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The Development of Clustering in Episodic Memory:

A Cognitive-Modeling Approach

Sebastian S. Horn
University of Zürich

Ute J. Bayen and Martha Michalkiewicz
Heinrich-Heine-Universität Düsseldorf

Younger children’s free recall from episodic memory is typically less organized than recall by older children.
To investigate if and how repeated learning opportunities help children use organizational strategies that
improve recall, the authors analyzed category clustering across four study-test cycles. Seven-year-olds, 10-
year-olds, and young adults (N = 150) studied categorically related words for a free-recall task. The cognitive
processes underlying recall and clustering were measured with a multinomial model. The modeling revealed
that developmental differences emerged particularly in the rate of learning to encode words as categorical
clusters. The learning curves showed a common pattern across age groups, indicating developmental invari-
ance. Memory for individual items also contributed to developmental differences and was the only factor
driving 7-year-olds’ moderate improvements in recall.

Episodic memory refers to the ability to remember
specific events from one’s personal past. It supports
daily functioning (remembering what, when, or
where something was experienced) and contributes
to building an identity over time (Schacter & Tulv-
ing, 1994). A key factor contributing to episodic-
memory development from childhood to young
adulthood is the ability to form connections between
objects, events, or persons. In memory tasks that
involve semantically related items, for instance,
adults and older children often organize their
responses by category and recall related items adja-
cently—a phenomenon known as category clustering.
In contrast, younger children (below ~8 years of
age) often recall related items without such cluster-
ing; they may already understand the meaning of a
given item (e.g., “a spoon is used for eating”), but
there is typically a lag of several years until children
connect this meaning across multiple exemplars of a

category (e.g., “spoons, forks, knives, are all types
of cutlery”). Overall, a wealth of developmental
research has found that younger children’s memory
output is semantically less organized than that of
older children and adults and that the spontaneous
formation of relations among items increases with
age (e.g., Bjorklund & Jacobs, 1985; Hasselhorn,
1990). Major changes in category clustering appear
to emerge around ages 6 to 12—a phase in which
children’s knowledge base also expands substan-
tially through education and experience (Schneider,
2014). As category clustering is associated with
good recall performance (Bjorklund, 2011), it is
important to understand how clustering develops
across childhood and how it can be facilitated.

In this study, we used cognitive modeling to
investigate developmental differences in the pro-
cesses underlying clustering in free recall. One
important approach toward understanding the
organizational principles of episodic memory rests
on the comparison of originally presented informa-
tion and the structure of people’s responses (Bower,
1970; Mandler, 1967). Starting in the 1960s, much
research has examined the influence of different
presentation formats, materials (Cole, Frankel, &
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Sharp, 1971), rehearsal strategies (Ornstein, Naus, &
Liberty, 1975), and organizational strategy instruc-
tions (e.g., Moely, Olson, Halwes, & Flavell, 1969;
Rao & Moely, 1989) on children’s free recall. Analy-
ses that involved only one single learning opportu-
nity have frequently been used to assess whether
people of different ages notice and strategically uti-
lize relational information for recall (for overviews,
see Jablonski, 1974; Schneider, 2014). Little is
known, however, about the cognitive dynamics of
categorical clustering when repeated learning
opportunities are available. In what follows, we dis-
cuss this aspect and consider the few developmen-
tal studies that focused on changes in categorical
clustering in multitrial free recall.

Repeated Learning Opportunities

Recall tasks that include multiple study-test trials
make it possible to measure progressive changes in
memory organization over time and to examine
whether children and adults access and successively
reorganize information in different ways. Many
diagnostic memory tests use repeated study-test tri-
als because individual differences in performance
are often most pronounced in the rate of learning
across trials (e.g., Bröder, Herwig, Teipel, & Fast,
2008). Moreover, as noted by Paris (1978), learning
activities in educational settings often involve cycli-
cal or recursive memorizing. Proficiency in deliber-
ate recall is often relevant at school, but is unlikely
familiar to preschool children. Thus, a lack of expe-
rience with tasks that require memorization could
be one important factor explaining why clustering
strategies are hardly observed in younger children
(Glidden, 1977). If younger children recall fewer
items because they are unfamiliar with effective
strategies for recall, then repeated exposure could
lead to adaptive changes in the way they utilize
presented information. In other words, younger
children might need more time or opportunities
than older children to notice conceptual relations
between items and the categorical structure of a
word list. Therefore, one possibility is that younger
children initially show complete absence or low
levels of categorical clustering in free recall, but
increasingly employ such strategies when learning
opportunities are granted more frequently.
Repeated exposure to the same items in free recall
could have similar effects as other manipulations
that are well-known to stimulate the production of
mnemonic strategies—even in younger children
(e.g., organizational instructions; Moely et al., 1969).
One aim of our study was to test this possibility.

Regarding changes in clustering over trials,
experimental findings on children’s free recall are
equivocal. For example, Glidden (1977) found age
differences in recall performance between 6- and 9-
year-olds. However, increases in subjective organi-
zation of items over training sessions were similar
in these age groups (the items in Glidden’s study,
however, were categorically unrelated). Using lists
with categorically related item pairs (drawings of
common objects), Moely and Shapiro (1971) also
reported age differences in recall and clustering in
four groups of children (3, 4, 5, and 6–7 years).
Increases in clustering emerged across sessions
when related items were consistently presented
together over trials, but there were no interactions
involving age. These findings suggest that children
of different ages benefit in similar ways from
repeated learning opportunities. In contrast, Cole
et al. (1971) consistently found Age × Trial interac-
tions in three experiments with school-age children
from Grades 1 to 9. Free recall performance and
clustering increased across study-test trials in all
age groups; however, the changes were substan-
tially smaller in younger than older children, imply-
ing that age differences in performance increased
with training. Taken together, multiple trials seem
to improve free recall as well as clustering in
school-age children. It seems unclear, however,
whether (a) older children benefit more than
younger children from repeated learning opportuni-
ties and (b) which cognitive processes might under-
lie such differences.

In this research, we examined whether age differ-
ences in category clustering over multiple presenta-
tions of related items are attributable to children’s
learning to encode relational information more
effectively. This may involve increasing proficiency
in simultaneously attending to multiple pieces of
information (Halford, Wilson, & Phillips, 1998) and
in forming connections among them, based on
semantic knowledge (Bjorklund, 2011; Schneider,
2014). The perspective that the development of
encoding processes is an important source of age
differences in episodic memory is not uncontested,
however, as there is also evidence that the ability to
retrieve episodic information may be particularly
fragile during early development (Bauer, Wiebe,
Carver, Waters, & Nelson, 2003) and that younger
children’s retrieval is more rigidly dependent on
contextual cues from an original encoding phase
(e.g., Ackerman, 1981). Addressing these issues is
important for our understanding of the develop-
ment of episodic memory. To investigate our
assumptions about developmental differences in the
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encoding of items as clusters, it is essential to mea-
sure cluster encoding separately from other cogni-
tive processes, namely, the retrieval of clusters once
they are encoded, and memory for (unclustered)
individual items (which may reflect nonstrategic,
rote memorization). To obtain unconfounded mea-
sures of these cognitive processes, we used a mod-
eling approach. We will next discuss advantages of
cognitive modeling and then describe the specific
model we used in this study.

Measuring Clustering in Episodic Memory

Various behavioral measures of clustering and
subjective organization have been developed and
commonly applied to quantify input–output rela-
tions in free recall (Bousfield & Bousfield, 1966). An
example of such a behavioral measure is the num-
ber of clusterable items recalled adjacently. There
are several potential reasons for disparate findings
about clustering in developmental memory
research. First, behavioral measures are not process
pure: Observable performance results from a con-
glomerate of different underlying cognitive compo-
nents (e.g., cluster encoding and retrieval) that may
even interact in a nonlinear fashion (e.g., Brainerd,
1985). For example, items that are not organized in
clusters at recall may indicate a failure of cluster
encoding or a failure to retrieve an encoded cluster.
Second, behavioral measures often pose difficulties
for interpretation because they are not tied to a the-
oretically motivated model and make implicit or
untested assumptions (Jablonski, 1974; Riefer, 1982).
Therefore, an important advantage of cognitive
modeling over the use of behavioral measures is
that the assumptions of formalized cognitive mod-
els are explicit and statistically testable; moreover,
quantitative estimates of cognitive constructs are
obtained in a well-specified way. For instance,
Howe, Brainerd, and Kingma (1985) used a two-
stage Markov model to examine the impact of the
organizational structure of item lists on encoding,
retrieval, and retrieval learning in 7- and 11-year-
olds. Their study revealed that the probability of
encoding and retrieving information was higher in
older than younger children. However, there was
surprisingly little increase through presence of
semantic list structures in any of the model parame-
ters. This may suggest that the presentation of orga-
nized information at encoding is not sufficient to
boost memory performance. However, Howe
et al.’s Markov model does not provide estimates of
item clustering. For this study, we needed a model
that allowed us to estimate the probability to

encode item pairs as clusters, unconfounded by
other cognitive processes. To this end, we used the
pair-clustering model introduced by Batchelder and
Riefer (1980, 1986), which is a stochastic model
belonging to the class of multinomial processing
tree (MPT) models (for overviews of MPT model-
ing, see Batchelder & Riefer, 1999; Erdfelder et al.,
2009).

MPT Modeling

Multinomial processing tree modeling is a pow-
erful tool to disentangle different cognitive states or
processes that jointly contribute to observable
responses in specific cognitive tasks. MPT models
have been successfully applied in many fields of
cognitive science, including the development of
memory and decision making (e.g., Bender, Wall-
sten, & Ornstein, 1996; Bernstein, Erdfelder, Melt-
zoff, Peria, & Loftus, 2011; Chechile, Richman,
Topinka, & Ehrensbeck, 1981; Horn, Ruggeri, &
Pachur, 2016; Howe, & O’Sullivan, 1997; Pohl,
Bayen, & Martin, 2010; Yim, Dennis, & Sloutsky,
2013).

The pair-clustering model. Figure 1 shows the
tree structure of the pair-clustering MPT model
(Batchelder & Riefer, 1980, 1986) which is tailored
to episodic free recall tasks in which pairs of items
that belong to the same category (e.g., spoon and
knife) are presented during a study phase. The pair-
clustering model provides probability estimates of
entering specific cognitive states that can be esti-
mated from categorical response data: Parameter c
indicates the probability of encoding related items
together as a cluster and storing this cluster over
time; parameter r indicates the probability of subse-
quently retrieving such a cluster at test; parameter
u indicates the probability of recalling items that
are encoded and retrieved without such clustering
(i.e., remembering an item as a singleton without
forming a cluster with the other item of the same
category). The model distinguishes four mutually
exclusive and exhaustive response events (Ei) in free
recall: both items of a pair are recalled adjacently
(E1); both items of a pair are recalled, but not adja-
cently (E2); only one item of a pair is recalled and
the other one not (E3); neither item of a pair is
recalled (E4). Hence, the model accounts not only
for the number of items recalled but also for the
structure of the output and makes some basic
assumptions about how latent cognitive states lead
from a study list to the observed responses: With
probability c, the items of a pair are encoded and
stored together as a clustered representation. In a
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subsequent recall test, such a cluster may be
retrieved (with probability r) or not retrieved (with
probability 1 − r). If the cluster is retrieved, partici-
pants recall both items adjacently (E1). If the cluster
is not retrieved, participants do not recall either
item of the pair (E4). Items of a pair that have not
been encoded as a cluster (with probability 1 − c)
may nevertheless be encoded and later retrieved as
unclustered singletons, each with probability u.
With probability u × u, both items of a pair are
recalled as singletons, resulting in nonadjacent
recall of both words (E2). With probability
u × (1 − u), only one of the items is recalled as a
singleton (E3). Finally, with probability
(1 − u) × (1 − u), neither item is recalled as a sin-
gleton. In this case, participants do not recall either
item of the pair (E4).

The model has been applied to many data sets
(including recall data from younger and older
adults; Bröder et al., 2008; Erdfelder & Bayen, 1991;
Riefer & Batchelder, 1991) and has shown good fit
to recall data. Tests of selective influence of experi-
mental manipulations on the model parameters
supported the validity of the psychological interpre-
tation of the parameters (e.g., Bäuml, 1991; Riefer,
Knapp, Batchelder, Bamber, & Manifold, 2002).

Multitrial extension of the model. As develop-
mental differences may emerge in the rate of

learning to cluster, which we sought to quantify,
we used an extension of the pair-clustering model
that accounts for changes in the probabilities of
entering cognitive states across multiple trials.
Knapp and Batchelder (2004) proposed a frame-
work for reparametrizing MPT models under the
constraint of a weak ordering of parameter values.
In multitrial learning designs, this entails the plausi-
ble assumption that parameter values do not
decrease across trials (i.e., the values of c, r, and u
may increase across trials or remain at the same
level). Specifically, the reparameterized model
yields an estimate of parameter θ1 for the initial
study-test trial and a corresponding change-rate
parameter βθ,n which models the change in parame-
ter θ from trial n − 1 to trial n. This change is quan-
tified as the proportional reduction of error in the
modeling: βθ,n¼

θn�θn�1
1�θn�1

. For instance, if the value of
some parameter in the initial trial was θ1¼ :10 and
on the subsequent trial θ2¼ :20, then the change
rate between these trials would be quantified as
βθ,2¼

:20�:10
1�:10 ≈:11. Further mathematical details are

discussed in Knapp and Batchelder (2004). One
restricted version of this multitrial model assumes a
single change rate across trials that remains con-
stant βθ,2¼ βθ,3¼ . . .¼ βθ,n for each parameter θ and
thus predicts geometric/exponential learning curves
(Bush & Mosteller, 1955). In this study, we applied

Figure 1. The pair-clustering multinomial model of free recall (Batchelder & Riefer, 1980, 1986) for item lists containing clusterable pairs.
c ≡ probability of encoding and storing related items as a cluster; r ≡ probability of retrieving a cluster at test; u ≡ probability of recall-
ing (encoding and retrieving) an item as a singleton. Possible free-recall events (categories E1–E4) are represented as rectangles on the
right side in the figure.
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this restricted model and also compared it with a
more flexible model version that allows any form
of monotonic increase across study-test trials.

Hierarchical Bayesian implementation. We used a
hierarchical MPT model (Klauer, 2010; Matzke,
Dolan, Batchelder, & Wagenmakers, 2015) which
can account for individual differences in the cogni-
tive components underlying free recall. As hetero-
geneity in performance and underlying cognitive
processes is expected particularly in samples of chil-
dren, this is a notable improvement over previous
MPT analyses in developmental studies, for which
data were aggregated over participants (e.g., Smith,
Bayen, & Martin, 2010). Because hierarchical imple-
mentations of MPT models in a classic-frequentist
framework are sometimes difficult (Klauer, 2010),
the current parameter estimation relied on a Baye-
sian approach in which uncertainty about model
parameters and available information is represented
by probability distributions. Specifically, to deter-
mine the most credible value ranges of the model
parameters in the posterior distributions given the
data, we used the Markov Chain Monte Carlo
(MCMC) methodology for posterior sampling (see
van Ravenzwaaij, Cassey, & Brown, 2018, for an
introduction; further details about the current
model implementations are in Appendices A–B and
Supporting Information).

The Current Study

The objective of the cross-sectional study reported
here was to investigate if and how the formation of
clusters in free recall and the ability to benefit therein
from multiple learning opportunities develops in
childhood. Seven-year-olds, 10-year-olds, and young
adults studied a list of 18 categorically related word
pairs that were presented auditorily. We selected
these age groups because considerable changes in
both clustering and episodic recall performance are
expected during the elementary-school years (Bjork-
lund, 2011; Fandakova, Lindenberger, & Shing, 2015;
Ghetti & Lee, 2011; Lehmann & Hasselhorn, 2010;
Schneider, 2014). There were four consecutive study-
test trials of the same item list. Each study phase was
followed by free recall. We used the MPT pair-clus-
tering model to estimate cluster encoding and
changes in this process in the three age groups.

Quantitative Comparisons

Initial baseline level. Based on previous devel-
opmental research (Jablonski, 1974; Schneider, 2014),
we expected differences between younger children

(7-year-olds), older children (10-year-olds), and
adults, in free-recall performance (recall of words
and of word pairs). We also anticipated age differ-
ences in the corresponding model-based measures
on the initial study-test trial: To the extent that adults
and older children more likely engage in sponta-
neous cluster encoding than younger children, we
expected that age differences in recall would be attri-
butable to the initial level of cluster encoding (pa-
rameter c). This would be in line with the notion that
the proficiency to form semantic relations between
items undergoes protracted development during the
elementary-school years (e.g., Schneider, 2014). How-
ever, strategic cluster encoding may not be the only
source contributing to developmental differences in
recall. To the extent that age groups differ in remem-
bering individual (unclustered) items, we also antici-
pated differences in parameter u.

Learning rate. Developmental differences may
be more pronounced in the way people progressively
utilize information than in their initial performance.
Therefore, we were particularly interested in changes
of cognitive processes across study-test trials. As dis-
cussed earlier, one possibility is that repeated learn-
ing opportunities help younger and older children
improve clustering and recall to similar extent (Sce-
nario A). A second possibility is that younger chil-
dren’s lack of experience with clustering strategies
may be compensated for by repeated learning oppor-
tunities. In this case, we would find greater benefit
from repetitions for younger children’s clustering
than for older children’s clustering (Scenario B). Both
of these result patterns would indicate that even
younger children are able to produce clustering
strategies if given such training opportunities (Moely
& Shapiro, 1971). A third possibility (Scenario C) is
that older children’s broader knowledge base, or a
failure of younger children to overcome a production
deficiency result in older children benefitting more
from multiple learning opportunities than younger
children (Cole et al., 1971). In the modeling, these
three possibilities would be reflected in different pat-
terns of change rates in cluster encoding (parameter
βc). We aimed at investigating which of these three
scenarios best describes children’s changes in strat-
egy use when multiple learning opportunities are
available. A schematic illustration of the three differ-
ent predictions is in Appendix C.

Qualitative Comparisons

The cognitive components contributing to recall
may also differ qualitatively between age groups.
That is, even the same level of memory
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performance may in principle be achieved through
different cognitive routes. Specifically, recall of
items may be achieved by memorizing them as sin-
gletons in a rote manner or by clustering them by
semantic category. Younger children sometimes
show excellent memory for individual items (Slout-
sky & Fisher, 2004). Moreover, there is evidence to
suggest that the basic ability for episodic recall
emerges in infancy (e.g., Bauer et al., 2003),
whereas the ability to form semantic relations
between items undergoes protracted development
(Schneider, 2014). Therefore, we assumed that age
differences should be more pronounced in categori-
cal clustering than in recall of singletons. The
design of this study along with the use of the cog-
nitive model allowed us to disentangle these possi-
bilities through age comparisons of the model
parameters c (cluster encoding) and u (singleton
recall).

Moreover, we analyzed whether the pattern of
learning to cluster differed between age groups or
whether there was structural developmental invariance
in multitrial free-recall learning. Developmental
invariances refer to regularities in data that hold
regardless of age group. The modeling of invari-
ances is theoretically informative because it points
to general characteristics or principles of human
cognition (see Brainerd, 1983; Lee, 2018) In many
cognitive tasks, for example, learning is well
described by a constant rate of change in perfor-
mance (Bush & Mosteller, 1955). If it was possible
in this study to describe the general form of learn-
ing with the same functions in all age groups, this
would indicate structural developmental invariance.
Therefore, we tested if a learning model with con-
stant change rates in model parameters over study-
test trials fitted the data from all age groups well,
and if age differences were merely confined to the
values of the change-rate parameter.

Method

Participants

The study included 150 participants from three
age groups: forty-nine 7-year-olds, forty-nine 10-
year-olds, and 52 young adults. Given these sample
sizes and an alpha level of .05, the statistical power
to detect medium-sized (η2 = .06) main effects or
interactions in behavioral recall measures was at
least .80 (Faul, Erdfelder, Lang, & Buchner, 2007).
Table 1 shows participant characteristics and mean
scores in three cognitive tests of the Wechsler intel-
ligence scales. We recruited the 7-year-old children

from two first-grade classes and the 10-year-old
children from two fourth-grade classes of the same
public elementary school in the city Düsseldorf
(Germany) through letters of invitation to parents.
We obtained approval from the ethics committee of
the Faculty of Mathematics and Natural Sciences at
Heinrich-Heine-University Düsseldorf, written per-
mission from the school administration, and con-
sent and demographic information about the
children from their parents. The children provided
written assent and received a small toy for partici-
pation. Young adults were either first-semester psy-
chology students who received course credit, or
students with other majors who received financial
reimbursement. Participants had various socioeco-
nomic backgrounds (predominantly middle- and
upper-class Caucasian families). Only native speak-
ers of German were included in the study. All par-
ticipants were screened for language
comprehension at the beginning of each session
with a short picture-naming task (Bates et al., 2003).
Participants showed typical cognitive performance
for their respective age (participant scores of the
cognitive tests similarities, digit span, and digit-
symbol coding are in Table 1).

Design and Materials

We used a 3 × 4 mixed factorial design with the
between-subjects factor age group (7-year-olds, 10-
year-olds, young adults) and the within-subject

Table 1

Participant Characteristics and Cognitive Test Scores

7-year-olds

n = 49

27f; 22m

10-year-olds

n = 49

27f; 22m

Adults

n = 52

34f; 18m

M SD M SD M SD

Age (years) 6.90 0.34 10.11 0.49 21.42 2.86

Similarities 10.96 3.56 10.73 2.02 9.62 1.75

Digit span 10.20 2.65 10.76 2.28 10.60 2.39

Digit-symbol coding 11.16 2.70 11.63 2.48 11.48 2.84

Note. For children, the cognitive tests were taken from the German
version of the Wechsler Intelligence Scale for Children (Petermann
& Petermann, 2007); for adults, the corresponding tests were taken
from the German version of the Wechsler Adult Intelligence Scale
(von Aster, Neubauer, & Horn, 2006). Age-scaled norm scores
from Wechsler subtests have M = 10 and SD = 3. For the digit
span subtest, the raw scores from the forward-span and back-
ward-span tasks were summed and then transformed into a norm
score. Analyses of cognitive test scores indicated that participants
performed at least as well as normatively expected for their respec-
tive age group [smallest t(51) = −1.58; p > .11; for similarities
scale, adults]. f = female; m = male.
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factor study-test trial (Trials 1–4). The materials and
procedure are illustrated in Figure 2. The same
word list was presented in each of the four study-
test trials. The list included 18 semantically related
word pairs (i.e., 36 words) from 18 semantic cate-
gories, taken from German category-production
norms (Mannhaupt, 1983). The words are listed in
Supporting Information 5. All words were one- or
two-syllable nouns. We did not use the two most
frequently produced exemplars from the production
norms to avoid retrieval from semantic memory;
however, the selected words had relatively high
production frequencies in the norms to ensure high
association with a category. The stimuli for the
tasks were recorded in advance by a male profes-
sional speaker to avoid confounds by reading abil-
ity. As primacy buffer, the same two word pairs
were presented at the beginning of each list in ran-
dom sequence with a lag of one between the words
of a pair and did not enter analyses. Following the
procedures by Bröder et al. (2008), for each partici-
pant, a random half of the remaining 16 word pairs
appeared in the list with a lag of one nonrelated
word between them, whereas the other half of
word pairs appeared with a lag of nine other words
between them. In each study trial, participants
heard a different random sequence of the same
words, with the restriction that the lag remained
constant for a given word pair across study trials.
We ensured that selected words were not highly
associated with any words from other selected
semantic categories by evaluating their co-occur-
rences (using a German text corpora collection:
http://wortschatz.uni-leipzig.de). Moreover, the

materials were examined by two independent
experts (experienced elementary school teachers) to
ensure that first-graders would be familiar with all
presented words and would understand the
instructions. A pilot study with six first-graders
indicated that they could successfully handle all
instructions, tasks, and materials.

Procedure

Each participant was tested individually in a
quiet school room (children) or in a university labo-
ratory (adults) in a session that lasted about
35 min. All participants gave written consent
(adults) or assent (children). A trained experimenter
explained the tasks and gave standardized oral
instructions. After a brief verbal screening test, the
participant put on a headset that was connected to
a laptop that controlled the auditory presentation of
stimuli during the encoding phase and recorded the
participant’s oral responses during the recall phase.
The word stimuli had been prerecorded by a pro-
fessional speaker. Participants listened to all stimuli
via the headset and responded orally; no interac-
tions with a screen, keyboard, or papers were
required. An initial audibility-check, in which par-
ticipants repeated short sequences of digits, ensured
that they could hear the presented sounds via the
headset.

The experimenter then informed the participants
that they would study a list of words and recall
them in any order they wished. The same words
would then be repeated several times, but in a dif-
ferent sequence, and each time participants would
have to recall the words. Participants were
instructed to memorize as many words as possible
and were informed that they should recall these
words after a short delay. Participants had the
opportunity to ask the experimenter any questions
and were asked to repeat the instructions in their
own words to ensure understanding; if necessary
this procedure was repeated. For an illustration of
the recall procedure, see Figure 2. There were four
study-test trials. Each of them included the auditory
presentation (via headset) of the same 18 semanti-
cally related word pairs. Each word was presented
for 1 s, followed by an interstimulus interval of 1 s.
After list presentation, participants repeated
sequences of three digits (children) or six digits
(adults) for 20 s (presented by the same voice). This
buffer-clearing task served to counteract recall of
words from short-term memory.

Participants were then asked to recall as many
words as possible in any order. In Trials 2–4,

Figure 2. Illustration of the study-test procedure. Each partici-
pant completed four study-test trials in which the same eighteen
pairs of categorically related words were presented during each
study phase, followed by a distractor task and a free recall
phase.
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participants were additionally informed to also
include words that they had already mentioned in
the preceding trials. Recording of verbal recall was
stopped (a) if participants indicated that they could
not remember any more words, or (b) if 20 s
elapsed without any mentioned item and, following
a prompt by the experimenter, no further items
were mentioned within the subsequent 20 s. At the
end of the session, participants completed several
cognitive tests (similarities, digit-symbol coding,
and forward and backward digit span from the
Wechsler intelligence tests). Finally, participants
received their reward for participation. Further ver-
batim instructions are in Supporting Information 6.

Results

We first report behavioral measures of recall perfor-
mance, followed by the model-based analyses of
cognitive components contributing to free recall
and to category clustering.

Recall Performance

Free Recall of Words

Table 2 shows means and standard deviations of
the proportion of words recalled. A 3 (Age
Group) × 4 (Trial) analysis of variance (ANOVA)
indicated a large main effect of Age, F(2,
147) = 159.36, p < .01, η2 = .68. Seven-year-olds
recalled fewer words than 10-year-olds, who in turn
recalled fewer words than young adults (all ts > 6;
ps < .01; ds > .5). The large main effect of Trial, F(3,
441) = 468.98, p < .01, η2 = .62, Greenhouse-Geisser
ϵ = .788 indicated substantial improvement across
trials. Improvement was found within each age
group when analyzed separately (all Fs > 26; all
ps < .01). However, as indicated by a Group × Trial
interaction, the improvement differed between age
groups, F(6, 441) = 72.24, p < .01, η2 = .19. The age
differences in recall were considerably larger in the
last study-test trial (η2 = .74) than in the initial trial
(η2 = .35).

Free Recall of Word Pairs

We also examined the proportion of times both
words of a pair were recalled (see Table 2). A 3 × 4
ANOVA indicated a large main effect of Age, F(2,
147) = 139.5, p < .01, η2 = .66. Seven-year-olds
recalled fewer pairs than 10-year-olds, who in turn
recalled fewer pairs than adults (all ts > 4.48; ps <

.01; ds > .36). There was a large effect of Trial, F(3,
441) = 287.68, p < .01, η2 = .49, ϵ = .843. Increases
in the recall of pairs across the four trials emerged
within each age group (all Fs > 10; all ps < .01). A
Group × Trial interaction indicated that improve-
ments across trials in recall of word pairs were
more pronounced in older than younger age
groups, F(6, 441) = 77.64, p < .01, η2 = .26.

Summary

All age groups showed increases across study-
test trials in the recall of words and pairs of

Table 2

Proportions of Recalled Words, Proportions of Recalled Word Pairs,

and Multinomial-Model Parameters for Each Age Group

M (SD)

7-year-olds 10-year-olds Adults

Word recall

Trial

#1 .13 (.05) .19 (.07) .29 (.13)

#2 .19 (.08) .28 (.08) .50 (.17)

#3 .23 (.10) .38 (.12) .65 (.16)

#4 .23 (.12) .45 (.14) .77 (.15)

Overall .19 (.07) .32 (.09) .55 (.13)

Word-pair recall

Trial

#1 .02 (.04) .06 (.06) .13 (.12)

#2 .06 (.06) .11 (.08) .33 (.21)

#3 .07 (.07) .19 (.11) .50 (.19)

#4 .09 (.09) .28 (.14) .66 (.20)

Overall .06 (.05) .16 (.07) .41 (.16)

Model parameters

Cluster encoding c

Initial value c1 .034 (.013) .054 (.024) .109 (.084)

Change rate βc .015 (.005) .050 (.021) .190 (.125)

Cluster retrieval r

Initial value r1 .454 (.422) .612 (.320) .835 (.119)

Change rate βr .499 (.442) .445 (.371) .533 (.214)

Singleton recall u

Initial value u1 .131 (.034) .163 (.030) .228 (.075)

Change rate βu .033 (.032) .091 (.038) .199 (.100)

Note. Word recall Pr(C1) and word-pair recall Pr(C2) can be calcu-
lated from the proportion of responses in the model categories as
Pr(C1) = Pr(E1) + Pr(E2) + Pr(E3)/2 and Pr(C2) = Pr(E1) + Pr(E2).
The model-parameter estimates are the group-level means and
group-level standard deviations (in parentheses) of the hierarchical
latent-trait model. The initial value (θ1) is the parameter estimate
of the first study-test trial; the corresponding change-rate βθ is the
proportional reduction of error from one trial to the next. Group-
level means and standard deviations of the multinomial process-
ing tree model parameters are reported on the probability scale
(ranging from 0 to 1). For this purpose, we applied the inverse pro-
bit transformation on all latent-trait-model Markov Chain Monte
Carlo estimates, using the probitInverse() function in the Tree-
BUGS package for R (Heck, Arnold, & Arnold, 2018).
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categorically related words. As expected, there were
large differences in overall recall between 7-year-
olds, 10-year-olds, and adults. Moreover, improve-
ments through list repetitions were more pro-
nounced with higher age. However, based on
analyses of overall memory performance alone, it is
difficult to evaluate whether these age differences
are due to differences in cluster encoding, and
whether they are mainly attributable to quantitative
or qualitative differences in processes. We therefore
turn to a model-based analysis that disentangles the
different components underlying free recall.

Model-Based Analyses

We tallied the frequencies of the observed recall
events E1–E4 for each participant and study-test
trial. The cognitive modeling was based on these
frequencies. We used a reparameterized multitrial
version of the pair-clustering MPT model (as
described earlier) to quantify possible changes in
cluster formation through repeated list presentation.
This model provides (a) an estimate of an initial
value for each parameter in the first study-test trial
and (b) estimates of the change-rate for each parame-
ter in subsequent trials.

Participant Variability

To examine variability in response frequencies
(E1–E4) between participants, we performed chi-
square tests (as proposed by Smith & Batchelder,
2008) within each age group and study-test trial,
which indicated substantial heterogeneity: smallest
χ2(144) = 179.86, largest p < .03 (except in the chil-
dren’s initial two trials in which performance was
generally low and data were consequently rela-
tively homogenous). This indicated the necessity of
hierarchical modeling to account for the individual
variability in recall.

Model Comparison and Model Fit

In a next step, we ran and compared in each age
group two hierarchical MPT-model versions that
differed in their specification of change (all other
things being equal): one model with constant
change rate across trials and another model with
flexible change rates that were free to vary between
trials. The model equations for both model versions
are in Supporting Information. For younger adults,
10-year-olds, and 7-year-olds, the deviance informa-
tion criterion (DIC) for these two model versions
was 2034 versus 2066, 1763 versus 1784, and 1460

versus 1470, respectively. The DIC is a Bayesian
alternative to the Akaike information criterion and
quantifies the balance between parametric complex-
ity and goodness of fit to determine relative perfor-
mance of a model. Models with smaller DIC are
preferred over models with larger DIC. According
to Spiegelhalter, Thomas, Best, and Lunn (2003),
differences in DIC between 5 and 10 are “substan-
tial” and differences of more than 10 indicate to
“definitely rule out the model with the higher
DIC.” This suggests that in this study, improve-
ments in fit by allowing flexible change rates did
not justify the additional parametric model com-
plexity in any age group. Therefore, we used a
learning model with only one change rate that was
constant across trials (for each parameter) in all
subsequent analyses. Posterior predictive checks (in-
cluding statistical fit indices, Klauer, 2010, and
visual inspection of observed data and model pre-
dictions) indicated a good model fit to the data for
7-year-olds (PT1 = .34; PT2 = .47), 10-year-olds
(PT1 = .50; PT2 = .24), and adults (PT1 = .09; PT2 =

.24). Details about model fit, model implementa-
tion, parameter recovery, and recall data are in the
Appendices A–B and Supporting Information.

Modeling Results

Table 2 (lower section) shows the group-level
means and standard deviations of the initial param-
eter values (c1, r1, u1) and of their change rates (βc,
βr, βu). Figure 3 shows the corresponding learning
curves (changes in c, r, and u across trials) for the
three age groups. These learning curves were calcu-
lated from the initial parameter values and change
rates of the multitrial model, based on the relation
θn¼ θn�1þβθð1�θn�1Þ, for the value of parameter θ

at trial n (with 1 < n ≤ 4). In what follows, we
focus on differences between age-group means in
the initial parameters (first study-test trial) and in
the change rates (learning) across study-test trials.
Supporting Information 3 includes additional plots
of individual parameter estimates. We consider the
credibility of group differences and report 95%
credibility intervals (highest posterior density) in
brackets, based on the MCMC sampling.

Cluster Encoding and Retrieval

Figure 3A, shows learning curves for cluster
encoding. Parameter c1 represents the probability of
encoding two semantically related words as a cluster
in the first trial. The only credible group-mean differ-
ence in c1 emerged between adults and 7-year-olds,
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∆c1 = .057 [.003, .112], indicating that on the initial
trial, adults more likely than 7-year-olds encoded
item pairs as clusters. Neither adults and 10-year-
olds [−.018, .098], nor 10-year-olds and 7-year-olds
[−.024, .061] differed credibly in such initial cluster-
ing. Importantly, the age groups differed in change
in clustering across study-test trials (change-rate
parameter βc): the probability of clustering word
pairs increased more strongly across list repetitions
in adults than in 10-year-olds, ∆βc = .117 [.070, .163],
and in adults than in 7-year-olds ∆βc = .150 [.107,
.194]. The change rate βc was also higher in 10-year-
olds than in 7-year-olds ∆βc = .033 [.009, .058]. Nota-
bly, and in contrast with other age groups, 7-year-
olds showed no increase in clustering across trials
(see Figure 3A). That is, their change rate of βc was
not credibly different from zero [.000, .025].

Figure 3B, shows changes in parameter r, the
probability of retrieving a stored cluster. Parameter
r1 on the initial study-test trial did not differ
between age groups (adults vs. 10-year-olds [−.308,
.619], adults vs. 7-year-olds [−.064, .956], 10-year-
olds vs. 7-year-olds [−.298, .915]). Similarly, no credi-
ble age differences emerged in the change in cluster
retrieval across trials: the change rate βr differed nei-
ther between adults and 10-year-olds [−.559, .759],
nor adults and 7-year-olds [−.610, .739], nor between
10-year-olds and 7-year-olds [−.836, .607]. If only
few clusters are encoded in the first place—as was
the case particularly in initial trials for the children
—then only few clusters can be subsequently
retrieved, resulting in large uncertainty in parameter
r.

Singleton Encoding and Retrieval

Parameter u1 measures the probability of encod-
ing and retrieving a word as a singleton (i.e., with-
out clustering). As parameter u measures a
conglomerate of singleton encoding and retrieval, it
has received less attention in previous research than
parameters c and r. Importantly however, a com-
parison of the pattern of u with that of the other

parameters is informative in this study because
such a comparison can reveal why recall perfor-
mance changes across trials in children: If increases
in the singleton parameter u were more pronounced
than increases in the clustering parameter c, this
would suggest that clustering was not the main
route contributing to increases in children’s recall
performance with repeated list presentations.

Figure 3. Learning curves as a function of age group and study-
test trial, calculated from the parameter estimates of the multitrial
multinomial model with order constraints on the parameters and
constant change rates across trials (Bush–Mosteller learning
model). In addition to the group-level curves (larger symbols), the
individual estimates are also shown (smaller symbols). (A) Proba-
bility of encoding and storing a word pair as a cluster (parameter
c). (B) Probability of retrieving a cluster at test (parameter r). (C)
Probability of recalling a word as a singleton (parameter u). Within
each study-test trial, an offset between groups is included to visu-
ally distinguish the values for the different groups.
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Figure 3C, shows the estimates for the singleton
parameter u. The age groups differed in estimates of
the initial singleton parameter: u1 was higher for
adults than for 10-year-olds, ∆u1 = .059 [.022, .098],
and higher for adults than 7-year-olds, ∆u1 = .092
[.055, .129]; moreover, u1 was higher for 10-year-olds
than 7-year-olds, ∆u1 = .033 [.005, .060]. The change
rate βu was higher for adults than for 10-year-olds,
∆βu = .098 [.054, .141], higher for adults than 7-year-
olds ∆βu = .161 [.121, .203], and higher for 10-year-
olds than 7-year-olds ∆βu = .063 [.039, .086]. Nota-
bly, improvements in remembering singletons were
significant in all age groups: Even though 7-year-
olds showed relatively subtle improvements across
trials, their change rate βu was credibly different
from zero [.008, .035]. Overall, the modeling results
suggest that the increases in recall in this age group
were mainly due to remembering items as single-
tons—and not due to categorical clustering.

Correlations

We also explored the correlations (a) among the
model parameters and (b) between recall perfor-
mance (proportion of recalled of words and of word
pairs) and the model parameters. Supporting Infor-
mation 1 and 2 includes details. In adults, parameter
c1 and βc and parameters u1 and βu were positively
correlated (rs > .57), respectively, suggesting that
people who started performing at a higher level also
had higher learning rates across trials in these
parameters. We did not find further credible correla-
tions among model parameters in any age group.

Moreover, the correlations between recalled
words and the model parameters indicated positive
relations: for adults, the correlations between recall
and parameter c1, βc, u1, and βu, respectively, were all
credibly positive (rs > .53), whereas for children, this
was the case only for the correlations between recall
and parameters u1 and βu, respectively (rs > .60).

Taken together, these analyses indicate that the
model parameters represent largely independent cog-
nitive components that contribute jointly to observed
recall. The correlations also suggest that encoding
items as clusters is particularly associated with high
recall performance in adults, whereas recall of indi-
vidual items appears to be the major source contribut-
ing to younger children’s recall accuracy.

Discussion

In this study, we investigated differences between
7-year-old children, 10-year-old children, and young

adults in the clustering of categorically related
words in free recall. An important question was
whether multiple presentations of a list might
increase clustering and help children to improve
their performance. To measure cluster formation at
encoding and to assess how clustering supported
free recall performance, we used a Bayesian hierar-
chical MPT model that allowed us to disentangle
different cognitive components underlying free
recall. To our knowledge, this is the first study to
use a cognitive modeling approach to illuminate
children’s clustering in free recall.

The main findings can be summarized as fol-
lows. First, on a behavioral level, the age groups
expectedly differed from each other in recall of total
number of words and of word pairs, with adults
showing the highest and younger children showing
the lowest performance. These behavioral differ-
ences were accounted for by corresponding age dif-
ferences in the encoding of categorically related
words as clusters (model parameter c) and in
remembering items as singletons (parameter u).
Interestingly, the modeling indicated that the age
groups differed from the outset in memory for sin-
gletons, whereas age differences in initial cluster
encoding were less clear-cut (only adults and 7-
year-olds differed credibly in parameter c1). This
suggests that clustering-strategy development is not
the only factor contributing to age differences in
recall and that even young adults needed more
than one trial to utilize categorical relations
between items. Notably, developmental differences
in cluster encoding transpired mostly in the change
rate across trials (parameter βc). This highlights that
age differences in cognitive processes can be more
pronounced in learning than in the initial baseline
level (cf. Bröder et al., 2008). Estimates of the condi-
tional probability of retrieving clusters from mem-
ory, given their successful encoding, were generally
high (parameter r). This appears to suggest that
once items were successfully encoded and stored
together, there was a high likelihood of retrieving
the cluster again, and there were no credible age
differences in cluster retrieval (see Howe et al.,
1985; Howe & O’Sullivan, 1997, for similar findings
in other experimental memory paradigms). How-
ever, these quantitative invariances in retrieval
should be interpreted with caution in this study:
Because few clusters were encoded on initial trials
in the first place (particularly by children), the
uncertainty in this parameter was relatively large,
and we therefore refrain from stronger conclusions
about cluster retrieval. On the whole, and in line
with previous research, these findings indicate clear
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developmental differences in the semantic organiza-
tion of episodic memory which could be localized
in the ability to cluster categorically related infor-
mation at encoding.

Second, all age groups showed significant
increases across study-test trials in word recall.
However, increases were generally most pro-
nounced in the adults and least pronounced in the
younger children. We found Age × Trial interac-
tions in recall performance and in the model
parameters, following a pattern that we described
as Scenario C in the introduction. That is, age differ-
ences increased, rather than decreased, as learning
progressed through repeated study-test cycles (cf.
Cole et al., 1971). In 7-year-olds, initial cluster
encoding was close to zero and, in contrast to the
other age groups, this group showed no increase in
cluster encoding across trials (parameter βc). Hence,
repeated study opportunities did not help 7-year-
olds to encode categorically related items as clus-
ters, but all age groups showed increases in remem-
bering singletons (parameter βu). The larger age
differences in the change rate of cluster encoding
(βc) than of singleton memory (βu) suggest that
acquiring proficiency to form relations among items
is more difficult for younger children than improv-
ing memory for individual items (Schneider, 2014;
Sloutsky & Fisher, 2004).

Third, even though learning rates differed sub-
stantially between groups, the shape of learning in
free-recall clustering followed a common regularity
in all age groups, indicating structural developmen-
tal invariance. That is, in each age group, a model
assuming a constant change rate across trials (im-
plying geometric growth) fits the data very well
and outperformed a more flexible model version (in
which change was unconstrained across trials).
Models with a constant change rate have been suc-
cessfully applied in many other domains of learning
(for overviews, see Brainerd, 1983; Bush & Mostel-
ler, 1955). Here, we could show that such models
also adequately describe the learning of clustering
in free recall, pointing to a general learning princi-
ple across age groups.

What are implications of the current findings
from a developmental perspective? Recall improved
to some extent through repeated learning opportu-
nities in all age groups. In younger children, how-
ever, the effect of this manipulation on clustering-
strategy use was negligible: Whereas adults’ cate-
gorical organization of related words increased sub-
stantially over trials, 7-year-old children showed no
change in the use of the category structure of the
word list. Hence, their moderate improvements in

recall stemmed from encoding and retrieving sin-
gleton items (as measured by parameter u) and
thus may have been achieved mainly through
memorizing items in a nonstrategic, rote manner.
Moreover, the initial probability of cluster encoding
in the younger age groups was lower than the ini-
tial probability of remembering singletons, pointing
to the latter as a main route contributing to chil-
dren’s recall. These results dovetail with past
research that showed that even younger children
may have good memory for individual items
(Sloutsky & Fisher, 2004) and that the basic ability
for long-term recall develops from an early age
(e.g., Bauer et al., 2003), whereas the formation of
semantic relations between items undergoes pro-
tracted development (Bjorklund, 2011; Schneider,
2014). Taken together, our findings clearly indicate
that age differences in categorical clustering cannot
be reduced (or even eliminated) by merely provid-
ing more experience with a recall task. Instead,
more intensive or different interventions (e.g., train-
ing of mnemonic strategy use) may be necessary.
Indeed, research has repeatedly found that even
younger children, who show little evidence of spon-
taneous organization, can be trained to cluster
information under certain instructional conditions
and to thus increase their memory performance
(Bjorklund, 2011; Moely et al., 1969; Rao & Moely,
1989). In other words, younger children appear cap-
able of organizing information for recall, but they
generally fail to do so spontaneously. Our findings
extend this literature by showing that study-test
repetitions alone are not sufficient to overcome such
a production deficiency in younger children.

The current findings also provide important
information for other lines of research. For example,
the development of meaning connection (i.e.,
improvements in the ability to make meaningful
connections between experiences) may contribute to
susceptibility to false memory. Prominent theories
of memory development such as fuzzy-trace theory
(e.g., Reyna & Brainerd, 1995) predict age-related
increases in false remembering across a variety of
tasks (intrusions in recall or false alarms in recogni-
tion) based on the developing ability to form
semantic relations across exemplars and the ten-
dency to rely more on qualitative, meaning-based
representations from memory (so-called gist traces).
Several studies have reported the seemingly coun-
terintuitive finding that false-memory phenomena
are relatively amplified with increasing age and
that these trends are encoding- or storage-driven
rather than being retrieval effects (for overviews,
see Brainerd, Reyna, & Ceci, 2008; Sloutsky &
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Fisher, 2004). However, Brainerd et al. (p. 349)
emphasized the importance of defining and mea-
suring meaning connection independently of false-
memory phenomena and to verify developmental
trends in meaning connection independently. This
study provides such an investigation with a para-
digm that does not involve induction of false mem-
ories. Consistent with research using false-memory
paradigms, our findings suggest that the formation
of meaningful connections at encoding and their
contributions to memory performance increase sub-
stantially over the elementary-school years and into
adulthood.

There are also limitations that could not be
addressed in this study. First, the present findings
are based on cross-sectional data and await replica-
tion with longitudinal designs. Second, we did not
examine in greater depth the role of core cognitive
abilities (e.g., fluid abilities, working memory),
which may also partly explain individual and
developmental differences in clustering and free
recall. In this study, we did not find systematic
relations between digit span (backward and for-
ward) and the MPT-model parameters (the credibil-
ity intervals of all of these correlations included
zero). However, future research could examine
these issues in greater detail through more exten-
sive cognitive testing. Finally, we took several steps
(pilot testing, independent teacher ratings, auditory
presentation) to ensure that even first-graders
would be familiar with all presented words and
understand all instructions. Nonetheless, we cannot
exclude that older children were generally more
proficient than younger children in dealing with
verbal material; it could thus be interesting to
examine clustering with other types of materials in
the future (e.g., pictures or toy objects).

Conclusion

We conducted a cognitive-modeling analysis of
category clustering in free recall by school-age chil-
dren and adults. In all age groups, repeated study-
test trials improved recall and learning followed a
common pattern, suggesting developmental invari-
ance in the way category clustering changed across
trials. In contrast to older age groups, moderate
increases in recall of 7-year-olds were exclusively
based on remembering individual items—and not
on encoding them as clusters. Our research thus
highlights the potential and regularity of verbal
learning across childhood, but also suggests that
repeated learning opportunities are insufficient to
induce clustering strategies in younger children.
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Appendix A

Hierarchical Bayesian Model Implementation

Latent-Trait Model Approach

We used a hierarchical (multi-level) multinomial
processing tree (MPT) model that can account for
individual differences in the cognitive components
underlying observed behavior. An advantage of
this so-called latent-trait model approach (Klauer,
2010) is that both group-level and individual-level
parameters are obtained in a principled way, which
makes it also possible to jointly estimate the correla-
tions between parameters and with external

covariates (e.g., scores from other cognitive tests).
We closely followed the implementations as
described in Klauer (2010) and Matzke et al. (2015).

Bayesian Parameter Estimation

The estimation of the model parameters relied on
Bayesian inference (for overviews, see Lee, 2018; Lee
& Wagenmakers, 2014; Rouder, Morey, & Pratte,
2016) which has been applied in many areas of cogni-
tive modeling (e.g., Arnold, Bayen, & Böhm, 2015;
Filevich, Horn, & Kühn, 2019; Heck et al., 2018; Horn,
Pachur, & Mata, 2015; Kellen, Pachur, & Hertwig,
2016; Michalkiewicz & Erdfelder, 2016; Mizrak, Sing-
mann, & Öztekin, 2017; Schaper, Kuhlmann, &
Bayen, 2019). We used the Markov Chain Monte
Carlo (MCMC) methodology for posterior sampling
to determine the most credible value ranges of the
model parameters in the posterior distributions given
the data. For MCMC sampling with JAGS (Plummer,
2003), we ran three chains of 100,000 iterations each
with a thinning rate of 10 and discarded the first 50%
of iterations as burn-in. For all model estimates, we
report the medians of the MCMC samples.

Graphical Model

The graph structure in Figure A1 illustrates the hier-
archical latent-trait version of the re-parameterized
pair-clustering model with order constraints (Knapp &
Batchelder, 2004) and constant change rates (i.e., we
estimated one initial value and one change rate for
each parameter of the model; the model equations for
this specific implementation are in Supporting

.
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Information). A model for one experimental group is
shown; we implemented three such models to estimate
and compare parameters between 7-year-olds, 10-
year-olds, and adults.

The Figure shows dependencies (probabilistic and
deterministic relations) between latent model parame-
ters and the data. Following conventional notation,
observed variables are symbolized by shaded nodes,
latent variables by unshaded nodes, continuous vari-
ables by circular nodes, and discrete variables by square
nodes (see Lee & Wagenmakers, 2014). The plates indi-
cate replications over the J = 4 different model trees
(the four study-test trials in the free-recall paradigm)
and over I individuals. For each individual i, the
response data x ij (a vector with a participant’s category
counts in a tree) follow a multinomial distribution with
category probabilities Θ ij and number of observations
nij, as defined in the pair-clustering model with order
constraints (see Figure 1 for the tree structure).

The individual-level parameters π i = (c1i, r1i, u1i,
βci, βri, βui) are modeled in probit-transformed
space as πi Φ μπþδπi � ξ

π
� �

and hence represent lin-
ear combinations of a group-level mean μπ, an indi-
vidual displacement parameter δπi , and a
multiplicative scaling parameter ξπ (which is redun-
dant, but serves to improve the convergence of the
MCMC sampling process). For the Bayesian imple-
mentation in this study, the following prior distri-
butions were specified for the parameters: μπ ~ N
(0,1) and ξπ ~ U(0,10), where N is the Gaussian and
U the uniform distribution. Moreover, individual
displacement parameters δπi are drawn from a zero-
centered multivariate normal distribution with
mean vector 0 and covariance matrix Σ

−1
~ W(I K,

K + 1), where W is the Wishart distribution with
K + 1 degrees of freedom and with identity matrix
I K that has K rows and columns, respectively (the
modeling in this study involved K = 6 individual
parameters). For parameter estimation, parameter
comparisons, and evaluation of model fit, we used
the TreeBugs package for R by Heck et al. (2018).

Appendix B

Model Fit and Convergence

Fit Indices

To evaluate fit of the observed data to the pre-
dictions of the latent-trait model, we examined the
fit indices T1 and T2, based on posterior model
checks (see Klauer, 2010, for details). Index T1

quantifies the adequacy of a model in accounting
for the mean observed response frequencies across
model categories, whereas index T2 quantifies the
adequacy of a model in accounting for the variabil-
ity (variances and covariances) among the observed
response frequencies. Posterior predictive p values
for both T1 and T2 indicated a good fit of the model
for 7-year-olds (PT1 = .34; PT2 = .47), 10-year-olds
(PT1 = .50; PT2 = .24), and adults (PT1 = .09; PT2 =

.24). A person-wise examination of individual T1

indices also indicated good fit in each age group.
Overall, these analyses suggested that the version
of the pair-clustering MPT model we applied
(which assumes constant change rate; Bush &

Figure B1. Response frequencies of 7-year-old children. [Color figure can be viewed at wileyonlinelibrary.com]
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Mosteller, 1955) accounted well for the multitrial
recall data. This was also supported by a graphical
inspection of the data and the posterior predictive
distributions, which are plotted below.

Observed Data and Posterior-Predictive Distributions

Figures B1–B3 show plots of the model predictions
(box plots show samples from the model posterior dis-
tribution, based on n = 2,500 samples) and observed
responses (means of individual response frequencies;
red triangles) as a function of category in the MPT
model. The entries Eij on the x-axis refer to the
response category i = 1, . . . ,4 in the pair-clustering
model (see Figure 1 in the article) in study-test trial j

(with j = 1, . . . ,4). Graphs were created with the Tree-
Bugs package (Heck et al., 2018).

MCMC Chain Convergence

For parameter estimation, we ran three MCMC
chains of 100,000 iterations each (with a thinning
rate of 10; the first 50% of iterations were discarded
as burn-in). Chain convergence was satisfactory for
all estimated group-level model parameters
(R < 1.02) and individual-level parameters
(R < 1.1). A comprehensive listing of all individual
and group-level parameters—including convergence
statistics—can be found in the text file results model-
parameters.txt at https://osf.io/kg3s2/.

Figure B2. Response frequencies of 10-year-old children. [Color figure can be viewed at wileyonlinelibrary.com]

Figure B3. Response frequencies of young adults. [Color figure can be viewed at wileyonlinelibrary.com]
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Appendix C

Different Hypothetical Learning Scenarios

Figures C1–C3 show three different hypothetical
trajectories that illustrate how learning to cluster
may progress across study-test trials. The curves
were calculated from the Bush and Mosteller (1955)
learning model, assuming the same initial values
(first trial) for θ1 across scenarios of .05, .125, and
.25 for 7-year-olds, 10-year-olds, and adults, respec-
tively. The scenarios differ in the rate of learning,
as quantified by the proportional change (βθ) from
one trial to the next.

Supporting Information

Additional supporting information may be found in
the online version of this article at the publisher’s
website:

Data S1. Online Supporting Information

Figure C1. Scenario A: The rate of learning βθ is the same for all age
groups.

Figure C2. Scenario B: The rate of learning is highest for younger
children and lowest for adults.

Figure C3. Scenario C: The rate of learning is highest for adults and
lowest for younger children. [Color figure can be viewed at wileyonline
library.com]
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