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A B S T R A C T   

The astelioid families (Asteliaceae, Blandfordiaceae, Boryaceae, Hypoxidaceae, and Lanariaceae) have centers of 
diversity in Australasia and temperate Africa, with secondary centers of diversity in Afromontane Africa, Asia, 
and Pacific Islands. The global distribution of these families makes this an excellent lineage to test if current 
distribution patterns are the result of vicariance or long-distance dispersal and to evaluate the roles of Tertiary 
climatic and geological drivers in lineage diversification. Sequence data were generated from five chloroplast 
regions (petL-psbE, rbcL, rps16-trnK, trnL-trnLF, trnS-trnSG) for 104 ingroup species sampled across global di-
versity. The astelioid phylogeny was inferred using maximum parsimony, maximum likelihood, and Bayesian 
inference methods. Divergence dates were estimated with a relaxed clock applied in BEAST. Ancestral ranges 
were reconstructed in the R package ‘BioGeoBEARS’ applying the corrected Akaike information criterion to test 
for the best-fit biogeographic model. Diversification rates were estimated in Bayesian Analysis of Macroevolu-
tionary Mixtures (BAMM). Astelioid relationships were inferred as Boryaceae(Blandfordiaceae(Asteliaceae 
(Hypoxidaceae plus Lanariaceae))). The crown astelioid node was dated to the Late Cretaceous (75.2 million 
years; 95% highest posterior density interval 61.0–90.0 million years) and an Antarctic-Australasian origin was 
inferred. Astelioid speciation events have not been shaped by Gondwanan vicariance. Rather long-distance 
dispersal since the Eocene is inferred to account for current distributions. Crown Asteliaceae and Boryaceae 
have Australian ancestral ranges and diversified since the Eocene. In Hypoxidaceae, Empodium, Hypoxis, and 
Pauridia have African ancestral ranges, while Curculigo and Molineria have an Asian ancestral range. Diversifi-
cation of Pauridia and the Curculigo clade occurred steadily, while diversification of Astelia and Hypoxis was 
punctuated over time. Diversification of Hypoxis and Astelia coincided temporally with the expansion of the 
habitat types occupied by extant taxa, e.g., grassland habitat in Africa during the Late Miocene and alpine habitat 
in New Zealand during the Pliocene, respectively.   

1. Introduction 

Taxon-centered studies can shed light on the timing of past diversi-
fication, the tempo of species accumulation (Linder et al., 2003; Crisp 
et al., 2004), and the processes driving diversification of lineages (Ver-
boom et al., 2003; Gunn et al., 2020). For globally distributed lineages, 
comparison of diversification among continental floras can provide in-
sights into the comparative influences of global and regional climatic, 
geologic, and edaphic factors on biome evolution (Crisp et al., 2004), 

vegetation change (Bouchenak-Khelladi et al., 2010), and community 
assembly (Carpenter et al., 2015; Tanentzap et al., 2015). 

The Asparagales is the largest monocotyledon order with ca. 36,265 
species (Stevens 2001 onwards). It is morphologically and ecologically 
diverse, including the megadiverse Orchidaceae Juss. (ca. 22,000 spe-
cies) and many smaller, but economically (e.g. Asparagus L., Allium L.) 
and ecologically (e.g. Xanthorrhoea Sol ex Sm., Hypoxis L.) significant 
taxa. Large scale monocotyledon studies have consistently placed 
Orchidaceae sister to the rest of the Asparagales, with an astelioid clade 
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sister to a clade containing all the remaining Asparagales lineages 
(Givnish et al., 2006; Pires et al., 2006; Seberg et al., 2012). The 
Asparagales are estimated to have diversified within the Cretaceous, 
between approximately 120–105 million years ago (Ma) (Bell et al., 
2010; Uribe-Convers et al., 2017; Givnish et al., 2018) with a proposed 
center of origin in West Gondwana (Raven and Axelrod, 1974) or Aus-
tralasia (Bremer and Janssen, 2006) and significant diversity in Africa 
(Wiland-Szymańska, 2001; Singh, 2009). 

The astelioid clade includes five primarily Southern Hemisphere 
families (Asteliaceae, Blandfordiaceae, Boryaceae, Hypoxidaceae, 
Lanariaceae) in 15 genera and ca. 210 species. Astelioid taxa are present 
globally, except in Europe, with Australian (Blandfordiaceae, Bor-
yaceae), Austral-Pacific (Asteliaceae), and African (Hypoxidaceae, 
Lanariaceae) centers of diversity (Fig. 1). Raven and Axelrod (1974) 
considered that the family distributions reflect a “history of long- 
standing connections between Africa and Australasia”, though they 
noted that “it is difficult to say why if they are so old they are so poorly 
represented in South America”. 

To-date, astelioid biogeographic studies have focused on generic 
diversity. Astelia has undergone recent, long-distance dispersal to Pacific 
and Indian Ocean islands, as well as between New Zealand and Australia 
and, independently, South America (Birch and Keeley, 2013). However, 
sampling did not enable determination of the role of vicariance on 
family diversification (Birch et al., 2012). The timing of diversification 
of Hypoxidaceae taxa has not yet been estimated. Within Hypoxidaceae, 
the most species rich genus, Hypoxis, is considered a component of an 
Afromontane (White, 1981) element of the African flora and its diver-
sification is proposed to be linked to the expansion of grasslands on the 
continent as a result of climate change (Singh, 2009). 

Provision of a temporal scale for diversification can provide insights 
into the response of lineages to habitat change associated with geologic 
or climatic conditions. Gondwanan floras experienced warm and humid 
conditions until the Early Eocene (Zachos et al., 2001). Against a global 

backdrop of a cooling Tertiary climate, all Gondwanan floras have 
experienced episodes of higher rates of cooling during the Late Eocene to 
Early Oligocene (ca. 34 Ma), the Middle Miocene (ca. 15–14 Ma), and 
the Late Pliocene (ca. 3 Ma) (Zachos et al., 2001; Lewis et al., 2008). If 
global climatic conditions affected the diversification of these lineages, 
the diversification of both temperate and tropical lineages should reflect 
these climatic changes. Of particular interest, in terms of the habitat 
occupancy of astelioid taxa, is the presence of arid- and mesic-adapted 
taxa as well as forest and grassland associated taxa. Therefore, aste-
lioids hold potential to understand the impacts of increasing global 
aridification from the Middle Miocene onwards (Byrne et al., 2011; van 
Zinderen Bakker and Mercer, 1986) and of regional geological events, 
such as tectonic uplift resulting in the expansion of alpine habitats in 
Australia from the Late Eocene to Pliocene (Holdgate et al., 2008). 

Estimation of the time frame of lineage diversification allows iden-
tification of factors that might have driven the apparent differential 
speciation or extinction in these lineages. Range size and species rich-
ness vary extensively in astelioid genera. Asteliaceae contains two 
endemic Australian genera: Neoastelia, a monotypic genus of temperate 
rainforests in central eastern Australia and Milligania (5 species), a 
Tasmanian endemic with taxa occupying lowland, alluvial to alpine 
herbfield vegetation. Conversely, Astelia (30 species; Birch, 2015), the 
largest genus in the family, has a center of diversity in New Zealand, 
with secondary centers of diversity in Australia and Hawai’i, and two 
exceptional occurrences in Africa (La Réunion, Mauritius) and in South 
America (Patagonia). Blandfordiaceae and Boryaceae are Australian 
endemics containing a single genus Blandfordia (4 species) and Borya (13 
species) and the monotypic genus Alania, respectively. A similar pattern 
of variable range size and species richness is found in the Hypoxidaceae 
and Lanariaceae, which have centers of diversity in Africa. Lanariaceae, 
a monotypic family, is endemic to South Africa where it is found in 
renosterveld vegetation. Conversely, Hypoxidaceae, contains 8 genera 
and ca. 160 species with a global distribution (Stevens, 2001). Similar 

Fig. 1. Global distributions of astelioid families (Asteliaceae, Blandfordiaceae, Boryaceae, Hypoxidaceae, and Lanariaceae) and geographic regions as applied in 
ancestral range reconstruction analyses. Geographic regions were defined as: Asia; Australia and Papua New Guinea; Central and South America; the Indian sub-
continent; New Zealand and New Caledonia; North America and Mexico; Pacific Islands including the Austral Islands, Fiji, Hawai’i, the Marquesas Islands, Samoa, the 
Society Islands, and Vanuatu; Southern Africa; Tropical Africa, excluding Madagascar, the Mascarene, and the Seychelles Islands; and Western Indian Ocean Islands, 
including Madagascar, the Mascarene, and the Seychelles Islands. Geographic regions conformed to regions recognized in the World Geographical Scheme for 
Recording Plant Distributions (Brummitt, 2001). The occupancy of Astelia (Asteliaceae) on the Austral Islands, Hawai’i, Samoa, and the Society Islands were 
not mapped. 
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patterns are observed in Hypoxidaceae genera; Hypoxis, the largest 
genus, (ca. 90–100 species) and Curculigo and Molineria (taxonomic 
circumscriptions of both genera unclear, together 16 species) have 
global distributions, Pauridia (35 species; Snijman and Kocyan, 2013) 
and Empodium (8 species) have centers of diversity in the winter rainfall 
region of southern Africa, and smaller genera include Rhodohypoxis (2 
species), which is native to southern Africa and Hypoxidia (2 species) 
and Neofriedmannia (monotypic), which are endemic to the Seychelles 
Islands. 

A phylogeny with representative sampling across all astelioid genera 
was reconstructed and divergence dates and ancestral ranges were 
estimated for the clade. This study sought to investigate the following 
questions: 1. When did astelioid genera diversify and what was the role 
of vicariance and/or dispersal in determining the distributions of extant 
taxa, 2. what were the geological and climatic drivers of diversification 
in Australasian, African, and Asian astelioid lineages, and 3. what factors 
influencing diversification may have contributed to the variable species 
richness of astelioid genera. 

2. Materials and methods 

2.1. Taxon sampling, DNA extraction, PCR, sequencing 

One hundred and fourteen ingroup individuals of 104 species rep-
resenting all currently accepted genera in Asteliaceae, Blandfordiaceae, 
Boryaceae, Hypoxidaceae, and Lanariaceae were included. We included 
outgroup taxa from the monocotyledon orders Arecales, Asparagales, 
Commelinales, Liliales, and Zingiberales (Appendix 1). 

For this study 273 sequences were newly generated (Appendix 1) and 
combined with sequence data from our previous studies (Kocyan et al., 
2011; Birch et al., 2012). In short, petL-psbE and rps16-trnK were 
sequenced for Hypoxidaceae and Lanariaceae and trnS-trnSG and rbcL 
were sequenced for Asteliaceae. Primers, PCR amplification, and 
sequencing protocols for rbcL, trnL-trnLF (Hypoxidaceae and Lanar-
iaceae) (hereafter referred to as trnLF) and trnS-trnSG (hereafter referred 
to as trnSG) are detailed in Kocyan et al. (2011) and for petL-psbE, rps16- 
trnK, and trnLF (Asteliaceae) in Birch et al. (2012). Sequence and 
alignment editing were as explained in those studies. 

2.2. Phylogenetic analyses 

Phylogenetic reconstructions were completed for individual and 
combined datasets using the parsimony criterion in PAUP 4.0a (build 
166) (Swofford, 2002), maximum likelihood (ML) in RAXML version 8 
(Stamatakis, 2014), and Bayesian inference (BA) in MRBAYES v 3.2.1 
(Ronquist et al., 2012). Congruence of individual markers was assessed 
visually considering only those nodes with support greater than 65% 
bootstrap or 0.95 posterior probability values, respectively. Gaps were 
treated as missing data in all analyses. 

Parsimony analysis (MP) and calculation of bootstrap percentages 
(BPP) were performed as outlined in Birch et al. (2012). For ML and BA 
analyses of each dataset the best-fit model of evolution was selected 
based on the corrected Akaike information criterion implemented in the 

modelTest (Guindon and Gascuel, 2003; Posada, 2008) function in 
‘phangorn’ version 1.99.14 (Schliep, 2011) in R-studio version 1.1.447 
(RStudio Team, 2016) (Table 1). Data partitions were identified in 
PARTITIONFINDER Version 1.1.1 (Lanfear et al., 2016). Maximum likelihood 
reconstructions were based on the partitioned dataset and were 
completed as outlined in Birch et al. (2012). Nonparametric bootstrap 
values (BPML) were calculated with 1000 replicates using the rapid 
bootstrap algorithm. For BA the dataset was partitioned with models of 
evolution and parameters applied to or estimated for each partition 
accordingly. Bayesian analyses were run with two independent repli-
cates of four Markov chains (one heated and three cold) and were run for 
six million generations and sampled every 6000 generations. Conver-
gence was determined based on an average standard deviation of split 
frequencies of <0.01. Trees generated during a burn-in period of 1.5 
million generations were discarded prior to construction of the 50% 
maximum consensus trees that were visualized in FIGTREE v1.3.1 (htt 
p://tree.bio.ed.ac.uk/software/figtree/). Posterior probabilities (PP) 
were calculated. BA and ML analyses were run on the Spartan High- 
Performance Computing system operated by Research Platform Ser-
vices at the University of Melbourne. 

2.3. Divergence dating 

Divergence dates were estimated in BEAST 2.6 (Bouckaert et al., 
2014). Within Hypoxidaceae the (Pauridia + Empodium)(Curculigo +
Molineria + Neofriedmannia + Hypoxidia) clade was constrained to 
monophyly following the maximum parsimony topology. Divergence 
date estimates applied a relaxed clock with uncorrelated rates drawn 
from a lognormal distribution, based on rejection (P < 0.05) of the hy-
pothesis of clock-like molecular evolution for each dataset using likeli-
hood ratio tests conducted in PAUP 4.0a (build 168) (Swofford, 2002). 
The dataset was partitioned with parameters estimated for each mo-
lecular marker and the GTR + Γ model of evolution was applied to each 
data partition. A Yule speciation tree prior was applied as that model 
showed a significantly better fit to the data than the birth-death model in 
a test of the maximum likelihood tree (with the sampling fraction of 
0.512 calculated for these data) conducted in the R package ‘phytools’ 

(Revell 2012). An MCMC analysis of 300 million generations was per-
formed with sampling every 30,000 generations. A maximum-credibility 
tree was constructed from 7501 trees after 2500 trees generated during 
the burn-in period were discarded. Parameters were checked using 
TRACER 1.6.1 (Rambaut and Drummond, 2007). 

We reviewed the monocotyledon fossil and dating literature 
(including Bell et al., 2010; Iles et al., 2015; Givnish et al., 2018) to 
identify the most appropriate data (dates and distributions) to serve as a 
secondary constraint for the basal node of the tree. We assigned a uni-
form distribution to the Asparagales crown node with date constraints 
drawn from Givnish et al. (2018; 121.32–111.32 Ma). A prior of 26.0 Ma 
was applied to the Astelia crown node based on Middle Oligocene Astelia 
pollen fossils and Early Miocene leaf cuticle fossils representing the 
earliest unequivocally determined Astelia s.l. fossil records, as outlined 
in Birch and Keeley (2013). The Astelia crown node was assigned a 
lognormal distribution (mean = 1; standard deviation = 1.0; offset =

Table 1 
Descriptive parameters for plastid data sets, parsimony, maximum likelihood, and Bayesian inference reconstructions.   

Number of 
terminals 

Missing 
data (%) 

Aligned 
length 

Parsimony 
informative 
characters 

Tree 
length 

Number of optimal length 
trees generated in heuristic 
search 

Retention Index /Consistency 
Index/Rescaled Consistency 
Index 

Model of 
evolution 

petL-psbE 102 18.7 1892 506 1974 714,000 0.72/0.84/0.60 GTR + G + I 
rbcL 121 7.8 1323 216 878 3,660 0.53/0.83/0.44 GTR + G + I 
rps16- 

trnK 
103 9.0 1112 422 1600 515,000 0.66/0.87/0.57 GTR + G 

trnL-trnLF 118 7.4 1290 337 1321 250 0.66/0.83/0.55 GTR + G + I 
trnS-trnSG 108 5.2 969 340 1325 852,000 0.69/0.89/0.62 GTR + G 
Combined 127 28.4 6586 1821 7178 972,000 0.66/0.85/0.56 GTR + G + I  
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24.0), representing a median of 26.7 Ma, a hard lower (minimum) 
bound of 24.5 Ma and a soft upper (maximum) bound (95% highest 
posterior density [HPD]: 24.5–38.1 Ma). 

2.4. Ancestral range reconstruction 

Ten geographic regions were defined based on paleogeographic and 
climatic evidence conforming to regions recognized in the World 
Geographical Scheme for Recording Plant Distributions (Brummitt, 
2001). Geographic regions were defined as: A. Southern Africa; B. 
Tropical Africa (excluding Madagascar, the Mascarene, and the 
Seychelles Islands); C. Australia and Papua New Guinea (hereafter 
referred to as Australia); D. Asia; E. New Zealand and New Caledonia 
(hereafter referred to as New Zealand); F. Central and South America; G. 
North America and Mexico; H. Pacific Islands (including the Austral 
Islands, Fiji, Hawai’i, the Marquesas Islands, Samoa, the Society Islands, 
and Vanuatu); I. Western Indian Ocean Islands, (including Madagascar, 
the Mascarene, and the Seychelles Islands); and J. the Indian subconti-
nent. Each ingroup taxon was coded to one or more geographic areas 
according to its extant distribution, which was assessed based on 
searches of the literature (George, 1986, 1987; Wiland, 1997; Judd, 
2000; Shu, 2000a; 2000b; Wiland-Szymańska, 2001; 2002; Pena et al., 
2008; Singh, 2009; Manning and Goldblatt, 2012; Snijman, 2013; 
Kocyan and Wiland-Szymańska, 2016, 2017) and web-based resources. 

Ancestral ranges were reconstructed using the R package ‘Bio-
GeoBEARS’ (Matzke, 2013, 2014). The inferred ancestor at each node 
was constrained to span a maximum of three regions. The maximum 
clade credibility tree generated in BEAST was trimmed so that each 
species was represented by a single individual and to remove outgroup 
taxa. The maximum likelihood approximation (DIVALIKE) of the 
dispersal-vicariance method (DIVA) (Yu et al., 2010) and the dispersal- 
extinction-cladogenesis (DEC) (Ree and Smith, 2008) model, including 
and excluding a “j” parameter representing founder-event speciation, 
were applied. The biogeographic model (DIVALIKE or DEC) that rep-
resented the best fit to the data was selected using the cAIC. Statistical 
model selection methods were not applied for comparison of the model 
fit where a jump dispersal parameter “j” was included as this has 
recently been shown to be inappropriate (Ree and Sanmartin, 2018). 

2.5. Diversification rates 

We tested for shifts in diversification rates in the astelioid phylogeny 
in Bayesian Analysis of Macroevolutionary Mixtures (BAMM version 
2.5.0) (Rabosky et al., 2014) including a sample fraction of species 
represented per family) (Table 4). The model priors were estimated 
using the “setBAMMpriors” function in the package ‘BAMMTOOLS’ 
version 2.1.7 in R with a conservative prior for the expected number of 
shifts set to one (Rabosky, 2014; Rabosky et al., 2017). We ran two 
analyses of one million generations using four chains. The first twenty- 
five percent of the trees generated during MCMC sampling were dis-
carded as burn-in. Effective sampling size (ESS) values greater than 200 
were achieved. Speciation and extinction rates through time and cred-
ible and best shift configurations were plotted and clade specific 
diversification rates were calculated. 

3. Results 

3.1. Phylogenetic analysis and tree topology 

Summary statistics for the sequence data are provided in Table 1. 
Eight sections within the trnSG intergenic spacer (412 base pairs [bp]) 
were removed due to alignment ambiguities. The plastid dataset 
included 6586 bp of aligned sequence data. For MP, ML, and BA ana-
lyses, the tree topologies based on individual plastid DNA regions were 
broadly congruent; without conflicts among topologies for well sup-
ported nodes allowing individual markers to be concatenated for 

phylogenetic reconstruction. Seven distinct partitions were recognized 
including the first, second, and third codon positions in rbcL and 
remaining markers were treated as distinct for parameter estimation. 

The MP, ML, and BA analyses for the combined dataset resulted in 
similar tree topologies. The phylogeny generated in BA analyses is 
shown in Fig. 2. Lanariaceae and Hypoxidaceae were sister in all ana-
lyses (100 BPP, 100 BPML, 1.00 PP) forming a sister clade to Asteliaceae 
(100 BPP, 100 BPML, 1.00 PP). Blandfordiaceae was sister to Asteliaceae, 
Hypoxidaceae, and Lanariaceae clade (90 BPP, 90 BPML, 1.00 PP) and 
Boryaceae was sister to the clade containing all other astelioid families 
(95 BPP, - BPML, 0.84 PP). 

Within the Asteliaceae (94 BPP, 95 BPML, 1.00 PP), Milligania (95 
BPP, 86 BPML, 1.00 PP) was the sister clade to Neoastelia (100 BPP, 100 
BPML, 1.00 PP), and that clade was sister to the Astelia clade (100 BPP, 
100 BPML, 1.00 PP). Within Hypoxidaceae, three major clades were 
recovered: Curculigo + Molineria + Hypoxidia + Neofriedmannia [‘A’; 
Fig. 2] (100 BPP, 100 BPML, 1.00 PP) (hereafter called the Curculigo 
clade) and highlighting a taxonomic problem as Curculigo and Molineria 
species were mixed in two clades; Pauridia + Empodium [‘B’; Fig. 2] (93 
BPP, 94 BPML, 1.00 PP) (hereafter called the Pauridia clade); and Hypoxis 
+ Rhodohypoxis [‘C’; Fig. 2] (100 BPP, 100 BPML, 1.00 PP) (hereafter 
called the Hypoxis clade) with Rhodohypoxis deeply nested in Hypoxis. 
The interrelationship of the three main clades in the total evidence 
analysis remained unresolved. Pauridia (99 BPP, 100 BPML, 1.00 PP) and 
Empodium (100 BPP, 100 BPML, 1.00 PP) were each monophyletic. In 
maximum parsimony analyses, the Curculigo clade and the Pauridia 
clade were sister clades (78 BPP) and that clade was the sister clade (100 
BPP) to the Hypoxis clade. Relationships within each of the Hypo-
xidaceae clades were broadly well resolved with support. 

3.2. Divergence dating 

The MRCA of the astelioid clade diverged in the Late Cretaceous at 
ca. 75.2 Ma (61.0–90.0 Ma) (Table 2; Fig. 3). The Hypoxidaceae +
Lanariaceae + Asteliaceae clade diverged around the Paleocene to 
Eocene boundary at ca. 57.4 Ma (46.4–69.0 Ma) and the Hypoxidaceae 
+ Lanariaceae clade shared a MRCA at ca. 50.5 Ma (40.3–61.4 Ma). 
Asteliaceae, Boryaceae, and Hypoxidaceae crown nodes are estimated to 
the Early Eocene (49.3 Ma; 37.1–61.7 Ma), Middle to Late Eocene 
boundary (37.8 Ma; 22.3–53.7 Ma), and Early Oligocene (32.5 Ma; 
25.8–40.0 Ma), respectively. The crown age of Blandfordiaceae was 
estimated to ca. 3.2 Ma (1.4–5.2 Ma). ESS values for all estimated 
divergence dated nodes were >200. 

3.3. Ancestral area reconstruction 

The Dispersal Extinction Cladogenesis model was identified as the 
best-fit model (Table 3). Reconstructions and relative probabilities 
generated based on the DEC model, both with and without a “jump 
dispersal” parameter are provided in Table 2. Ancestral range re-
constructions based on DEC and DEC + J models are largely consistent, 
with three exceptions, outlined below. Ranges reconstructed onto the 
phylogeny based on the DEC + J model are illustrated in Fig. 4. 

The ancestral ranges of the Boryaceae and Blandfordiaceae crown 
nodes, were reconstructed as Australian (relative probabilities [rel. 
prob.] = 0.87 and 0.98, respectively). A southern African or Australian 
ancestral range was inferred for the crown Asteliaceae + Hypoxidaceae 
+ Lanariaceae node based on the DEC (rel.prob. = 0.31) or DEC + J (rel. 
prob. = 0.45), respectively. An Australian ancestral range was inferred 
for the Asteliaceae crown node (rel. prob. = 0.66) and the Milligania +
Neoastelia crown node (rel. prob. = 0.97). A New Zealand or Australian 
range was reconstructed for the Astelia crown node based on DEC (rel. 
prob. = 0.40) and DEC + J (rel. prob. = 0.39) reconstructions, 
respectively. 

A southern African ancestral range was inferred for the MRCA of 
Hypoxidaceae + Lanariaceae (rel. prob. = 0.72), for the Hypoxidaceae 
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Fig. 2. Bayesian inference 50% consensus topology based on the concatenated dataset. Numbers above branches are bootstrap values (maximum parsimony/ 
maximum likelihood) and those below branches are Bayesian posterior probabilities. Bootstrap values >65% and posterior probabilities >0.90 are shown. Taxonomic 
treatment of Pauridia and Astelia is that of Snijman and Kocyan (2013) and Birch (2015), respectively. 
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(rel. prob. = 0.85), Empodium (rel. prob. = 0.98), the Hypoxis clade (rel. 
prob. = 0.82), and Pauridia (rel. prob. = 0.98) crown nodes. The crown 
node of the Curculigo clade was reconstructed as occupying a widespread 
Asian + Western Indian Ocean Islands or Western Indian Ocean Islands 

range based on DEC (rel. prob. = 0.19) and DEC + J (rel. prob. = 0.26) 
reconstructions, respectively. Within Pauridia, a single range expansion 
from Africa to Australia was inferred for the clade containing the 
Australian Pauridia occidentalis and P. salina. Of these ranges inferred for 
clades within Hypoxis only that inferring a North American range for the 
MRCA of H. hirsuta plus H. juncea plus H. curtissii received any (mod-
erate) support. 

3.4. Diversification rates 

No net-diversification rate-shifts were identified within the astelioid 
clade with the highest posterior probability supporting a single rate 
across the clade. Net-diversification rate was highest for Hypoxidaceae 
(r = 0.053 per million years [Myr−1]), followed by Asteliaceae (r =
0.046 Myr−1), Blandfordiaceae (r = 0.027 Myr−1), and Boryaceae (r =
0.027 Myr−1) (Table 4). Mean mutation rates (µ) ranged from µ = 0.25 
extinctions Myr−1 to µ = 0.26 extinctions Myr−1 for all astelioid families 
for which these data were calculated. 

4. Discussion 

4.1. Phylogenetic relationships 

The first molecular phylogeny with comprehensive sampling of all 
currently accepted astelioid genera is presented. The monophyly of the 
astelioid clade is confirmed with – however – relatively low support 
values. Four major clades are identified representing the respective 
families in ascending order: Boryacae, Blandfordiaceae, Asteliaceae and 
Hypoxidaceae plus Lanariaceae – the latter being a monospecific family. 
This topology is consistent with results of other large-scale studies (Chen 
et al., 2013; Givnish et al., 2018). The low statistical support for the 
astelioid branch is probably an artifact of our limited sequence sampling 
as similar support values were detected in the four gene analyses by Chen 
et al. (2013) and in the four plastid gene analyses of Givnish et al. (2018) 
whereas in the 77 plastid gene analyses of Givnish et al. (2018) astelioid 
monophyly was unequivocal. All other nodes in the backbone of our tree 
receive almost maximal support and relationships are in concordance 
with other studies (Kocyan et al., 2011; Birch et al., 2012; Chen et al., 
2013). The majority of generic clades represent taxonomic unity. Astelia 
(Birch, 2015) and Pauridia (Snijman and Kocyan, 2013) have recently 
been recircumscribed. Hypoxis/Rhodohypoxis is one of the exceptions and 
work is underway to unify them into Hypoxis. The situation in Curculigo/ 
Molineria is more difficult as discussed in Kocyan et al. (2011). 

4.2. Molecular divergence dating 

Astelioid families diversified after a recent pulse of monocotyledon 
diversification (50–60 Ma) that was recognised by Givnish et al. (2018). 
Crown Asteliaceae diversified from the Early to Middle Eocene boundary, 
contemporaneous with the diversification of crown Asparagaceae s.l. and 
crown Amaryllidaceae (ca. 49.5 Ma and ca. 46.8 Ma, respectively; 
Givnish et al., 2018). Crown Boryaceae and crown Hypoxidaceae diver-
sified from the Middle to Late Eocene boundary and the Early Oligocene, 
respectively, contemporaneous with crown Asphodelaceae (ca. 42.2 Ma; 
Givnish et al., 2018). Our date estimates are older than those calculated 
by Chen et al. (2013) for astelioid families although our median dates fall 
within the ranges of their corresponding 95% HPD values. Our diver-
gence date estimates are based on more comprehensive astelioid generic 
and species diversity and studies with more complete taxonomic sam-
pling typically retrieve earlier date estimates (Linder et al., 2005). 

4.3. Ancestral area reconstruction and diversification rate analyses 

Early diverging astelioid lineages are reconstructed to Australia with 
diversification since ca. 75.2 Ma. At this time, Australia was part of a 
high-latitude Antarctic-Australasian landmass with a humid, ever-wet 

Table 2 
Divergence dates estimated using Bayesian inference in BEAST (Bouckaert et al., 
2014). Constraints included a uniform distribution applied to the Asparagales 
crown node (121.32–111.32 million years) with date constraints drawn from 
Givnish et al. (2018); and (b) a prior of 26.0 million years applied to the Astelia 
crown node representing the earliest unequivocally determined Astelia fossil 
record (Birch and Keeley, 2013). Ancestral range reconstructions for the aste-
lioid phylogeny using on the Dispersal Extinction Cladogenesis (DEC; Ree and 
Smith 2008) models with (DEC + J) and without a jump-dispersal parameter 
(“j”) (DEC) as estimated in R package ‘BioGeoBEARS’ (Matzke, 2013, 2014). Na 
= Not applicable as monotypic family or genus.  

Lineage Date estimates 
(million years 
[Ma]; 95% 
Highest Posterior 
Density values) 

Ancestral range (DEC model/ 
DEC þ J model) 

Crown group Range (Code)+ Probability 
Astelioid clade 

(Asteliaceae +
Blandfordiaceae +
Boryaceae +
Hypoxidaceae +
Lanariaceae) 

75.2 (61.0–90.0) Australia 0.05/0.12 

Asteliaceae +
Blandfordiaceae +
Hypoxidaceae +
Lanariaceae 

69.0 (55.6–82.6) Australia 0.23/0.54 

Asteliaceae +
Hypoxidaceae +
Lanariaceae 

57.4 (46.4–69.0) Southern 
Africa/Australia 

0.31/0.45 

Hypoxidaceae +
Lanariaceae 

50.5 (40.3–61.4) Southern Africa 0.61/0.72 

Asteliaceae 49.3 (37.1–61.7) Australia 0.28/0.66 
Blandfordiaceae 3.2 (1.4–5.2) Australia 0.96/0.98 
Boryaceae 37.8 (22.3–53.7) Australia 0.66/0.87 
Hypoxidaceae 32.5 (25.8–40.0) Southern Africa 0.81/0.85 
Lanariaceae Na Na Na 
Alania Na Na Na 
Astelia* 25.3 (24.1–27.1) New Zealand/ 

Australia 
0.40/0.39 

Blandfordia 3.2 (1.4–5.2) Australia 0.96/0.98 
Borya 0.4 (0.0–1.2) Australia 1.00/1.00 
Curculigo + Hypoxidia 

clade 
16.9 (12.1–21.8) Asia + Western 

Indian Ocean 
Islands/Western 
Indian Ocean 
Islands 

0.19/0.26 

Curculigo (excluding 
Neofriedmannia 
seychellensis +
Hypoxidia clade) 

13.2 (9.4–17.3) Asia 0.38/0.55 

Empodium 7.7 (4.4–11.3) Southern Africa 0.96/0.98 
Neofriedmannia 0.4 (0–1.2) Na Na 
Hypoxidia 3.2 (1.2–5.6) Western Indian 

Ocean Islands 
0.98/0.99 

Hypoxis clade 10.4 (7.1–14.0) Southern Africa 0.82/0.82 
Hypoxidia +

Neofriedmannia 
12.5 (7.7–17.6) Western Indian 

Ocean Islands 
0.80/0.88 

Milligania 1.8 (0.7–3.1) Australia 0.99/1.00 
Neoastelia + Milligania 5.8 (2.9–9.2) Australia 0.93/0.97 
Neoastelia Na Na Na 
Pauridia 23.3 (18.3–28.7) Southern Africa 0.97/0.98 
Pauridia + Empodium 28.5 (22.5–34.9) Southern Africa 0.96/0.97 
Pauridia + Empodium +

Curculigo 
31.8 (25.2–39.1) Southern Africa 0.84/0.86 

Rhodohypoxis Na Na Na  
* Node with date constraint applied. 
+ Where a single ancestral range reconstruction is provided range 

reconstruction results based on DEC and DEC + J models are the same. 
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Fig. 3. Astelioid clade chronogram with divergence dates estimated using Bayesian inference conducted in BEAST (Bouckaert et al., 2014). Constraints included (a) a 
uniform distribution applied to the Asparagales crown node (121.32–111.32 million years) with date constraints drawn from Givnish et al. (2018); and (b) a prior 
(indicated by the star) of 26.0 million years applied to the Astelia crown node representing the earliest unequivocally determined Astelia fossil record (Birch and 
Keeley, 2013). Bars indicate 95% highest posterior density values. Geological time scale is shown at the bottom: Paleo = Palaeocene, Eo = Eocene, Oligo = Oligocene, 
Mio = Miocene, Plio = Pliocene, and Plei = Pleistocene. Geologic times are as per Berggren et al. (1995). 
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climate (Dingle and Lavelle, 2000) with subtropical rainforests over 
much of the Australian continent (Byrne et al., 2011). Despite the 
diverse species richness of astelioid families, no significant diversifica-
tion shifts, either accelerations or decelerations, were identified for this 
lineage based on the markers sampled. Estimated extinction rates are 
uniform for astelioid families. The species rich families, Hypoxidaceae 
and Asteliaceae, have only slightly higher speciation rates. For astelioid 
families, differences in lineage specific speciation and extinction rates 
do not appear to be driving differences in species richness among fam-
ilies. Extrinsic factors such as habitat turnover and climatic change are 
influencing species diversity and will be discussed in a biogeographical 
context. Investigation of the influence of geographic area or habitat on 
net-diversification rates (see for example, the study of Gesneriaceae 
diversification [Roalson and Roberts, 2016]) warrants further study for 
astelioid genera, which differ in species richness and habitat diversity. 
That study would benefit from inclusion of additional sequence data, 
optimally sampling from multiple genomes, and increased sampling of 
Hypoxis, the most species-rich genus. 

4.3.1. The astelioid clade in the context of Gondwanan biogeography 
Our results suggest that extant astelioid family and generic specia-

tion events have not been shaped by Gondwanan vicariance. Divergence 
of the African (Hypoxidaceae + Lanariaceae) and Australian (Astelia-
ceae) clades at ca. 57.4 Ma postdates the separation of Africa- 
Madagascar-India from East Gondwana (from ca. 162 Ma; McLough-
lin, 2001). Divergence of Asteliaceae and Hypoxidaceae + Lanariaceae 
is therefore likely to be the result of long-distance dispersal across the 
proto Indian Ocean. At the Paleocene to Eocene boundary, distances 
between Australia-Antarctica and Africa-Madagascar were shorter than 
after this time period (Scotese et al., 1988). Allowing for founder-event 
speciation, the DEC + J model infers a single dispersal from Australia- 
Antarctica to Africa during the late Palaeocene. The reconstruction 
inferred based on the DEC model requires two range expansions, from 
Australia-Antarctica to Africa followed by a dispersal back to Australia, 
which is plausible, though a less compelling biogeographical scenario. 
Long-distance dispersal from Australasia to Africa has been proposed in 
Iridaceae: the ancestors of the sister clade to Australasian Patersonia, 
Geosiris-Aristea-Nivenioideae-Crocoideae likely reached Africa- 
Madagascar during the Early Eocene (Goldblatt et al., 2008). A west-
ward dispersal from Australia via Antarctica-South American to Africa 
cannot be ruled out. However, we consider that pathway less likely as 

astelioid diversity is depauperate in South America and no species from 
any of the early diverging lineages occur there. 

An African ancestral range was inferred for the MRCA of the African 
stem Pauridia and Indian-Asian stem Curculigo clades. Their divergence 
during the Oligocene (ca. 31.8 Ma) postdates the tectonic rifting of West 
and East Gondwana, which separated Africa and Madagascar- 
Seychelles-India-Antarctica-Australia from ca. 113 to 132 Ma 
(McLoughlin, 2001). Therefore, transoceanic long distance-dispersal 
from Africa to the Seychelles or India-Asia is inferred. This divergence 
is concurrent with establishment of the circum-Antarctic current and the 
onset of Antarctic glaciation, which is thought to have driven cooling 
and aridification globally (Lewis et al., 2008). Overland dispersal 
pathways from Africa to Asia could have been mediated by stepping- 
stone dispersal via the African intermontane floristic corridor from the 
Oligocene onwards (Chorowicz, 2005; Givnish et al., 2016). Dispersal 
from Africa to Asia during a similar timeframe is also documented for 
Cucumis (Sebastian et al., 2010), Gaertnera (Malcomber, 2002), and 
Gloriosum (Givnish et al., 2016). 

The presence of Astelia in South America and of Curculigo and 
Hypoxis in the New World is the result of multiple long-distance 
dispersal events, with dispersal inferred from New Zealand (Astelia), 
from Africa (Hypoxis), and from Asia (Curculigo). The relationships and 
timing of divergence of South American Astelia pumila remains unre-
solved. Either A. pumila is sister to an Australasian and Pacific clade with 
divergence in the Late Miocene (this study) or it is sister to a New 
Zealand, Pacific, and New Caledonian clade with divergence from the 
Oligocene (Birch et al., 2012). An earlier date would favour long- 
distance dispersal via Antarctic coastal forests (Birch et al., 2012), the 
later would require a transoceanic dispersal following elimination of 
coastal forest in Antarctica during the Miocene. 

4.3.2. Variable species richness and extinction in the Asteliaceae 
Crown Asteliaceae has an Australian ancestral range and radiated 

from the Early to Middle Eocene boundary (ca. 49.3 Ma) onwards. Long 
stem branches are observed for Astelia and Milligania + Neoastelia 
extending until the Late Oligocene (ca. 25.3 Ma) and Late Miocene (ca. 
5.8 Ma), respectively. Pulses of diversification separated by long 
branches may indicate a history of extinction (see Crisp et al., 2011). 
Crown Asteliaceae nodes reconstructed as Australian (e.g. Milligania, 
Neoastelia) diversified from the Late Miocene onwards. All Australian 
taxa occur in mesic habitats, including wet rainforest (e.g. N. spectabilis) 

Table 3 
Ancestral geographic range reconstruction parameters for Dispersal-Vicariance Analyses like (Ronquist, 1997) and Dispersal Extinction Cladogenesis (Ree and Smith, 
2008) models with estimations completed in R package ‘BioGeoBEARS’ (Matzke, 2013, 2014). Na = statistical comparisons not conducted.  

Models Log likelihood 
(LnL) 

Degrees of 
freedom (DF) 

Rate of 
dispersal (D) 

Rate of 
extinction (E) 

Relative probability of founder-event 
speciation at cladogenesis (J) 

Corrected Akaike information 
criterion (cAIC) 

DIVALIKE –222.8 2 0.0100 0.0100 0 449.7 
DIVALIKE +

J 
Na Na 0.0023 1.0 × 10-12 0.0150 Na 

DEC −193.7 2 0.0110 0.2800 0 391.6 
DEC + J Na Na 0.0039 0.0760 0.0140 Na  

Table 4 
Estimates of speciation (lambda), extinction (mu), and net diversification parameters per million years (Myr−1) calculated for astelioid families estimated in 
BAMMtools (Rabosky et al., 2014). Mean (x), 0.05, and 0.95 quantile values on the posterior distribution of rates at a given point in time are provided for speciation 
and extinction.  

Family or clade Sampling fraction Lambda (λ) 
x (0.05, 0.95 quantiles)  

Mu (μ) 
x (0.05, 0.95 quantiles)  

Diversification (r) 
x (0.05, 0.95 quantiles)  

Astelioid clade 96a/183 0.30 (0.22, 0.39) 0.25 (0.17, 0.36) 0.045 
Asteliaceae 36/37 0.31 (0.23, 0.40) 0.26 (0.17, 0.36) 0.046 
Blandfordiaceae 3/4 0.29 (0.21, 0.38) 0.26 (0.17, 0.36) 0.027 
Boryaceae 3/12 0.29 (0.21, 0.38) 0.26 (0.21, 0.38) 0.027 
Hypoxidaceae 53/130 0.31 (0.23, 0.40) 0.26 (0.16, 0.36) 0.053  
a Astelioid clade includes the monotypic Lanariaceae, which was not separately parametised. 
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Astelia graminea 
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Astelia australiana 
Astelia tovii 
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Astelia waialealae 
Astelia rapensis 
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Lanaria lanata 
Hypoxis filiformis 
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Hypoxis parvula 
Hypoxis hygrometrica 
Hypoxis aurea 
Hypoxis decumbens 
Hypoxis villosa 
Hypoxis setosa 
Hypoxis curtissii 
Hypoxis juncea 
Hypoxis hirsuta 
Hypoxis angustifolia 
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Hypoxis sp. 
Empodium veratrifolium 
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Empodium sp. nov.
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Pauridia linearis
Pauridia gracilipes 
Pauridia trifurcillata 
Pauridia flaccida 
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Pauridia occidentalis 
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Fig. 4. Ancestral geographic ranges for the astelioid clade reconstructed onto the chronogram generated in BEAST (Bouckaert et al., 2014) using the Dispersal 
Extinction Cladogenesis (Ree and Smith, 2008) models with a “j” parameter allowing for founder event speciation estimated in BioGeoBEARS (Matzke, 2013, 2014). 
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and alpine herbfields (e.g. A. alpina, M. lindoniana). In Australia, mesic 
habitat contracted during the Late Miocene and Pliocene (Byrne et al., 
2011) associated with reduction in rainfall and increasing rainfall sea-
sonality (Hill, 2004), which may have caused extinctions in this lineage. 
Low species richness of Milligania and Neoastelia may reflect an inability 
of those lineages to undergo range shifts to continuously occupy mesic 
habitats or to adapt, as necessary, to enable occupany of drier habitats. 

Crown Astelia diversified since the Late Oligocene (ca. 25.3 Ma), with 
an ancestral range inferred as either Australia (DEC + J model) or New 
Zealand (DEC model). Astelia s.l. is documented in the New Zealand 
fossil record, represented by microfossils dated to the Middle Oligocene 
(Couper, 1960) and pollen and leaf cuticle fossils from the Early Miocene 
(Mildenhall and Pocknall, 1989; Pole, 2007; Maciunas et al., 2011). 
Astelia is recorded in the Australian fossil record from the Late Pliocene 
(MacPhail et al., 1993) or the Quaternary (MacPhail et al., 1994). For all 
models investigated (DIVA, DIVA + J, DEC) except that based on DEC +
J, the crown Astelia range reconstruction includes New Zealand. A 
widespread range spanning New Zealand and Australia was also inferred 
for crown Astelia in a biogeographic analyses applying the DEC model 
for ancestral area reconstructions (using an Asteliaceae phylogeny 
inferred from chloroplast and nuclear data) (Birch and Keeley, 2013). 
The ancestral range of crown Astelia is equivocal based on current an-
alyses. But, fossil data clearly indicate occupancy of Astelia in New 
Zealand early in the evolutionary history of the genus. Resolution of 
Astelia, species relationships, particularly within Astelia subg. Astelia, 
which includes species from Australia, Papua New Guinea, and New 
Zealand may enable unequivocal determination of the crown Astelia 
ancestral range. 

Subsequent diversification of Astelia in New Zealand only occurred 
from the Middle Miocene (ca. 12.1 Ma) onwards. During the Oligocene 
New Zealand was approximately 20% of its present size (Lee et al., 2001) 
and loss of terrestrial habitat during that time may have resulted in 
extinctions in many lineages. The New Zealand landmass expanded to its 
present size by the Late Miocene (Lee et al., 2001) and during the 
Pliocene–Pleistocene extensive uplift generated high altitudes and 
alpine habitat (Lee et al., 2001). This coincides with a fairly rapid 
diversification into mesic and alpine habitats, to which Astelia may have 
been pre-adapted, if the occupancy of wet habitats with periodically 
inundated soils by many extant taxa is indicative of ancestral ecological 
tolerances. 

4.3.3. Africa as a secondary center of diversity in astelioids 
Our biogeographical results establish a timeframe for diversification 

of the Hypoxidaceae and Lanariaceae lineage for the first time. Lanar-
iaceae is one of 28 plant monotypic families world-wide (Christenhusz 
and Byng, 2016). As it is monotypic, we are only able to estimate the 
timing of divergence from the MRCA shared with Hypoxidaceae. We 
cannot say with certainty whether this lineage has always been mono-
specific or if this is the result of possible extinction events. Lanariaceae 
occurs solely in the Cape region of South Africa where it is an element of 
fynbos vegetation. However, it is unlikely that Lanariaceae evolved in 
the same type of vegetation, as during the Early Eocene the climate was 
much warmer than today and the Cape region was still forested. 

Southern Africa is inferred as the ancestral area for Hypoxidaceae. 
While the relationships of the three main Hypoxidaceae clades remain 
equivocal we consider it unlikely that the African origin inferred for 
Hypoxidaceae will alter with increased sampling or once relationships of 
those clades are resolved. All the basal lineages in the three main 
Hypoxidaceae clades occur in Africa or the floristically strongly related 
Seychelles – and the Lanariaceae is only known from South Africa. The 
Hypoxidaceae experienced a pulse of diversification during the Early 
Oligocene, including divergence of stem Hypoxis (ca. 32.5 Ma), stem 
Curculigo (ca. 31.8 Ma), and stem Pauridia (ca. 28.5 Ma). This pulse of 
diversification coincides with the establishment of the circum-Antarctic 
current and the onset of Antarctic glaciation (Lewis et al., 2008). 
Divergence of the Hypoxidaceae from 32.5 Ma is temporally coincident 

with radiation of other African Austro-temperate lineages (e.g. African 
Restionaceae) during the Eocene (Galley and Linder, 2006; Linder, 
2014). 

Crown Pauridia has undergone steady diversification from the Late 
Oligocene to Early Miocene boundary (ca. 23.3 Ma). In the early 
Miocene woodland-savanna vegetation was present in southern African 
interior plateau and summer wet conditions supported subtropical 
rainforest in the southern coastal lowlands (Linder, 2003; van Zinderen 
Bakker and Mercer, 1986). Extant Pauridia are almost all endemic to the 
Cape Floristic Province where they occupy damp habitats within fynbos 
and renosterveld vegetation (Mucina and Rutherford, 2006). Pauridia 
likely persisted in damp habitats and diversified throughout the 
increasingly arid and seasonal conditions that developed in southern 
Africa during the Late Miocene to Early Pliocene (Coetzee, 1983; van 
Zinderen Bakker and Mercer, 1986; Verboom et al., 2014). 

Conversely, Hypoxis and Empodium have radiated only since the Late 
Miocene (ca. 10.4 Ma and 7.7 Ma, respectively). Diversification of these 
genera coincides with the development of seasonality, of cooling, and 
increasing aridity in the southern African flora, which is generally 
thought to have been initiated during the Late Miocene (ca. 10 Ma) as a 
result of the establishment of the Benguela Upwelling System and has 
intensified since that time (van Zinderen Bakker and Mercer, 1986). 
Early diversification of Hypoxis predated coastal uplift that occurred 
from the late Pliocene onward, which generated the plateau- 
escarpment, narrow-coastal-belt landscape of contemporary southern 
Africa (Goldblatt, 1978). The intensification of aridification from the 
mid-Pliocene cooling onwards and the resulting opening up of closed 
forests and woodlands into savanna and grasslands (van Zinderen Bak-
ker and Mercer, 1986) would have expanded availability of habitat for 
Hypoxis, which occurs primarily in the grassland biome (Singh, 2009). 
The rapid diversification of Hypoxis in Africa may have been possible 
due, in part, to expansion of these grassland habitats, which would have 
initially provided open niches for colonization. 

The absence of evident cladogenesis on the stem Hypoxidaceae 
during the Late Eocene and Early Oligocene may indicate lack of 
diversification, potentially as a result of stable climatic conditions and 
high niche occupancy during the Eocene. The long stem Hypoxis and 
Empodium branch lengths may also indicate an extinction history during 
the Early Miocene. However, estimation of Hypoxidaceae radiation rates 
awaits more comprehensive sampling of African Hypoxis. Specifically, 
more comprehensive sampling of central and northern African Hypoxis 
taxa is necessary to understand the biogeographical relationships and 
estimate diversification times of tropical African Hypoxis, which are 
represented in this study only by H. angustifolia. 

In Hypoxidaceae, two Pliocene African and American disjunctions 
are inferred; that of African (Hypoxis setosa, H. villosa) and American 
(H. curtissii, H. hirsuta, H. juncea) clades (ca. 2.5 Ma) and that of African 
Curculigo pilosa and American C. scorzonerifolia (ca. 2.2 Ma). These 
recent splits are well after the formation of the Atlantic Ocean, which 
opened from ca. 135 to 105 Ma (McLoughlin, 2001). Late Miocene (ca. 
6.8 Ma) transoceanic long-distance dispersals from Africa to Australia 
are also inferred to account for extant Australian Pauridia occidentalis 
and P. salina, which are nested within an otherwise African clade and for 
Hypoxis, with divergence of Australian H. hygrometrica from its sister 
clade (ca. 5.7 Ma). This is consistent with a pattern of Neogene exchange 
between the African Cape and Australian floras, which has frequently 
occurred from Africa to Australia (Linder, 2014). 

4.3.4. An Asian diversification of Curculigo and Molineria from the Middle 
Miocene 

Ancestral range reconstructions infer close connections between the 
Africa and Asian floras in the Curculigo clade (including Molineria, 
Hypoxidia, and Neofriedmannia). A southern African range was recon-
structed for stem Curculigo clade. However, the ancestral range of the 
crown Curculigo clade remains equivocal, with models inferring either a 
widespread distribution spanning Western Indian Ocean Islands and 
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Asia and subsequent subdivision of that ancestral range (DEC) or a 
narrow range on Western Indian Ocean Islands and subsequent clado-
genetic dispersal to Asia (DEC + J). These reconstructions place ances-
tral nodes of the Curculigo clade in Asia, at least from 13.2 Ma (crown 
Curculigo + Molineria clade, as reconstructed based on the DEC + J 
model) or earlier from 16.9 Ma (crown Curculigo clade, as reconstructed 
based on the DEC model). 

The Middle Miocene divergence of the MRCA of the Curculigo +
Molineria clade (13.2 Ma) places that diversification soon after the 
Middle Miocene Climatic Optimum (ca. 15–18 Ma). Within the Curcu-
ligo + Molineria clade, three clades are recovered. In two of these clades, 
taxa that are currently widespread throughout Asia are sister to clades 
containing taxa with narrower geographic ranges. A clade containing 
the widespread Southeast Asian (Indonesia, Malaysia, Philippines) 
Molineria latifolia is sister to a Papua New Guinea and Borneo clade and 
divergence of the MRCA of the Southeast Asian and Papua New Guinea 
plus Borneo clades occurred from the Early Pliocene, after uplift in New 
Guinea, which occurred from the Middle to Late Miocene (Morley, 
2003). In Australia, Curculigo can be considered a tropical element with 
recent origins from Southeast Asia (Nelson and Platnick, 1981) as is seen 
for multiple Australian lowland tropical rainforest lineages (Sniderman 
and Jordan, 2011). Northern Chinese endemic taxa (C. sinensis, 
M. crassifolia) occur in high elevation habitats. Their divergence from 
widespread Southeast Asian Molineria capitulata during the Early Plio-
cene is after a period of rapid uplift that would have expanded high 
elevation habitat within the Tibetan Plateau during the late Miocene and 
Pliocene (Li et al., 2014). The clade in which the widespread Asian 
species C. orchioides is sister to a clade containing Indian 
(C. finlaysoniana), South American (C. scorzonerifolia), and African 
(Curculigo pilosa) species has radiated only since the Late Pliocene. The 
recent diversification of this clade combined with species distributions 
spanning continents indicates extensive biotic exchange, which could 
potentially have involved both overland (among Asia, India, and Africa) 
and/or transoceanic (between Asia and Africa) dispersal pathways, but 
also dispersal by humans may not be excluded (Kocyan et al., 2011). 

5. Conclusions 

Our analyses imply a Late Cretaceous (around 75 Ma) rise of the 
astelioid clade. This implies that – other than suggested by current 
distribution – asteliods do not have a Gondwanan origin. Rather, the 
MRCA of the Astelioid clade originated on the Antarctic-Australasian 
landmass. The current distribution of the two main clades – Asteliaceae 
and Hypoxidaceae – with Australian-New Zealand and African origins – 

implies that astelioids have reached their current distribution via 
various long-distance dispersal events. The data investigated here imply 
that Hypoxis diversified in Africa with the expansion of grassland habitat 
during the Late Miocene and that of Astelia in New Zealand with the 
expansion of alpine habitat during the Pliocene. 

Though our study represents the most comprehensively sampled 
study of the astelioid clade at the generic rank, it has its limitations due 
to inclusion of a small number of genetic markers; an NGS approach 
using genetic markers of multiple genomes would hold potential to 
generate sufficient variation to clarify Hypoxidaceae relationships and 
those within Astelia. Further astelioid research is warranted with much- 
extended sampling within the Hypoxidaceae, particularly of Hypoxis, to 
fully understand the biogeographic history of the family. 
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Kocyan, A., Wiland-Szymańska, J., 2017. A new name and a new combination for 
Friedmannia nom. Illeg. (Hypoxidaceae). Phytotaxa 291, 239. 

Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2016. PartitionFinder2: 
new methods for selecting partitioned models of evolution for molecular and 
morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773. 

Lee, D.E., Lee, W.G., Mortimer, N., 2001. Where and why have all the flowers gone? 
Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to 
palaeogeography and climate. Aust. J. Bot. 49, 341–356. 

Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hedenäs, L., Hemming, S.R., Johnson, J.V., 
Leng, M.J., Machlus, L.M., Newton, A.E., Raine, J.I., Willenbring, J.K., Williams, M., 
Wolfe, A.P., 2008. Mid-Miocene cooling and the extinction of tundra in continental 
Antarctica. Proc. Natl. Aca. Sci. U.S.A. 105, 10676–10680. 

Li, J., Fang, X., Song, C., Pan, B., Ma, Y., Yan, M., 2014. Late Miocene-Quaternary rapid 
stepwise uplift of the NE Tibetan Plateau and its effects on climatic and 
environmental changes. Quat. Res. 81, 400–423. 

Linder, H.P., 2003. The radiation of the Cape flora, southern Africa. Biol. Rev. 78, 
597–638. 

Linder, H.P., 2014. The evolution of African plant diversity. Front. Ecol. Evol. 2, 38. 
https://doi.org/10.3389/fevo.2014.00038. 

Linder, H.P., Eldenäs, P., Briggs, B.G., 2003. Contrasting patterns of radiation in African 
and Australian Restionaceae. Evolution 57, 2688–2702. 

Linder, H.P., Hardy, C.R., Rutschmann, F., 2005. Taxon sampling effects in molecular 
clock dating: an example from the African Restionaceae. Mol. Phylogen. Evol. 35, 
569–582. 

Maciunas, E., Conran, J.G., Bannister, J.M., Paull, R., Lee, D.E., 2011. Miocene Astelia 
(Asparagales: Asteliaceae) macrofossils from southern New Zealand. Aust. Syst. Bot. 
24, 19–31. 

MacPhail, M.K., Alley, N.F., Truswell, E.M., Sluiter, I.R.K., 1994. Early Tertiary 
vegetation: evidence from spores and pollen. In: Hill, R.S. (Ed.), History of the 
Australian Vegetation: Cretaceous to Recent. Cambridge University Press, 
Cambridge, pp. 182–262. 

MacPhail, M.K., Jordan, G.J., Hill, R.S., 1993. Key periods in the evolution of the flora 
and vegetation in western Tasmania I. the Early-Middle Pleistocene. Aust. J. Bot. 41, 
673–707. 

Malcomber, S.T., 2002. Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA 
markers: evidence of a rapid radiation in a widespread, morphologically diverse 
genus. Evolution 56, 42–57. 

Manning, J., Goldblatt, P., 2012. Plants of the Greater Cape Floristic Region 1: the Core 
Cape flora, Strelitzia 29. South African National Biodiversity Institute, Pretoria.  

Matzke, M.J., 2013. Probabilistic historical biogeography; new models for founder-event 
speciation, imperfect detection, and fossils allow improved accuracy and model- 
testing. Front. Biogeogr. 5, 242–248. 

Matzke, M.J., 2014. Model selection in historical biogeography reveals that founder- 
event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970. 

McLoughlin, S., 2001. The breakup history of Gondwana and its impact on pre-Cenozoic 
floristic provincialism. Aust. J. Bot. 49, 271–300. 

Mildenhall, D.C., Pocknall, D.T., 1989. Miocene-Pleistocene spores and pollen from 
Central Otago, South Island, New Zealand. New Zealand Geological Survey 
Paleontological Bulletin 59. New Zealand Geological Survey, Auckland.  

Morley, R.J., 2003. Interplate dispersal paths for megathermal angiosperms. Perspect. 
Plant Ecol. 6, 5–20. 

Mucina, L., Rutherford, M.C., 2006. The Vegetation of South Africa, Lesotho and 
Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria.  

Nelson, G., Platnick, N., 1981. Systematics and Biogeography. Columbia University 
Press, New York, NY.  

Pena, M.A., Watanabe, M.T.C., Sano, P., 2008. Flora da Serra do Cipó, Minas Gerais: 
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