

Limits are also derived as a function ^_, assuming that the top quark Yukawa
coupling is SM-like (^C = 1). The result is shown in Fig. 5.22. The variation in the
excluded cross section as a function ^_ is directly related to changes in the kinematic
properties of HH production. At 95% CL, ^_ is constrained to values in the interval
[-3.3, 8.5], while the expected constraint on the ^_ is in the interval [-2.5, 8.2]. This
is the most sensitive search to date.

Assuming instead that an HH signal exists with the properties predicted by the
SM, constraints on _HHH can be set. The results are obtained both with the HH
categories only, and with the HH categories combined with the ttH categories in a
simultaneous maximum likelihood fit. The HH signal is considered with the single
H processes (ttH, ggH, VBF H, VH, and Higgs boson production in association
with a single top quark). The cross sections and branching fractions of the HH
and single H processes are scaled as a function of ^_, while the top quark Yukawa
coupling is assumed to be SM-like, ^C = 1. One-dimensional negative log-likelihood
scans for ^_ are shown in Fig. 5.23 for an Asimov dataset [139] generated with the
SM signal-plus-background hypothesis, ^_ = 1, and for the observed data. When
combining with the HH analysis categories with the ttH categories, we obtain
^_ = 0.6+6.3−1.8 (1.0

+5.7
−2.5 expected). Values of ^_ outside the interval [-2.7, 8.6] are

excluded at 95% CL. The expected exclusion at 95% CL corresponds to the region
outside the interval [-3.3, 8.6]. The shape of the likelihood as function of ^_ in
Fig. 5.23 is characterized by 2 minima. This is related to an interplay between the
cross section dependence on ^_ and differences in acceptance between the analysis
categories.
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Figure 5.20: Invariant mass distribution<WW (upper) and<jj (lower) for the selected
events in data (black points) in the best resolution ggF (CAT 0) and VBF (CAT 0)
categories. The solid red line shows the sum of the fitted signal and background
(HH+H+B), the solid blue line shows the background component from the single
Higgs boson and the nonresonant process (H+B), and the dashed black line shows
the nonresonant background component (B). The normalization of each component
(HH, H, B) is extracted from the combined fit to the data in all analysis categories.
The one (green) and two (yellow) standard deviation bands include the uncertainties
in the background component of the fit. The lower panel in each plot shows the
residual signal yield after the background (H+B) subtraction.

The HH and single Higgs boson production cross sections depend not only on
^_, but also on ^C . To better constrain the ^_ and ^C coupling modifiers, a 2D
negative log-likelihood scan in the (^_, ^C) plane is performed, taking into account
the modification of the production cross sections and B(H → bb),B(H → WW) for
anomalous (^_, ^C) values. Themodification of the singleH production cross section
for anomalous ^_ is modeled at NLO, while the dependence on ^C is parametrized
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Figure 5.21: Invariant mass distribution <WW (left) and <jj (right) for the selected
events in data (black points) weighted by S/(S+B), where S (B) is the number
of signal (background) events extracted from the signal-plus-background fit. The
solid red line shows the sum of the fitted signal and background (HH+H+B), the
solid blue line shows the background component from the single Higgs boson and
the nonresonant process (H+B), and the dashed black line shows the nonresonant
background component (B). The normalization of each component (HH, H, B)
is extracted from the combined fit to the data in all analysis categories. The one
(green) and two (yellow) standard deviation bands include the uncertainties in the
background component of the fit. The lower panel in each plot shows the residual
signal yield after the background (H+B) subtraction.

at LO only, neglecting NLO effects [125]. This approximation holds as long as the
value of |^C | is close to unity, roughly in the range 0.7 < ^C < 1.3. The parametric
model is not reliable outside of this range. Fig. 5.24 shows the 2D likelihood scan of
^_ versus ^C for an Asimov data set assuming the SM hypothesis and for the observed
data. The regions of the 2D scan where the ^C parametrization for anomalous values
of ^_ at LO is not reliable are shown wiht a gray band.

The inclusion of the ttH categories significantly improves the constraint on ^C . The
1D negative log-likelihood scan, as a function ^C with ^_ fixed at ^_ = 1, is shown
in Fig. 5.25 for an Asimov data set generated assuming the SM hypothesis, ^C = 1,
as well as for the observed data. The measured values of ^C is ^C = 1.3

+0.2
−0.2 (1.0

+0.2
−0.2

expected). Values of ^C outside the interval [0.9, 1.9] are excluded at 95% CL. The
constraint on ^C is comparable to the one recently set in Ref. [142], where anomalous
values of 2V were also considered.

Upper limits at 95% CL are also set on the product of the HH VBF production
cross section and branching fraction, fVBF HHB(HH → bbWW), with the yield of
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Figure 5.22: Expected and observed 95% CL upper limits on the product of the HH
production cross section and B(HH → bbWW) obtained for different values of ^_
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two standard deviation extensions beyond the expected limit. The long-dashed red
line shows the theoretical prediction.
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Figure 5.23: Negative log-likelihood, as a function of ^_, evaluated with an Asimov
data set assuming the SM hypothesis (left) and the observed data (right). The 68 and
95% CL intervals are shown with the dashed gray lines. The two curves are shown
for the HH (blue) and HH + ttH (orange) analysis categories. All other couplings
are set to their SM values.
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Figure 5.24: Negative log-likelihood contours at 68 and 95% CL in the (^_, ^C)
plane evaluated with an Asimov data set assuming the SM hypothesis (left) and the
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the ^C parametrization for anomalous values of ^_ at LO is not reliable are shown
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Figure 5.25: Negative log-likelihood scan, as a function of ^C , evaluated with an
Asimov data set assuming the SM hypothesis (left) and the observed data (right).
The 68 and 95% CL intervals are shown with the dashed gray lines. The two curves
are shown for the HH (blue) and the HH + ttH (orange) analysis categories. All
other couplings are fixed to their SM values.
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Figure 5.26: Expected and observed 95%CL upper limits on the product of the VBF
HH production cross section and B(HH → bbWW) obtained for different values of
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deviation extensions beyond the expected limit. The long-dashed red line shows the
theoretical prediction.
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the ggF HH signal constrained within uncertainties to the one predicted in the SM.
The observed (expected) 95% CL upper limit on fVBFHHB(HH → bbWW) amounts
to 1.02(0.94) fb. The limit corresponds to 225 (208) times the SM prediction. This
is the most stringent constraint on fVBF HHB(HH → bbWW) to date.

Limits are also set, as a function of 22V, as presented in Fig. 5.26. The observed
excluded region corresponds to 22V < −1.3 and 22V > 3.5, while the expected
exclusion is 22V < −0.9 and 22V > 3.1. It can be seen in Fig. 5.26 that this analysis
is more sensitive to anomalous values of 22V than to the region around the SM
prediction. This is related to the fact that, for anomalous values of 22V, the total
cross section is enhanced and the "̃X spectrum is harder as shown in Fig. 5.4 (right).
This leads to an increase in the product of signal acceptance and efficiency as well
as a more distinct signal topology.

Assuming HH production occurs via the VBF and ggF modes, we set constraints
on the ^_ and 22V coupling modifiers simultaneously. A 2D negative log-likelihood
scan in the (^_, 22) plane is performed using the 14 HH analysis categories. Fig. 5.27
shows 2D likelihood scans for the observed data and for anAsimov data set assuming
all couplings are at their SM values.

We also set upper limits at 95% CL for the twlve BSM benchmark hypotheses
defined in Table 5.1. In this fit, the yield of the VBF HH signal is constrained
within uncertainties to the ones predicted in the SM. The limits for different BSM
hypotheses are shown in Fig. 5.28 (upper). In addition, limits are also calculated
as a function of the BSM coupling between two Higgs bosons and two top quarks,
22, as presented in Fig. 5.28 (lower). The observed excluded region corresponds to
22 < −0.6 and 22 > 1.1, while the expected exclusion is 22 < −0.4 and 22 > 0.9.

5.12 Summary
A search for nonresonant Higgs boson pair production has been presented, where
one of the Higgs bosons decays to a pair of bottom quarks and the other to a pair of
photons. This search uses proton-proton collision data collected at

√
B = 13 TeV by

the CMS experiment at the LHC, corresponding to a total integrated luminosity of
137 fb−1. No significant deviation from the background-only hypothesis is observed.
Upper limit at 95% confidence level (CL) on the product of theHH production cross
section and the branching ratio fraction into bbWW are extracted for production in the
Standard Model (SM) and in several scenarios beyond the SM. The expected upper
limit at 95% CL on fHHB(HH → bbWW) is 0.45 fb, corresponding to about 5.2
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times the SM prediction, while the observed upper limit is 0.67 fb, corresponding
to 7.7 times the expected value for the SM process. The presented search has
the highest sensitivity to the SM HH production to date. Upper limits at 95%
CL on the SM HH production cross section are also derived as a function of the
Higgs boson self-coupling modifier ^_ ≡ _HHH/_

SM
HHH assuming that the top quark

Yukawa coupling is SM-like. The coupling modifier ^_ is constrained within a range
−3.3 < ^_ < 8.5, while the expected constraint is within a range −2.5 < ^_ < 8.2
at 95% CL.

This search is combined with an analysis that targets top quark-antiquark associated
production of a single Higgs boson decays to a diphoton pair. In the scenario in
which the HH signal has the properties predicted by the SM, the coupling modifier
^_ has been constrained. In addition, a simultaneous constraint on the ^_ and the
modifier of the coupling beteween the Higgs boson and the top quark ^C is presented
when both the HH and single Higgs boson processes are considered as signals.

Limits are also set on the cross section of the nonresonantHH production via vector
boson fusion (VBF). The most stringent limit to date is set on the product of the
HH VBF production cross section and the branching ratio into bbWW . The observed
(expected) upper limit at 95% CL amounts to 1.02 (0.94) fb, corresponding to 225
(208) times the SM prediction. Limits are also set as a function of the modifier of
the coupling between two vector bosons and two Higgs bosons, 22V. The observed
excluded region corresponds to 22V < −1.3 and 22V > 3.5, while the expected
exclusion is 22V < −0.9 and 22V > 3.1.

Numerous hypotheses on coupling modifiers beyond the SM have been explored,
both in the context of inclusive Higgs boson pair production and for HH production
via gluon-gluon fusion and VBF. The production of Higgs boson pairs was also
combined with the top quark-antiquark pair associated production of a single Higgs
boson. Overall, all the results are consistent with the SM predictions.
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Figure 5.28: Expected and observed 95% CL upper limits on the product of the
ggF HH production cross section and B(HH → bbWW) obtained for different
nonresonant benchmark models (defined in Table 5.1) (upper) and BSM coupling
22 (lower). In this fit, the yield of the VBF HH signal is constrained within
uncertainties to the one predicted in the SM. The green and yellow bands represent,
respectively, the one and two standard deviation extensions beyond the expected
limit. On the lower plot, the long-dashed red line shows the theoretical prediction.
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C h a p t e r 6

BOOSTING FUTURE HIGGS SEARCHES WITH BOOSTED
H → bb JET IDENTIFICATION BASED ON GRAPH

INTERACTION NETWORKS

In this chapter, we introduce a novel jet identification algorithm based on interaction
networks to identify high-transverse-momentum Higgs bosons decaying to bottom
quark-antiquark pairs and distinguish them from ordinary jets originating from the
hadronization of quarks and gluons. The algorithms inputs are features of the
reconstructed charged particles in a jet and the secondary vertices associated with
them. Describing the jet shower as a combination of particle-to-particle and particle-
to-vertex interactions, the model is trained to learn a jet representation on which
the classification problem is optimized. The algorithm is trained on simulated
samples of realistic LHC collisions, released by the CMS Collaboration on the
CERN Open Data Portal. The interaction network achieves a drastic improvement
in the identification performance with respect to state-of-the-art algorithms, and can
be used to improve the sensitivity of future searches involving Higgs boson decaying
into a pair of bottom quarks.

6.1 Introduction
Jets are collimated cascades of particles produced at particle accelerators. Quarks
and gluons originating from hadron collisions, such as the proton-proton collisions
at the CERN Large Hadron Collider (LHC), generate a cascade of other particles
(mainly other quarks or gluons) that then arrange themselves into hadrons. The
stable and unstable hadrons’ decay products are observed by large particle detectors,
reconstructed by algorithms that combine the information from different detector
components, and then clustered into jets, using physics-motivated sequential recom-
bination algorithms such as those described inRef. [57, 143, 144]. Jet identification,
or tagging, algorithms are designed to identify the nature of the particle that initiated
a given cascade, inferring it from the collective features of the particles generated
in the cascade.

Traditionally, jet tagging was meant to distinguish three classes of jets: light flavor
quarks q = u, d, s, c, gluons g, or bottom quarks (b). At the LHC, due to the large
collision energy, new jet topologies emerge. When heavy particles, e.g. W, Z, or
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q/g

 t→Wb→qqb h→bb

 W/Z→qqb

Figure 6.1: Pictorial representation of ordinary quark and gluon jets (top left), b jets
(top center), and boosted-jet topologies, emerging from high-?T W and Z bosons
(top right), Higgs bosons (bottom left), and top quarks (bottom right) decaying to
all-quark final states.

Higgs (H) bosons or the top quark, are produced with large momentum and decay
to all-quark final states, the resulting jets are contained in a small solid angle. A
single jet emerges from the overlap of two (for bosons) or three (for the top quark)
jets, as illustrated in Fig. 6.1. These jets are characterized by a large invariant mass
(computed from the sum of the four-momenta of their constituents) and they differ
from ordinary quark and gluon jets, due to their peculiar momentum flow around
the jet axis.

Several techniques have been proposed to identify these jets by using physics-
motivated quantities, collectively referred to as “jet substructure” variables. A
review of the different techniques can be found in Ref. [145]. As discussed in the
review, approaches based on deep learning (DL) have been extensively investigated
(see also Sec. 6.2), processing sets of physics-motivated quantities with dense layers
or raw data representations (e.g. jet images or particle feature lists) with more
complex architectures (e.g. convolutional or recurrent networks).

While existing DL approaches have been successfully applied to jet tagging, par-
ticle jets involve multiple entities with complex interactions that are not easily
encoded as images or lists. Graphs provide a natural representation for such rela-
tional information. Traditional machine learning methods use feature engineering
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and preprocessing to learn from these graphs, which can be time consuming and
costly, and may miss important features present in the data. Graph representation
learning, including graph convolution networks [146–149] and graph generative
models [150, 151], leverages DL to learn directly from graph-structured data. In
contrast to other DL methods, graph representation learning can (1) handle irreg-
ular grids with non-Euclidean geometry [152], (2) encode physics knowledge via
graph construction [153], and (3) introduce relational inductive bias into data-driven
learning systems [154]. For example, while convolutional neural networks (CNNs)
are powerful classifiers that work extremely well for data represented on a grid [155,
156], geometric DL algorithms, such as graph neural networks (GNNs) [157, 158],
are applicable even without an underlying grid structure. Because the data in many
scientific domains are not Euclidean, GNNs emerge as a more natural choice.

In this work, we compare the typical performance of some of these approaches to
what is achievable with a novel jet identification algorithm based on an interaction
network known as JEDI-net. Interaction networks [159] (INs) were designed to
decompose complex systems into distinct objects and relations, and reason about
their interactions and dynamics. One of the first uses of INs was to predict the
evolution of physical systems under the influence of internal and external forces, for
example, to emulate the effect of gravitational interactions in =-body systems. The
=-body system is represented as a set of objects subject to one-on-one interactions.
The = bodies are embedded in a graph and these one-on-one interaction functions,
expressed as trainable neural networks, are used to predict the post-interaction status
of the =-body system. We study whether this type of network generalizes to a novel
context in high energy physics. In particular, we represent a jet as a set of particles,
each of which is represented by its momentum and embedded as a vertex in a
fully-connected graph. We use neural networks to learn a representation of each
one-on-one particle interaction 1 in the jet, which we then use to define jet-related
high-level features (HLFs). Based on these features, a classifier associates each jet
to one of the five categories shown in Fig. 6.1.

For comparison, we consider other classifiers based on different architectures: a
dense neural network (DNN) [160] receiving a set of jet-substructure quantities, a
convolutional neural network (CNN) [161–163] receiving an image representation

1Here, we refer to the abstract message-passing interaction represented by the edges of the
graph and not the physical interactions due to quantum chromodynamics, which occur before the jet
constituents emerge from the hadronization process.
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of the transverse momentum (?T) flow in the jet 2, and a recurrent neural net-
work (RNN) [164–166] with gated recurrent units [167] (GRUs), which process
a list of particle features. These models can achieve state-of-the-art performance
although they require additional ingredients: the DNN model requires processing
the constituent particles to pre-compute HLFs, the GRUmodel assumes an ordering
criterion for the input particle feature list, and the CNN model requires represent-
ing the jet as a rectangular, regular, pixelated image. Any of these aspects can
be handled in a reasonable way (e.g. one can use a jet clustering metric to order
the particles), sometimes sacrificing some detector performance (e.g., with coarser
image pixels than realistic tracking angular resolution, in the case of many models
based on CNN). It is then worth exploring alternative solutions that could reach
state-of-the-art performance without making these assumptions. In particular, it is
interesting to consider architectures that directly takes as input jet constituents and
are invariant for their permutation. This motivated the study of jet taggers based on
recursive [168], graph networks [169, 170], and energy flow networks [171]. In this
context, we aim to investigate the potential of INs in jet identification.

This chapter is organized as follows: Sec. 6.2 provides a list of relevant works in
the context of jet tagging algorithms. In Sec. 6.3, we describe the datasets used
for the two studies presented in this chapter: (1) the JEDI-net, which is the base
model of the interaction network used for jet tagging, and (2) the modified JEDI-net
for boosted H → bb jet classification, where we extend the base JEDI-net model
by incorporating the secondary vertex interaction. Details of the base JEDI-net
model are described in Sec. 6.4, including the model architecture, its performance
in discriminating between jets originating from gluons, light quarks, W and Z
bosons, and top quarks. This section also characterizes the information learned by
JEDI-net and compares resource consumption between JEDI-net and other popular
deep-learning based models. Sec. 6.5 described the model for boosted H → bb jet
tagging based on JEDI-net, with additional information from the secondary vertices
of the b quarks. AsmanyHiggs searches rely on the jet mass spectrum, it’s important
to keep the jet tagging score uncorrelated from the jet mass, which is the focus of
Sec. 6.6. Sec. 6.7 describes our reproduction of the DeepDoubleB model, which is

2We use a Cartesian coordinate system with the I axis oriented along the beam axis, the G axis
on the horizontal plane, and the H axis oriented upward. The G and H axes define the transverse
plane, while the I axis identifies the longitudinal direction. The azimuthal angle q is computed from
the G axis. The polar angle \ is used to compute the pseudorapidity [ = − log(tan(\/2)). We use
natural units such that 2 = ℏ = 1 and we express energy in units of electronvolt (eV) and its prefix
multipliers.
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the state-of-the-art algorithm used in CMS, for benchmarking purpose. Results are
presented in Sec. 6.8. Sec. 6.9 summarizes the chapter.

6.2 Related work
Jet tagging is one of the most popular LHC-related tasks to which DL solutions have
been applied. Several classification algorithms have been studied in the context of jet
tagging at the LHC [172–179] usingDNNs, CNNs, or physics-inspired architectures.
Recurrent and recursive layers have been used to construct jet classifiers starting
from a list of reconstructed particle momenta [168–170]. Recently, these different
approaches, applied to the specific case of top quark jet identification, have been
compared in Ref. [180]. While many of these studies focus on data analysis, work
is underway to apply these algorithms in the early stages of LHC real-time event
processing, i.e. the trigger system. For example, Ref. [181] focuses on converting
these models into firmware for field programmable gate arrays (FPGAs) optimized
for low latency (less than 1 `s). If successful, such a program could allow for a
more resource-efficient and effective event selection for future LHC runs.

Graph neural networks have also been considered as jet tagging algorithms [182,
183] as a way to circumvent the sparsity of image-based representations of jets.
These approaches demonstrate remarkable categorization performance. Motivated
by the early results of Ref. [182], graph networks have been also applied to other
high energy physics tasks, such as event topology classification [184, 185], particle
tracking in a collider detector [186], pileup subtraction at the LHC [187], and particle
reconstruction in irregular calorimeters [188].

6.3 Dataset description
Dataset for JEDI-net study
This study is based on a data set consisting of simulated jets with an energy of
?T ≈ 1 TeV, originating from light quarks q, gluons g, W and Z bosons, and top
quarks produced in

√
B = 13TeV proton-proton collisions. The data set was created

using the configuration and parametric description of an LHC detector described in
Ref. [181, 189], and is available on the Zenodo platform [190–193].

Jets are clustered from individual reconstructed particles, using the anti-:T algo-
rithm [57, 194] with jet-size parameter ' = 0.8. Three different jet representations
are considered:
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Figure 6.2: Distributions of the 16 high-level features used in this study, described
in Ref. [181].
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Figure 6.3: Average 100 × 100 images for the five jet classes considered in this
study: q (top left), g (top center),W (top right), Z (bottom left), and top jets (bottom
right). The temperature map represents the amount of ?T collected in each cell of
the image, measured in GeV and computed from the scalar sum of the ?T of the
particles pointing to each cell.
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Figure 6.4: Example of 100 × 100 images for the five jet classes considered in
this study: q (top-left), g (top-right), W (center-left), Z (center-right), and top jets
(bottom). The temperature map represents the amount of ?T collected in each cell
of the image, measured in GeV and computed from the scalar sum of the ?T of the
particles pointing to each cell.
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• A list of 16 HLFs, described in Ref. [181], given as input to a DNN. The 16
distributions are shown in Fig. 6.2 for the five jet classes.

• An image representation of the jet, derived by considering a square with
pseudorapidity and azimuthal distances Δ[ = Δq = 2', centered along the
jet axis. The image is binned into 100 × 100 pixels. Such a pixel size is
comparable to the cell of a typical LHC electromagnetic calorimeter, but
much coarser than the typical angular resolution of a tracking device for the
?T values relevant to this task. Each pixel is filled with the scalar sum of the
?T of the particles in that region. These images are obtained by considering
the 150 highest-?T constituents for each jet. This jet representation is used
to train a CNN classifier. The average jet images for the five jet classes are
shown in Fig. 6.3. For comparison, a randomly chosen set of images is shown
in Fig. 6.4.

• A constituent list for up to 150 particles, in which each particle is represented
by 16 features, computed from the particle four-momenta: the three Cartesian
coordinates of the momentum (?G , ?H, and ?I), the absolute energy � , ?T, the

pseudorapidity [, the azimuthal angle q, the distance Δ' =

√
Δ[
2 + Δq

2 from
the jet center, the relative energy � rel = �

particle/� jet and relative transverse
momentum ?

rel
T = ?

particle
T /?jetT defined as the ratio of the particle quantity

and the jet quantity, the relative coordinates [rel = [
particle − [jet and qrel =

q
particle − qjet defined with respect to the jet axis, cos \ and cos \rel where
\
rel

= \
particle−\jet is defined with respect to the jet axis, and the relative [ and

q coordinates of the particle after applying a proper Lorentz transformation
(rotation) as described in Ref. [195]. Whenever less than 150 particles are
reconstructed, the list is filled with zeros. The distributions of these features
considering the 150 highest-?T particles in the jet are shown in Fig. 6.5 for
the five jet categories. This jet representation is used for a RNN with a GRU
layer and for JEDI-net.

Dataset for the study of modified JEDI-net for boosted H → bb jet identification
This study uses the CMS open data and simulation, which are available from the
CERN Open Data Portal [196], including releases of 2010, 2011, and 2012 CMS
collision data as well as 2011, 2012, and 2016 CMS simulated data.
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Figure 6.5: Distributions of kinematic features described in the text for the 150
highest-?T particles in each jet.
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Samples of H → bb jets are available from simulated events containing Randall-
Sundrum gravitons [197] decaying to two Higgs bosons, which subsequently de-
cay to bb pairs. The event generation was done by the CMS Collaboration with
MADGRAPH5_aMCATNLO 2.2.2 at leading order, with graviton masses ranging
between 0.6 and 4.5 TeV. Generation of this process enables better sampling of
events with large Higgs boson ?T. The main source of background originates from
multĳet events. The background dataset was generated with pythia 8.205 [103] in
different bins of the average ?T of the final-state partons (?̂T). The parton showering
and hadronization was performed with pythia 8.205 [103], using the CMS under-
lying event tune CUETP8M1 [107] and the NNPDF 2.3 [198] parton distribution
functions. Pileup interactions are modeled by overlaying each simulated event with
additional minimum bias collisions, also generated with pythia 8.205. The CMS
detector response is modeled by Geant4 [111].

The outcome of the default CMS reconstruction workflow is provided in the open
simulation [199]. In particular, particle candidates are reconstructed using the
particle-flow (PF) algorithm [200]. Charged particles from pileup interactions are
removed using the CHS algorithm. Jets are clustered from the remaining recon-
structed particles using the anti-:T algorithm [57, 194] with a jet-size parameter
' = 0.8. The standard CMS jet energy corrections are applied to the jets. In order
to remove soft, wide-angle radiation from the jet, the soft-drop (SD) algorithm [201,
202] is applied, with angular exponent V = 0, soft cutoff threshold Icut < 0.1, and
characteristic radius '0 = 0.8 [203]. The SD mass (<SD) is then computed from
the four-momenta of the remaining constituents.

A signal H → bb jet is defined as a jet geometrically matched to the generator-level
Higgs boson and both b quark daughters. Jets from QCD multĳet events are used
to define a sample of fake H → bb candidates.

The dataset is reduced by requiring the AK8 jets to have 300 < ?T < 2400GeV,
|[ | < 2.4, and 40 < <SD < 200GeV. After this reduction, the dataset consists
of 3.9 million H → bb jets and 1.9 million inclusive QCD jets. Charged particles
are required to have ?T > 0.95GeV and reconstructed secondary vertices (SVs) are

associated with the AK8 jet using Δ' =

√
Δq
2 + Δ[

2
< 0.8. The dataset is divided

into blocks of features, referring to different objects. Different blocks are used as
input by the models described in the rest of the paper.

The IN uses 30 features related to charged particles (see Table 6.1). The IN also uses
14 SV features listed in Table 6.2. The DDB tagger [204] uses a subset of the above
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features (8 features for each particle and 2 features for each SV), chosen to minimize
the correlation with the jet mass. In addition, the DDB tagger uses 27 high-level
features (HLF) listed in Table 6.3 and first used in a previous version of the algorithm,
described in Ref. [59]. To isolate the effects of the different architecture, the DDB+
tagger uses the same inputs as the IN tagger, while retaining the architecture of the
DDB tagger. The charged particles (SVs) are sorted in descending order of the 2D
impact parameter significance (2D flight distance significance) and only the first 60
(5) are considered.

Table 6.1: Charged particle features. The IN and DDB+ models use all of the
features, while DDB algorithm uses the subset of features indicated in bold.

Variable Description

track_ptrel ?T of the charged particle divided by the ?T of the
AK8 jet

track_erel Energy of the charged particle divided by the energy
of the AK8 jet

track_phirel Δq between the charged particle and the AK8 jet
axis

track_etarel Δ[ between the charged particle and the AK8 jet axis
track_deltaR Δ' between the charged particle and the AK8 jet

axis
track_drminsv Δ' between the associated SVs and the charged par-

ticle
track_drsubjet1 Δ' between the charged particle and the first soft

drop subjet
track_drsubjet2 Δ' between the charged particle and the second soft

drop subjet
track_dz Longitudinal impact parameter of the track, defined

as the distance of closest approach of the track tra-
jectory to the PV projected on to the I direction

track_dzsig Longitudinal impact parameter significance of the
track
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track_dxy Transverse (2D) impact parameter of the track, de-
fined as the distance of closest approach of the track
trajectory to the beam line in the transverse plane to
the beam

track_dxysig Transverse (2D) impact parameter of the track
track_normchi2 Normalized j2 of the track fit
track_quality Track quality: undefQuality=-1,

loose=0, tight=1, highPurity=2,

confirmed=3, looseSetWithPV=5,

highPuritySetWithPV=6, discarded=7,

qualitySize=8

track_dptdpt Track covariance matrix entry (?T, ?T)
track_detadeta Track covariance matrix entry ([, [)
track_dphidphi Track covariance matrix entry (q, q)
track_dxydxy Track covariance matrix entry (3GH, 3GH)
track_dzdz Track covariance matrix entry (3I, 3I)
track_dxydz Track covariance matrix entry (3GH, 3I)
track_dphidz Track covariance matrix entry (3q, 3I)
track_dlambdadz Track covariance matrix entry (_, 3I)
trackBTag_EtaRel Δ[ between the track and the AK8 jet axis
trackBTag_PtRatio Component of trackmomentum perpendicular to the

AK8 jet axis, normalized to the track momentum
trackBTag_PParRatio Component of track momentum parallel to the AK8

jet axis, normalized to the track momentum
trackBTag_Sip2dVal Transverse (2D) signed impact parameter of the track
trackBTag_Sip2dSig Transverse (2D) signed impact parameter signifi-

cance of the track
trackBTag_Sip3dVal 3D signed impact parameter of the track
trackBTag_Sip3dSig 3D signed impact parameter significance of the track
trackBTag_JetDistVal Minimum track approach distance to the AK8 jet

axis



91

Table 6.2: Secondary vertex features. The IN and DDB+ models use all of the
features, while the DDB algorithm uses the subset of features indicated in bold.

Variable Description

sv_ptrel ?T of the SV divided by the ?T of the AK8 jet
sv_erel Energy of the SV divided by the energy of the AK8 jet
sv_phirel Δq between the SV and the AK8 jet axis
sv_etarel Δ[ between the SV and the AK8 jet axis
sv_deltaR Δ' between the SV and the AK8 jet axis
sv_pt ?T of the SV
sv_mass Mass of the SV
sv_ntracks Number of tracks associated with the SV
sv_normchi2 Normalized j2 of the SV fit
sv_costhetasvpv cos \ between the SV and the PV
sv_dxy Transverse (2D) flight distance of the SV
sv_dxysig Transverse (2D) flight distance significance of the SV
sv_d3d 3D flight distance of the SV
sv_d3dsig 3D flight distance significance of the SV

Table 6.3: High-level features used by the DDB algorithm.

Variable Description

fj_jetNTracks Number of tracks associated with the
AK8 jet

fj_nSV Number of SVs associated with the AK8
jet (Δ' < 0.7)

fj_tau0_trackEtaRel_0 Smallest track Δ[ relative to the jet axis,
associated to the first N-subjettiness axis

fj_tau0_trackEtaRel_1 Second smallest track Δ[ relative to
the jet axis, associated to the first N-
subjettiness axis

fj_tau0_trackEtaRel_2 Third smallest track Δ[ relative to the
jet axis, associated to the first N-
subjettiness axis
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fj_tau1_trackEtaRel_0 Smallest track Δ[ relative to the jet axis,
associated to the second N-subjettiness
axis

fj_tau1_trackEtaRel_1 Second smallest track Δ[ relative to the
jet axis, associated to the second N-
subjettiness axis

fj_tau1_trackEtaRel_2 Third smallest track Δ[ relative to the
jet axis, associated to the second N-
subjettiness axis

fj_tau_flightDistance2dSig_0 Transverse (2D) flight distance signif-
icance between the PV and the SV
with the smallest uncertainty on the 3D
flight distance associated to the first N-
subjettiness axis

fj_tau_flightDistance2dSig_1 Transverse (2D) flight distance signifi-
cance between the PV and the SV with
the smallest uncertainty on the 3D flight
distance associated to the second N-
subjettiness axis

fj_tau_vertexDeltaR_0 Δ' between the first N-subjettiness axis
and SV direction

fj_tau_vertexEnergyRatio_0 SV energy ratio for the first N-
subjettiness axis, defined as the total en-
ergy of all SVs associated with the first
N-subjettiness axis divided by the total
energy of all the tracks associated with
the AK8 jet that are consistent with the
PV

fj_tau_vertexEnergyRatio_1 SV energy ratio for the second N-
subjettiness axis

fj_tau_vertexMass_0 SVmass for the first N-subjettiness axis,
defined as the invariantmass of all tracks
from SVs associated with the first N-
subjettiness axis
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fj_tau_vertexMass_1 SV mass for the second N-subjettiness
axis

fj_trackSip2dSigAboveBottom_0 Track 2D signed impact parameter sig-
nificance of the first track lifting the
combined invariant mass of the tracks
above the b hadron threshold mass (5.2
GeV)

fj_trackSip2dSigAboveBottom_1 Track 2D signed impact parameter sig-
nificance of the second track lifting the
combined invariant mass of the tracks
above the b hadron threshold mass (5.2
GeV)

fj_trackSip2dSigAboveCharm_0 Track 2D signed impact parameter sig-
nificance of the first track lifting the
combined invariant mass of the tracks
above the c hadron threshold mass (1.5
GeV)

fj_trackSipdSig_0 Largest track 3D signed impact parame-
ter significance

fj_trackSipdSig_1 Second largest track 3D signed impact
parameter significance

fj_trackSipdSig_2 Third largest track 3D signed impact pa-
rameter significance

fj_trackSipdSig_3 Fourth largest track 3D signed impact
parameter significance

fj_trackSipdSig_0_0 Largest track 3D signed impact param-
eter significance associated to the first
N-subjettiness axis

fj_trackSipdSig_0_1 Second largest track 3D signed impact
parameter significance associated to the
first N-subjettiness axis

fj_trackSipdSig_1_0 Largest track 3D signed impact parame-
ter significance associated to the second
N-subjettiness axis
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fj_trackSipdSig_1_1 Second largest track 3D signed impact
parameter significance associated to the
second N-subjettiness axis

fj_z_ratio I ratio variable as defined in Ref. [59]

Table 6.4: Additional features for charged or neutral particles. The all-particle IN
model uses these features.

Variable Description

pfcand_ptrel ?T of the charged or neutral particle divided by the ?T of
the AK8 jet

pfcand_erel Energy of the charged or neutral particle divided by the
energy of the AK8 jet

pfcand_phirel Δq between the charged or neutral particle and the AK8
jet axis

pfcand_etarel Δ[ between the charged or neutral particle and the AK8
jet axis

pfcand_deltaR Δ' between the charged or neutral particle and the AK8
jet axis

pfcand_puppiw Pileup per particle identification (PUPPI) weight [205]
for the charged or neutral particle

pfcand_drminsv Δ' between the associated SVs and the charged or netural
particle

pfcand_drsubjet1 Δ' between the charged or neutral particle and the first
soft drop subjet

pfcand_drsubjet2 Δ' between the charged or neutral particle and the second
soft drop subjet

pfcand_hcalFrac Fraction of energy of the charged or neutral particle de-
posited in the hadron calorimeter

6.4 JEDI-net: Jet identification algorithm based on interaction networks
We apply an interaction network (IN) [159] architecture to learn a representation
of a given input graph (the set of constituents in a jet) and use it to accomplish a
classification task (tagging the jet), where we name it JEDI-net. One can see the
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O3
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E2 E3

E4
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Figure 6.6: An example graph with three fully connected vertices and the corre-
sponding six edges.

IN architecture as a processing algorithm to learn a new representation of the initial
input. This is done replacing a set of input features, describing each individual
vertex of the graph, with a set of engineered features, specific of each vertex, but
whose values depend on the connection between the vertices in the graph.

The starting point consists of building a graph for each input jet. The #$ particles
in the jet are represented by the vertices of the graph, fully interconnected through
directional edges, for a total of #� = #$ × (#$ − 1) edges. An example is shown in
Fig. 6.6 for the case of a three-vertex graph. The vertices and edges are labeled for
practical reasons, but the network architecture ensures that the labeling convention
plays no role in creating the new representation.

Once the graph is built, a receiving matrix ('') and a sending matrix ('() are
defined. Both matrices have dimensions #$ × #� . The element ('')8 9 is set to 1
when the 8th vertex receives the 9 th edge and is 0 otherwise. Similarly, the element
('()8 9 is set to 1 when the 8

th vertex sends the 9 th edge and is 0 otherwise. In the
case of the graph of Fig. 6.6, the two matrices take the form:

'( =

©«

�1 �2 �3 �4 �5 �6

$1 0 0 0 1 1 0

$2 1 0 0 0 0 1

$3 0 1 1 0 0 0

ª®®®®¬
(6.1)

'' =

©«

�1 �2 �3 �4 �5 �6

$1 1 1 0 0 0 0

$2 0 0 1 1 0 0

$3 0 0 0 0 1 1

ª®®®®¬
. (6.2)
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The input particle features are represented by an input matrix �. Each column of the
matrix corresponds to one of the graph vertices, while the rows correspond to the
% features used to represent each vertex. In our case, the vertices are the particles
inside the jet, each represented by its array of features (i.e., the 16 features shown in
Fig. 6.5). Therefore, the � matrix has dimensions % × #$ .

NO: # of constituents

P:   # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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Figure 6.7: A flowchart illustrating the interaction network scheme.

The � matrix is processed by the IN in a series of steps, represented in Fig. 6.7. The
� matrix is multiplied by the '' and '( matrices and the two resulting matrices are
then concatenated to form the � matrix, having dimension 2% × #� :

� =

(
� × ''
� × '(

)
. (6.3)

Each column of the � matrix represents an edge, i.e. a particle-to-particle interac-
tion. The 2% elements of each column are the features of the sending and receiving
vertices for that edge. Using this information, a �� -dimensional hidden representa-
tion of the interaction edge is created through a trainable function 5' : R

2% ↦→ R�� .
This gives a matrix � with dimensions �� × #� . The cumulative effects of the
interactions received by a given vertex are gathered by summing the �� hidden
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features over the edges arriving to it. This is done by computing � = �'
>
' with

dimensions �� × #$ , which is then appended to the initial input matrix �:

� =

(
�

�

)
. (6.4)

At this stage, each column of the � matrix represents a constituent in the jet,
expressed as a (% +�� )-dimensional feature vector, containing the % input features
and the �� hidden features representing the combined effect of the interactions with
all the connected particles. A trainable function 5$ : R

%+�� ↦→ R�$ is used to
build a post-interaction representation of each jet constituent. The function 5$ is
applied to each column of � to build the post-interaction matrix $ with dimensions
�$ × #$ .

A final classifier q� takes as input the elements of the $ matrix and returns the
probability for that jet to belong to each of the five categories. This is done in
two ways: (i) in one case, we define the quantities $8 =

∑
9 $8 9 , where 9 is the

index of the vertex in the graph (the particle, in our case), and the 8 ∈ [0, �� ]
index runs across the �� outputs of the 5$ function. The $ quantities are used
as input to q� : R

�$ ↦→ R# . This choice allows to preserve the independence
of the architecture on the labeling convention adopted to build the �, '', and '(
matrices, at the cost of losing some discriminating information in the summation.
(ii) Alternatively, the q� matrix is defined directly from the �$ × #$ elements of
the $ matrix, flattened into a one-dimensional array. The full information from $
is preserved, but q� assumes an ordering of the #$ input objects. In our case, we
rank the input particles in descending order by ?T.

The trainable functions 5$ , 5', and q� consist of three DNNs. Each of them has two
hidden layers, the first (second) having #1= (#

2
= = b#1=/2c) neurons. The model is

implemented in PyTorch [206] and trained using an NVIDIA GTX1080 GPU. The
training (validation) data set consists of 630,000 (240,000) examples, while 10,000
events are used for testing purposes.

The architecture of the three trainable functions is determined by minimizing the
loss function through a Bayesian optimization, using the GpyOpt library [207],
based on Gpy [208]. We consider the following hyperparameters:

• The number of output neurons of the 5' network, �� (between 4 and 14).

• The number of output neurons of the 5$ network, �$ (between 4 and 14).
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• The number of neurons #1= in the first hidden layer of the 5$ , 5', and q�
network (between 5 and 50).

• The activation function for the hidden and output layers of the 5' network:
ReLU [209], ELU [210], or SELU [211] functions.

• The activation function for the hidden and output layers of the 5$ network:
ReLU, ELU, or SELU.

• The activation function for the hidden layers of the q� network: ReLU, ELU,
or SELU.

• The optimizer algorithm: Adam [212] or AdaDelta [213].

In addition, the output neurons of the q� network are activated by a softmax function.
A learning rate of 10−4 is used. For a given network architecture, the network
parameters are optimized byminimizing the categorical cross entropy. The Bayesian
optimization is repeated four times. In each case, the input particles are ordered by
descending ?T value and the first 30, 50, 100, or 150 particles are considered. The
parameter optimization is performed on the training data set, while the loss for the
Bayesian optimization is estimated on the validation data set.

Tables 6.6 and 6.5 summarize the result of theBayesian optimization for the JEDI-net
architecture with andwithout the sum over the columns of the$matrix, respectively.
The best result of each case, highlighted in bold, is used as a reference for the rest
of the section.

Table 6.5: Optimal JEDI-net hyperparameter setting for different input data sets,
when the summed $8 quantities are given as input to the q� network. The best
result, obtained when considering up to 150 particles per jet, is highlighted in bold.

Hyperparameter Number of jet constituents
30 50 100 150

#
1
= 6 50 30 50

�� 8 12 4 14
�$ 6 14 4 10

5' activation ReLU ReLU SELU SELU
5$ activation ELU ReLU ReLU SELU
q� activation ELU SELU SELU SELU
Optimizer Adam Adam Adam Adam

Optimized loss 0.84 0.58 0.62 0.55
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Table 6.6: Optimal JEDI-net hyperparameter setting for different input data sets,
when all the $8 9 elements are given as input to the q� network. The best result,
obtained when considering up to 100 particles per jet, is highlighted in bold.

Hyperparameter Number of jet constituents
30 50 100 150

#
1
= 50 50 30 10

�� 12 12 10 4
�$ 6 14 10 14

5' activation ReLU ELU ELU SELU
5$ activation SELU SELU ELU SELU
q� activation SELU ELU ELU SELU
Optimizer Adam Adam Adam Adam

Optimized loss 0.63 0.57 0.56 0.62

For comparison, three alternative models are trained on the three different represen-
tations of the same data set described in Sec. 6.3: a DNN model taking as input a
list of HLFs, a CNN model processing jet images, and a recurrent model applying
GRUs on the same input list used for JEDI-net. The three benchmark models are
optimized through a Bayesian optimization procedure, as done for the INs.

Results
Figure 6.8 shows the receiver operating characteristic (ROC) curves obtained for
the optimized JEDI-net tagger in each of the five jet categories, compared to the
corresponding curves for the DNN, CNN, and GRU alternative models. The curves
are derived by fixing the network architectures to the optimal values based on
Table 6.6 and performing a :-fold cross-validation training, with : = 10. The solid
lines represent the average ROC curve, while the shaded bands quantify the ±1RMS
dispersion. The area under the curve (AUC) values, reported in the figure, allow for
a comparison of the performance of the different taggers.

The algorithm’s tagging performance is quantified computing the true positive rate
(TPR) values for two given reference false positive rate (FPR) values (10% and 1%).
The comparison of the TPRvalues gives an assessment of the tagging performance in
a realistic use case, typical of an LHC analysis. Tables 6.7 shows the corresponding
FPR values for the optimized JEDI-net taggers, compared to the corresponding
values for the benchmarkmodels. The largest TPR value for each class is highlighted
in bold. As shown in Fig. 6.8 and Table 6.7, the two JEDI-net models outperform
the other architectures in almost all cases. The only notable exception is the tight
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Figure 6.8: ROC curves for JEDI-net and the three alternative models, computed
for gluons (top-left), light quarks (top-right), W (center-left) and Z (center-right)
bosons, and top quarks (bottom). The solid lines represent the average ROC curves
derived from 10 :-fold trainings of each model. The shaded bands around the
average lines are represent one standard deviation, computed with the same 10
:-fold trainings.
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Table 6.7: True positive rates (TPR) for the optimized JEDI-net taggers and the
three alternative models (DNN, CNN, and GRU), corresponding to a false positive
rate (FPR) of 10% (top) and 1% (bottom). The largest TPR value for each case is
highlighted in bold.

Jet category DNN GRU CNN JEDI-net JEDI-net
with

∑
$

TPR for FPR=10%
gluon 0.830 ± 0.002 0.740 ± 0.014 0.700 ± 0.008 0.878 ± 0.001 0.879 ± 0.001

light quarks 0.715 ± 0.002 0.746 ± 0.011 0.740 ± 0.003 0.822 ± 0.001 0.818 ± 0.001
W boson 0.855 ± 0.001 0.812 ± 0.035 0.760 ± 0.005 0.938 ± 0.001 0.927 ± 0.001
Z boson 0.833 ± 0.002 0.753 ± 0.036 0.721 ± 0.006 0.910 ± 0.001 0.903 ± 0.001
top quark 0.917 ± 0.001 0.867 ± 0.006 0.889 ± 0.001 0.930 ± 0.001 0.931 ± 0.001

TPR for FPR=1%
gluon 0.420 ± 0.002 0.273 ± 0.018 0.257 ± 0.005 0.485 ± 0.001 0.482 ± 0.001

light quarks 0.178 ± 0.002 0.220 ± 0.037 0.254 ± 0.007 0.302 ± 0.001 0.301 ± 0.001
W boson 0.656 ± 0.002 0.249 ± 0.057 0.232 ± 0.006 0.704 ± 0.001 0.658 ± 0.001
Z boson 0.715 ± 0.001 0.386 ± 0.060 0.291 ± 0.005 0.769 ± 0.001 0.729 ± 0.001
top quark 0.651 ± 0.003 0.426 ± 0.020 0.504 ± 0.005 0.633 ± 0.001 0.632 ± 0.001

working point of the top-jet tagger, for which the DNN model gives a TPR higher
by about 2%, while the CNN and GRU models give much worse performance.

The TPR values for the two JEDI-net models are within 1%. The only exception is
observed for the tight working points of theW and Z taggers, for which the model
using the $ sums shows a drop in TPR of ∼ 4%. In this respect, the model using
summed $ features is preferable (despite this small TPR loss), given the reduced
model complexity (see Section 6.4) and its independence on the labeling convention
for the particles embedded in the graph and for the edges connecting them.

What did JEDI-net learn?
In order to characterize the information learned by JEDI-net, we consider the $
sums across the #$ vertices of the graph and we study their correlations to physics
motivated quantities, typically used when exploiting jet substructure in a search.
We consider the HLF quantities used for the DNN model and the #-subjettiness
variables g(V)

#
[214], computed with angular exponent V = 1, 2.

Not all the $ sums exhibit an obvious correlation with the considered quantities,
i.e., the network engineers high-level features that encode other information than
what is used, for instance, in the DNN model.
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Figure 6.9: Two-dimensional distributions between (top to bottom) $1 and con-
stituents multiplicity, $4 and g

(V=2)
1 , $2 and g

(V=1)
3 , $9 and g

(V=2)
3 , for jets origi-

nating from (right to left) gluons, light flavor quarks,W bosons, Z bosons, and top
quarks. For each distribution, the linear correlation coefficient d is reported.

Nevertheless, some interesting correlation pattern between the physics motivated
quantities and the $8 sums is observed. The most relevant examples are given
in Fig. 6.9, where the 2D histograms and the corresponding linear correlation
coefficient (d) are shown. The correlation between $1 and the particle multiplicity
in the jet is not completely unexpected. As long as the $ quantities aggregated
across the graph have the same order of magnitude, the corresponding sum$ would
be proportional to jet-constituent multiplicity.

The strong correlation between the $4 and g
(V=2)
1 (with d values between 0.69 and

0.97, depending on the jet class) is much less expected. The gV1 quantities assume
small values when the jet constituents can be arranged into a single sub-jet inside
the jet. Aggregating information from the constituent momenta across the jet, the
JEDI-net model based on the $ quantities learns to build a quantity very close to
g
(V=2)
1 . The last two rows of Fig. 6.9 show two intermediate cases: the correlation
between $2 and g

(V=1)
3 and between $9 and g

(V=2)
3 . The two $ sums considered
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are correlated to the corresponding substructure quantities, but with smaller (within
0.48 and 0.77) correlation coefficients.

Resource comparison
Table 6.8 shows a comparison of the computational resources needed by the different
models discussed in this section. The best-performing JEDI-net model has more
than twice the number of trainable parameters than the DNN and GRU model, but
approximately a factor of 6 less parameters than the CNN model. The JEDI-net
model based on the summed $ features achieves comparable performance with
about a factor of 4 less parameters, less than the DNN and GRU models. While
being far from expensive in terms of number of parameters, the JEDI-net models are
expensive in terms of the number of floating point operations (FLOP). The simple
model based on$ sums, using as input a sequence of 150 particles, uses 458MFLOP.
The increase is mainly due to the scaling with the number of vertices in the graph.
Many of these operations are the ×0 and ×1 products involving the elements of
the '' and '( matrices. The cost of these operations could be reduced with an
IN implementation optimized for inference, e.g., through an efficient sparse-matrix
representation.

Table 6.8: Resource comparison across models. The quoted number of parameters
refers only to the trainable parameters for each model. The inference time is
measured by applying the model to batches of 1000 events 100 times: the 50%
median quantile is quoted as central value and the 10%-90% semi-distance is quoted
as the uncertainty. The GPU used is an NVIDIA GTX 1080 with 8 GB memory,
mounted on a commercial desktop with an Intel Xeon CPU, operating at a frequency
of 2.60GHz. The tests were executed in Python 3.7 with no other concurrent
process running on the machine.

Model Number of Number of Inference
parameters FLOP time/batch [ms]

DNN 14725 27 k 1.0 ± 0.2
CNN 205525 400 k 57.1 ± 0.5
GRU 15575 46 k 23.2 ± 0.6
JEDI-net 33625 116 M 121.2 ± 0.4
JEDI-net 8767 458 M 402 ± 1with

∑
$

In addition, we quote in Table 6.8 the average inference time on aGPU. The inference
time is measured applying the model to 1000 events, as part of a Python application
based on TensorFlow [121]. To this end, the JEDI-net models, implemented and
trained in PyTorch, are exported to ONNX [215] and then loaded as TensorFlow
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graph. The quoted time includes loading the data, which occurs for the first inference
and is different for different event representations, that is smaller for the JEDI-net
models than for the CNN models. The GPU used is an NVIDIA GTX 1080 with
8GBmemory, mounted on a commercial desktopwith an Intel XeonCPU, operating
at a frequency of 2.60 GHz. The tests were executed in Python 3.7, with no other
concurrent process running on the machine. Given the larger number of operations,
the GPU inference time for the two IN models is much larger than for the other
models.

The current IN algorithm is costly to deploy in the online selection environment
of a typical LHC experiment. A dedicated R&D effort is needed to reduce the
resource consumption in a realistic environment in order to benefit from the improved
accuracy that INs can achieve. For example, one could trade model accuracy for
reduced resource needs by applying neural network pruning [216, 217], reducing
the numerical precision [218, 219], and limiting the maximum number of particles
in each jet representation.

6.5 Modified JEDI-net for the identification of boosted H → bb decays
Based on JEDI-net, we develop an algorithm to identify high-transverse-momentum
Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from
ordinary jets that reflect the configurations of quarks and gluons at short distances.
The algorithm’s inputs are features of the reconstructed charged particles in a jet
and the secondary vertices associated with them. Describing the jet shower as a
combination of particle-to-particle and particle-to-vertex interactions, the model is
trained to learn a jet representation on which the classification problem is optimized.
The algorithm is trained on simulated samples of realistic LHC collisions, released
by the CMS Collaboration on the CERN Open Data Portal. The interaction network
achieves a drastic improvement in the identification performance with respect to
state-of-the-art algorithms.

The IN is based on two input collections comprising #? particles, each represented
by a feature vector of length %, and #E vertices, each represented by a feature vector
of length (. Although kinematic features of neutral particles could also be taken
into account with an additional input graph, we verified that doing so does not
significantly improve the performance for this task as shown in Sec. 6.8. Further,
excluding neutral particles has the benefit of improved robustness to pileup. For a
single jet, the input consists of an - and a . matrix, with sizes % × #? and ( × #E,
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Figure 6.10: Two example graphs with 3 particles and 2 vertices and the corre-
sponding edges.

respectively. The - matrix contains the input features (columns) of the charged
particles (rows), while the . matrix contains the input features of the SVs.

A particle graphG? is constructed by connecting each particle to every other particle
through #?? = #? (#? − 1) directed edges. Similarly, a particle-vertex graph G?E
is constructed by connecting each vertex to each particle through #?E = #?#E

directed edges. As described below, we only consider those edges that are received
by particles because the final aggregation is performed over the particles. These
graphs are pictorially represented in Fig. 6.10 for the case of three particles and
two vertices. As shown in the figure, the graph nodes and edges are arbitrarily
enumerated. The result of the graph processing is independent of the labeling order,
as described below.

For the graph G?, a receiving matrix ('') and a sending matrix ('() are defined,
both of size #? × #??. The element ('')8 9 is set to 1 when the 8th particle receives
the 9 th edge and is 0 otherwise. Similarly, the element ('()8 9 is set to 1 when
the 8th particle sends the 9 th edge and is 0 otherwise. For the second graph, the
corresponding adjacency matrices ' (of size #? × #E?) and '+ (of size #E × #E?)
are defined. In the example of Fig. 6.6, the '', '(, ' , and '+ matrices would be
written as:
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'' =

©«

(??)1 (??)2 (??)3 (??)4 (??)5 (??)6
?1 1 1 0 0 0 0

?2 0 0 1 1 0 0

?3 0 0 0 0 1 1

ª®®®®¬
, (6.5)

'( =

©«

(??)1 (??)2 (??)3 (??)4 (??)5 (??)6
?1 0 0 1 0 1 0

?2 1 0 0 0 0 1

?3 0 1 0 1 0 0

ª®®®®¬
, (6.6)

' =

©«

(E?)1 (E?)2 (E?)3 (E?)4 (E?)5 (E?)6
?1 1 1 0 0 0 0

?2 0 0 1 1 0 0

?3 0 0 0 0 1 1

ª®®®®¬
, (6.7)

'+ =
©«
(E?)1 (E?)2 (E?)3 (E?)4 (E?)5 (E?)6

E1 1 0 1 0 1 0

E2 0 1 0 1 0 1
ª®¬. (6.8)

Each column of an adjacency matrix corresponds to a directional connection from
one particle to another, (??)8, or from a vertex and to a particle, (E?) 9 . Column
entries that are 1 in a given row in the receiving matrix '' indicate that the cor-
responding particle receives that connection. Likewise, if a column entry is 1 in
a given row in the sending matrix '(, the corresponding particle is the sender for
that connection. Because the fully connected particle graph we consider has no
self-connections, i.e. no particle sends and receives the same connection, the rows
of '' and '( do not share any of the same nonzero column entries. For the '' and
'+ adjacency matrices, we only consider those connections that are sent to particles
because the final aggregation is performed over the particles. We tested a version
of the IN architecture in which we considered connections that are sent to vertices
as well and aggregated separately before being processed by the final network, but
found no significant improvement.

The data flow of the IN model is pictorially represented in Fig. 6.11. The input
processing starts by creating the 2% × #?? particle-particle interaction matrix �??
and the (% + () × #E? particle-vertex interaction matrix �E? defined as:
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Figure 6.11: Illustration of the modified JEDI-net for the boostedH → bb classifier.
The particle feature matrix - is multiplied by the receiving and sending matrices
'' and '( to build the particle-particle interaction feature matrix �??. Similarly,
the particle feature matrix - and the vertex feature matrix . are multiplied by the
adjacency matrices ' and '+ , respectively, to build the particle-vertex interaction
feature matrix �E?. These pairs are then processed by the interaction functions
5
??

'
and 5 E?

'
, and the post-interaction function 5$ , which are expressed as neural

networks and learned in the training process. This procedure creates a learned
representation of each particle’s post-interaction features, given by #? vectors of
size �$ . The #? vectors are summed, giving �$ features for the entire jet, which is
given as input to a classifier q� , also represented by a neural network. More details
on the various steps are given in the text.

�?? =

(
- · ''
- · '(

)
, (6.9)

�E? =

(
- · ' 
. · '+

)
, (6.10)

where · indicates the ordinary matrix product. Each column of �?? consists of the
2% features of the sending and receiving nodes of each particle-particle interaction,
while each column of �E? consists of the % + ( features of each particle-vertex one.

Processing each column of �?? by the function 5
??

'
, one builds an internal represen-

tation of the particle-particle interaction with a function 5 ??
'
: R2% ↦→ R�� , where

�� is the size of the internal representation. This results in an effect matrix �??
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with dimensions �� × #??. We similarly build the �E? matrix, with dimensions
�� × #E?, using a function 5

E?

'
: R%+( ↦→ R�� .

We then propagate the particle-particle interactions back to the particles receiving
them, by building � ?? = �??'

>
' with dimension �� × #?. We also build �E? =

�E?'
>
+ with dimension��×#?, which collects the information of the particle-vertex

interactions for each particle and across all of the vertices.

The next step consists of building the� matrix, with dimensions (%+2�� ) ×#?, by
combining the input information for each particle (-) with the learned representation
of the particle-particle (� ??) and particle-vertex (�E?) interactions:

� =
©«
-

� ??

�E?

ª®®®¬ . (6.11)

The final aggregator combines the input and interaction information to build the
postinteraction representation of the graph, summarized by the matrix $, with
dimensions �$ × #?. The aggregator consists of a function 5$ : R

%+2�� ↦→ R�$ ,
which computes the elements of the $ matrix The elements of the $ matrix are
computed by a function 5$ : R

%+2�� ↦→ R�$ , which returns the postinteraction
representation for each of the input nodes. As is done for 5 ??

'
and 5 E?

'
, 5$ is applied

to each column of �.

We stress the fact that the by-column processing applied by the 5 ??
'
, 5 E?

'
, and 5$

functions and the sum across interactions by defining the � ?? and �E? matrices are
essential ingredients to make the outcome of the IN tagger independent of the order
used to label the #? input particles and #E input vertices. In other words, while the
representations of the '', '(, ' , and '+ matrices depend on the adopted labeling
convention, the final representation of each particle does not.

The learned representation of the post-interaction graph, given by the elements of
the $ matrix, can be used to solve the specific task at hand. Depending on the
task, the final function that computes the classifier output may be chosen to preserve
the permutation invariance of the input particles and vertices. In this case, we first
sum along each row (corresponding to a sum over particles) of $ to produce a
feature vector $ with length �$ for the jet as a whole. This is passed to a function
q� : R

�$ ↦→ R# , which produces the output of the classifier.
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The training of the IN is performed with the CMS open simulation with 2016
conditions. The input dataset is split into training, validation, and test samples with
percentages of 80%, 10%, and 10%, respectively.

We use PyTorch [206] to implement and train the classifier on one NVIDIA
GeForce GTX 1080 GPU. We also convert the interaction network into a Tensor-
Flow model.The model is implemented with each of 5 ??

'
and 5 E?

'
expressed as a

sequence of 3 dense layers of sizes (60, 30, 20) with a rectified linear unit (ReLU)
activation function after each layer. The function 5$ is a similar sequence of dense
layers of sizes (60, 30, 24) with ReLU activations. We use up to #? = 60 charged
particles and #E = 5 secondary vertices as inputs to the IN tagger. Given the size of
these layers, the total number of trainable parameters is 18,144. We train the model
using the Adam optimizer [212] with an initial learning rate of 10−4 and a batch size
of 128 for up to 200 epochs, enforcing early stopping [220] on the validation loss
with a patience of 5 epochs. The size of the batch is constrained by the required
memory utilization of the GPU. The training takes approximately 25 minutes per
epoch on the GPU and stopped after 110 epochs.

For the baseline algorithm, we minimize the categorical cross-entropy loss function
for this classification task !C and let the network exploit all of the discriminating
information in the dataset.

To determine the impact of neutral particles, we also train an augmented all-particle
IN model, which consumes an additional input set with 10 kinematic features for
up to 100 charged or neutral particles, listed in Table 6.4. This additional input
set is processed by the model in a similar way to the SV input set: the set of all
particles is fully connected to the set of charged particles. The effect matrix for
these interactions is computed by an independent neural network and then appended
to an enlarged � matrix, now of size (% + 3�� ) × #?, before being processed by
the network 5$ . The remaining steps of the model proceed as described above. The
total number of trainable parameters for this model is 24,254.

6.6 Decorrelation with the jet mass
Many possible applications of a jet tagging algorithm would require the final score
to be uncorrelated from the jet mass, so that a selection based on the tagger score
does not change the jet mass distribution. This is particularly relevant for the
background distribution, but is required to some extent also for the signal one.
Several techniques exist to deliver a tagger with minimal effects on the jet mass
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distribution. For taggers based on high-level features, one could remove those
features more correlated to the jet mass or divide those correlated features by the jet
mass. For taggers based on a more raw representation of the jet (as in this case), one
could perform an adversarial training [221–225]. One could also reweight or remove
background events such that the background <SD distribution is indistinguishable
from the signal <SD distribution [226]. Finally, one could also define a mass-
dependent threshold based on simulation as in the “designing decorrelated taggers”
(DDT) procedure proposed in Ref. [227]. We found the DDT method to be the most
robust and performant deocorrelation procedure. As such, we use it as the nominal
decorrelation method in the following results.

Designing decorrelated taggers
Following the DDT procedure [227], the tagger threshold for a given false positive
rate (FPR) or “working point” is determined as a function of <SD. By creating
a <SD-dependent tagger threshold, the background jet <SD distribution for events
passing and failing this threshold can be made identical. In practice, this is done by
considering the distribution of the network score versus the jet <SD for the training
dataset. A quantile regression was used to find the threshold on the network score
as a function of <SD distribution that would correspond to a fixed quantile (the
chosen 1−FPR value). By construction, this procedure results in near-perfect mass
decorrelation.

In this case, a gradient boosted regressor [228, 229] with the following parameters
was used:

• U-quantile of 1 − FPR,

• number of estimators of 500,

• minimum number of samples at a leaf node of 50,

• minimum number of samples to split an internal node of 2500,

• maximum depth of 5,

• validation set of 20%,

• early stopping with tolerance of 10.
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6.7 Deep double-b tagger models
The DDB tagger is a convolutional and recurrent neural network model developed
by CMS [204] to identify boostedH → bb jets. We reconstruct this model based on
publicly available information from the CMS Collaboration as follows. The model
takes as input 27 HLFs used in Ref. [59], as well as 8 particle-specific features of up
to 60 charged particles, and 2 properties of up to 5 SVs associated with the jet. Each
block of inputs is treated as a one-dimensional list, with batch normalization [230]
applied directly to the input layers. For each collection of charged particles and
SVs, separate 1D convolutional layers [231], with a kernel size of 1, are applied: 2
hidden layers with 32 filters each and ReLU [209] activation. The outputs are then
separately fed into two gated recurrent units (GRUs) with 50 output nodes each and
ReLU activations. Finally, the GRU outputs are concatenated with the HLFs and
processed by a dense layer with 100 nodes and ReLU activation, and another final
dense layer with 2 output nodes with softmax activation. Dropout [232] (with a rate
of 10%) is used in each layer to prevent overfitting. The nominal DDB tagger model
has 40,344 trainable parameters, 32% of which are found in the fully connected
layers.

We define a variant of this model, the DDB+ model, which takes as input all 30
features of charged particles and all 14 features of the SVs. In this variant, we do not
consider the HLFs. Thus, the final dense layer only receives the GRU outputs from
processing the low-level charged particle and SV information. This extended DDB+
tagger algorithm has 38,746 trainable parameters. The number of parameters is less
overall because the increase in the size of the convolutional and recurrent layers is
compensated by the decrease in the size of the fully connected layers.

We train the DDB and DDB+ models using the CMS open simulation dataset with
Keras [120] over up to 200 epochs with an early stopping patience of 5 epochs and
a batch size of 4096 using the Adam optimizer with an initial learning rate of 10−3.
For both models, one training epoch takes about 3 minutes and training stops after
approximately 50 epochs. In this case, the larger batch size is possible due to the
smaller GPU memory utilization of the model during training. We find consistent
performance for different batch size choices with no evidence of overfitting with
larger batch sizes.

In order to decorrelate the tagger output from the jet mass, we use the same DDT
procedure described in Sec. 6.6 applied to both the DDB and DDB+ taggers.
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Figure 6.12: Performance of the IN, all-particle IN, DDB, and DDB+ algorithms
quantified with a ROC curve of FPR (QCD mistagging rate) versus TPR (H → bb
tagging efficiency). The performance of each baseline algorithm is compared to that
of the algorithms after applying the DDT procedure to decorrelate the tagger score
from the jet mass. This decorrelation results in a smaller TPR for a given FPR.

6.8 Results
In Fig. 6.12 the performance of the IN, all-particle IN, DDB, and DDB+ algorithms
are quantified in a ROC curve. The axes are the TPR, or H → bb tagging efficiency
and the false positive rate, or QCD mistagging rate. As shown in Fig. 6.12, the IN
provides an improved performance with respect to the DDB and DDB+ taggers. At
a 1% FPR, the IN tagger outperforms the DDB and DDB+ taggers by 37% and 2% in
TPR, respectively. Likewise, at a 50% TPR, the IN tagger yields a factor of 6 or 1.2
better background rejection (1/FPR) than the DDB or DDB+ tagger, respectively.
Thus, while the additional inputs provide a significant improvement for the DDB+
model, the IN architecture is also important to achieve a better performance with
significantly less parameters than the DDB+ model.
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Figure 6.13: An illustration of the “sculpting” of the background jet mass distri-
bution (left) and the signal jet mass distribution (right) after applying a threshold
on the tagger score corresponding to a 1% FPR for several different algorithms.
The unmodified interaction network is highly correlated with the jet mass, but af-
ter applying the methods described in the text, the correlation is reduced for the
background while the peak of the signal distribution is still retained.

We verified that one could match the performance obtained by the IN with a DDB-
inspired architecture and expanding the model size. With 150,786 trainable param-
eters, a DDB architecture achieves the same performance as the IN at the cost of 8
times more parameters.

Because of this the IN model holds an advantage in terms of memory usage during
inference over this alternative model.

Figure 6.12 also shows that there is only a modest improvement in the AUC and
accuracy by including information in the IN model from neutral particles. For this
reason and to preserve robustness to increased pileup, in the following results, we
consider the original IN model that excludes neutral particles.

Figure 6.13 shows an illustration of how the signal and background jet mass dis-
tributions change after applying a threshold on the different baseline and DDT-
decorrelated tagger scores. Following Ref. [225], we quantify the impact of these
algorithms on the mass decorrelation by computing the Jensen-Shannon (JS) diver-
gence:

�JS(% ‖ &) = 1
2
�KL(% ‖ ") + 1

2
�KL(& ‖ "), (6.12)

where " = 1
2 (% + &) is the average of the normalized <SD distributions of the

background jets passing (%) and failing (&) a given tagger score and �KL(% ‖ &) =
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Table 6.9: Performance metrics of the different baseline and decorrelated models,
including accuracy, area under theROCcurve, background rejection at a true positive
rate of 30% an 50%, and true positive rate and mass decorrelation metric 1/�JS at a
false positive rate of 1%. For the DDT models, the corresponding accuracy is listed
for the tagger after the decorrelation is performed for a FPR of 50%.

Baseline models Interaction network Deep double-b Deep double-b+
Parameters 18,144 40,344 38,746
Accuracy 95.5% 91.7% 95.3%
AUC 99.0% 97.2% 98.8%

1/n1 @ nB = 30% 4616.9 578.0 3863.1
1/n1 @ nB = 50% 1028.8 165.3 852.7
1/nB @ n1 = 1% 82.8% 60.6% 81.5%
1/�JS @ n1 = 1% 4.5 75.3 4.4

Decorrelated models Interaction network, DDT Deep double-b, DDT Deep double-b+, DDT

Parameters 18,144 40,344 38,746
Accuracy 93.2% 86.8% 92.9%
AUC 98.5% 96.7% 98.3%

1/n1 @ nB = 30% 2258.7 456.6 1973.8
1/n1 @ nB = 50% 540.0 136.8 466.6
1/nB @ n1 = 1% 75.6% 55.9% 72.9%
1/�JS @ n1 = 1% 29,265.3 48,099.0 15,171.2

∑
8 %8 log(%8/&8) is the Kullback-Leibler (KL) divergence. Larger values of the
metric 1/�JS correspond to a better decorrelation.

After applying the mass decorrelation techniques, the performance of each of the
taggers worsens slightly but the IN algorithm still significantly outperforms the DDB
andDDB+ taggers. Figure 6.14 displays the trade-off between the background rejec-
tion and 1/�JS at different TPRs for the baseline and DDT-decorrelated algorithms.
At a 50%TPR, the decorrelated IN algorithm achieves a significantly better 1/�JS by
a factor of about 2,200 while the background rejection decreases by a factor of about
3.3 compared to the baseline IN algorithm. At a 1% FPR, the DDT-decorrelated
IN tagger has a TPR of 75.6% compared to the DDT-decorrelated DDB (DDB+)
tagger with a 55.9% (72.9%) TPR, corresponding to an improvement of 35% (4%).
Table 6.9 summarizes different performance metrics for the three considered models
and their decorrelated versions. For the DDT models, the corresponding accuracy
is listed for the tagger after the decorrelation is performed for a FPR of 50%.
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Figure 6.14: The mass decorrelation metric 1/�JS as a function of background
rejection for the baseline and decorrelated IN, DDB, and DDB+ taggers. The decor-
relation is quantified as the inverse of the JS divergence between the background
mass distribution passing and failing a given threshold cut on the classifier score.
Greater values of this metric correspond to better mass decorrelation. The back-
ground rejection is quantified as the inverse of the FPR, while the signal efficiency
is equal to the TPR.

To quantify the dependence on the number of pileup interactions, Fig. 6.15 shows
the performance of the different algorithms as a function of the number of primary
vertices in the event, which scales linearly with the number of pileup collisions.
Using only charged particles and secondary vertices as input, the IN tagger is robust
against an increasing number of pileup interactions, exhibiting behavior similar to
the DDB and DDB+ taggers.

6.9 Summary
We presented a novel technique using a graph representation of the jet’s constituents
and secondary vertices based on an interaction network to identify Higgs bosons
decaying to bottom quark-antiquark pairs (H → bb) in LHC collisions. This model
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Figure 6.15: TPR of the baseline and decorrelated IN, DDB, and DDB+ taggers as
a function of the number of reconstructed PVs for a 1% FPR.

can operate on a variable number of jet constituents and secondary vertices and
does not depend on the ordering schemes of these objects. The interaction network
was trained on an open simulation dataset released by the CMS Collaboration in the
CERN Open Data Portal. A significant improvement in performance is observed
with respect to two alternative taggers based on the deep double-b tagger created by
the CMS Collaboration. By design, the interaction network uses extended low-level
input features for particles and vertices, offers a more flexible representation of jet
data, and is robust against the noise generated by pileup collisions. Even when
trained with the same set of input features, the interaction network architecture
outperforms the deep double-b architecture. Thus, while part of the improvement
is due to the extended input representation, additional improvement comes from the
interaction network architecture, despite using on half as many parameters.

Togetherwith the best-performingmodels, we presented additionalmodels, obtained
by applying different decorrelation techniques between the network score and the
jet-mass distribution. This was done to minimize the selection bias of the classifier
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output towards any values of the jet mass, which would make the algorithms suitable
for physics analyses relying on the jetmass as a discriminating variable. As expected,
the decorrelation procedure results in a reduction of the H → bb identification
performance. Nevertheless, the decorrelated interaction networkmodel outperforms
the decorrelated deep double-b models.

Once applied to a full data analysis, this graph-based tagging algorithm could
contribute a substantial improvement to the experimental precision of H → bb
measurements, including those sensitive to beyond the standard model physics and
the Higgs boson self-coupling. These results motivate further exploration of appli-
cations based on interaction networks (and graph neural networks in general) for
object tagging and other similar tasks in experimental high energy physics.
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C h a p t e r 7

SEARCH FOR LONG-LIVED PARTICLES WITH DELAYED
PHOTON SIGNATURE ON RUN 2 DATA IN CMS

After decades of searching for new physics in the prompt regime, where particles
beyond the SM decay promptly near the beam spot, we almost exhausted the search
phase space available within the reach of the collider’s energy. However, at the weak
scale, particles beyond the SM can generally have long lifetimes with decay lengths
of up to a few meters. Such long-lived particles (LLPs) open up a promising avenue
of new physics to explore at the LHC.

In this chapter, we present a search for LLPs under the gauge-mediated SUSY break-
ing (GMSB) [22–28, 30, 233] scenario, commonly referred to as the “Snowmass
Points and Slopes 8” (SPS8) benchmark model [234]. In this scenario, the LLPs
are the neutralino j̃0, which is the next-to-lightest SUSY particle (NLSP), decaying
into the lightest SUSY particle (LSP) – the gravitino G̃ – as shown in Fig. 7.1. In
the SPS8 model, the SUSY breaking scale Λ is a free parameter that determines the
decay rate of SUSY particles, the primary production mode, and is linearly propor-
tional to the mass of the neutralino j̃0. The NLSP dominantly decays into a photon
and a gravitino, resulting in a final state with one or two photons and a missing
transverse momentum (pmissT ) induced by the gravitinos escaping the detector.
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Figure 7.1: Example Feynman diagrams for SUSY processes with diphoton (left)
and single photon (middle and right) final states via pair production of squark (upper)
and gluino (lower) from pp collisions at the LHC.
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Previously, CMS performed a similar search on 2016 and 2017 data with 77.4 fb−1

at
√
B = 13 TeV [235], which excludes such GMSB models for a neutralino mass

under 220 GeV at 2g of 1 m. ATLAS reported a similar search on Run 1 data with
20.3 fb−1 at

√
B = 8 TeV [236], which excludes such GMSB models for a neutralino

mass under 100 GeV at 2g of 30 cm. These results are summarized in Figure 7.2.
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Figure 7.2: The 95% CL exclusion contours for the GMSB SPS8 neutralino pro-
duction cross section set by the previous CMS search on 2016 and 2017 data, along
with the ATLAS and CMS results in Run 1 [235].

The analysis introduces a two-fold improvement over the previous CMS search.
First, the analysis is performed on the whole Run 2 data with 136.33 fb−1 at

√
B = 13

TeV. Second, we develop a new delayed photon identification with deep neural
networks to improve upon the cut-based identification method in the previous CMS
analysis. The photon arrival time in the ECAL is then reconstructed and calibrated
as one of the two shape variables, along with the missing transverse energy pmissT to
extract the signal yield.

This chapter is organized as follows: Section 7.1 discusses the data used in this
analysis and the simulated MC samples used for training the delayed photon identi-
fication and for the photon time reconstruction studies. Section 7.2 lays out details
on reconstructing physics objects, such as photons, missing transverse energy pmissT ,
and jets. The development, validation, and deployment of the neural-network-based
delayed photon identification are described in Section 7.3. Section 7.4 is dedicated
to explaining the photon arrival time reconstruction process in the ECAL, as well
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as the calibration of the photon time in MC. The event selection and categorization
are given in Section 7.5. Section 7.6 describes the data-driven method to estimate
the background and the process to extract the upper limit for the signal strength.
Section 7.7 lists the systematic uncertainties in this analysis. Finally, the results are
presented in Section 7.8.

7.1 Event samples
The search uses the whole Run 2 data of proton-proton collisions with a total
integrated luminosity of 136.33 fb−1, spanning across 3 years from 2016 to 2018 at
√
B = 13 TeV. Simulated samples includes the GMSB signals, the SM background
processes, and the / → 4

+
4
− sample for the timing studies.

As data recorded in CMS are grouped into different primary data sets based on their
physics contents, this analysis uses primary data sets that contain at least 1 photon
in the event final state. In particular, the primary datasets used in this analysis are
DoubleEG, SinglePhoton, and EGamma from the data collected in 2016, 2017, and
2018, respectively. The sizes of these primary data sets are listed in Table 7.1.

Table 7.1: List of primary data sets used in this analysis and their respective sizes.
RAW data are recorded directly from the detector to disk, while MiniAOD are reduced
data format after physics object reconstruction to be used for most analyses.

Year Primary data set RAW data size MiniAOD data size
2016 DoubleEG 251 TB 12 TB
2017 SinglePhoton 77 TB 3 TB
2018 EGamma 972 TB 47 TB

The production of GMSB SPS8 signal models is generated with Pythia 8 [103].
The model specifications, input parameters, coupling spectra, and decay tables are
tabulated in a set of SUSY Les Houches According (SLHA) files produced via
Isasugra toolkit as part of Isajet generator package [237]. The list of all generated
GMSB signal samples and the corresponding masses of the gluino, neutralino, and
gravitino, as well and their production cross section, is shown in Table 7.2.

The quantumchromodynamics (QCD)background events are generatedwithPythia
v8.3 [103] at leading-order (LO) precision, enriched with photons. The Mad-
Graph5_aMC@nlo v2.2.2 generator [99–101] is used at next-to-leading-order
in QCD to simulate events originating from W+jets, W+jets, and Z+jets produc-
tion. Diphoton events, including Born processes with up to 3 additional jets and
box-diagram processes at leading-order precision, are generated with Sherpa v2.2.4



122

Table 7.2: List of all generated GMSB SPS8 signal models, parametrized by the
SUSY breaking scale Λ, and their corresponding production cross section and
masses of the gluinos 6̃, neutralinos j̃0, and gravitino �̃. For each Λ value, 10
different neutralino’s lifetime values are generated, corresponding to 10 gravitino’s
masses M�̃ .

Λ M6̃ M
j̃
0
1

M�̃ (eV) for different j̃
0 lifetime values (m) cross section

(TeV) (GeV) (GeV) 0.1 0.5 1 2 4 6 8 10 12 100 (fb)
100 838 139 0.2 0.3 0.5 0.7 1.0 1.2 1.4 1.5 1.7 4.9 2175 ± 14
150 1207 212 0.5 1.0 1.5 2.1 3.0 3.6 4.2 4.7 5.1 15 228.1± 1.5
200 1565 285 1.0 2.2 3.2 4.5 6.4 7.8 9.0 10 11 32 43.7 ± 0.3
250 1915 358 1.8 4.0 5.7 8.1 11 14 16 18 20 57 12.6 ± 0.1
300 2260 430 2.9 6.5 9.2 13 18 23 26 29 32 92 4.45 ± 0.03
350 2599 503 4.3 9.6 14 19 27 33 39 43 47 136 1.78 ± 0.01
400 2935 576 6.1 14 19 27 38 47 54 61 67 192 0.778± 0.005
450 3267 650 8.2 18 26 37 52 64 73 82 90 259 0.344± 0.001
500 3595 723 11 24 34 48 68 83 96 107 118 340 0.165± 0.000

[102]. The fragmentation and parton showering aremodeledwith the CMS Pythia8
(CP5) [107, 108] underlying event tune, and the parton distribution function sets are
generated from NNPDF3 [109] NLO for 2016 and NNPDF3.1 [110] for 2017 and
2018.

7.2 Physics object reconstruction
All physics objects are reconstructed with the particle-flow (PF) algorithm [113].
This physics analysis uses jet, photon, and pmissT objects.

PF candidates are clustered with the anti-:) algorithm with a cone size of 0.4, and
then undergo a set of identification criteria listed in Table 7.3 to form a jet. This
search further requires the jets to have transverse momentum pT > 30 GeV and |[ | <
3.0, as well as to be outside the cone radii of 0.3 of the two leading photon objects.

Table 7.3: Jet identification criteria recommended by CMS for different years.

2016 2017 2018
Neutral hadronic energy fraction < 0.99 < 0.90 < 0.90
Neutral electromagnetic energy fraction < 0.99 < 0.90 < 0.090
Number of constituents > 1 > 1 > 1
Charged hadron fraction > 0 > 0 > 0
Charged multiplicity > 0 > 0 > 0
Charged electromagnetic energy fraction < 0.99 - -
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Photons are identified from clusters of reconstructed hits in ECAL crystals. Photons
falling in the gap between the ECAL barrel (EB) and endcap (EE) regions (1.4442 <
|[ | < 1.566) are excluded from this analysis because the performance of the photon
reconstruction algorithm there is not optimal. Two types of photon collections are
recorded inMiniAOD events: general-event-description (GED) photons and out-of-
time (OOT) photons. The GED photon collection only records photons with arrival
time in the ECAL up to 3 ns with respect to a prompt photon from the primary
vertex. The OOT photon collection saves photons that are not recorded in the GED
collection. Photons are required to pass a set of online selection criteria, defined
by the triggers used in this analysis, which are summarized in Table 7.4. The final
photons are chosen from the neural-network-based delayed photon identifier, which
will be described in Section 7.3.

Table 7.4: Trigger selection criteria for photons. In 2016, the trigger requires the
presence of two photons. In 2017 and 2018, only one photon with pT greater than
60 GeV is required.

2016 2017 and 2018
R9 ≥ 0.85 ≥ 0.9
H/E ≤ 0.1 ≤ 0.15
f8[8[ ≤ 0.024 ≤ 0.014
ECAL cluster isolation ≤ 8.0 + 0.012 pT ≤ 5.0 + 0.01 pT
HCAL cluster isolation 5.0 + 0.005 pT 12.5 + 0.03 pT + 3.0 × 10

−5 pT
2

Tracker isolation ≤ 8.0 + 0.002 pT ≤ 6.0 + 0.002 pT

Both OOT and GED photon collections use the same reconstruction algorithm
starting from a seed crystal. If the seed time is less than 3 ns, the reconstructed
photon goes to the GED collection, and if the seed time is greater than 3 ns, the
photon goes to the OOT collection. In some rare cases, there can be a partial overlap
between reconstructedGEDandOOTphoton clusters such that the two clusters share
some common crystals. Consequently, the reconstructed photons from the OOT and
GED collections can overlap with each other. To avoid double counting, whenever
a GED photon is within the radius Δ' < 0.3 of an OOT photon, the photon with
with smaller transverse momentum pT is removed from the combined list of photon
objects.

The missing transverse momentum pmissT is the negative vectorial sum of all re-
constructed PF candidates’ transverse momenta in an event. Miscalibration of
the detector, noise, or beam-induced backgrounds can occasionally produce “fake”
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high-pmissT events, therefore we apply a series of filters to remove these anomalous
events. The pmissT algorithm originally does not include OOT photons when cal-
culating the vectorial sum of all PF candidates’ transverse momenta since the full
particle flow reconstruction algorithm does not run on OOT photons. Therefore,
the transverse momenta of OOT photons are added back to the list of PF candidates,
and GED photons are removed from that list if it is removed from the combined
photon list from the overlapping photon removal procedure described earlier.

7.3 Delayed photon identification
One major improvement of this search over the previous CMS search on 2016
and 2017 data is a novel delayed photon identifier based on deep neural networks
(DNN). Separated identifiers are developed for leading photon, subleading photon
in the ECAL barrel, and subleading photon in ECAL endcap. Identifiers are also
developed independently for the year 2016 versus 2017 and 2018 because of the
different triggers. Seven variables are used as the input to the DNN, four of which
are based on the shower shape of the photon in the ECAL cluster, and the remaining
three are the isolation variables from the detector components.

The four shower shape variables are:

• R9: The ratio between the energy sum over the 3 × 3 crystal matrix centered
on the most energetic crystal and the total energy of the supercluster. Isolated,
unconverted photons deposit most of their energy within this 3 × 3 matrix
grid, while converted photons have a much wider range of energy deposit.

• f8[8[: The width of the energy-weighted shower distribution within the 5 × 5
crystal matrix centered on the most energetic crystal along the [ coordination,
defined in Eq. 7.1:

f8[8[ =

(∑([8 − [̄)
2
l8∑

l8

) 1
2

,where (7.1)

[̄ =

∑
l8[8∑
l8

, and (7.2)

l8 = max
(
0, 4.7 + log

�8

�5×5

)
. (7.3)

The threshold value 4.7 in Eq. 7.3 is to exclude crystals with pure noise in the
5×5 crystal matrix from the shower shape computation, i.e., log �8

�5×5
> −4.7,

or �8 > 0.009�5×5.
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• Smajor: The semi-major axis of the elliptical photon shower.

• Sminor: The semi-minor axis of the elliptical photon shower.

Formally, Smajor and Sminor are the diagonal elements of the shower shape
covariance matrix, defined in Eq. 7.4:

Covariance[q =

(
([[ ([q

(q[ (qq

)
, (7.4)

where ([[ and (qq are the energy-weighted variances of the shower shape
along the [ and q directions, respectively, while ([q and (q[ are the corre-
sponding covariances along the 2 directions:

([[ =

∑
l8 ([8 − [̄)

2∑
l8

, (7.5)

(qq =

∑
l8 (q8 − q̄)

2∑
l8

, (7.6)

([q ≡ (q[ =
∑
l8 ([8 − [̄) (q8 − q̄)∑

l8
, (7.7)

where [̄ and l8 are defined in Eq. 7.2 and 7.3, respectively, and q̄ is the
energy-weighted mean in q direction:

q̄ =

∑
l8q8∑
l8

. (7.8)

Once the covariance matrix in Eq. 7.4 is diagonized, Smajor and Sminor can be
computed directly as in Eq. 7.9:

Smajor
minor

=
(qq + ([[ ±

√
((qq − ([[)

2 + 4(2[q
2

. (7.9)

The three isolation variables are:

• EcalPFClusterIso/pT: The scalar sum of pT of all PF candidates in a
Δ' = 0.3 cone around the photon direction in the ECAL divided by the
photon’s pT.

• HcalPFClusterIso/pT: The scalar sum of pT of all PF candidates in a Δ' =

0.3 cone around the photon direction in the HCAL divided by the photon’s
pT. In 2016, this quantity was not recorded in the OOT photon collection
in MiniAOD, therefore, it was replaced by NeutralHadPFIso/pT, which is
the scalar sum of pT of all neutral hadron PF candidates in a Δ' = 0.3 cone
around the photon direction divided by the photon’s pT.
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• TrkSumPtHollowConeDR03/pT: the scalar sum of pT of all tracks in a Δ' =

0.3 cone around the photon direction divided by the photon’s pT.

Samples of all available points in the (Λ, 2g) space are mixed together as signal
for training. However, photons with distances from the production vertices to the
primary vertex greater than 20 cm in the longitudinal and transverse directions are
removed from themixture so that the signalmixture is enriched in displaced photons,
as shown in Fig. 7.3. Additionally, photons coming from GMSB sample points with
Λ < 200 TeV and 2g < 200 cm are also removed because these points are already
excluded in the previous CMS search [235].
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Figure 7.3: The displacements of GMSB signal photons in the longitudinal (left)
and transverse (right) directions from a representative point Λ = 400 TeV and
2g = 200 cm. In a typical signal region (W1 time > 1.5 ns and pmissT > 150 GeV), the
GMSB signal photons are enriched in the phase space where the displacements are
greater than 20 cm in both longitudinal and transverse directions.

The distributions of these DNN input variables for the leading photon for the year
2016 and 2017 are shown in Fig. 7.4 and 7.5, respectively. The same variables for
subleading photons in EB and EE for 2017 are, respectively, shown in Fig. 7.6 and
7.7.

Background samples are mixed together, weighted by the cross section of each
process. Before training, signal and background classes are re-weighted so that the
total weights are equal between the 2 classes.

The samples are randomly split between training/validation/test with a 80/10/10
ratio. The training input variables are standardized to have means of 0 and standard
deviations of 1 before getting fed into the neural networks. The DNN are imple-
mented in PyTorch with 3 hidden layers of sizes 300, 200, and 20, respectively.
Dropout is used after each hidden layer with a rate between 0 and 0.2. The output
of each hidden layer is activated with a ReLU function. The model is trained for a
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Figure 7.4: The signal and background MC distributions of the 7 input variables to
the deep neural networks for the leading photon for 2016. GMSB signal histograms
are scaled up to have the same bin integrals as the sum of background histograms.

maximum of 500 epochs with Adam optimizer, minimizing the binary cross-entropy
losses between the predictions and target labels. The initial learning rate is set to
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Figure 7.5: The signal and background MC distributions of the 7 input variables to
the deep neural networks for the leading photon for 2017. GMSB signal histograms
are scaled up to have the same bin integrals as the sum of background histograms.

1.0 × 10−3, reduced by a factor of 0.3 whenever the validation loss does not decrease
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Figure 7.6: The signal and background MC distributions of the 7 input variables to
the deep neural networks for the second photon in the ECAL barrel region for 2017.
GMSB signal histograms are scaled up to have the same bin integrals as the sum of
background histograms.

after the last 8 epochs. The training is early terminated when the validation loss
stops decreasing after the last 30 epochs.
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Figure 7.7: The signal and background MC distributions of the 7 input variables
to the deep neural networks for the second photon in the ECAL endcap region for
2017. GMSB signal histograms are scaled up to have the same bin integrals as the
sum of background histograms.

The performances of the DNN for the leading photon are shown in Fig. 7.8, with the
corresponding DNN score distributions shown in Fig. 7.9. For subleading photons,
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the receiver operating characteristic (ROC) curves for 2017+2018 identifiers are
shown in Fig. 7.10, with the corresponding DNN score distributions shown in
Fig. 7.11. There is no identifier for subleading photons for 2016, as in the previous
CMS search, since the trigger used in 2016 already puts stringent requirements on
the second photon.
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Figure 7.8: The receiver operating characteristic (ROC) curve of the leading photon’s
DNN identifiers for 2016 (left) and 2017+2018 (right). Signal consists of all GMSB
signal samples with some removals based on sample points and displacements as
described in Sec. 7.3. The performances of the cut-based identifiers used in the
previous CMS search are denoted with the blue dots.
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Figure 7.9: The distributions of the leading photon’s DNN scores on MC signal
and background samples for 2016 (left) and 2017+2018 (right). Signal consists
of all GMSB signal samples with some removals based on sample points and
displacements as described in Sec. 7.3.

To understand how the DNN photon identifier makes decisions, we use the SHAP
framework [238], which uses Shapley values, a concept in cooperative game theory
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Figure 7.10: The receiver operating characteristic (ROC) curve of the subleading
photon’s DNN identifiers for 2017 and 2018 in the ECAL barrel (left) and endcap
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sample points and displacements as described in Sec. 7.3. The performances of the
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Figure 7.11: The distributions of DNN scores for subleading photons in the ECAL
barrel (left) and endcap (right) on MC signal and background samples for 2017 and
2018. Signal consists of all GMSB signal samples with some removals based on
sample points and displacements as described in Sec. 7.3.

to assign credits to players in a coalition [239], to approximate the importance of
each input variable to the final decision of the DNN. As shown in Fig. 7.12, the most
important input variables to the DNN are the isolation variables, followed by the
Smajorand Sminorvariables. Low values of isolation will positively impact the model
output, which means photons with low isolation are more likely to be from signal
processes, as opposed to fake photons. Similarly, photons with high Smajor values
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are more likely to be from signal processes, as indicated by the red dots on the right
side of the SHAP value spectrum in the Smajor row.
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Figure 7.12: Importance ranking of input variables to the DNN for the leading
photon. Color indicates the feature values with respect to its mean. SHAP values
on the left of the vertical bar indicate events likely to be from background processes,
while SHAP values on the right of the vertical bar indicate events likley to be from
signal processes.

7.4 Photon time reconstruction
This search relies on the high precision of the CMS ECAL to measure the arrival
time of photons, which is a key discriminant of the GMSB signal processes over
the Standard Model background. This section first introduces the fundamentals
of ECAL time reconstruction in each crystal and then in the photon supercluster.
Afterwards, a dedicated measurement of the ECAL time resolution is discussed.
Finally, the process of photon time calibration for MC is described.

When particles interact with the ECAL crystals, scintillation light is produced and
recorded by a photodetector at the end of each crystal. Front-end electronics amplify
and shape this signal into a pulse, which is then digitized into 10 consecutive samples
spaced 25 ns apart, as shown in Fig. 7.13. The time of the pulse, Tmax, is defined
as when the pulse reaches its peak, which can be extracted by taking the weighted
average of the estimated Cmax,8 from each readout sample [240].

In particular, since the pulse shape is universal and independent of the maximum
amplitude of the pulse, the time difference between any readout sample T and Tmax
can be represented as a function of the ratios of consecutive amplitudemeasurements,
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Figure 7.13: Example representation of an ECAL pulse shape. (a) ECAL pulse
shape as a function of the difference between the time T of each readout sample
along the pulse and the time Tmax when the pulse reaches its maximum amplitude
Amax. The red dots represent the amplitudes of ten discrete readout samples from
a single pulse, normalized to the maximum amplitude. The solid line represents
the average pulse shape, which is universal across all crystals to the first order. (b)
An alternative pulse shape representation using the time difference from Tmax as a
function of the ratio of two consecutive readout samples’ amplitudes [41].

' = �())/�() + 25ns), as shown on the right of Fig. 7.13. A polynomial function
is fit to these points. The estimated Cmax,8 can be obtained from each point by taking
Cmax,8 = C8 − C ('8), where C8 is the time of sample 8 and C ('8) is obtained from the
fit where '8 = �8/�8+1. The time of a single crystal hit is determined to be the
weighted average of Cmax,8 from each point, as shown in Eq. 7.10:

Ccrystal =

∑ Cmax,8

f
2
max,8∑ 1
f
2
max,8

, (7.10)

where f2max,8 is the uncertainty squared associated with each Cmax,8. This uncertainty
term includes three independent contributions, which are added in quadrature: the
noise fluctuations, the pedestal value’s uncertainty, and the uncertainty due to trun-
cation during digitization [41].

Once the time of each crystal hit is computed, the photon cluster time can be
reconstructed by taking the weighted average of the times of all crystal hits in the
cluster:
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Ccluster =

∑ Ccrystal,8

f
2
crystal,8∑ 1
f
2
crystal,8

, (7.11)

where f2crystal,8 is the time resolution of the crystal 8, which is modeled by Eq. 7.12:

f
2
crystal =

(
#

�/fn

) 2
+ �2, (7.12)

where � andfn are the �max and standard deviation of the pedestal mean distribution
for a given crystal, also known as the pedestal noise. The noise term, # , and the con-
stant term, �, are 2 constants represent the statistical and systematic uncertainties,
respectively, on measuring the time resolution of the crystal. These 2 constants can
be extracted through an extensive study on the ECAL time performance described
below.

To extract # and �, we first measure the time difference between 2 neighboring
crystals, i.e., ΔC = Ccrystal,1 − Ccrystal,2. These two crystals are required to have energy
deposits within 20% of each other, i.e., 0.8 < �1/�2 < 1.2, belong to the same
readout electronics, and are the highest energy pair within the photon cluster that
share an edge. The pair is also required to have energies between 1 and 120 GeV to
avoid noisy channels and gain switch effects in the readout.

We plot the ΔC distribution in different bins of the effective crystal amplitude nor-
malized to the pedestal noise of the crystal pair, given by Eq. 7.13:

�eff/fn =
(�1/fn1) (�2/fn2)√

(�1/fn1)
2 + (�2/fn2)

2
, (7.13)

where �1/fn1 , �2/fn2 are the amplitudes normalized by the pedestal noises for the
first and second crystals, respectively.

For each bin of �eff/fn, we fit the measured ΔC distribution to a Gaussian function.
We then extract the standard deviation f from the fit results and trend the f obtained
from each �eff/fn bin versus �eff/fn itself. The trend is fit to the model of f(ΔC),
which is derived in Eq. 7.14 as the sum in quadrature of uncertainties of the 2
neighboring crystals:
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f
2(ΔC) = f2crystal, 1 + f

2
crystal, 2

=

(
#

�1/fn1

) 2
+ �2 +

(
#

�2/fn2

) 2
+ �2

= #
2

(
(�1/fn1)

2 + (�2/fn2)
2

(�1/fn1)
2(�2/fn2)

2

)
+ 2�2

=

(
#

�eff/fn

) 2
+ 2�2.

(7.14)

# and � are finally extracted from the fit results of Eq. 7.14, which describes the
local time resolution as a function of �eff/fn.
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Figure 7.14: Local time resolution of ECAL versus the effective amplitude of
the neighboring crystals from the same read-out electronics measured in data and
simulation for 2016 (upper left), 2017 (upper right), 2018 eras ABC (lower left), and
2018 era D (lower right). The data in 2018 era D is centrally processed differently
by CMS, therefore it requires a separate analysis from 2018 data in previous eras.
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The fit results for data and simulated events of different years are shown in Fig. 7.14.
As summary in Table 7.5, the noise term is fairly stable over the years while the
constant term C degrades significantly in 2018 data.

Table 7.5: Fit results for the ECAL timing resolution parameters from data in
different year periods.

Parameters
Era # �

2016 Data 31.3 ± 1.2 0.079 ± 0.001
2017 Data 31.9 ± 1.2 0.074 ± 0.001
2018 Data (eras ABC) 33.8 ± 1.4 0.095 ± 0.002
2018 Data (era D) 31.9 ± 1.3 0.092 ± 0.002

After # and � are extracted to properly reconstruct the photon cluster time, the
last step is to calibrate the timing in simulated events to match the data. As shown
in [FIGURE], the photon cluster time in MC are not correctly simulated, as its
distribution has shifted mean and higher standard deviation compared to those of
data’s distribution. To correct the photon arrival time in simulated events, we derive
correction with / → 4

+
4
− simulated events and measure Ccluster of the leading

electrons and positrons in bins of 4± energy. For each bin, we fit the distribution to
a single Gaussian, then extract the mean and sigma of the fit results and trend them
as a function of the 4± energy. We compute the difference in mean 4± time between
data and simulated events in each bin, then shift the time in simulated events by this
difference to match the data. Similarly, we compute the difference in quadrature
between the standard deviations of distributions in data and simulation, then use
this difference to smear the time distribution in simulated events. Illustration of the
correction for 2017 is shown in Fig. 7.15, and examples of the electron arrival time
before and after correction are shown in Fig. 7.16.

7.5 Event selection
In 2016 data, we select events with at least 2 photons. The leading photon is required
to have pT above 70GeV and in the ECAL barrel region, while the subleading photon
is required to have pT above 40 GeV. Each photon is then required to pass the trigger
selection criteria, summarized in Table 7.4. We also apply a conversion-safe electron
veto cut [241] on the leading photon to remove electrons that are misidentified as
photons. Finally, we apply the DNN selection described in Sec. 7.3 on the leading
photon such that the false-positive rate is 0.5 and the true-positive rate is 0.88. As
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Figure 7.15: Timing correction for simulation using Z → 44 events and data for
the 2017 data-taking period. On the left is the correction of the mean electron
cluster’s arrival times in different electron’s energy bins. On the right is the cor-
rection of the standard deviations of distributions of electron cluster’s arrival time
in different electron energy bins. The purple lines overlapping with the blue lines
indicate that after correction, the mean and standard deviation of electron arrival
time distributions from simulation match those from data.
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Figure 7.16: Examples of electron arrival times before (top) and after (bottom) the
correction procedure in different energy bins.
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mentioned in Sec. 7.3, there is no further selection on the subleading photon because
the trigger requirement on the second photon is already too tight.

Table 7.6: Summary of event selection criteria in this search.

Objects Selection criteria
2016 data 2017 and 2018 data

Trigger Dedicated signal trigger fired
pmissT filters Pass all pmissT filters
Number of photons ≥ 2 photons ≥ 1 photon

Leading photon

pT > 70 GeV
|[ | < 1.4442

Pass all trigger requirements (Table 7.4)
DNN score > 0.089 DNN score > 0.127
Conversion-safe
electron veto

ΔR(track, W) > 0.2
ptrack) > 5 GeV

Subleading photon

pT > 40 GeV Single-photon
category: explicitly
veto events passing
subleading photon
selections defined in
2016 data.

|[ | < 1.4442
or 1.566 < |[ | < 2.5

Pass all trigger
requirements (Table
7.4)

Diphoton category:
require events passing
subleading photon
selections defined in
2016 data, plus:
EB W: DNN score > 0.473
EE W: DNN score > 0.130

Jets

nJets ≥ 3
pT > 30 GeV
|[ | < 3.0

Passing jet cuts (Table 7.3)
No H) requirement H) > 400 GeV

In 2017 and 2018 data, we select events with at least 1 photon due to a new trigger
menu. The selections on the leading photon is similar to those in 2016, except that
the conversion-safe electron veto is replaced with a track veto as required by the
trigger: within the radius Δ' = 0.2 around the photon, there must be no track with
pT above 5 GeV. For the subleading photon, we apply the trigger selections described
in Table 7.4, and then apply the DNN selection such that the false-positive rate is
0.5. Using this working point, the true-positive rate for the subleading photon is
0.94 for photons in both barrel and endcap regions of the ECAL.
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For all years, we further require events to have at least three jets with pT above 30
GeV, |[ | < 3.0 and pass the jet identification criteria listed in Table 7.3 to suppress
non-collisional background events.

In 2017 and 2018 data, we divide the signal region into two categories: a single
photon category, which requires exclusively 1 photon in the event, and a diphoton
category, which requires at least 2 photons in the event. For 2016 data, since the
trigger requires at least 2 photons, only the diphoton category is used. Table 7.6
summarizes the selections used in this search for each category. The signal efficiency
along with the selection flow are listed in Tables 7.7-7.10 for 2016, and in Tables
7.11-7.14 for 2017 and 2018.

Table 7.7: Event selection efficiency forGMSBSPS8 2g = 10 cm and varyingΛ (unit
of efficiency: %; unit of Λ : TeV) using the 2016 event selection flow summarized
in Table 7.6.

Λ = 100 Λ = 200 Λ = 300 Λ = 400
- 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

+ Signal trigger 62.38 ± 0.32 61.79 ± 0.32 62.42 ± 0.32 65.12 ± 0.33
+ W1?T > 70GeV 59.25 ± 0.31 61.13 ± 0.32 62.23 ± 0.32 65.04 ± 0.33
+ W1 |[ | < 1.4442 59.25 ± 0.31 61.13 ± 0.32 62.23 ± 0.32 65.04 ± 0.33
+ W1 DNN ID 35.88 ± 0.22 47.57 ± 0.27 54.45 ± 0.29 58.32 ± 0.30
+ W1 electron veto 32.90 ± 0.21 44.21 ± 0.25 51.09 ± 0.28 54.66 ± 0.29
+ nJets ≥ 3 29.01 ± 0.19 34.66 ± 0.22 38.47 ± 0.23 40.78 ± 0.24
+ pmissT filters 28.73 ± 0.19 34.25 ± 0.22 38.06 ± 0.23 40.33 ± 0.24

+ W2?T > 40GeV 26.52 ± 0.18 32.44 ± 0.21 36.26 ± 0.22 38.67 ± 0.23

Table 7.8: Event selection efficiency for GMSB SPS8 2g = 100 cm and varying
Λ (unit of efficiency: %; unit of Λ : TeV) using the 2016 event selection flow
summarized in Table 7.6.

Λ = 100 Λ = 200 Λ = 300 Λ = 400
- 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

+ Signal trigger 35.62 ± 0.16 40.38 ± 0.19 45.26 ± 0.21 48.77 ± 0.23
+ W1?T > 70GeV 33.16 ± 0.15 39.70 ± 0.19 44.96 ± 0.21 48.61 ± 0.23
+ W1 |[ | < 1.4442 33.16 ± 0.15 39.70 ± 0.19 44.96 ± 0.21 48.61 ± 0.23
+ W1 DNN ID 19.07 ± 0.11 30.04 ± 0.16 38.69 ± 0.19 42.98 ± 0.21
+ W1 electron veto 16.27 ± 0.10 26.92 ± 0.15 35.43 ± 0.18 39.70 ± 0.20
+ nJets ≥ 3 14.06 ± 0.09 20.40 ± 0.12 25.93 ± 0.15 28.84 ± 0.17
+ pmissT filters 13.23 ± 0.09 19.31 ± 0.12 24.69 ± 0.14 27.33 ± 0.16

+ W2?T > 40GeV 11.93 ± 0.08 17.99 ± 0.12 23.26 ± 0.14 26.09 ± 0.16
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Table 7.9: Event selection efficiency for GMSB SPS8 2g = 1000 cm and varying
Λ (unit of efficiency: %; unit of Λ : TeV) using the 2016 event selection flow
summarized in Table 7.6.

Λ = 100 Λ = 200 Λ = 300 Λ = 400
- 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

+ Signal trigger 10.02 ± 0.11 10.17 ± 0.11 11.19 ± 0.11 12.44 ± 0.12
+ W1?T > 70GeV 8.97 ± 0.10 9.65 ± 0.10 10.79 ± 0.11 12.14 ± 0.12
+ W1 |[ | < 1.4442 8.97 ± 0.10 9.65 ± 0.10 10.79 ± 0.11 12.14 ± 0.12
+ W1 DNN ID 4.41 ± 0.07 6.30 ± 0.08 8.41 ± 0.10 9.74 ± 0.10
+ W1 electron veto 2.07 ± 0.05 3.76 ± 0.06 5.43 ± 0.08 6.30 ± 0.08
+ nJets ≥ 3 1.78 ± 0.04 2.68 ± 0.05 3.48 ± 0.06 3.89 ± 0.06
+ pmissT filters 1.69 ± 0.04 2.54 ± 0.05 3.21 ± 0.06 3.58 ± 0.06

+ W2?T > 40GeV 1.47 ± 0.04 2.21 ± 0.05 2.81 ± 0.05 3.24 ± 0.06

Table 7.10: Event selection efficiency for GMSB SPS8 2g = 10 000 cm and varying
Λ (unit of efficiency: %; unit of Λ : TeV) using the 2016 event selection flow
summarized in Table 7.6.

Λ = 100 Λ = 200 Λ = 300 Λ = 400
- 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

+ Signal trigger 6.36 ± 0.05 5.65 ± 0.05 5.36 ± 0.05 6.01 ± 0.05
+ W1?T > 70GeV 5.63 ± 0.05 5.21 ± 0.05 5.01 ± 0.05 5.72 ± 0.05
+ W1 |[ | < 1.4442 5.63 ± 0.05 5.21 ± 0.05 5.01 ± 0.05 5.72 ± 0.05
+ W1 DNN ID 2.65 ± 0.03 3.01 ± 0.04 3.60 ± 0.04 4.33 ± 0.05
+ W1 electron veto 0.56 ± 0.01 0.81 ± 0.02 0.96 ± 0.02 1.17 ± 0.02
+ nJets ≥ 3 0.50 ± 0.01 0.58 ± 0.02 0.53 ± 0.01 0.61 ± 0.02
+ pmissT filters 0.50 ± 0.01 0.56 ± 0.02 0.52 ± 0.01 0.60 ± 0.02

+ W2?T > 40GeV 0.42 ± 0.01 0.48 ± 0.01 0.43 ± 0.01 0.49 ± 0.02

7.6 Data-driven background estimation
This search relies on two main discriminating variables: the photon cluster time, CW
and the missing transverse momentum, pmissT . The photon cluster time is sensitive
to non-collisional background processes, such as from beam halo or cosmic ray
muons, which can create late-arrival photons that are indistinguishable from GMSB
photons. These non-collisional background processes are not accounted for in
simulated events. Furthermore, imperfect simulation of the detector response can
lead to inaccurate simulation of pmissT . For these reasons, we use a data-driven
approach called the ABCDmethod to estimate background contributions and extract
signal strengths.
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Table 7.11: Event selection efficiency for GMSB SPS8 2g = 10 cm and varying
Λ (unit of efficiency: %; unit of Λ : TeV) using the 2017 event selection flow
summarized in Table 7.6.

Λ = 100 Λ = 200 Λ = 300 Λ = 400
- 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

+ Signal trigger 54.37 ± 0.29 71.92 ± 0.37 79.60 ± 0.38 82.88 ± 0.39
+ W1?T > 70GeV 54.37 ± 0.29 71.92 ± 0.37 79.60 ± 0.38 82.88 ± 0.39
+ W1 |[ | < 1.4442 54.37 ± 0.29 71.92 ± 0.37 79.60 ± 0.38 82.88 ± 0.39
+ W1 DNN ID 26.81 ± 0.18 49.56 ± 0.29 63.56 ± 0.32 69.71 ± 0.34
+ W1 track veto 21.96 ± 0.16 40.31 ± 0.25 51.44 ± 0.28 56.29 ± 0.30
+ nJets ≥ 3 19.77 ± 0.15 31.37 ± 0.21 39.69 ± 0.24 43.36 ± 0.25
+ pmissT filters 19.51 ± 0.15 30.97 ± 0.21 39.17 ± 0.23 42.74 ± 0.25

+ W2?T > 40GeV 7.39 ± 0.09 12.47 ± 0.12 16.21 ± 0.14 16.98 ± 0.14
+ W2 DNN ID 6.94 ± 0.09 11.94 ± 0.12 15.59 ± 0.13 16.25 ± 0.14
+ H) ≥ 400 TeV 5.87 ± 0.08 6.33 ± 0.09 10.67 ± 0.11 13.18 ± 0.12

Table 7.12: Event selection efficiency for GMSB SPS8 2g = 100 cm and varying
Λ (unit of efficiency: %; unit of Λ : TeV) using the 2017 event selection flow
summarized in Table 7.6.

Λ = 100 Λ = 200 Λ = 300 Λ = 400
- 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

+ Signal trigger 34.19 ± 0.16 51.40 ± 0.21 60.55 ± 0.23 64.64 ± 0.36
+ W1?T > 70GeV 34.19 ± 0.16 51.40 ± 0.21 60.55 ± 0.23 64.64 ± 0.36
+ W1 |[ | < 1.4442 34.19 ± 0.16 51.40 ± 0.21 60.55 ± 0.23 64.64 ± 0.36
+ W1 DNN ID 17.80 ± 0.11 38.04 ± 0.17 50.49 ± 0.20 55.75 ± 0.32
+ W1 track veto 15.57 ± 0.10 33.87 ± 0.16 45.04 ± 0.19 49.63 ± 0.30
+ nJets ≥ 3 13.97 ± 0.09 25.44 ± 0.13 33.31 ± 0.15 36.70 ± 0.24
+ pmissT filters 12.55 ± 0.09 23.00 ± 0.12 30.24 ± 0.14 33.30 ± 0.23

+ W2?T > 40GeV 4.68 ± 0.05 8.91 ± 0.07 12.01 ± 0.08 13.09 ± 0.13
+ W2 DNN ID 4.23 ± 0.05 8.23 ± 0.07 11.17 ± 0.08 12.17 ± 0.13
+ H) ≥ 400 TeV 3.50 ± 0.04 4.30 ± 0.05 7.55 ± 0.07 9.71 ± 0.11

We define in a two-dimensional distribution of pmissT and CW four rectangular bins A,
B, C, and D, where bin A contains events with low pmissT and low CW, bin B high
pmissT and low CW, bin C high pmissT and high CW, and bin D low pmissT and high CW, as
shown in Fig. 7.17. The signal is most enriched in bin C, while bin A contains most
background.

The ABCD method assume two variables pmissT and CW are independent, which will
be verified later on. Therefore, the prediction for the background yield in bin C can
be defined as:
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Table 7.13: Event selection efficiency for GMSB SPS8 2g = 1000 cm and varying
Λ (unit of efficiency: %; unit of Λ : TeV) using the 2017 event selection flow
summarized in Table 7.6.

Λ = 100 Λ = 200 Λ = 300 Λ = 400
- 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

+ Signal trigger 6.78 ± 0.09 11.35 ± 0.12 14.62 ± 0.13 16.32 ± 0.14
+ W1?T > 70GeV 6.78 ± 0.09 11.35 ± 0.12 14.62 ± 0.13 16.32 ± 0.14
+ W1 |[ | < 1.4442 6.78 ± 0.09 11.35 ± 0.12 14.62 ± 0.13 16.32 ± 0.14
+ W1 DNN ID 3.30 ± 0.06 8.08 ± 0.10 11.66 ± 0.11 13.49 ± 0.13
+ W1 track veto 2.71 ± 0.05 6.94 ± 0.09 9.96 ± 0.10 11.41 ± 0.12
+ nJets ≥ 3 2.49 ± 0.05 5.08 ± 0.08 6.93 ± 0.09 7.58 ± 0.09
+ pmissT filters 2.35 ± 0.05 4.74 ± 0.07 6.36 ± 0.08 6.88 ± 0.09

+ W2?T > 40GeV 0.84 ± 0.03 1.45 ± 0.04 1.96 ± 0.04 2.21 ± 0.05
+ W2 DNN ID 0.71 ± 0.03 1.26 ± 0.04 1.70 ± 0.04 1.96 ± 0.05
+ H) ≥ 400 TeV 0.64 ± 0.03 0.73 ± 0.03 1.07 ± 0.03 1.45 ± 0.04

Table 7.14: Event selection efficiency for GMSB SPS8 2g = 10 000 cm and varying
Λ (unit of efficiency: %; unit of Λ : TeV) using the 2017 event selection flow
summarized in Table 7.6.

Λ = 100 Λ = 200 Λ = 300 Λ = 400
- 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

+ Signal trigger 1.99 ± 0.05 2.72 ± 0.05 3.46 ± 0.06 4.08 ± 0.07
+ W1?T > 70GeV 1.99 ± 0.05 2.72 ± 0.05 3.46 ± 0.06 4.08 ± 0.07
+ W1 |[ | < 1.4442 1.99 ± 0.05 2.72 ± 0.05 3.46 ± 0.06 4.08 ± 0.07
+ W1 DNN ID 0.81 ± 0.03 1.59 ± 0.04 2.36 ± 0.05 2.91 ± 0.05
+ W1 track veto 0.49 ± 0.02 1.05 ± 0.03 1.53 ± 0.04 1.85 ± 0.04
+ nJets ≥ 3 0.47 ± 0.02 0.78 ± 0.03 1.00 ± 0.03 1.18 ± 0.03
+ pmissT filters 0.47 ± 0.02 0.77 ± 0.03 0.98 ± 0.03 1.16 ± 0.03

+ W2?T > 40GeV 0.14 ± 0.01 0.21 ± 0.01 0.26 ± 0.02 0.30 ± 0.02
+ W2 DNN ID 0.14 ± 0.01 0.21 ± 0.01 0.26 ± 0.02 0.30 ± 0.02
+ H) ≥ 400 TeV 0.12 ± 0.01 0.14 ± 0.01 0.16 ± 0.01 0.22 ± 0.01

#
pred
C =

#
obs
B × #obsD
#
obs
A

, (7.15)

where #obsX is the observed data in bin X. This is also known as the “classical ABCD”
method. However, the signals we search for in this analysis include a wide range
of mass values and lifetimes, resulting in signal events with different values in pmissT

and CW that scatter over all 4 bins A, B, C, and D. Therefore, we use a “modified
ABCD” method, which is described as follows:
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Figure 7.17: Illustration of the four bins A, B, C, and D in the two-dimensional
distribution of pmissT and CW in the ABCD method.

• To extract the observed upper limit on the signal strength, we use a system of
four equations with four unknowns as shown in Eq. 7.16:

#
obs
A = BkgA + ` × SigA

#
obs
B = AB/A × BkgA + ` × SigB

#
obs
C = AB/A × AD/A × BkgA + ` × SigC

#
obs
D = AD/A × BkgA + ` × SigD,

(7.16)

where:

– BkgA is the background yield in bin A (unknown),

– AB/A is the ratio between numbers of background events in bin B and A
(unknown),

– AD/A is the ratio between numbers of background events in bin D and A
(unknown),

– ` is the overall signal strength (unknown),

– #
obs
X is the observed yields from data in bin X (known),

– SigX is the predicted signal yields in bin X, taken directly from signal
simulation (known).

We then perform a simultaneous maximum-likelihood fit to the observed data
in all four bins, extracting the four unknown variables.
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• To extract the expected upper limit on the signal strength, as the data is
“blinded” to avoid potential biases, we use shape templates to compute the
expected background yields in bin B, C, and D from the number of events in
bin A, which is the control region. In particular, we obtain the shape template
for pmissT from data, requiring CW < 1 ns. Similarly, the shape template for CW is
obtained from data with pmissT < 100 GeV, as shown in Fig. 7.18. We compute
AB/A and AD/A from the pmissT and CW shape templates, respectively, by dividing
number of events on the right of the vertical line by the number of events on
the left of the vertical line. We proceed to compute the expected background
yields in bin B, C, and D following Eq. 7.16, and set the observed event yields
to be the same as the expected event yields. The expected upper limit on the
signal strength is computed from the maximum likelihood fit to all four bins.
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Figure 7.18: Example shape templates to extract AB/A and AD/A to compute the
expected background yields in bin B, C, and D from bin A in the modified ABCD
method to obtain the expected upper limit on the signal strength. The vertical lines
represent the bin boundaries. AB/A is computed as the ratio between number of
events on the right of the bin boundary and number of events on the left of the
bin boundary from the pmissT plot; AD/A is computed as the ratio between number of
events on the right of the bin boundary and number of events on the left of the bin
boundary on the CW plot.

We conduct a correlation study between pmissT and CW to verify that they are inde-
pendent by defining a control region from data, which has the same requirements
as the signal region, but the DNN photon ID on the leading photon is inverted.
We measure the Pearson’s correlation coefficient A between pmissT and CW, which is
defined as:
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A =

∑(G8 − Ḡ) (H8 − H̄)√∑(G8 − Ḡ)
2∑(H8 − H̄)

2
, (7.17)

where G8, H8 are the values of p
miss
T and CH, respectively, and Ḡ, H̄ are their correspond-

ing mean values. We measure the correlation coefficients for different time regions,
which are listed in Table. 7.15. The largest correlation observed is around −2.4%
on the whole CW region. In the high CW region, this correlation reduces to −1.1%.
These small correlations are taken into account as systematic uncertainties. We also
observe that the shapes of CW distributions in different p

miss
T bins are similar, as shown

in Fig. 7.19.

Table 7.15: Pearson’s correlation coefficient A between pmissT and CW in different CW
regions, computed on the control region from 2016 data, where the DNN photon ID
requirement on the leading photon is inverted.

CH region [ns] Number of events Pearson’s A
(-10, 25) 23802 −0.024 ± 0.006
(-2, 25) 23795 −0.018 ± 0.006
(1, 25) 255 −0.011 ± 0.063

7.7 Systematic uncertainties
The dominant uncertainties of this search come from the uncertainties in the back-
ground and signal fit parameters. In many scenarios, the predicted background
yields in bin C are less than 1, resulting in a large statistical uncertainty, which is
taken automatically into account when computing cross section’s upper limit.

Subdominant uncertainties in this analysis mainly come from instrumental effects,
which are included as nuissance parameters of the likelihood. These include the
integrated luminosity uncertainty, which affects the overall signal normalization in
each of the four bins. For data collected in 2016, 2017, and 2018, the systematic
uncertainties from integrated luminosity are 2.5%, 2.3%, and 2.5%, respectively
[134–136]. The uncertainty from trigger in 2016 is measured to be 2%. No
uncertainty is assigned to the trigger efficiency in 2017 and 2018, as the difference
between the trigger response in data and simulation is less than one percent. The
uncertainty on the DNN-based photon identification is estimated to be 5%. Another
type of systematic uncertainties arises from imperfect simulation of the detector
response, including uncertainties on the photon energy scale and resolution, jet
energy scale and resolution, and the photon cluster time bias and resolution. Finally,
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Figure 7.19: Distributions of CW in different p
miss
T bins from 2016 data in the control

region where the DNN photon ID requirement on the leading photon is inverted.
All distributions are normalized to unity.

the systematic uncertainties accounting for the dependence between pmissT and CW is
measured from a study with W+jets control regions, where we compare the predicted
background events in bin C (#predC = #B · #D/#A), with the actual events in bin C
(#C).

Table 7.16 summarizes the systematic uncertainties in this analysis.

7.8 Results
After selecting events as described in Sec. 7.5, we estimate the predicted signal
yields in bin A, B, C, and D, as listed in Tables 7.17-7.21 for each year during Run
2. As the 2g of the signal model increases, the detector’s acceptance decreases,
resulting in the decrease of the expected signal yields. Similarly, the Λ of the
signal model is inversely proportional to its production cross section, therefore the
expected signal yields also decrease as Λ increases.
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Table 7.16: Summary of systematics and their assigned values in this analysis.

Systematic Sig/Bkg Bins 2016 2017 2018 Correlation
Luminosity Sig A, B, C, D 2.5% 2.3% 2.5% Uncorrelated
Photon energy scale Sig A, B, C, D 1% 2% 2% 100% correlated
Photon energy resolution Sig A, B, C, D 1% 1% 1% 100% correlated
Jet energy scale Sig A, B, C, D 1.5% 2% 2% 100% correlated
Jet energy resolution Sig A, B, C, D 1.5% 1.5% 1.5% Uncorrelated
Photon time bias Sig A, B, C, D 1.5% 1% 1% 100% correlated
Photon time resolution Sig A, B, C, D 0.5% 0.5% 0.5% 100% correlated
Trigger efficiency Sig A, B, C, D 2% - - N/A
Photon identification Sig A, B, C, D 2% 3% 5% 100% correlated
Closure in bin C (2g < 10 cm) Bkg C 2% 3.5% 3.5% 100% correlated
Closure in bin C (2g > 10 cm) Bkg C 90% 90% 90% 100% correlated

To avoid potential bias, observed data in bins B, C, and D remain blinded throughout
the whole analysis and will only be uncovered after the analysis is finalized, which
are not included in this thesis. Observed data in the control region (bin A), along
with the predicted background yields in bin B, C, and D are showed in Tables 7.22,
7.23, and 7.24 for the year 2016, 2017, and 2018, respectively.

The predicted signal and background yields, along with the uncertainties described
in Sec. 7.7, are used to compute the expected upper limit on the signal strength at
95% confidence level (CL) using the asymptotic formulae for likelihood-based tests
[139]. If the upper limit on the signal strength of a signal point is less than 1, the
signal point is excluded. The upper limit on the signal strength is multiplied with
the theoretical production cross section to established the 95% CL upper limits on
the signals’ cross sections, which are shown in Figs. 7.20-7.21 as functions of the
neutralino’s masses for different 2g.

At large 2g, the sensitivity is improved significantly with the 2017 and 2018 data
compared with 2016, as shown in Fig. 7.22, because of the dedicated displaced
single-photon trigger. The 2018 analysis also shows some improvements at very
low 2gdue to the better time resolution in the 2018 A, B, and C data-taking eras.

Table 7.17: Predicted signal yields in bins A, B, C, and D using the event selection
described in Sec. 7.5 for the year 2016 in different Λ and 2g values.

2g (cm) Yield in bin A Yield in bin B Yield in bin C Yield in bin D
Λ = 100TeV
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10 3126 ± 50 1254 ± 31 2557 ± 45 6473 ± 73
50 2508 ± 32 7110 ± 56 236.00 ± 9.97 128.06 ± 7.34
100 1575 ± 26 4236 ± 43 283.99 ± 11.02 167.32 ± 8.46
200 691.69 ± 23.34 2124 ± 41 199.13 ± 12.49 100.57 ± 8.87
400 314.84 ± 15.75 1055 ± 28 139.28 ± 10.47 62.84 ± 7.03
600 174.08 ± 11.71 715.294 ± 23.824 94.935 ± 8.645 40.721 ± 5.660
800 142.870 ± 6.063 644.432 ± 12.918 93.255 ± 4.897 26.254 ± 2.597
1000 98.039 ± 8.778 447.894 ± 18.804 38.815 ± 5.521 19.948 ± 3.957
1200 89.072 ± 8.332 388.139 ± 17.427 38.479 ± 5.475 16.011 ± 3.531
10000 98.572 ± 5.378 65.591 ± 4.386 2.756 ± 0.899 8.249 ± 1.555

Λ = 150TeV
10 315.41 ± 5.18 198.44 ± 4.08 435.28 ± 6.13 696.30 ± 7.87
50 232.39 ± 3.42 894.60 ± 6.96 59.010 ± 1.706 19.626 ± 0.981
100 139.04 ± 2.57 542.38 ± 5.21 74.017 ± 1.874 27.338 ± 1.136
200 72.979 ± 2.457 277.47 ± 4.85 49.989 ± 2.031 20.812 ± 1.308
400 30.421 ± 1.642 131.538 ± 3.435 25.245 ± 1.495 9.192 ± 0.901
600 18.656 ± 1.231 90.040 ± 2.717 20.573 ± 1.293 7.369 ± 0.773
800 11.087 ± 0.954 66.393 ± 2.342 15.867 ± 1.141 3.964 ± 0.570
1000 7.928 ± 0.809 54.130 ± 2.119 13.353 ± 1.050 4.053 ± 0.578
1200 8.193 ± 0.926 48.813 ± 2.266 9.812 ± 1.013 3.069 ± 0.567
10000 2.376 ± 0.299 15.924 ± 0.774 1.362 ± 0.226 0.151 ± 0.075

Λ = 200TeV
10 59.237 ± 0.997 50.525 ± 0.918 115.288 ± 1.414 143.650 ± 1.591
50 35.812 ± 0.527 197.352 ± 1.302 19.948 ± 0.391 4.151 ± 0.178
100 24.697 ± 0.484 120.381 ± 1.101 22.254 ± 0.459 5.650 ± 0.230
200 13.757 ± 0.471 66.350 ± 1.050 17.909 ± 0.538 4.837 ± 0.278
400 5.374 ± 0.294 32.596 ± 0.729 9.627 ± 0.393 2.365 ± 0.195
600 3.313 ± 0.230 21.156 ± 0.585 6.893 ± 0.333 1.488 ± 0.154
800 2.243 ± 0.192 15.860 ± 0.511 4.927 ± 0.284 1.069 ± 0.132
1000 1.739 ± 0.165 12.665 ± 0.448 4.151 ± 0.256 0.924 ± 0.120
1200 1.611 ± 0.161 10.815 ± 0.418 3.483 ± 0.237 0.650 ± 0.102
10000 0.254 ± 0.042 3.041 ± 0.146 0.398 ± 0.053 0.032 ± 0.015

Λ = 250TeV
10 14.830 ± 0.263 18.044 ± 0.292 43.653 ± 0.466 39.872 ± 0.443
50 8.682 ± 0.153 63.176 ± 0.440 7.834 ± 0.145 1.275 ± 0.058



150

100 5.802 ± 0.110 37.914 ± 0.292 9.364 ± 0.140 1.570 ± 0.057
200 3.268 ± 0.086 21.995 ± 0.229 7.729 ± 0.133 1.398 ± 0.056
400 1.425 ± 0.080 9.887 ± 0.214 4.311 ± 0.140 0.890 ± 0.064
600 0.692 ± 0.056 6.525 ± 0.174 2.965 ± 0.117 0.496 ± 0.048
800 0.615 ± 0.053 5.152 ± 0.154 2.270 ± 0.102 0.302 ± 0.037
1000 0.386 ± 0.042 3.894 ± 0.133 1.656 ± 0.087 0.332 ± 0.039
1200 0.370 ± 0.041 3.338 ± 0.124 1.601 ± 0.086 0.218 ± 0.032
10000 0.070 ± 0.011 0.856 ± 0.037 0.191 ± 0.017 0.020 ± 0.006

Λ = 300TeV
10 4.760 ± 0.089 7.779 ± 0.114 19.631 ± 0.188 12.442 ± 0.146
50 2.551 ± 0.044 25.046 ± 0.148 3.572 ± 0.052 0.406 ± 0.017
100 1.733 ± 0.040 15.366 ± 0.126 4.369 ± 0.065 0.477 ± 0.021
200 1.032 ± 0.041 8.478 ± 0.121 3.434 ± 0.076 0.457 ± 0.027
400 0.445 ± 0.028 3.959 ± 0.084 2.003 ± 0.059 0.212 ± 0.019
600 0.266 ± 0.021 2.642 ± 0.067 1.324 ± 0.047 0.169 ± 0.017
800 0.227 ± 0.019 1.869 ± 0.055 0.968 ± 0.040 0.142 ± 0.015
1000 0.170 ± 0.017 1.589 ± 0.051 0.778 ± 0.035 0.095 ± 0.012
1200 0.075 ± 0.011 1.225 ± 0.045 0.698 ± 0.034 0.068 ± 0.010
10000 0.021 ± 0.004 0.311 ± 0.014 0.075 ± 0.007 0.004 ± 0.002

Λ = 350TeV
10 1.636 ± 0.033 3.482 ± 0.049 9.389 ± 0.083 4.460 ± 0.055
50 1.828 ± 0.024 10.124 ± 0.060 1.603 ± 0.022 0.278 ± 0.009
100 1.226 ± 0.020 6.248 ± 0.048 1.821 ± 0.025 0.395 ± 0.012
200 0.689 ± 0.021 3.407 ± 0.048 1.472 ± 0.031 0.318 ± 0.014
400 0.296 ± 0.014 1.616 ± 0.033 0.808 ± 0.023 0.182 ± 0.011
600 0.165 ± 0.010 1.006 ± 0.026 0.585 ± 0.020 0.109 ± 0.008
800 0.129 ± 0.009 0.764 ± 0.022 0.458 ± 0.017 0.107 ± 0.008
1000 0.100 ± 0.008 0.595 ± 0.020 0.345 ± 0.015 0.074 ± 0.007
1200 0.082 ± 0.007 0.481 ± 0.018 0.299 ± 0.014 0.037 ± 0.005
10000 0.018 ± 0.002 0.133 ± 0.006 0.038 ± 0.003 0.006 ± 0.001

Λ = 400TeV
10 0.585 ± 0.013 1.664 ± 0.022 4.522 ± 0.038 1.562 ± 0.022
50 0.656 ± 0.010 4.805 ± 0.028 0.798 ± 0.011 0.118 ± 0.004
100 0.451 ± 0.009 2.894 ± 0.025 0.935 ± 0.014 0.146 ± 0.005
200 0.265 ± 0.008 1.597 ± 0.021 0.704 ± 0.014 0.123 ± 0.006
400 0.102 ± 0.005 0.736 ± 0.015 0.426 ± 0.011 0.071 ± 0.004
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600 0.059 ± 0.004 0.477 ± 0.012 0.280 ± 0.009 0.046 ± 0.004
800 0.041 ± 0.003 0.342 ± 0.010 0.219 ± 0.008 0.035 ± 0.003
1000 0.038 ± 0.003 0.280 ± 0.009 0.170 ± 0.007 0.026 ± 0.003
1200 0.031 ± 0.003 0.238 ± 0.008 0.136 ± 0.006 0.016 ± 0.002
10000 0.006 ± 0.001 0.053 ± 0.003 0.018 ± 0.002 0.002 ± 0.001

Table 7.18: Predicted signal yields in bins A, B, C, and D using the event selection
for the single-photon category in 2017.

2g (cm) Yield in bin A Yield in bin B Yield in bin C Yield in bin D
Λ = 100TeV

10 1119 ± 31 471.20 ± 20.53 132.13 ± 10.85 389.50 ± 18.66
50 1117 ± 24 1342 ± 26 68.814 ± 6.006 54.588 ± 5.349
100 1056 ± 23 1303 ± 25 122.452 ± 7.858 102.81 ± 7.20
200 659.723 ± 24.442 1055 ± 30 173.79 ± 12.51 110.28 ± 9.96
400 452.414 ± 21.894 751.519 ± 28.264 132.271 ± 11.817 73.754 ± 8.821
600 359.983 ± 18.087 600.157 ± 23.385 98.960 ± 9.470 57.558 ± 7.220
800 293.572 ± 16.264 502.168 ± 21.296 94.244 ± 9.205 55.796 ± 7.081
1000 247.169 ± 14.920 384.657 ± 18.627 71.856 ± 8.037 44.640 ± 6.333
1200 201.205 ± 13.390 338.849 ± 17.389 52.451 ± 6.831 44.271 ± 6.275
10000 98.488 ± 9.616 71.915 ± 8.216 4.114 ± 1.964 10.588 ± 3.151

Λ = 150TeV
10 108.79 ± 3.22 56.139 ± 2.310 20.338 ± 1.388 37.294 ± 1.881
50 90.825 ± 2.136 134.147 ± 2.602 11.053 ± 0.742 11.604 ± 0.760
100 78.258 ± 1.982 135.707 ± 2.618 20.799 ± 1.019 15.171 ± 0.870
200 60.042 ± 2.388 114.544 ± 3.308 28.322 ± 1.638 16.526 ± 1.250
400 35.612 ± 1.992 88.774 ± 3.153 24.121 ± 1.638 15.040 ± 1.293
600 30.139 ± 1.761 62.862 ± 2.548 20.306 ± 1.445 10.575 ± 1.042
800 25.371 ± 1.711 56.032 ± 2.546 16.844 ± 1.393 9.120 ± 1.025
1000 21.120 ± 1.612 45.684 ± 2.374 14.459 ± 1.334 7.306 ± 0.948
1200 14.894 ± 1.186 40.798 ± 1.966 10.881 ± 1.014 5.766 ± 0.738
10000 4.253 ± 0.642 10.670 ± 1.018 1.099 ± 0.326 1.768 ± 0.414

Λ = 200TeV
10 30.296 ± 0.789 15.441 ± 0.561 6.363 ± 0.359 14.289 ± 0.540
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50 22.025 ± 0.619 29.968 ± 0.723 3.898 ± 0.259 3.819 ± 0.256
100 17.312 ± 0.404 26.793 ± 0.504 6.088 ± 0.239 5.622 ± 0.229
200 14.186 ± 0.513 25.118 ± 0.684 8.275 ± 0.391 6.284 ± 0.340
400 8.305 ± 0.392 17.990 ± 0.578 7.721 ± 0.378 5.410 ± 0.316
600 7.427 ± 0.370 14.942 ± 0.526 6.112 ± 0.336 3.790 ± 0.264
800 5.804 ± 0.328 10.922 ± 0.450 5.024 ± 0.305 3.292 ± 0.247
1000 4.951 ± 0.314 9.871 ± 0.444 4.852 ± 0.311 2.589 ± 0.227
1200 4.049 ± 0.273 8.655 ± 0.399 4.157 ± 0.276 2.134 ± 0.198
10000 0.930 ± 0.134 2.333 ± 0.212 0.685 ± 0.115 0.420 ± 0.090

Λ = 250TeV
10 9.658 ± 0.255 6.601 ± 0.210 3.269 ± 0.147 5.325 ± 0.188
50 6.614 ± 0.150 11.535 ± 0.199 2.161 ± 0.085 1.362 ± 0.068
100 5.162 ± 0.112 9.306 ± 0.151 3.057 ± 0.086 1.889 ± 0.068
200 4.466 ± 0.161 9.163 ± 0.231 4.109 ± 0.154 2.231 ± 0.113
400 2.809 ± 0.123 6.764 ± 0.192 3.784 ± 0.143 1.702 ± 0.096
600 2.083 ± 0.104 5.443 ± 0.169 3.137 ± 0.128 1.480 ± 0.088
800 1.686 ± 0.094 4.330 ± 0.151 2.693 ± 0.119 1.251 ± 0.081
1000 1.592 ± 0.091 3.824 ± 0.142 2.390 ± 0.112 1.092 ± 0.075
1200 1.120 ± 0.076 3.302 ± 0.131 2.172 ± 0.107 1.047 ± 0.074
10000 0.315 ± 0.042 0.886 ± 0.071 0.296 ± 0.041 0.168 ± 0.031

Λ = 300TeV
10 3.469 ± 0.081 3.407 ± 0.080 1.854 ± 0.059 1.842 ± 0.059
50 2.221 ± 0.044 5.113 ± 0.067 1.044 ± 0.030 0.474 ± 0.020
100 1.685 ± 0.038 4.169 ± 0.060 1.576 ± 0.037 0.676 ± 0.024
200 1.431 ± 0.051 3.795 ± 0.084 2.085 ± 0.062 0.843 ± 0.039
400 0.892 ± 0.041 2.920 ± 0.074 1.853 ± 0.059 0.700 ± 0.036
600 0.714 ± 0.036 2.353 ± 0.066 1.588 ± 0.054 0.624 ± 0.034
800 0.628 ± 0.034 1.944 ± 0.060 1.479 ± 0.052 0.463 ± 0.029
1000 0.549 ± 0.032 1.675 ± 0.056 1.224 ± 0.048 0.432 ± 0.028
1200 0.402 ± 0.027 1.636 ± 0.055 1.097 ± 0.045 0.373 ± 0.026
10000 0.116 ± 0.015 0.405 ± 0.029 0.148 ± 0.017 0.062 ± 0.011

Λ = 350TeV
10 1.279 ± 0.034 1.800 ± 0.040 0.958 ± 0.029 0.711 ± 0.025
50 1.471 ± 0.023 1.749 ± 0.025 0.437 ± 0.012 0.337 ± 0.011
100 1.143 ± 0.021 1.470 ± 0.023 0.571 ± 0.015 0.488 ± 0.013
200 0.940 ± 0.027 1.306 ± 0.031 0.793 ± 0.024 0.582 ± 0.021
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400 0.634 ± 0.025 1.022 ± 0.031 0.798 ± 0.028 0.470 ± 0.021
600 0.517 ± 0.020 0.917 ± 0.026 0.659 ± 0.022 0.443 ± 0.018
800 0.458 ± 0.019 0.748 ± 0.025 0.513 ± 0.020 0.333 ± 0.016
1000 0.353 ± 0.016 0.631 ± 0.022 0.493 ± 0.019 0.281 ± 0.014
1200 0.348 ± 0.016 0.546 ± 0.020 0.426 ± 0.018 0.277 ± 0.014
10000 0.087 ± 0.008 0.148 ± 0.011 0.075 ± 0.007 0.044 ± 0.006

Λ = 400TeV
10 0.486 ± 0.013 0.881 ± 0.017 0.522 ± 0.013 0.282 ± 0.010
50 0.558 ± 0.010 0.918 ± 0.013 0.231 ± 0.006 0.132 ± 0.005
100 0.453 ± 0.013 0.735 ± 0.016 0.303 ± 0.011 0.204 ± 0.009
200 0.356 ± 0.012 0.657 ± 0.017 0.414 ± 0.013 0.228 ± 0.010
400 0.238 ± 0.009 0.524 ± 0.013 0.409 ± 0.012 0.185 ± 0.008
600 0.204 ± 0.009 0.460 ± 0.013 0.353 ± 0.011 0.156 ± 0.007
800 0.159 ± 0.008 0.338 ± 0.011 0.320 ± 0.011 0.140 ± 0.007
1000 0.130 ± 0.007 0.305 ± 0.010 0.274 ± 0.010 0.125 ± 0.007
1200 0.136 ± 0.007 0.291 ± 0.010 0.216 ± 0.008 0.103 ± 0.006
10000 0.031 ± 0.003 0.083 ± 0.005 0.045 ± 0.004 0.020 ± 0.003

Table 7.19: Predicted signal yields in bins A, B, C, and D using the event selection
for the diphoton category in 2017.

2g (cm) Yield in bin A Yield in bin B Yield in bin C Yield in bin D
Λ = 100TeV

10 7178 ± 83 1987 ± 42 554.10 ± 22.27 1969 ± 42
50 5373 ± 54 3944 ± 46 103.08 ± 7.35 175.25 ± 9.59
100 3402 ± 42 2671 ± 37 144.19 ± 8.52 243.26 ± 11.08
200 1662 ± 39 1617 ± 38 144.52 ± 11.40 168.35 ± 12.31
400 834.48 ± 29.79 908.10 ± 31.09 109.00 ± 10.72 107.538 ± 10.654
600 571.30 ± 22.81 630.80 ± 23.97 72.966 ± 8.130 77.204 ± 8.363
800 468.60 ± 20.56 572.07 ± 22.73 49.287 ± 6.655 75.059 ± 8.214
1000 372.38 ± 18.32 463.22 ± 20.44 51.012 ± 6.771 46.163 ± 6.441
1200 283.32 ± 15.89 388.63 ± 18.62 44.477 ± 6.290 43.529 ± 6.222
10000 113.48 ± 10.32 78.147 ± 8.564 4.749 ± 2.110 8.626 ± 2.844

Λ = 150TeV
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10 620.73 ± 7.90 357.07 ± 5.91 105.92 ± 3.18 200.99 ± 4.40
50 427.01 ± 4.71 541.73 ± 5.33 25.266 ± 1.123 24.358 ± 1.102
100 284.09 ± 3.81 356.39 ± 4.29 31.010 ± 1.245 34.213 ± 1.307
200 149.703 ± 3.789 210.63 ± 4.50 29.422 ± 1.669 26.571 ± 1.586
400 72.418 ± 2.846 133.78 ± 3.88 21.587 ± 1.549 17.110 ± 1.379
600 44.875 ± 2.150 87.972 ± 3.018 14.885 ± 1.237 11.970 ± 1.109
800 30.047 ± 1.862 80.015 ± 3.047 13.484 ± 1.246 8.454 ± 0.987
1000 30.149 ± 1.927 61.655 ± 2.761 10.359 ± 1.129 6.271 ± 0.878
1200 27.322 ± 1.608 53.646 ± 2.256 10.773 ± 1.009 5.616 ± 0.728
10000 7.725 ± 0.866 17.705 ± 1.312 1.400 ± 0.369 0.793 ± 0.277

Λ = 200TeV
10 114.92 ± 1.57 77.680 ± 1.279 27.584 ± 0.752 42.735 ± 0.940
50 76.298 ± 1.170 109.864 ± 1.417 8.970 ± 0.393 8.115 ± 0.374
100 50.963 ± 0.700 72.451 ± 0.839 10.241 ± 0.310 10.649 ± 0.316
200 28.623 ± 0.731 45.878 ± 0.930 10.183 ± 0.434 8.667 ± 0.400
400 13.728 ± 0.504 26.131 ± 0.698 6.801 ± 0.354 4.501 ± 0.288
600 7.881 ± 0.382 17.992 ± 0.578 5.208 ± 0.310 3.118 ± 0.240
800 5.868 ± 0.330 14.341 ± 0.517 3.824 ± 0.266 2.076 ± 0.196
1000 4.286 ± 0.292 13.082 ± 0.512 3.194 ± 0.252 1.740 ± 0.186
1200 4.742 ± 0.295 9.934 ± 0.428 2.497 ± 0.214 1.117 ± 0.143
10000 0.731 ± 0.119 3.071 ± 0.244 0.584 ± 0.106 0.377 ± 0.085

Λ = 250TeV
10 36.596 ± 0.508 26.370 ± 0.428 10.777 ± 0.269 15.581 ± 0.325
50 22.890 ± 0.283 37.505 ± 0.368 4.592 ± 0.124 3.191 ± 0.104
100 15.715 ± 0.198 23.754 ± 0.245 5.358 ± 0.114 3.988 ± 0.098
200 8.960 ± 0.229 15.690 ± 0.304 5.030 ± 0.171 3.560 ± 0.143
400 4.347 ± 0.153 7.689 ± 0.205 3.178 ± 0.131 2.013 ± 0.104
600 2.417 ± 0.113 5.312 ± 0.167 2.282 ± 0.109 1.230 ± 0.080
800 1.839 ± 0.098 4.276 ± 0.150 1.842 ± 0.098 1.013 ± 0.073
1000 1.424 ± 0.086 3.250 ± 0.130 1.426 ± 0.086 0.753 ± 0.063
1200 1.022 ± 0.073 2.974 ± 0.125 1.183 ± 0.079 0.658 ± 0.059
10000 0.177 ± 0.032 0.636 ± 0.060 0.249 ± 0.038 0.081 ± 0.021

Λ = 300TeV
10 13.716 ± 0.165 13.289 ± 0.162 5.744 ± 0.104 6.069 ± 0.107
50 8.151 ± 0.085 18.023 ± 0.130 2.629 ± 0.048 1.201 ± 0.032



155

100 5.643 ± 0.070 11.056 ± 0.100 3.118 ± 0.052 1.713 ± 0.038
200 3.287 ± 0.078 6.738 ± 0.113 2.726 ± 0.071 1.448 ± 0.052
400 1.552 ± 0.054 3.526 ± 0.081 1.732 ± 0.057 0.885 ± 0.040
600 0.952 ± 0.042 2.314 ± 0.066 1.147 ± 0.046 0.595 ± 0.033
800 0.600 ± 0.033 1.761 ± 0.057 0.971 ± 0.042 0.431 ± 0.028
1000 0.491 ± 0.030 1.412 ± 0.051 0.847 ± 0.040 0.339 ± 0.025
1200 0.383 ± 0.027 1.253 ± 0.048 0.600 ± 0.033 0.246 ± 0.021
10000 0.068 ± 0.012 0.229 ± 0.021 0.135 ± 0.017 0.028 ± 0.007

Λ = 350TeV
10 5.143 ± 0.069 7.106 ± 0.082 3.151 ± 0.053 2.400 ± 0.046
50 6.016 ± 0.048 6.509 ± 0.050 1.053 ± 0.019 0.986 ± 0.019
100 4.039 ± 0.040 3.999 ± 0.039 1.251 ± 0.022 1.234 ± 0.021
200 2.355 ± 0.042 2.381 ± 0.043 1.090 ± 0.029 1.102 ± 0.029
400 1.034 ± 0.032 1.181 ± 0.034 0.667 ± 0.025 0.662 ± 0.025
600 0.663 ± 0.022 0.858 ± 0.025 0.501 ± 0.019 0.422 ± 0.018
800 0.484 ± 0.020 0.679 ± 0.023 0.374 ± 0.017 0.351 ± 0.017
1000 0.350 ± 0.016 0.491 ± 0.019 0.322 ± 0.015 0.282 ± 0.014
1200 0.304 ± 0.015 0.441 ± 0.018 0.281 ± 0.014 0.202 ± 0.012
10000 0.040 ± 0.005 0.099 ± 0.009 0.050 ± 0.006 0.029 ± 0.005

Λ = 400TeV
10 2.082 ± 0.027 3.747 ± 0.037 1.795 ± 0.025 0.952 ± 0.018
50 2.534 ± 0.022 3.681 ± 0.027 0.636 ± 0.011 0.424 ± 0.009
100 1.733 ± 0.026 2.284 ± 0.030 0.768 ± 0.017 0.593 ± 0.015
200 1.001 ± 0.021 1.257 ± 0.023 0.611 ± 0.016 0.498 ± 0.015
400 0.436 ± 0.012 0.629 ± 0.014 0.405 ± 0.011 0.271 ± 0.009
600 0.271 ± 0.010 0.461 ± 0.013 0.296 ± 0.010 0.181 ± 0.008
800 0.182 ± 0.008 0.314 ± 0.011 0.220 ± 0.009 0.141 ± 0.007
1000 0.137 ± 0.007 0.278 ± 0.010 0.188 ± 0.008 0.112 ± 0.006
1200 0.129 ± 0.006 0.230 ± 0.009 0.149 ± 0.007 0.089 ± 0.005
10000 0.021 ± 0.003 0.050 ± 0.004 0.022 ± 0.003 0.010 ± 0.002



156

Table 7.20: Predicted signal yields in bins A, B, C, and D using the event selection
for the single-photon category in 2018.

2g (cm) Yield in bin A Yield in bin B Yield in bin C Yield in bin D
Λ = 100TeV

10 834.99 ± 23.09 1779 ± 33 148.69 ± 9.72 66.180 ± 6.483
50 1262 ± 29 2560 ± 42 65.499 ± 6.679 28.325 ± 4.391
100 1050 ± 38 2595 ± 60 143.573 ± 14.198 96.214 ± 11.621
200 770.93 ± 31.53 1984 ± 50 209.47 ± 16.40 103.31 ± 11.51
400 478.53 ± 17.51 1433 ± 30 174.71 ± 10.57 66.605 ± 6.526
600 358.13 ± 15.22 1091 ± 26 135.65 ± 9.36 57.355 ± 6.086
800 303.86 ± 13.96 819.10 ± 22.97 109.65 ± 8.38 37.864 ± 4.925
1000 255.14 ± 12.93 755.64 ± 22.31 83.971 ± 7.418 44.810 ± 5.418
1200 210.40 ± 16.346 722.89 ± 30.36 89.925 ± 10.681 43.098 ± 7.393
10000 89.391 ± 10.938 170.79 ± 15.12 15.506 ± 4.554 16.705 ± 4.727

Λ = 150TeV
10 79.549 ± 3.284 210.32 ± 5.36 25.793 ± 1.866 9.157 ± 1.111
50 108.53 ± 3.15 247.32 ± 4.78 14.761 ± 1.158 9.558 ± 0.932
100 90.606 ± 2.541 233.37 ± 4.09 29.533 ± 1.447 17.060 ± 1.100
200 73.560 ± 2.231 209.71 ± 3.78 31.407 ± 1.456 15.294 ± 1.015
400 41.092 ± 2.371 152.44 ± 4.58 34.144 ± 2.161 10.844 ± 1.217
600 33.295 ± 2.108 112.63 ± 3.88 26.282 ± 1.872 9.643 ± 1.133
800 25.569 ± 1.315 90.217 ± 2.475 23.207 ± 1.252 9.810 ± 0.814
1000 21.093 ± 1.193 75.857 ± 2.268 16.350 ± 1.051 8.291 ± 0.748
1200 17.460 ± 1.534 68.114 ± 3.035 16.495 ± 1.491 5.963 ± 0.896
10000 2.862 ± 0.449 17.215 ± 1.101 2.024 ± 0.377 1.524 ± 0.327

Λ = 200TeV
10 21.895 ± 0.752 56.307 ± 1.214 9.650 ± 0.498 4.365 ± 0.335
50 22.748 ± 0.527 56.305 ± 0.835 5.731 ± 0.264 3.274 ± 0.199
100 18.906 ± 0.771 51.227 ± 1.277 9.958 ± 0.558 5.269 ± 0.406
200 15.083 ± 0.633 45.657 ± 1.107 14.523 ± 0.621 5.758 ± 0.390
400 10.816 ± 0.377 33.654 ± 0.669 12.274 ± 0.402 4.614 ± 0.246
600 7.336 ± 0.439 25.849 ± 0.827 9.332 ± 0.496 4.268 ± 0.335
800 5.146 ± 0.260 22.306 ± 0.544 8.572 ± 0.336 3.446 ± 0.213
1000 4.485 ± 0.347 18.386 ± 0.705 6.864 ± 0.430 2.535 ± 0.261
1200 3.965 ± 0.253 15.367 ± 0.500 7.103 ± 0.339 2.219 ± 0.189
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10000 0.625 ± 0.132 3.959 ± 0.333 1.118 ± 0.177 0.341 ± 0.098
Λ = 250TeV

10 6.532 ± 0.162 24.035 ± 0.314 5.028 ± 0.142 1.550 ± 0.079
50 6.354 ± 0.148 21.815 ± 0.278 3.291 ± 0.106 0.922 ± 0.056
100 5.646 ± 0.136 18.282 ± 0.247 4.774 ± 0.125 1.591 ± 0.072
200 4.719 ± 0.133 16.857 ± 0.253 6.515 ± 0.156 2.246 ± 0.092
400 2.791 ± 0.102 12.118 ± 0.214 6.085 ± 0.151 1.641 ± 0.078
600 2.114 ± 0.089 9.359 ± 0.188 5.276 ± 0.141 1.332 ± 0.070
800 1.747 ± 0.114 8.384 ± 0.251 4.509 ± 0.184 1.109 ± 0.091
1000 1.642 ± 0.078 6.731 ± 0.159 3.689 ± 0.117 0.970 ± 0.060
1200 1.143 ± 0.065 5.899 ± 0.148 3.160 ± 0.108 0.830 ± 0.056
10000 0.170 ± 0.025 1.352 ± 0.071 0.415 ± 0.039 0.142 ± 0.023

Λ = 300TeV
10 2.049 ± 0.074 10.374 ± 0.168 2.276 ± 0.078 0.484 ± 0.036
50 2.107 ± 0.050 9.354 ± 0.106 1.585 ± 0.043 0.378 ± 0.021
100 1.804 ± 0.054 7.556 ± 0.111 2.326 ± 0.061 0.623 ± 0.032
200 1.412 ± 0.044 6.900 ± 0.097 3.283 ± 0.067 0.741 ± 0.031
400 0.921 ± 0.035 5.210 ± 0.083 3.044 ± 0.064 0.552 ± 0.027
600 0.677 ± 0.030 4.134 ± 0.075 2.584 ± 0.059 0.480 ± 0.025
800 0.541 ± 0.027 3.518 ± 0.068 2.410 ± 0.056 0.430 ± 0.024
1000 0.540 ± 0.038 2.979 ± 0.089 1.867 ± 0.070 0.528 ± 0.037
1200 0.387 ± 0.023 2.661 ± 0.061 1.636 ± 0.048 0.292 ± 0.020
10000 0.096 ± 0.016 0.687 ± 0.043 0.286 ± 0.027 0.038 ± 0.010

Λ = 350TeV
10 1.259 ± 0.026 4.191 ± 0.048 1.043 ± 0.024 0.330 ± 0.013
50 1.249 ± 0.025 3.870 ± 0.044 0.715 ± 0.019 0.227 ± 0.010
100 0.988 ± 0.022 3.008 ± 0.038 1.040 ± 0.022 0.343 ± 0.013
200 0.796 ± 0.021 2.809 ± 0.039 1.357 ± 0.027 0.410 ± 0.015
400 0.551 ± 0.017 2.113 ± 0.034 1.270 ± 0.026 0.360 ± 0.014
600 0.439 ± 0.015 1.773 ± 0.031 1.142 ± 0.025 0.308 ± 0.013
800 0.348 ± 0.014 1.435 ± 0.028 0.972 ± 0.023 0.243 ± 0.011
1000 0.314 ± 0.013 1.244 ± 0.026 0.829 ± 0.021 0.231 ± 0.011
1200 0.257 ± 0.012 1.088 ± 0.024 0.857 ± 0.021 0.196 ± 0.010
10000 0.060 ± 0.008 0.293 ± 0.018 0.100 ± 0.010 0.028 ± 0.005

Λ = 400TeV
10 0.420 ± 0.010 2.025 ± 0.022 0.546 ± 0.011 0.107 ± 0.005



158

50 0.460 ± 0.013 1.824 ± 0.026 0.381 ± 0.012 0.094 ± 0.006
100 0.379 ± 0.009 1.485 ± 0.018 0.510 ± 0.011 0.137 ± 0.005
200 0.292 ± 0.012 1.325 ± 0.025 0.658 ± 0.017 0.184 ± 0.009
400 0.157 ± 0.019 1.000 ± 0.047 0.617 ± 0.037 0.140 ± 0.018
600 0.148 ± 0.006 0.820 ± 0.014 0.607 ± 0.012 0.142 ± 0.006
800 0.132 ± 0.008 0.725 ± 0.018 0.528 ± 0.016 0.093 ± 0.007
1000 0.115 ± 0.007 0.614 ± 0.017 0.451 ± 0.014 0.088 ± 0.006
1200 0.097 ± 0.005 0.545 ± 0.011 0.388 ± 0.009 0.070 ± 0.004
10000 0.030 ± 0.003 0.128 ± 0.005 0.057 ± 0.004 0.011 ± 0.002

Table 7.21: Predicted signal yields in bins A, B, C, and D using the event selection
for the diphoton category in 2018.

2g (cm) Yield in bin A Yield in bin B Yield in bin C Yield in bin D
Λ = 100TeV

10 6017 ± 63 9738 ± 81 533.31 ± 18.43 407.63 ± 16.11
50 5806 ± 64 7913 ± 75 89.355 ± 7.801 107.51 ± 8.55
100 3753 ± 73 5367 ± 88 179.31 ± 15.86 177.61 ± 15.79
200 1866 ± 49 3036 ± 63 170.36 ± 14.78 138.54 ± 13.33
400 860.93 ± 23.53 1754 ± 33 139.24 ± 9.43 82.779 ± 7.275
600 563.01 ± 19.10 1362 ± 29 81.875 ± 7.272 63.470 ± 6.402
800 435.60 ± 16.73 975.57 ± 25.09 88.341 ± 7.525 44.351 ± 5.331
1000 345.11 ± 15.05 900.77 ± 24.37 78.377 ± 7.166 50.011 ± 5.724
1200 330.97 ± 20.51 650.30 ± 28.78 49.815 ± 7.949 24.696 ± 5.596
10000 63.384 ± 9.209 135.97 ± 13.49 5.586 ± 2.734 4.199 ± 2.370

Λ = 150TeV
10 453.56 ± 7.94 1234 ± 13 97.586 ± 3.639 40.142 ± 2.329
50 447.38 ± 6.47 990.04 ± 9.82 32.041 ± 1.708 17.369 ± 1.257
100 300.20 ± 4.66 669.49 ± 7.05 47.053 ± 1.828 25.718 ± 1.350
200 154.65 ± 3.24 402.05 ± 5.28 54.074 ± 1.912 25.175 ± 1.303
400 71.950 ± 3.141 221.85 ± 5.54 32.022 ± 2.092 14.462 ± 1.405
600 42.904 ± 2.393 155.11 ± 4.57 24.525 ± 1.808 9.463 ± 1.123
800 35.211 ± 1.543 126.83 ± 2.93 21.206 ± 1.197 7.817 ± 0.726
1000 28.936 ± 1.398 107.186 ± 2.699 15.445 ± 1.021 6.320 ± 0.653
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1200 22.943 ± 1.759 86.923 ± 3.431 14.338 ± 1.390 4.525 ± 0.780
10000 4.539 ± 0.565 20.760 ± 1.209 1.866 ± 0.362 0.864 ± 0.246

Λ = 200TeV
10 83.145 ± 1.482 257.401 ± 2.691 28.410 ± 0.858 8.911 ± 0.479
50 75.188 ± 0.968 202.014 ± 1.627 10.491 ± 0.357 4.958 ± 0.245
100 52.322 ± 1.291 129.922 ± 2.066 15.070 ± 0.688 8.202 ± 0.507
200 30.510 ± 0.903 82.916 ± 1.503 14.681 ± 0.624 6.937 ± 0.428
400 14.689 ± 0.440 45.184 ± 0.777 10.797 ± 0.377 4.530 ± 0.244
600 8.317 ± 0.468 31.601 ± 0.916 8.064 ± 0.461 3.147 ± 0.287
800 5.592 ± 0.272 24.254 ± 0.568 5.911 ± 0.279 1.880 ± 0.157
1000 4.552 ± 0.350 18.727 ± 0.712 4.721 ± 0.356 1.624 ± 0.209
1200 3.555 ± 0.240 17.003 ± 0.526 4.037 ± 0.256 1.114 ± 0.134
10000 0.585 ± 0.128 3.131 ± 0.296 0.557 ± 0.125 0.132 ± 0.061

Λ = 250TeV
10 22.950 ± 0.307 85.877 ± 0.618 12.800 ± 0.228 3.287 ± 0.115
50 21.854 ± 0.278 67.676 ± 0.505 5.581 ± 0.139 2.032 ± 0.083
100 15.116 ± 0.224 43.739 ± 0.390 7.324 ± 0.155 3.086 ± 0.101
200 9.311 ± 0.187 27.468 ± 0.326 7.544 ± 0.168 3.017 ± 0.106
400 3.898 ± 0.121 13.390 ± 0.225 4.565 ± 0.131 1.876 ± 0.084
600 2.397 ± 0.095 8.997 ± 0.184 3.442 ± 0.113 1.018 ± 0.062
800 1.606 ± 0.109 7.435 ± 0.236 2.748 ± 0.143 0.859 ± 0.080
1000 1.293 ± 0.069 5.532 ± 0.144 2.018 ± 0.087 0.640 ± 0.049
1200 1.190 ± 0.066 4.888 ± 0.135 1.692 ± 0.079 0.545 ± 0.045
10000 0.108 ± 0.020 0.977 ± 0.060 0.261 ± 0.031 0.027 ± 0.010

Λ = 300TeV
10 7.810 ± 0.145 38.254 ± 0.339 6.139 ± 0.128 1.192 ± 0.056
50 7.465 ± 0.095 30.202 ± 0.199 3.258 ± 0.062 0.819 ± 0.031
100 5.274 ± 0.093 19.244 ± 0.182 4.554 ± 0.086 1.368 ± 0.047
200 3.454 ± 0.068 12.184 ± 0.130 4.171 ± 0.075 1.272 ± 0.041
400 1.527 ± 0.045 5.858 ± 0.089 2.637 ± 0.059 0.667 ± 0.030
600 0.947 ± 0.036 3.798 ± 0.072 1.934 ± 0.051 0.531 ± 0.027
800 0.673 ± 0.030 3.189 ± 0.065 1.522 ± 0.045 0.233 ± 0.017
1000 0.537 ± 0.038 2.406 ± 0.080 1.269 ± 0.058 0.262 ± 0.026
1200 0.385 ± 0.023 2.209 ± 0.056 0.920 ± 0.036 0.235 ± 0.018
10000 0.064 ± 0.013 0.415 ± 0.033 0.123 ± 0.018 0.018 ± 0.007
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Λ = 300TeV
10 4.571 ± 0.050 16.435 ± 0.101 2.932 ± 0.040 0.877 ± 0.022
50 4.727 ± 0.049 13.040 ± 0.084 1.617 ± 0.028 0.548 ± 0.016
100 3.285 ± 0.040 8.597 ± 0.067 2.129 ± 0.032 0.852 ± 0.020
200 1.962 ± 0.032 4.933 ± 0.052 1.912 ± 0.032 0.852 ± 0.021
400 0.855 ± 0.021 2.402 ± 0.036 1.253 ± 0.026 0.462 ± 0.016
600 0.556 ± 0.017 1.626 ± 0.030 0.910 ± 0.022 0.318 ± 0.013
800 0.400 ± 0.015 1.220 ± 0.026 0.687 ± 0.019 0.253 ± 0.012
1000 0.286 ± 0.012 0.941 ± 0.022 0.536 ± 0.017 0.205 ± 0.010
1200 0.221 ± 0.011 0.894 ± 0.022 0.492 ± 0.016 0.154 ± 0.009
10000 0.031 ± 0.006 0.152 ± 0.013 0.060 ± 0.008 0.014 ± 0.004

Λ = 400TeV
10 1.824 ± 0.021 8.127 ± 0.047 1.578 ± 0.019 0.343 ± 0.009
50 1.936 ± 0.027 7.103 ± 0.054 0.962 ± 0.019 0.245 ± 0.009
100 1.362 ± 0.017 4.454 ± 0.033 1.291 ± 0.017 0.376 ± 0.009
200 0.780 ± 0.019 2.515 ± 0.035 1.043 ± 0.022 0.338 ± 0.013
400 0.370 ± 0.029 1.190 ± 0.052 0.714 ± 0.040 0.217 ± 0.022
600 0.230 ± 0.007 0.887 ± 0.014 0.505 ± 0.011 0.135 ± 0.006
800 0.156 ± 0.008 0.623 ± 0.017 0.382 ± 0.013 0.103 ± 0.007
1000 0.125 ± 0.008 0.527 ± 0.016 0.312 ± 0.012 0.068 ± 0.006
1200 0.093 ± 0.005 0.413 ± 0.010 0.264 ± 0.008 0.066 ± 0.004
10000 0.013 ± 0.002 0.083 ± 0.004 0.036 ± 0.003 0.007 ± 0.001

Table 7.22: Predicted background yields in bins B, C, and D from observed data in
bin A using the shape templates described in Sec. 7.6 for 2016.

Bin boundary Yield in bin A Yield in bin B Yield in bin C Yield in bin D
0.0 ns, 250 GeV 26020 ± 161 72.6 ± 5.8 85.380 ± 6.905 30620.3 ± 324.2
1.5 ns, 100 GeV 54626 ± 234 2058.1 ± 47.3 0.603 ± 0.151 16.0 ± 4.0
1.5 ns, 150 GeV 55943 ± 237 745.7 ± 27.8 0.218 ± 0.055 16.4 ± 4.1

7.9 Summary
We present a search for long-lived particles that decay to a photon and a weakly
interacting particle, where the expected exclusion limits are set on the long-lived



161

Table 7.23: Predicted background yields in bins B, C, and D from observed data in
bin A using the shape templates described in Sec. 7.6 for 2017.

Bin boundary Yield in bin A Yield in bin B Yield in bin C Yield in bin D
Single-photon category

0.5 ns, 300 GeV 373442 ± 611 233.4 ± 14.5 28.005 ± 1.747 44816.3 ± 240.6
1.5 ns, 200 GeV 417372 ± 646 1019.9 ± 32.2 0.505 ± 0.039 206.9 ± 14.7
1.5 ns, 300 GeV 418132 ± 647 261.3 ± 16.2 0.129 ± 0.012 207.2 ± 14.7

Diphoton category
0.5 ns, 300 GeV 33575 ± 183 72.3 ± 8.1 8.413 ± 0.954 3905.8 ± 71.5
1.5 ns, 200 GeV 37284 ± 193 237.9 ± 15.6 0.163 ± 0.035 25.5 ± 5.2
1.5 ns, 300 GeV 37440 ± 193 80.6 ± 9.0 0.055 ± 0.013 25.6 ± 5.2

Table 7.24: Predicted background yields in bins B, C, and D from observed data in
bin A using the shape templates described in Sec. 7.6 for 2018.

Bin boundary Yield in bin A Yield in bin B Yield in bin C Yield in bin D
Single-photon category (eras ABC)

0.5 ns, 300 GeV 263589 ± 513 157.3 ± 12.5 1.760 ± 0.144 2950.0 ± 56.2
1.5 ns, 200 GeV 265975 ± 516 669.1 ± 25.9 0.139 ± 0.020 55.4 ± 7.6
1.5 ns, 300 GeV 266485 ± 516 159.0 ± 12.6 0.033 ± 0.005 55.5 ± 7.6

Single-photon category (era D)
0.5 ns, 300 GeV 285132 ± 534 222.2 ± 14.9 0.866 ± 0.064 1110.7 ± 34.2
1.5 ns, 200 GeV 285495 ± 534 923.1 ± 30.5 0.172 ± 0.025 53.2 ± 7.5
1.5 ns, 300 GeV 286195 ± 535 223.0 ± 14.9 0.042 ± 0.006 53.3 ± 7.5

Diphoton category (eras ABC)
0.5 ns, 300 GeV 24167 ± 155 44.5 ± 6.6 0.497 ± 0.081 269.7 ± 17.2
1.5 ns, 200 GeV 24312 ± 156 166.0 ± 13.0 0.029 ± 0.015 4.3 ± 2.1
1.5 ns, 300 GeV 24433 ± 156 45.0 ± 6.7 0.008 ± 0.004 4.3 ± 2.1

Diphoton category (era D)
0.5 ns, 300 GeV 27163 ± 165 58.8 ± 7.7 0.220 ± 0.037 101.8 ± 10.5
1.5 ns, 200 GeV 27089 ± 165 234.0 ± 15.4 0.019 ± 0.013 2.2 ± 1.5
1.5 ns, 300 GeV 27264 ± 165 59.0 ± 7.7 0.005 ± 0.003 2.2 ± 1.5

particles as functions of their masses and proper decay lengths. The search is based
on proton-proton collisions at a center-of-mass energy of 13 TeV collected by the
CMS experiment during Run 2 over the span of three years, from 2016 to 2018,
corresponding to a total integrated luminosity of 136.3 fb−1.

This search relies on the unique kinematic features of the photons decayed from
the long-lived particles, where the photons interacts with ECAL from a non-normal
impact angles and with delayed times, resulting in different signatures in the ECAL
clusters compared to those of prompt photons. These signatures are exploited with
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Figure 7.20: The expected 95% CL upper limit on the product of GMSB SPS8
neutralino production cross section and its branching ratio as a function of the
neutralino mass for 2g between 10 cm and 200 cm, obtained from the full Run 2
data.

a dedicated deep-neural-network (DNN) based identifier to separate signal photons
from the background. This DNN offers a significant improvement over the cut-based
identification technique used in previous searches in CMS.

The results are interpreted in the context of supersymmetry with gauge-mediated
supersymmetry breaking, using the SPS8 benchmark model. Expected exclusion
limits of the neutralinos are set at 95% confidence level in terms of the neutralino
masses, which is linearly proportional to the supersymmetry breaking scale, and
the neutralino proper decay lengths. The previous best limits are extended by
approximately 5 times in the neutralino proper decay length and by over 100 GeV
in the neutralino mass.
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Figure 7.21: The expected 95% CL exclusion limit on the product of GMSB SPS8
neutralino production cross section and its branching ratio as a function of the
neutralino mass for 2g above 200 cm, obtained from the full Run 2 data.
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Figure 7.22: The expected 95% CL exclusion contours for the GMSB SPS8 model
as functions of the SUSY breaking scale Λ and the neutralino’s lifetime 2g from
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from this search compared to previously published analyses fromATLAS and CMS.
Bottom: The exclusion boundaries along with a color map of the expected 95% CL
upper limit on the signal cross section obtained from full Run 2 data.
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C h a p t e r 8

TOWARD MODEL-INDEPENDENT NEW PHYSICS SEARCHES
WITH UNSUPERVISED LEARNING

Using variational autoencoders trained on known physics processes, we develop a
one-sided threshold test to isolate previously unseen processes as outlier events.
Since the autoencoder training does not depend on any specific new physics signa-
ture, the proposed procedure does not make specific assumptions on the nature of
new physics. An event selection based on this algorithm would be complementary
to classic LHC searches, typically based on model-dependent hypothesis testing.
Such an algorithm would deliver a list of anomalous events, that the experimental
collaborations could further scrutinize and even release as a catalog, similarly to
what is typically done in other scientific domains. Event topologies repeating in this
dataset could inspire new-physics model building and new experimental searches.
Running in the trigger system of the LHC experiments, such an application could
identify anomalous events that would be otherwise lost, extending the scientific
reach of the LHC.

8.1 Introduction
One of the main motivations behind the construction of the CERN Large Hadron
Collider (LHC) is the exploration of the high-energy frontier in search for new
physics phenomena. New physics could answer some of the standing fundamental
questions in particle physics, e.g., the nature of dark matter or the origin of elec-
troweak symmetry breaking. In LHC experiments, searches for physics beyond the
Standard Model (BSM) are typically carried on as fully-supervised data analyses:
assuming a new physics scenario of some kind, a search is structured as a hypothesis
test, based on a profiled-likelihood ratio [140]. These searches are said to be model
dependent, since they depend on considering a specific new physics model.

Assuming that one is testing the right model, this approach is very effective in
discovering a signal, as demonstrated by the discovery of the Standard Model (SM)
Higgs boson [242, 243] at the LHC. On the other hand, given the (so far) negative
outcome of many BSM searches at particle-physics experiments, it is possible that
a future BSM model, if any, is not among those typically tested. The problem
is more profound if analyzed in the context of the LHC big-data problem: at the
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LHC, 40 million proton-beam collisions are produced every second, but only ∼1000
collision events/sec can be stored by the ATLAS and CMS experiments, due to
limited bandwidth, processing, and storage resources. It is possible to imagine
BSM scenarios that would escape detection, simply because the corresponding new
physics events would be rejected by a typical set of online selection algorithms.

Establishing alternative search methodologies with reduced model dependence is
an important aspect of future LHC runs. Traditionally, this issue was addressed
with so-called model-independent searches, performed at the Tevatron [244, 245],
at HERA [246], and at the LHC [247, 248], as discussed in Section 8.2.

In this paper, we propose to address this need by deploying an unsupervised al-
gorithm in the online selection system (trigger) of the LHC experiments.1 This
algorithm would be trained on known SM processes and could be able to identify
BSM events as anomalies. The selected events could be stored in a special stream,
scrutinized by experts (e.g., to exclude the occurrence of detector malfunctions that
could explain the anomalies), and even released outside the experimental collabora-
tions, in the form of an open-access catalog. The final goal of this application is to
identify anomalous event topologies and inspire future supervised searches on data
collected afterwards.

As an example, we consider the case of a typical single-lepton data stream, selected
by a hardware-based Level-1 (L1) trigger system. In normal conditions, the L1
trigger is the first of a two-steps selection stage. After a coarse (and often local)
reconstruction and loose selection at L1, events are fully reconstructed in the High
Lever Trigger (HLT), where a much tighter selection is applied. The selection is
usually done having inmind specific signal topologies, eg., specific BSMmodels. In
this study, we imagine to replace this model-dependent selection with a variational
autoencoder (VAE) [251, 252] looking for anomalous events in the incoming single-
lepton stream. The VAE is trained to compress the input event representation into a
lower-dimension latent space and then decompress it, returning the shape parameters
describing the probability density function (pdf) of each input quantity given a point
in the compressed space. In addition, a VAE allows a stochastic modeling of the
latent space, a feature which is missing in a simple AE architecture. The highlighted
procedure is not specific of the considered single-lepton stream and could be easily
extended to other data streams.

1Adescription of the ATLAS and CMS trigger systems can be found in Ref. [249] and Ref. [250],
respectively. In this study, we take the data-taking strategy of these two experiments as a reference.
On the other hand, the proposed strategy could be adapted to other use cases.
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The distribution of the VAE’s reconstruction loss on a validation sample is used to
define a threshold, corresponding to a desired acceptance rate for SM events. All
the events with loss larger than the threshold are considered as potential anomalies
and could be stored in a low-rate anomalous-event data stream. In this work, we set
the threshold such that ∼ 1000 SM events would be collected every month under
typical LHC operation conditions. In particular, we took as a reference 8 months
of data taking per year, with an integrated luminosity of ∼ 40 fb−1. Assuming an
LHC duty cycle of 2/3, this corresponds to an average instantaneous luminosity of
∼ 2.9 × 1033 cm−2 s−1.

We then evaluate the BSMproduction cross section that would correspond to a signal
excess of 100 BSM events selected per month, as well as the one that would give a
signal yield ∼ 1/3 of the SM yield. For this, we consider a set of low-mass BSM
resonances, decaying to one or more leptons and light enough to be challenging for
the currently employed LHC trigger algorithms.

This paper is structured as follows: we discuss related works in Section 8.2. Sec-
tion 8.3 gives a brief description of the dataset used. Section 8.4 describes the VAE
model used in the study, as well as a set of fully-supervised classifiers used for
performance comparison. Results are discussed in Section 8.5. In Section 8.6 we
discuss how such a procedure could be deployed in a typical LHC experiment while
relying exclusively on data. Conclusions are given in Section 8.9.

8.2 Related work
Model-independent searches for new physics have been performed at the Teva-
tron [244, 245], HERA [246], and the LHC [247, 248]. These searches are based
on the comparison of a large set of binned distributions to the prediction from
Monte Carlo (MC) simulations, in search for bins exhibiting a deviation larger than
some predefined threshold. While the effectiveness of this strategy in establishing a
discovery has been a matter of discussion, a recent study by the ATLAS collabora-
tion [248] rephrased this model-independent search strategy into a tool to identify
interesting excesses, on which traditional analysis techniques could be performed on
independent datasets (e.g., the data collected after running the model-independent
analysis). This change of scope has the advantage of reducing the trial factor (i.e.,
the so-called look-elsewhere effect [253, 254]), which would otherwise wash out
the significance of an observed excess.
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Our strategy is similar to what is proposed in Ref. [248], with two substantial
differences: (i) we aim to process also those events that could be discarded by the
online selection, by running the algorithm as part of the trigger process; (ii) we do
so exploiting deep-learning-based anomaly detection techniques.

Applying deep learning at the trigger level has been proposed in Ref. [119]. Recent
works [255–258] have investigated the use of machine-learning techniques to setup
new strategies for BSM searches with minimal or no assumption on the specific
new-physics scenario under investigation. In this work, we use VAEs [251, 252]
based on high-level features as a baseline. Previously, autoencoders have been used
in collider physics for detector monitoring [259, 260] and event generation [261].
Autoencoders have also been explored to define a jet tagger that would identify new
physics events with anomalous jets [262, 263], with a strategy similar to what we
apply to the full event in this work.

Anomaly detection has been a traditional use case for one-class machine learning
methods, such as one-class Support Vector Machine [264] or Isolation Forest [265,
266]. A review of proposedmethods can be found inRef. [267]. Variationalmethods
have been shown to be effective for novelty detection, as for instance is discussed
in Ref. [268]. In particular, VAEs [251] have been proposed as an effective method
for anomaly detection [252].

8.3 Data samples
The dataset used for this study is a refined version of the high-level-feature (HLF)
dataset used in Ref. [119]. Proton-proton collisions are generated using the PYTHIA8
event-generation library [103], fixing the center-of-mass energy to the LHC Run-II
value (13 TeV) and the average number of overlapping collisions per beam crossing
(pileup) to 20. These beam conditions loosely correspond to the LHC operating
conditions in 2016.

Events generated by PYTHIA8 are processed with the DELPHES library [269], to
emulate detector efficiency and resolution effects. We take as a benchmark detec-
tor description the upgraded design of the CMS detector, foreseen for the High-
Luminosity LHC phase [270]. In particular, we use the CMS HL-LHC detector
card distributed with DELPHES. We run the DELPHES particle-flow (PF) algorithm,
which combines the information from different detector components to derive a list
of reconstructed particles, the so-called PF candidates. For each particle, the algo-
rithm returns the measured energy and flight direction. Each particle is associated
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to one of three classes: charged particles, photons, and neutral hadrons. In addition,
lists of reconstructed electrons and muons are given.

Many SM processes would contribute to the considered single-lepton dataset. For
simplicity, we restrict the list of relevant SM processes to the four with the highest
production cross sections, namely:

• Inclusive, production, with, → ℓa (ℓ = 4, `, g).

• Inclusive / production, with / → ℓℓ (ℓ = 4, `, g).

• CC̄ production.

• QCD multĳet production.2

These samples are mixed to provide a SM cocktail dataset, which is then used to
train autoencoder models and to tune the threshold requirement that defines what we
consider an anomaly. The cocktail is built scaling down the high-statistics samples
(CC̄, , , and /) to the lowest-statistics one (QCD, whose generation is the most
computing-expensive), according to their production cross-section values (estimated
at leading order with PYTHIA) and selection efficiencies, shown in Table 8.1.

Events are filtered at generation requiring an electron, muon, or tau lepton with
?) > 22 GeV. Once detector effects are taken into account through the DELPHES
simulation, events are further selected requiring the presence of one reconstructed
lepton (electron or muon) with transverse momentum ?) > 23 GeV and a loose
isolation requirement Iso < 0.45. If more than one reconstructed lepton is present,
the highest ?) one is considered. The isolation for the considered lepton ℓ is
computed as:

Iso =
∑
?≠ℓ ?

?

)

?
ℓ
)

, (8.1)

where the index ? runs over all the photons, charged particles, and neutral hadrons

within a cone of size Δ' =

√
Δ[
2 + Δq

2
< 0.3 from ℓ.3

2To speed up the generation process for QCD events, we require
√
B̂ > 10 GeV, the fraction

of QCD events with
√
B̂ < 10 GeV and producing a lepton within acceptance being negligible but

computationally expensive.
3As common for collider physics, we use a Cartesian coordinate system with the I axis oriented

along the beam axis, the G axis on the horizontal plane, and the H axis oriented upward. The G and H
axes define the transverse plane, while the I axis identifies the longitudinal direction. The azimuth
angle q is computed from the G axis. The polar angle \ is used to compute the pseudorapidity
[ = − log(tan(\/2)). We fix units such that 2 = ℏ = 1.
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Table 8.1: Acceptance and L1 trigger (i.e. ?ℓ) and Iso requirement) efficiency for
the four studied SM processes and corresponding values for the BSM benchmark
models. For SM processes, we quote the total cross section before the trigger, the
expected number of events per month and the fraction in the SM cocktail. For BSM
models, we compute the production cross section corresponding to an average of
100 BSM events per month passing the acceptance and L1 trigger requirements.
The monthly event yield is computed assuming an average luminosity per month of
5 fb−1, corresponding to the running conditions discussed in Section 8.1.

Standard Model processes
Process Acceptance L1 trigger Cross Event Events

efficiency section [nb] fraction /month
, 55.6% 68% 58 59.2% 110M
QCD 0.08% 9.6% 1.6 · 105 33.8% 63M
/ 16% 77% 20 6.7% 12M
CC̄ 37% 49% 0.7 0.3% 0.6M

BSM benchmark processes
Process Acceptance L1 trigger Total Cross-section

efficiency efficiency 100 BSM events/month
�→ 4ℓ 5% 98% 5% 0.44 pb
!& → 1g 19% 62% 12% 0.17 pb
ℎ
0 → gg 9% 70% 6% 0.34 pb
ℎ
± → ga 18% 69% 12% 0.16 pb

The 21 considered HLF quantities are:

• The absolute value of the isolated-lepton transverse momentum ?
ℓ
) .

• The three isolation quantities (ChPFIso, NeuPFIso, GammaPFIso) for the
isolated lepton, computed with respect to charged particles, neutral hadrons
and photons, respectively.

• The lepton charge.

• A Boolean flag (isEle) set to 1 when the trigger lepton is an electron, 0
otherwise.

• () , i.e. the scalar sum of the ?) of all the jets, leptons, and photons in the event
with ?) > 30 GeV and |[ | < 2.6. Jets are clustered from the reconstructed
PF candidates, using the FASTJET [194] implementation of the anti-:) jet
algorithm [57], with a jet-size parameter R=0.4.
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• The number of jets entering the () sum (#�).

• The invariant mass of the set of jets entering the () sum ("�).

• The number of these jets being identified as originating from a 1 quark (#1).

• The missing transverse momentum, decomposed into its parallel (?miss),‖ ) and
orthogonal (?miss),⊥ ) components with respect to the lepton ℓ direction. The
missing transverse momentum is defined as the negative sum of the PF-
candidate ?) vectors:

®? miss) = −
∑
@

®? @

)
. (8.2)

• The transversemass,") , of the isolated lepton ℓ and the ®?
miss
) system, defined

as:
") =

√
2?ℓ)�

miss
) (1 − cosΔq) , (8.3)

with Δq the azimuth separation between the ®? ℓ
) and ®? miss) vectors, and �miss)

the magnitude of ®? miss) .

• The number of selected muons (#`).

• The invariant mass of this set of muons ("`).

• The absolute value of the total transversemomentum of thesemuons (?`
),)$)

).

• The number of selected electrons (#4).

• The invariant mass of this set of electrons ("4).

• The absolute value of the total transverse momentum of these electrons
(?4),)$) ).

• The number of reconstructed charged hadrons.

• The number of reconstructed neutral hadrons.

This list of HLF quantities is not defined having in mind a specific BSM scenario.
Instead, it is conceived to include relevant information to discriminate the various
SM processes populating the single-lepton data stream. On the other hand, it is
generic enough to allow (at least in principle) the identification of a large set of new
physics scenarios.

In addition to the four SM processes listed above, we consider the following BSM
models to benchmark anomaly-detection capabilities:
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• A leptoquark !& with mass 80 GeV, decaying to a 1 quark and a g lepton.

• A neutral scalar boson with mass 50 GeV, decaying to two off-shell / bosons,
each forced to decay to two leptons: �→ 4ℓ.

• A scalar boson with mass 60 GeV, decaying to two tau leptons: ℎ0 → gg.

• A charged scalar boson with mass 60 GeV, decaying to a tau lepton and a
neutrino: ℎ± → ga.

For each BSM scenario, we consider any direct production mechanism implemented
in PYTHIA8, including associate jet production. We list in Table 8.1 the leading-
order production cross section and selection efficiency for each model.

Figures 8.1 and 8.2 show the distribution of HLF quantities for the SM processes
and the BSM benchmark models, respectively.

8.4 Model description
We train VAEs on the SM cocktail sample described in Section 8.3, taking as input
the 21 HLF quantities listed there. The use of HLF quantities to represent events
limits the model independence of the anomaly detection procedure. While the list
of features is chosen to represent the main physics aspects of the considered SM
processes and is in no way tailored to specific BSM models, it is true that such a
list might be more suitable for certain models than for others. In this respect, one
cannot guarantee that the anomaly-detection performance observed on a given BSM
model would generalize to any BSM scenario. We will address in a future work
a possible solution to reduce the residual model dependence implied by the input
event representation.

In this section, we present both the best-performing autoencoder model, trained to
encode and decode the SM training sample, and a set of four supervised classifiers,
each trained to distinguish one of the four BSM benchmark models from SM events.
We use the classification performance of these supervised algorithms as an estimate
of the best performance that the VAE could get to.

Autoencoders
Autoencoders are algorithms that compress a given set of inputs variables in a latent
space (encoding) and then, starting from the latent space, reconstruct the HLF input
values (decoding). The loss distribution of an AE is used in the context of anomaly
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Figure 8.1: Distribution of the HLF quantities for the four considered SM processes.

detection to isolate potential anomalies. Since the compression capability learned
on a given sample does not typically generalize to other samples, the tails of the
loss distribution could be enriched by new kinds of events, different than those used
to train the model. In the specific case considered in this study, the tail of the loss
distribution for an AE trained on SM data might be enriched with BSM events.
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Figure 8.2: Distribution of the HLF quantities for the four considered BSM bench-
mark models.

In this work, we focus on VAEs [251]. For each event, a plain AE predicts an
encoded point in the latent space and a decoded point in the original space. In other
words, AEs are point-estimate algorithms. VAEs, instead, associate to each input
event an estimated probability distributions in the latent space and in the original
space. Doing so, VAEs provide both a best-point estimate and an estimate of the
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associated statistical noise. Besides this conceptual difference, VAEs have been
shown to provide competitive performances for novelty [268] and anomaly [252]
detection.

We consider the VAE architecture shown in Fig. 8.3, characterized by a four-
dimensional latent space. Each latent dimension is associated to a Gaussian pdf
and its two degrees of freedom (mean `I and RMS fI). The input layer consists of
21 nodes, corresponding to the 21 HLF quantities described in Section 8.3. This
layer is connected to the latent space through a stack of two fully connected layers,
each consisting of 50 nodes with ReLU activation functions. Two four-node layers
are fully connected to the second 50-node layer. Linear activation functions are
used for the first of these four-node layers, interpreted as the set of four `I of the
four-dimension Gaussian pdf ?(I). The nodes of the second layer are activated by
the functions:

p-ISRLu(G) = 1 + 5 · 10−3 + Θ(G)G + Θ(−G) G√
1 + G2

. (8.4)

This activation allows to improve the training stability, being strictly positive defined,
non linear, and with no exponentially growing term (which might have created
instabilities in the early epochs of the training). The four nodes of this layer are
interpreted as the fI parameters of ?(I). After several trials, the dimension of the
latent space has been set to 4 in order to keep a good training stability without
impacting the VAE performances. The decoding step originates from a point in the
latent space, sampled according to the predicted pdf (green oval in Fig. 8.3). The
coordinates of this point in the latent space are fed into a sequence of two hidden
dense layers, each consisting of 50 neurons with ReLU activation functions. The
last of these layers is connected to three dense layers of 21, 17, and 10 neurons,
activated by linear, p-ISRLu and clipped-tanh functions, respectively. The clipped-
tanh function if written as:

�tanh(G) =
1
2
(1 + 0.999 · tanh G) . (8.5)

Given the latent-space representation, the 48 output nodes represent the parameters
of the pdfs describing the input HLF probability, i.e., the U parameters of Eq. 8.8.

The total VAE loss function LossTot is a weighted sum of two pieces [271]: a
term related to the reconstruction likelihood (Lossreco) and the Kullback-Leibler
divergence (�KL) between the latent space pdf and the prior:

LossTot = Lossreco + V�KL , (8.6)
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Figure 8.3: Schematic representation of the VAE architecture presented in the text.
The size of each layer is indicated by the value within brackets. The blue rectangle
- represents the input layer, which is connected to a stack of two consecutive fully
connected layers (black boxes). The last of the two black box is connected to two
layers with four nodes each (red boxes), representing the `I and fI parameters of
the encoder pdf ?(I |G). The green oval represents the sampling operator, which
returns a set of values for the 4-dimensional latent variables I. These values are
fed into the decoder, consisting of two consecutive hidden layers of 50 nodes each
(black boxes). The last of the decoder hidden layer is connected to the three output
layers, whose nodes correspond to the parameters of the predicted distribution in
the initial 21-dimension space. The pink ovals represent the computation of the
two parts of the loss function: the KL loss and the reconstruction loss (see text).
The computation of the KL requires 8 additional learnable parameters (`? and f?,
represented by the orange boxes on the top-left part of the figure), corresponding to
the means and RMS of the four-dimensional Gaussian prior ?(I). The total loss in
computed as described by the formula in the bottom-left black box (see Eq. (8.6)).
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where V is a free parameter. We fix V = 0.3, for which we obtained good reconstruc-
tion performances.4 The prior ?(I) chosen for the latent space is a four-dimension
Gaussian with a diagonal covariance matrix. The means (`%) and the diagonal
terms of the covariance matrix (f%) are free parameters of the algorithm and are
optimized during the back-propagation. The Kullback-Leibler divergence between
two Gaussian distributions has an analytic form. Hence, for each batch, �KL can be
expressed as:

�KL =
1
:

∑
8

�KL

(
# (`8I, f

8
I) | | # (`%, f%)

)
=
1
2:

∑
8, 9

(
f
9

%
f
8, 9
I

) 2
+

(
`
9

%
− `8, 9I
f
9

%

) 2
+ ln

f
9

%

f
8, 9
I

− 1 ,
(8.7)

where : is the batch size, 8 runs over the samples and 9 over the latent space
dimensions. Similarly, Lossreco is the average negative-log-likelihood of the inputs
given the predicted U values:

Lossreco = −1
:

∑
8

ln
[
%(G | U1, U2, U3)

]
= −1

:

∑
8, 9

ln
[
5 9 (G8, 9 | U

8, 9

1 , U
8, 9

2 , U
8, 9

3 )
]
.

(8.8)

In the equation, 9 runs over the input space dimensions, 5 9 is the functional form
chose to describe the pdf of the 9-th input variable and U8, 9< are the parameter of the
function. Different functional forms have been chosen for 5 9 , to properly describe
different classes of HLF distributions:

• Clipped Log-normal + % function: used to describe () , "� , ?
`

)
, "`, ?

4
) ,

"4, ?
ℓ
) , ChPFIso, NeuPFIso and GammaPFIso:

%(G | U1, U2, U3) =

U3X(G) +

1−U3
GU2

√
2c
exp

(
− (ln G−U1)

2

2U22

)
5 >A G ≥ 10−4

0 5 >A G < 10−4
.

(8.9)

• Gaussian: used for ?miss),‖ and ?
miss
),⊥ :

%(G | U1, U2) =
1

U2
√
2c
exp

(
− (G − U1)

2

2U22

)
. (8.10)

4Following Ref. [271], we tried to increase the value of V up to 4 without observing a substantial
difference in performance.
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• Truncated Gaussian: a Gaussian function truncated for negative values and
normalized to unit area for - > 0. Used to model ") :

%(G | U1, U2) = Θ(G) ·
1 + 0.5 · (1 + erf −U1

U2
√
2
)

U2
√
2c

exp

(
− (G − U1)

2

2U22

)
. (8.11)

• Discrete truncated Gaussian: like the truncated Gaussian, but normalized to

be evaluated on integers (i.e.
∞∑
==0

%(=) = 1). This function is used to describe

#`, #4, #1 and #� . It is written as:

%(= | U1, U2) = Θ(G)
[
erf

(
= + 0.5 − U1

U2
√
2

)
− erf

(
= − 0.5 − U1

U2
√
2

) ]
N ,

(8.12)
where the normalization factor N is set to:

N = 1 + 1
2

(
1 + erf

(
−0.5 − U1
U2

√
2

) )
. (8.13)

• Binomial: used for (isEle) and lepton charge:

%(= | ?) = X=,<? + X=,; (1 − ?) , (8.14)

where < and ; are the two possible values of the variable (0 or 1 for (isEle)
and -1 or 1 for lepton charge) and ? = �tanh(U1).

• Poisson: used for charged-particle and neutral-hadron multiplicities:

%(= | `) = `
=
4
−`

Γ(= + 1) , (8.15)

where ` = p-ISRLu(U1).

These custom functions provide an improved performance with respect to the stan-
dard choice of an MSE loss. When using the MSE loss, one is implicitly writing
the likelihood of the input quantities as a product of Gaussian functions with equal
variance. This choice is clearly a poor description of the input distributions at hand
in this application and it results in a poor representation of the cores and the tails of
the input distributions. Instead, the use of these tailored functions allows to correctly
describe the distribution cores and to improve the description of the tails.

We point out that the final performance depends on the choice of the p(x|z) func-
tional form (i.e., on the modeled dependence of the observed features on the latent
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Figure 8.4: Training history for VAE. Total loss, reconstruction negative-log-
likelihood (Lossreoc) and KL divergence (� !) are shown separately for training
and validation set though all the training epochs.

variables) and the p(z) prior function. The former was tuned looking at the distribu-
tions for SM events. The latter is arbitrary. We explored techniques to optimize the
choice of p(z), learning it from the data [272]. In this case, no practical advantage
in terms of anomaly detection was observed. An improved choice of p(x|z) and
the possibility of learning p(z) during the train could potentially further boost the
performances of this algorithm and will be the subject of future studies with real
LHC collision data.

The model shown in Fig. 8.3 is implemented in Keras+TensorFlow [120, 121],
trained with the Adam optimizer [212] on a SM dataset of 3.45M events, equivalent
to an integrated luminosity of ∼ 100 pb−1. The SM validation dataset is made of
3.45M of statistically independent examples. Such a sample would be collected in
about ten hours of continuous run, under the assumptions made in this study (see
Section 8.1). In training, we fix the batch size to 1000. We use early stopping with
patience set to 20 and Xmin = 0.005, and we progressively reduce the learning rate
on plateau, with patience set to 8 and Xmin = 0.01.

The model’s training history is shown in Fig. 8.4. Figure 8.5 shows the comparison
of the input and output distributions for the 21 HLF quantities in the validation
dataset. A general good agreement is observed on the bulk of the distributions, even
if some of the distributions are not well described on the tails. These discrepan-
cies do not have a sizable impact on the anomaly-detection strategy, as shown in
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Section. 8.5. Nevertheless, alternative architectures were tested, in order to reduce
these discrepancies. For instance, we increased or decreased the dimensionality of
the latent space, we changed the value of V in Eq. 8.6, we changed the number of
neurons in the hidden layers, tried the RMSprop optimizer, and used plain Gaussian
functions to describe the 21 input features. Some of these choices improved the
encoding-decoding capability of the VAE, with up to a 10% decrease of the loss
function at the end of the training. On the other hand, none of these alternative
models provided a sizable improvement in the anomaly-detection performance. For
simplicity, we decided to limit our study to the architecture in Fig. 8.3 and dropped
these alternative models.

Supervised classifiers
For each of the four BSM benchmark models, we train a fully-supervised classifier,
based on a Boosted Decision Tree (BDT). Each BDT receives as input the same
21 features used by the VAE and is trained on a labeled dataset consisting of the
SM cocktail (the background) and one of the four BSM benchmark models (the
signal). The implementation is done through the Gradient Boosted Classifier of
the scikit-learn library [273]. The algorithm was tuned with up to 150 estimators,
minimum samples per leaf and maximum depth equal to 3, a learning rate of 0.1,
and a tolerance of 10−4 on the validation loss function (choose to be the default
deviance). Each BDT, tailored to a specific BSM model, is trained on 3.45M SM
events and about 0.5M BSM events, consistently up-weighted in order to match the
size of the SM sample during the training.

Table 8.2: Classification performance of the four BDT classifiers described in the
text, each trained on one of the four BSM benchmark models. The two set of values
correspond to the area under ROC curve (AUC), and to the true positive rate (TPR)
for a SM false positive rate n(" = 5.4 · 10−6, i.e., to ∼ 1000 SM events accepted
every month.

Process AUC TPR [%]
�→ 4ℓ 0.98 5.4
!& → 1g 0.94 0.2
ℎ
0 → gg 0.90 0.1
ℎ
± → ga 0.97 0.3

We show in Table 8.2 and in Figure 8.6 the classification performance of the four
supervised BDTs, which set a qualitative upper limit for VAE’s results. Overall,
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Figure 8.6: ROC curves for the fully-supervised BDT classifiers, optimized to
separate each of the four BSM benchmark models from the SM cocktail dataset.

the four models can be discriminated with good accuracy, with some loss of per-
formance for those models sharing similarities with specific SM processes (e.g.,
ℎ
0 → gg exhibiting single- and double-lepton topology with missing transverse
energy, typical of CC̄ events). In the table, we also quote the true-positive rate (TPR)
for each BSM model corresponding to a working point of SM false positive rate
n(" = 5.4 · 10−6, corresponding to an average of ∼ 1000 SM events accepted every
month.

In addition to BDTs, we experimented with fully-connected deep neural networks
(DNNs) with two hidden layers. Despite trying different architectures, we did not
find a configuration in which the DNN classifiers could outperform the BDTs. This
is due to the fact that, given the limited complexity of the problem at hand, a
simple BDT can extract the maximum discrimination power from the 21 inputs.
The limiting factor preventing to reach larger auc values is not to be found in the
model complexity but in the discriminating power of the 21 input features. Not
being tailored on the benchmark BSM scenarios, these features do not carry all the
needed information for an optimal signal-to-background separation. While certainly
one could obtain a better performance with more tailored classifiers, the purpose
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Figure 8.7: Distribution of the VAE’s loss components, Lossreco (left) and �KL
(right), for the validation dataset. For comparison, the corresponding distribution
for the four benchmark BSMmodels are shown. The vertical line represents a lower
threshold such that 5.4 · 10−6 of the SM events would be retained, equivalent to
∼ 1000 expected SM events per month.

of this exercise was to provide a fair comparison for the VAE. In view of these
considerations, we decided to use the BDTs as reference supervised classifiers.

8.5 Results with VAE
An event is classified as anomalous whenever the associated loss, computed from
the VAE output, is above a given threshold. Since no BSM signal has been observed
by LHC experiments so far, it is reasonable to expect that a new-physics signal, if
any, would be characterized by a low production cross section and/or features very
similar to those of a SM process. In view of this, we decided to use a tight threshold
value, in order to reduce as much as possible any SM contribution.

Figure 8.7 shows the distribution of the Lossreco and �KL loss components for the
validation dataset. In both plots, the vertical line represents a lower threshold such
that a fraction n(" = 5.4 · 10−6 of the SM events would be retained. This threshold
value would result in ∼ 1000 SM events to be selected every month, i.e., a daily rate
of ∼ 33 SM events, as illustrated in Table 8.3. The acceptance rate is calculated
assuming the LHC running conditions listed in Section 8.1. Table 8.3 also reports
the by-process VAE selection efficiency and the relative background composition of
the selected sample.

Figure 8.7 also shows the Lossreco and �KL distributions for the four benchmark
BSM models. We observe that the discrimination power, loosely quantified by the
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integral of these distributions above threshold, is better for Lossreco than �KL and
that the impact of the �KL term on LossTot is negligible. Anomalies are then defined
as events laying on the right tail of the expected Lossreco distribution. Due to limited
statistics in the training sample, the p-value corresponding to the chosen threshold
value could be uncalibrated. This could result in a deviation of the observed rate
from the expected value, an issue that one can address tuning the threshold. On
the other hand, an uncalibrated p-value would also impact the number of collected
BSM events, and the time needed to collect an appreciable amount of these events.

Once the Lossreco selection is applied, the anomalous events do not cluster on the
tails of the distributions of the input features. Instead, they tend to cover the full
feature-definition range. This is an indication of the fact that the VAE does more
than a simple selection of feature outliers, which is what is done by traditional
single-lepton trigger or by dedicated cross triggers (e.g., triggers that select events
with soft leptons and large missing transverse energy, () , etc.). This is shown in
Fig. 8.8 for SM events. A similar conclusion can be obtained from Fig. 8.9, showing
the distribution of the 21 input HLF quantities for the � → 4ℓ benchmark model,
before and after applying the threshold requirement on the VAE loss.

The left plot in Fig. 8.10 shows the ROC curves obtained from the Lossreco distri-
bution of the four BSM benchmark models and the SM cocktail, compared to the
corresponding BDT curves of Section 8.4. As expected, the results obtainedwith the
supervised BDTs outperform the VAE. On the other hand, the VAE can probe at the
same time the four scenarios with comparable performances. This is a consequence
of the trade off between precision and model independence and an illustration of
the complementarity between the approach presented in this work and traditional
supervised techniques. The right plot in Fig. 8.10 shows the one-sided p-value
computed from the cocktail SM distribution, both for the SM events themselves (flat
by construction) and for the four BSM processes. As the plot shows, BSM processes
tend to concentrate at small p-values, which allows their identification as anomalies.

Table 8.4 summarizes the VAE’s performance on the four BSM benchmark models.
Together with the selection efficiency corresponding to n(" = 5.4 · 10−6, the table
reports the effective cross section (cross section after applying the trigger require-
ments) that would correspond to 100 BSM events selected in a month (assuming an
integrated luminosity of 5 fb−1). Similarly, we quote the cross section that would
result in a signal-to-background ratio of 1/3 on the sample of events selected by
the VAE. The VAE can probe the four models down to small cross section values,
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Figure 8.8: Comparison between the input distribution for the 21 HLF of the
validation dataset (blue histograms) and the distribution of the SM outlier events
selected from the same sample by applying the Lossreco threshold (red dots). The
outlier events cover a large portion of the HLF definition range and do not cluster
on the tails.



186

0 100 200 300 400 500
ST [GeV]

10 5

10 3

10 1

0 200 400 600 800
Jets Mass [GeV]

10 5

10 3

10 1

0 25 50 75 100 125
Muons PT [GeV]

10 5

10 3

10 1

0 20 40 60 80 100
Muons Mass [GeV]

10 5

10 3

10 1

0 25 50 75 100 125
Electrons PT [GeV]

10 5

10 3

10 1

0 20 40 60 80 100
Electrons Mass [GeV]

10 5

10 3

10 1

0 50 100 150
Lep PT [GeV]

10 5

10 3

10 1

0.0 0.1 0.2 0.3 0.4
ChPFIso

10 5

10 3

10 1

0.0 0.1 0.2 0.3 0.4
GammaPFIso

10 5

10 3

10 1

0.0 0.1 0.2 0.3
NeuPFIso

10 5

10 3

10 1

100 50 0 50 100
pmiss

T  [GeV]

10 5

10 3

10 1

100 50 0 50 100
pmiss

T  [GeV]

10 5

10 3

10 1

0 50 100 150
MT [GeV]

10 5

10 3

10 1

0 1 2
Muons number

10 3

10 1

0 2 4
Jets number

10 4

10 2

100

0 1 2 3
b-tagged jets number

10 5

10 3

10 1

0 1 2
Electrons number

10 4

10 2

100

1.0 0.5 0.0 0.5 1.0
Lep Charge [e]

10 3

10 2

10 1

100

0.0 0.2 0.4 0.6 0.8 1.0
IsEle

10 3

10 1

0 100 200 300 400 500
Charged Had number

10 5

10 3

10 1

0 50 100 150 200 250
Neutral Had number

10 4

10 2

100

All data Selected anomalies

Figure 8.9: Comparison between the distribution of the 21 HLF distribution for
� → 4ℓ full dataset (blue) and � → 4ℓ events selected by applying the Lossreco
threshold (red). The selected events are not trivially sampled from the tail.
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Table 8.3: By-process acceptance rate for the anomaly detection algorithm described
in the text, computed applying the threshold on Lossreco shown in Fig. 8.7. The
threshold is tuned such that a fraction of about n(" = 5.4 · 10−6 of SM events would
be accepted, corresponding to∼ 1000 SM events/month, assuming the LHC running
conditions listed in Section 8.1. The sample composition refers to the subset of SM
events accepted by the anomaly detection algorithm. All quoted uncertainties refer
to 95% CL regions.

Standard Model processes
Process VAE selection Sample composition Events/month
, 3.6 ± 0.7 · 10−6 32% 379 ± 74
QCD 6.0 ± 2.3 · 10−6 29% 357 ± 143
/ 21 ± 3.5 · 10−6 21% 256 ± 43
CC̄ 400 ± 9 · 10−6 18% 212 ± 5
Total 1204 ± 167

Figure 8.10: Performance of the VAE for different BSM scenarios. Left: ROC
curves for theVAE trained only on SMevents (solid), compared to the corresponding
curves for the four supervised BDTmodels (dashed) described in Section 8.4. Right:
Normalized p-value distribution distribution for the SM cocktail events and the four
BSM benchmark processes.

comparable to the existing exclusion bounds for these mass ranges. As an example,
Ref. [274] excludes a !& → g1 with a mass of 150 GeV and production cross
section larger than ∼ 10 pb, using 4.8 fb−1 at a center-of-mass energy of 7 TeV,
while most recent searches [275] cannot cover such a low mass value, due to trigger
limitations.
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Table 8.4: Breakdown of BSM processes efficiency, and cross section values cor-
responding to 100 selected events in a month and to a signal-over-background ratio
of 1/3 (i.e., an absolute yield of ∼ 400 events/month). The monthly event yield
is computed assuming an average luminosity per month of 5 fb−1, computing by
taking the LHC 2016 data delivery (∼ 40 fb−1 collected in 8 months). All quoted
efficiencies are computed fixing the VAE loss threshold n(" = 5.4 · 10−6.

BSM benchmark processes
Process VAE selection Cross-section Cross-section

efficiency 100 events/month [pb] S/B = 1/3 [pb]
�→ 4ℓ 2.8 · 10−3 7.1 27
!& → 1g 6.7 · 10−4 30 110
ℎ
0 → gg 3.6 · 10−4 55 210
ℎ
± → ga 1.2 · 10−3 17 65

Unlike a traditional trigger strategy, a VAE-based selection is mainly intended to
select a high-purity sample of interesting event, at the cost of a typically small
selection efficiency. To demonstrate this point, we consider a sample selected with
the VAE and one selected using a typical inclusive single lepton trigger (SLT),
consisting on a tighter selection than the one described in section 8.3. In particular,
we require ?ℓ) > 27 GeV and ISO < 0.25. We consider the signal-over-background
ratio (SBR) for the VAE’s threshold selection and the SLT. While these quantities
depend on the production cross section of the considered BSM model, their ratio

SBRVAE
SBRSLT

=

(
nSLT
nVAE

)
("

·
(
nVAE
nSLT

)
�("

(8.16)

is only a function of the selection efficiency for the SLT (nSLT) and the for the VAE
nVAE for SM and BSM events. Table 8.5 shows how the SBR reached by the VAE
is about two order of magnitude larger than what a traditional inclusive SLT could
reach.

8.6 Deployment in high-level triggers
The work presented in this paper suggests the possibility of deploying a VAE
as a trigger algorithms associated to dedicated data streams. This trigger would
isolate anomalous events, similarly to what was done by the CMS experiment
at the beginning of the first LHC run. With early new physics signal being a
possibility at the LHC start, the CMS experiment deployed online a set of algorithms
(collectively called hot line) to select potentially interesting new-physics candidates.
At that time, anomalies were characterized as events with high-?) particles or high
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Table 8.5: Selection efficiencies for a typical single lepton trigger (SLT) and the
proposed VAE selection, shown for the four benchmark BSM models and for the
SM cocktail. The last row quotes the corresponding BSM-to-SM ratio of signal-
over-background ratios (SBRs), quantifying the purity of the selected sample.

SM �→ 4ℓ !& → 1g ℎ
0 → gg ℎ

± → ga

nVAE 5.3 · 10−6 2.8 · 10−3 6.7 · 10−4 3.6 · 10−4 1.2 · 10−3
nSLT 0.6 0.5 0.6 0.7 0.6

n(!)/nVAE 1.1 · 105 1.8 · 102 9.0 · 102 1.7 · 103 5.8 · 102
SBRVAE/SBRSLT - 625 125 70 191

particle multiplicities, in line with the kind of early-discovery new physics scenarios
considered at that time. The events populating the hot-line stream were immediately
processed at the CERN computing center (as opposed to traditional physics streams,
that are processed after 48 hours). The hot-line algorithms were tuned to collect
O(10) events per day, which were then visually inspected by experts.

While the focus of the work presented in this paper is not an early discovery, the
spirit of the application we propose would be similar: a set of VAEs deployed online
would select a limited number of events every day. These events would be collected
in a dedicated dataset and further analyzed. The analysis technique could go from
visual inspection of the collisions to detailed studies of reconstructed objects, up
to some kind of model-independent analysis of the collected dataset, e.g. a deep-
learning implementation of a model-independent hypothesis testing [255] directly
on the loss distribution (provided a reliable sample of background-only data).

While a pure SM sample to train VAEs could only be obtained from a MC simula-
tion, the presence of outlier contamination in the training sample has typically a tiny
impact on performance. One could then imagine to train the VAE models on so-far
collected data and use them on the events entering the HLT system. Such a train-
ing could happen offline on a dedicated dataset, e.g., deploying triggers randomly
selecting events entering the last stage of the trigger system. The training could
even happen online, assuming the availability of sufficient computing resources.
As it happens with normal triggers, at the very beginning one would use some
MC sample or some control sample from previously collected data to estimate the
threshold corresponding to the target SM rate. Then, as it happens normally during
HLT operations, the threshold will have to be monitored on real data and adjusted
if needed.
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To demonstrate the feasibility of a train-on-data strategy, we enrich the dataset used
in Section 8.4 with a signal contamination of � → 4ℓ events. As a starting point,
the amount of injected signal is tuned to a luminosity of 100 pb−1 and a cross section
of 7.1 pb, corresponding to the value at which the VAE in Section 8.4 would select
100 �→ 4ℓ events in one month. This results into about 700 �→ 4ℓ events added
to the training sample. The VAE is trained following the procedure outlined in
Section 8.4 and its performance is compared to that obtained on a signal-free dataset
of the same size. The comparison of the ROC curves for the two models is shown
in Fig. 8.11. In the same figure, we show similar results, derived injecting a ×10
and ×100 signal contamination. A performance degradation is observed once the
signal cross section is set to 710 pb (i.e., 100 times larger than the sensitivity value
found in Section 8.4). At that point, the contamination is so large that the signal
becomes as abundant as CC̄ events and would have easily detectable consequences.
For comparison, at a production cross section of 27 pb a third of the events selected
by the VAE in Section 8.4 would come from � → 4ℓ production (see Table 8.4).
Such a large yield would still have negligible consequences on the training quality.
This test shows that a robust anomaly-detecting VAE could be trained directly on
data, even in presence of previously undetected (e.g., at Tevatron, 7 TeV and 8-TeV
LHC) BSM signals.

The possibility of training the VAE on data would substantially simplify the imple-
mentation of the strategy proposed in this work, since any possible systematic bias
in the data would be automatically taken into account during the training process. In
addition, it would make the procedure robust against other systematic effects (e.g.,
energy scale, efficiency, etc.) that would affect a MC-based training.

8.7 Deployment in Level-1 triggers
While the primary focus of anomaly detection in this chapter is on the HLT, this
strategy would be more effective if deployed in the Level-1 trigger (L1T), i.e. before
any selection bias is introduced. For instance, the CMS L1T reduces the input
event rate from 40MHz to 100 kHz. Each event has to be processed within a few
microseconds. Due to the extreme latency and resource constraints of the L1T,
only relatively simple, theory-motivated selection algorithms are deployed. These
usually include requirements on the minimum energy of a physics object, such as a
reconstructed lepton or a jet, effectively excluding lower-energy events from further
processing. Instead, by deploying an unbiased algorithm which selects events based
on their degree of abnormality, rather than on the amount of energy present in the



191

Figure 8.11: ROC curves for the VAE trained on SM contaminated with and without
�→ 4` contamination. Different levels of contamination are reported correspond-
ing to 0.02% (f = 7.15 pb - equal to the estimated one to have 100 events per
month), 0.19% (f = 71.5 pb) and 1.89% (f = 715 pb) of the training sample.

event, we can collect data in a signal-model-independent way. Such an anomaly
detection (AD) algorithm is required to have extremely low latency because of the
restrictions imposed by the L1T.

Recent developments of the hls4ml library allow us to consider the possibility of
deploying an AD algorithm on the FPGAsmounted on the L1T boards. The hls4ml
library is an open-source software, developed to translate neural networks [276–280]
and boosted decision trees [281] into FPGA firmware. A fully on-chip implemen-
tation of the machine learning model is used in order to stay within the 1 `s latency
budget imposed by a typical L1T system. Additionally, the initiation interval of
the algorithm should be within 150 ns, which is six times the bunch-crossing time
at LHC for the upcoming period of the LHC operations. Since there are several
L1T algorithms deployed per FPGA, each of them should take much less than
the full FPGA resources. With its interface to QKeras [282], hls4ml supports
quantization-aware training (QAT) [283], which makes it possible to drastically
reduce the FPGA resource consumption while preserving accuracy. Using hls4ml
we can compress neural networks to fit the limited resources of an FPGA.
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Figure 8.12: Comparison of Deep Network architectures: (a) In a GAN, a generator
G returns samples � (I) from latent-space points I, while a discriminator �G tries
to distinguish the generated samples � (I) from the real samples G. (b) In an
autoencoder, the encoder � compresses the input G to a latent-space point I, while
the decoder � provides an estimate � (I) = � (� (G)) of G. (c) A BiGAN is built
by adding to a GAN an encoder to learn the I representation of the true G, and
using the information both in the real space X and the latent space Z as input
to the discriminator. (d) The ALAD model is a BiGAN in which two additional
discriminators help converging to a solution which fulfils the cycle-consistency
conditions � (� (G)) ≈ G and � (� (I)) ≈ I. The ⊕ symbol in the figure represents a
vector concatenation.

8.8 An alternative model
As an alternative to the VAE, we present another anomaly detection technique
using anAdversarially LearnedAnomalyDetection (ALAD) algorithm [284], which
combines the strength of generative adversarial networks with that of autoencoders.

The ALAD algorithm is based on Generative Adversarial Network (GAN) [285]
specifically designed for anomaly detection. The basic idea underlying GANs is
that two artificial neural networks compete against each other during training, as
shown in Fig. 8.12. One network, the generator � : Z → X, learns to generate
new samples in the data space (e.g., proton-proton collisions in our case) aiming
to resemble the samples in the training set. The other network, the discriminator
�G : X → [0, 1], tries to distinguish real samples from generated ones, returning
the score of a given sample to be real, as opposed of being generated by �. Both �
and �G are expressed as neural networks, which are trained against each other in a
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saddle-point problem:

min
�
max
�G

EG∼?X [log �G (G)] + EI∼?Z [log (1 − �G (� (I))] , (8.17)

where ?X (G) is the distribution over the data space X and ?Z (I) is the distribution
over the latent spaceZ. The solution to this problemwill have the property ?X = ?� ,
where ?� is the distribution induced by the generator [285]. The training typically
involves alternating gradient descent on the parameters of � and �G to maximize
for �G (treating � as fixed) and to minimize for � (treating �G as fixed).

Deep learning for anomaly detection [286] is usually discussed in the context of
(variational) autoencoders [251, 252]. With autoencoders (cf. Fig. 8.12), one
projects the input G to a point I of a latent-space through an encoder network
� : X → Z. An approximation � (I) = � (� (G)) of the input information is then
reconstructed through the decoder network, � : Z → X. The intuition is that the
decoder � can only reconstruct the input from the latent space representation I if
G ∼ ?X . Therefore, the reconstruction for an anomalous sample, which belongs to
a different distribution, would typically have a higher reconstruction loss. One can
then use a metric �R defining the output-to-input distance (e.g., the one used in the
reconstruction loss function) to derive an anomaly-score �:

�(G) ∼ DR(G, � (� (G))). (8.18)

While this is not directly possible with GANs, since a generated � (I) does not
correspond to a specific G, several GAN-based solutions have been proposed that
would be suitable for anomaly detection, as for instance in Refs. [284, 286–289].

In thiswork, we focus on theALADmethod [284], built upon the use of bidirectional-
GANs (BiGAN) [290]. As shown in Fig. 8.12, a BiGAN model adds an encoder
� : X → Z to the GAN construction. This encoder is trained simultaneously to the
generator. The saddle point problem in Eq. 8.17 is then extended as follows:

min
�,�
max
�GI

+ (�GI, �, �) = min
�,�
max
�GI

EG∼?X [log �GI (G, � (G))]

+ EI∼?Z [log (1 − �GI (� (I), I)],
(8.19)

where �GI is a modified discriminator, taking inputs from both the X and Z.
Provided there is convergence to the global minimum, the solution has the dis-
tribution matching property ?� (G, I) = ?� (G, I), where one defines ?� (G, I) =

?� (I |G)?X (G) and ?� (G, I) = ?� (G |I)?Z (I) [290]. To help reaching full conver-
gence, the ALAD model is equipped with two additional discriminators: �GG and
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�II. The former discriminator together with the value function

+ (�GG , �, �) = EG∼?X [log �GG (G, G)] + EG∼?X [log (1− �GG (G, � (� (G)))] (8.20)

enforces the cycle-consistency condition� (� (G)) ≈ G. The latter is added to further
regularize the latent space through a similar value function:

+ (�II, �, �) = EI∼?Z [log �II (I, I)] + EI∼?Z [log (1 − �II (I, � (� (I)))], (8.21)

enforcing the cycle condition � (� (I)) ≈ I. The ALAD training objective consists
in solving:

min
�,�

max
�GI ,�GG ,�II

+ (�GI, �, �) ++ (�GG , �, �) ++ (�II, �, �) . (8.22)

Having multiple outputs at hand, one can associate the ALAD algorithm to several
anomaly-score definitions. Following Ref. [284], we consider the following four
anomaly scores:

• A “logit” score, defined as: �! (G) = log(�GG (G, � (� (G))).

• A“feature” score, defined as: �� (G) = | | 5GG (G, G)− 5GG (G, � (� (G))) | |1, where
5GG (·, ·) are the activation values in the last hidden layer of �GG .

• The !1 distance between an input G and its reconstructed output � (� (G)):
�!1

(G) = | |G − � (� (G)) | |1.

• The !2 distance between an input G and its reconstructed output � (� (G)):
�!2

(G) = | |G − � (� (G)) | |2.

We train our ALAD model on the SM cocktail and subsequently apply it to a test
dataset, containing a mixture of SM events and events of physics beyond the Stan-
dard Model (BSM). As a starting point, we consider the ALAD architecture [284]
used for the KDD99 dataset, which has similar dimensionality as our input feature
vector. In this configuration, both the �GG and �II discriminators take as input the
concatenation of the two input vectors, which is processed by the network up to
the single output node, activated by a sigmoid function. The �GI discriminator has
one dense layer for each of the two inputs. The two intermediate representations
are concatenated and passed to another dense layer and then to a single output node
with sigmoid activation, as for the other discriminators. The hidden nodes of the
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generator are activated by ReLU functions [209], while Leaky ReLU [291] are used
for all the other nodes. The slope parameter of the Leaky ReLU function is fixed
to 0.2. The network is optimized using the Adam [212] minimizer and minibatches
of 50 events each. The training is regularized using dropout layers in the three
discriminators.

Starting from this baseline architecture, we adjust the architecture hyperparameters
one by one, repeating the training while maximizing a figure of merit for anomaly
detection efficiency. We perform this exercise using as anomalies the benchmark
models described in previously in this chapter and looking for a configuration that
performs well on all of them. To quantify performance, we consider both the area
under the receiver operating characteristic (ROC) curve and the positive likelihood
ratio LR+. We define the LR+ as the ratio between the BSM signal efficiency, i.e., the
true positive rate (TPR), and the SM background efficiency, i.e., the false positive
rate (FPR). The training is performed on half of the available SM events (3.4M
events), leaving the other half of the SM events and the BSM samples for validation.
From the resulting anomaly scores, we compute the ROC curve and compare it to
the results of the VAE. We further quantify the algorithm performance considering
the LR+ values corresponding to an FPR of 10

−5.

The optimized architecture, adapted from Ref. [284], is summarized in Table 8.6.
This architecture is used for all subsequent studies. We consider as hyperparameters
the number of hidden layers in the five networks, the number of nodes in each hidden
layer, and the dimensionality of the latent space, represented in the table by the size
of the � output layer.

Having trained the ALAD on the training dataset, we compute the anomaly scores
for the validation samples as well as for the four BSM samples, where each BSM
process has $ (0.5M) samples. Figure 8.13 shows the ROC curves of each BSM
benchmark process, for the four considered anomaly scores. The best VAE result
is also shown for comparison. In the rest of this paper, we use the !1 score as the
anomaly score. Similar results would have been obtained using any of the other
three anomaly scores. Figure 8.14 compares the �!1 distribution for each BSM
process with the SM cocktail. One can clearly see that all BSM processes have an
increased probability in the high-score regime compared to the SM cocktail. We
further verified that the anomaly score distributions obtained on the SM-cocktail
training and validation sets are consistent. This test excludes the occurrence of
over-training issues.
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Table 8.6: Hyperparameters for the ALAD algorithm. Parameters in bold have been
optimized for. No Dropout layer is applied wherever a dropout rate is not specified.

Operation Units Activation Batch
Norm.

Dropout
Rate

K(x)
Number of hidden layers 2
Dense 64 Leaky ReLU × -
Dense 64 Leaky ReLU × -
Output 16 Linear × -
M (z)
Number of hidden layers 2
Dense 64 ReLU × -
Dense 64 ReLU × -
Output 39 Linear × -
Jxz (x, z)
Number of hidden layers 2
Only on x
Dense 128 Leaky ReLU

√
-

Only on z
Dense 128 Leaky ReLU × 0.5
Concatenate outputs
Dense 128 Leaky ReLU × 0.5
Output 1 Sigmoid × -
Jxx (x, x̂)
Concatenate x and x’
Number of hidden layers 1
Dense 128 Leaky ReLU × 0.2
Output 1 Sigmoid × -
J zz (z, ẑ)
Concatenate z and z’
Number of hidden layers 1
Dense 128 Leaky ReLU × 0.2
Output 1 Sigmoid × -

Training Parameter Value
Optimizer Adam (U = 10−5, V1 = 0.5)
Batch size 50
Leaky ReLU slope 0.2
Spectral norm

√

Weight, bias init. Xavier Initializer, Constant(0)
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Figure 8.13: ROC curves for the ALAD trained on the SM cocktail training set
and applied to SM+BSM validation samples. The VAE curve corresponds to the
best result of the VAE, which is shown here for comparison. The other four lines
correspond to the different anomaly score models of the ALAD.

The ALAD algorithm outperforms the VAE by a substantial margin on the �→ 4ℓ
sample, providing similar performance overall, and in particular for FPR ∼ 10−5,
the same working point chosen for the VAE. We verified that the uncertainty on
the TPR at fixed FPR, computed with the AgrestiCoull interval [292], is negligible
when compared to the observed differences between ALAD and VAE ROC curves,
i.e., the difference is statistically significant.

The left plot in Fig. 8.15 provides a comparison across different BSM models. As
for the VAE, ALAD performs better on �→ 4ℓ and ℎ± → ga than for the other two
BSM processes. The right plot in Figure 8.15 shows the LR+ values as a function
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Figure 8.14: Distribution for the �!1 anomaly score. The “SM cocktail” histogram
corresponds to the anomaly score for the validation sample. The other four distri-
butions refer to the scores of the four BSM benchmark models.
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Figure 8.15: Left: ROC curves for each BSM process obtained with the ALAD
!1-score model. Right: LR+ curves corresponding to the ROC curves on the left.

of the FPR ones. The LR+ peaks at a SM efficiency of $ (10−5) for all four BSM
processes and is basically constant for smaller SM-efficiency values.

8.9 Summary
We present a strategy to isolate potential BSM events produced by the LHC, using
variational autoencoders trained on a reference SM sample. Such an algorithm
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could be used in the trigger system of general-purpose LHC experiments to identify
recurrent anomalies, which might otherwise escape observation (e.g., being filtered
out by a typical trigger selection). Taking as an example a single-lepton data
stream, we show how such an algorithm could select datasets enriched with events
originating from challengingBSMmodels. We also discuss how the algorithm could
be trained directly on data, with no sizable performance loss, more robustness against
systematic uncertainties, and a big simplification of the training and deployment
procedure.

The main purpose of such an application is not to enhance the signal selection
efficiency for BSM models. Indeed, this application is tuned to provide a high-
purity sample of potentially interesting events. We showed that events produced by
not-yet-excluded BSM models with cross sections in the range of O(10) to O(100)
pb could be isolated in a ∼ 30% pure sample of ∼ 43 events selected per day. The
price to pay to reach such a purity is a relatively small signal efficiency and a strong
bias in the dataset definition, which makes these events marginal and difficult to use
in a traditional data-driven and supervised search for new physics.

The final outcome of this application would be a list of anomalous events, that the
experimental collaborations could further scrutinize and even release as a catalog,
similarly to what is typically done in other scientific domains. Repeated patterns in
these events could motivate new scenarios for beyond-the-standard-model physics
and inspire new searches, to be performed on future data with traditional supervised
approaches.

We stress the fact that the power of the proposed approach is in its generality and not
in its sensitivity to a particular BSM scenario. We show that a simple BDT could
give a better discrimination capability for a given BSM hypothesis. On the other
hand, such a supervised algorithm would not generalize to other BSM scenarios.
The VAE, instead, comes with little model dependence and therefore generalizes
to unforeseen BSM models. On the other hand, the VAE cannot guarantee an
optimal performance in any scenario. As typical of autoencoders used for anomaly
detection, our VAE model is trained to learn the SM background at best, but there
is no guarantee that the best SM-learning model will be the best anomaly detection
algorithm. By definition, the anomaly detection capability of the algorithm does
not enter the loss function, as well as, by construction, no signal event enters the
training sample. This is the price to pay when trading discrimination power for
model independence.
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We believe that such an application could help extending the physics reach of the
current and next stages of the CERN LHC. The proposed strategy is demonstrated
for a single-lepton data stream coming from a typical L1 selection. On the other
hand, this approach could be generalized to any other data stream coming from any
L1 selection, so that the full ∼ 100 Hz rate entering the HLT system of ATLAS
or CMS could be scrutinized. While the L1 selection still represents a potentially
dangerous bias, an algorithm running in the HLT could access 100 timesmore events
than the ∼ 1 kHz stream typically available for offline studies. Moreover, thanks
to progresses in the deployment of deep neural networks on FPGA boards [276], it
is conceivable that VAEs for anomaly detection could be also deployed in the L1
trigger systems in a near future. In this way, the VAE would access the full L1 input
data stream.
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C h a p t e r 9

THE PHASE-II UPGRADE

After major successes with the LHC since its commission in 2010, most notably the
discovery of the Higgs boson [242, 243], which opened up exciting opportunities
to better understand the Standard Model and discover new physics, the LHC will
continue to lead the energy frontier for at least the next two decades. To fully exploit
the physics potential of the LHC, the high-luminosity LHC project (HL-LHC) aims
to increase the peak luminosity by 5 folds with levelling operation, with the goal of
3000 fb−1 collected by 2040 [293]. Near the end of 2024, the LHC will enter the
third long-shutdown period (LS3) to prepare for this Phase-II upgrade, as illustrated
by the timeline in Fig. 9.1.
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Figure 9.1: The baseline plan of the LHC for the next decade and beyond. After LS3
with the installation of the HL-LHC and the high luminosity upgrade for CMS, the
machine will start collect data near the end of 2027 with the target peak luminosity
of 5 × 1034 cm−2s−1 and an integrated luminosity of 250 fb−1 per year, with the goal
of 3000 fb−1 by 2040 [293].

The substantial luminosity ofHL-LHCwillmake it possible to study theHiggs sector
through precision measurements and observations of rare processes involving the
Higgs boson. Most remarkably, the target luminosity of 3000 fb−1 by 2040 can
potentially allow us, for the first time, to observe the double Higgs production.
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9.1 The challenges of CMS computing in the HL-LHC era
With the drastic increase of peak luminosity, the HL-LHC poses serious challenges
to the computational resources, which cannot scale linearly along with the resources
needed due to limited budget. In particular, both ATLAS and CMS experiments
are expected to increase their trigger selection rate from 1 kHz to at least 7.5 kHz
[73]. Given the 7x from the selection rate and the 5x from luminosity scaling,
there is a drastic gap between the projected resources needed and actual available
resources, since no adiabatic technology improvement can realistically provide an
increase of over 30 times for the LHC computing capacity in the next 7 years.
Additionally, with new detector installed, such as High-Granularity Calorimeter
(HGCAL) [294] and the new pixel detector [295] for CMS with many more data
acquisition channels, the raw event size can increase 7 folds, adding pressure to the
storage and downstream processing. Fig. 9.2 illustrates the projected gap between
resources needed versus availability for the CPU time and disk space by the CMS
experiment [296]. Two scenarios are considered. The first scenario, historically
considered by CMS, assumes an integrated luminosity of 275 fb−1 per year during
Run 4, with the HLT rate of 7.5 kHz. The second scenario is more commonly
considered in agreement with the Worldwide LHC Computing Grid group (WLCG)
and ATLAS, where the integrated luminosity for each year during Run 4 is assumed
to be 500 fb−1, with the HLT rate of 10 kHz. Under both scenarios, there are large
gaps between the requirements and the projected available resources, which are
assumed to increase between 10% and 20% each year.

9.2 Heterogeneous platform for the future of CMS computing
Over the past few years, CMS has evolved the computing model to address these
challenges. While traditional CPUs are still powerful processors for data centers,
the slow down of Moore’s law, along with the rise of hardware accelerators, makes
heterogeneous platform an attractive option for WLCG sites and high-performance
computing (HPC) centers.

Heterogeneous computing platform contains more than one kind of processor. Typ-
ically, it combines the traditional CPUs with one or more types of hardware ac-
celerators, such as the General-Purpose Graphics Processing Units (GP-GPUs),
Field-Programmable Gate Arrays (FPGAs), or Tensor Processing Units (TPUs).
Significant efforts in CMS have been made to adopt heterogeneous architectures for
running CMS offline software (CMSSW). During Run 3, a heterogeneous HLT farm
will be deployed by CMS with the acceleration from NVIDIA GPUs along with
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Figure 9.2: CMS experiment’s projection for the CPU time (top) and disk space
(bottom) requirements needed annually for CMS processing and analyses versus
resource availability under 2 scenarios: (1) a running scenario of 275 fb−1 per year
during Run 4, with a trigger rate of 7.5 kHz, as shown by the solid blue line; (2) a
running scenario of 500 fb−1 per year during Run 4, with a trigger rate of 10 kHz,
as shown by dashed blue line. The projected resources needed are summed across
Tier-0, Tier-1, and Tier-2 resources. The black curves show the projected resources
availability assuming an annual increase between 10% and 20% [296].
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traditional CPUs [297]. A significant portion of the track reconstruction algorithms
during HLT has been re-engineered in CMSSW to run on accelerators with CUDA,
showing substantial improvements with respect to traditional algorithms running on
CPUs [298].

9.3 Machine-learning solutions for the HL-LHC era
Even though the heterogeneous computing platform originally aims to re-engineer
the classical algorithms to boost their performances on hardware accelerators, the
availability of GP-GPUs and FPGAs open up numerous opportunities for the deploy-
ments of machine-learning algorithms at the LHC to boost the computing efficiency
as well as to extend the reach of the New Physics search program.

The deep learning era in the past decade has flourished since the realization that GP-
GPU, traditionally designed for graphics processing, could be used for deep learning
algorithms, which essentially consist of matrix operations. Backpropagation [164,
299] and stochastic gradient descent [300] proved to be a powerful combination for
optimizing a learning model with even more than a trillion parameters.

In high energy physics, the advantages of deep learning algorithms are threefold.
First, they have the flexibility to incorporate multiple complicated data structures,
which are ubiquitous in high energy physics. For example, as shown in Ch. 6, input
data can be represented as graphs, where the elements are permutation invariant and
the relations between elements can be learned. Furthermore, multiple data structures
can go simultaneously into a neural network (also known as a multimodal neural
network), such as sequential data and tabular data, as shown by the ttH discrimi-
nator in Ch. 5. Second, due to their large number of parameters, supervised deep
learning algorithms typically outperform other traditional classification algorithms
in the big data regime, which is the case in most high energy physics applications.
Third, by the universal approximation theorem [301], a deep learning algorithm can
approximate any function in high dimensions. It is therefore possible to substitute
traditionally computationally expensive tasks, such as event simulation, with deep
learning models. Generative models, such as generative adversarial networks and
autoencoders, are particularly useful for these tasks.

This part of the thesis will discuss a series of machine-learning solutions to address
the aforementioned challenges in the HL-LHC era. In particular, Ch. 10 introduces
a new module using multimodal neural networks with supervised learning to clean
up the event stream after the trigger selection, reducing the amount of downstream
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resourceswasted in processing false positive events. Ch. 11 proposes a new approach
to alternate full event simulationwith generative adversarial networks. Ch. 12 targets
analysis-specific simulation, where a deep neural networks can be used to replace
the simulation and reconstruction step for Monte Carlo simulated events.
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C h a p t e r 10

TRIGGER IMPROVEMENTS WITH TOPOLOGY CLASSIFIER

We show how an event topology classification based on deep learning could be used
to improve the purity of data samples selected in real time at the Large Hadron
Collider. We consider different data representations, on which different kinds of
multi-class classifiers are trained. Both raw data and high-level features are utilized.
In the considered examples, a filter based on the classifier’s score can be trained to
retain ∼ 99% of the interesting events and reduce the false-positive rate by more
than one order of magnitude. By operating such a filter as part of the online event
selection infrastructure of the LHC experiments, one could benefit from a more
flexible and inclusive selection strategy while reducing the amount of downstream
resources wasted in processing false positives. The saved resources could translate
into a reduction of the detector operation cost or into an effective increase of storage
and processing capabilities, which could be reinvested to extend the physics reach
of the LHC experiments.

10.1 Introduction
The CERN Large Hadron Collider (LHC) collides protons every 25 ns. Each
collision can result in any of hundreds of physics processes. The total data volume
exceeds by far what the experiments could record. This is why the incoming
data flow is typically filtered through a set of rule-based algorithms, designed to
retain only events with particular signatures (e.g., the presence of a high-energy
particle of some kind). Such a system, commonly referred to as trigger, consists
of hundreds of algorithms, each designed to accept events with a specific topology.
The ATLAS [249] and CMS [56] trigger systems are based on this idea. In their
current implementation, given the throughput capability and the typical event size,
these two experiments can write on disk ∼ 1000 events/sec. A few processes, e.g.,
QCD multĳet production, constitute the vast majority of the produced events. One
is typically interested to select a fraction of these events for further studies. On the
other hand, the main interest of the LHC experiments is related to selecting and
studying the many rare processes which occur at the LHC. In a typical data flow,
these events are overwhelmed by the large amount of QCD multĳet events. The
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trigger system is put in place to make sure that the majority of these rare events are
part of the stored ∼ 1000 events/sec.

Trigger algorithms are typically designed to maximize the efficiency (i.e., the true-
positive rate), resulting in a non-negligible false-positive rate and, consequently, in
a substantial waste of resources at trigger level (i.e., data throughput that could have
been used for other purposes) and downstream (i.e., storage disk, processing power,
etc.).

The most commonly used selection rules are inclusive, i.e., more than one topology
is selected by the same requirement. The so-called isolated lepton triggers are a
typical example of this kind of algorithms. These triggers select events with a
high-momentum electron or muon and no surrounding energetic particle, a typical
signature of an interesting rare process, e.g., the production of a, boson decaying
to a neutrino and an electron or muon. With such a requirement, one can simultane-
ously collect, bosons produced in the primary interaction (, events) or from the
cascade decay of other particles, e.g., top quarks (mainly in CC̄ events where a top
quark-antiquark pair is produced). A sample selected this way is dominated by ,
events but it retains a substantial (> 10%) contamination from QCDmultĳet. The CC̄
contribution is smaller than 1%. Events from CC̄ production are sometimes triggered
by a set of dedicated lepton+jets algorithms, capable of using looser requirements
on the lepton at the cost of introducing requirements on jets.1 Due to this additional
complexity, the use of these triggers in a data analysis comes with additional com-
plications. For instance, the applied jet requirements produce distortions on offline
distributions of jet-related quantities. To avoid having this effect, any typical data
analysis applies a tighter offline selection. This means that many of the selected
events close to the online-selection threshold are discarded. This is not necessarily
the most cost-effective way to retain an unbiased dataset for offline analysis.

In this chapter, we investigate the possibility of using machine learning to classify
events based on their topologies, serving as an additional clean-up algorithm at
the trigger level. Doing so, one could customize the trigger-selection strategy on
individual processes (depending on the physics goals) while keeping the selection
loose and simple. As a benchmark case, we consider a stream of data selected
by requiring the presence of one electron or muon with transverse momentum

1 A jet is a spray of hadrons, typically originating from the hadronization of gluons and quarks
produced in the proton collisions.
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Figure 10.1: Relative composition of the isolated-lepton sample after the acceptance
requirement (left) and the trigger selection (right), as described in the text.

?) > 23 GeV 2 and a loose requirement on the isolation. Details on the applied
selection can be found in Sec. 10.2.

The considered benchmark sample is dominated by direct, production, with a siz-
able contamination from QCD multĳet events and a small contribution of CC̄ events.
Other interesting processes (e.g.,,, ,,/ , and // production) are usually selected
with more exclusive and dedicated trigger algorithms (e.g., di-muon or di-electron
triggers), or share the same kinematic properties of the two main interesting pro-
cesses (, and CC̄). For the sake of simplicity, we ignore these sub-leading processes
in our study, without compromising the validity of our conclusions. Fig. 10.1 shows
the composition of a sample with one electron or muon within the defined accep-
tance (?) > 22 GeV and pseudorapidity |[ | = | − log[tan(\/2)] | < 2.6, where \ is
the polar angle), before and after applying the trigger requirements (?) > 23 GeV
and loose isolation).

Such a loose set of requirements would translate into an event acceptance rate of
∼ 690 Hz for a luminosity of 2× 1034 cm−2 s−1, well beyond the currently allocated
budget for these triggers (typically ∼ 200 Hz). We suggest that, using the score
of our topology classifier, one could tune the amount of each process to be stored
for further analysis, within the boundaries of the allocated resources. For instance,

2 In this chapter, we set units in such a way that 2 = ℏ = 1.
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one might be interested to retain all the CC̄ events and some fraction of , events,
while rejecting the QCD multĳet events. We envision two main applications: for
a given total rate, one could loosen the baseline trigger requirements, increasing
the acceptance efficiency at no cost. Or, for a given acceptance efficiency (true
positive rate), one could save resources by reducing the overall rate, rejecting the
contribution of unwanted topologies (see Sec. 10.7).

We consider several topology classifiers based on deep learning model architec-
tures: fully-connected deep neural networks (DNNs), convolutional neural networks
(CNNs) [302], and recurrent neural networks such as Long-Short-Term-Memory
networks (LSTMs) [166] and gated recurrent units (GRUs) [167]. We consider four
different representations of the collision events: (i) a set of physics-motivated high-
level features, (ii) the raw image of the detector hits, (iii) a sequence of particles,
characterized by a limited set of basic features (energy, direction, etc.), and (iv) an
abstract representation of this list of particles as an image.

The chapter is structured as follows. In Sec. 10.2 we describe the four data represen-
tations. In Sec. 10.3 we describe the corresponding classification models. Results
are discussed in Sec. 10.4. In Sec. 10.5 we investigate the generalization properties
of the four classifiers to scenarios of other topologies. We study the robustness
of our classifiers against Monte-Carlo simulation inaccuracy with pseudo-data in
Sec. 10.6. In Sec. 10.8 we briefly discuss applications of machine learning al-
gorithms to similar problems. Conclusions are given in Sec. 10.9. Appendix A
describes a different scenario, in which the classifier is used to save resources by
reducing the trigger acceptance rate, as opposed to using it to sustain a loose trigger
selection that could otherwise require too many resources.

10.2 Dataset
Synthetic data corresponding to, , CC̄ and QCD multĳet production topologies are
generated with 105 events per process (3 · 105 events in total) using the PYTHIA8
event generation library [103]. The setup of the proton-beam simulation is loosely
inspired by the LHC running configuration in 2015-2016: two proton beams, each
with 6.5 TeV, generate on average 20 proton-proton collisions per crossing following
a Poisson distribution.

Generated samples are processed with the DELPHES library [269], which applies a
parametricmodel of a detector response. Detector performances is tuned to the CMS
upgrade design foreseen for the High-Luminosity LHC [270], as implemented in the
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corresponding default card provided with DELPHES. We run the DELPHES particle-
flow (PF) algorithm, which combines the information from all the CMS detector
components to derive a list of reconstructed particles, the so-called PF candidates.
For each particle, the algorithm returns the measured energy and flight direction.
Each particle is associated to one of three classes: charged particles, photons, and
neutral hadrons. Jets are clustered from the reconstructed PF candidates, using
the FASTJET [194] implementation of the anti-:) jet algorithm [57], with jet-size
parameter R = 0.4. The jet’s b-tagging efficiency is parametrized as a function of
jet’s ?) and [ in the default DELPHES CMS upgrade design card. The parametrized
b-tagging efficiency is shown to provide a reasonable agreement with CMS [269].

The basic event representation consists of a list of reconstructed PF candidates.
For each candidate @, the following information is given: (i) The particle four-
momentum in Cartesian coordinates (� , ?G , ?H, ?I); (ii) The particle three-
momentum, computed from (i), in cylindrical coordinates: the transverse mo-
mentum ?) , the pseudorapidity [, and the azimuthal angle q; (iii) The Cartesian
coordinates (GvCG , HvCG , IvCG) of the particle point of origin. For all neutral par-
ticles, (0, 0, 0) is used in the absence of pointing information; (iv) The electric
charge; (v) The particle isolation with respect to charged particles (ChPFIso), pho-
tons (GammaPFIso), or neutral hadrons (NeuPFIso). For each particle class, the
isolation is quantified as

ISO =

∑
?≠@ ?

?

)

?
@

)

, (10.1)

where the sum extends over all the particles of the appropriate class with angular

distance Δ' =

√
(Δ[)2 + (Δq)2 < 0.3 from the particle @.

The particle identity is categorized via a one-hot-encoded representation (isChPar,
isNeuHad, isGamma), corresponding to a charged particle, a neutral hadron, or a
photon. In addition, two boolean flags are stored (isEle and isMu) to identify if a
given particle is an electron or a muon. In total, each particle is then described by
19 features.

The trigger selection is emulated by requiring all the events to include one isolated
electron or muon with transverse momentum ?) > 23 GeV and particle-based
isolation ChISO + GammaISO + NeuISO < 0.45. This baseline selection, which
follows the typical requirements of an inclusive single-lepton trigger algorithm,
accepts ≈ 100 QCD multĳet events and ≈ 176, events for every CC̄ event. Despite
its large, and CC̄ efficiency, this trigger selection comes with a large cost in terms of
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QCD multĳet events written on disk and processed offline. The cost is even larger
if the main physics target is CC̄ events and the, contribution is seen as an additional
source of background (e.g., in a high-statistics scenario, with all measurements of
, properties limited in precision by systematic uncertainties).

All particles are ranked in decreasing order of ?) . For each event, the isolated
lepton is the first entry of the list of particles. To avoid double counting of this
isolated lepton ℓ as a charged particle, each charged particle @ is required to have
Δ'(@, ℓ) > 10−4. In addition to the isolated lepton, we consider the first 450 charged
particles, the first 150 photons, and the first 200 neutral hadrons. This corresponds
to a total of 801 particles per event, each characterized by the 19 features described
above. The choice of the numbers of particles is made such that, on average, only
5% charged particles, 5% neutral hadrons and 1% photons are ignored. Thanks to
?) ordering by particle category, what we remove carries small information. In
early stages of this work we experimented with tighter cuts on particle multiplicity
without observing substantial difference. We verified that the particles we ignore
have typical ?) below 1 GeV. If fewer particles are found in the event, zero padding
is used to guarantee a fixed length of the particle list across different events. The
events are then stored as NumPy arrays in a set of compressed HDF5 files. The
dataset is planned to be released on the CERN OpenData portal, accessible at
opendata.cern.ch.

In addition to this raw-event representation, we provide a list of physics-motivated
high-level features, computed from the full event (the HLF dataset):

• The scalar sum, () , of the ?) of all the jets, leptons, and photons in the event
with ?) > 30 GeV and |[ | < 2.6.

• The missing transverse energy �miss) , defined as the absolute value of the
missing transverse momentum, computed summing over the full list of recon-
structed PF candidates:

�
miss
) =

��� ®? miss)

��� = �����−∑
@

®? @

)

����� . (10.2)

• The squared transversemass,"2) , of the isolated lepton ℓ and the �
miss
) system,

defined as:
"
2
) = 2?ℓ)�

miss
) (1 − cosΔq) (10.3)
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with ?ℓ) the transverse momentum of the lepton and Δq the azimuthal sepa-
ration between the lepton and ®? miss) vector.

• The azimuthal angle of the ®? miss) vector, qmiss.

• The number of jets entering the () sum.

• The number of these jets identified as originating from a 1 quark.

• The isolated-lepton momentum, expressed in polar coordinates (?) , [, q)

• The three isolation quantities (ChPFIso, NeuPFIso, GammaPFIso) for the
isolated lepton.

• The lepton charge.

• The 8B�;4 flag for the isolated lepton.

The list of 801 particles is used to generate two visual representations of the events:
raw representation and abstract representation. In the raw representation, the ([,
q) plane corresponding to the detector acceptance is divided into a barrel region
(|[ | < 1.5), two end-cap regions (1.5 ≤ [ < 3.0 and −3.0 < [ ≤ −1.5), and two
forward regions (3.0 ≤ [ < 5.0 and −5.0 < [ ≤ −3.0). The barrel and endcap
regions of the electromagnetic calorimeter, as well as the endcap of the hadronic
calorimeter (HCAL), are binned in cells of size 0.0187× 0.0187. The barrel region
of the HCAL is binned with cells of size 0.087 × 0.087. The forward regions are
binned with cells of size 0.175 in [, while the dimension in q varies from 0.175 to
0.35. Each cell is filled with the scalar sum of the ?) of the particles pointing to that
cell. The three classes of particles (charged particles, photons, and neutral hadrons)
are considered separately, resulting in three channels. An example is shown in
Fig. 10.2 for a CC̄ event. This representation corresponds to the raw image recorded
by the detector.

Recently, it was proposed to represent LHC collision events as abstract images where
reconstructed physics objects (jets, in that case) are represented as geometric shapes
whose size reflects the energy of the particle [303]. We generalize this abstract
representation approach by applying it to the full list of particles. Each particle is
represented as a unique geometric shape, centered at the particle’s ([, q) coordinates
and with size proportional to its log ?) . The geometric shapes are chosen as follow:
(i) pentagons for the selected isolated electron or muon; (ii) triangles for photons;
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Charged Tracks Neutral Hadrons

Figure 10.2: An example of a CC̄ event as the input of the raw-image classifier.
Vertical and horizontal axess are the q and [ coordinates, respectively, of the sub-
detectors.

(iii) squares for charged particles; (iv) hexagons for neutral hadrons. The images are
digitized as arrays of size 5×150×94, where each of the first four channels contains
a separated particle class, and the last channel contains the �miss) , represented as a
circle. As an example, the abstract representation for the event in Fig. 10.2 is shown
in Fig. 10.3.

This abstract representation allowsmitigating the sparsity problemof the raw images.
On the other hand, there is no guarantee that the physics information is fully retained
in this translation. As a result, there could be a reduction of discrimination power.
This is one of the points we aim to investigate in this study.

Figure 10.3: Example of a CC̄ event, represented as a 5-channel abstract images
of photons (top-left), charged hadrons (top-center), neutral hadrons (top-right), the
isolated lepton (bottom-kleft), and the event �miss) (botton-right).
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10.3 Model description
In this section, we describe five types of multi-class classifiers, trained on the four
data representations described in the previous section. We start by considering a
state-of-the art HEP application, based on the high-level features listed in Sec. 10.2.
We then consider a convolutional neural network taking as input the raw images.
Thismodel offers the baseline point of comparison for the classifier using the abstract
images. In order to have a fair comparison between the two approaches, the same
kind of network architecture is used for the two sets of images. Next, we consider
recurrent neural networks based on LSTMs and GRUs, trained directly on the lists of
801 particles. Finally, we consider a classifier taking both the high-level features and
the list of 801 particles as inputs, using a combination of recurrent neural networks
and fully connected neural networks.

The CNNs are implemented in PyTorch [206]. The recurrent neural networks and
feed-forward neural networks are implemented in Keras [120] and trained using
Theano [304] as a back-end. The Adam optimizer [212] is used to adapt the learning
rate. The training is capped at 50 epochs, and can be stopped early if there is no
improvement in terms of validation loss after 8 epochs. Categorical cross entropy is
used as the loss function. All trainings are performed on a cluster of GeForce GTX
1080 GPUs. In an early stage of this work, experiments on the recurrent models
were performed on the CSCS Piz Daint super computer, using the mpi-learn
library [305] for multiple-GPU training.

High-level-feature classifier
A fully connected feed-forward DNN based on a set of high-level features (HLF
classifier) is the closest approach to the currently used rule-based trigger algorithms.
We train a model of this kind taking as input the 14 features contained in the HLF
dataset (see Sec. 10.2). The 14 features are normalized to take values between 0 and
1.

The final network configuration is the result of an optimization process performed
using the scikit-learn optimizer [273], which performs an exhaustive cross-
validated grid-search over a set of hyperparameters related to the network architec-
ture and the training setup. The number of layers, the number of nodes in each layer,
and the choice of optimizer have been considered in the scan. For a given number of
layers, discrimination performances were found to be constant over the considered
range of number of nodes per layer. We believe that this is a direct consequence of
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the simple problem at hand: even a relatively small networks achieve good classi-
fication performances. We then took the smallest network as the best compromise
between performance and architecture minimality.

The chosen architecture consists of three hidden layers with 50, 20, and 10 nodes,
activated by rectified linear units (ReLU) [209]. The output layer consists of 3
nodes, activated by a softmax activation function.

Raw-image classifier
To classify events represented as raw calorimeter images (raw-image classifier),
we use DenseNet-121, a model based on the Densely Connected Convolutional
Network [306]. The DenseNet-121 architecture includes 4 dense blocks, each of
which contains 6, 12, 24, 16 dense layers, respectively. Each dense layer contains
two 2D convolutional layers preceded by batch normalization layers. A dropout rate
of 0.5 is applied after each dense layer. Between two subsequent dense blocks is a
transition layer consisting of a batch normalization layer, a 2D convolutional layer,
and an average pooling layer.

Abstract-image classifier
We use the same DenseNet-121 architecture above to classify the abstract image
representation. We refer to this model as abstract-image classifier.

Particle-sequence classifier
A particle-sequence classifier is trained using a recurrent network, taking as input
the 801 candidates. To feed these particles into a recurrent network, particles are
ordered according to their increasing or decreasing distance from the isolated lepton.
Different physics-inspired metrics are considered to quantify the distance (Δ', Δq,
Δ[, :) [144], or anti-:) [57]). The best results are obtained using the Δ' decreasing
distance ordering.

We use gated recurrent units (GRU) to aggregate the input sequence of particle flow
candidate features into a fixed size encoding. The fixed encoding is fed into a fully
connected layer with 3 softmax activated nodes. Input data is standardized so that
each feature has zero mean and unit standard deviation. The zero-padded entries in
the particle sequence are skipped with the Masking layer. The best internal width
of the recurrent layers was found to be 50, determined by k-fold cross validation on
a training set of 210,000 events. We also considered using long short-term memory
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networks (LSTM) to replace the GRU, but we found that the GRU architecture
outperformed the LSTM architecture for the same number of internal cells.

PFcand1 PFcand2 PFcand801. . .

Masking

GRU (50)

Dropout

High-level features (14)

Dropout

Concatenate (64)

Dense (25)

Output (3)

Figure 10.4: Network architecture of the inclusive classifier.

Inclusive classifier
In order to inject some domain knowledge in the GRU classifier, we consider a
modification of its architecture in which the 14 features of the HLF dataset are
concatenated to the output of the GRU layer after some dropout (see Fig. 10.4). As
for the other classifiers, the final output layer consists of 3 nodes, activated by a
softmax activation function. We refer to this model as inclusive classifier.

10.4 Results
Each of the models presented in the previous section returns the probability of
each event to be associated to a given topology: H&�� , H, , and HCC̄ . By applying a
threshold requirement on H, or HCC̄ , one can define a, or a CC̄ classifier, respectively.
By changing the threshold value, one can build the corresponding receiver operating
characteristic (ROC) curve. Fig. 10.5 shows the comparison of the ROC curves for
five classifiers: the DenseNets based on raw images and abstract images, the GRU
using the list of particles, the DNN using the HLFs, and the inclusive classifier using
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both the HLFs and the list of particles. Results for both a CC̄ and , selectors are
shown.
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Figure 10.5: ROC curves for the CC̄ (left) and , (right) selectors described in the
chapter.

Acceptable results are obtained already with the raw-image classifier. On the other
hand, the use of abstract images allows us to reach better performances. A further
improvement is observed for those models not using an image-based representation
of the event. The fact that the HLF selectors perform so well does not come as a
surprise, given a considerable amount of physics knowledge implicitly provided by
the choice of the relevant features. On the other hand, the fact that the particle-
sequence classifier reaches better performances compared to the HLF selector is
remarkable, as is the further improvement observed by merging the two approaches
in the inclusive classifier. In some sense, the GRU layer is gaining a good part of the
physics intuition that motivated the choice of the HLF quantities, but not entirely.
Fig. 10.6 shows the Pearson correlation coefficients between the GRU scores (HCC̄ and
H, ) and the HLF quantities. As one would expect, HCC̄ exhibits a stronger correlation
with those features that quantify jet activity (=jets in Fig. 10.6), as well as with the
b-jet multiplicity (=b-jets). On the contrary,, events shows an anti-correlation with
respect to jet quantities, since the production of associated jets in, events is much
more penalized than for CC̄ events. As expected, both scores are anti-correlated to
the isolation quantities, which takes larger values for non-isolated leptons.

The performance of each of the five classifiers is summarized in Tab. 10.1 in terms
of false-positive rate (FPR) and trigger rate (TR) as a function of the true-positive
rate (TPR). The best QCD rejection is obtained by the inclusive classifier, which
can retain 99% of the CC̄ or, events with a false-positive rate of ∼ 5.2%.
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Figure 10.6: Pearson correlation coefficients between the HCC̄ (left) and H, (right)
scores of the Particle-sequence classifier and the 14 quantities of the HLF dataset.

Table 10.1: False positive rate (FPR) and trigger rate (TR) at different values
of the true positive rate (TPR), for a CC̄ (top) and , selector. Rate values are
estimated scaling the TPR and process-dependent FPR values by the acceptance and
efficiency, assuming a leading-order (LO) production cross section and luminosity
of 2×1034 cm−2 s−1. TR values should be taken only as suggestions of the actual
rates, since the accuracy is limited by the use of LO cross sections and a parametric
detector simulation.

CC̄ selector Raw-image Abstract-image HLF Particle-sequence Inclusive
(DenseNet) (DenseNet) (DNN) (GRU) (DNN+GRU)

FPR @99% TPR 76.5 ± 0.2% 50.1 ± 0.2% 28.6 ± 0.2% 9.2 ± 0.1% 5.2 ± 0.1%
FPR @95% TPR 41.3 ± 0.2% 15.7 ± 0.1% 6.1 ± 0.1% 1.7 ± 0.1% 0.7 ± 0.0%
FPR @90% TPR 26.5 ± 0.2% 7.4 ± 0.1% 2.7 ± 0.1% 0.6 ± 0.0% 0.2 ± 0.0%
TR @99% TPR 382.0 ± 0.9 Hz 250.9 ± 1.0 Hz 143.9 ± 0.9 Hz 48.1 ± 0.6 Hz 28.4 ± 0.4 Hz
TR @95% TPR 207.8 ± 1.0 Hz 80.3 ± 0.7 Hz 32.4 ± 0.5 Hz 11.0 ± 0.3 Hz 6.0 ± 0.2 Hz
TR @90% TPR 134.2 ± 0.9 Hz 39.0 ± 0.5 Hz 15.5 ± 0.3 Hz 5.2 ± 0.2 Hz 3.5 ± 0.1 Hz

, selector Raw-image Abstract-image HLF Particle-sequence Inclusive
(DenseNet) (DenseNet) (DNN) (GRU) (DNN+GRU)

FPR @99% TPR 79.0 ± 0.2% 61.8 ± 0.2% 23.5 ± 0.2% 10.2 ± 0.1% 6.3 ± 0.1%
FPR @95% TPR 60.5 ± 0.2% 36.0 ± 0.2% 9.7 ± 0.1% 3.7 ± 0.1% 1.8 ± 0.1%
FPR @90% TPR 48.1 ± 0.2% 22.8 ± 0.2% 5.1 ± 0.1% 1.8 ± 0.1% 0.9 ± 0.0%
TR @99% TPR 488.9 ± 0.3 Hz 462.3 ± 0.5 Hz 301.9 ± 0.6 Hz 268.2 ± 0.5 Hz 259.7 ± 0.4 Hz
TR @95% TPR 454.5 ± 0.6 Hz 365.1 ± 0.8 Hz 259.2 ± 0.5 Hz 242.6 ± 0.4 Hz 238.0 ± 0.4 Hz
TR @90% TPR 408.2 ± 0.8 Hz 301.8 ± 0.8 Hz 235.0 ± 0.5 Hz 225.4 ± 0.5 Hz 223.3 ± 0.5 Hz

The trigger baseline selection we use in this study, looser than what is used nowadays
in CMS, gives an overall trigger rate (i.e., summing electron and muon events) of
∼ 690 Hz, more than a factor two larger than what is currently allocated. Using
the 99% working points of the two classifiers, one would reduce the overall rate to
∼ 270Hz (counting the overlap between the two triggers). Thiswould be comparable
to what is currently allocated for these triggers, but with a looser selection, i.e., with
a less severe bias on the offline analysis. In addition, the trigger efficiency (the
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TPR) is so high that the bias imposed on offline quantities is quite minimal. This
is illustrated in Fig. 10.7, where the dependence of the TPR on the most relevant
HLF quantities is shown. In our experience, any rule-based algorithm with the same
target trigger rate would result in larger inefficiencies at small values of at least some
of these quantities, e.g., the lepton ?) . One should also consider that the principle of
a topology classifier could be generalized to other physics cases, as well as to other
uses (e.g., labels for fast reprocessing or access to specific subsets of the triggered
samples).
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Figure 10.7: Selection efficiency using 99% TPR working point as functions of
lepton ?) , "

2
) , and �

miss
) for the CC̄ selector on CC̄ events (top) and the, selector on

, events (bottom).

Figure 10.8 shows the TPR and FPR of the inclusive CC̄ selector when applying the
99% TPR working-point threshold, as a function of the number of vertices in the
event, which quantifies the amount of pileup. The TPR is fairly insensitive to PU
until %* ∼ 35, (the average PU recorded by the LHC in 2018), where the TPR drops
to 97%. At the same time, the FPR increases mildly, resulting in a rate increase from
∼ 34 Hz (at the average PU value ∼ 20) to ∼ 48 Hz at %* ∼ 35. In other words, the
algorithm trained on 2016 conditions would have been sustainable until 2018 with
∼ 15% rate increase (with respect to the average value) or it would have required a
threshold adjustment along the way, a pretty standard operation when designing a
trigger menu at the beginning of the year. We believe that, in view of these facts, the
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Figure 10.8: Dependence of TPR and FPR on the amount of pileup in the event
(estimated through the number of vertices) for the inclusive CC̄ selectorwhen applying
the 99% TPR working-point threshold. The gray histogram shows the distribution
of the number of vertices in the training dataset, covering a wide range from ∼ 10
to ∼ 40 following a Poisson distribution with mean value of 20.

proposed algorithm would be as robust as many state-of-the-art algorithms operated
at the LHC experiments.

10.5 Impact on other topologies
While reducing the resource consumption of standard physics analyses is the main
motivation behind this study, it is important to evaluate the impact of the proposed
classifiers on other kind of topologies. For this purpose, we consider a handful of
beyond-the-standard-model (BSM) scenarios, andwe compute the TPR as a function
of the most relevant kinematic quantities, similar to what was done in Fig. 10.7 for
the standard topologies.

We consider the following BSM processes:

• �→ �
+
, : a heavy Higgs boson �with mass 425 GeV decaying to a charged

Higgs boson �+ of mass 325 GeV and a,− boson. The �+ then decays to a
,

+
�
0 final state, where �0 is the 125 GeV Higgs boson, which we force to

decay to a bottom quark-antiquark pair. This model, introduced in Ref. [307],
generates a 212, topology similar to that given by CC̄ events.
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Figure 10.9: Selection efficiencies of different BSMmodels using 99%TPRworking
point as functions of lepton ?) , "

2
) , and �

miss
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+
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Figure 10.10: Distributions of the validation sample and pseudo-data. The pseudo-
data is created by adding a Gaussian noise of mean zero and standard deviation of
10% to the validation sample’s particle momenta. The high-level features are then
recomputed with the new list of particles.

• High-mass �→ �
+
, : a high-mass variation of the previous model, in which

the � and �+ masses are set to 1025 GeV and 625 GeV, respectively.

• � → 4ℓ: a light neutral scalar particle � with mass 20 GeV, decaying to two
neutral scalars of 5 GeV each, both decaying to muon pairs, for a total of four
muons in the final state.

• ,′ resonancewithmass 300GeV, decaying inclusivelywith,-like couplings.

• /′ resonance with mass 600 GeV, decaying to a pair of electrons or muons.

These events are filtered with the baseline selection described in Sec. 10.2.

For each of these models, we consider the inclusive classifier and apply the 99%-
TPR thresholds on HCC̄ and H, . We then consider the fraction of events passing at
least one of the two selectors. Results are shown in Fig. 10.9 for the most relevant
kinematic quantities. While the individual selectors might show local inefficiencies,
the combination of the two trigger paths is perfectly capable of retaining any event
with features different from that of a QCD multĳet event. In this respect, the logical
OR of our two exclusive topology classifiers is robust enough to also select a large
spectrum of BSM topologies. On the other hand, one cannot guarantee that QCD-
like topologies (e.g., a dark photon produced in jet showers and decaying to lepton
pairs) would not be rejected, a limitation which also affects traditional inclusive
trigger strategies.

10.6 Robustness study
As the classifier is trained onMonte-Carlo simulation samples, one needs to consider
the discrepancy between Monte-Carlo and real data when deploying the classifier
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Table 10.2: Signal efficiency (TPR) at different values of the false positive rate
(FPR) for the inclusive classifier selecting CC̄ evaluated on the validation sample and
the pseudo-data.

FPR TPR on validation sample TPR on pseudo-data
5.2% 99.0 ± 0.1% 97.6 ± 0.1%
0.7% 95.0 ± 0.1% 90.9 ± 0.2%
0.2% 90.0 ± 0.2% 83.5 ± 0.2%

in the trigger. We investigate the robustness of our topology classifiers against this
discrepancy by creating a pseudo-data sample, which attempts to emulate real data
by adding a Gaussian noise to the particles’ momenta in the simulation samples.
The Gaussian noise has mean of zero and standard deviation of 10% of the variable’s
values being applied. Fig. 10.10 shows some comparisons between theMonte-Carlo
samples and the pseudo-data with this Gaussian noise added.

We evaluate the performance of our fully-trained inclusive classifier on the new
pseudo-data. Tab. 10.2 shows a slight reduction of signal efficiency: at the same
background contamination rate of 5.2%, the signal efficiency reduces by only 1.4%.
This demonstrates that our classifiers can be robust against some augmentation that
mimics the discrepancy between data and Monte-Carlo simulation. A comprehen-
sive study on full simulation and data in proper control regions would be needed
when deploying this classifier into production.

10.7 An alternative use case
In this chapter, we showed how one could use a topology classifier to keep the overall
trigger rate under controlwhile operating triggerswith otherwise unsustainable loose
selections. In this appendixwe discuss how topology classifiers could be used to save
resources for a pre-defined baseline trigger selection by rejecting events associated
to unwanted topologies. In this case, the main goal is not to reduce the impact of the
online selection. Instead, we focus on reducing resource consumption downstream
for a given trigger selection.

To this purpose, we consider a copy of the dataset described in Sec. 10.2, obtained
tightening the ?) threshold from 23 to 25 GeV and the isolation requirement from
ISO < 0.45 to ISO < 0.20. Doing so, the sample composition changes as follow:
7.5% QCD; 92% , ; 0.5% CC̄. With such selections, the trigger acceptance rate
would decrease from 690 Hz to 390 Hz, closer to what is currently allocated for
these triggers in the CMS experiment.
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Following the procedure described in Sec. 10.3 and 10.4, we train the same topology
classifiers on this dataset. The correspondingROCcurves are presented in Fig. 10.11
for a CC̄ and a, selector.

0.0 0.2 0.4 0.6 0.8 1.0
Background Contamination (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ff
ic

ie
nc

y 
(T

PR
)

Raw-image classifier (AUC): 0.9112
Abstract-image classifier (AUC): 0.9604
HLF classifier (AUC): 0.9785
Particle-sequence classifier (AUC): 0.9942
Inclusive classifier (AUC): 0.9956

0.0 0.2 0.4 0.6 0.8 1.0
Background Contamination (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 E

ff
ic

ie
nc

y 
(T

PR
)

Raw-image classifier (AUC): 0.8064
Abstract-image classifier (AUC): 0.9018
HLF classifier (AUC): 0.9596
Particle-sequence classifier (AUC): 0.9867
Inclusive classifier (AUC): 0.9892

Figure 10.11: ROC curves for the CC̄ (left) and , (right) selectors described in the
chapter, trained on a dataset defined by a tighter baseline selection.

We then define a set of trigger filters applying a lower threshold to the normalized
score of the classifier, choosing the threshold value that corresponds to a certain
TPR value. The result is presented in Table 10.3, in terms of the FPR and the trigger
rate.

The trigger baseline selection we use in this study, close to what is used nowadays
in CMS for muons, gives an overall trigger rate (i.e., summing electron and muon
events) of ∼ 390 Hz (i.e., 190 Hz per lepton flavor). If one was willing to take (as
an example) half the, events and all the CC̄ events, this number could be reduced to
∼ 200 Hz using the inclusive selectors presented in this study (taking into account
the partial overlap between the two triggers). A more classic approach would consist
in prescaling the isolated lepton triggers, i.e. randomly accepting half of the events.
The effect on, events would be the same, but one would lose half of the CC̄ events
while still writing 15 times more QCD than CC̄ events. In this respect, the strategy
we propose would allow a more flexible and cost-effective strategy.

10.8 Related works
Machine learning is traditionally used in high-energy physics as part of data analysis,
and was an important ingredient to the discovery of the Higgs boson, as discussed
in [308]. Several classification algorithms have been studied in the context of
LHC physics application, notably for jet tagging [172–179] and event topology
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Table 10.3: False positive rate (FPR) and trigger rate (TR) corresponding to different
values of the true positive rate (TPR), for a CC̄ (top) and, selector. Rate values are
estimated scaling the TPR and process-dependent FPR values by the acceptance and
efficiency, assuming a leading-order (LO) production cross section and luminosity
of 2×1034 cm−2 s−1. TR values should be taken only as a loose indication of the
actual rates, since the accuracy is limited by the use of LO cross sections and a
parametric detector simulation.

CC̄ selector Raw-image Abstract-image HLF Particle-sequence Inclusive
(DenseNet) (DenseNet) (DNN) (GRU) (DNN+GRU)

FPR @99% TPR 76.7 ± 0.2% 55.5 ± 0.3% 44.3 ± 0.3% 13.4 ± 0.2% 10.2 ± 0.2%
FPR @95% TPR 43.5 ± 0.3% 20.2 ± 0.2% 9.1 ± 0.2% 2.1 ± 0.1% 1.5 ± 0.1%
FPR @90% TPR 24.8 ± 0.3% 9.9 ± 0.2% 4.2 ± 0.1% 0.6 ± 0.0% 0.5 ± 0.0%
TR @99% TPR 285.8 ± 0.9 Hz 230.4 ± 1.0 Hz 219.6 ± 1.0 Hz 56.7 ± 0.7 Hz 42.4 ± 0.6 Hz
TR @95% TPR 148.9 ± 1.0 Hz 84.6 ± 0.9 Hz 37.2 ± 0.6 Hz 9.9 ± 0.3 Hz 8.3 ± 0.3 Hz
TR @90% TPR 72.9 ± 0.8 Hz 41.6 ± 0.6 Hz 18.6 ± 0.4 Hz 3.9 ± 0.2 Hz 3.8 ± 0.2 Hz

, selector Raw-image Abstract-image HLF Particle-sequence Inclusive
(DenseNet) (DenseNet) (DNN) (GRU) (DNN+GRU)

FPR @99% TPR 81.3 ± 0.2% 68.9 ± 0.3% 45.7 ± 0.3% 17.3 ± 0.2% 14.9 ± 0.2%
FPR @95% TPR 58.4 ± 0.3% 43.9 ± 0.3% 19.6 ± 0.2% 6.1 ± 0.1% 5.2 ± 0.1%
FPR @90% TPR 46.9 ± 0.3% 30.2 ± 0.3% 11.7 ± 0.2% 3.0 ± 0.1% 2.5 ± 0.1%
TR @99% TPR 385.9 ± 0.2 Hz 384.3 ± 0.2 Hz 376.3 ± 0.2 Hz 363.1 ± 0.2 Hz 362.8 ± 0.2 Hz
TR @95% TPR 367.5 ± 0.5 Hz 360.8 ± 0.5 Hz 349.7 ± 0.5 Hz 344.2 ± 0.4 Hz 343.9 ± 0.5 Hz
TR @90% TPR 343.6 ± 0.6 Hz 336.6 ± 0.6 Hz 323.8 ± 0.6 Hz 325.0 ± 0.6 Hz 324.7 ± 0.6 Hz

identification [303, 307, 309] using feed-forward neural networks, convolutional
neural networks or physics-inspired architectures. Lists of particles have been
used to define jet and event classifiers starting from a list of reconstructed particle
momenta [168–170]. These studies typically consider data analysis as the main use
case, focusing on small FPR selections. This is the main difference with respect to
this study, which focuses on the optimization of real-time data-taking procedure.

In parallel, machine learning techniques have also been used in online event selec-
tion. For example, the LHCb experiment used a decision-tree based approach for
the high-level trigger in the first LHC run [310] and re-optimized it with MatrixNet
algorithm for Run II [311]; ATLAS uses BDT in its multi-step tau trigger for Run II
[312]; a BDT was also deployed on FPGA cards of the hardware-level trigger of the
CMS experiment [313]. These triggers are mainly based on high-level features re-
lated to specific parts of a collision event. We propose instead to define an algorithm
that is based on a raw-event representation and considers the full event collision at
once. To our knowledge, this is the first demonstration of how a recurrent neural
network could perform a successful inference on a full event and improve topology
identification based on object-specific features.



227

In addition, traditional triggers based on machine learning run in tagging mode,
i.e., are used to identify certain types of particles. Instead, we propose to use our
topology classifier in veto mode: the trigger algorithm running downstream would
be a classic trigger with loose selection, which would normally be unsustainable due
to high throughput. The topology classifier would subsequently remove a majority
of background events, sustaining the trigger rate and saving downstream computing
resources.

10.9 Summary
We show how deep neural networks can be used to train topology classifiers for LHC
collision events, which could be used as a cleanup filter to select or reject specific
event topologies in a trigger system. We consider several network architectures,
applied to different representations of the same collision datasets.

The best results are obtained by combining a set of physics-motivated high-level
features with the output of a GRU unit applied to a list of particle-level features. For
the most difficult case, i.e., selecting rare CC̄ events, we show how a trigger based on
this concept would retain 99% of the CC̄ events while reducing the FPR by more than
∼ 10 times.

The information given as input to the GRU, the abstract-image CNN and the raw-
image CNN is the same, but coded differently. The difference in performance is then
a combination of two effects: the encoding of this information in the input event
representation and the way the network architecture exploits it. The DNN case is
different. The DNN uses in principle less information. On the other hand, the list
of HLFs given as input to the DNN is based on domain knowledge that the other
networks have to learn by themselves. This is why the DNN model is very compet-
itive despite using less information and why the inclusive classifier (GRU+DNN)
improves on the GRU-based particle sequence classifier. Nevertheless, it is remark-
able that the score of the particle sequence classifier learns interesting correlation
patterns with the HLF features, showing that (to some extent) the GRU is learning
some of this domain knowledge.

We show that such a trigger would have a minimal impact on the main kinematic
features of the event topologies under consideration. The effect of operating this
topology classifier as a final filter of a given single-lepton trigger would result in
small decrease of trigger efficiency by few percentage (depending on the TPR of
the chosen working point). On the other hand, such a filter would allow for a looser
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selection, efficiently including non-isolated leptonswith low ?) without downstream
consequences in terms of computational power and storage. In addition, the logic OR
of the CC̄ and, selections would also catch a broad class of new-physics topologies,
on which the classifiers were not trained.

The advantages of running these types of algorithms comes at the cost of computa-
tional resources to train the models. In our case, a single training of the inclusive
classifier took 4 hours on a cluster consisting of 6 GeForce GTX 1080 GPUs. Build-
ing a cluster of a few tens of GPUs of this kind, to be used as a training facility,
is well within the budget of big-experiment computing projects. For this reason,
dedicated studies are ongoing to integrate train-on-demand services in the com-
puting infrastructures of LHC experiments [305, 314]. In view of the challenging
trigger environment foreseen for the High-Luminosity LHC, it would be important
to test this trigger strategy as a way to preserve a good experimental reach with a
substantial reduction of computational resources. In this respect, we look forward
to the LHC Run III as an opportunity to experiment with this technique using full
simulation and study its impacts on real-time event selection.
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C h a p t e r 11

GENERATIVE ADVERSARIAL NETWORKS FOR
FULL-EVENT SIMULATION

We investigate how a Generative Adversarial Network could be used to generate a
list of particle four-momenta from LHC proton collisions, allowing one to define
a generative model that could abstract from the irregularities of typical detector
geometries. As an example of application, we show how such an architecture could
be used as a generator of LHC parasitic collisions (pileup). We present two ap-
proaches to generate the events: unconditional generator and generator conditioned
on missing transverse energy. We assess generation performances in a realistic LHC
data-analysis environment, with a pileup mitigation algorithm applied.

11.1 Introduction
The simulation of subatomic particle collisions, their subsequent detector interac-
tion, and their reconstruction is a computationally demanding task for the comput-
ing infrastructure of the experiments operating at the CERN Large Hadron Collider
(LHC). The high accuracy of state-of-the-artMonteCarlo (MC) simulation software,
typically based on the GEANT4 [111], has a high cost: MC simulation amounts
to about one half of the experiments’ computing budget and to a large fraction of
the available storage resources [315], the other half being largely used to process
simulated and real data (event reconstruction).

Following their invention in 2014, GANs [285] gained traction as generative models,
often superior to Variational Autoencoders [251] and with very impressive results
in image production [316, 317]. Due to their high inference speed, GANs can be
used as fast-simulation libraries. This approach has been successfully investigated
with proof-of-principle studies related to particle showers in multilayer calorime-
ters [318–320] and particle jets [321], as well as in similar application to different
HEP domains [322–327]. All these studies formalized the simulation task in terms
of either image generation or analysis-specific high-level features.

In this work, we present pGAN, a full-event particle-based generative model that
can be used to emulate pileup simulation at the LHC.
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11.2 Pileup simulation
The majority of LHC proton-proton collisions result in so-called minimum-bias
(MB) events, i.e., in low-energy (soft) interactions between proton constituents.
These events are characterized by low-?) particles, as opposed to the head-on colli-
sion processes typically studied at the LHC (so-called hard or high-?) interactions).
Any hard interaction happens simultaneously to many parasitic MB events, generi-
cally referred to as pileup. Pileup simulation is a fundamental aspect of a realistic
LHC simulation software. The current implementation of pileup simulation consists
in overlapping a set of MB events to the main high-?) collision. Events could be
generated on demand or be sampled from a pre-generated library. The former is
computationally expensive, while the latter is inflexible and suffers from I/O issue.

GAN emerges as a possible solution to speed up the on-demand generation of MB
events and remove the need for a pre-generated library. To our knowledge, the
only application of machine learning to pileup simulation is the work presented in
Ref. [328], where pileup images are generated using a Deep Convolutional GAN
model (DCGAN) [329]. However, an image-based event representation cannot be
used as input for downstream reconstruction algorithms. In addition, our proposed
pGAN, which uses particle-based event representation, can abstract from the details
of the detector geometry (e.g., its irregularities) and better scales with the foreseen
increase of detector complexity.

11.3 Dataset
Synthetic MB events from proton-proton collisions are produced using the PYTHIA8
[103] event generator. The center-of-mass energy of the collision is set to 13 TeV,
corresponding to the LHC Run II (2015-2018). All soft QCD processes are acti-
vated, allowing for both initial- and final-state radiation as well as multiple parton
interactions. The produced events are passed to DELPHES [269], to emulate the
detector response. We take as a reference the upgraded design of the CMS detector,
foreseen for the High-Luminosity LHC phase. The DELPHES particle-flow recon-
struction algorithm is applied, returning the list of charged particles, photons, and
neutral hadrons in the event. Minimum bias events are then combined to simulate a
per-event pileup contribution, with mean number of MB events =PU = 20 following
a Poisson distribution. We randomly sample =PU events from the MB dataset and
mix them by merging the list of charged particles, neutral hadrons, and photons
across the events.
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Due to the complexity of training on long sequences, we restrict a maximum of 150
particles per event: the 50 charged particles, 50 photons and 50 neutral hadrons
with the highest ?) value. This choice is mainly due to technical limitations that a
more powerful training setup might help to overcome. On the other hand, cutting
the sequence after ?) ordering is a well motivated simplification of the problem:
a typical physics analysis would be based on a pileup mitigation algorithm, which
usually removes the majority of the soft pileup contamination.

11.4 Network architectures
AGANconsists of two neural networks, a generatorG and a discriminatorD. Given
a set of samples G, the aim of a GAN training is to learn the function ?data(G) ∈ �
under which the G samples are distributed. We define an =-dimensional prior of
input noise I ∼ ?I (I) ∈ R=. The generator G is a differentiable function with
trainable parameters \G , mapping R

= to �. The discriminator D, with trainable
parameters \D , is a map between � and [0, 1], returning the probability that a given
sample belongs to the set of real samples rather than originating from G. D is
trained to assign the correct probability to both real and generated (“fake”) data; G
is trained to produce samples such that they maximize the probability of them being
real D(G(I)).

We develop 2 models for pGAN: an unconditional pGAN where the generator starts
from purely random noise I, and a conditional pGAN [330] where a label acts as
an extension of I to allow for generation of events based on an initial condition. In
our use case, the missing transverse energy pmissT is chosen as the label due to its
importance in most physics analyses.

The loss function to train G and D in an unconditional pGAN is described as:

Luncond ≡ Ladv = EI∼?I (I) [log(P(� (� (I)) = 0)] + E�∼� [log(P(� (�) = 1))] ,
(11.1)

while for conditional pGAN, the loss function becomes:

Lcond = L03E + UL0DG , (11.2)

where

Laux = E(I,pmissT )∼(?(I)× 5 (�))

[
|pmissT − ?̂miss) (� (I |pmissT )) |

pmissT

]
+ EG∼�

[
|pmissT (G) − ?̂miss) (G) |

pmissT (G)

]
,

(11.3)
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?̂
miss
) is the missing transverse energy value computed from list of particles input
to the discriminator, 5 (�) is the empirical pmissT distribution of the dataset. In the
conditional GAN setting, the dataset is transformed such that q( ®?miss) ) = 0 and the
q value of each particle is computed as azimuth angle between its momenta and
®?miss) . This way a single scalar value pmissT can describe the full vector ®?miss) since
the direction is chosen as the coordinate axis.

Figure 11.1: The architecture of conditional pGAN: generator Gcond (top) and
discriminator Dcond (bottom). Arrows signify concatenation. Details are described
in the text.

Unconditional pGAN
Generator

The G model takes as input a set of time steps, corresponding to the number of
particles to generate, sampled from a uniform distribution from 0 to 50 for each
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Figure 11.2: The architecture of unconditional pGAN: generator Gcond (top) and
discriminator Dcond (bottom). Arrows signify concatenation. Details are described
in the text.

particle class. Along with the noise, the current particle number = is given to
the network. We represent each particle as a (?) , q, [) tuple. We enforce the q-
symmetry constraint through a mod-2c activation function for q. The input in each
branch from the noise input is processed via a block of Dense layers, a GRU layer,
and another block of Dense layers as the final outputs. Each block of Dense consists
3 concatenated Dense layers that represent the particle’s ?) , q, and [, respectively.

Due to the peculiar shapes of the [ distributions, we pre-train a small dense network
that fed with a Gaussian-distributed input mimics the [ distribution as output. This
network is used to process the [ output of the generator. This can be viewed
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as an activation function parametrizing the [ distribution in an unbiased way and
decouples learning the distribution from the already complex particle generation
task.

Discriminator

The discriminator D is of a binary classifier whose first step consists in a Physics
layer, which takes each particle’s defining features (?) , q, [, =) and concatenates
to them other redundant features (\, ?I, ?). This Physics layer is introduced to
maximize the information given to the discriminator without adding redundant
information to the particle representation returned by the generator. This prevents the
generator for having to learn dependencies between different features of the particle
representation, while allowing the discriminator to exploit them. The discriminator
makes use of a Bidirectional recurrent layer, which reduces the dependence on the
long term memory of the GRU cell. A layer that calculates the mean and standard
deviation of the features in a dense layer is included, in a similar spirit to feature
matching [331]. Mini-batch discrimination is used to prevent mode collapse.

Conditional pGAN
Generator

The generator Gcond for the conditional pGAN, as shown in Fig. 11.1, is built on
top of the unconditional generator G. An initial value of the pmissT , sampled from
real data, is injected as the input of the generator along with the noise after being
rescaled to same range of the noise. This initial pmissT is also used as the input to the
discriminator. The rest of the generator architecture is similar to the unconditional
pGAN’s G.

Discriminator

The discriminatorDcond, as shown in Fig. 11.1, takes as inputs the 3 lists of particles
along with the event pmissT , which is either the initial condition pmissT (in the case of
the generated lists of particles) or the actual pmissT (in the case of sampling the
lists of particles from the training data). In addition to usual computation flow in
the unconditional D described in Sec. 11.4, Dcond also computes a few high-level
features out of the input particle lists, in particular the reconstructed pmissT and �)
(the scalar sum of all input particles’ momenta), which are used as inputs to the
final prediction. A binary flag Δ, which returns 1 if the absolute difference between
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reconstructed pmissT and the initial pmissT is greater than n and returns 0 otherwise,
is also concatenated to the input of the final prediction. This can be viewed as
an attempt to let the discriminator to learn some global kinematic features of the
inputs. Additionally, the reconstructed ?̂miss) are compared with the initial input pmissT

to construct the additional term L0DG in the loss function, as described in Eq. 11.3.

Implementation details
Adam [212] is used for optimizationwith a batch size of 32, a learning rate of 1×10−4

for the generator and of 2×10−4 for the discriminator. For the conditional pGAN, we
choose n = 10GeV and U = 0.05. We train on cropped sequences of variable length,
forcing the discriminator to learn to distinguish even very short arrays, and make
use of dropout in the discriminator. Batch normalization [230] is included in the
discriminator but not in the generator. Hyperparameter optimization was performed
on the learning rate of both networks. We find that Least-Squarse GAN [332]
offers the most stable training, outperforming both Wasserstein GAN [333] and the
original GAN implementation.

11.5 Experimental evaluation
GANperformance evaluation is a challenging task. Due to their unsupervised nature,
domain and task-specific metrics are often required. Our evaluation technique is
three-fold: (i) we plot distributions of relevant physical features and quantify the
matching between the ground-truth (GT), PYTHIA8 + DELPHES, and our network; (ii)
we make use of high-level global event-shape variables such as the transverse thrust
and the pmissT ; (iii) we evaluate the effect of using our proposed generation technique
in a real analysis environment. To this purpose, we apply a state-of-the-art pileup
removal algorithm (SoftKiller [334]) and cluster the remaining particles in the event,
characterizing the agreement between real simulation and pGAN on jet kinematic
properties (e.g., the jet ?) ). These three different performance assessments are
discussed in the rest of this section.

Histogram matching
Fig. 11.3 shows how the pGAN generators succeed in learning the main aspects of
the particles’ ?) , [ and q distributions. The comparison is limited to the first 50
high-?) particles of each class, in order for the representation of the generated event
to be consistent with theGANgenerator output. We observe a remarkable agreement
in ?) and q: the long tail of the transverse momentum distribution is well described
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Figure 11.3: Comparison of the transverse momentum ?) (left), azimuth angle q
(center) and pseudorapidity [ (right) for charged particles between the test data and
the events generated by unconditional pGAN (top) and conditional pGAN (bottom).
For the conditional pGAN, q is transformed to be the azimuth angle between the
particles’ momenta and ®?miss) .

across four orders of magnitude and the q rotation invariance of the physical process
is reproduced. On the other hand, while the qualitative features of the pseudorapidity
distribution are learned, the agreement is not completely satisfactory. A better match
should be the goal of future work. Fig. 11.4 shows comparisons for some of the
event-related high level features used in model evaluation: transverse thrust and
pmissT . We observe some discrepancy being associated to overall scale shifts, related
to the different truncation criteria applied to the two sets of events.

Wasserstein metric
We use the previously described histograms to quantify the difference between the
target and generated distributions through the Wasserstein or Earth Mover’s (EM)
distance. The EM distance can be understood as the amount of “work” (probability
density × distance) required to transform one distribution into the other. While
other choices are possible (e.g., the Kolgomorov-Smirnov test), the EM distance
is usually more suited for long-tailed distributions such as in ?) and rewards local
improvement better. We rescale the target and generated distributions of the various
features so that they are all of the same order of magnitude, since the EM distance
depends upon the scale choice.
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(a) Unconditional pGAN

(b) Conditional pGAN

Figure 11.4: Comparison of the transverse thrust and pmissT distributions between
the test data and the generated events by pGANs.

Figure 11.5: Evolution of our performance metric (solid black) as a function of
training. EM distances for some of the individual quantities are superposed.
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We define our performance metric as the weighted average of the EM distances
over the feature distributions: ?) , [, q for all three particle types, sphericity,
transverse thrust, aplanarity, pmissT , and the first and second transverse Fox-Wolfram
moments [335]. The use of this metric tackles the problem of lack of interpretability
of the loss function: we observe that the metric decreases steadily as the training
progresses, as shown in Fig. 11.5, providing a way of monitoring progress, perform-
ing early-stopping and tracking training failure. Based on this metric, we perform
model comparison, hyperparameter tuning, and the final best-model choice.

Pileup subtraction
Typical LHC analyses are performed after applying a pileup removal algorithm,
which aims to subtract soft radiation from QCD. It is then important to demonstrate
that the pGAN is good in modeling the residual pileup contribution, after such a
subtraction algorithm is applied. Since this residual pileup contribution is the only
relevant effect for physics analyses, it is acceptable for a pileup emulation software
to have a non-accurate pileup simulation as long as the pileup effect is well model
after applying a pileup mitigation technique. For this purpose, we consider a sample
of / → aa events, generated using Pythia8. Events are processed with Delphes,
using the same setup adopted to generate the pileup reference sample, both with and
without activating the pileup emulation at =PU = 20. The generated no-pileup events
are mixed with the pileup emulation returned by the generator. The SoftKiller [334]
algorithm with a grid size of 0 ≈ 0.5 is then applied to both these events and those
with a full pileup simulation.

Table 11.1: Mean leading-jet ?) for events with no pileup and pileup generated by
Pythia8 and by the network (pGAN), before and after running SoftKiller.

〈?) 〉 / GeV 〈?) 〉 / GeV
No PU 136.8

Pileup—GT 146.6 Pileup—GT—subtracted 135.0
Pileup—pGAN 141.1 Pileup—pGAN—subtracted 135.7

Fig. 11.6 shows the ?) distribution of the highest-?) jet in the event in various
configurations. The main effect of pileup contamination is a shift in the ?) distribu-
tion towards larger values. The shift is underestimated when the pileup is described
through the pGAN generator, which is due to the fact that pGAN only returns the first
150 particles per event, instead of the usual ∼ 900. After processing the event with
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Figure 11.6: Comparison between leading jet ?) distributions for events with no
pileup (solid black) and pileup generated by Pythia8 (green) and by the network
(magenta). Distributions are shown both before (left) and after (right) running the
SoftKiller pileup mitigation algorithm. The bottom plot shows the Pythia/GAN
ratio.

the SoftKiller algorithm, the leading jet ?) distribution for Pythia8 and our GAN
match within 0.7 GeV. The agreement could be further improved by increasing the
number of neutral hadrons and charged particles returned by the pGAN.

Computational performance
We measure the average inference time with pGAN in a single thread of an
Intel® Xeon® CPU E5-2650 v4@ 2.20GHz to be 3.19 ms per event. The average
event simulation time in CMS is ∼ O(100 s) per event [326]. This corresponds to
an improvement factor of 105 in terms of computational resources with our pGAN
solution.

11.6 Distributed training
Training a GAN is computationally expensive and benefits from supercomputing
clusterswith the coordination ofmultipleGeneral-PurposeGraphics ProcessingUnit
(GP-GPU) in different host machines. In this section, we present several ways for
parallel computation of the gradients needed for training with Stochastic Gradient
Descent (SGD) [300, 336, 337]. One can leverage these levels of parallelism
on high performance computing (HPC) centers composed of many nodes with
high bandwidth connectivity. The computation and communication is orchestrated
using the MPI framework [338], abstracting the communication protocols from the
computation. An MPI program is executed over multiple processes, running on
multiple physical hosts on the cluster. Each process is called a worker, and it does
not matter a priori if they get executed on the same physical node. Depending on the
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topology of the HPC, there can be more than one GP-GPU per physical host, and we
enforce to not get more than one process associated with one GP-GPU. Therefore,
each worker in the following refers to a process with at least one dedicated GP-GPU
attached.

In training a deep learning model, there are two main parallelism methods to con-
sider:

• Data parallelism: Minibatches are split among multiple workers to compute
the gradient evaluated on different fractions of the minibatches in parallel.
Each worker keeps a copy of the model parameters. A master process will
then collect the gradient results, compute the model parameter update, and
then send the update back to the workers to update their models. In a syn-
chronous setting, the master process waits until all worker processes finish
their computations, then collect the result, compute the update, and broadcast
the update to all workers at once. This synchronous method, while preserving
the accuracy, suffers from high latency due to the inefficient use of workers
with typically high idle time. In practice, parallel SGD is often done in an
asynchronous fashion, where the master process receives information from
each worker, computes the update, and then sends it back immediately to the
worker without waiting for other workers to finish. Popular asynchronous
training algorithms include Downpour SGD [339] and Elastic Averaging
SGD [340].

• Model parallelism: For a gigantic model with billions of parameters, it
is virtually impossible to store the whole model into a single GP-GPU’s
memory. Model parallelism is the process of splitting a model up between
multiple devices and creating an efficient pipeline to train the model across
these device to maximize GPU utilization [341]. The first step is to partition
the model, either by modules or by types of operations, and then store each
partition in one single device. The second step is to build an efficient pipeline
to orchestrate the execution of the model training flow, including the forward
computations and backward propagation, in different devices to maximize the
utilization. In this study, we use the native functionality of TensorFlow to
partition the computational graph into different devices [121].
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11.7 Summary
We presented GAN models based on a recurrent unit, capable of generating lists
of particles with variable lengths and also with an initial condition on pmissT . Such
a model could be used for particle-based simulation software, such as those of
experiments using particle-flow reconstruction algorithms. This model could be
used to replace ordinary rule-based algorithms in specific aspects of jet generation.
In this paper, we show its application to pileup emulation in LHC collisions. While
technical limitations forced us to reduce the length of the returned particle chain,
the network is capable of emulating the effect of pileup on a realistic data analysis,
after applying a pileup mitigation algorithm, reducing the computational resource
for event simulation by five orders of magnitude.



242

C h a p t e r 12

GENERATIVE MODELS FOR ANALYSIS-SPECIFIC FAST
SIMULATION

We present a fast-simulation application based on a Deep Neural Network, designed
to create large analysis-specific datasets. Taking as an example the generation
of ,+jet events produced in

√
B = 13 TeV proton-proton collisions, we train a

neural network to model detector resolution effects as a transfer function acting on
an analysis-specific set of relevant features, computed at generation level, i.e., in
absence of detector effects. Based on this model, we propose a novel fast-simulation
workflow that starts from a large amount of generator-level events to deliver large
analysis-specific samples. The adoption of this approach would result in about
an order-of-magnitude reduction in computing and storage requirements for the
collision simulation workflow. This strategy could help the high energy physics
community to face the computing challenges of the future High-Luminosity LHC.

12.1 Introduction
At the CERN Large Hadron Collider (LHC), high-energy proton-proton (??) colli-
sions are studied to consolidate our understanding of physics at the energy frontier
and possibly to search for new phenomena. While these studies are typically con-
ducted according to a data driven methodology, synthetic data from simulated ??
collisions are a key ingredient to a robust analysis development. Particle physicists
rely extensively on an accurate simulation of the physics processes under study,
including a detailed description of the response of their detector to a given set
of incoming particles. These large sets of synthetic data are typically generated
with experiment-specific simulation software, based on the GEANT4 [111] library.
Through Monte Carlo techniques, GEANT4 provides the state of the art in terms of
simulation accuracy. The first two runs of the LHC highlighted the remarkable
agreement between data and simulation, with discrepancies observed at the level
of a few percent. On the other hand, running GEANT4 is demanding in terms of
resources. As a consequence of this, delivering synthetic data at the pace at which
the LHC delivers real data is one of the most challenging tasks for the computing
infrastructures of the LHC experiments. It is then more and more common for LHC
physics analyses to be affected by large systematic uncertainties due to the limited
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Figure 12.1: The event generation workflow of the CMS experiment. The ??
collision process is simulated up to the production of stable (hence observable)
particles (GEN). The simulation of the detector response is modelled by the GEANT4
library (SIM). The resulting energy deposits are turned into digital signals (DIGI)
that are then reconstructed by the same software used to process real collision events
(RECO). At this stage, high-level objects such as jets are reconstructed. Starting
from the RECO data format, a reduced analysis data format (MINIAOD) is derived.

Figure 12.2: Computing resource breakdown for the generation workflow of the
CMS experiment, in terms of CPU (left) and storage disk (right). See Sec. 12.6 for
details.

amount of simulated data. This is particularly true for precise measurements of
Standard Model processes for which large datasets are already available today. In
the future, with the high-luminosity LHC upgrade, this will become a serious prob-
lem for most of the LHC data analyses [342]. Our community is called to reduce the
computing resources needed for central simulation workflows by at least one order
of magnitude, not to jeopardize the accuracy gain expected when operating the LHC
at a high luminosity.

To give a concrete example, we consider the event simulation workflow of the CMS
experiment, schematically represented in Fig. 12.1. The first step (GEN) consists
in running an event generator library, simulating a ?? collision, the production of
high-mass particles from it, and the decay of these particles to those stable particles
which are then seen by the detector. This step creates the so-called generator-
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level view of a collision event, corresponding to what a perfect detector would see.
The simulation of the detector response (SIM) translates this flow of particles into
a set of detector hits, taking into account detector imperfections and the limited
experimental resolution. These hits are converted to the same digital format (DIGI)
produced by the detector electronics and then reconstructed by the same software
used to process real collision events (RECO). At this stage, high-level objects such
as jets are created. Starting from the RECO data format, a reduced analysis data
format (MINIAOD) is derived [343]. Figure 12.2 provides a breakdown of CPU and
disk resources for each of these steps. Details on the procedure followed to measure
these values are given in Sec. 12.6.

Recently, generative algorithms based on Deep Learning (DL) techniques have
been proposed as a possible solution to speed up GEANT4. When following this
approach, one typically focuses on an image representation of LHC collisions (e.g.,
energy deposits in a calorimeter) and develops some kind of generative model [251,
285, 333, 344, 345] to by-pass GEANT4 when simulating the detector response to
individual particles [318, 320, 346–348] or to groups of particles, such as jets [321,
323, 349] or cosmic rays [322]. Generative models were considered also for similar
applications in HEP, such as amplitude [350] and full event topology [326, 351, 352]
generation. While these studies demonstrate the potential of generative models for
HEP, more work is needed to fully integrate this newmethodology in the centralized
computing system of a typical LHC experiment. In particular, one needs to work
beyond the collision-as-image paradigm so that the DL-based simulation accounts
for the irregular geometry of a typical detector while delivering a dataset in a format
compatible with downstream reconstruction software.

Other studies [327, 353, 354] investigated a more extreme approach: rather than
trainingmodels to perform generic generation tasks in a broader software framework
(e.g., a DL-based shower generator in GEANT), one could design analysis-specific
generators, with the limited scope of delivering arrays of values for physics quantities
which are relevant to a specific analysis. Reducing the event representation to a
vector of meaningful quantities, one could obtain a large amount of events in short
time andwith small storage requirements by skipping all the intermediate steps of the
data processing. The considered features could be the fundamental quantities used
by a given analysis (e.g., the four-momenta of the final-state reconstructed objects
in a search for new particles). In this context, both generative adversarial networks
(GANs) [327, 353] and variational autoencoders (VAEs) [353] were considered.
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In this case, one learns the N-dimensional probability density function (N-dim
pdf) of the event, in a space defined by the quantities of interest for a given analysis.
Sampling from this function, one can then generate newdata. The open questionwith
this approach stands with the trade-off between statistical precision (which decreases
with the increase amount of generated events) and the systematic uncertainty that
could be induced by a non accurate description of the N-dim pdf. When training
both VAEs and GANs, one learns how to interpolate between the samples provided
in the training dataset. The limited amount of data in the training dataset is the
ultimate precision-limiting factor, as discussed in Ref. [355], but generative models
retain amplification capability similarly to what a fitting function does, as shown in
Ref. [356] forGANs. Ultimately, one needs to balance the statistical uncertainty (i.e.,
the amplification factor when augmenting the dataset) and systematic uncertainties
associated to the accuracy with which the generative model interpolates between the
training data points. The balance will be reached tuning, among other things, the
training dataset size. The optimal configuration, intrinsically application specific,
determines whether a generative model is computationally convenient.1

In this paper, we propose to rephrase the problem of analysis specific dataset gener-
ation. Rather than morphing a distribution in a latent space into a target distribution,
we want to start from the ideal-detector distribution and morph it into the actual-
detector distribution, learning a fast-and-accurate detector response model. We do
so combining the strength of multi dimensional deep neural regressors to the adap-
tive power of kernel density estimation, which has a long and successful tradition
in particle physics [357]. A similar goal is presented in [354] in which invertible
neural networks are utilized with a focus on being able to perform unfolding (mor-
phing from reconstructed level information to generator level distributions). For a
given physics study, we assume that the interesting features can be represented by a
limited set of high-level quantities (the feature vector ®G). We assume that a training
dataset is provided. For each collision event in the dataset, the feature vector is
computed at three stages: (i) at generator level ®G� , i.e., before applying any detector
simulation. This view of the collision event corresponds to the perfect-resolution
ideal detector case; (ii) at reconstruction level ®G', i.e. after the simulation of the

1Here, we are assuming that GEANT4 will be used to generate the training dataset and the
generative model will then be used to scale up the simulated dataset size. If the desired accuracy
can be reached only at the price of more training data to be generated, the net gain of this approach
would be reduced.
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detector response, modelled with GEANT4; (iii) at the output of the DL model ®G�! 2.
We model the detector response as a function of the generator-level feature vector:

G
8
�! = N(`8' (®G�), f

8
' (®G�)) , (12.1)

whereN(`, f) is a one-dimension Normal function centered at ` with variance f2

and the index 8 runs over the components of the feature vector ®G. We train a DL
model to simultaneously learn the functions ®̀' (®G�) and ®f' (®G�), and then use the
Normal model of Eq. (12.1) to generate ®G�! from ®G� . Under the assumption that
large sets of ®G� values can be obtained in relatively short time (which is typically the
case for High Energy Physics applications), this strategy would result in a sizable
save of computing resources. On one hand, one would reduce computing time
bypassing the more intense steps of the generation workflow. In addition, one would
reduce the need for large storage elements: rather than storing individual collision
data, which demands an event storage allocation between O(1MB) (for raw data)
and O(10kB) (for analysis-ready object collections), one would directly handle a
few relevant quantities for a given analysis. One could save resources by utilizing
analysis-specific fast simulation models for data augmentation, e.g., generating 10%
of the required data with the traditional GEANT4 workflow and the remaining 90%
only up to the GEN step. These data, shared among the O(100) analyses, would be
used to create analysis-specific training and inference datasets. Even considering
that O(100) analysis teams would have to train O(100) specific generative models,
the strategy we propose would result in an important resource gain, provided a large
enough training facility.3

We demonstrate this strategy at work on a concrete example, namely the generation
of,+1 jet events produced in

√
B = 13 TeV ?? collisions, similar to those recorded

at the LHC. We discuss the model design and training, its performance and its
accuracy for factor-ten data augmentation.

This paper is structured as follows: Section 12.2 provides a full description of
the input dataset and its feature-vector representation. Section 12.3 describes the
model architecture and the training setup. Sections 12.4 and 12.5 discuss the model

2Given the limited computing resources at hand, it was not possible to carry on this study on
a GEANT4-based dataset. Instead, we used the DELPHES [269], which provides a realistic setup to
demonstrate the proposed strategy.

3The model presented in this work was trained on a RTX2080 GPU by NVIDIA in 30 minutes.
Even a small-size GPU cluster with O(10) GPUs dedicated to this use case could then serve the needs
of a large collaboration. Its cost is negligible on the scale of the large computing infrastructures built
for the LHC experiments.
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performance in terms of accuracy and resource utilization, respectively. Conclusions
and outlook are given in section 12.9.

12.2 Benchmark dataset
As a benchmark problem, we consider the generation of ,+1 jet events produced
in

√
B = 13 TeV ?? collisions. The starting point is the inclusive production of

, → `a events using PYTHIA8 [103]. At this stage, we require each event to have
at least one muon with a transverse momentum ?) > 22 GeV.4 Detector effects are
modelled using DELPHES v3.4.2 [269]. We consider the CMS detector model for the
HL-LHC upgrade, distributed with DELPHES. At this stage, the event is overlaid to
minimum-bias events to model the effect of pileup, i.e., those parasitic ?? collisions
happening at the same beam crossing as the interesting event. For each collision, the
number of pileup collisions is sampled from a Poisson distribution with expectation
value set at 200, in order to match the expected conditions for HL-LHC.

At generator level (GEN), jets are clustered using the anti-kt algorithm [57] with
jet-size parameter ' = 0.5, taking the four-momenta of all the stable particles in
the event as input. We consider events with one clustered jet, with ?) > 30 GeV
and |[ | < 2.4. In order to avoid the double counting of muons as jets, we require
Δ' =

√
Δ[
2 + Δq

2
> 0.5 between the muon and the jet in each event.

At reconstruction level, jets are clustered from the list of particles returned by the
DELPHES particle-flow algorithm. As for the GEN jets, we consider anti-kt jets
with ' = 0.5. Both the muon and jet are matched to the corresponding generator-
level object, selecting the reconstructed object (e.g., a muon) with the smallest Δ'
from the corresponding generator-level object. Since our final state is composed
of one jet and one muon, this simple algorithm does not generate ambiguity in the
association. When generalizing this approach to more complex event topologies,
one might modify the matching algorithm to prevent that the same gen-level object
is associated to multiple reconstructed objects. In addition, we discard events with
mismatched muons by requiring that the relative residual of the muon ?) to be
|?�) − ?

'
) |/?

�
) < 10%. This requirement allows us to remove a small fraction of

events (∼ 0.5% of the total) in which themuon from the, boson is not reconstructed
4We use a Cartesian coordinate system with the I axis oriented along the beam axis, the G axis

on the horizontal plane, and the H axis oriented upward. The G and H axes define the transverse plane,
while the I axis identifies the longitudinal direction. The azimuth angle q is computed with respect
to the G axis. The polar angle \ is used to compute the pseudorapidity [ = − log(tan(\/2)). The
transverse momentum (?) ) is the projection of the particle momentum on the (G, H) plane. We fix
units such that 2 = ℏ = 1.
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but anothermuon is found. InDELPHES, inefficiency inmuon reconstruction happens
through an uncorrelated hit-or-miss procedure based on pseudo-random numbers.
Working in an experimental environment, one would retain the whole dataset from a
more accurate simulation, based on specific physic requirements that would induce
learnable correlations.

The feature vector ®G is built considering the following nine quantities:

• The muon momentum in Cartesian coordinates: ?`G , ?
`
H , and ?

`
I .

• The jet momentum in Cartesian coordinates: ? 9G , ?
9
H, and ?

9
I .

• The logarithm of the jet mass log(" 9 ).

• The missing transverse energy in Cartesian coordinates: �missG and �missH .

In addition, we consider a set of 12 auxiliary features, computed from the input
feature vector ®G:

• The muon momentum in longitudinal-boost-invariant coordinates: ?`
)
, [`,

and q`.

• The jet momentum in longitudinal-boost-invariant coordinates: ? 9
)
, [ 9 , and

q
9 .

• The missing transverse energy in polar coordinates: �miss) and qmiss.

• The transverse mass ") , i.e., the mass of the four momentum obtained
summing the the muon transverse momentum (� `

)
, ?

`
G , ?

`
H , 0) to the missing

transverse energy (�miss) , �
miss
G , �

miss
H , 0).

• () , i.e., the scalar sum of �
miss
) , ?`

)
, and ? 9

)
.

• The jet mass: " 9 .

These quantities are computed at generator and reconstruction level and are used to
assess how well the correlation between the generated quantities is modeled. Unlike
the feature-vector quantities, they do not enter the definition of the loss function.

The model training and performance assessment is done on a dataset of 2M events,
which we separate in a test and a learning datasets, containing 20% and 80% of the
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Figure 12.3: Model architecture: a feature vector at generator level ®G� is given as
input to two regression models, returning vectors of central values ( ®̀�!) and RMS
(®f�!), from which the reconstructed feature vector predicted by the DL model ®G�!
is generated.

events, respectively. The learning dataset is further split into a training (70%) and
a validation (30%) dataset. In order to test the data augmentation properties of the
proposed strategy, we also consider a larger test dataset, containing 10M events.

Both the training and large-size testing datasets are published on Zenodo [358, 359].

12.3 Model description and training
Our model architecture is represented in Fig. 12.3. The input vector ®G� of generator-
level features is passed to two regressive models, each returning a vector with the
same dimensionality of ®G� . One is interpreted as a vector of mean values ®̀�! .
The other one is interpreted as the "±1f" quantile ®@�! . By taking the absolute
difference between each mean value and its corresponding quantile, we compute the
RMS values ®f�! .

Each regressive model consists of a six-layer dense neural network. The first and last
layers have nine nodes each, while the intermediate layers have 100 nodes. All layers
except the last one are activated by LeakyReLU [291] functions, with U = 0.05.
Linear activation functions are used for the last layer. The model output is then
computed as ®G�! = ®̀�! + ®f�! · ®n , where the vector ®n contains random numbers
sampled from a Normal function centered at 0 with unit variance. In addition to the
main features ®G, we compute a set of auxiliary features (see section 12.2) used for a
further post-training validation.
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The loss function is defined as the sum of a mean absolute error on ®̀�! and a
quantile regression on ®@�!:

L'��$ =

〈  ®̀�! − ®G'

1 +&'( ®@�! , ®G')

〉
, (12.2)

where the average is done over a training subset, and the quantile regression loss
&' is defined as:

&'(®G, ®H) =
:∑
8=1

Θ(G8, H8) |G8 − H8 | . (12.3)

where
Θ(G, H) = (1 − W)\ (G − H) + W\ (H − G) . (12.4)

The step function \ (C) is set to one (zero) for positive (negative) values of C and
W = 0.841. This choice of W guarantees that the loss is minimized to learn the
quantile corresponding to one standard deviation.

We implement the model in KERAS [120] and train it with the Adam [212] optimizer,
with batches of 128 and an epoch-dependent learning rate ;A = 0.001/(1 + =epoch).
The model is trained for 100 epochs, but convergence is typically reached between
30 epochs. The network parameter values corresponding to the smallest validation
loss are taken as the optimal configuration.

12.4 Results
The trainedmodel is used to generate samples of reconstructed events fromgenerator-
level events. We evaluate the training performance by comparing the output distri-
butions with those obtained by DELPHES for the same generator-level events.

A comparison is shown in Fig. 12.4 for the feature-vector quantities. The sample
derived from the DL model is similar to the the one obtained running a classic
generation workflow. We train the model ten times and produce ten distributions.
The bin-by-bin spread of these distributions is considered as a systematic uncer-
tainty associated to the DL model, which is summed in quadrature to the statistical
uncertainty in the same bin to compute the total uncertainty, shown by the error bars
of the DL model in the figure. These systematic uncertainties are included to all the
DL distributions shown in this paper. Only the statistical uncertainty is shown for
the corresponding distributions of reconstructed quantities.

The model can account for small perturbations and major distortions of the GEN
distribution, as well as the default detector simulation workflow. The agreement is
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Figure 12.4: Distribution of reconstructed and model-predicted quantities for the
feature-vector quantities, compared to the corresponding quantities from generator-
level quantities provided as input to the model. The bottom panel below each plot
shows the bin-by-bin ratio of the model-predicted over reconstructed distribution for
each quantity, labelled DL/Reco. The error bars on the model-predicted quantities
is composed of the statistical uncertainty and systematic uncertainty associated with
model training, represented by the different colors.

not perfect, and certainly the model can be improved. Nevertheless, the reached
accuracy is comparable to that of a typical data-to-simulation comparison and
certainly sufficient to support the novel procedure that we want to put forward in
this study. The observed agreement goes beyond one-dimensional projections of the
input features. The distributions of auxiliary quantities, computed as a function of
the feature-vector quantities, are also modelled to a good precision (see Fig. 12.5).
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Figure 12.5: Distribution of reconstructed and model-predicted auxiliary quantities,
compared to the corresponding generator-level quantities. The bottom panel below
each plot shows the bin-by-bin ratio of the model-predicted over reconstructed dis-
tribution for each quantity, labelled DL/Reco. The error bars on the model-predicted
quantities is composed of the statistical uncertainty and systematic uncertainty as-
sociated with model training, represented by the different colors.

This demonstrates that the DL-based generator accounts for correlations between
quantities, as much as the traditional DELPHES workflow does.

While a comparison of dataset distribution gives a confidence of the quality achieved
by the DL model, one can further test the achieved precision by looking at relative
residual distributions. Our DL model does not sample events from a latent space
(like a GAN or a plain VAE). Instead, it works as a fast simulation of a given
generator-level event, preserving the correspondence between the reconstructed and
the generated event, which allows us to compare event-by-event relative residual
distributions. These distributions, which quantify the detector effects on the analysis-
specific interesting quantities, are shown in Fig. 12.6. There, we compare the relative
residuals between reconstructed and generated quantities, for the DL-based and the
traditional simulation workflow. An overall agreement is observed, despite a bias
on the muon and jet momentum coordinates. While the distribution ratio shown in
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the bottom panel tends to magnify the effect that the distribution shift has on the
tails, this residual difference between the target and learned resolution model has
little impact on the simulation quality downstream, as one could judge by looking
at the corresponding distributions in Fig. 12.4.

Figure 12.7 shows the same comparison for the auxiliary quantities. As the plot
shows, a correct modeling of the residuals is obtained for energies, masses, and
momenta. On the other hand, the model struggles to account for the high-resolution
detector response on the [ and q coordinates. While this has little impact on the
modeling of the q and [ distributions (see Fig. 12.4), this is certainly an aspect to
improve in real-life applications. Deeper models on larger training data could learn
the function better. In addition, one could modify the loss function to force the net-
work to learn specific auxiliary quantities (e.g., the jet mass) with critic networks (as
done in the context of GAN training) and explore non-Gaussian response functions.
To this extent, working in Cartesian coordinates might be a better choice, in order
to facilitate the calculation of the auxiliary quantities in the loss function. We did
not expand our study in these directions, for which a target dataset based on a full
detector simulation would be more appropriate.

Sec. 12.7 provides further assessments of the generation quality, showing 2D distri-
butions of quantities derived from the DL-based generator vs the traditional one.

While our method relies on a Gaussian smearing function, it could be generalized
to more complex functions if needed. In that case, one would have to learn more
quantiles to model response functions with more than two parameters and then
express these parameters as a function of the learned quantiles. On the other hand,
it should be stressed that the response functions learned by our method are the result
a convolution of the ®̀ and ®f distribution (approximated by the Neural Network)
and the Gaussian sampling function. Since the former is typically described by
a non-Gaussian distribution, our model can learn non-Gaussian detector response
even when relying on a simple Gaussian sampling. This is the case, for instance,
of the asymmetric tail of the pmissT residual distribution or the qmiss double-peak
structure shown in Fig. 12.7. On a practical side, a Gaussian sampling was adequate
for this study, based on DELPHES data, but one might have to consider more complex
sampling functions when trying to emulate with GEANT-based simulation.

In order to test the scaling of model accuracy with the inference dataset size, we
apply our DL-based fast simulation strategy to a dataset five times bigger than what
used for training. Figures 12.8 and 12.9 show the comparison of the distributions
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Figure 12.6: Relative residual distribution for reconstructed and model-predicted
quantities in the feature vector, computing with respect to the reference input. The
bottompanel of each plot shows the ratio between the two relative residuals, expected
to be consistent with 1 for a DL model which correctly models the detector response
of the traditional workflow. The error bars on the model-predicted quantities is
composed of the statistical uncertainty and systematic uncertainty associated with
model training, represented by the different colors.

obtained in this case, compared to what is obtained with DELPHES, respectively,
for the input vector and the auxiliary features. The corresponding relative residual
distributions are shown in Sec. 12.8. Figure 12.10 shows the differential double ratio
distribution (high-statistics over low-statistics) for the reco-to-DL ratios. In presence
of a systematic effect masked at low statistics, the reduction of the uncertainty in the
high-statistics sample would unveil the problem. Instead we do observe flat double
ratios, i.e. a similar behavior of the DL model for the small and the large sample.
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Figure 12.7: Relative residual distribution for reconstructed and model-predicted
auxiliary quantities, computing with respect to the reference input. The bottom
panel of each plot shows the ratio between the two relative residuals, expected to
be consistent with 1 for a DL model which correctly models the detector response
of the traditional workflow. The error bars on the model-predicted quantities is
composed of the statistical uncertainty and systematic uncertainty associated with
model training, represented by the different colors.

In view of this empirical observation, we are confident that the DL model accuracy
would scale at much larger dataset size than what is used for training.

These distributions agreewith those obtainedwhen the training and inference dataset
size agree, i.e., no accuracy deterioration is observed due to the scaling of the dataset
size. This fact suggests that the proposed methodology scales adequately with the
inference dataset size.

12.5 Computing resources
In order to fully assess the advantage of the proposed generation workflow, we
consider the following use case: an analysis team requests # events to be centrally
produced by the central computing infrastructure of their experimental collaboration.
Instead, the central system would deliver # events at generator level (GEN step of
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Figure 12.8: Distribution of reconstructed and model-predicted quantities for the
feature-vector quantities, compared to the corresponding quantities from generator-
level input. In this case, the model is applied to a dataset five times larger than the
training dataset. The error bars on the model-predicted quantities is composed of
the statistical uncertainty and systematic uncertainty associated with model training,
represented by the different colors.
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Figure 12.9: Distribution of reconstructed and model-predicted quantities in the
auxiliary quantities, compared to the corresponding quantities from generator-level
input. In this case, the model is applied to a dataset five times larger than the
training dataset. The error bars on the model-predicted quantities is composed of
the statistical uncertainty and systematic uncertainty associated with model training,
represented by the different colors.

Fig. 12.1), while processing only = < # of them through the full chain. The analysis
team would then (i) run their data analysis software on the = events, and (ii) train on
these data a DL-based fast-simulation like the one presented in Section 12.3. With
this model, they would then (iii) process the other (# − =) generator-level events
and produce the dataset required for their analysis.

In order to assess the resource savings, we point out that step (iii) comes with
negligible computational costs. Model inference on a CPU requires 100 sec to run
on 100000 events (i.e., O(1) msec/event), which results in a 8 MB file (saved as a
compressed HDF5 file) for the example use case we discussed. While these details
would change depending on the analysis-specific event representation, the quoted
values give a reasonable order-of-magnitude estimate of the expected resource needs.
Step (ii) can run at a minimal cost: our model could train within 30 minutes when
running on a commercial GPU. The residual cost is then entirely driven by step (i).
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Figure 12.10: Differential double ratio distribution (high-statistics over low-
statistics) for the reco-to-DL ratios shown in Figs. 12.4 and 12.8 and in Fig. 12.5
and Fig. 12.9.

While a traditional workflow requires O(100) sec/event of CPU time and occupies
O(1) MB/event of storage, producing the same statistics (# events) of GEN-only
events would require 10% disk allocation with a negligible CPU cost, as shown in
Fig. 12.2.

As a consequence, by adopting the strategy outlined above, one would save a factor
#/= in CPU (i.e., only spend sizable CPU resources to produce the training dataset,
which would remain generic and could serve more than one analysis). The storage
allocation would result from the sum of = events in full format and (# − =) GEN-
only events, for a total saving of #/(= + 10%(# − =)). For instance, considering
# = 1" events and = = 10%# , one would save 90% of the CPU resources and 79%
of the disk storage, almost equally shared among the full-format training data and
the (# − =) GEN-only data.
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In principle, the adoption of Next-to-Leading order precision as a default for event
generators could make the cost of the GEN step more relevant in the future. On the
other hand, the upgrade of the detectors towards more granularity will also substan-
tially increase the SIM.We then expect that the SIM step would still be the dominant
consumer of CPU time, unless acceleration strategies like those proposed here will
introduce beyond-GEANT alternatives. In addition, we do expect progresses to
speed up the GEN step as well, e.,g., moving the computation to GPUs or similar
accelerators [360], or using deep learning in phase-space integration [361–364].

12.6 Resource utilization for a standard GEANT4-based generation workflow
In this section, we describe how we derived the values quoted in Fig. 12.2. We
take as a reference the CMS experiment. In absence of a published reference with
a breakdown of CPU and disk resources for GEN, SIM, and DIGI+RECO steps,
we derived the quantities quoted in Fig. 12.2 by generating QCD events on CPU,
through the CERN batch system. To do so, we relied on the open-source CMSSW
software [365] and followed the instructions provided by the CMS collaboration on
the CERN Open Data portal [366].

We consider the same setup used to generate one of the QCD Run II samples pub-
lished on the CERN Open Data portal [367] and the software installation available
on CERN cvmfs distributed file system.

For each step, we ran jobs with 100 and 10 events. For each job, we recorded CPU
time and output file size. Each step is repeated 10 times and the average of each
quantity is considered. The typical uncertainty on these mean values, measured by
the standard deviation of the 10 values, is found to be at most of a few percent and
hence considered negligible. After computing the average for each set of jobs, we
take the difference between the 100-event and 10-event job of each kind, in order to
remove the overhead CPU time and file size that does not originate from per-event
tasks. By dividing these differences by 90, we derive the per-event quantities quoted
in Fig. 12.2.

12.7 Further validation of the deep learning generation workflow
Figures 12.11 and 12.12 show the distribution predicted by the model as a function
of the corresponding quantities from detector simulation, respectively, for input and
auxiliary features. Both the reconstruction techniques start from the generator-level
information and model the detector response through a set of random degrees of
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Figure 12.11: Distribution of input features predicted by the model as a function of
the corresponding quantities from detector simulation.

freedom. The strong correlation and the symmetric distribution around the diagonal
demonstrate that, to a large extent, the two event representations are equivalent.

12.8 Scaling with dataset size
Figures 12.13 and 12.14 show the comparison between reconstructed and generated
quantities with five times more data, computed from detector simulation and pro-
cessing the generator-level event with our model. Qualitatively, these distributions
agree with those of Figs. 12.6 and 12.7, i.e., no accuracy deterioration is observed
due to the scaling of the dataset size. This fact proves the robustness of the proposed
methodology and its effectiveness for data augmentation.
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Figure 12.12: Distribution of auxiliary features predicted by the model as a function
of the corresponding quantities from detector simulation.

12.9 Summary
We presented a proposal for a new data augmentation strategy for fast simulation
workflows at LHC experiments, which exploits a generative Deep Learningmodel to
convert an analysis-specific representation of collision events at generator level to the
corresponding representation at reconstruction level. Following this procedure, one
could replace any request of # simulated events with an = < # request, providing
the residual (# − =) events at generator level. Bypassing the detector simulation
and reconstruction process for the (# − =) events, one would benefit of a substantial
reduction in terms of required resources.

We demonstrated that a simplemean-and-variance regressionmodelwith aGaussian
sampling function allows to reach a good performance, producing a dataset which
resembles that from a traditionalworkflow. We showed that the accuracy is preserved
when applying our strategy to a test dataset much larger than the training dataset.

The proposed model is much simpler than a generative model, e.g., a GAN. The
architecture is easier to train and the task it learns to solve is simpler than generative
realistic events from random points in a latent space. The generator-level input
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Figure 12.13: Predict on an inference dataset five times larger than the training
dataset. Relative residual distribution for reconstructed and model-predicted quan-
tities in the feature vector, computing with respect to the reference input.

carries much of the domain knowledge and the statistical fluctuations of the target
dataset size. In addition, thanks to the light computational weight of the training
and inference steps, one could consider to train several models and apply them to the
same test dataset, using the spread of predictions to evaluate a simulation systematic
uncertainty.

We believe that the LHC experiments could benefit from adopting the proposed
procedure, particularly for the high-precision measurement era during the High-
Luminosity LHC phase.
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Figure 12.14: Predict on an inference dataset five times larger than the training
dataset. Relative residual distribution for reconstructed and model-predicted auxil-
iary quantities, computing with respect to the reference input.
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CONCLUSION

This thesis presented a brief overview of the Standard Model and the theoretical
motivation to measure the Higgs self-coupling, which encodes information about
possible deviation from the SM as well as the shape of the Brout-Englert-Higgs
potential, which has direct impact on the stability of the universe. We presented
a search for nonresonant Higgs pair production in the HH → bbWW final states
with CMS Run 2 data at

√
B = 13 TeV to set limit on the Higgs boson self-coupling

modifier ^_. The observed limit is set within a range −3.3 < ^_ < 8.5, which is the
most sensitive limit to date. The 95% CL upper limit on the product of the Higgs
boson pair production cross section and branching fraction into bbWW is observed
(expected) to be 7.7 (5.2) times the SM prediction. A novel technique to identify
boosted H → bb jets using graph neural networks was also presented to improve
sensitivity for future Higgs searches. This technique was shown to outperform
the existing DeepDoubleB algorithm, popularly used in CMS, while using fewer
parameters and being more resource efficient.

We also discussed the hierarchy problem that motivated the supersymmetry exten-
sion beyond the Standard Model. In particular, we discussed the gauge-mediated
supersymmetry framework, where the neutralino is the long-lived particle that de-
cays into a photon and a gravitino. We presented a search for this new physics
process, using the cluster information from the ECAL in combination with a deep
neural network to identify photons not coming from the interaction vertices, which
is the salient signature for this physics process. Results were shown as the ex-
pected exclusion limits in terms of the proper decay lengths and masses of the
neutralinos, which are also proportional to the effective SUSY breaking scale. The
expected exclusion limits extend the limits from previous searches by five times for
the neutralino proper decay length and up to 100 GeV for the neutralino mass.

We introduced the concept of anomaly trigger in pursue of model-independent
searches for new physics. The anomaly detection algorithm trained on the Standard
Model cocktail can assign an anomaly score for a physics event, saving a dedicated
anomalous data stream for further scrutiny. We also showed how it can be trained
directly on data, and deployed in both HLT and L1 trigger, with the latter being
implemented on FPGA.
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We addressed the enormous computational challenges in the High-Luminosity LHC
era and proposed several machine-learning solutions to tackle these challenges.
First, we proposed a cleanup layer based on event topology to reduce the background
rate of the trigger selection by more than one order of magnitude while retaining
99% of the signal events. The saved resources in terms of downstream processing
and storage allow us to either relax the trigger threshold or reinvest in additional
triggers for other physics programs. Second, we described a possible substitution
for full event simulation based on recurrent generative adversarial networks, which
has the potential to speed up the event simulation by five orders of magnitude.
Lastly, we described a practical fast simulation solution for a specific analysis,
where the number of physics objects are predetermined. Using an encoder-decoder
architecture, we can emulate the detector response without running the simulation
step, directly transform Monte Carlo generator event information into reconstructed
event information, which can result in about an order-of-magnitude reduction in
computing and storage requirements for the collision simulation workflow.
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