
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2020

Hierarchical multinomial modeling to explain individual differences in
children’s clustering in free recall

Michalkiewicz, Martha ; Horn, Sebastian S ; Bayen, Ute J

Abstract: The measurement of individual differences in cognitive processes and the advancement of
multinomial processing tree (MPT) models were two of William H. Batchelder’s major research interests.
Inspired by his work, we investigated developmental differences between 7-year-old children, 10-year-old
children, and young adults, in free recall with the pair-clustering model by Batchelder and Riefer (1980,
1986). Specifically, we examined individual differences (in initial levels and in change across multiple
study–test trials) in cluster encoding, retrieval, and covariation with three basic cognitive abilities: se-
mantic verbal understanding, short-term memory capacity, information-processing speed. Data from two
developmental studies in which 228 participants freely recalled clusterable words in four study–test cy-
cles were used for reanalysis. We combined two model extensions not linked so far (Klauer, 2010; Knapp
Batchelder, 2004). This novel combination of modeling methods made it possible to analyze the relation
between individual cognitive abilities and changes in cluster encoding and retrieval across study–test
cycles. Inspired by William H. Batchelder, this work illustrates how MPT modeling can contribute to
the understanding of cognitive development.

DOI: https://doi.org/10.1016/j.jmp.2020.102378

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-205484
Journal Article
Published Version

 

 

The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives
4.0 International (CC BY-NC-ND 4.0) License.

Originally published at:
Michalkiewicz, Martha; Horn, Sebastian S; Bayen, Ute J (2020). Hierarchical multinomial modeling to
explain individual differences in children’s clustering in free recall. Journal of Mathematical Psychology,
98:102378.
DOI: https://doi.org/10.1016/j.jmp.2020.102378



Journal of Mathematical Psychology 98 (2020) 102378

Contents lists available at ScienceDirect

Journal ofMathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

Hierarchical multinomialmodeling to explain individual differences in
children’s clustering in free recall

Martha Michalkiewicz a,∗,1, Sebastian S. Horn b,1, Ute J. Bayen a,1

a Institute for Experimental Psychology, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
b Department of Psychology, University of Zürich, Binzmühlestr. 14 (Box 11), Zürich, Switzerland

a r t i c l e i n f o

Article history:

Received 14 June 2019
Received in revised form 24 February 2020
Accepted 27 April 2020
Available online 28 May 2020

Keywords:

Multinomial processing tree model
Bayesian hierarchical modeling
Individual differences
Cognitive development
Free recall
Category clustering

a b s t r a c t

The measurement of individual differences in cognitive processes and the advancement of multinomial
processing tree (MPT) models were two of William H. Batchelder’s major research interests. Inspired
by his work, we investigated developmental differences between 7-year-old children, 10-year-old
children, and young adults, in free recall with the pair-clustering model by Batchelder and Riefer
(1980, 1986). Specifically, we examined individual differences (in initial levels and in change across
multiple study–test trials) in cluster encoding, retrieval, and covariation with three basic cognitive
abilities: semantic verbal understanding, short-term memory capacity, information-processing speed.
Data from two developmental studies in which 228 participants freely recalled clusterable words in
four study–test cycles were used for reanalysis. We combined two model extensions not linked so
far (Klauer, 2010; Knapp & Batchelder, 2004). This novel combination of modeling methods made it
possible to analyze the relation between individual cognitive abilities and changes in cluster encoding
and retrieval across study–test cycles. Inspired by William H. Batchelder, this work illustrates how
MPT modeling can contribute to the understanding of cognitive development.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cognitive psychometrics in the form of multinomial process-
ing tree (MPT) models is one of Bill Batchelder’s seminal con-
tributions to mathematical psychology. Through these models,
his influence extends far beyond the community of mathemat-
ical psychologists into most major subdisciplines of psychology.
Having the dissemination of sophisticated mathematical models
in substantive areas of psychological research at heart, he estab-
lished and demonstrated the value of MPT models not only in
mainstream cognitive psychology (e.g., Batchelder & Alexander,
2013; Batchelder & Riefer, 1999; Riefer & Batchelder, 1988), but
also in the fields of cognitive clinical psychology (Batchelder
& Riefer, 2007; Riefer, Knapp, Batchelder, Bamber, & Manifold,
2002), neuropsychology (Batchelder, Chosak-Reiter, Shankle, &
Dick, 1997), cognitive aging (Riefer & Batchelder, 1991a), cog-
nitive assessment (e.g., Batchelder, 1998), and social cognition
(Batchelder & Batchelder, 2008).

Importantly, he inspired others to do the same leading to
innovative developments and applications of MPT models in sev-
eral areas of memory research (e.g., Bayen, Murnane, & Erdfelder,
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1996; Buchner, Erdfelder, & Vaterrodt-Plünnecke, 1995; Erdfelder
& Buchner, 1998; Meiser & Bröder, 2002; Riefer & Rouder, 1992;
Rummel, Marevic, & Kuhlmann, 2016; Stahl & Klauer, 2008), in re-
search on judgment and decision making (e.g., Heck & Erdfelder,
2017; Hilbig, Erdfelder, & Pohl, 2010; Michalkiewicz & Erdfelder,
2016), cognitive aging (Bayen, Erdfelder, Bearden, & Lozito, 2006;
Bayen & Murnane, 1996; Kuhlmann & Touron, 2016; Schnitzs-
pahn, Horn, Bayen, & Kliegel, 2012; Smith, Horn, & Bayen, 2012),
child development (Horn, Ruggeri, & Pachur, 2016; Pohl, Bayen,
& Martin, 2010; Smith, Bayen, & Martin, 2010), psychopathol-
ogy (e.g., Groß & Bayen, 2017; Keefe, Arnold, Bayen, & Harvey,
1999; Woodward, Menon, Hu, & Keefe, 2006), psychopharmacol-
ogy (Walter & Bayen, 2016), social cognition (e.g., Bayen, Naka-
mura, Dupuis, & Yang, 2000; Klauer & Wegener, 1998; Meissner
& Rothermund, 2013), and evolutionary psychology (e.g., Bell &
Buchner, 2009; Schaper, Mieth, & Bell, 2019). In areas of inquiry
where confounded ad-hoc behavioral measures had previously
been used, MPT modeling now allowed researchers to obtain
separate and unconfounded measures of cognitive processes of
interest. As MPT modeling became popular in cognitive psy-
chology and was introduced in other areas of psychology, Bill
Batchelder oversaw the quality of such applications as frequent
reviewer for major journals and as associate editor of the Journal
of Experimental Psychology: Learning, Memory, and Cognition
(2000 to 2003).

https://doi.org/10.1016/j.jmp.2020.102378
0022-2496/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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The third author of this article first met Bill Batchelder in
1989 when she was a Master’s student who, along with her
advisor Edgar Erdfelder, sought advice on how to use the pair-
clustering model (Batchelder & Riefer, 1980, 1986) in a study
on cluster encoding and retrieval in older adults (Erdfelder &
Bayen, 1991). This initial encounter with Bill Batchelder and MPT
modeling lead to fruitful research activities to the present day.
When Bill Batchelder visited us in 2007, he introduced us to
novel hierarchical (multi-level) methods in MPT modeling that
he published soon thereafter (Smith & Batchelder, 2010). After
years of applying MPT models with aggregate data from par-
ticipant groups that are known to be heterogeneous, including
older adults, children, and clinical populations, these new hi-
erarchical methods (Klauer, 2010; Matzke, Dolan, Batchelder, &
Wagenmakers, 2015; Smith & Batchelder, 2010) made it possible
to estimate parameters for participants and items, thus enabling
the investigation of individual differences and correlations with
external variables. These novel developments set us on a path
to investigate determinants of individual differences in latent
cognitive processes (Arnold, Bayen, & Böhm, 2015; Arnold, Bayen,
Kuhlmann, & Vaterrodt, 2013; Böhm, Bayen, & Schaper, 2020;
Filevich, Horn, & Kühn, 2019; Michalkiewicz, Arden, & Erdfelder,
2018; Schaper, Kuhlmann, & Bayen, 2019) and to use hierarchi-
cal MPT models to investigate developmental differences across
the lifespan (e.g., Horn, Bayen, & Michalkiewicz, in press; Horn,
Pachur, & Mata, 2015; Michalkiewicz, Bayen, & Horn, 2020).

In childhood, there are particularly large individual differences
in cognitive abilities. Bill Batchelder’s innovative ideas are ide-
ally suited to study interindividual differences in intraindividual
change in cognitive development. In this article, we present
a novel application of hierarchical MPT modeling to address
research questions that have long preoccupied developmental
psychologists (e.g., Hasselhorn, 1990; Hünnerkopf, Kron-Sperl, &
Schneider, 2009; Moely, Olson, Halwes, & Flavell, 1969): When,
how, and why do children learn to cluster related items in free
recall? Clustering refers to the formation and encoding of a unit
of semantically related items, its maintenance in memory, and
its retrieval at recall (Batchelder & Riefer, 1980, 1986). Under-
standing the development of clustering strategies is important,
because clustering is associated with good memory performance
(Bjorklund & Jacobs, 1985): Children with higher ability to sort
study material according to categories tend to show better mem-
ory performance (e.g., Kobasigawa & Middleton, 1972; Moely
et al., 1969). To investigate the development of clustering in free
recall, we used Batchelder and Riefer’s (1980, 1986) MPT model
with a multi-trial extension introduced by Knapp and Batchelder
(2004) and the hierarchical latent-trait approach introduced by
Klauer (2010). This approach allows us to investigate individual
differences in clustering and to examine whether basic cognitive
abilities may account for these differences. This work is the first
to relate external variables to individual learning parameters
obtained within a hierarchical MPT modeling framework. We
thereby build on two of Bill Batchelder’s main research interests,
namely, (1) the development and refinement of MPT models and
(2) the study of individual differences in cognitive processes.

In what follows, we first sketch the research on differences
in clustering in free recall between and within groups of children
and young adults. Moreover, we describe how the development of
basic cognitive abilities may contribute to individual differences
in clustering. We then introduce the pair-clustering MPT model
and two modeling extensions and describe their advantages over
behavioral measures of clustering. Finally, we show how the
modeling approach may help to investigate whether clustering
performance can be explained by individual differences in basic
cognitive abilities.

2. Developmental differences in clustering in episodic free

recall

Age-related differences in clustering in free recall from child-
hood to adulthood are a common finding: younger children typ-
ically cluster less than older children, who in turn cluster less
than young adults (Bjorklund & Jacobs, 1985; Hünnerkopf et al.,
2009; Laurence, 1966; Moely et al., 1969; Schneider & Sodian,
1997). So far, developmental studies have mainly relied on ad-hoc
behavioral measures of clustering (e.g., the number of semanti-
cally related items recalled adjacently). A common question in
such studies has been whether age differences are attributable to
encoding processes, retrieval processes, or both (Brainerd, 1985;
Brainerd, Howe, Kingma, & Brainerd, 1984; Chechile, Richman,
Topinka, & Ehrensbeck, 1981). One important problem with ad-
hoc behavioral measures of clustering (Bousfield & Bousfield,
1966; Roenker, Thompson, & Brown, 1971) is that they are a
conglomerate of different cognitive processes. For example, the
number of related items recalled adjacently (a widely used mea-
sure of clustering) confounds encoding and retrieval, because
successful adjacent recall of related items involves both of these
processes.

The pair-clustering model was proposed by Batchelder and
Riefer (1980, 1986) to disentangle encoding and retrieval contri-
butions to clustering in free recall. In two cross-sectional studies
with 7-year-old children, 10-year-old children, and young adults,
we used this MPT model to investigate age differences in en-
coding and retrieval processes in free recall of clusterable word
lists (Horn et al., in press; Michalkiewicz et al., 2020) and found
evidence for age differences in cluster encoding.

Another important question is whether lower levels of cluster-
ing in younger children are due to a general inability in strategy
use or a lack of experience (Glidden, 1977). Regarding the use
of memory strategies, Flavell (1970) assumed a mediation deficit

in younger children (i.e., a general inability to apply specific
strategies) and a production deficit in older children (i.e., no spon-
taneous self-initiated strategy use, but in-principle ability to use
memory strategies). In line with this, several studies have shown
that younger children do not cluster information in episodic free
recall (e.g., Bjorklund, Ornstein, & Haig, 1977), whereas older
children do cluster information if additional support (e.g., in-
struction) is provided (Hasselhorn, 1992; Moely & Jeffrey, 1974).
Children may also need more experience than adults to notice the
semantic relations between items in a memory task. Therefore,
repeated learning opportunities may help children to increasingly
apply clustering strategies in memory tasks. Studies using ad-hoc
behavioral measures showed differences in clustering between
age groups, but findings about changes in clustering with expe-
rience are mixed (Cole, Frankel, & Sharp, 1971; Glidden, 1977;
Moely & Shapiro, 1971).

The multi-trial extension of the pair-clustering model (see de-
tailed description below) was introduced by Knapp and Batchelder
(2004) to quantify change across multiple study–test trials by
modeling the dependencies between trials. We used this model
version in a previous study to investigate age differences in the
initial level of cluster encoding and in the learning rate in cluster
encoding across trials (Horn et al., in press).

There is evidence for substantial individual differences in clus-
tering, even in children of similar age (Schneider & Sodian, 1997;
Sodian & Schneider, 1999). A likely reason is differences in ba-
sic cognitive abilities (e.g., Bjorklund, 1987; Krajewski, Kron, &
Schneider, 2004; Richter, 2004). Semantic verbal understanding,
short-term memory capacity, and information processing speed
provide the basis for successful cluster encoding: To successfully
encode two related items as a cluster, a person needs semantic
verbal understanding to extract the meaning of the two items
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and to relate them to each other. Sufficient working-memory
capacity allows the person to store the first item of a pair until
the second item occurs and a cluster can be formed. Speed of
information processing is relevant for the formation and encod-
ing of clusters within the available amount of time. As these
basic cognitive abilities develop, clustering is also expected to
improve (Bjorklund, 1987; Lange, 1973; Melkman, Tversky, &
Baratz, 1981; Richter, 2004; Schleepen & Jonkman, 2012). Until
now, the role of basic cognitive abilities in clustering has been
mainly investigated with behavioral measures to assess mean-
levels of clustering in different age groups. Importantly, however,
basic cognitive abilities may also influence the learning progress
in clustering that evolves through experience. With repeated
learning opportunities, a person may benefit from a higher level
of semantic verbal understanding, short-term memory capacity,
and information processing speed. A longitudinal study by Richter
(2004) provided initial evidence that short-termmemory capacity
may explain individual differences in the progress of clustering
across the elementary-school years.

Based on these considerations, we investigated with a cog-
nitive model whether and how individual differences in cluster
encoding and retrieval are related to basic cognitive abilities
(semantic verbal understanding, short-term memory capacity,
information processing speed). For this goal, we used a multi-
trial extension (Knapp & Batchelder, 2004) of the pair-clustering
MPT model (Batchelder & Riefer, 1980, 1986), combined with a
latent-trait approach (Klauer, 2010).

3. Modeling cluster encoding and retrieval

The pair-clustering model (Batchelder & Riefer, 1980, 1986)
was the first MPT model developed by Bill Batchelder. Compared
to previously used ad-hoc behavioral measures of clustering, a
main advantage of this model is that it can disentangle cluster
encoding and cluster retrieval involved in recalling pairs of se-
mantically related items. The model is tailored to a free-recall
task in which participants are presented with a list of items that
includes semantically related pairs. Participants are then asked
to recall as many items as possible in any order. As illustrated in
Fig. 1, the model accounts for four mutually exclusive response
categories (events E1 to E4) that occur in a free-recall task with
clusterable item pairs: both items of a pair recalled adjacently
(E1); both items of a pair recalled, but non-adjacently (E2); only
one of the two items recalled (E3); neither of the items recalled
(E4). The frequencies of responses in these categories are modeled
through a combination of three parameters: c (the probability
of cluster encoding/storage), r (the probability of retrieving a
previously encoded cluster), and u (the probability of encoding
and retrieving an item as a singleton, if it has not been encoded
as part of a cluster). Regarding the model tree, an item pair is
encoded as a cluster with probability c . With probability r, an
encoded cluster is retrieved from memory, resulting in both items
being recalled adjacently (E1). With complimentary probability
1 − r , an encoded cluster is not retrieved, resulting in neither of
the items being recalled (E4). In case an item pair is not encoded
as a cluster (with probability 1− c) each of the two items from a
pair may be individually encoded and retrieved as a singleton.
With probability u · u both items are encoded and retrieved
as singletons, resulting in both items being recalled, but non-
adjacently (E2). With probability u · (1 − u) only one item of a
pair is recalled (E3); with probability (1 − u) · (1 − u) neither of
the items is recalled (E4).

The interpretation of the model parameters has been empir-
ically validated (Batchelder & Riefer, 1980; Riefer et al., 2002).
The pair-clustering model has helped to better understand group
differences in various populations (e.g., Bäuml, 1991; Francis

et al., 2018; Golz & Erdfelder, 2004; Riefer & Batchelder, 1991a;
Riefer et al., 2002) and also served as a ‘‘drosophila’’ model
in methodological advancements of MPT modeling (e.g., Bröder,
2009; Klauer, 2006, 2010; Knapp & Batchelder, 2004; Matzke
et al., 2015; Smith & Batchelder, 2010). In its original form,
the model was designed to analyze single study–test trials only.
Several studies, however, included multiple study–test trials and
changes across trials (i.e., learning) were of interest (e.g., Bäuml,
1991; Golz & Erdfelder, 2004; Riefer & Batchelder, 1991a). With
the original modeling approach, each of the multiple study–
test trials could only be analyzed separately, thereby assuming
independence across trials. To characterize change in cognitive
processes, it is important to also model dependencies across
trials.

4. Modeling change

Using a multi-trial modeling approach (Knapp & Batchelder,
2004), we may account for dependencies across trials and esti-
mate the initial level of a given parameter and the within-subject
change in this parameter across trials. That is, we can differ-
entiate between the cluster encoding and retrieval probabilities
that participants show at the outset of a task and the progress
that occurs as a result of learning and experience. The multi-trial
approach offers an important modification of the pair-clustering
MPT model by specifying order constraints on the parameter
values. For the application in a multi-trial learning design with
four study–test trials (as in the current paradigm), the model
assumes non-decreasing values p1 ≤ p2 ≤ p3 ≤ p4 across trials
for each model parameter p ∈ {c, r, u}. This change is modeled
using the following reparameterization: The model parameter
p ∈ {c, r, u} in a given study–test trial j = 1, . . . , 4 is defined
as pj = 1− (1−p1) · (1−bp)

j−1, where p1 is the model parameter
on the initial trial and bp ∈ (0, 1) is a change parameter.2 The
complementary parameter is defined accordingly as

(

1 − pj
)

=

(1 − p1) · (1 − bp)
j−1. For example, the probability to encode a

cluster on the second trial is modeled as c2 = c1 + (1 − c1) · bc ,
and the complementary probability to not encode a cluster as
(1 − c2) = (1−c1) · (1−bc). This results in six model parameters:
initial probabilities c1, r1, u1, of cluster encoding, retrieval, and
recall of single items, respectively, and the rates of change in
these parameters across trials: bc, br , bu.

The multi-trial extension of the pair-clustering model has been
successfully used to examine the progress of cluster encoding
and retrieval across trials at the group level in younger adults,
older adults (with and without mild cognitive impairment), and
alcoholics (e.g., Bröder, Herwig, Teipel, & Fast, 2008; Knapp &
Batchelder, 2004). However, this model version also has limita-
tions. In particular, it is difficult to reliably estimate individual
model parameters with relatively few observations per partici-
pant (usually between 10 and 20 item pairs in recall studies).
Moreover, to examine statistical relations with other variables
(e.g., cognitive abilities tests), individual estimates are required.
For this purpose, Batchelder and others have proposed hierarchi-
cal (multi-level) extensions of MPT models (Klauer, 2010; Matzke
et al., 2015; Smith & Batchelder, 2010). In the following, we focus
on the latent-trait approach because it is most suitable to address
our research aim.

2 In the current modeling, a constant rate of change across trials was as-
sumed, implying a geometric/exponential learning function (cf. Bush & Mosteller,
1955). This model could account for the data well.
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Fig. 1. Illustration of the pair-clustering model of free recall of clusterable item pairs (Batchelder & Riefer, 1980, 1986). c = probability of encoding and storing an
item pair as a cluster; r = probability of retrieving an encoded and stored cluster; u = probability of recalling (that is, encoding, storing, and retrieving) an item
as a singleton. The rectangles in the figure represent observable events (presented items and responses); rectangles with rounded corners represent latent cognitive
states.

5. Modeling covariates

The hierarchical latent-trait approach (Klauer, 2010) offers
two important advantages for the current research aims: First,
individual model parameters are estimated more reliably by us-
ing the information from the group level, particularly when the
numbers of observations per individual are sparse. Second, the
approach allows us to model the influence of covariates on the in-
dividual parameters by including regression coefficients directly
into the estimation of the model parameters. By accounting for
the uncertainty in the individual parameter estimates (Katahira,
2016; Matzke et al., 2017), one may assess relations with external
variables more accurately than with previous methods (e.g., two-
step procedures in which model parameters are estimated in a
first step, then followed by separate regression analyses).

Fig. 2 shows the latent-trait multi-trial version of the MPT
model for clusterable item pairs (Klauer, 2010; Knapp & Batchelder,
2004). As an illustrative example3 of how to measure the in-
fluence of external variables on model parameters, the three
covariates Similarities (SIM; measuring semantic verbal under-
standing), Digit Span (DS; measuring short-term memory ca-
pacity), and Digit–Symbol Coding (COD; measuring information
processing speed) are included as predictors of initial cluster
encoding (parameter c1). As illustrated in Fig. 2, model param-
eters are estimated at two levels: The group level comprises
the normally distributed group-level means µp ∼ N(0, 1) for all
parameters p ∈ {c1, r1, u1, bc, br , bu} and the inverse Wishart
distributed variance–covariance matrix Σ , Σ−1 ∼ W(I,7), esti-
mating the group-level variances σ p and the correlations ρp×q

between model parameters p ̸= q ∈ {c1, r1, u1, bc, br , bu}. The
multivariate normally distributed individual deviations from the
group mean δ

p

i ∼ MvN(0,Σ ) are derived from Σ . The uniformly
distributed parameters ξ p ∼ U(0, 100) are nuisance parameters
included for modeling purposes. At the individual level, each
parameter pi is assessed for each individual i as the individual
deviance δ

p

i (scaled by parameter ξ p) from the group-level mean

3 Note that in the reported analyses, the three cognitive variables were
included as predictors for all parameters in the model, p ∈ {c1, r1, u1, bc , br , bu}.
In Fig. 2, this is only illustrated for one parameter as an example. Moreover,
a factor ‘‘Study’’ and the interactions between this factor and the cognitive
variables were included as predictors in the model for all parameters; these
additional predictors are also not shown in Fig. 2.

µp: pi = Φ
(

µp + ξ p · δ
p

i

)

, p ∈ {c1, r1, u1, bc, br , bu}. For modeling
purposes, the estimation of model parameters is performed in
a probit-transformed space (indicated in the equation by the
standard normal Φ). For each individual i and study–test trial
j, category frequencies Cij ∼ Multinomial (P(Cij), Nij) follow a
multinomial distribution with probability vector P(Cij) and num-
ber of observations Nij, defined according to the reparametrized
multi-trial version of the pair-clustering model.

Additionally, the influence of the three basic cognitive abilities
assessed in our studies can be included into the estimation of the
model parameters as regression on the scores of three adminis-
tered tests: Similarities (SIM), Digit Span (DS), and Digit–Symbol
Coding (COD), with the corresponding regression coefficients βSIM ,
βDS , βCOD. As suggested by Heck, Arnold, and Arnold (2018) for
small effects, we used a Gamma distribution dgamma(.5, .5*s^2)
on the precision parameter of the regression coefficients. This
results in the following model equation for each individual i and
model parameter p ∈ {c1, r1, u1, bc, br , bu}:

pi = Φ
(

µp + ξ p · δ
p

i + β
p

SIM · SIMi + β
p

DS · DSi + β
p

COD · CODi

)

. (1)

As an example, Fig. 2 shows how to include the three cogni-
tive variables into the model for initial cluster encoding c1. The
corresponding equation reads as follows:

c1i = Φ(µc1 + ξ c1 · δ
c1
i + β

c1
SIM · SIMi + β

c1
DS · DSi + β

c1
COD · CODi). (2)

Importantly, only the latent-trait multi-trial pair-clustering model
allows us to address our main research aim as it combines the
advantages of all approaches explained above: First, it disentan-
gles the encoding and retrieval of clusters. Second, it allows us to
assess the initial probabilities of these processes and their change
across study–test trials. Third, it enables us to measure cluster
encoding and retrieval on an individual level. Fourth, it allows us
to assess the role of external variables.

6. Reanalysis of data from two developmental studies

We reanalyzed data from two studies in which we investi-
gated category clustering in free recall from episodic memory
in school-age children and young adults (Horn et al., in press;
Michalkiewicz et al., 2020). In these studies, we also measured
participant’s basic cognitive abilities (semantic verbal under-
standing, short-term memory capacity, information-processing
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Fig. 2. Illustration of the latent-trait multi-trial version of the pair-clustering model for clusterable item pairs (Klauer, 2010; Knapp & Batchelder, 2004). As an
example, the external variables Similarities (SIM), Digit Span (DS), and Digit–Symbol Coding (COD) are included as predictors of initial cluster-encoding parameter
c1 . In line with conventional notation, shaded and unshaded nodes represent observed data and latent model parameters, respectively; square and circular nodes
represent discrete and continuous variables, respectively; single-bordered nodes represent model parameters that are estimated from the data, while double-bordered
nodes represent model parameters that are computed from the estimated model parameters; the plates represent replications over I individuals and J = 4 study–test
trials.

Table 1

Demographic information and cognitive test scores by age group.

7-year-olds 10-year-olds Adults

N 77 68 83
Gender (female, male) 44, 33 35, 33 52, 31
Mean age (years;months) 6;10 10;3 22;4
Age range (years;months) 6;2–7;7 9;3–11;6 18–29

M SD M SD M SD

Similarities 10.92 3.22 11.04 2.34 9.28 2.05
Digit Span 10.25 2.36 10.31 2.52 10.31 2.75
Digit–Symbol Coding 11.19 2.53 11.38 2.42 10.82 2.79

Notes. For children, the cognitive tests were taken from the German versions
IV and V of the Wechsler Intelligence Scale for Children (Petermann, 2017;
Petermann & Petermann, 2007); for adults, the tests were taken from the
German version of the Wechsler Adult Intelligence Scale (von Aster, Neubauer,
& Horn, 2006). Age-scaled norm scores from Wechsler subtests have M = 10
and SD = 3; scales range from 1 to 19.

speed) that were not analyzed in the previous papers, but that
are of particular interest in the current modeling analysis. We
combined the data from both studies to obtain stable estimates
in our correlational analyses, which require relatively large sam-
ple sizes (see Schönbrodt & Perugini, 2013). In particular, we
reanalyzed the data from Horn et al. (in press) and from the
control groups of Michalkiewicz et al. (2020) because we used the
same research paradigm in both studies and because the sample
characteristics, design, and procedures were very similar (see
details below). The total sample of N = 228 participants included
seventy-seven 7-year-olds, sixty-eight 10-year-olds, and eighty-
three young adults, all German native speakers. In the few studies
using correlational analyses of hierarchical MPT model parame-
ters with external cognitive variables, comparable sample sizes
have proven to be adequate to find credible effects (Arnold et al.,
2013; Arnold, Bayen, & Smith, 2015; Michalkiewicz et al., 2018;
Schaper, Kuhlmann, & Bayen, 2019). Table 1 shows descriptive
statistics of demographic and cognitive variables.

In both studies, participants first completed a list-learning
task consisting of a study phase, a brief unrelated buffer task
(to control for recency effects), and a free-recall phase. In the
study phase, we auditorily presented 18 categorically related
word pairs (the first four words were excluded from all analyses

to control for primacy effects; we used the same two word pairs
as a primacy buffer in all study–test trials). In the study by Horn
et al. (in press), the two words of each pair were presented
separated by one other word (lag 1) or by nine other words (lag
9). In the study by Michalkiewicz et al. (2020), the two words
from a pair were presented consecutively (lag 0).4 To investigate
changes in cognitive processes, there were four study–test trials
(with a different order of the same study material in each trial).
Participants subsequently completed three cognitive tests: Sim-
ilarities (measuring semantic verbal understanding), Digit Span
(measuring short-term memory capacity), and Coding (measuring
information processing speed), from the Wechsler intelligence
scales for children or adults.

7. Results

We first report behavioral measures of recall performance and
clustering, followed by cognitive modeling of cluster encoding
and retrieval. We analyzed differences both between and within
groups. In the modeling, we differentiated between initial cluster
encoding and retrieval (study–test trial 1) and the change rate
across the four study–test trials to examine whether individ-
ual differences were mainly due to clustering that participants
showed from the start or that evolved with experience. Finally,
and most importantly, we conducted model-based regressions of
the MPT parameters on the three cognitive variables (Similarities,
Digit Span, and Digit–Symbol Coding) as an attempt to explain
individual differences in cluster encoding and retrieval.

Regarding group-level differences in memory performance, in
behavioral measures of clustering, and in model-based measures
of cluster encoding and retrieval (both initial levels and change
rates), the current results obtained with the reanalyses of two

4 To account for differences between studies, we included a factor ‘‘Study’’
as a covariate and added interaction terms of this factor with the cognitive
variables in our MPT model regression analyses. We thank the reviewers for this
suggestion. The factor Study did not credibly interact with any of the cognitive-
abilities variables (BFs indicated moderate-to-strong evidence for the absence
of interactions involving the Study factor), suggesting that the predictive power
of the cognitive abilities did not depend on specific task characteristics in the
recall paradigm. Tables S1 and S2 in the Supplement provide further details.
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combined datasets expectedly mirror the pattern of results re-
ported in the individual studies by Horn et al. (in press) and
Michalkiewicz et al. (2020). The important new aspect of the fol-
lowing analyses are the findings regarding individual differences
in parameters within age groups and the attempt to explain them
through external cognitive variables.

Age differences in recall performance and clustering.

Table 2 shows descriptive statistics for behavioral measures of
recall performance and clustering by age group. There were age
differences in the proportion of recalled words and in clustering
(assessed as the proportion of word pairs recalled adjacently)
both for the initial level on trial 1, F (2, 225) = 50.58, p < .001,
η2 = .31, and F (2, 225) = 29.28, p < .001, η2 = .21, and for
the change across trials, F (6, 675) = 91.61, p < .001, η2 = .45,
and F (6, 675) = 72.39, p < .001, η2 = .39. Adults showed a
higher initial level and stronger increases in recalled words and
adjacently recalled word pairs than 10-year-olds, who in turn
showed a higher initial level and stronger increases than 7-
year-olds. The standard deviations within each age group also
indicated individual differences. Although the number of word
pairs recalled adjacently is a confounded measure of clustering,
the behavioral results suggest variability in clustering between
and within age groups.

Model-based analyses. We investigated the observed differ-
ences in clustering in terms of underlying encoding and retrieval
processes (separately for the initial level at trial 1 and the change
rate across trials) with the latent-trait multi-trial version of the
pair-clustering MPT model. We included the influence of the
external cognitive variables on each of the model parameters into
the model in terms of regressions (as illustrated for parameter c1
in Fig. 2). Additionally, to quantify the evidence for or against an
effect, we calculated Bayes factors for the regression coefficients
using the Savage–Dickey Method (see Wagenmakers, Lodewyckx,
Kuriyal, & Grasman, 2010), which is defined as the ratio of the
density of the posterior and the prior at a slope of zero, and in-
terpreted them according to conventional standards (e.g., Jeffreys,
1961).5 The reported Bayes factors BF01+ represent evidence in
favor of H0 (absence of an effect; i.e., a regression coefficient does
not differ from zero) over H1 (positive effect; i.e., a regression co-
efficient is positive). For the analyses of hierarchical MPT models
within the Bayesian framework, we used the TreeBUGS package
for R (Heck et al., 2018). For the models of each age group, we
ran six chains with 1,500,000 iterations each, using a thinning
rate of 200 and a burn-in period of 500,000. Heterogeneity tests
based on the response frequencies in the event categories E1 to E4
in the recall protocols revealed large heterogeneity within each
age group and each study–test trial (except for the first trial of
the two groups of children): all χ2 (228) > 346, p < .001 for
7-year-olds; all χ2 (201) > 247, p < .02 for 10-year-olds; all
χ2 (246) > 405, p < .001 for adults. This large heterogeneity sub-
stantiated the necessity to use hierarchical modeling approaches.
Chain convergence was satisfactory for all estimated group-level
means, standard deviations, and regression coefficients (R̂s < 1.05,
number of effective samples > 1000; see Gelman, Carlin, Stern, &
Rubin, 2004; Kruschke, 2014). Posterior predictive p values for the
fit indices T1 and T2 (Klauer, 2010) showed an acceptable fit of the
model to the mean and covariance structure of the data from the
7-year-olds (pT1 = .37; pT2 = .23) and the 10-year-olds (pT1 = .33;
pT2 = .13); for adults, the fit to the mean structure was inferior
(pT1 = .004; pT2 = .12). However, plots of the observed data

5 Following conventional interpretation (e.g., Jeffreys, 1961; Lee & Wagen-
makers, 2014), in the current analyses, Bayes factors (BFs01) between 1/3 and 3
indicate only inconclusive evidence, BFs01 between 3 and 10 moderate evidence,
and BFs01 > 10 strong evidence for the absence of an effect. Conversely, BFs01
between 1/3 and 1/10 indicate moderate evidence for, and BFs01 < 1/10 indicate
strong evidence for the presence of an effect.

against the posterior-predicted data from the model indicated a
satisfactory model fit for all age groups both for the mean and
the covariance structure (see Supporting Information, Figs. S1 and
S2).

Age differences in cluster encoding and retrieval. Table 2
(bottom half) shows the parameter estimates for the group-level
means and standard deviations with Bayesian credibility intervals
(BCIs) for the three age groups. Regarding the initial probability
(c1) to encode related items as a cluster, young adults did not
differ credibly from 7-year-olds, ∆c1 = 0.08 [−0.01, 0.15], or 10-
year-olds, ∆c1 = 0.03 [−0.06, 0.11]; the two groups of children
also did not differ in initial cluster encoding, ∆c1 = −0.05[−0.14,
0.04]. However, regarding the change rate in clustering across
trials (bc), adults showed substantially larger improvement in
cluster encoding than 7-year-olds, ∆bc = 0.29 [0.23, 0.35],
and 10-year-olds, ∆bc = 0.25 [0.18, 0.32]; 7-year-olds did not
differ credibly from 10-year-olds, ∆bc = −0.04[−0.08, 0.004].
Regarding cluster retrieval, there were no credible differences
between age groups in initial probabilities (r1): 7-year-olds vs.
10-year-olds: ∆r1 = −0.16 [−0.68, 0.42]; adults vs. 7-year-
olds: ∆r1 = 0.41 [−0.10, 0.80]; adults vs. 10-year-olds: ∆r1 =
0.25 [−0.12, 0.58]. Moreover, there were no credible differences
in the changes in cluster retrieval across trials (br ) : 7-year-
olds vs. 10-year-olds: ∆br = −0.04 [−0.72, 0.68]; adults vs.
7-year-olds: ∆br = −0.10 [−0.74, 0.59]; adults vs. 10-year-olds:
∆br = −0.14 [−0.73, 0.52]. The lack of differences in cluster
retrieval must be interpreted with caution due to relatively large
uncertainty in retrieval parameter estimates. Taken together, age
differences emerged particularly in the rate of change in cluster
encoding across trials. We further investigated potential reasons
for these differences by regressing parameters on measures of
cognitive abilities.

Role of cognitive abilities in cluster encoding and retrieval.

Table 3 shows the standardized regression coefficients of the
model-based analyses for all parameters. For adults, a credibly
positive relation emerged between short-term memory perfor-
mance (digit span) and the change in encoding related items as
clusters (learning across trials; parameter bc). Moreover, higher
cognitive speed (as measured with the Digit–Symbol coding test)
was associated with better memory for individual items in adults
(singleton parameter u1). However, there were no credible rela-
tions between initial cluster encoding c1 and measures of cog-
nitive abilities. The corresponding Bayes factors indicated even
moderate evidence for no relations (except for 10-year-olds,
where BF indicated inconclusive evidence). Moreover, contrary to
expectations, there were no credible relations in any age group
between performance in the similarities test and initial cluster
encoding c1 or the change rate in cluster encoding across trials, bc .
Regarding cluster retrieval, there were also no credible relations
between the cognitive variables and the model parameters r1 or
br .

8. Discussion

We reanalyzed data from two developmental studies in which
we investigated categorical clustering in episodic free recall in 7-
year-old children, 10-year-old children, and young adults, using
a list-learning paradigm with repeated study–test opportunities.
One aim of the current study was to examine whether and to
what extent basic cognitive abilities (semantic verbal understand-
ing, short-term memory capacity, information processing speed
as measured with the Wechsler tests Similarities, Digit Span, and
Digit–Symbol Coding, respectively) may explain individual differ-
ences in clustering in these three age groups. To obtain measures
of the different cognitive components involved in clustering and
to assess the specific contribution of the three cognitive variables,
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Table 2

Recall performance and model parameters by age group.

7-year-olds 10-year-olds Adults

Trial Mean proportion of recalled word (with SDs)

1 .14 (.06) .19 (.07) .29 (.13)
2 .20 (.10) .30 (.09) .50 (.17)
3 .23 (.13) .39 (.12) .66 (.16)
4 .25 (.15) .46 (.14) .77 (.15)

Trial Mean proportion of adjacently recalled words of a pair (with SDs)

1 .02 (.04) .05 (.06) .12 (.12)
2 .07 (.08) .12 (.11) .28 (.20)
3 .07 (.10) .16 (.12) .46 (.24)
4 .10 (.12) .21 (.14) .56 (.25)

Parameter Group-level means [with BCIs]

c1 .07 [.03, .14] .12 [.06, .20] .15 [.10, .21]
r1 .47 [.13, .95] .64 [.34, .94] .88 [.66, .99]
u1 .13 [.11, .15] .15 [.13, .19] .19 [.16, .22]
bc .01 [.00, .03] .05 [.01, .09] .30 [.24, .35]
br .49 [.04, .97] .53 [.06, .94] .39 [.04, .87]
bu .01 [.00, .02] .05 [.01, .08] .09 [.04, .14]

Group-level standard deviations [with BCIs]

c1 .02 [.00, .07] .10 [.03, .16] .12 [.08, .18]
r1 .21 [.00, .45] .09 [.00, .26] .07 [.00, .20]
u1 .04 [.02, .06] .02 [.00, .05] .07 [.05, .10]
bc .03 [.00, .07] .03 [.00, .06] .16 [.13, .20]
br .43 [.26, .48] .34 [.13, .47] .17 [.01, .40]
bu .02 [.01, .06] .03 [.01, .26] .08 [.04, .12]

Notes. c1 = probability of encoding a word pair as a cluster in trial 1; r1 = probability of retrieving
a stored cluster in trial 1; u1 = probability of encoding and retrieving a word as a singleton; bc =
change in the probability of encoding a word pair as a cluster; br = change in the probability of
retrieving a word pair as a cluster; bu = change in the probability of encoding and retrieving a
word as a singleton; BCI = Bayesian credibility interval

Table 3

Regression Coefficients, Bayesian Credibility Intervals, and Bayes Factors for the Relation Between Cognitive Test Performance and MPT Model Parameters by Age
Group.

7-year-olds 10-year-olds Adults

Similarities Digit Span Coding Similarities Digit Span Coding Similarities Digit Span Coding

c1 β −0.01 0.02 −0.09 0.21 −0.01 −0.01 0.09 0.06 0.07
BCI [−0.27, 0.22] [−0.25, 0.35] [−0.34, 0.14] [−0.04, 0.46] [−0.32, 0.26] [−0.27, 0.25] [−0.10, 0.26] [−0.12, 0.23] [−0.16, 0.28]
BF01+ 6.15 4.23 10.21 0.79 5.23 5.75 3.05 4.43 3.67

r1 β 0.20 0.22 0.09 −0.35 −0.01 −0.29 0.04 0.03 0.06
BCI [−0.68, 1.01] [−0.84, 1.29] [−0.89, 1.03] [−1.02, 0.32] [−0.55, 1.10] [−0.81, 0.31] [−0.48, 0.59] [−0.57, 0.60] [−0.57, 0.68]
BF01+ 1.11 0.94 1.30 4.10 1.75 5.12 2.36 2.22 1.91

u1 β −0.004 −0.05 0.01 0.06 −0.02 −0.02 0.01 0.05 0.14

BCI [−0.10, 0.09] [−0.15, 0.07] [−0.07, 0.10] [−0.05, 0.17] [−0.13, 0.08] [−0.15, 0.10] [−0.09, 0.12] [−0.05, 0.14] [0.03, 0.25]

BF01+ 16.13 24.81 13.05 4.65 16.98 14.67 11.18 5.80 0.24
bc β 0.08 0.03 0.17 0.10 −0.06 0.09 0.03 0.16 0.12

BCI [−0.38, 0.56] [−0.53, 0.61] [−0.27, 0.62] [−0.13, 0.37] [−0.51, 0.37] [−0.25 0.55] [−0.12, 0.17] [0.01, 0.31] [−0.04, 0.29]
BF01+ 2.23 2.24 1.57 2.53 3.97 2.36 6.96 0.53 1.69

br β 0.29 −0.12 0.09 −0.39 0.09 0.05 0.17 −0.24 −0.09
BCI [−1.06, 1.59] [−1.42, 1.21] [−1.17, 1.33] [−1.58, 0.85] [−0.90, 1.19] [−1.05, 1.17] [−0.83, 1.20] [−1.30, 0.79] [−1.08, 0.93]
BF01+ 0.72 1.20 0.98 1.82 1.19 1.19 1.05 1.88 1.61

bu β 0.08 −0.07 0.25 0.07 −0.10 −0.03 −0.06 0.12 −0.13
BCI [−0.33, 0.55] [−0.56, 0.39] [−0.12, 0.61] [−0.28, 0.46] [−0.34, 0.12] [−0.34, 0.29] [−0.42, 0.19] [−0.10, 0.38] [−0.41, 0.13]
BF01+ 2.35 3.73 0.86 2.87 10.73 5.36 6.42 2.08 9.66

Notes. Coefficients that are credibly different from zero are marked in boldface. c1 = initial cluster encoding; r1 = initial cluster retrieval; u1 = initial encoding and
retrieval of a single item; bc = change in cluster encoding; br = change in cluster retrieval; bu = change in encoding and retrieval of a singleton; BCI = Bayesian
credibility interval; β = standardized regression coefficients measured within the latent-trait multi-trial version of the pair-clustering model; BF01+ = Bayes factor
representing evidence in favor of H0 (no effect; regression coefficients being zero) over H1 (positive effect; positive regression coefficients).

we combined two advancements in MPT modeling, the multi-
trial approach (Knapp & Batchelder, 2004) and the latent-trait
approach (Klauer, 2010), to the pair-clustering model (Batchelder
& Riefer, 1980, 1986), resulting in a novel hierarchical imple-
mentation. This implementation also included the three cognitive
variables and met the current research needs more adequately
than previous versions of the pair-clustering model. In particular,
the modeling allowed us (1) to disentangle cluster encoding and
retrieval, (2) to measure both initial levels and change rates for
these processes, (3) to investigate differences between and within
age groups, (4) to measure all processes on an individual level,

and (5) to relate individual differences in model parameters with
external covariates. Thus, the modeling offered important new
information by extending the range of research questions that can
be addressed.

Regarding developmental differences in cluster encoding (at
initial levels and in change rates across study–test trials), the
current analyses synthesize and corroborate the findings from
two previous developmental studies. In particular, we found ev-
idence for age differences in strategy acquisition (Hünnerkopf
et al., 2009; Sodian & Schneider, 1999), that is, in the degree
to which clustering-strategy use increased with task experience



8 M. Michalkiewicz, S.S. Horn and U.J. Bayen / Journal of Mathematical Psychology 98 (2020) 102378

(Cole et al., 1971; Nelson, 1969). Regarding the relations be-
tween MPT model parameter and measures of cognitive abilities,
however, the correlational analyses indicated a pattern that was
less clear. Higher cognitive speed was associated with initially
better memory for individual items in adults; moreover, higher
short-term memory capacity helped people in this age group
to progressively encode related items together across study–test
trials. However, there was no evidence for similar relations in
children. Moreover, contrary to expectations, performance in the
similarities test did not account for variability in cluster encoding
(parameters c1 and bc). With the help of Bayesian methods, we
obtained even some evidence for the absence of relations among
the aforementioned variables. What could be potential reasons
for this?

First, some developmental studies suggest that measures of
basic cognitive abilities may be useful predictors of memory
performance—but not necessarily of underlying strategy use in
memory tasks (Kron-Sperl, Schneider, & Hasselhorn, 2008). For
instance, longitudinal studies have found only low-to-moderate
stabilities in strategy use over time, indicating that the devel-
opment of strategy use may be discontinuous and not follow
a monotonically increasing trajectory (Krajewski et al., 2004;
Sodian & Schneider, 1999). There is also evidence that children
use a mix of old and new strategies concurrently, with these
strategies waxing and waning across development in overlap-
ping waves (Siegler, 2016): Many children do not necessarily
maintain a memory strategy once they have discovered it, but
may drop it and rediscover it at a later stage. This discontinuity
does not match the gradual increase across childhood in short-
term memory capacity and information processing speed (Demp-
ster, 1981; Kail, 1991) and may reduce the predictive power of
cognitive-abilities tests for strategy use.

Second, in line with the notion of a utilization deficit (Miller,
1990), strategy use is not necessarily associated with memory
performance in younger children (Bjorklund & Coyle, 1995; Miller
& Seier, 1994; Schneider & Sodian, 1997; but see Schlagmüller &
Schneider, 2002). A common explanation for the utilization deficit
is that the application of a strategy and the simultaneous sup-
pression of ineffective strategies exhaust the available cognitive
resources, leaving no further resources for active memorization
(e.g., Bjorklund & Harnishfeger, 1987; Guttentag, 1984; Miller,
1994). Thus, increases in short-term memory capacity or infor-
mation processing speed may not necessarily increase children’s
recall performance when they apply a clustering strategy.

Third, variability in cluster-encoding processes was relatively
low in younger children, which makes the detection of relations
with other variables difficult. Parameter estimates for cluster
encoding (both means and standard deviations) were particularly
low in 7-year-olds. In this age group, the probability of encod-
ing related words as a cluster only increased from .07 to .10
across four study–test trials (with minimal within-group varia-
tion), suggesting that 7-year-olds did not encode clusters in the
first study–test cycle and also did not learn to do so across trials.
The task may have been difficult for 7-year-olds, as also indicated
by relatively low recall performance (Table 2). It is possible that
7-year-olds may generally not be able to apply clustering strate-
gies in such situations (e.g., Hasselhorn, 1990; Richter, 2004), for
instance, due to a limited knowledge base or limited metacog-
nitive skills (Krajewski et al., 2004; Schneider & Sodian, 1997;
Sodian & Schneider, 1999). The current findings clearly show
that experience and repetition alone are insufficient to induce
clustering strategies in younger children. Other types of inter-
ventions (e.g., instructional manipulations; Michalkiewicz et al.,
2020) or simpler tasks would allow us to examine whether cluster
encoding may occur in 7-year-olds, too (for an overview of task
simplifications, see Richter, 2004). Despite many advantages of

the modeling approach, the current analyses also have limita-
tions. The results regarding cluster retrieval must be interpreted
with caution due to large uncertainty in parameter estimates. The
problem of estimating the probability of cluster retrieval reliably
follows from the low probabilities of cluster encoding (partic-
ularly in 7-year-olds) and the structure of the pair-clustering
MPT model (Riefer & Batchelder, 1991b): The probability of re-
trieving a cluster is estimated conditional on the probability that
a cluster is successfully encoded (Fig. 1). If the probability of
cluster encoding is low (e.g., particularly in younger children),
then the number of available observations is too small for reliable
estimation of cluster retrieval. Thus, it may not come as a surprise
that differences between age groups and/or relations to exter-
nal cognitive variables could not be reliably discovered for the
retrieval parameters. Such difficulties may possibly be overcome
by using easier tasks or additional manipulations to increase the
level of cluster encoding (Michalkiewicz et al., 2020).

Moreover, our analyses involve a few further challenges. First,
we aggregated data from two different studies because correla-
tional analyses require large sample sizes (Schönbrodt & Perugini,
2013). Whereas all procedures in these studies were very similar,
the word lists differed in lag between related words in a list.
To account for this difference between studies, we included the
factor ‘‘Study’’ as a covariate and added interaction terms of this
factor with the cognitive variables in the MPT model regression
analyses (Tables S1 and S2 in the Supplement provide further
details). As can be expected, cluster-encoding parameter values
were higher in the study that involved lags of zero exclusively.
Importantly, however, the factor Study did not credibly inter-
act with any of the cognitive-abilities variables (BFs indicated
moderate-to-strong evidence for the absence of interactions in-
volving the Study factor), suggesting that the predictive power of
the cognitive-abilities tests did not depend on the specific lags
used in the recall paradigm. Nonetheless, aggregation of data of
different lag increased item variability in the current analyses.

Second, some Bayes factors indicated merely inconclusive ev-
idence. In this regard, even larger sample sizes might arguably
allow us to arrive at more certain conclusions. Third, further
cognitive variables (that we did not consider in the current study)
may be more relevant predictors of cluster encoding and retrieval
in episodic recall. For example, in the developmental literature,
metacognitive knowledge and general knowledge are discussed
as further relevant variables that might account for individual
differences in clustering (e.g., Krajewski et al., 2004; Schneider &
Sodian, 1997; Sodian & Schneider, 1999). Future research should
take these considerations into account.

In conclusion, the novel implementation of the pair-clustering
model showed that individual differences in younger children’s,
older children’s, and adults’ recall of categorically related items
are mainly attributable to differences in the learning rate of
cluster encoding. This work provides an example of how newest
developments in MPT modeling can contribute to the understand-
ing of the development of cognitive processes. The pair-clustering
model, most senior among the family of MPT models developed
or inspired by Bill Batchelder, is well alive. His legacy lives on
in this and other models and in the continuous efforts of those
he inspired at every career stage to go beyond the customary,
to strive to measure the unobservable, to make assumptions
explicit and testable, and to bring new mathematical methods to
established fields of inquiry spanning all areas of psychology.

Appendix A. Online supplemental material

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jmp.2020.102378. Moreover,
scripts and model files can be found at the Open Science Frame-
work at https://tinyurl.com/MPTsRegression.

https://doi.org/10.1016/j.jmp.2020.102378
https://tinyurl.com/MPTsRegression
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