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Abstract: The heavy spanning cable supporting a uniform deck is important in the design of suspension bridges. 
The analytic design method is presented in this paper. The problem depends on three non-dimensional parameters: 
the ratio of cable length to the horizontal spanning distance, the ratio of vertical to horizontal distance, and the 
ratio of deck density to cable density. Given these parameters, useful tables of maximum tension and sag are 
determined. There exists an optimum cable length for which the maximum tension is minimized. In addition, it is 
shown that continuous loads and discrete loads are equivalent if the number of evenly-spaced discrete loads are 
more than 10.  
Keywords: Cable; Deck; Optimization; Discrete loads. 

 
 
1. Introduction 
 

The heavy spanning cable, or cable with self-weight, is a classic example in physics, mathematics and 
engineering. It was studied since Galileo, but its exact shape, the catenary, awaits the Bernoulli brothers [1]. Recent 
discussions can be found in [2,3]. The catenary supporting a single concentrated load was first discussed by Routh 
[4]. Multiple loads were studied by Irvine and Sinclair [5], and by Kim and Lee [6] using finite elements. The 
catenary cable was extended to include non-uniform self-weight [7], and to three dimensions [8,9]. When inverted, 
the catenary represents a funicular (moment-less) arch [10].  

For a suspension bridge, the main cable (which has self-weight) may also support a horizontal load such as a 
deck. The cable shape is no longer a catenary. In these cases, numerical means (finite elements, iteration etc) are 
used. See e.g. [11,12].   

Recently the closed-form solution for the heavy cable loaded with a uniform deck was found independently by 
Wang and Wang [13] and Lewis [14]. This analytic solution greatly simplifies the computation for the cable shape, 
or the form-finding process. Being exact, it also serves as a benchmark for numerical and other approximate 
methods. Optimization was not considered in these sources. 

A cable can be optimized differently, depending on the object of optimization. Aside from cost optimization 
(e.g. [15]), there are three basic shape optimizations. The first class of optimization considers the cable of variable 
cross-sectional area such that the stress everywhere is constant (fully-stressed) [16-19]. The second class of 
optimization considers the loaded, uniform cable which has a minimum total weight [20-22]. The third class of 
optimization considers the uniform cable with minimal maximum tension. Such an optimum was found by Wang 
[23] but only for the uniform catenary (without a load) and Wang [24] for the catenary with a single concentrated 
load. Minimizing total weight is different from minimizing tension. For example, the cable can be very taut, with 
minimal weight but very large tension. 

The main purpose of the present work is to optimize the heavy uniform cable with a uniform load (deck) with 
respect to the least cable tension. Such an endeavor is fundamental in the design of suspension bridges. We shall 
consider the cable spanning different heights, which is important for sides spans of suspension bridges.  

We assume the weight of the suspenders is negligible in comparison to that of the cable or the deck, and the 
load due to the deck is spanwise continuously distributed. The assumption of continuous distribution versus the 
actual situation of discrete distribution will be discussed.            
 
2. Formulation 
 

Fig. 1(a) shows a cable of weight per length 𝜌𝜌 suspending a horizontal deck of weight per length �̄�𝜌 through 
discrete suspenders of negligible weight (for twin cables, divided appropriately by two). The deck has span length 
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L, the cable length is lL, and the cable ends have a height difference of hL. Note that the main span of a suspension 
bridge usually has cables of equal heights while the end spans must have different heights. Our question is, given 
the afore-mentioned parameters, what are the maximum tension and the sag of the cable?  

 
                                                               (a)                                                                           (b) 

Fig. 1 (a) Spanning cable supporting a deck. (b) Force balance on an elemental segment 
 
Normalize all lengths by L, and all forces by𝜌𝜌𝜌𝜌. Let (x,y) be Cartesian coordinates place at the lower (left) end 

of the cable. Let 𝜃𝜃 be the local angle of inclination and T be the tension of the cable. The normalized horizontal 
force X is constant but the vertical force Y varies with the arc length s from the origin.  

 
𝑋𝑋 = 𝑇𝑇(𝑠𝑠) 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 =constant,  𝑌𝑌 = 𝑇𝑇(𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃          (1) 
 
A vertical force balance on an elemental segment ds (Fig. 1b) gives 
 
𝑑𝑑𝑌𝑌 = 𝑑𝑑𝑠𝑠 + 𝜆𝜆𝑑𝑑𝜆𝜆             (2) 

 
where the density ratio is 𝜆𝜆 = �̄�𝜌/𝜌𝜌.  

Geometry dictates 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 , 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃                           (3) 
 
Eqs.(1-3) yield 
 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃) = 1 + 𝜆𝜆 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃            (4) 
 
or 
 

𝑋𝑋 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐𝑠𝑠2 𝜃𝜃 [1 + 𝜆𝜆 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃]                         (5) 
 
The boundary conditions are  
 
𝜆𝜆| 𝑑𝑑=0 = 0, 𝑦𝑦| 𝑑𝑑=0 = 0                                       (6) 

𝜆𝜆| 𝑑𝑑=𝑙𝑙 = 1, 𝑦𝑦| 𝑑𝑑=𝑙𝑙 = ℎ                                (7) 
 
Integrating Eqs.(3,5) gives 
 
𝜆𝜆 = 𝑋𝑋 ∫ 𝑑𝑑𝑑𝑑

𝑐𝑐𝑐𝑐𝑑𝑑 𝑑𝑑(1+𝜆𝜆 𝑐𝑐𝑐𝑐𝑑𝑑 𝑑𝑑)
= 𝑋𝑋[𝑙𝑙𝑠𝑠( 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃 + 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃) − 𝐹𝐹(𝜃𝜃, 𝜆𝜆) + 𝐴𝐴]       (8) 

 
where    

𝐹𝐹(𝜃𝜃, 𝜆𝜆) =

⎩
⎪
⎨

⎪
⎧

2𝜆𝜆
�1−𝜆𝜆2

𝑡𝑡𝑡𝑡𝑠𝑠−1 �√1−𝜆𝜆
√1+𝜆𝜆

𝑡𝑡𝑡𝑡𝑠𝑠 𝑑𝑑
2
� , 𝜆𝜆 < 1

𝑡𝑡𝑡𝑡𝑠𝑠 𝑑𝑑
2

, 𝜆𝜆 = 1
𝜆𝜆

�𝜆𝜆2−1
𝑙𝑙𝑠𝑠 �𝜆𝜆+𝑐𝑐𝑐𝑐𝑑𝑑 𝑑𝑑+

�𝜆𝜆2−1𝑑𝑑𝑠𝑠𝑠𝑠 𝑑𝑑
1+𝜆𝜆 𝑐𝑐𝑐𝑐𝑑𝑑 𝑑𝑑

� , 𝜆𝜆 > 1

                        (9) 

𝑦𝑦 = 𝑋𝑋 �𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃 − 𝜆𝜆 𝑙𝑙𝑠𝑠 �𝑑𝑑𝑠𝑠𝑐𝑐 𝑑𝑑+𝜆𝜆
1+𝜆𝜆

� + 𝐵𝐵�         (10) 
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Except for the constants A and B, Eqs.(8-10) essentially have the same form as the analytic solution for equal 
heights [13,14]. However, the form-finding method is different. 

Our method is as follows. In order to relate 𝜃𝜃 and s we further integrate Eq.(5) to obtain 
 
𝑠𝑠 = 𝑋𝑋[𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃 − 𝜆𝜆 𝑙𝑙𝑠𝑠( 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃 + 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃) + 𝜆𝜆2𝐹𝐹(𝜃𝜃, 𝜆𝜆) + 𝐶𝐶]                    (11) 

 
For the present problem, it is still not trivial to find the unknowns A,B,C,X from the boundary conditions 

Eqs.(6.7). 
Let 𝜃𝜃0 be the angle at s=0, and 𝜃𝜃𝑙𝑙 be the angle at the end s=l. Evaluating Eqs.(11, 8, 10) at the origin gives 
 
𝐶𝐶 = −𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃0 + 𝜆𝜆 𝑙𝑙𝑠𝑠( 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃0 + 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃0) − 𝜆𝜆2𝐹𝐹(𝜃𝜃0, 𝜆𝜆)       (12) 

𝐴𝐴 = − 𝑙𝑙𝑠𝑠( 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃0 + 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃0) + 𝐹𝐹(𝜃𝜃0, 𝜆𝜆)                      (13) 

𝐵𝐵 = −𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃0 + 𝜆𝜆 𝑙𝑙𝑠𝑠 �𝑑𝑑𝑠𝑠𝑐𝑐 𝑑𝑑0+𝜆𝜆
1+𝜆𝜆

�                       (14) 
 
Eq.(11) at s=l is then 
 
 𝑙𝑙 = 𝑋𝑋[𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃𝑙𝑙 − 𝜆𝜆 𝑙𝑙𝑠𝑠( 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃𝑙𝑙 + 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃𝑙𝑙) + 𝜆𝜆2𝐹𝐹(𝜃𝜃𝑙𝑙 , 𝜆𝜆) + 𝐶𝐶]                   (15) 

 
Then eliminate X from Eqs.(7, 8, 10, 15) to yield 
 
 𝑙𝑙[𝑙𝑙𝑠𝑠( 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃𝑙𝑙 + 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃𝑙𝑙) − 𝐹𝐹(𝜃𝜃𝑙𝑙 , 𝜆𝜆) + 𝐴𝐴] = 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃𝑙𝑙 − 𝜆𝜆 𝑙𝑙𝑠𝑠( 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃𝑙𝑙 + 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃𝑙𝑙) + 𝜆𝜆2𝐹𝐹(𝜃𝜃𝑙𝑙, 𝜆𝜆) + 𝐶𝐶                  (16) 

ℎ[𝑙𝑙𝑠𝑠( 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃𝑙𝑙 + 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃𝑙𝑙) − 𝐹𝐹(𝜃𝜃𝑙𝑙 , 𝜆𝜆) + 𝐴𝐴] = 𝑠𝑠𝑠𝑠𝑐𝑐 𝜃𝜃𝑙𝑙 − 𝜆𝜆 𝑙𝑙𝑠𝑠 �𝑑𝑑𝑠𝑠𝑐𝑐 𝑑𝑑𝑙𝑙+𝜆𝜆
1+𝜆𝜆

� + 𝐵𝐵     (17) 
 
From Eqs.(16,17) we solve for 𝜃𝜃0,𝜃𝜃𝑙𝑙 using a 2D root search algorithm. The horizontal force X can then be 

obtained from Eq.(15), and the shape of the cable from the parametric Eqs.(8,10). The maximum tension is at the 
higher end. Eq.(1) gives 

 
𝑇𝑇 = 𝑋𝑋

𝑐𝑐𝑐𝑐𝑑𝑑 𝑑𝑑𝑙𝑙
                         (18) 

 
The sag (if any) is located at 𝜃𝜃 = 0 or at s=XC, provided 0<s<l. Table 1 shows the results. For 𝜆𝜆 =0, the deck 

is absent and the cable is a free catenary. An increase in 𝜆𝜆 increases the tension and decreases the sag. For shorter 
cable lengths, the sag disappears since the cable always have positive slope. If 𝑙𝑙 < √1 + ℎ2the cable cannot span 
the two end points. Sag always increases with the cable length l. The maximum tension T first decreases then 
increases with increased l. Given the end points, the cable length and the densities of the cable and deck, one can 
obtain the tension and sag from Table 1. These tables, presented here for the first time, can be interpolated for 
practical purposes. 

Table 1a. Maximum tension T and sag S (with asterisk) for given height h and length of cable l (density ratio 𝜆𝜆 
=0). Empty cells denote the end points cannot be spanned. 

l\h 0 0.25 0.5 0.75 1 1.5 
1.1 0.8572 

0.199* 
1.0940 
0.067* 

-- -- -- -- 

1.2 0.7621 
0.292* 

0.9151 
0.162* 

1.217 
0.027* 

-- -- -- 

1.4 0.7782 
0.437* 

0.9098 
0.310* 

1.062 
0.177* 

1.286 
0.043* 

-- -- 

1.6 0.8488 
0.564* 

0.9763 
0.437* 

1.111 
0.308* 

1.260 
0.174* 

1.467 
0.043* 

-- 

1.8 0.9342 
0.682* 

1.060 
0.556* 

1.190 
0.428* 

1.325 
0.297* 

1.474 
0.164* 

-- 

2 1.027 
0.796* 

1.151 
0.670* 

1.279 
0.543* 

1.409 
0.414* 

1.544 
0.283* 

1.900 
0.024* 

2.2 1.120 
1.015* 

1.246 
0.781* 

1.372 
0.654* 

1.500 
0.526* 

1.630 
0.397* 

1.916 
0.133* 

2.4 1.216 
1.015* 

1.342 
0.890* 

1.468 
0.763* 

1.594 
0.636* 

1.723 
0.508* 

1.989 
0.246* 
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Table 1a. (Continued). 
2.6 1.314 

1.122* 
1.439 
0.997* 

1.564 
0.871* 

1.691 
0.744* 

1.818 
0.617* 

2.077 
0.358* 

2.8 1.411 
1.228* 

1.537 
1.103* 

1.662 
0.977* 

1.788 
0.851* 

1.914 
0.724* 

2.170 
0.467* 

3 1.510 
1.334* 

1.635 
1.209* 

1.760 
1.083* 

1.886 
0.957* 

2.012 
0.830* 

2.266 
0.574* 

 
Table 1b. Maximum tension T and sag S (with asterisk) for given height h and length of cable l (density ratio 𝜆𝜆 
=2.5). 

l\h 0 0.25 0.5 0.75 1 1.5 
1.1 2.849 

0.201* 
3.590 
0.069* 

-- -- -- -- 

1.2 2.399 
0.295* 

2.814 
0.165* 

3.724 
0.031* 

-- -- -- 

1.4 2.212 
0.444* 

2.506 
0.317* 

2.873 
0.185* 

3.489 
0.052* 

-- -- 

1.6 2.212 
0.573* 

2.463 
0.447* 

2.742 
0.318* 

3.083 
0.186* 

3.622 
0.054* 

-- 

1.8 2.263 
0.694* 

2.490 
0.568* 

2.730 
0.440* 

2.999 
0.311* 

3.326 
0.180* 

-- 

2 2.334 
0.810* 

2.545 
0.684* 

2.764 
0.557* 

2.998 
0.429* 

3.259 
0.299* 

4.095 
0.039* 

2.2 2.416 
0.922* 

2.615 
0.797* 

2.819 
0.671* 

3.033 
0.543* 

3.262 
0.414* 

3.842 
0.154* 

2.4 2.503 
1.033* 

2.693 
0.907* 

2.887 
0.781* 

3.087 
0.654* 

3.297 
0.527* 

3.782 
0.268* 

2.6 2.594 
1.141* 

2.777 
1.016* 

2.963 
0.890* 

3.153 
0.763* 

3.350 
0.636* 

3.784 
0.380* 

2.8 2.687 
1.248* 

2.864 
1.123* 

3.044 
0.997* 

3.226 
0.871* 

3.414 
0.745* 

3.816 
0.489* 

3 2.782 
1.355* 

2.954 
1.230* 

3.128 
1.104* 

3.305 
0.978* 

3.485 
0.852* 

3.865 
0.597* 

 
Table 1c. Maximum tension T and sag S (with asterisk) for given height h and length of cable l (density ratio 𝜆𝜆 
=5). 

l\h 0 0.25 0.5 0.75 1 1.5 
1.1 4.849 

0.201* 
6.088 
0.069* 

-- -- -- -- 

1.2 4.031 
0.296* 

4.709 
0.167* 

6.208 
0.033* 

-- -- -- 

1.4 3.644 
0.446* 

4.102 
0.319* 

4.687 
0.188* 

5.681 
0.054* 

-- -- 

1.6 3.574 
0.575* 

3.953 
0.449* 

4.379 
0.321* 

4.912 
0.190* 

5.772 
0.058* 

-- 

1.8 3.591 
0.697* 

3.924 
0.571* 

4.280 
0.444* 

4.684 
0.315* 

5.189 
0.183* 

-- 

2 3.642 
0.813* 

3.944 
0.687* 

4.259 
0.561* 

4.601 
0.433* 

4.991 
0.304* 

6.294 
0.043* 

2.2 3.711 
0.926* 

3.990 
0.801* 

4.277 
0.675* 

4.582 
0.547* 

4.914 
0.419* 

5.786 
0.158* 

2.4 3.789 
1.037* 

4.050 
0.911* 

4.318 
0.785* 

4.597 
0.659* 

4.893 
0.531* 

5.599 
0.273* 

2.6 3.874 
1.146* 

4.121 
1.020* 

4.373 
0.895* 

4.632 
0.768* 

4.904 
0.641* 

5.519 
0.385* 

2.8 3.962 
1.254* 

4.198 
1.128* 

4.437 
1.002* 

4.682 
0.876* 

4.936 
0.750* 

5.492 
0.494* 

3 4.053 
1.360* 

4.280 
1.235* 

4.508 
1.109* 

4.742 
0.983* 

4.982 
0.857* 

5.497 
0.603* 
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3. Optimization 
 

Since the maximum tension is large when the cable is taut (large horizontal force X), and again large when the 
cable is slack (large self-weight), there exists an optimum length for given end points and relative deck weight 
such that maximum tension is minimized. Using our method described in the previous section and varying the 
cable length, this optimum is determined. Table 2 shows the optimum cable length for various deck relative weights 
𝜆𝜆and height ratios h. The optimum length (for minimum tension) increases with both deck weight and height 
difference.  

 
Table 2. The optimum length l, the maximum tension T (in parentheses), and the sag S (in brackets). 
h\𝜆𝜆 0 0.5 1 2 5 
0 1.258 

(0.7544) 
[0.338] 

1.319 
(1.057) 
[0.383] 

1.370 
(1.351) 
[0.421] 

1.453 
(1.922) 
[0.479] 

1.637 
(3.573) 
[0.598] 

0.5 1.377 
(1.061) 
[0.161] 

1.461 
(1.417) 
[0.223] 

1.537 
(1.757) 
[0.275] 

1.670 
(2.410) 
[0.361] 

1.987 
(4.259) 
[0.553] 

1 1.673 
(1.453) 
[0.0859] 

1.762 
(1.839) 
[0.148] 

1.846 
(2.208) 
[0.203] 

2.007 
(2.914) 
[0.302] 

2.414 
(4.893) 
[0.539] 

2 2.491 
(2.351) 
[0.0387] 

2.571 
(2.764) 
[0.0896] 

2.656 
(3.161) 
[0.142] 

2.828 
(3.925) 
[0.244] 

3.320 
(6.066) 
[0.519] 

5 5.335 
(5.258) 
[0.0138] 

5.395 
(5.691) 
[0.0492] 

5.464 
(6.116) 
[0.0910] 

5.620 
(6.944) 
[0.181] 

6.143 
(9.302) 
[0.466] 

 
The 𝜆𝜆 = 0 (cable without a deck) values agree, to 1%, with the results of the free catenary studied by Wang 

[23]. Fig.2 shows typical shapes of the optimum cable.  

 
                                                               (a)                                                  (b) 

Fig. 2. Optimum cable shapes. The cable is supported at two ends with a deck (not shown). The horizontal distance 
between the supports is L while the vertical height difference is hL. The ratio of the deck density to the cable 
density is λ . (a) h=0, from top: λ=0,1,2 (b) h=1, from top: λ=0,1,2 

 
4. Discrete loads 
 

In the previous formulation we assumed the deck weight is continuously distributed on the cable. However, for 
a suspension bridge the deck is usually hung from the cable at equally-spaced discrete points. In this section we 
investigate the condition such that the continuous load would be a good approximation to the discrete load. We 
shall illustrate using a cable which spans equal heights (h=0).  
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                                              .(a)                                                                 (b) 

Fig. 3. (a) Hanging a string of weights (b) Force balance on the nth weight. 
 

Fig. 3(a) shows a heavy cable discretized into N concentrated weights connected by cable segments of negligible 
mass. The lengths and forces are normalized as before. The total length of the cable is l=Nk, where k is the distance 
between the weights, except the distance to the ends is k/2. Fig. 3(b) shows the force balance on the 𝑠𝑠𝑡𝑡ℎ weight 
from the left end. Let the location of this weight be (𝜆𝜆𝑠𝑠 ,𝑦𝑦𝑠𝑠) and the inclination angles of the cable segments be 
𝜃𝜃𝑠𝑠−1 and 𝜃𝜃𝑠𝑠 as shown. The discrete weight includes the normalized self-weight of the cable k and the weight of 
the deck, proportional to the vertical projection  

 
𝑤𝑤𝑠𝑠 = 𝑘𝑘 + 𝑘𝑘𝜆𝜆(𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑠𝑠−1 /2 + 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑠𝑠 /2)                                    (19)  
 
The vertical force balance is 
 
𝑌𝑌𝑠𝑠 = 𝑤𝑤𝑠𝑠 + 𝑌𝑌𝑠𝑠−1                         (20) 
 
The constant horizontal force X is related by 
 
𝑋𝑋 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃𝑠𝑠 = 𝑌𝑌𝑠𝑠                                       (21) 
 
Eqs.(19-21) yield 
 
𝑋𝑋(𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃𝑠𝑠 − 𝑡𝑡𝑡𝑡𝑠𝑠 𝜃𝜃𝑠𝑠−1) = 𝑘𝑘 + 𝑘𝑘𝜆𝜆(𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑠𝑠−1)/2                     (22) 
 
From geometry, the coordinates are  
 
𝜆𝜆𝑠𝑠 = 𝜆𝜆𝑠𝑠−1 + 𝑘𝑘

2
(𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑠𝑠−1)                            (23) 

𝑦𝑦𝑠𝑠 = 𝑦𝑦𝑠𝑠−1 + 𝑘𝑘
2

(𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑠𝑠 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑠𝑠−1)                   (24) 
 
Due to symmetry 
 
𝜃𝜃𝑠𝑠 = −𝜃𝜃𝑁𝑁−𝑠𝑠                                       (25) 

 
the vertical forces at the ends are equal to half the total weight 
 
−𝑌𝑌0 = 𝑌𝑌𝑁𝑁 = 𝑘𝑘𝑁𝑁+𝜆𝜆

2
                         (26) 

 
From Eqs.(21,26) 
 
𝜃𝜃0 = −𝑡𝑡𝑡𝑡𝑠𝑠−1 �𝑘𝑘𝑁𝑁+𝜆𝜆

2𝑋𝑋
�                                      (27) 

 
Our method of solution is as follows. Given the deck density ratio𝜆𝜆, the number of concentrated weights N, the 

length of cable l, then segment length is k=l/N. Now guess X and use Eq.(27) as an initial condition for the nonlinear 
first order difference equation Eq.(22). When the sequence of 𝜃𝜃𝑠𝑠 is obtained, Eq.(23) yields 
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𝜆𝜆𝑠𝑠 = 𝑘𝑘
2
�𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃0 + 2∑ 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑗𝑗𝑠𝑠−1

𝑗𝑗=1 �                                    (28) 
 
Thus if  
 
𝜆𝜆𝑁𝑁 + 𝑘𝑘

2
𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑁𝑁 = 1                       (29) 

 
a solution is obtained. Otherwise the guess X is adjusted. Then the maximum tension is  
 

𝑇𝑇 = �𝑌𝑌02 + 𝑋𝑋2                       (30) 
 
Eq.(24) gives the vertical displacement. For the 𝑠𝑠𝑡𝑡ℎ weight 
 
𝑦𝑦𝑠𝑠 = 𝑘𝑘

2
�𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃0 + 2∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

𝑗𝑗=1 𝜃𝜃𝑗𝑗�                                    (31) 
 
If N is even, 𝜃𝜃𝑁𝑁/2 = 0 and the cable segment at the mid point is horizontal. The sag is 
 
𝑆𝑆 = −𝑦𝑦𝑁𝑁/2 = −𝑦𝑦1+𝑁𝑁/2                                     (32) 

 
If N is odd, the mid point is at the weight at n=(N+1)/2. Thus the sag is 
 
𝑆𝑆 = −𝑦𝑦(𝑁𝑁+1)/2                                      (33) 

 
Our question is, for the same length and weight of the cable and the weight of the deck, when would the discrete 

solution of this section be equivalent to the continuous solution of the previous section? Since l is also the 
normalized total weight of the cable, we fix l=Nk and increase N (decrease k), starting from a single concentrated 
weight N=1.  

Table 3 shows the results when the deck is absent (𝜆𝜆 = 0) and l=2. Notice when odd N increases, the horizontal 
force X, the maximum tension T and the sag S decrease to the continuous values indicated by𝑁𝑁 = ∞. When even 
N increases, X, T, S increase to the continuous values. The table shows that when N>10, the maximum tension is 
within 0.1% and the sag is within 1% of the continuous values. We conclude that a continuous catenary cable is 
statically equivalent to a string of equally-spaced discrete weights if the number of weights is more than 10.      

Table 4 shows the case when the cable is supporting a deck. Here we used a density ratio of 𝜆𝜆 = 5 and the 
optimum length of l=1.637 from Table 2. Although the tension is larger and the sag smaller, the general trend with 
increased N is similar to that of Table 3, i.e., for N>10 the cable with discrete loads is equivalent to the cable with 
continuous loads.   

 
Table 3. Results for the horizontal force X, the maximum tension T and the sag S for equal heights and 𝜆𝜆 = 0, 𝑙𝑙 =
2. The cable is approximated by N discrete weights.  

N X T S 
1 0.577 1.155 0.866 
2      0.000      1.000      0.500 
3 0.265 1.035 0.844 
4      0.215      1.023      0.704 
5 0.238 1.028 0.824 
6      0.228      1.026      0.753 
7 0.232 1.027 0.812 
8      0.230      1.026      0.772 
9 0.231 1.026 0.806 
10      0.230       0.781 
11 0.230  0.803 
12        0.786 
13   0.801 
14        0.789 
∞    0.230    1.026    0.796 
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Table 4. Results for the horizontal force X, the maximum tension T and the sag S for equal heights and 𝜆𝜆 = 5, 𝑙𝑙 =
1.637. The cable is approximated by N discrete weights.  

N X T S 
1 2.561 4.192 0.648 
2      0.755      3.403      0.399 
3 1.346 3.581 0.627 
4      1.281      3.557      0.535 
5 1.321 3.572 0.613 
6      1.314      3.569      0.568 
7 1.321 3.572 0.606 
8      1.320      3.572      0.581 
9 1.322 3.572 0.603 
10      1.322      3.572      0.587 
11 1.323 3.573 0.602 
12      1.323      3.573      0.591 
13 1.324  0.601 
14        0.593 
∞    1.326      3.573    0.598 

  
5. Conclusions 
 

The form-finding method is as follows. Given the horizontal span L, the weight per length of the cable 𝜌𝜌 the 
weight per length of the deck �̄�𝜌, the height between the cable ends hL, and the cable length lL, one can find the 
maximum tension T’= 𝑇𝑇𝜌𝜌𝜌𝜌  and sag SL form Table 1. However, if one seeks optimum length such that the 
maximum tension is minimized, then one uses Table 2. Notice that Tables 1,2 are applicable to systems with more 
than 10 discrete suspenders. If there are fewer suspenders, the discrete load method of Section 4 should be used. 

The spanning cable with non-negligible weight and suspending a uniform deck is now solved semi-analytically. 
The problem is determined by three non-dimensional parameters: the cable length ratio l, the height ratio h, and 
the density ratio 𝜆𝜆. Useful tables for maximum tension and sag are constructed. In addition, optimum cables lengths 
for minimum tension are found. These new results are useful for the preliminary design of deck-carrying cables, 
such as suspension bridges.  
 
Notation 
 

A,B,C constants 
h ratio of support height difference to span 
k distance between discrete weights 
l ratio of cable length to deck span 
L deck span 
N number of weights 
s normalized arc length of cable 
S normalized sag 
T normalized tension of cable 
w discrete weight 
x,y normalized coordinates 
X normalized horizontal force 
Y normalized vertical force 
𝜆𝜆 �̄�𝜌/𝜌𝜌 
𝜌𝜌 cable density (weight/length) 
�̄�𝜌 deck density (weight/length) 
𝜃𝜃 local inclination of cable 
Subscripts 
0 evaluated at s=0 
1 evaluated at s=1 
n n th weight 
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