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Abstract

Purpose Pheochromocytomas and Paragangliomas (PPGL) result in chronic catecholamine excess and serious health
complications. A recent study obtained a metabolic signature in plasma from PPGL patients; however, its targeted nature
may have generated an incomplete picture and a broader approach could provide additional insights. We aimed to char-
acterize the plasma metabolome of PPGL patients before and after surgery, using an untargeted approach, and to broaden the
scope of the investigated metabolic impact of these tumors.
Design A cohort of 36 PPGL patients was investigated. Blood plasma samples were collected before and after surgical
tumor removal, in association with clinical and tumor characteristics.
Methods Plasma samples were analyzed using untargeted nuclear magnetic resonance (NMR) spectroscopy metabolomics.
The data were evaluated using a combination of uni- and multi-variate statistical methods.
Results Before surgery, patients with a nonadrenergic tumor could be distinguished from those with an adrenergic tumor
based on their metabolic profiles. Tyrosine levels were significantly higher in patients with high compared to those with low
BMI. Comparing subgroups of pre-operative samples with their post-operative counterparts, we found a metabolic signature
that included ketone bodies, glucose, organic acids, methanol, dimethyl sulfone and amino acids. Three signals with unclear
identities were found to be affected.
Conclusions Our study suggests that the pathways of glucose and ketone body homeostasis are affected in PPGL patients.
BMI-related metabolite levels were also found to be altered, potentially linking muscle atrophy to PPGL. At baseline, patient
metabolomes could be discriminated based on their catecholamine phenotype.

Keywords PPGL ● Metabolomics ● NMR ● Paired ● Plasma ● Operation

Introduction

Pheochromocytomas and Paragangliomas (PPGL) are rare
neuroendocrine tumors of neural crest-derived cells, which
can be classified as adrenergic or nonadrenergic (nora-
drenergic and/or dopaminergic), depending on the profile of
catecholamine metabolites [1]. Tumorigenesis can be driven
by germline mutations in hereditary forms, as well as by
somatic mutations [2]. PPGLs can also be classified in two
main clusters based on their expression profiles. Cluster 1 is
characterized by a pseudohypoxic response and includes
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mutations in VHL, succinate dehydrogenase (SDHx) and
EPAS1, whereas cluster 2, is characterized by activation of
the tyrosine kinase receptor and includes mutations in RET
and NF1 [3]. Clusters can be distinguished based on
tumoral catecholamine content, as well as secretory rates
and catecholamine biochemical phenotype (adrenergic or
nonadrenergic) [4]. Even so, a feature common in both
PPGL clusters is overall catecholamine excess, which can
lead to a vast array of symptoms, such as palpitations,
headaches, profuse sweating and hypertension [5]. Patients
may also present with metabolic alterations, particularly
impaired glucose homeostasis [6].

Metabolomics is the study of all metabolite levels in a
given biological fluid, also known as the metabolome [7].
Plasma has been used in metabolomics studies to investi-
gate both rare diseases, such as inborn errors of metabolism
[8], as well as more common diseases, such as cardiovas-
cular impairment, diabetes mellitus, Parkinson’s disease and
depression [9]. Analytical methods include liquid chroma-
tography - mass spectrometry (LC-MS), as well as proton
nuclear magnetic resonance spectroscopy (1H-NMR) [7].
LC-MS is known for its high sensitivity and large number
of detectable metabolites, whereas NMR is a technique that
is highly reproducible and provides increased possibilities
for structure elucidation of unknown compounds [10]. As
different sets of metabolites can be detected with each
method, LC-MS and NMR metabolomics have been applied
simultaneously on the same samples, to provide com-
plementary results [11]. Depending on the research ques-
tion, metabolomics can be applied in a targeted or
untargeted fashion. Targeted metabolomics is better suited
for when there is a predefined list of relevant metabolites,
whereas untargeted metabolomics is preferred when the
goal is to study the whole metabolome, including signals
from unknown metabolites or metabolites of unknown
relevance [12]. Recently, Erlic et al. [13] employed targeted
LC-MS metabolomics for comparing metabolite levels in
patients before and after surgical removal of PPGLs. The
authors found significant alterations in amino acids, gly-
cerophospholipids, sphingomyelins and a monosaccharide.
These changes were linked to clinical features associated
with PPGL, such as (pre-) diabetes mellitus, catecholamine-
induced catabolic state, increased cardiovascular risk and
post-operative weight increase.

In the present study, we applied untargeted NMR meta-
bolomics [14] to plasma samples collected from patients
before and after surgical removal of a PPGL. Our primary
goal was to examine in an exploratory approach the impact
of tumorous catecholamine excess on plasma metabolome,
without predefining a set of potentially relevant compounds.
NMR spectroscopy was selected as the analytical method,
to focus on the strongest effects PPGL tumors have on
patient plasma metabolome. We compared our results with

those of Erlic et al. [13], thus taking advantage of the
complementarity of the two approaches.

Materials and methods

Patients and samples

Samples were collected from 36 patients with biochemically
and histologically proven PPGL according to the Prospective
Monoamine-producing Tumor (PMT) study protocol [15].
For this international study, PPGL patients were diagnosed
and treated at the following centers: Institute of Cardiology
Warsaw Poland, University Hospital Dresden Germany,
Radboud University Medical Center Nijmegen the Nether-
lands, Klinikum der Ludwig-Maximilians-Universität
München Germany, University Hospital Würzburg Ger-
many, University Medical Center Schleswig-Holstein
Lübeck Germany. All patients were part of the Prospective
Monoamine-producing Tumor (PMT) study, and sample
collection took place according to a standardized protocol, in
order to minimize effects of preanalytical biases [15]. In
short, blood was drawn after an overnight fast and a 12 h-
abstinence from alcohol, nicotine and caffeine. Patients
maintained a fully supine position for 30min before blood
sampling (10 mL). Heparinized tubes were used to collect
blood samples, which were subsequently placed on ice or
cool pads. Plasma was collected after centrifugation at 4 °C,
for 10 min at 3000 × g and stored at −80 °C until analysis.
Samples were taken both before and after surgical removal of
the tumor. No patients had evidence of metastasis, based on
the absence of PPGL tissue in non-chromaffin organs. The
tumoral catecholamine phenotype was determined as either
adrenergic or nonadrenergic using plasma levels of metane-
phrines and the criteria described in Pamporaki et al. [16].
The study protocol was approved by local ethical committees
and written informed consent was obtained from all
participants.

As part of the standard work-up in the PMT study, patients
were screened for the presence of mutations by means of the
PheoSeq targeted gene panel [17], as described in a previous
report [13]. All patients were tested for both somatic and
germline mutations, except Warsaw patients (n= 18), for
which only germline testing was carried out.

Both plasma free metanephrines and urine catechola-
mines were measured for all patients pre- and post-
operatively according to the PMT study protocol using
well-established methods [15].

Untargeted 1H-NMR metabolomics

Plasma samples were prepared according to our previously
described method [14] and were analyzed as part of a larger
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NMR metabolomics study. The PPGL study samples were
randomized over the course of 48 batches, along with
Quality Control (QC) and Healthy Volunteer (HV) samples,
with the two latter groups only used for data processing
before statistical analysis. The method was applied as
described previously [14], with specific details listed in the
supplementary information, section 2.2.

Untargeted as well as targeted peak identification was
done by means of signal fitting, using Chenomx evaluation
v. 8.4 [18] and Bruker Topspin v. 4.0.6. The human
metabolome database [19], along with the Madison Meta-
bolomics Consortium Database [20], were used as refer-
ences for metabolite identification. On selected HV and QC
samples, 2D NMR experiments were carried out to assign
unknown peaks to a metabolite. Spiking experiments were
done to confirm assignments (supplementary information,
section 2.2). For biochemical pathway investigation, the
Kyoto Encyclopedia of Genes and Genomes KEGG [21],
was employed.

Data analysis and statistics

Detailed information regarding statistical methods can be
found in the supplementary information, section 2.3. In
short, we explored the effects of clinical, biological and
technical (preanalytical and analytical) factors on the meta-
bolome, using both uni- and multi-variate analyses at base-
line (including only measurements in pre-operative patient
samples), as well as comparing pre- vs. post-operative in a
paired manner, in accordance with a similar study [13].
Patients were grouped based on either binary factors or
continuous covariates (using the median value as a cutoff for
making two groups), to investigate the effect of each factor
separately. Factors investigated include center of origin,
sample age, patient sex, patient age, tumor size, total free
plasma metanephrines (sum of concentrations of meta-
nephrine, normetanephrine and methoxytyramine), total free
urine catecholamines (sum of outputs of epinephrine, nor-
epinephrine and dopamine), BMI, presence of hypertension,
presence of diabetes mellitus, tumor location (adrenal/extra-
adrenal), catecholamine biochemical (adrenergic/non-
adrenergic), days before surgery (at baseline), days between
pre- and post-operative sampling (for comparing pre-to
postoperative), analytical batch, run order, presence of
cluster 1 or 2 mutations, presence of detected mutations and
presence of SDHx mutations. Multivariate methods were
applied via the “MixOmics” [22] R package and include
Principal Component Analysis (PCA), Partial Least Squares
Discriminant Analysis (PLSDA), their paired equivalents
[23], as well as classic Partial Least Squares (PLS) as a
multivariate regression method. Peaks that were found to
contribute to a multivariate model were deemed “important”.
Univariate tests used to complement multivariate results

included the Spearman correlation, Wilcoxon-tests for
comparison of averages and the Shapiro-Wilkinson test for
estimating data normality. For all p values generated, a false
discovery rate correction [24] was used to account for
multiple testing. A corrected p value of less than 0.05 was
accepted as statistically significant.

Results

Patient and sample characteristics

The characteristics of the 36 patients included in the present
study are summarized in Table 1. Thirty patients had a
single adrenal tumor, one had bilateral adrenal tumors, four
had a single extra-adrenal paraganglioma and one had an
adrenal plus an extra-adrenal tumor. For all subsequent
analyses, the latter patient was assigned to the extra-adrenal
group. Surgery was curative in all cases, based on normal
plasma metanephrines on the day of post-operative sam-
pling [15]. Sampling took place from approximately one
day to eight months before surgery, and approximately one
month to three years after tumor removal. Post-operative
samples were collected, on average, one year after pre-
operative sampling. Samples were analyzed by means of
proton NMR spectroscopy ~4.5 years and 3 years after
collection (median values, for respectively pre- and post-
operative samples).

Baseline metabolomics

Processing of the plasma NMR spectra resulted in 91 peaks,
corresponding to a total of 30 metabolites. Five peaks could
not be assigned to known metabolites, and were listed as
“unknowns”. Collected data were determined to have sig-
nificantly higher amount of biological variance compared to
technical variance. The influence of analytical factors was
investigated and was not found to affect results on a mul-
tivariate level. Even so, we found one significant correlation
between the serine peak at 3.939 ppm and the order pre-
operative samples were analyzed within batches (p=
7e–03, rho= 0.61). The underlying cause of this correlation
remains unclear. Additional information on data quality can
be found in the supplementary information of this paper,
section 3.2 and Fig. 1S.

The investigation of the relationship between individual
plasma metabolites and clinical or preanalytical factors
(indicated in section 3.3) revealed tyrosine (peak at 7.18
ppm) as significantly higher in patients with a high BMI, as
compared to those with a low BMI (cutoff: 25 kg/m2, p=
0.02). No other individual metabolites were significantly
different between groups defined by the clinical or pre-
analytical factors (data not shown). Multivariate regression
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Table 1 Patient and sample characteristics

Clinical factors/covariates No of patients in each group/Average/middle value—[Range]

Sex (F/M) (36) 27/9

Age (years) (36) 51 [26–74]

Body Mass Index (kg/m2) (34) 25.5 [17.7–33.9]

Center of Origin (36) 18 Warsaw, 12 Dresden, 2 Nijmegen, 2 Munich, 1 Lubeck, 1
Würzburg

Catecholamine Phenotype (Adrenergic/Nonadrenergic) (36) 18/18

Tumor Location (36) 31 adrenal (1 bilateral), 4 extra-adrenal, 1 adrenal+ extra-
adrenal

Tumor Size (maximum diameter, cm) (36) 4.8 [2–16]a

PPGL-related gene mutation (36) 22 sporadic, 3 NF1, 4 RET, 1 SDHB, 2 SDHC, 2 SDHD, 1
EPAS1, 1 VHL

Pre-operative plasma metanephrines (36)

Metanephrine (pg/ml) Upper reference limit – 88 pg/ml 109 [7.2–2306.1]a

Normetanephrine (pg/ml) Upper reference limit – age-specific 1070 [40.8–8774.3]a

3-methoxytyramine (pg/ml) Upper reference limit – 17 pg/ml 22 [5.4–459.4]a

Total metanephrines (pg/ml) 1456 [168.3–9451.3]a

Post-operative plasma metanephrines (35)

Metanephrine (pg/ml) Upper reference limit – 88 pg/ml 21 [0.7–76.3]a

Normetanephrine (pg/ml) Upper reference limit – age-specific 80 [28.4–195.6]a

3-methoxytyramine (pg/ml) Upper reference limit – 17 pg/ml 14 [1.8–30.8]a

Total metanephrines (pg/ml) 114 [44.8–256.8]a

Pre-operative 24 h urine catecholamines (34)

Epinephrine (ug/24 h) Upper reference limit – 15 ug/24 h 27 [0.3–206.3]a

Norepinephrine (ug/24 h) Upper reference limit – 60 ug/24 h 126 [4.8–2775.9]a

Dopamine (ug/24 h) Upper reference limit – 382 ug/24 h 223 [27.2–5160.7]a

Total urine catecholamines (ug/24 h) 383 [35.8–8024.3]a

Post-operative 24 h urine catecholamines (23)

Epinephrine (ug/24 h) Upper reference limit – 15 ug/24 h 2 [0.4–8.8]a

Norepinephrine (ug/24 h) Upper reference limit – 60 ug/24 h 20 [7.3–42.2]a

Dopamine (ug/24 h) Upper reference limit – 382 ug/24 h 183 [100.0–324.7]

Total urine catecholamines (ug/24 h) 208 [116.5–351.8]

Pre-operative morbidity

Hypertension (yes/no/unknown) 31/4/1

Diabetes mellitus (yes/no/unknown) 8/26/2

Post-operative morbidity

Hypertension (yes/no/unknown) 12/12/12

Diabetes mellitus (yes/no/unknown) 3/28/5

Sampling

Time between pre- and post-operative sampling (days) 341 [34–1159]a

Pre-operative sample age (days) 1629 [732–2841]

Time between pre-operative sampling and surgery (days) (30) 24 [1–252]a

Post-operative sample age (days) 1252 [318–2023]

Time between post-operative sampling and surgery
(days) (30)

366 [17–1112]a

aFactors for which non-normality was proven and median is reported instead of mean

in parentheses: number of patients for which the information was known per factor
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analysis was used to investigate the interaction between all
factors and the metabolome. No significant multivariate
regression models were found, indicating that the clinical
and technical factors considered were not found to have a
significant overall effect on the pre-operative patient meta-
bolome (Table 3S).

No differences between groups of patients defined by
clinical or preanalytical factors were found using multi-
variate statistics at baseline, except between catechola-
mine phenotypes (classification accuracy 72%, p= 0.001;
Table 1S). This separation can be observed in the PCA
score plot presented in Fig. 1. The list of important
metabolites for this separation, based on PLSDA (Table
2S), was comprised of higher levels of ketone bodies
(acetoacetate and 3-hydroxybutyrate), creatine, pyruvate
and serine in patients with nonadrenergic than in patients
with adrenergic tumors. Glycerol, acetylcarnitine, dime-
thyl sulfone, succinate, lactate and creatinine, as well as an
unknown metabolite with a peak at 3.26 ppm, were higher
in patients with adrenergic than in patients with non-
adrenergic tumors. We found no significant results com-
paring mutation clusters, possibly because of sample size.
In addition, we did not find any significant results distin-
guishing groups of pre-operative samples defined by using
the median number of days before surgery as a cutoff,
using multivariate (p= 0.925, Table 1S, supplementary
information), or univariate (data not shown) statistics.
Spearman correlation tests did not reach significance
either (data not shown). We applied the same univariate
tests on post-operative sample data, but again found no
significant results (data not shown).

Pre- vs. post-operative metabolomics

We evaluated possible differences between the pre- and
post-operative metabolomes in PPGL patients with a paired
PCA analysis (supplementary information, section 2.3). In
this unsupervised analysis, i.e., without using the sample

group (pre/post) information, we observed a tendency for
separation between pre- and post-operative samples col-
lected from females (Fig. 2). We subsequently proceeded
with supervised statistical analyses on the complete dataset
as well as subgroups, (paired PLSDA and paired univariate
tests) to extract the metabolic signature of this separation.

The multilevel PLSDA model separating the complete
patient set of pre- from post-operative samples was not
found to be significant (p= 0.091, table 4S). Subgroup
analyses resulted in a significant model for the female
patient set (p= 0.044, table 4S). The metabolites acet-
oacetate, glycine, 3-hydroxybutyrate, glucose, pyruvate,
methanol and succinate were increased in pre-operative
samples (Table 2). On the other hand, ornithine, tyrosine,
lactate, dimethyl sulfone and lysine were increased in post-
operative samples. Another significant subgroup model was
for patients post-operatively sampled more than the median
of 341 days after pre-operative sampling. This model (days
between pre- and post-operative sampling >=median, p=
0.008) added proline and an unknown NMR peak at
3.16 ppm (increased preoperatively), as well as histidine/
phenylalanine and an unknown NMR peak at 3.28 ppm
(decreased preoperatively) to the overall signature. In the
subgroup of patients with a low BMI (<25 kg/m2), tyrosine
was found to be significantly decreased pre-operatively
(p= 0.009), and an unknown metabolite with a peak at 3.67
ppm was found to be significantly increased pre-operatively
(p= 0.019).

The differences between important metabolite levels
before and after surgery (delta) were subsequently inves-
tigated for correlations with clinical factors. Starting with
multivariate regression, the analysis resulted in no sig-
nificant models (table 5S). In terms of univariate analyses,
Spearman correlations between clinical factors and
important metabolites can be found in Fig. 3. Significant
positive correlations were found between acetoacetate and
3-hydroxybutyrate (p= 6e–03, rho= 0.56, p= 2e–04,
rho= 0.68, p= 2e–04, rho= 0.67).

Fig. 1 Pre-operative PCA score
plot explaining 38% of the
variance. Samples are identified
based on color and shape, with
patients with an adrenergic
tumor represented by blue
triangles and patients with a
nonadrenergic tumor by
orange dots
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Glucose delta correlated positively and significantly with
total levels of plasma metanephrines (p= 0.010, rho= 0.54).
No significant correlations were found between important
metabolites and urine catecholamine outputs. In regards to
correlations between metabolites, glucose correlated sig-
nificantly and negatively with lysine (p= 0.012),
rho=−0.53, (p= 0.010, rho=−0.54). Acetoacetate corre-
lated negatively with glycine(p= 7e–03, rho=−0.56),
indicating stable levels of one metabolite coinciding with
alterations of the other, since they were both increased before
surgery. Similarly, the positive significant correlation (p=
0.015, rho= 0.52) between proline and tyrosine shows that
the levels of one metabolite correlate negatively with the
levels of the other, since proline was increased pre-opera-
tively, while tyrosine was decreased. Proline also had a
negative significant correlation(p= 9e–03, rho=−0.55)
with histidine/phenylalanine/serine (convoluted peak with
signal overlap). Other correlations can be observed in Figs. 3
and 2S.

Discussion

The variability with which PPGLs can present clinically,
along with their widespread extent of sympathetic acti-
vation [5], render their study an appropriate research topic
for metabolomics. In the present paper, we report the
metabolic alterations we found in patients with PPGL,
using untargeted NMR metabolomics of plasma samples
taken both before and after surgical removal of the tumor.
Specifically, metabolites related to glucose metabolism
were found to be affected, along with compounds linked to
muscle wasting in literature.

In the previous study by Erlic et al. [13] on the impact
of PPGL on plasma metabolome, a targeted approach was
taken using LC-MS metabolomics. Even though untar-
geted NMR detected a different set of analytes (with some
overlap), our results partially agree in terms of a signature
of PPGL metabolic impact. Furthermore, we found meta-
bolites with altered levels before compared to after surgery
which had not been reported in relation to PPGL.

At baseline, we found differences based on catechola-
mine biochemical phenotype that coincide with expected
effects of adrenergic vs. nonadrenergic tumors on patient
metabolism. Specifically, glycerol, which is a product of
lipolysis, a process enhanced by epinephrine more than by
norepinephrine [25], was higher in patients with adrenergic
compared to those with nonadrenergic tumors. Conversely,
ketone bodies, indicating enhanced ketogenesis, which has
been shown to be stimulated by norepinephrine at patho-
physiological concentrations [26], were higher in patients
with nonadrenergic compared to those with adrenergic
tumors. In the targeted study by Erlic et al. [13], the main
differences at baseline related to gender, rather than cate-
cholamine biochemical phenotype. These differences with
our study could be due to our small number of male
patients, along with their not measuring glycerol or ketone
bodies, which were the most important separators at
baseline. Another finding was significantly higher tyrosine
levels in patients with high compared to low pre-operative
BMI, a result supported by targeted metabolomics [13].
Previous work on PPGL has proved that SDHx-PGLs rely
on the Warburg effect [27]. However, we could not find
differences between SDH and non-SDH patients within our
cohort, probably because of the differences in studying
plasma compared to intracellular environments.

Fig. 2 Paired Pre- vs. Post-
operative PCA plot of female
patients explaining 45% of the
total variation present in the
dataset. Multilevel analysis
subtracts variation related to
patient individuality by
subtracting the mean of the two
measurements per patient from
each measurement, essentially
resulting in a paired PCA model.
As a result, each sample’s
counterpart can be found on the
opposite side of the center of the
plot. Pre-operative samples
samples are presented as orange
dots whereas post-operative
samples are blue squares
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Paired comparisons of baseline samples from their
respective post-operative controls resulted in two subgroup
significant separations, which yielded an overall signature
composed of, among others, glucose metabolism-related
compounds pyruvate, lactate, histidine and glucose itself.

In line with the targeted metabolomics study by Erlic et al.
[13], where a decrease of a hexose was found after surgery,
we found significantly increased glucose levels pre-
operatively as expected, given the known PPGL effects
on glucose homeostasis [6]. Histidine peaks had decreased

Table 2 Relevant metabolites for separating pre- from post-operative samples

METABOLITE NMR
PEAK (ppm)

PRE-OP MEDIAN
FOLD
CHANGE
(PRE/POST)a

MAD FOLD
CHANGE
(PRE/POST)a

Subgroup
analysis:
Female

patients

Subgroup
analysis: BMI

< 25 kg/m2

Subgroup analysis:
days between pre- and

post-operative

sampling >=median

3-hydroxybutyrateb 2.313 ↑ 1.139 0.571 S

2.370 ↑ 1.686 1.139 S S

3-hydroxybutyrate/
Prolineb

4.133 ↑ 1.170 0.339 S S

Acetoacetate 2.262 ↑ 1.136 0.650 S S

Dimethyl sulfoneb 3.137 ↓ 0.939 0.407 S S

Glucoseb 5.220 ↑ 1.192 0.238 S, s s S,s

5.227 ↑ 1.184 0.216 S, s s S,s

Glycinec 3.548 ↑ 1.031 0.203 S S

Histidine/
Phenylalaninec

3.126 ↓ 0.823 0.223 S

Histidine/
Phenylalanine/Serinec

3.985 ↓ 0.873 0.152 S

Lactateb 4.080 ↓ 0.980 0.278 S

4.094 ↓ 0.909 0.255 S

4.108 ↓ 0.961 0.264 S S

Lysineb 2.997 ↓ 0.959 0.226 S

3.013 ↓ 0.933 0.218 S

Methanolc 3.346 ↑ 1.132 0.332 S S

Ornithineb 3.041 ↓ 0.918 0.251 S S

Prolineb 1.996 ↑ 1.152 0.222 S

2.060 ↑ 1.129 0.311 S

3.312 ↑ 1.249 0.276 S

Pyruvatec 2.356 ↑ 1.086 0.326 S S

Succinate/3-
hydroxybutyrateb

2.389 ↑ 1.099 0.364 S

Tyrosinec 6.892 ↓ 0.868 0.320 S

7.185 ↓ 0.820 0.169 s

Unknown metabolite
(s)

3.162 ↑ 1.060 0.328 S

3.284 ↓ 0.918 0.410 S

3.670 ↑ 1.324 0.541 s

S: Peaks found important using multivariate models

s: Peaks found significant with univariate statistics
aA median fold change above 1 signifies a metabolite which is higher in pre-, whereas below 1 is higher in post-operative samples. Median
Absolute Deviation is the measure of spread of the median value of the fold change population, and can be used along with the median fold change
to understand which metabolites alter their levels more, relative to other metabolites.
bPeak identity determined by visual inspection+ 2D NMR along with experiments on filtered plasma at pH 2.5
cPeak identity determined by visual inspection+ 2D NMR+ spiking experiments

The trend of increase or decrease in pre-operative samples, was determined based on paired fold changes generated based on the subgroup data
used for univariate statistics

Due to the nature of untargeted NMR, several metabolites can have more than one peak assigned to their name, and due to signals arising from
multiple metabolites contributing to several single peaks, multiple names are listed for several entries
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intensity pre-operatively on average, as in the Erlic et al.
study [13], with the authors concluding a relationship with
diabetes. However, a technical difficulty regarding histi-
dine is that its NMR peaks did not correlate with each other
due to overlap with signals from other metabolites, and
they were only found to be important pre- vs. postoperative
discriminators in patients post-operatively sampled more
than the median of 341 days after pre-operative sampling.
Although catecholamines have been shown to cause
hyperlactatemia [28], the decreased pre-operative lactate
may be explained by decreased glycolysis, which is in
line with a study by Wu et al. [29]. Essentially, in the
presence of PPGL, the equilibrium of the Cori cycle
appears to be shifted toward the direction of increased
gluconeogenesis, as evidenced by increased pyruvate, and
decreased glucose consumption by tissue glycolysis [28],
as lactate levels drop pre-operatively. Based on the positive
correlation between pyruvate and lactate, it would seem
that the mechanisms leading to high glucose operate
competitively. However, the exact mechanism for these
phenomena remains unclear. Another finding of our study
was increased ketone bodies before compared to after
surgery in most patients (23/36) and with a fold change of
1.14 for acetoacetate in females (Table 2). Also, the cor-
relation of glucose with the ketogenic amino acids tyrosine

and lysine, may indicate decreased insulin secretion [30].
Although ketoacidosis has only been shown in a handful of
PPGL cases [31], ketogenesis can be aroused by a switch
from glycolysis to fatty acid metabolism in tissues, a result
of either insulin resistance or decreased insulin secretion
[32], both of which have been associated with stimulation
of adrenergic receptors [6]. The relationship between gly-
cine and ketogenesis, evidenced by its significant correla-
tion to acetoacetate, may be based on the amino acid’s
ability to enhance insulin secretion [33].

BMI can be slightly lower in patients with a PPGL [6]. In
our study, we were unable to confirm this due to limited
post-operative information on BMI (only known for 22/36
patients). However, our results appear to partially agree
with the study by Cala et al. [34], which described the
metabolomic profile of cachexia in patients with other types
of tumors, with lysine, ornithine, histidine and tyrosine
being decreased in cachectic patients. Tumor-related
cachexia is postulated to be related to gluconeogenesis
[35], which results in withdrawal of proteins and lipids from
non-tumor tissue for energy purposes. It’s conceivable,
based on these findings, that PPGL-mediated muscle atro-
phy is intertwined with the changes in glucose homeostasis.
Although cachexia is not clinically evident in patients with
PPGL, skeletal muscle mass is decreased in patients with

Fig. 3 Correlation plot associating each important peak delta with every other. Metabolite delta was determined by subtracting each metabolite’s
post-operative from its pre-operative levels. The estimate of the Spearman correlation coefficient (rho) determines both the color and size of each
dot. Large and red dots represent strong correlations, small dots are weak correlations and blue dots are negative correlations. The associated
significance for each correlation is depicted as an asterisk (*)
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PPGL [36]. The pre-operative decrease in ornithine is fur-
ther supported by the targeted metabolomics study [13]. Our
hypotheses on the pathways impacted by the presence of a
PPGL seem to be corroborated by both our results and lit-
erature, but to prove and understand them further research
is needed.

Several metabolites not previously considered as markers
of PPGL appeared to play a potential role in PPGL patient
metabolism. Specifically, proline, dimethyl sulfone and
methanol potentially contribute to PPGL metabolic impact.
In addition, ketogenesis has not been demonstrated to be
enhanced due to PPGL often, and we have no explanation
for the overall pre-operative increase in succinate (which
overlaps with 3-hydroxybutyrate, Table 2).

A limitation of the study was the small sample size for
subgroup analysis. For example, males were under-
represented. It is possible that certain comparisons were
affected by this limited statistical power. It would be inter-
esting to investigate separately e.g., the effects of non-
adrenergic tumors on patient metabolome (pre vs. post), and
compare the results to those from an adrenergic tumor
investigation, especially since this was a significant differ-
ence for patients at baseline. It would also be interesting to
investigate metabolic differences between samples collected
from patients belonging to different mutation clusters. Also,
not all metadata information was complete, especially after
surgery, for factors that may have a significant impact on
patient metabolome. For example, medication, as well as the
time of weight measurements could be important but were
not taken into account, and neither was pre vs. post-operative
patient and sample age differences, which were unavoidable
as patients were followed up after surgery. This limited
information was investigated directly on recorded NMR
spectra, but due to our data processing approach (supple-
mentary information, section 2.2) peaks unique in a few
samples were not retained in the final dataset. Another
characteristic not considered was sample hemolysis level.
Though patients adhered to an overnight fast, detailed dietary
information, which could influence ketone body levels, was
unavailable. Finally, untargeted NMR metabolomics is hin-
dered by peaks not assigned to known metabolites, even after
specialized experiments were performed, as well as signal
overlap, which resulted in mixed identities for several peaks,
and a low correlation between the important tyrosine peaks.

In conclusion, the comparison of pre- to post-operative
samples led to the discovery of differences related to glu-
cose metabolism, in particular increased ketogenesis and
gluconeogenesis. In addition, metabolites previously linked
to muscle wasting were found to be decreased pre-
operatively. Before surgery, patients with nonadrenergic
tumors were characterized by alterations in metabolite
levels fitting with decreased lipolysis, as well as increased
ketogenesis, compared to patients with adrenergic tumors.

Overall, our findings corroborate previous conclusions
about the effects of PPGL on glucose homeostasis and body
mass, and offer possible explanations as to the biochemical
mechanism underlying these effects.
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readers.
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