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Real-time RT-PCR remains a gold standard in the detection of various viral diseases. In the coronavirus

2019 pandemic, multiple RT-PCRebased tests were developed to screen for viral infection. As an

emergency response to increasing testing demand, we established a severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) PCR diagnostics platform for which we compared different commercial and

in-house RT-PCR protocols. Four commercial, one customized, and one in-house RT-PCR protocols were

evaluated with 92 SARS-CoV-2epositive and 92 SARS-CoV-2enegative samples. Furthermore,

economical and practical characteristics of these protocols were compared. In addition, a highly

sensitive digital droplet PCR (ddPCR) method was developed, and application of RT-PCR and ddPCR

methods on SARS-CoV-2 environmental samples was examined. Very low limits of detection (1 or 2

viral copies/mL), high sensitivities (93.6% to 97.8%), and high specificities (98.7% to 100%) for the

tested RT-PCR protocols were found. Furthermore, the feasibility of downscaling two of the

commercial protocols, which could optimize testing capacity, was demonstrated. Tested commercial

and customized RT-PCR detection kits show very good and comparable sensitivity and specificity,

and the kits could be further optimized for use on SARS-CoV-2 viral samples derived from human

and surface swabbed samples. (J Mol Diagn 2021, -: 1e9; https://doi.org/10.1016/

j.jmoldx.2021.04.009)

OnQ5 March 11, 2020, the World Health Organization (WHO)
(Geneva,Q6 Switzerland) declared a pandemic because of the
quick spread of a respiratory disease caused by the novel
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). With cases increasing in multiple countries and
high transmissibility of SARS-CoV-2, eradication is rather
unrealistic in the short term.1 In Switzerland, the second
wave of SARS-CoV-2 is predicted to be slower than the first
one but with a higher case fatality rate.2 The same situation
was reported by the WHO for Spanish influenza for which
the second and third waves of the infection claimed more
lives and the pandemic lasted for almost 2 years and resulted
in at least 50 million deaths worldwide [Centers for Disease

Control and Prevention (CDC), https://www.cdc.gov/flu/

pandemic-resources/1918-commemoration/three-waves.htm,
last accessed September 7, 2020]. Another important factor
contributing to the rapid spread of the coronavirus disease
2019 (COVID-19) pandemic is an unusually high number
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of asymptomatic spreaders.3,4 Therefore, continuous testing
and reliable detection of the virus are essential parts of
controlling the spread of SARS-CoV-2 (WHO, https://www.
who.int/emergencies/diseases/novel-coronavirus-2019/strate

gies-and-plans, last accessed September 7, 2020).
In March 2020, an in-house platform for SARS-CoV-2

diagnosticswas initiated as part of an emergency response to an
increasing demand for test capacity in a routine microbiology
laboratory at University Hospital in Zurich, Switzerland.
Currently, the gold standard for the detection and diagnosis of
SARS-CoV-2 infection is based on the real-timeRT-PCR. The
overall goal was to provide in-house SARS-CoV-2 diagnosis
to all patients and personnel to ensure the safe and efficient

continuation of the health care workwithin the hospital and the
protection of high-risk patients. The aims of this study were i)
to evaluate four commercially available, one customized, and
one in-house RT-PCR test by comparing the limit of detection
(LoD), sensitivity using a panel of SARS-CoV-2 confirmed
cases, and specificity using a group of noneCOVID-19 res-
piratory samples; ii) to examine the feasibility of down-scaling
two commercial protocols to optimize the testing capacity; iii)
to develop a droplet digital PCR (ddPCR) assay to increase test
sensitivity and provide more accurate quantitation of
viral RNA; and iv) to examine applicability of two validated
RT-PCR protocols as well as of a ddPCR protocol on SARS-
CoV-2 environmental samples.

Table 1 Description of Real-Time RT-PCR Assays Compared in the Study

RT-PCR protocol

Abbreviated

name RT-PCR kit/primer and probes Mastermix used in this study Positive control

CDC 2019-Novel Coronavirus

Real-Time RT-PCR

Diagnostic Panel (for

in vitro diagnostic

CDC 2019-nCoVEUA-01 Diagnostic

Panel Box, catalog number

10006606, IDT, Newark, NJ

TaMan, Fast Virus 1-step

Maste Mix, 4444436, 10

mL, Applied Biosystems/

Thermo Fisher Scientific,

Waltham, MA

2019-

nCoV_N_Positive

Control, catalog

number

10006625, IDT

Applied Biosystems TaqMan

2019-nCoV Assay Kit

version 1

TF-SinglePlex TaqMan 2019-nCoV Assay Kit v1,

catalog number A47532,

Applied Biosystems/Thermo

Fisher Scientific

TaMan, Fast Virus 1-step

Maste Mix, catalog number

4444436, 10 mL, Applied

Biosystems/Thermo Fisher

Scientific

2019-nCoV Control

version 1,

catalog number

A47533, Applied

Biosystems/

Thermo Fisher

Scientific

Applied Biosystems

Multiplex TaqMan 2019-

nCoV Assay Kit version 2

(research use only) kit

TF-MultiPlex TaqPath COVID-19 Combo Kit,

catalog number A47813/

A47814, Applied Biosystems/

Thermo Fisher Scientific

TaqPath1-Step Multiplex

Master Mix (No ROX) (4�),

catalog number A28523,

Applied Biosystems/

Thermo Fisher Scientific

Positive Control

(TaqPath COVID-

19 Control Kit),

catalog number

A47816, Applied

Biosystems/

Thermo Fisher

Scientific

EURORealTime SARS-CoV-2

(for research use only)

Euroimmun Catalog number MP 2606-0425 Provided with the kit Provided with the

kit

Real-time RT-PCR assays for

the detection of SARS-

CoV-2,

Pasteur Institute, Paris,

France

Pasteur

Institute

Protocol Pairs

(WHO)

https://www.who.int/docs/

default-source/coronaviruse/

real-time-rt-pcr-assays-for-the-

detection-of-sars-cov-2-institut-

pasteur-paris.pdf, last accessed

November 12, 20206; ordered

from Microsynth (Balgach,

Switzerland)

Invitrogen Superscript III

Platinum One-Step

quantitative RT-PCR

system, catalog number

11732-088

Available on

request from the

Pasteur Institute

In-house customized RT-PCR

protocol

Oncobit https://www.cdc.gov/

coronavirus/2019-ncov/lab/rt-

pcr-panel-primer-probes.html,

last accessed September 7,

20207; ordered from

Microsynth

TaqPath 1-Step Multiplex

Master Mix (no ROX),

catalog number A28521,

Thermo Fisher Scientific

SARS-CoV-2

Positive Run

Control, catalog

number

COV019CE, Bio-

Rad,

Luxembourg,

Luxembourg

CDC, Centers for Disease Control and Prevention; nCoV, novel coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WHO, World Health

Organization.
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Materials and Methods

Clinical Samples

Patient samples were collected by nasopharyngeal and/or
oropharyngeal swabs (CM-FS913, iClean, San Ramon, CA)
at the University Hospital Zurich and at ADMed Laboratory
in La Chaux-de-Fonds, Switzerland (Copan Diagnostics,
Brescia, Italy). The noneCOVID-19 samples (other respira-
tory disease samples) were provided by ADMed Laboratory
and were selected after having been tested on the Respiratory
Panel FilmArray on Biofire (bioMérieux, Marcy-l’Étoile,
France). Household samples were collected by swabbing of
the different surfaces in a quarantined household of a SARS-
CoV-2epositive patient. All swabs were stored in a viral
transport medium (CDC, https://www.cdc.gov/coronavirus/

2019-ncov/downloads/Viral-Transport-Medium.pdf, Accessed
March 20, 2020) or Eswab (Copan Diagnostics, Murrieta,
CA) at 4�C for a maximum of 48 hours or stored at �80�C
until further analyses. All household swabbing participants
provided informed consent for the study, and both the assay
establishment and household studies were approved by the
Cantonal Ethics Committee (BASEC-Nr-2020-00660 and
BASEC-Nr-2020-00659, respectively).

RNA Extraction

Viral RNA was extracted as previously described5 using a
magnetic beadebased (SpeedBeads, GE Healthcare,
Darmstadt, Germany) extraction kit for the KingFisher
instrument (MagMax, Thermo Fisher Scientific, Waltham,
MA).

Detection of SARS-CoV-2 by RT-PCR Protocols

Four commercially available, one customized (Pasteur
Institute, Paris, France), and in-house optimized RT-PCR
protocols (Table 1 ½T1�½T1�)6,7 were compared. Primer probes design,
reaction mix, and thermal cycling conditions are given in
Tables 2e4 ½T2�½T2�½T3�½T3�respectively. All RT-PCR protocols were run
according ½T4�½T4�to manufacturer instructions on a QuantStudio 5
DX real-time PCR system (catalog number A36324,
Thermo Fisher Scientific), and data were analyzed with the
Design and Analysis Software DA version 2.4 (Thermo
Fisher Scientific) except for the Euroimmun protocol, which
was run on LightCycler 480 II (RocheDiagnostics, Basel,
Switzerland). Fast cycling mode was used, and a
comparative Ct analysis method was performed.

For the CDC protocol, an RT-PCR result was defined as
inconclusive if only the N1 gene (�N3 gene) was positive
or if only the N2 gene (�N3 gene) was positive. For the TF-
MultiPlex (Thermo Fisher Scientific), TF-SinglePlex
(Thermo Fisher Scientific), and Oncobit protocols, an RT-
PCR result was considered inconclusive if only one of
two or three of the viral genes was positive. Inconclusive
results were not repeated. The Euroimmun protocol (Lue-
beck, Germany) does not have the inconclusive category.

Detection of SARS-CoV-2 by ddPCR

The ddPCR protocol for SARS-CoV-2 detection targets two
viral genomic regions of the SARS-CoV-2 gene (ORF1ab
and N2) and uses the human RNase P gene as an in-process
control. The following probes for the three genes were
used: ORF1ab (FAM and HEX), N2 (FAM), and RNase

P (HEX) (Table 2). Briefly, 20 mL of reactionmix (containing
1-Step RT-ddPCR Advanced Kit for Probes Mastermix; Bio-
Rad, Luxembourg, Luxembourg) was combined with 10 mL

Table 2 Oligonucleotide Sequences of Primers and Probes of Oncobit Real-Time RT-PCR and Digital Droplet PCR Protocols

Primer/probe name Sequence

N2 forward primer 5
0
-TTACAAACATTGGCCGCAAA-3

0

N2 reverse primer 5
0
-GCGCGACATTCCGAAGAA-3

0

N2 probe (FAM) 5
0
-ACAATTTGCCCCCAGCGCTTCA-3

0

ORF1ab forward primer 5
0
-CCCTGTGGGTTTTACACTTAA-3

0

ORF1ab reverse primer 5
0
-ACGATTGTGCATCAGCTGA-3

0

ORF1ab probe (Cy5) 5
0
-CCGTCTGCGGTATGTGGAAAGGTTATGG-3

0

RNaseP forward primer 5
0
-AGATTTGGACCTGCGAGCG-3

0

RNaseP reverse primer 5
0
-GAGCGGCTGTCTCCACAAGT-3

0

RNaseP probe (HEX) 5
0
-TTCTGACCTGAAGGCTCTGCGCG-3

0

Table 3 Reaction Mix for Oncobit Real-Time RT-PCR Protocol

Reagent

Volume per

reaction, mL

TaqPath 1-Step Multiplex Master Mix

(no ROX) (catalog number A28521,

Thermo Fisher Scientific, Waltham, MA), 4�

5

N2 probe (FAM) (100 mmol/L) 0.05

ORF1ab probe (Cy5) (100 mmol/L) 0.05

RNaseP probe (HEX) (100 mmol/L) 0.05

N2 forward primer (100 mmol/L) 0.06

N2 reverse primer (100 mmol/L) 0.06

ORF1ab forward primer (100 mmol/L) 0.06

ORF1ab reverse primer (100 mmol/L) 0.06

RNaseP forward primer (100 mmol/L) 0.03

RNaseP reverse primer (100 mmol/L) 0.03

Nuclease-free water 4.55

Total 20.0

Benchmarking COVID-19 Detection Methods
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of RNA sample for a final reaction volume of 30 mL. The final
concentrations were 90 nmol/L for primers (ORF1ab, N2,
RNaseP), 19.5 nmol/L forRdRP probes, 30 nmol/L for theN2
probe, and 40 nmol/L for the RNase P probe. The SARS-
CoV-2 Positive Run Control (catalog number COV019CE,
Bio-Rad) was used as positive control. ddPCR was run ac-
cording to the program listed in Table 5½T5�½T5� using QX200 Droplet
Digital PCR System (Bio-Rad). The swabbing household
samples from a laptop, newspaper, or door handle as well as
the nontemplate control were tested in two independent runs.

LoD, Sensitivity, and Specificity Calculation

The LoD of four published SARS-CoV-2 detection
protocols (CDC, TF-MultiPlex, TF-SinglePlex, and
Euroimmun) was determined using a dilution of an
external quality assessment quantitative test sample
(Instand, https://www.instand-ev.de/en/news/detail/news/ne

uartiges-coronavirus-sars-cov-2-2019-ncov-im-vorgezoge

nen-instand-ringversuch-virusgenom-nachw/?tx_news_pi

1%5Bcontroller%5DZNews&tx_news_pi1%5Baction%5

DZdetail&cHashZf91865b86af167390788c7f404b16e

7e, last accessed November 12, 2020). Linear regression
was used to determine the line of best fit for the
relationship between Ct and viral copies. A Ct value of 40
was set as the minimum amount of viral copies detected
by RT-PCR. LoD for Oncobit ddPCR protocol was deter-
mined using a dilution of the SARS-CoV-2 Positive Run
Control (catalog number COV019CE, Bio-Rad).

For sensitivity and specificity value calculations of each
assay, the results of RT-PCR obtained from the ADMed
Laboratory were used as the gold standard reference. The
sensitivity was defined with the formula TP/(TP þ FN),
whereas specificity was defined as TN/(TP þ FP), where TP
indicates true positive, FP indicates false positive, TN in-
dicates true negative, and FN indicates false negative. If the
result of tested assays matched the reference, it was labeled

concordant. If the result from the tested assays did not match
the gold reference, it was labeled discordant. Inconclusive
results were excluded from sensitivity and specificity
calculations.

SARS-CoV-2 Infectivity Assay

The viral infectivity assay was performed as previously
described8e10 with slight modifications. Briefly, 5 � 104

Vero E6 cells (catalog number CCL-81, ATCC, Manassas,
VA) were seeded on 96-well flat bottom cell culture plates in
200 mL of high glucose Dulbecco’s modified Eagle’s medium
medium Q7supplemented with L-glutamate, sodium pyruvate,
nonessential amino acids, HEPES, 5% fetal cow serum, and
Normocin (catalog number ant-nr-1, InvivoGen, Toulouse,
France). After 24 hours of incubation (37�C, 5% CO2), the
medium was removed, and 100 mL of a virus test solution or
the positive SARS-CoV-2 control (provided by Prof. Volker
Thiel, Inst. Virology & Immunology, University of Berne,
Switzerland) was added in twofold serial dilutions to the cells.
The plates were incubated for 48 hours at 37�C. The cells
were then fixed with 10% formaldehyde solution for 15 mi-
nutes at room temperature, rinsed with phosphate-buffered
saline, and stained with 1% crystal violet stain solution (cat-
alog number 252532.1211, Pan ReacAppliChem,Darmstadt,
Germany) for 15 minutes at room temperature. The staining
solution was removed, the cells were rinsed twice with
phosphate-buffered saline, and the plates dried at room
temperature before assessment for viral plaques.

Results

Description and Comparison of SARS-CoV-2 RT-PCR
Detection Protocols

The six RT-PCR protocols compared in this study use the
same principle of isolating viral RNA from the nasopharyn-
geal and/or oropharyngeal swabs or bronchial fluid and
running a 1-step RT reaction followed by real-time amplifi-
cation of two or three SARS-CoV-2 target genes (Figure 1 ½F1�½F1�).
Summary and comparison of all tested RT-PCR protocols is
given in Table 6 ½T6�½T6�. All protocols have internal controls, non-
template controls and positive controls. In TF-MultiPlex, the
phage MS2 is added as the internal control that serves as both
RNA isolation and reaction control. All other protocols
except for Euroimmun (where the type of interncal control is
not indicated) use awidely accepted reaction control RNAseP
to ensure that RNA isolation worked and RT-PCR reaction

Table 4 Thermal Cycling Conditions for Oncobit Real-Time RT-PCR Protocol

Stage Step Temperature, �C Time

Hold UNGQ10 incubation 25 2 minutes

Hold Reverse transcription 53 10 minutes

Hold Activation 95 2 minutes

Cycling (40 cycles) Denaturation 95 3 seconds

Anneal/extension 60 30 seconds

Table 5 Thermal Cycling Conditions for Oncobit Digital Droplet

PCR Protocol

Stage Temperature, �C Time

Hold 50 60 minutes

Hold 95 10 minutes

Cycling (55 cycles) 95 30 seconds

59 1 minute

Hold 98 10 minutes

Hold 4 1 minute

Tastanova et al
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was not inhibited. The protocol design is single plex, double
plex, or multiplex. Euroimmun protocol stands out with its
design, with two target probes coupled to the same reporter
color FAM. The viral RNA input is 5 to 10 mL. Because of
unspecific E-gene amplification (Supplemental Table S1), the
protocol developed by Pasteur Institute was not used further
in this comparative study.

LoD of Real-Time RT-PCR and ddPCR SARS-CoV-2
Detection Protocols

With a Ct value cut-off of 40, the five RT-PCR SARS-CoV-
2 detection protocols (CDC, TF-MultiPlex, TF-SinglePlex,
Euroimmun, and Oncobit) as well as the Oncobit ddPCR
protocol had an LoD between 1 and 2 viral copies/mL
(Figure 2½F2�½F2� , A and B). Values <1 copy/mL indicate high
sensitivity of the tested protocol (Figure 2, A and B).

Specificity and Sensitivity of Real-Time RT-PCR SARS-
CoV-2 Detection Protocols

For the sensitivity and specificity of the SARS-CoV-2
detection protocols (CDC, TF-SinglePlex, TF-MultiPlex,
Euroimmun, and Oncobit), a cohort of 92 SARS-CoV-
2epositive samples and 92 SARS-CoV-2enegative
samples was used that were provided by ADMed Lab-
oratory. A comparison to SARS-CoV-2epositive results
showed similar sensitivity of all tested protocols, with a
93.6% sensivity for TF-SinglePlex and 96.7% to 97.8%
sensitivity for the other protocols (Figure 3 ½F3�½F3�A). In the
specificity cohort, 22 samples had a confirmed diagnosis
of other respiratory diseases (Supplemental Table S2),
and 70 samples tested negative for all listed respiratory
diseases, including SARS-CoV-2. All protocols, except
TF-SinglePlex, had no cross-reactivity (Figure 3A),
including samples that tested positive for four other

Table 6 Comparative Overview of Six Real Time RT-PCR Protocols

Characteristic CDC SARS-CoV-2 TF-SinglePlex TF-MultiPlex Euroimmun

Pasteur Institute

Protocol (WHO) Oncobit RT-PCR

Targets (dyes) N1 (FAM)

N2 (FAM)

N3 (FAM)

RNAseP (FAM)

ORF1ab (FAM)

N (VIC)

S (ABY)

RNAseP (JUN)

ORF1ab (FAM)

N (VIC)

S (ABY)

MS2 (JUN)

ORF1ab and

N (SARS-CoV-2,

FAM)

IC (VIC)

RdRp_IP2 (FAM)

RdRp_IP4 (HEX)

E gene (FAM)
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Figure 1 Summary of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time RT-PCR detection protocols. SARS-CoV-2 genome
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MultiPlex, protocols were for research use only. CDC, Centers for Disease Control and Prevention; WHO, World Health Organization.
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types of coronaviruses (Supplemental Table S2). The
specificity was thus 100% for all protocols except for
TF-SinglePlex, which had a specificity of 98.7%
(Figure 3A).

Inconclusive results were found in 0.5% to 3.2% of these
184 samples, with TF-MultiPlex and Oncobit providing the
most accuracy (Figure 3A). Comparing RT-PCR results
(positive, negative, or inconclusive) of all 184 samples, the
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Figure 2 Limit of detection (LoD) of real-time RT-PCR and digital droplet PCR (ddPCR) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

detection protocols. A: LoD (viral copies per microliter) of different target genes of Centers for Disease Control and Prevention (CDC), TF-SinglePlex, TF-MultiPlex,

Euroimmun, Oncobit RT-PCR, and Oncobit ddPCR SARS-CoV-2 detection protocols. B: Calculated R2 values of SARS-CoV-2 detection protocols. rxn,--- Q9
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Figure 3 Specificity and sensitivity of real-time RT-PCR severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection protocols. A: Performance

calculation (sensitivity/specificity) as well as calculation of percentage of inconclusive results of five real-time RT-PCR detection protocols [Centers for Disease

Control and Prevention (CDC), TF-SinglePlex, TF-MultiPlex, Euroimmun, and Oncobit]. The Euroimmun RT-PCR detection protocol does not have the inconclusive

category; inconclusive for Euroimmun equals an invalid result. B: Heatmap summarizing concordance of five real-time RT-PCR detection protocols (CDC, TF-

SinglePlex, TF-MultiPlex, Euroimmun, and Oncobit) for both sensitivity (bottom) and specificity (top) sample cohorts.
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overall nonconcordance between all the protocols was
14.7% (Figure 3B).

Optimization of Testing Capacity

To optimize testing capacity, recommended reaction
volumes in commercial protocols were downscaled, and
published primer/probe sequences were customized to have
an in-house developed protocol (Oncobit). Using a previ-
ously confirmed SARS-CoV-2epositive cohort of 14
samples, we compared the CDC and TF-MultiPlex protocols
with recommended reaction volume and reaction volumes
reduced by 50%. RNA sample input was always the same.
The Oncobit protocol was the cheapest (Table 6), had the
shortest RT-PCR reaction time requirement (Table 6), and
had the most reliable access to consumables (Microsynth,
Balgach, Switzerland). The specificity and sensitivity of the
Oncobit protocol were comparable with other commercial
SARS-CoV-2 RT-PCR detection kits (Figure 3, A and B).

A downscaled CDC protocol showed two (14.3%)
inconclusive results, a standard TF-MultiPlex protocol
showed one (7.1%) false-negative result, and a downscaled
TF-MultiPlex protocol revealed one (7.1%) false-negative
as well as one (7.1%) inconclusive result (Figure 4½F4�½F4� A).
Furthermore, LoD of downscaled CDC and TF-MultiPlex
protocols showed a sensitivity of 1 copy/mL with a Ct
value cut-off of 40 (Figure 4B).

Application of SARS-CoV-2 Detection Protocols on
Swabbed Surfaces

Having compared and established the RT-PCR protocols
for SARS-CoV-2 diagnostics, the possibility of application
of the RT-PCR and ddPCR protocol for SARS-CoV-2
detection on environmental samples was examined. Swabs
of different surfaces from a SARS-CoV-2 quarantined
household were collected and analyzed by two validated
RT-PCR protocols. In addition, an in-house ddPCR pro-
tocol was developed to accurately detect and quantify
virus.
On the day of household surface swabbing (April 25,

2020) of the SARS-CoV-2epositive family, only patient 2
was swabbed again and tested positive but reported no
symptoms (Supplemental Figure S1A). The pharyngeal
swab as well as the swabbed surface samples were collected
on the same day and tested with three different SARS-CoV-
2 detection protocols (CDC, TF-MultiPlex, and ddPCR).
The pharyngeal swab tested positive (cycle thresholds >30)
on three different protocols. The laptop keyboard and two
more swabbed surface (the door handle and newspaper)
samples had positive and inconclusive results, respectively
(Supplemental Table S3), whereas no infectivity for any of
the samples was detected (Supplemental Figure S1B).

Discussion

Real-time RT-PCR remains the most sensitive method for
early detection of SARS-CoV-2. We report a comparison of
LoD, specificity, sensitivity, economic, and practical ad-
vantages of four commercial SARS-CoV-2 detection kits as
well as one optimized in-house RT-PCR SARS-CoV-2
protocol. A study comparing RT-PCR with rapid fluores-
cence immunochromatographic assayebased SARS-CoV-2
nucleocapsid protein antigen detection method showed that
sensitivity of the rapid method was only approximately
75.6%11; therefore, RT-PCR remains a more sensitive
detection method for SARS-CoV-2. Most of the reported
multiplatform comparison studies on real-time RT-PCR
SARS-CoV-2 detection performed the benchmarking only
on a limited number of samples and tested only commercial
detection kits,10,12,13 and some studies limited the compar-
ison only to sensitivity assessment.14

In this study, a low LoD and high sensitivity for four
commercial SARS-CoV-2 RT-PCR detection protocols
were observed by using standard quantitative test samples
and a cohort of 92 SARS-CoV-2epositive samples,
respectively. Furthermore, specificity of those protocols was
tested and confirmed with 92 samples that had confirmed
SARS-CoV-2enegative result or were collected in prepan-
demic times from patients presenting with respiratory
symptoms (Supplemental Table S2).
In addition, downscaling of two commercial protocols

that were chosen for the diagnostic routine (CDC and TF-
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Figure 4 Downscaling of the Centers for Disease Control and Prevention

(CDC) and TF-MultiPlex protocols. A: Heatmap summarizing results of

standard and downscaled protocol (CDC and TF-MultiPlex). For the CDC

protocol, a RT-PCR result was defined inconclusive if RT-PCR was positive

for only N1 (�N3) or for only N2 (�N3). For TF-MultiPlex a RT-PCR result

was considered inconclusive if only one of the viral genes was positive.

B: Limit of detection (LoD) (copies per microliter) and R2 values of

downscaled protocols (CDC and TF-MultiPlex). NTC, nontemplate control;

PC, positive control.
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MultiPlex) could be an option to save resources. This
downscaling is especially important in times when a high
demand for SARS-CoV-2 testing causes supply chain
problems as occurred at the beginning of the pandemic in
Europe. As an alternative strategy to optimize costs and
increase testing capacity, an in-house protocol was
developed in collaboration with the diagnostics company
Oncobit by adapting previously published primer sequences
for multiplex analysis. The customized Oncobit protocol
was the least costly and fastest protocol when compared
with other commercial RT-PCR protocols tested in this
study.

To expand the application of RT-PCRebased detection
protocols, a testing of swabbed surfaces from a SAR-CoV-
2 quarantined household was performed. Results showed
that RT-PCR protocols detected the viral genetic material
on the laptop keyboard, and this result was confirmed by a
more sensitive ddPCR method. Two more surfaces showed
inconclusive results (a newspaper and a door handle, with
viral copies detectable by ddPCR, however below the
LoD) (Supplemental Table S3). Nasopharyngeal swab
taken on the same day tested positive; however, infectivity
assay for all samples showed negative results. These
findings demonstrate the possibility of applying the RT-
PCRebased protocols on nonpatient samples that could be
of use for larger environmental studies. Summarizing the
comparative study, we found that most commercial and
customized RT-PCRebased detection protocols are highly
effective at detecting viral presence in classic nasopha-
ryngeal and/or oropharyngeal swabs, and because of its
high sensitivity, RT-PCRebased detection protocols can
be applied to the testing of environmental samples.
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Supplemental Figure S1 Patients Ct values and symptom progression as well as infectivity examination of swabbed patient and surface samples. A: The

patient’s Ct values and symptom progression. Mean of Ct values of the N1, N2, and N3 viral genes are shown (Centers for Disease Control and Prevention

protocol). Patient 1 was a 42-year-old woman; patient 2, 42-year-old man; patient 3, 6-year-old boy; and patients 4, 4-year-old boy. The Ct values at the time

of diagnosis for patient 1 are missing because the patient was tested in a different laboratory. On April 7, 2020, the patient experienced shortness of breath,

which lasted for 3 days. On April 7, 2020, the 42-year-old man (father, patient 2) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), with symptoms resolving after 10 days. As the symptoms gradually resolved, we observed increasing Ct values in both patients. On April 12, the two

children (patients 3 and 4) also tested positive for SARS-CoV-2 but remained asymptomatic at all times. Family members in the household were swabbed on the

April 25, with patients being asymptomatic for at least 2 days. B: An infectivity assay using Vero E6 cells found no plaque formation for any of the samples that

tested positive by real-time RT-PCR (patient’s throat, laptop keyboard, newspaper, and toilet rim).

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

FLA 5.6.0 DTD � JMDI1066_proof � 20 May 2021 � 12:59 am � EO: JMDI-D-20-00584


