
 -i-

Performance Analysis of
TCP Fast Open

Dimitrios Grendas
SID: 3307190007

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Cybersecurity

April 2021
THESSALONIKI – GREECE

-ii-

Performance Analysis of
TCP Fast Open

Dimitrios Grendas
SID: 3307190007

Supervisor: Assistant Prof. Anastasios Politis

Supervising Committee Mem-

bers:

Prof. Cheilas

Prof. Antoniou

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Cybersecurity

April 2021
THESSALONIKI – GREECE

 -iii-

Abstract
After a short analysis of the TCP mechanism and a thorough analysis of the design and

implementation of TCP Fast Open (TFO), I will conduct my own testing using a Lab

with the appropriate equipment in order to test the speed under several case scenarios

and produce the final conclusions. Finally, I will examine the privacy and security con-

cerns and talk about the future of the web.

Dimitrios Grendas

29/04/2021

-iv-

Contents
ABSTRACT ... III

CONTENTS .. IV

1 INTRODUCTION ... 5

1.1 STRUCTURE OF THE DISSERTATION .. 6

2 TRANSMISSION CONTROL PROTOCOL ... 7

2.1 INTRODUCTION .. 7

2.2 TCP: CONNECTION ORIENTED TRANSPORT .. 8

2.3 TCP ON THE WEB TODAY .. 17

3 TCP FAST OPEN .. 19

3.1 INTRODUCTION .. 19

3.2 TFO MECHANISM .. 20

3.3 TFO PERFORMANCE AND IMPLEMENTATION .. 25

3.4 SECURITY AND PRIVACY CONCERNS .. 34

4 EXPERIMENTAL ... 37

4.1 TESTING ENVIRONMENT AND PREPARATION .. 37

4.2 TESTING WITH DIRECT CONNECTION ... 43

4.3 TESTING WITH MIDDLEBOX .. 45

4.4 TESTING WITH MIDDLEBOX AND FIREWALL .. 48

4.5 RESULTS SUMMARY ... 52

5 CONCLUSIONS .. 55

BIBLIOGRAPHY ... 57

APPENDIX ... 59

 -5-

1 Introduction
The Transmission Control Protocol (TCP) is one of the main protocols used on the in-

ternet today. The majority of the internet applications running today like webservers,

file transferring, remote administration and more are utilizing the TCP protocol in order

to provide reliable and error-checked communication.

Over the years since the adoption of the Internet Protocol suite the internet services

have evolved vastly while the networking protocols do not follow the same rate of evo-

lution. While the available bandwidth has increased, since the majority of the web flows

are small TCP flows the TCP handshake mechanism creates significant delay to the

overall latency.

In an effort to improve the communication latency over TCP under certain circumstanc-

es researchers and companies have been experimenting with a new TCP option. TCP

Fast Open (TFO) is a mechanism in the TCP which allows a client, who previously had

completed a TCP handshake on a server, to establish a connection with one less RTT

when comparing to the traditional TCP handshake. This improves latency times in cer-

tain circumstances like small flows on the web.

Despite the advantages of the new TFO option there are numerous disadvantages which

are equally important. Although it is not a new mechanism and relies to the TCP proto-

col, the new option introduces several compatibility issues along with critical security

concerns.

-6-

1.1 Structure of the dissertation

On the first chapter a small introduction is written about the TCP network protocol and

the need that led to the development of the TCP Fast Open mechanism.

On the second chapter a brief analysis will be conducted on the TCP protocol mecha-

nism focusing on the three-way handshake. In addition, it will be briefly presented how

the TCP is working today on the web trying to show the need for additional mechanisms

to solve problems that have occurred.

On the third chapter a deep presentation will be written for the TCP Fast Open mecha-

nism along with privacy and security concerns presented during the initial design of the

extension.

On the fourth chapter it will describe the testing methods and procedures along with the

results showing the performance gains.

On the fifth and final chapter conclusions about the mechanism will be presented along

with a brief look into the future of the web technologies.

 -7-

2 Transmission Control Proto-
col

2.1 Introduction

Back in 1970s, in a period when packet-switched networks began to emerge, research-

ers around the world developed multiple networks with the precursor of today’s internet

ARPAnet being one of them. While the principle of multiple networks connected with

each other is the fundamental concept of the worldwide network today, the problem was

that each of these networks had its own set of protocols. Soon this was recognized by

two researchers Vinton Cerf and Robert Kahn who invented the TCP/IP that was in-

tended to be cross-network compatible. Today the Transmission control protocol is one

of the major protocols used for reliable communication between applications.[3]

Unlike UDP, the TCP protocol is providing connection-oriented and reliable end to end

communication. This protocol is widely used by the majority of applications today with

the need of reliable data transfer without having to implement any mechanism on the

application layer. Following the principles of reliable data transfer, it provides mecha-

nisms including error detection, retransmissions, cumulative acknowledgements, timers

and header fields for sequence and acknowledgment numbers.[2][3]

The connection of TCP is a logical one compared to a circuit-switched network that im-

plements an end-to-end TDM or FDM. This means that the protocol runs only in the

systems of the sender-receiver while keeping the connection state on both sides. The

intermediate network devices that transfer the data between the hosts are unaware of the

TCP connection state and are only able to see the information as datagrams.[3]

Another important capability of a TCP connection is the full-duplex service. While two

applications have an open connection the application layer data can flow both ways

simultaneously. In addition, it is only capable of point-to-point connections meaning

that one process can have an open connection only with one other process making mul-

ticasting not possible.[3]

-8-

2.2 TCP: Connection Oriented Transport

The basic principle of TCP, as mentioned before, is that it is a connection-oriented

communication end to end between only two host processes. In order for the connection

to be initiated both sides have to exchange some information and agree to start the data

exchange. During this procedure, the client proceeds to establish a TCP connection he

first sends a special TCP segment then the server responds with another special segment

and finally the client responds back with a segment that is starting the connection. Also,

for the protocol to work correctly, the proper termination of the connection is essen-

tial.[2][3]

TCP three-way handshake: connection establishment [3]

As we introduced above, the main mechanism of the TCP protocol is the establishment

of the initial connection called three-way handshake. Firstly, starting from the client, a

 -9-

special TCP segment with the SYN bit set to 1 is sent to the server. Also, the sequence

number is set to a random number generated by the sender in order to avoid some secu-

rity attacks during this stage of connection. Once the IP datagram is received by the

server, a segment is sent back to the client as a response that the connection is granted.

This time the header acknowledgement field is set to the sequence number received

from the client plus 1 (sequence number + 1), the sequence number field is set to a ran-

dom number generated by the server and the SYN bit continues to be 1. Basically, in a

nutshell, the server responds that the connection request received and granted with a se-

quence number it selects. This is also called SYNACK. Finally, the client receives the

response from the server and sends back the last segment with the SYN bit set to 0 and

the acknowledgement number set to the server’s sequence number plus 1 (sequence

number + 1). Now that the connection is established, the SYN flag continues to be 0 and

the two parties can start exchanging data. [2][3]

-10-

TCP connection termination [3]

Now that the connection is established both parties can terminate it. The process is initi-

ated by sending a TCP segment with the FIN bit set to 1 and then wait for the receiver

to send back an acknowledgement segment. This exchange of segments must be repeat-

ed for each side of the connection which means that the receiver now, after sending the

ACK segment in response to the FIN, must now send a FIN segment while waiting

again for the ACK segment from the sender that initiated the termination previously.

[2][3]

Once the connection has been initiated the data exchange can start flowing between the

two end points. When a process sends a set of bytes as data through the appropriate

socket, the TCP directs them to the connection’s send buffer which acts as a que of data

to be sent over in chunks. The frequency of data pulled from the buffer is not described

in the RFC 793 stating that TCP should “send that data in segments at its own conven-

ience”. The size of that data sent with each packet is called Maximum segment size or

MSS and it is typically 1460 bytes of data plus 40 bytes for the TCP header consisting

of 1500 bytes which is the maximum MTU size of the Ethernet and PPP link-layer pro-

tocols for a frame. It is important to clarify that the MSS value indicates the maximum

size of the data from the application layer and not the maximum size of the TCP seg-

ment with the headers included. [2][3]

TCP send and receive buffers [3]

With the data buffer available pulled parts of data are fetched by TCP and paired with a

header forming the TCP segments. Following the encapsulation method in networking

 -11-

these segments are included in the network-layer IP datagrams and sent over to the oth-

er end of the TCP connection. Upon receiving this segment, the TCP on the recipient

uses the TCP receive buffer from which the data is available for the application to pull

from. [2][3]

Having taken a brief look at the TCP connection, let’s examine the TCP segment struc-

ture. The TCP segment includes the header fields and a data field. The figure bellow

shows the exact structure which is 1500 bytes in size, 40 bytes maximum size for the

headers and 1460 bytes maximum size for the application data. [2][3]

TCP segment structure [3]

The header fields consist of all the information is needed by the TCP protocol to have a

successful communication along with other functions and options. While the maximum

size can be 40 bytes long the usual size is around 20 bytes depending on the functions

used and the state of the connection. As shown from the figure above, the header con-

tains the source and destination port numbers which is used for multiplexing and demul-

tiplexing data through the layers. Very critical also is the internet checksum field that is

responsible for the integrity of the data. The 32 bit sequence number field and 32 bit

-12-

acknowledgment number field are essential for the reliability of the data transfer service

as we discussed extensively previously. Flow control is also needed for a reliable TCP

connection which is using the 16 bit receive window field to indicate the number of

bytes the client is accepting while the options field is used to implement other functions

of the protocol which is typically empty thus the length of the header is usually 20 bytes

long. Another field we see in the header structure is the 16 bit urgent data pointer field

which, being the last field, is responsible for informing the location of the last byte of

data that the flag with URG bit enabled is informing that exists, but usually it is not

used. Last but not least, essential field for the protocol to function properly is the flag

field which is 6 bit long. Depending on the state of the connection this field changes and

is used appropriately by the protocol. The ACK bit indicates that the value of the

acknowledgement field is correct and the RST, SYN, FIN bits are used for connection

initialization and termination. The CWR and ECE bits are used by the congestion

mechanism and the PSH bit informs the receiver to pass data to the upper layer straight

away. Lastly, the URG bit is used to indicate that there is “urgent” data that needed to

be handled appropriately by the receiver. In real world scenarios it is typical that some

header fields staying unused thus empty. [2][3]

The data field contains the actual application data that is needed to be transferred and,

as mentioned above, the size of the field cannot exceed the MSS limits. Because of that,

larger files such as images while loading a web page are sent in pieces of the maximum

size allowed by the MSS. While it is necessary to respect the size limits in order for the

protocol to work correctly, data field size can be lower than the maximum allowed. This

highly depends on the application, for example segments sent by a telnet application

may be only 21 bytes in length (20 bytes for the headers field and 1 byte for the data

field). [2][3]

One of the main characteristics of the TCP protocol is the ability to perform reliable da-

ta transferring. It is very important that the receiver responds on each data segment with

the appropriate acknowledgment which ensures the sender that the data is received and

awaits for the next stream of bytes. [2][3]

 -13-

Dividing file data into TCP segments [3]

It is crucial to discuss about the mechanism which is responsible to send larger data siz-

es over a TCP connection. As we mentioned before, when the data is larger than 1460

bytes the protocol divides the data into parts and sends them one by one. The protocol

“sees” the data as unstructured stream of bytes so it starts by numbering them from the

start to the end, for example in a 10.000 bytes data stream the first byte is number 0 and

so on. When the first segment is sent, the data is inserted to the data field in respect to

the MSS limits and the sequence number on the header is the number from the first byte

of the stream. For example, in the case of 1000 bytes MSS limit, the first sequence

number is 0, the second 1000, the third 2000 and so on. [2][3]

-14-

TCP Sequence and acknowledgement numbers for a Telnet application [3]

As described earlier, the receiver of the data must respond to the sender with an appro-

priate ACK number. The acknowledgement field is filled with the number of the next

byte of data stream that the receiver is expecting. For example, if the client sends a data

stream with sequence number of 40 then the server must respond with acknowledge-

ment number of 40 + 1 = 41. Since the TCP is full-duplex and data can flow in both di-

rections, in our example, if the receiver sends also data the same mechanism apply with

the sequence and acknowledgement numbers. Also, it is important to mention that the

sender can send multiple data stream segments without waiting each time for the receiv-

er’s response. In this case TCP protocol implements other mechanisms that are respon-

sible for lost segments, reliable data transfer, congestion management, etc. [2][3]

In order for the TCP protocol to recover from lost segments it uses a timeout/retransmit

mechanism. First, it needs to calculate an estimated round-trip time (RTT) by taking a

 -15-

sample at certain times. This RTT indicates the time between a sent segment and the

receipt of the appropriate acknowledgement. [2][3]

RTT samples and RTT estimates [3]

When the estimated RTT is calculated the TCP mechanism starts a timer which, when

exceeds the limits of the calculated value, is used to indicate that the sender has not re-

ceived the ACK from the receiver. As a result, the sender will retransmit the segment

that caused the timeout event and will restart the timer. There are also additional mech-

anisms that help adapt in certain scenarios like doubling the timeout interval. [2][3]

-16-

Retransmission due to a lost acknowledgement [3]

The mechanism of timeout and retransmission can often cause significant delays. This is

due to the timeout period that can be a relatively long. Actually, the sender can usually

detect packet loss before the timeout period by receiving duplicate ACKs. When this

scenario occurs, the sender performs a fast retransmit which basically means that the

missing segment is sent out before the timeout period expires. The TCP error-recovery

mechanism can retransmit the lost segments using two methods, the go-back-n and se-

lective repeat. In a nutshell, the go-back-n mechanism retransmits all the lost packets

from the lost one to the latest transmitted but not the other hand the selective repeat re-

transmits only the missing segment. [2][3]

Of course, the TCP protocol is a bit chapter in the networking world and while it has

many more details and implements more mechanisms for flow control, congestion man-

agement, etc. that, for the purpose of this thesis, are not going to be further analyzed.

[2][3]

 -17-

2.3 TCP on the web today

Since the birth of the first web page in 1990 the total size that the clients have to down-

load in order to load the complete page has increased drastically. In addition to the total

size, the inclusion of multiple images, videos, CSS/JS files and more increased the TCP

flows on the internet over the years.

Web pages larger and more complicated resulted to multiple TCP flows for a single

page to load which over the years created a problem with the increasing latency of the

traditional three-way handshake mechanism produced in such scenarios. Reports from

httparchive.org shows that from a median desktop web page size has increased 335.8%

over the last ten years which verifies the recent years’ trend of websites evolution. [8]

Of course, web pages are not the only technology that uses the TCP protocol. In fact,

almost every network capable application that requires reliable data transfer over the

network implements the TCP mechanism. With the rise of the smartphone industry and

the evolution of software and networking technologies, nowadays every single network

client uses multiple TCP enabled applications. These applications, depending on the use

case scenario, usually create multiple short TCP flows which also introduces latency.

For example, a complicated progressive web application, which is relative new method

for delivering applications on smartphones using web technologies, can suffer from la-

tency when loading elements using multiple TCP connections.

These are only a few examples where the traditional TCP connection mechanism can

affect negatively the user experience and, in some cases, cause problems in latency sen-

sitive applications. TCP protocol, since it’s invention, has not evolved mechanisms at

the same rate as the web evolution. This created the need for refinements and introduc-

tion of new technologies and mechanism that either work together or supplement the

protocol in order to keep it up to date in terms of performance and compatibility.

 -19-

3 TCP Fast Open

3.1 Introduction

Throughout the course of the years, as we mentioned earlier, the TCP protocol has been

revised multiple times and also introduced some extensions in order to solve problems

or improve performance. In July 1994, Bob Braden published the experimental RFC

1644 “T/TCP – TCP Extensions for Transactions – Functional Specification” which at-

tempted to fill the gap between TCP and UDP and solve the problem of the latency in-

troduced by the three-way handshake along with the delay produced when closing a

connection. In order to improve performance in these two areas, he introduced a way to

bypass the three-way handshake and also reduce the delay in the TIME-WAIT state.

[10]

As this was the earliest attempt to solve performance problems this approach suffered

from several major security problems as described later in 1996 in a memo written by

Charles Hannum. These security problems resulted in moving the RFC 1644 and RFC

1379 to Historic Status by a new RFC 6247 published in 2011. [10][11][12][13]

The same year, by the end of 2011 a new proposal presented by Google, UC San Diego

and ICSI that described a new mechanism as an extension of the TCP protocol in an at-

tempt to solve the problem of the increased latency of today’s multiple short TCP trans-

fers which led to a publication of an experimental RFC 7413 later in December 2014.

Applying technics in the three-way handshake mechanism along with security practices

this proposal helped mitigating the problem of cold requests on the web by reducing the

latency produced by the connection initialization.

Although the TFO proposal was an effective way to solve the performance impact in-

troduced with the evolution of the web, it also widened the attack surface of the proto-

col which introduced numerous security issues as we will describe later on.

-20-

3.2 TFO Mechanism

With the introduction of the TCP Fast Open mechanism the main purpose was to reduce

the latency of the initial TCP connections. Allowing data to be exchanged during the

initial three-way handshake there is a reduction of one RTT when initiating connections

while this is benefit can show up after the second connection between two machines.

The “traditional” three-way handshake, as we described in a previous chapter, is the

mechanism to initiate a TCP connection from one machine to another and until the pro-

cedure completes every step only then data can flow. The TFO introduces a new mech-

anism in a form of a TCP option which allows hosts to exchange data during the initial

handshake. This results in a reduced latency in multiple flows due to the fact that each

time a connection is initiated, one step from the three-way handshake is eliminated. [14]

TFO connection overview [14]

Assuming that the host and the client have TFO support, as it will be discussed later on,

the client starts the procedure to establish connection with a server by sending a tradi-

 -21-

tional SYN packet but this time with a Fast Open Cookie Request TCP option. Receiv-

ing this packet, the server generates a cookie by encrypting the source IP and saves it to

a local cache space for future use. Then it proceeds with sending back the SYN-ACK

packet but adding also the generated cookie in the TCP option header field. The client

also caches this cookie for future connections to the same destination and continues

with the normal behavior of the TCP protocol by starting the data exchange. [14]

Fast Open Cookie Request option

Fast Open Cookie sent with SYN-ACK to the sender

As we notice, at this stage we have no performance gains from the use of this option.

The performance increase will start appearing with the second connection to the same

destination.

When the client wants to initiate a TCP connection to the same destination, assuming

this is the same server as we described above, it will use the cookie received and saved

to the cache. The client will now send a SYN packet but instead of a Fast Open Cookie

-22-

request will use the cookie on the same TCP option field. Also, on the same packet, the

data field will be populated with the first data stream without the need for the connec-

tion to be initialized before starting the data flow. Upon receiving this SYN packet, the

server will validate the cookie with the one in the cache by decrypting it and comparing

the IP address. If the cookie is valid then the server will send back a SYN-ACK that not

only acknowledges the SYN but also the data received. [14]

SYN-ACK response from the server accepting connection and data

After this exchange of packets, the server may send additional segments to the sender

before receiving the first ACK. The client also has to send an ACK to inform the serv-

er’s SYN packet before continuing with the normal TCP data flow. [14]

It is crucial to mention that in the case of either the client or the server do not support

the TFO option the connection will fall back to the traditional three-way handshake. For

example, if a client sends a SYN packet with TFO cookie request and the server does

not implement this extension, the option header field will be discarded and respond with

normal SYN-ACK packet. The client will adapt to this response by continuing the nor-

mal handshake. Another example is when the client has already a TFO cookie in cache

and proceeds with an additional connection to the same server, but in this scenario the

 -23-

server stopped supporting the TFO extension. The server will respond the same way as

the previous example by ignoring the TFO option but also the data carried out. [14]

Fast Open Option [15]

The cookie used by the TFO extension is the core element in order for the mechanism to

work. It was designed not only to validate the client and be able to reduce the connec-

tion establishment latency but also with security in mind. As mentioned before, it is

generated by the server only while it can be minimum 4 bytes and up to 16 bytes. The

encryption mechanism implemented can vary depending on the configuration of the

server, for example AES 128 can be used which is very fast on today’s processors. Us-

ing the client’s IPv4 or IPv6 along with a secret key, an encrypted value is produced by

the server. Without the secret key the cookie cannot be decrypted or validated thus im-

proving the security aspect of the mechanism. Also there are no strict restrictions on

how many cookies will be generated for each client and it is possible for a server to en-

code additional information in the cookie and thus accepting more than one cookie for

the same IP address. Additionally, cookie expiration is very important from the security

aspect and the server can invalidate cookies according to the configuration. For example

it can happen periodically by encoding the timestamp or by changing the secret key. It

is also possible for the key changing to be performed automatically every day or any

period configured. Also it is possible for a server to have multiple keys active at the

same time for example larger implementations may find this useful and more secure.

[15]

-24-

From the client side, the TFO cookie is cached and used for initiating connections by

sending a SYN packet with Data. The client may also cache the advertised MSS by the

server in order to send the appropriate size of data when sending the SYN packet and

this is important because in the TFO mechanism the client starts sending data before the

receiver advertises this value. Without the MSS cached the client will use the default

MSS of 536 bytes for IPv4 (RFC 1122) and 1220 bytes for IPv6 (RFC 2460). Along

with the cookies and the MSS value the client should also cache any negative responses

from each server such as not acknowledging data in SYN or ICMP errors in order to

possibly disable the TFO option. Lastly it is recommended for the client to cache also

the server’s port numbers as the TFO is enabled on a per-service-port and the cookies

are not discriminated by port number. [15]

 -25-

3.3 TFO Performance and Implementation

TCP Fast Open upon introduction to the public, despite being an interesting mechanism

it is crucial to measure the performance in real world scenarios. Among the positives

that it needs minimal configuration and basically promises improvements on the TCP

protocol latency it has to be examined thoroughly not only for the performance gains

but also for the application on the existing users and servers. In this chapter, not only we

will take a look on the performance results from several studies conducted in the past,

but also examine the implementation from the end-user side while taking into a deeper

and more practical view on how to enable it on the most popular browsers.

Taking a deeper look on the original paper written by members of Google and ICSI we

can see the performance benefits from the conducted tests both on the client side and on

the server side. The case scenario was a whole page download simulating as close as

possible a real-world user using his computer at home. Using a single computer running

Linux and Chrome browser with TFO enabled, the scientists benchmarked the most

popular websites from the Alexa top 500 websites back in 2011 using a tool called

“Google web page replay tool” for both TFO-enabled Chrome and for standard Chrome

browser. Firstly, using the “record mode” of this tool, the researchers recorded all the

network traffic while loading the webpages and particularly filtering the DNS and TCP

traffic which was then saved in a local database. Afterwards, using the “replay mode” of

the tool which runs a DNS server on the local computer, it redirects the Chrome’s

HTTP requests to a local proxy server. In this mode a dummynet was used to emulate

the network setup for this experiment which was 4 Mbps download, 256 Kbps upload,

128 KB buffer and using all the times the loopback interface with MTU of 1500 bytes.

Using the replay method of the Google web page replay tool, the webpages of Ama-

zon.com, New York Times, the Wall Street Journal and the Wikipedia was replayed 20

times with and without TFO in the Chrome browser with three different RTTs of 20 ms,

100 ms and 200 ms accumulating 120 samples in total. In order to have reliable results,

the browser cache was empty in every single replay avoiding caching issues and there-

fore inaccurate measurements. Measuring the page load time from the time chrome

browser begins processing the link until the on-load event begins, as shown at the table

below, TFO resulted in interesting results.[14]

-26-

Average page load time (PLT) in seconds for various pages [14]

As seen from the results, the TFO mechanism significantly improves the page load time

when the RTT is high for all the different TFO-enabled websites which is expected

since the benefits are higher when the RTT is high and having one less RTT. Having

less benefit is where the RTTs are low but despite the fact that this is expected the bene-

fits are still present even with pages that have heavy content. It is important to mention

that, especially for the 200 RTT values, it is in fact simulating a mobile device with cel-

lular connection since this is close to real world scenario.[14] But today, with the 5G

cellular networks, maybe this is not so representative especially if the next generation

mobile network evolves to the expected 1 ms latency.[14]

Although client performance is critical to the user experience, another fact as important

is the server performance. When talking about multiple users trying to access a TFO-

enabled server to load a specific webpage, in order to have the existing servers working

properly without the need for upgrading, it is critical to measure the impact of this

mechanism. In extension of the previous tests, the researchers initiated CPU utilization

tests on several server load levels in order to have a conclusion on how much impact the

TFO mechanism has on a traditional Apache server. Using a custom written program

that generates HTTP 1.0 requests and fetching a 5 KB webpage, they were able to take

accurate measurements when thousands of requests occur on the same machine. This

server was connected through Gigabit ethernet switch with around 100 μs RTT while it

was configured with only one CPU in order to avoid multitasking and have reliable re-

sults. Testing for each number of connections per second was conducted with 5 minutes

length for both TFO and non-TFO modes. As shown in the figure below the results are

 -27-

impressive since even with the overhead of the cookie generation/validation process the

average CPU utilization was almost the same as without the TFO mechanism enabled.

Particularly the CPU load, when using TFO, between 2000 and 5000 requests per sec-

ond was marginally lower since there are fewer packets that the server needs to process.

In addition to that, the AES encryption used for the cookie validation is a putting less

that 0.3% overhead on the CPU utilization even when the requests are 6000 per sec-

ond.[14]

CPU utilization vs. web server load level [14]

Although the performance analysis from the original paper back in 2011 was thorough

and detailed trying to emulate a real world case, later on, other papers have emerged

conducting their own testing using similar methods. Erich Meissner from the Georgia

Institute of Technology wrote a paper analyzing this mechanism using the same RTT

numbers for each test as the previous mentioned testing. On this case, he used three

websites from www.washingtonpost.com, www.admission.gatech.edu and

www.web.mit.edu with and without the TFO mechanism. It is particularly mentioned

that RTT numbers higher than 100 ms are emulating devices connecting through Wi-Fi

-28-

and, as mentioned from the previous paper, the benefits are greater on these cases. Also,

when the processing time of the client is higher than the network times it is natural that

the TFO benefits are lower. The results were as expected on how the mechanism works

on improving the page load times but while testing these particular websites some num-

bers exceeded expectations and were quite impressive. While the Washington post web-

site presented the weakest improvements, the other two pages yielded in greater im-

provements by 88% for the afmission.gatech.edu and 92% for the web.mit.edu due to

the type of the content in these websites.[16] As it is known up until now from the in-

vestigation of the mechanism, the type of the website and the content is critical for the

performance gains.

Results of Page Load Times from websites as tested [16]

 -29-

Another analysis for the performance of the TFO mechanism is described in the paper

written by members of University Carlos III of Madrid in Spain along with member of

Simula Research Laboratory in Norway. In this setup the analysis was different by

crowdsourcing and analyzing results from 46 users in 18 different countries and 22 dif-

ferent ISPs when they try to establish TFO connections in multiple ports on a server.

This analysis is different by not examining the performance gains but the success rate of

the TFO while passing through middleboxes. The results are quite interesting showing

that only 41.3% of the packets with TFO option were able to arrive to the server while

39.13% arrive with the option removed. In addition, 67.86% of the packets arrived in

the server with the data on the SYN packet removed by the middlebox.[17] This result

is very important when considering that in real world scenarios, depending on the cli-

ent’s location and the targeted website, the packets pass through different network paths

involving various middleboxes. Along with this paper there are multiple tests on the in-

ternet concluding that the problem with middleboxes is important, for example an arti-

cle from the LWN.net estimates that around 5% of these intermediate devices on the

web removes the TFO option.[20] This information, along with multiple security con-

cerns that are going to be presented later on, is critical for the future of the mechanism.

Having taken a brief look on the performance and practical testing of the TFO it is im-

portant for the Operating systems and the browser clients to implement and support this

mechanism. In particular, three main operating systems are going to be discussed along

with three browsers on which extend the TFO option is supported and how practically is

enabled.

Since the introduction of the TFO mechanism, over the years multiple vendors of soft-

ware updated their software in order to support the new option most of them as an ex-

perimental feature. Particularly the TFO was implemented in the following versions of

browsers and operating systems:

• Mozilla Firefox: from version 58 [25]

• Google Chrome and Chromium

• Linux kernel version 3.7 [18]

• Microsoft Edge since Windows 10 Preview build 14352 [22]

• Apple iOS 9 [21]

• MacOS X 10.11 [21]

-30-

• FreeBSD version 10.3 for servers and version 12.0 for clients [23][24]

Although the TFO option over the studies and tests has presented numerous benefits,

the support for the browsers had never left the experimental state. Despite the fact that

over the years software companies have supported it and included the option to enable

it, today is not found in the options and therefore it is impossible to show how to enable

it on the current versions of Chrome, Microsoft Edge and Firefox which dropped sup-

port due to concerns mainly about security. In addition, even when supported it was not

enabled by default thus forcing the user to take a deep dive in the experimental features

of each browser. Due to these reasons, older versions of these browsers were selected in

order to show the process of enabling the option.

In order to enable the TFO on the system level in the Linux operating system, a system

file needs to be modified in order to implement the option depending on the use case

scenario. It can be enabled solely as a client or as a server but also supporting both

modes. As described later on the detailed procedure, it is not a GUI option but requires

a terminal. Lastly, on the operating systems Windows 10 and MacOS X the option is

enabled depending on the browser version and support.

On the web browser applications, since the terminal is not an applicable option, the

TFO is enabled by using the build-in GUI on the application window but still some de-

veloper knowledge is required since it is an experimental feature not intended for the

average user.

On the Mozilla Firefox version 58, the option can be turned on by writing the following

URL on the address bar:

• about:config

Afterwards, a list with the developer options appears and the boolean value “net-

work.tcp.tcp_fastopen_enable” can be changed to “true” as shown in the image bellow.

 -31-

Mozilla Firefox version 58 TCP Fast Open option

Moving on to the Google Chrome browser, similar procedure has to be followed by

writing on the address bar the URL:

• chrome://flags

Afterwards, a list with the developer options appears and the Enable TCP Fast Open

option can be enabled as shown in the image bellow. In this case it is shown that the

feature is not available due to the current situation on the mechanism as described earli-

er.

-32-

Google Chrome enable TCP Fast Open option

And last but not least, on the Microsoft Edge browser similarly a procedure has to be

followed by writing on the address bar the URL:

• about:flags

Again, the option “Enable TCP Fast Open” has to be enabled from the list and under the

section of “Networking” as it is shown in the image bellow. It is important to know that

this version of Microsoft Edge is not based on the Chromium engine which is the only

one available currently.

 -33-

Microsoft Edge Enable TCP Fast Open

-34-

3.4 Security and Privacy Concerns

When talking about a new technology or an improvement on a current protocol, perfor-

mance and support are not the only metrics to evaluate and come to conclusions. Securi-

ty evaluations and privacy concerns are also important and since this mechanism has the

target to improve the performance of the most popular protocol used on the web today it

is only fitted that a discussion has to be done. Security and privacy of this mechanism

is, among others, one of the main reasons that the TFO has not been widely supported

over the years and these concerns are not only described on the original paper but also

in other studies from other parties over the years.

In 2019 Erik Sy did a presentation talking about the privacy concerns about the TCP

Fast Open mechanism as a part of a joint written paper. In this presentation, he de-

scribed the weaknesses of the TFO which shows very interesting results. One of the first

findings is that the TFO cookies generated by the mechanism are a kernel-based track-

ing method. Even though, traditionally from the client side, when browsing the web

many privacy issues are handled by the browser, the operating system has a separate

tracking mechanism using this cookie. This also means that even in private browsing or

using other technics to avoid tracking on the browser level are not applicable. Also, if a

man in the middle attack occurs, the network observer is able to identify and track the

web usage by the user depending solely on the cookie present on the SYN packets.

[26][27]

Network address translation also known as NAT is also a big concern. When multiple

clients exist behind a NAT network and share a single public IP address the cookie is

the same for all the clients and the only way to mitigate this by a carrier level techniques

used today like changing the public IP of the client network. [14] But always possible to

protect against tracking, there is a way to distinguish a client among others behind a

NAT network when the tracker provides each device with a unique TFO cookie against

other clients thus eliminating the advantage of the anonymity behind such a network.

[27]

 -35-

NAT device used for a private network [27]

The operating systems, that as we mentioned before are responsible for the cookie stor-

ing and managing, have the possibility of preventing privacy issues by clearing the

cookie cache on each restart. But this depends on the configuration and it is not stand-

ard, as shown below by the tracking period available before clearing the cache. [27]

Tracking table [27]

There are many other scenarios for tracking the user using the TFO cookie. The attacker

can target a specific website and link all the activities performed by a user using his

identifier, this cookie. To that extend he can target multiple websites and link the same

user so he can create a browsing history. This is particularly effective when a single

server hosts many domains virtually. [27]

As mentioned previously, the cookie is maintained at the system level, so even a private

browsing window will have no effect on identifying what the user is visiting when in-

vestigating the local machine.

-36-

Privacy issues by the cookie transaction are not the only concern that has been created

by the research world regarding the TFO mechanism. The TCP Fast Open option is also

vulnerable to security attacks and flaws which are also mentioned in the first paper pub-

lished. The method of SYN flooding also applies in the TFO mechanism in which the

attacker can flood the server with SYN packets containing valid cookies forcing an ex-

haust in resources even though, as mentions previously, the cookie authentication pro-

cess puts very low overhead on the CPU. In the case that the attacker does not use valid

cookie the server can be defended using existing techniques due to the fall back on the

traditional three-way handshake. As a mitigation technique, it is suggested to use a

cache which counts the TFO connections accepted but not yet been migrated to full

TCP state which is only feasible after the first ACK. But this method, which is config-

ured by the administrator, will force the server to disable TFO for all incoming connec-

tions. [14]

Another attack that could target the TFO mechanism is the amplified reflection attack.

While normally the traditional TCP transaction of data could happen only after one

SYN-ACK packet the TFO lets the server send data packets following the SYN-ACK to

the source IP address of the SYN packet. The TFO mechanism mitigates the attack by

limiting the amount of the connections the server accepts so it is protected when this

limit is reached. Also the attacker has to steal a valid cookie which indicated a compro-

mised system and therefore the attacker will probably have little interest in the TCP

connection. But he can still leverage the attack in order to disrupt the targeted network

but only after he obtains multiple cookies from many server destinations. [14]

As discussed, although the security issues are mainly as present as the traditional TCP

mechanism, the TFO introduces many new privacy concerns which are the core reason

for the mechanism not to be widely implemented. This led, over the years the industry

to focus on new technologies in order to achieve the high privacy level and performance

gains which are going to be presented in the end of this thesis.

 -37-

4 Experimental

4.1 Testing Environment and Preparation

The scope of this testbench is to see in practice the performance gains of the TFO op-

tion when loading a web page. Tests will be conducted with and without the option by

implementing different scenarios and comparing the results.

The testing will be conducted on a local environment using personal computers as a cli-

ent and server emulation. Using two different physical machines is important in order to

simulate the scenarios as close as possible to the real world taking into consideration

also the medium.

For the purpose of the experiment a lab environment was built, and certain hardware

and software choices were made taking into important consideration facts such as the

scalability, ease of troubleshooting, easy recovery and restore in case of failed configu-

ration testing, network reliability, elimination of hardware limitations with virtualization

and software reliability. As the main Operating Systems throughout the testing, Linux

Ubuntu 20.04 LTS Desktop was selected and installed in both the client and the server.

As a client machine Linux Ubuntu was installed in a type 2 virtualization software

VMware Fusion running on a MacOS operating system. Since the host machine is

equipped with two network interfaces, passthrough option was selected giving full

hardware control of the ethernet interface to the virtual machine and thus eliminating

any latency or issues by sharing this resource with the host system. This ethernet inter-

face will be used by the Linux OS in order to perform all the testing scenarios.

-38-

The client: VMware Fusion with Linux Ubuntu installed

As a server a more complicated approach was taken in order to give more choices later

on. A physical computer was built up from the ground up deploying type 1 virtualiza-

tion operating system, VMware ESXi. The hardware specifications of this machine are

not important due to the very low resource requirements of the project. On the other

hand there is one important hardware installed, the network card interface. After re-

searching an enterprise Intel NIC (Network Interface Card) was installed in order to be

passthrough to the Linux server virtual machine. Exactly like the client side, a Linux

Ubuntu 20.04 LTS was installed as a virtual machine with the option to passthrough the

Intel NIC.

 -39-

VMware ESXi Server

Additional hardware used are the network cable which is UTP Cat 5e RJ-45 and the

physical middleboxes Edgerouter ER-X and Mikrotik hAP Lite which are used in some

testing scenarios.

Physical Middleboxes: Edgerouter ER-X and Mikrotik hAP lite

-40-

A setup configured using these hardware and methods was selected also due to the fact

that in real world, a web server usually is installed in a virtualized environment using

Linux software. As with the rest of the setup, an effort was made for the test to be as

accurate and close to the reality but operating in a local environment. Remote servers

and other options were considered and discarded due to the need to have a controlled

environment and also for simplicity reasons as this is not a deep scientific analysis.

In order to perform the testing some configuration and installation of software is needed

on both the client and the server. All the necessary configurations were made using the

terminal through a GUI (Graphical User Interface). As mentioned in a previous chapter,

since the TFO is implemented natively on the Linux kernel, in order for the option to be

used by an application, no further package installation is required. However, the OS has

the option to configure the TFO on the system by altering a system file as follows:

• “echo 0 > /proc/sys/net/ipv4/tcp_fastopen” = disable TFO

• “echo 1 > /proc/sys/net/ipv4/tcp_fastopen” = enable TFO for outgoing connec-

tions (client)

• “echo 2 > /proc/sys/net/ipv4/tcp_fastopen” = enable TFO for listening sockets

(server)

• “echo 3 > /proc/sys/net/ipv4/tcp_fastopen” = enable TFO for both outgoing and

incoming connections (client/server)

In order to check the TFO status on the system the following command is used:

• “cat /proc/sys/net/ipv4/tcp_fastopen” : depending on the number printed

Depending on the scenario this option is altered, for example if the testing is with the

TFO disabled the appropriate configuration needs to be performed followed by a system

restart. The restarts were performed because sometimes the configuration was not ap-

plied successfully after numerous alterations. In addition to that configuration, the client

was configured to use the wget2 package for all the testing scenarios. After testing nu-

merous tools along with browsers this tool was selected eventually due to the configura-

tion abilities it has and also excellent TFO support. Loading the web pages with this

tool made it easier to test fast and many times by using it with a simple script and also

eliminated any browser-specific limitation or latency giving also full control on the re-

quests.

 -41-

At the server side of the testing environment the same configuration has to be per-

formed with the TFO option by altering the system file and enabling the appropriate op-

tion for making sure the TFO option is enabled for listening sockets. The main configu-

ration of the server is the web server application which is going to serve the web pages

to the client. As a server application NGINX was selected due to the configuration op-

tions offered, it is light and fast and also widely used on the web today. As for Nginx

TFO support, most Nginx packages do not include this by default. However, it can be

specified if you build Nginx from source by adding the appropriate compiler flag to

NGINX's configure script. The procedure followed as follows:

• Prior compiling NGINX from source some libraries needed to be installed

• NGINX source code should be pulled from the official source

• Adding the -DTCP_FASTOPEN=23 compiler flag

• Building the NGINX and testing the operation

In order for the testing scenarios described later to be conducted, some images are also

downloaded and saved to the folder that NGINX uses to store the content for the clients.

At this point there is no other configuration needed for the server to operate as a web-

server but later we will need to make some network interface configuration in order to

apply to some testing scenarios.

For capturing and measuring the times a page finishes downloading we will use the

popular Wireshark application which will be installed on the client side capturing the

ethernet interface. All the captures of the testing scenarios are saved separately as .pcap

files and the measurements are recorded in a Microsoft Excel document in order to be

presented later.

The scenarios selected to be implemented were three and for each of them two different

types of webpage simulations were performed with both TFO disabled and enabled.

Firstly, tests were performed in a client-server model directly connected to each other

with an ethernet cable. Then, a middlebox was added in order to perform the same tests

and see if there an impact on either the performance or the functionality of the TFO

mechanism. Lastly, a firewall was implemented to perform again the same tests in order

to see if there is an impact on a stateful inspection firewall both on the client-server and

also to the functionality of the middlebox itself. The first type of webpage was a simple

HTML text with one TCP connection for each test. The second type, was multiple im-

-42-

ages of different sizes creating a small script in order to perform multiple TCP connec-

tions for each test, providing a closer scenario to today’s modern webpages. The amount

of tests repetition for each case was ten times and the same for all the scenarios, in order

to have more consistent results based on the same number of measurements.

In order to present the result numbers, multiple tables were created presenting in detail

the measurements for each connection in seconds. Then additional graphs were created

in order to better present the RTT times visually and help understand better the benefits

of this mechanism. Lastly, an average number was calculated for each scenario and test

type in order to have conclusive results about the performance gains. The calculation for

the percentage increase was calculated with the following simple mathematical form:

• Increased Time = TFO Disabled – TFO Enabled

o Increase Percentage = Increased Time / TFO Disabled x 100

For each case, the performance gains will be presented using all the methods described

and a conclusion will be made for each scenario. Also, if any, malfunctions of the

mechanism and testbench will be presented.

 -43-

4.2 Testing with direct connection

The first series of tests were designed to be as simple as possible with a direct connec-

tion to the server and without any middleboxes. For this reason, some configuration is

needed for the client and the server in order to communicate. Static IP addresses of the

same subnet were used in on both machines using the addresses:

• 192.168.200.20/24 for the server

• 192.168.200.12/24 for the client

In the following table, the results are shown in detail for each testing:

Test No.

TFO disabled

HTML with

text

TFO enabled

HTML with

text

TFO disabled

HTML with

images

TFO enabled

HTML with

images

1 0,02447 0,018074 0,304272 0,299898

2 0,009573 0,01175 0,320607 0,307355

3 0,01093 0,018344 0,314609 0,339175

4 0,016268 0,013705 0,315449 0,312416

5 0,013441 0,01105 0,340948 0,320857

6 0,01443 0,00844 0,339759 0,309661

7 0,008533 0,008915 0,363589 0,293245

8 0,016946 0,008925 0,321761 0,312195

9 0,013372 0,01761 0,314999 0,313081

10 0,004116 0,009639 0,305455 0,332964

Test results: Total RTT in seconds

In order to see the results on a chart and understand easier the performance gains some

charts were created as shown in the following images:

-44-

Performance chart for HTML website containing text

Performance chart for HTML page containing multiple images

0,018074

0,01175

0,018344

0,013705

0,01105

0,008440,0089150,008925

0,01761

0,009639

0,02447

0,009573
0,01093

0,016268

0,013441
0,01443

0,008533

0,016946

0,013372

0,004116

0

0,005

0,01

0,015

0,02

0,025

0,03

1 2 3 4 5 6 7 8 9 10

TFO Enabled TFO Disabled

0,299898

0,307355

0,339175

0,312416

0,320857

0,309661

0,293245

0,3121950,313081

0,332964

0,304272

0,320607
0,3146090,315449

0,3409480,339759

0,363589

0,321761

0,314999

0,305455

0,27

0,28

0,29

0,3

0,31

0,32

0,33

0,34

0,35

0,36

0,37

1 2 3 4 5 6 7 8 9 10

TFO Enabled TFO Disabled

 -45-

The following table shows the average RTT numbers and the performance gains in per-

centage calculated by the mathematical formula mentioned previously.

Type TFO Disabled TFO Enabled RTT Time Decrease

Text 0,0132079 0,0126452 4,45 %

Images 0,3241448 0,3140847 3,2 %

Performance gains table

4.3 Testing with middlebox
The next series of testing conducted using a middlebox in between the client and the

server in order to test not only the latency introduced by the processing of the packets

but also any effects on the TCP Fast Open option.

Bellow it is shown in detail each test with the corresponding results:

Test results: Total RTT in seconds

Test No.

TFO disabled

HTML with

text

TFO enabled

HTML with

text

TFO disabled

HTML with

images

TFO enabled

HTML with

images

1 0,018245 0,014459 0,489431 0,478019

2 0,012151 0,011582 0,514619 0,48758

3 0,016162 0,015105 0,512942 0,482916

4 0,020609 0,011198 0,62565 0,506613

5 0,013286 0,020515 0,55452 0,50408

6 0,018618 0,014428 0,550045 0,565468

7 0,015298 0,013086 0,619921 0,518955

8 0,014558 0,011051 0,584479 0,474813

9 0,014598 0,013745 0,570662 0,578883

10 0,012535 0,011126 0,609866 0,527286

-46-

Similarly, the performance charts were created in order to have a visual presentation of

the performance throughout the testing as shown in the following images.

Performance chart when loading HTML webpage with text

0,014459

0,011582

0,015105

0,011198

0,020515

0,014428

0,013086

0,011051

0,013745

0,011126

0,018245

0,012151

0,016162

0,020609

0,013286

0,018618

0,015298
0,014558 0,014598

0,012535

0

0,005

0,01

0,015

0,02

0,025

1 2 3 4 5 6 7 8 9 10

TFO Enabled TFO Disabled

 -47-

Performance chart when loading HTML webpage with multiple images

The following table is the summary created by averaging the RTT times and calculating

the performance gains in percentage.

Type TFO Disabled TFO Enabled RTT Time Decrease

Text 0,015606 0,0136295 14,5 %

Images 0,5632135 0,5124613 9,9 %

Performance gains table

0,478019
0,48758 0,482916

0,506613 0,50408

0,565468

0,518955

0,474813

0,578883

0,527286

0,489431

0,514619 0,512942

0,62565

0,55452 0,550045

0,619921

0,584479

0,570662

0,609866

0,4

0,45

0,5

0,55

0,6

0,65

1 2 3 4 5 6 7 8 9 10

TFO Enabled TFO Disabled

-48-

4.4 Testing with middlebox and firewall
In the last case scenario, along with the middlebox, a firewall was enabled in order to

see the performance effects when an additional layer is involved during the network

traffic transaction between the client and server. The router Edgerouter X was used and

a simple firewall rule was created in order to have a basic filtering of the packets pass-

ing through the middlebox.

Bellow the analytical table is presented with each test number:

Test No.

TFO disabled

HTML with

text

TFO enabled

HTML with

text

TFO disabled

HTML with

images

TFO enabled

HTML with

images

1 0,017793 0,014359 0,707869 0,509387

2 0,01395 0,014401 0,678949 0,526452

3 0,013647 0,013966 0,740328 0,590358

4 0,01651 0,015829 0,720346 0,582489

5 0,012825 0,014843 0,610755 0,572613

6 0,01958 0,012256 0,560502 0,557648

7 0,033031 0,020279 0,696447 0,647994

8 0,013167 0,015337 0,550309 0,528803

9 0,015035 0,011099 0,527822 0,625979

10 0,016037 0,013874 0,540608 0,535137

Test results: Total RTT in seconds

 -49-

Performance chart for HTML website containing text

0,014359
0,014401

0,013966
0,015829

0,014843

0,012256

0,020279

0,015337

0,011099

0,013874

0,017793

0,01395 0,013647

0,01651

0,012825

0,01958

0,033031

0,013167

0,015035
0,016037

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

1 2 3 4 5 6 7 8 9 10

TFO Enabled TFO Disabled

-50-

Performance chart for HTML website containing multiple images

Again the results are summarized and presented bellow after the percentage calculation

in performance gains.

Type TFO Disabled TFO Enabled RTT Time Decrease

Text 0,0171575 0,0146243 17,32 %

Images 0,6333935 0,567686 11,57 %

Performance gains table

Regarding the firewall rules, a terminal was open during the testing in order to check if

the firewall rules were working properly on the Edgerouter X router presented on the

images bellow.

0,509387

0,526452

0,590358
0,582489

0,572613

0,557648

0,647994

0,528803

0,625979

0,535137

0,707869

0,678949

0,740328

0,720346

0,610755

0,560502

0,696447

0,550309

0,527822
0,540608

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

1 2 3 4 5 6 7 8 9 10

TFO Enabled TFO Disabled

 -51-

Firewall filtering on the Edgerouter X router

Firewall filtering on the Edgerouter X router

-52-

4.5 Results summary

The purpose of these tests were not to reproduce the initial measurements but to see in

practice that even on the simplest scenarios there are significant performance gains. Al-

so, although it is not taken into consideration any packet loss, the testing was conducted

with no packet loss in any scenario. Also, it was not accounted for any random spikes

latency due to the physical layer properties of the connection.

Seeing the final results, it is clear that even on this small number of local tests, the per-

formance gains are visible. As it was analyzed previously the performance increases

accordingly when the scenario or the RTT numbers changed while placing middleboxes

and firewalls.

Starting with the first case scenario, a simple client and server were connected through a

single gigabit cable without any middlebox in the middle. The tests showed a decrease

in RTT of 4,45 % in a webpage containing text and 3.2% in a webpage containing im-

ages which is normal due to the simplicity of the setup.

The second scenario involved placing a simple switch in between the client and the

server in order to examine the performance gains during this setup. Again, a clear per-

formance gain is visible with webpages containing text and images showing improve-

ments of 14,5% and 9,9% respectively which is again normal taking into consideration

the latency introduced by the middlebox.

Lastly, the testing with a router implementing also a firewall introduced performance

gains based on the previous pattern. The performance gains were 17,32% while loading

a webpage with text only and 11,57% with the webpage containing images.

The results were are not scientific to the level previously researchers have conducted

but they can show that the TFO mechanism benefits are noticeable even on the simplest

scenarios.

Finally, using the particular physical middleboxes from enterprise well-known brands,

the possible implications were studied in order to identify if there were any removal of

the TFO option during the network data exchange. Despite the fact that many sources

indicate that these implications exist, during the testing no problem was identified and

therefore the TFO option worked as intended. This is also normal due to the small per-

 -53-

centage of these incidents many researchers reported but still this can vary due to the

big deviation in numbers reported in papers of the academic community.

 -55-

5 Conclusions
Having taken a deep dive in how the TCP three-way handshake along with the TCP Fast

Open option, the benefits are clearly visible even on the simplest testing scenarios. The

examination of some middleboxes, despite the fact that did not show any complications

as seen from the studies is a real problem which cannot be ignored when implementing

a mechanism on such a large scale as the web. The biggest problems evolve when pri-

vacy and security is involved while using the mechanism which cannot be ignored.

Privacy concerns are way more important nowadays with the evolving of the internet

and, this mechanism, while it works just as an extension of the most popular protocol it

does not implement advance methods in ensuring that the user’s privacy and security is

ensured to the desired levels.

Among others, these reasons led to the mechanism be deprecated and basically aban-

doned for more advance protocols and mechanism which target not only mainly to the

performance gains but also are security and privacy oriented by design.

Moving forward and with the evolution of the web a new era is coming to web technol-

ogies. The next generation of HTTP/3 will help move forward and solve many problems

occurred during the years by the rapid evolving of the web. While the previous versions

of HTTP the HTTP/1.1 and HTTP/2 which use the TCP as their transport, HTTP/3 uses

QUIC for the transport layer. QUIC is a general-purpose transport layer protocol de-

signed initially by Jim Roskind at Google. As of today, the QUIC is an internet draft

and it is widely used by Google Chrome, Microsoft Edge, Mozilla Firefox and Apple

Safari browsers even if it not supported by default. This technology offers not only per-

formance gains but also security benefits by design which solves numerous problems

presented the recent years in the web. With the rapid evolvement of the internet tech-

nologies we are not long before the full transition occurs and the web takes the next step

into the evolution.

 -57-

Bibliography

1. https://home.cern/science/computing/birth-web/short-history-web

2. Book Greek computer network

3. Book Computer networking a top down approach 7th

4. https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

(/proc/sys/net/ipv4/* Variables:)

5. https://docs.nginx.com/nginx/admin-guide/

6. https://github.com/rockdaboot/wget2/blob/master/docs/wget2.md

7. https://gitlab.com/gnuwget/wget2/-/wikis/home

8. https://httparchive.org/reports/page-weight?start=earliest&end=latest&view=list

9. https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html#Trends

10. RFC 1644

11. https://web.archive.org/web/20010305122504/http://www.mid-

way.org/doc/ttcp-sec.txt

12. RFC 6247

13. RFC 1379

14. TCP Fast open proposal 2011

15. RFC 7413

16. Analysis of TCP Fast Open (Erich Meissner)

17. TCP Fast Open: Initial Measurements (Anna Maria Mandalari, Marcelo Bag-

nulo, Andra Lutu)

18. https://kernelnewbies.org/Linux_3.7

19. https://squeeze.isobar.com/2019/04/11/the-sad-story-of-tcp-fast-open/

20. https://lwn.net/Articles/458610/#tfo

-58-

21. Your App and Next Generation Networks, Apple Inc. 2015

22. https://developer.microsoft.com/en-us/microsoft-

edge/platform/changelog/desktop/14352/

23. https://svnweb.freebsd.org/base?view=revision&revision=330001

24. https://svnweb.freebsd.org/base?view=revision&revision=335610

25. https://bugzilla.mozilla.org/show_bug.cgi?id=1188435

26. https://www.youtube.com/watch?v=jpkYdI9dkgs

27. Enhanced Performance and Privacy for Core Internet Protocols, Erik Sy Phd.

 -59-

Appendix

Git installation

Ø sudo apt-get install g++

Ø sudo apt-get install git

PCRE – Supports regular expressions. Required by the NGINX Core and Rewrite

modules.

Ø wget ftp://ftp.pcre.org/pub/pcre/pcre-8.44.tar.gz

Ø tar -zxf pcre-8.44.tar.gz

Ø cd pcre-8.44

Ø ./configure

Ø make

Ø sudo make install

Openssl build Supports the HTTPS protocol. Required by the NGINX SSL module

and others.

Ø wget http://www.openssl.org/source/openssl-1.1.1g.tar.gz

Ø tar -zxf openssl-1.1.1g.tar.gz

Ø cd openssl-1.1.1g

Ø ./Configure LIST | grep -i linux

Ø ./Configure linux-x86_64 --prefix=/usr

-60-

Ø make

Ø sudo make install

Ø zlib – Supports header compression. Required by the NGINX Gzip module.

Ø wget http://zlib.net/zlib-1.2.11.tar.gz

Ø tar -zxf zlib-1.2.11.tar.gz

Ø cd zlib-1.2.11

Ø ./configure

Ø make

Ø sudo make install

Ø sudo apt-get install libgd-dev

Nginx installation

Ø wget https://nginx.org/download/nginx-1.18.0.tar.gz

Ø tar zxf nginx-1.18.0.tar.gz

Ø cd nginx-1.18.0

Ø git clone https://github.com/openresty/headers-more-nginx-module

Ø ./configure \

> --conf-path=/etc/nginx/nginx.conf \

> --sbin-path=/usr/sbin \

> --error-log-path=/var/log/nginx/error.log \

> --with-threads \

> --with-stream \

> --with-stream_ssl_module \

> --with-http_image_filter_module \

> --with-pcre \

> --with-http_mp4_module \

 -61-

> --with-http_secure_link_module \

> --with-http_v2_module \

> --with-http_flv_module \

> --add-module=headers-more-nginx-module \

> --with-http_gzip_static_module \

> --with-http_stub_status_module \

> --with-http_ssl_module \

> --http-proxy-temp-path=/dev/shm/proxy_temp \

> --http-client-body-temp-path=/dev/shm/client_body_temp \

> --http-fastcgi-temp-path=/dev/shm/fastcgi_temp \

> --http-uwsgi-temp-path=/dev/shm/uwsgi_temp \

> --http-scgi-temp-path=/dev/shm/scgi_temp \

> --build="v1.11.12 with TFO - UnixTeacher" \

> --with-cc-opt='-O2 -fstack-protector-strong -DTCP_FASTOPEN=23'

Ø make -j4

Ø sudo make install

NGINX control

Ø sudo nginx -t

Ø sudo nginx

Ø sudo nginx -V

Ø sudo nginx -s reload

wget2 commands

Ø wget2 http://192.168.200.20/index.html

-62-

