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Abstract 

This dissertation was written as a part of the MSc in Data Science at the International 

Hellenic University. 

Predictive analytics have become a necessity in most sectors of everyday human activi-

ties. It is true that the exploitation of data has raised an increasing interest for extraction 

of useful information concerning energy consuming behaviors for buildings. Although 

the concept of smart cities is present for more than two decades, it is still an expanding 

knowledge domain. Smart Buildings aim to prioritize occupants’ comfort along with 

reduced energy waste and emissions. 

This dissertation focuses on the development of machine learning algorithms to predict 

greenhouse gas emissions caused by the building sector and identify key building char-

acteristics which lead to excessive emissions. More specifically, two problems are dis-

cussed: the prediction of metric tons of CO2 emitted annually by a building and building 

compliance to environmental laws according to its physical characteristics, energy, fuel, 

and water consumption. The outcomes prove that energy use intensity and natural gas 

use are significant factors for decarbonizing the building sector.  
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1 Introduction 

It is widely known that climate change is a global threat and immediate actions need to 

be taken to limit its most important effects. The operation of buildings account for ap-

proximately 40% of primary energy consumption globally, drawing the attention of 

governments to act instantly by implying energy policies and carbon emission measures 

[1]. Given this reality, countries and cities have already set strict long-term energy effi-

ciency and carbon reduction goals for existing and new buildings. Indeed, New York 

City aims to reduce its carbon footprint by 80% by 2050. Also, during the Paris Agree-

ment the objective of achieving a climate-neutral EU by 2050 has been endorsed [2], 

setting high goals for all sectors of human activity. These actions inevitably focus on 

buildings, as a high proportion of emissions derives from energy and fuel consumption 

from both residential and non-residential existing buildings.  

To support global and city-scale decarbonization goals, energy disclosure directives are 

a significant policy tool to accelerate the transition towards climate neutrality [3]. The 

number of cities and local governments adopting energy disclosure legislations has in-

creased the past few years and more building owners are required to report their proper-

ty’s energy consumption. Energy benchmarking allows decision makers to assess the 

energy performance of buildings and evaluate the energy profile of a whole city or re-

gion.  

Additionally, there are multiple benefits of having building energy data available both 

for citizens and decision makers. For tenants and building owners, by reporting energy 

consumption data annually might help understand their own behaviors and lead to 

changes that will mitigate excessive energy waste. From decision makers perspective, 

monitoring energy and emissions data will allow them to have an outlook on how ener-

gy is consumed within a city scale and detect any progress over the years concerning 

decarbonization goals. 

NYC has been collecting energy disclosure data since 2010, through the implementation 

of Local Law 84 (LL84) for large buildings. LL84 requires building owners to report 

their properties every year. The properties covered by this legislation are of size 50000 
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square feet at least [4]. In addition, owners are obliged to fulfill the requirements of Lo-

cal Law 97 for their property’s carbon footprint. Thus, an emissions intensity report 

needs to be submitted annually starting in 2025 or pay substantial fines [5]. However, 

there is a big financial and political concern that constrain the implementation of these 

laws to smaller buildings, mainly driven by the potential costs to building owners. Giv-

en this legitimate concern, it is essential for policy- makers to have alternative but relia-

ble methods to assess and understand energy consumption patterns across different spa-

tial scales.  

This study evaluates several machine learning algorithms, including Random Forest, 

XGBoost, CatBoost and Artificial Neural Networks, to predict the annual greenhouse 

gas emissions from existing properties reported at energy disclosure records. More spe-

cifically, the first part focuses on predicting the actual number of metric tons of CO2 

emitted from buildings through regression, while the second part examines if the prop-

erties fall into acceptable emission boundaries and thus comply to LL97 law, through 

classification.  

For this purpose, actual building and energy data from NYC’s Local Law 84 (LL84) for 

the calendar year 2017 are used to train and evaluate our predictions, combined with 

LL97 emission limits for each building type. LL84 datasets are publicly available in-

cluding records from 2010 to 2017. The goal of this research is to predict the environ-

mental footprint of buildings and aid decision makers to understand the factors that con-

tribute to excessive emissions and take actions for decarbonizing the building sector. 

The structure of the thesis is the following. After a short introduction in Chapter 1, 

Chapter 2 includes the literature review, Chapter 3 contains the problem definition 

along with a brief description of the datasets used. Chapter 4 includes the pre-

processing steps and some exploratory data analysis results, while in Chapter 5 the pre-

dictions are presented. In Chapter 6 results are discussed and evaluated and in Chapter 7 

conclusions and future directions are presented. 

All the experiments on this dissertation were executed in Python 3.6. Also, the algo-

rithms and their implementation come from the Scikit-Learn package and for Neural 

Networks the Keras package has been used. 
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2 Literature Review 

In this section, relative works are analyzed that approach our problem. At first, the con-

cept of smart cities is presented, mainly focusing on smart buildings. Then, several stud-

ies are listed in which data-driven predictive models have been used for buildings. 

2.1 Smart City 

The definition of a smart city is still complicated, though the concept of smart technolo-

gies in cities around the world has gained the attention of many researchers the past few 

decades. In this chapter a deeper explanation of the term is presented along with some 

examples of everyday life domains in which smart city concepts are utilized. 

2.1.1 The concept of a smart city 

A smart city can be defined as a sustainable and efficient urban center that provides a 

high quality of life to its inhabitants through optimal management of its resources [6]. 

The transition towards smart cities has accelerated the past few decades because of the 

impact of new technologies in everyday lives and the daily human- device interaction 

[7]. However, it is still a complex concept possibly caused by the perception of ‘smart-

ness’, which varies from city to city and depends on the existing local infrastructure and 

culture [8]. 

The ‘smartness’ of the city incorporates technologies that can be used into commercial 

applications by implying them on intelligent products and services [9]. Smart homes, 

communities, transportation and health care systems are equipped with embedded de-

vices and sensors to interact with their environment. Internet of things (IoT) and cloud 

computing are very significant technologies for connectivity. Also, open public data en-

able real time decisions, but the production of large amounts of high frequency data 

within smart networks arise the need for a reliable Big Data platform for storage and 

processing [10]. 
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2.1.2 Applications 

Smart cities use multiple technologies to improve sectors of human activity such as 

health, transportation, energy, buildings, education, and tourism aiming to improve the 

quality of life without sacrificing the comfort of their citizens. Some of these applica-

tions are analyzed below. Figure 1 illustrates applications of smart city technologies. 

 

 

Figure 1: Smart city domains and applications 

Transportation: Transportation and mobility are considered one of the key chal-

lenges for most of the cities globally. Smart traffic routing and smart parking solutions 

are two of the most known applications of smart city concepts. Traffic routing uses 

smart sensors placed in different areas and rows to detect traffic flows. In [7] it is em-

phasized that traffic prediction is a multidimensional problem affected by numerous fac-

tors, like accidents or social events at specific areas and mainly depends on weather 

conditions. 

Health care: Smart healthcare projects enable easy access to patients’ files, contain-

ing multiple diagnoses, details, tests, etc. Data will be available to doctors, laboratories, 
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and other health experts. This way, waiting time for patients will be drastically reduced, 

paperwork will be eliminated and more importantly a complete image of patient’s histo-

ry will give insights in numerous health issues. 

Buildings: Smart buildings could be defined as buildings that have been retrofitted 

and automated to reduce their excessive energy consumption and CO2 emissions with-

out compromising the comfort of the occupants [11,[12]. Buildings can become smarter 

in two ways; by implementing ICT solutions, or by focusing on retrofits aiming at ener-

gy efficiency [13]. Within smart buildings, the automation plays a major role both in 

commercial and residential buildings. Given that most of the total energy consumption 

is caused by HVAC systems, many IoT devices and sensors are connected with them for 

thermal comfort and energy efficiency enhancement. 

Education: An intelligent education system uses technologies and learning tools to 

improve teaching techniques and students’ learning experience. Some of the benefits are 

time saving, less paperwork and improves the connectivity between students, teachers, 

parents by introducing e-platforms [14]. 

2.1.3 Smart Buildings 

There is a clear confusion concerning the differentiation between Smart and Intelligent 

Buildings. Although there is an increasing amount of academic literature and research 

focusing on defining this emerging concept, the answer is still not obvious on how the 

transition towards smart buildings can be achieved. 

 

2.1.3.1 The meaning of intelligence 

Evolving definitions of Intelligent Buildings have been developed since the early 1980s 

and continue to change and adapt using the latest knowledge and experience. In 1995 

the Conseil International du Batiment Working Groups defined an Intelligent Building 

as:  

“A dynamic and responsive architecture that provides every occupant with productive, 

cost effective and environmentally approved conditions through continuous interaction 

among its four basic elements: places (fabric; structure; facilities); processes (automa-

tion; control systems) people (services; users) and management (maintenance; perfor-

mance) and the interrelation between them.”  
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Later, it was suggested that Intelligent Buildings are equivalent to the Building Man-

agement Systems (BMS) within them [Brooks 2011]. However, BMS is usually one of 

the components within an intelligent building and not the entire system [15]. 

Trying to explain intelligence in buildings in a more understandable way, after tradi-

tional buildings, the automated buildings have taken their place, in which timers and 

central controls set a schedule for switching on and off lighting and heating. The next 

step, the intelligent buildings combined automation systems with sensors which allowed 

the building to adjust to user needs in real time [16]. 

 

2.1.3.2 What are Smart Buildings? 

Smart buildings take it a step further from intelligent ones. That means that things are 

not just turned on and off, but the building collects data about how and when its systems 

and components are used and provides a real-time picture of its behavior. Networks, 

cameras and sensors are some of the technologies used to aid this procedure. Then sev-

eral interesting trends are produced, such as peak hours, occupancy levels, different 

people’s behavior at different times of day etc. In [15], it is mentioned that adaptability 

and integration between all aspects of the building will differentiate smart buildings 

from previous generations. Some examples of adaptability are: 

• Different choices of occupants to enhance comfort at different times of day and 

different seasons of the year 

• Changes in how occupants use the building 

• Different occupancy data characteristics 

• Varying yearly average external weather conditions 

Figure 2 is an illustration of how the terms intelligent and smart differentiate, and which 

are the components of both building technologies. It is important to mention that smart 

building technologies mainly aim to maintain or even increase energy efficiency, mini-

mize its environmental footprint and at the same time provide high satisfaction levels 

for its occupants. Improved materials and control systems will allow designers and en-

gineers to create buildings that are nearly or completely energy independent or “(nearly) 

Zero- Energy Buildings”, which is a goal to achieve in the next few years for most 

countries. Thus, smart buildings have integrated renewables such as solar arrays, photo-

voltaics and geothermal heating systems to produce their own heating and electric pow-
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er. These technologies may initially produce high costs, but payback periods are sus-

tainable and energy savings are huge. Figure 3 shows some common smart building 

components and technologies. 

In addition, cloud computing and Internet of Things (IoT) play a significant role on de-

veloping digital services on buildings [17]. Common IoT applications in smart buildings 

are energy saving procedures, security enhancement, automations, and maintenance im-

provements. IoT enables operational systems to deliver more accurate information, as 

well as improves operations whilst providing the best conditions for occupants [18].  

 

Figure 2: The difference between smart and intelligent buildings. 

 

 

Figure 3: Smart building technologies 
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2.2 Predictive models for buildings 

Predictive analytics are applied in almost any field, while machine learning and data 

mining techniques continue to grow and provide with interesting and accurate results. 

Building performance and energy consumption has been the subject of numerous aca-

demic research, driven by the urgent need of a “greener” building sector. 

2.2.1 Energy consumption and performance prediction 

In the following studies the aim is to make predictions about energy consumption and 

performance for different types of buildings by applying machine learning and data 

mining techniques. 

This paper [19] presents a review of ML approaches including ANN, SVM, Gaussian 

based regression and clustering which have been applied in forecasting and enhancing 

energy performance for buildings. ΑΝΝ is a powerful predictor in building energy fore-

casting, but several hyperparameters have to be adjusted and be selected properly. In 

contrast with ANN, SVM and GP are supervised using few parameters and provide sat-

isfactory results. SVM surpasses ANN in load forecasting and the model can be built 

with less samples.  

Another study [20] presents a review on unsupervised data analytics in mining big 

amounts of building operational data. The purpose is to improve operational perfor-

mance of buildings. The authors state that unsupervised analytics are more practical and 

promising in discovering knowledge given limited prior knowledge, so they should be 

applied more in building operational and consumption data. It is mentioned that effec-

tive post-mining methods for knowledge selection should be studied more, and the de-

velopment of semi-automated or fully automated post-mining methods could reduce 

complexity in such problems.  

A lot of research has been conducted focusing on clustering techniques which could 

give insights about energy consumption patterns. In this work [21] a k-shape clustering 

technique has been applied to cluster building energy consumption patterns and then 

fitted into an SVR model to improve its forecasting accuracy. For this purpose, 10 insti-

tutional buildings have been examined and the k-shape clustering technique is compared 

to dynamic time warping (DTW) clustering. The results have indicated that k-shape 

clustering performs better than DTW clustering. The k-shape algorithm is then used to 

identify daily base energy consumption patterns for ten buildings. It is observed that the 
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implementation of k-shape clustering helped improving forecasting accuracy, by com-

paring the model with another one without clustering.  

Another study [22] analyzes time series data to identify buildings with similar temporal 

energy performance patterns. Using K-means clustering algorithm, two clusters are 

formed, “improving” and “declining” energy performance for both commercial and res-

idential buildings in NYC. The authors discovered that larger and newer office build-

ings are more likely to perform energy reduction measures and have shown a significant 

improvement in terms of EUI between the examined years. Also, office buildings that 

participate in the NYC Carbon Challenge program are 138% more likely to have im-

proved their performance over this period. Residential buildings that use heavy oil boil-

ers are more likely to have increasing EUI over time.  

Next-day energy consumption prediction and peak power demand have also gained in-

terest the past few decades, given the fact that energy efficiency and savings have con-

cerned both building owners and governments. In [23] ensemble methods are used com-

bining eight base models. The energy consumption data used for this purpose are col-

lected from the tallest building in Hong Kong. The results show that the accuracy of the 

ensemble method is significantly better than those of base models. The best performing 

base models appeared to be the Random Forests and support vector regression, which 

are assigned with the largest weights in the ensemble model. Also, by applying cluster-

ing analysis, performing feature extraction and generalized extreme studentized deviate 

(GESD), abnormalities concerning daily energy consumption profiles are detected suc-

cessfully. Most of the outliers seem to come from public holidays, when the number of 

occupants in the building is very limited compared to normal days. The authors con-

clude that developing the models for this purpose can be time consuming, but prediction 

time can be very short for new inputs once the models are ready. 

 In addition, tenants’ behavior is proven to be a very affecting factor for energy con-

sumption and therefore buildings’ emissions. In [24], the authors tried to discover pat-

terns of usage in different types of residential buildings that could affect energy con-

sumption and lead to increased carbon emissions. For this purpose, they performed a 

questionnaire survey to collect annual gas and electricity data for different types of 

dwelling. Clusters of higher and lower energy consumers were formed, and these clus-

ters were related to indicators of energy consumption. The results have shown that there 

is a strong relationship between the number of bedrooms and energy consumption, as 
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well as home working. Indeed, working from home appeared to be the strongest indica-

tor of differences in gas and electricity consumption.  

Until now, many researchers have applied Support Vector Machines for building energy 

consumption and performance prediction. In [25], SVM has been used for forecasting 

building energy consumption in the tropical region. Four office buildings in Singapore 

were selected which are located around the Central Business District. The data used for 

this study were utility bills of these four buildings, which have been collected through 

surveys, as well as weather data gathered from weather stations in Singapore. Weather 

data include information about dry-bulb temperature, relative humidity, and global solar 

radiation. The performance of SVM was explored adjusting two hyperparameters, C and 

ε, by applying stepwise searching method based on radial basis function (RBF) kernel. 

The results have shown that SVM performs better than neural networks and genetic 

programming algorithms. The reasons could be the small data pool used in this study, 

thus abnormal data were not so frequent. Also, when applying SVM for prediction 

someone needs less hyperparameters to optimize compared to neural networks.  

In [26], a sensor-based forecasting model is developed to a multi-family residential 

building in New York using support vector regression. The authors aim to discover the 

impact of temporal (daily, hourly, 10 min intervals) and spatial (whole building, by 

floor, by unit) data have on the predictive power of the model. Results indicate that the 

optimal model is built with hourly consumption at the floor level. They conclude that 

more detailed data (by floor and by unit) produce better results.  

In [27], the aim is to improve energy efficiency of the HVAC system using data from a 

skyscraper. To achieve this goal a Support Vector Machine Regression (SVMR) model 

was built based only on historical data of the building, which include information about 

its size, heating and cooling systems and other physical properties. The fact that the 

model relies only on historical data, it makes it easily applicable on different types of 

buildings.  

In [8] a citizen-centric approach is presented for electricity consumption prediction in 

dwellings. Two problems are examined; produce building energy consumption patterns 

for each building examined and observe the behavior of grid through aggregated con-

sumption data of all available properties. Three dwellings are selected for analysis, us-

ing both weather and consumption data collected for three consecutive years. The re-

gression model was transformed into a binary classification problem, predicting two la-
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bels ‘high’ and ‘low’ describing the levels of consumption. The algorithms tested were 

Support Vector Machines (SVM), Random Forest, Stochastic Gradient Descent (SGD) 

and Logistic Regression. The results have indicated that the size of a building affects its 

consumer behavior, as it was more difficult to predict consumption levels for bigger 

properties. Also, turning the regression problem to a binary one, achieves better results 

when the point of separation is the mean of all instances.   

Most of the studies conducted for energy consumption prediction conclude that is diffi-

cult to decide which ML algorithm is the best, as the nature of data and the application 

differs, as well as the purpose of each research. Artificial Neural Networks are very 

commonly used in these types of problems because of their high predictive power. In 

[28], an ANN model has been developed for electric demand prediction of a solar ener-

gy research center, the CIESOL building. In this study the authors tried to identify the 

most influential factors on electricity demand and discover interesting patterns. The 

most significant factors are outdoor temperature, solar radiation, and information about 

the solar cooling installation, especially the state of the heat pump. Two approaches 

have been developed, one considering the solar cooling installation and a simplified one 

without it. Various tests have been conducted including different types of days and con-

sumption patterns, and different prediction horizons have been evaluated. The results 

were good for both approaches, but the first more complex approach gave better results 

in dynamic modeling (prediction horizon tends to infinity).  

Another work [29] focuses on improving the performance of ANNs concerning the pre-

diction of electric loads by conducting hypothesis test, information criteria and cross 

validation. The authors used one hidden layer in order to avoid over-parameterization. It 

is stated that the input variables are very important for this problem. The results indicate 

that some environmental variables such as ambient temperature and solar radiation are 

significant, while others such as wind velocity or humidity can be omitted. The day and 

time variables and the occupancy variables are very important, regardless of the dataset. 

Also, short time predictions are very accurate, but they are not the most used. Instead, 

next day predictors perform well in terms of accuracy and can be applied more easily.  

 Other studies have compared neural networks with ensemble methods to test their fore-

casting performance. In [30], artificial neural networks are compared with random forest 

for predicting the hourly HVAC energy consumption of a hotel in Madrid. The results 

indicate that incorporating social parameters, such as the number of guests increased 
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prediction accuracy for both algorithms tested. Overall, ANN performed marginally bet-

ter than RF. Nevertheless, ensemble-based methods, like RF could deal with multi-

dimensional data better, for complex data like building data. The authors conclude that 

both algorithms have strong predictive power and could be applied in building energy 

applications.  

The results of another study [31] have shown that fuzzy systems and neural networks 

using occupancy data are the best models to describe how energy is consumed in a 

building. Occupancy data were collected via Wi-Fi network connections and weather 

data from a weather station placed at the roof of the building. In these cases where his-

torical data have been used, a big amount of data is needed for robust predictions. Also, 

schedules and events happening in the building affect significantly the predictions and 

need to be considered. 

2.2.2 CO2 emissions prediction 

Several researchers have observed the more affecting factors for CO2 emissions in the 

building sector and proposed methods for predicting buildings’ environmental footprint. 

In [32], a Back Propagation (BP) neural network model is presented for predicting CO2 

emissions caused by the Chinese commercial sector. This model is based on the index 

quantization ability of Random Forest (RF) and the performance optimization ability of 

PSO (particle swarm optimization). The authors state that other studies have only fo-

cused on algorithm optimization and model mixing, ignoring the selection of important 

indicators, thus this paper tries to fill this gap and construct a hybrid model for forecast-

ing CO2 emissions for the commercial sector. The data used for this study are national 

statistics of China’s commercial sector from 1997 to 2017 and include 17 social, finan-

cial and energy indicators. By using RF to evaluate the significance of indicators the 

authors conclude that there are 7 of them that have a large linear or non-linear relation-

ship with CO2 emissions. These indicators are energy intensity, coal consumption, sec-

ond industry GDP, education level, total population, business sector GDP and imports. 

Also, the use of RF can significantly improve prediction accuracy and the best perform-

ing model proposed for this purpose is the RF-DPSO (double particle swarm optimiza-

tion)-BP.  

In [33], the goal is to estimate indirect building carbon emissions within the boundaries 

of various types of Local Climate Zones (LCZs). This research aims to discover inter-
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esting patterns and help improving energy management in specific regions. The model 

used random forest algorithm to make predictions and the results show the linkage be-

tween emission coefficients and different LCZ categories in Shanghai. The authors con-

clude that it is necessary to include not only morphological parameters which are used 

in this study, but also information about occupancy, HVAC systems, building use, ma-

terials and more. Thus, there is a need to modify the Local Climate Zones and develop 

the Local Energy Zones. 

2.2.3 Retrofits and energy efficiency measures 

Minimizing greenhouse gas emissions from the building sector requires energy efficien-

cy measures to be applied for both new and existing buildings. Some works include es-

timations about potential energy savings using multiple machine learning and data min-

ing techniques. This kind of predictions will help targeting poorly-performing buildings 

and provide with appropriate retrofit scenarios in order to enhance their energy perfor-

mance and limit their emissions. 

In [34], cluster analysis is used to estimate potential energy savings in lighting systems 

in different types of buildings. The clustering approach is compared with the general 

averaging one, in which a mean value is used for predictions, averaged by a sample of 

buildings. The results have shown that the estimated energy savings by using EM algo-

rithm analyzing data from an energy audit database have much smaller errors than those 

from the traditional approach described above. The building types examined were cate-

gorized in three main groups: hotels and hospitals, offices and schools, department 

stores. The clustering technique has given more accurate results for all three categories. 

The authors conclude that the proposed clustering method could be applied to estimate 

energy savings for lighting systems, for HVAC systems and help to a more precise es-

timation of CO2 emissions for the building sector.  

In [35], the aim is to generalize self-reported energy data from a small sample of build-

ings to a city-scale level. Three different machine learning algorithms are used (Linear 

Regression, Random Forest, Support Vector Regression) and feature selection tech-

niques to make predictions from the LL84 data, which is self-reported energy disclosure 

data for large buildings. The results have shown that Linear Regression performs best 

when predicting total building energy consumption at the zip code-level for the entire 

city, while Support Vector Regression performs better in terms of accuracy when esti-
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mating energy use within the sample of LL84 buildings. Also, building size, use and 

morphology seem to be significant attributes for energy use prediction at the building 

and zip code levels. Larger buildings are found to have smaller EUI (energy use intensi-

ty) while taller ones are more intensive. The authors mention that it was more challeng-

ing to predict natural gas usage because of the bimodal distribution of gas consumption 

(some buildings use it only for cooking fuel, while others use natural gas for heating 

and hot water) and the lack of information about natural gas distribution infrastructure.  

In [36], the goal is to classify educational buildings according to their energy perfor-

mance for space heating and evaluate energy savings in the school sector. The data set 

included 1100 school buildings school buildings in Greece and contain information 

about annual consumption for space heating and lighting, the area of the building, num-

ber of students and professors, the power of the boiler, the schedule of operation and the 

manufacturing year of the building. The clustering technique applied was K-means and 

five balanced energy classes were formed. In these energy-balanced classes the purpose 

was to find a typical school building as a representative for each group. To achieve that, 

the authors used PCA to perform analysis on the potential energy savings for each 

group of school buildings. This classification could be beneficial for decision makers in 

to implement energy saving measures and set energy performance goals.  

In [37], the aim was to classify existing buildings and identify a limited number of rep-

resentative buildings to be examined for refurbishment. The sample buildings were al-

most 60 in the province of Treviso in Italy and they were clustered applying a modified 

K-means approach. For grouping schools into clusters, the authors used real consump-

tion data which were correlated to buildings characteristics. The parameters with the 

highest correlation with energy consumption levels were used to form the clusters. After 

identifying the representative schools, it would be easier to classify them according to a 

priority list to apply retrofit measures.  

Some studies such as [38], have proposed energy conservation measures (ECMs) by an-

alyzing energy audit data. The authors state that ECM implementation could be encour-

aged by policies and legislations which require energy audits, consultants and recom-

mendations which can be costly and time consuming. Thus, the purpose of this study is 

to accelerate the adoption of building ECMs with reduced costs and complexity. The 

user-facing falling rule classifier (FRL) classifier performs well for cooling system pre-

diction, distribution system, domestic hot water, fuel switching, lighting, and motors 
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conservation measures. The authors conclude that this work may aid providing effective 

low-cost retrofit options for building owners to improve energy efficiency and reduce 

GHG emissions.  

Similarly, in [39], two families of ANNs are created, by using energy simulation out-

comes as targets for training and testing the models. The first family of ANNs aims to 

assess the energy performance of the existing building stock, while the second one aims 

to estimate the impact of energy retrofit measures (ERMs). The case study included of-

fice buildings built in South Italy in the period 1920-1970. The results have shown that 

the outcomes of this study are satisfactory, as they obtained values of relative errors 

comparable to those of previous studies in which ANNs have been used for energy per-

formance predictions. The authors state that in this study they achieved to perform pre-

dictions for any member of an established building stock, unlike other research which 

refer to single buildings or global behavior of building clusters. 

2.2.4 Fuel consumption, thermal comfort, and occupancy 

Several machine learning algorithms and data mining techniques have been used to pre-

dict fuel consumption, heating and cooling demand which contribute significantly to 

greenhouse gas emissions. 

 In [40], machine learning algorithms are used to make long-term predictions (i.e. one 

year ahead) at one-hour resolution for fuel consumption in several commercial buildings 

and various climate zones. A feature selection method has been applied to select the 

best input variables and the machine learning algorithms used for the problem were 

Neural Networks, Gaussian Process Regression, and multivariate linear regression. NNs 

and GPR seemed to perform better than linear regression and thus they were included as 

part of the model which was developed. The results can be used to estimate on-site fuel 

consumption and emissions from buildings and enhance decision making and decarbon-

ization strategies implementation.  

In [41], the purpose of the study was to take advantage of the large number of energy 

certificates for buildings which are available online and make predictions about heat 

demand. Artificial Neural Network was used for predictions and this methodology aims 

to detect anomalies in building energy certificates, thus it would facilitate to check and 

correct suspicious entries. Also, sensors and other smart technologies in several build-

ings provide useful data about occupancy and thermal comfort.  
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As it was mentioned above, smart technologies help gathering useful information about 

buildings’ and occupants’ behavior. In [42], paper a Wi-Fi sensing platform is intro-

duced to provide information about occupancy in smart buildings in a privacy-

preserving manner. The authors used deep learning methods such as LSTM and Convo-

lutional Neural Network to identify several human activities. This study could contrib-

ute to achieving higher levels of energy efficiency in buildings and reducing CO2 emis-

sions while preserving a good air quality and occupant comfort.  

In [43], 36 machine learning algorithms are compared to select the best one for indoor 

temperature prediction in a smart building. It is found that the Extra Trees regressor 

gives the best results. The aim of this study is to incorporate these predictions into 

building management systems to improve energy efficiency.  

Similarly, [44] compares several machine learning models to predict heating and cool-

ing loads in residential buildings. The algorithms used for this purpose were artificial 

neural network, generalized regression neural network, radial basis neural network, 

support vector machines and others. Among all the models used, the radial basis func-

tion network gave the best results, comparing MAPE, MAE and RMSE scores. 

2.2.5 Fault and anomalies detection 

Fault detection and diagnosis has been the subject of many studies and has been proven 

to be very beneficial in buildings and control systems. Detecting anomalies could save 

big amounts of wasted energy and unnecessary CO2 emissions and could enhance ther-

mal comfort as well. 

 In [45], a system is presented which is capable of automating detection and diagnosis of 

faults in commercial building HVAC systems. This system detects faults in real time 

using data from two sources. The first dataset includes information about an office 

building in Australia and the second one is obtained from the ASHRAE-1020 FDD pro-

ject. For this project, Hidden Markov Models (HMM) has been used to learn relation-

ships between groups of points during both normal and faulty operation. Also, parallel 

models and clustering techniques were used to overcome local optima issues and Data 

Fusion was applied to resolve conflicting diagnoses from different models. Further-

more, the authors tried to detect any interrelationships and correlations between several 

group of sensors to improve model accuracy.  
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Another study [46], deals with two problems; predict energy consumption of a residen-

tial building taking into consideration other buildings in its neighborhood and detect 

faults in building sub-systems which lead to excessive energy consumption. For energy 

consumption prediction, environmental parameters are not taken into account because 

similar buildings in the same neighborhood have the same weather conditions, so envi-

ronmental uncertainties do not affect the results of the forecasting process. The parame-

ters used are locations of internal walls, ceiling heights, minimum and maximum tem-

peratures allowed by control, heating/cooling air temperature, lighting, density of peo-

ple, fiberglass insulation thickness for exterior walls, roof insulation thickness, window 

thickness and roof solar absorbance. The authors evaluate their approach using machine 

learning algorithms such as ANN, SVR, multilinear regression. The experiments are 

performed four different days, one for each season. They observe that their predictions 

are robust to small changes in building structures. However, if the buildings are signifi-

cantly different, the results are not reliable. They propose that future works should try 

using an optimization technique in combination with energy prediction to improve the 

energy efficiency of similar buildings in the same neighborhood. The second problem 

they deal with in this study is fault diagnosis, and their goal is to detect that a fault oc-

curs, as well as locate and identify the fault. For this purpose, they used a decision tree 

model to diagnose the fault type, which was trained from labeled observations using the 

software RapidMiner. They concluded that many of the sensors used, contribute mini-

mally to diagnosis and 3 sensors give almost the same results as 12. The authors state 

that if some faults have other undesirable effects and have no impact on energy con-

sumption, then an alternative method for detection is needed.  

In [47], a support vector machine (SVM) model is used to predict and diagnose anoma-

lies in public buildings energy consumption. For this study 11 input parameters were 

used such as historical energy data, climatic and time-cycle factors. The authors focus 

only on predicting electricity consumption for the air conditioning during the summer 

months. The authors state that future work should include different end-use building 

energy sources like heating, cooling, lighting, cooking etc. This research provides theo-

retical guidance and a practical data reference for building operations management.  

In [48], the authors propose a generic collective contextual anomaly detection frame-

work (CCAD). The CCAD framework uses a sliding window approach, as well as his-

toric sensor data and generated features. The aim is to identify abnormal behaviors. The 
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results show that the CCAD framework can successfully detect anomalies in energy 

consumption related to HVAC systems.  

In [49] problems related to Building Management Systems (BMS) components are dis-

cussed and how these problems affect the buildings energy performance. Also, several 

methods are presented that can help diagnose these types of issues. The authors con-

clude that Internet of Things (IoT) could be used in diagnostic processes of smart build-

ings, as building intelligent solutions could help reducing energy waste and carbon 

emissions. 

2.2.6 Benchmarking and energy rating 

Energy benchmarking is often used to evaluate the energy performance of buildings and 

is a crucial step towards reducing emissions. Comparability is a vital element to the suc-

cess of a benchmarking system and has been the subject of many studies.  

In [50], the aim is to improve the comparability of benchmarking the energy perfor-

mance of English schools assessing the impact of various features, such as built form or 

occupancy. Energy performance data from 465 schools were analyzed using ANNs. The 

results indicate that for a 4-year period, electricity consumption has increased, and heat-

ing consumption has decreased in both primary and secondary schools. Also, secondary 

schools appeared to be significantly more energy intensive than primary schools and 

natural and mechanical ventilated schools differed in terms of electricity consumption. 

By analyzing the dataset using ANNs, the floor area and the number of pupils seemed to 

be very important determinants of schools’ energy use. In addition, parameters such as 

built form and exposure ratios appeared to be significant too. The authors state that the 

differences spotted between primary and secondary schools indicate that there is a need 

to reexamine the way that non-residential buildings are classified and benchmarked.  

In [51], a method for energy classification and rating of school buildings is presented. 

This method is based on fuzzy clustering techniques and it is compared with frequency 

rating techniques. The fuzzy clustering method forms more robust classes avoiding im-

balanced classes and classifies the buildings more precisely according to their common 

characteristics and similarities. The data used for this study included energy consump-

tion information of school buildings in Greece from almost all geographic departments 

of the country and for a three-year period. Energy consumption data has been obtained 

from energy bills and information about operational periods, number of students, con-
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struction characteristics, installed equipment have been used for the purposes of the 

study as well. The results indicated that school buildings should improve their energy 

consumption and environmental quality considerably. Also, this clustering method 

could be applied easily to classify other building types as well.  

In [52], a new methodology for buildings energy benchmarking is discussed. The meth-

odology contains feature selection, clustering algorithm adaptation, results validation, 

and interpretation. The dataset used contains information for 5215 commercial buildings 

such as building size, year of construction, types of energy used, energy consumption 

and equipment. In comparison with the energy star approach, it has been shown that the 

proposed methodology was able to provide a more comprehensive benchmarking ap-

proach. This is because the clustering approach incorporates various building character-

istics which affect energy usage, while the Energy Star approach classifies the buildings 

according to their use type.  
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3 Problem Definition 

Buildings are responsible for significant percentage of energy use and carbon emissions. 

Energy consumption can be reduced by implementing several energy efficiency 

measures concerning heating, cooling, lighting, and renewable energy systems. Several 

studies have been conducted to predict energy consumption patterns and evaluate the 

factors that affect energy waste both in existing buildings and new constructions. De-

spite the significance of the afore mentioned studies, there is limited research focusing 

on forecasting carbon emissions caused by the building sector and which factors con-

tribute most to the environmental footprint of a building. 

3.1 Problem 

Since buildings account for most of the primary use and CO2 emissions in dense urban 

areas, countries are increasingly adopting long-term decarbonization and sustainability 

plans designed to reduce carbon emissions and mitigate the negative effects of climate 

change [35]. These long-term policies and legislations focus on “greening” existing 

buildings and constructing new nearly zero or zero energy buildings. Building owners 

are required to report every year their energy consumption levels, as well as fuel con-

sumption for heating and cooling and comply with the carbon intensity limits. Hence, 

there is an urgent need to understand the factors that lead to excessive emissions and be 

aware of which types of buildings are less “green”. In this way, the decarbonization of 

the building sector will be achieved faster and in a more targeted way. 

This work analyzes an energy disclosure dataset with the primary purpose of predicting 

the total greenhouse gas emissions of a building and focused on discovering any useful 

information about factors causing excessive emissions. Also, this work can give insights 

to building owners and decision makers on whether a building complies or not to the 

specific requirements of decarbonization legislations. Forecasting carbon emissions is 

not only conducted for building owners and citizens, but also can help governments and 

city planners to reform strategies and regulations in order to achieve decarbonization 

goals. 
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3.2 Dataset description 

This section contains information about the datasets used for the purposes of the thesis. 

Two data sources were used which are analyzed in detail below. 

3.2.1 Local Law 84 energy disclosure data 

Local Law 84, or the NYC Benchmarking Law requires annual benchmarking and dis-

closure of energy and water usage information. LL84 covers properties with a single 

building with a gross floor area greater than 50000 square feet and lots having more 

than one building with a gross floor area greater than 100000 square feet. This dataset 

includes information about energy use by fuel type, physical descriptors as well as in-

formation concerning occupancy, water use and greenhouse gas emissions.  

Metrics are calculated by the Environmental Protection Agency’s tool ENERGY STAR 

Portfolio Manager and data is self-reporting by building owners. A public version of the 

dataset is released annually on the NYC Open Data portal containing a subset of col-

lected data. For this study we chose data for Calendar Year 2017, which is the latest 

version publicly available. Table 1 below lists the data fields contained in our dataset. 

 

Table 1: Data fields in LL84 energy disclosure dataset 

Order
Self-Reported Gross Floor Area (ft²) Source EUI (kBtu/ft²) Natural Gas Use (kBtu)

Property Id

Primary Property Type - Self 

Selected

Weather Normalized Source EUI 

(kBtu/ft²)

Weather Normalized Site Natural 

Gas Use (therms)

Property Name

List of All Property Use Types at 

Property
Site EUI (kBtu/ft²)

Electricity Use - Grid Purchase 

(kBtu)

Parent Property Id
Largest Property Use Type

Weather Normalized Site EUI 

(kBtu/ft²)

Electricity Use - Grid Purchase 

(kWh)

Parent Property Name

Largest Property Use Type - Gross 

Floor Area (ft²)

Weather Normalized Site Electricity 

Intensity (kWh/ft²)

Weather Normalized Site Electricity 

(kWh)

BBL-10 digits
2nd Largest Property Use Type

Weather Normalized Site Natural 

Gas Intensity (therms/ft²)
Annual Maximum Demand (kW)

NYC Borough,Block and Lot (BLL) self-

reported

2nd Largest Property Use - Gross 

Floor Area (ft²)
Fuel Oil #1 Use (kBtu)

Annual Maximum Demand 

(MM/YYYY)

NYC Building Identification Number(BIN)
3rd Largest Property Use Type Fuel Oil #2 Use (kBtu)

Total GHG Emissions (Metric Tons 

CO2e)

Address 1(self-reported)
3rd Largest Property Use Type - 

Gross Floor Area (ft²)
Fuel Oil #4 Use (kBtu)

Direct GHG Emissions (Metric Tons 

CO2e)

Address 2
Year Built Fuel Oil #5 & 6 Use (kBtu)

Indirect GHG Emissions (Metric 

Tons CO2e)

Postal Code
Number of Buildings Diesel #2 Use (kBtu)

Water Use (All Water Sources) 

(kgal)

Street Number
Occupancy Propane Use (kBtu)

Water Use Intensity (All Water 

Sources) (gal/ft²)

Street Name
Metered Areas (Energy) District Steam Use (kBtu) Water Required?

Borough
Metered Areas  (Water) District Hot Water Use (kBtu) Generation Date

DOF Gross Floor Area (ft²) ENERGY STAR Score District Chilled Water Use (kBtu)
DOF Benchmarking Submission 

Status  
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As observed on Table 1 above, the dataset contains some spatial and physical infor-

mation about reported buildings such as property name, property ID, address, postal 

code, street number, borough etc. BBL number is a 10-digit property borough, block, 

and lot identifier. The first digit represents the borough where 1 is for Manhattan, 2 is 

Bronx, 3 is Brooklyn, 4 is Queens, 5 is Staten Island. The following digits represent the 

tax block and the tax lot number. BBL number is a unique identifier for each building 

reported. For the property type fields, several options are available in Portfolio Manager 

and can be either residential (multifamily building) or non-residential (hotel, restaurant, 

hospital, office, warehouse etc.). Year build stands for the year in which the property 

was constructed. The occupancy field contains a percentage of the property’s gross floor 

area which is occupied and operational. Metered Areas for energy and water is a desig-

nation of what areas within the building are covered by energy and water meters accord-

ingly. Energy Star score is a percentile ranking calculated in Portfolio Manager based 

on self-reported energy usage of the reporting year. Information about energy usage are 

provided from various columns, such as site or source EUI (energy use intensity) and 

their weather normalized values. Fuel oil use is a summary of the annual consumption 

of an individual type of energy.  

Also, information about natural gas use, diesel, steam, and water use are provided. 

Greenhouse gas emissions are calculated for the reported year in metric tons of carbon 

dioxide equivalent. Total greenhouse gas emissions include both direct and indirect 

emissions. Release date contains the date of submission for a specific property and wa-

ter required indicates if the property was eligible to use water benchmarking data. 

3.2.2 Local Law 97 

Local Law 97 sets detailed requirements for two initial compliance periods: 2024-2029 

and 2030-2034. Buildings over 25000 square feet are required to meet annual carbon 

intensity limits during each compliance period based on building type.  To comply, 

building owners must submit an emissions intensity report every year or pay substantial 

fines. In this work, we try to predict whether a building complies or not to the according 

compliance period using the LL84 dataset combined with the carbon emissions intensity 

limits provided by LL97. The emissions intensity limits are listed below in Table 2. 
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Table 2: Carbon emissions intensity limits by property type and period. 

Occupancy Group Space Use Carbon Limit 2024-2029(kgCO2e/sf) Carbon Limit 2030-2034 (kgCO2e/sf)

B- Ambulatory Health Medical Office 23,81 11,93

M-Mercantile Retail 11,81 4,3

A-Assembly Assembly 10,74 4,2

R1- Hotel Hotel 9,87 5,26

B-Business Office 8,46 4,53

E-Educational School 7,58 3,44

R2-Residential Multifamily Housing 6,75 4,07

F-Factory Factory 5,74 1,67

S-Storage Storage/Warehouse 4,26 1,1  

 

In this work, LL97 was used to solve a binary classification problem: whether a build-

ing complies or not to the specific requirements and it was combined with LL84 to de-

termine the limits of acceptance according to building type. Both periods were used to 

make predictions by solving the same classification problem with different acceptable 

limits. These two identical problems are solved separately in order to make comparisons 

and draw some conclusions.  
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4 Greenhouse gas emissions 

Most of the times, datasets need a preparation in order to be ready for analysis and pre-

diction. Preparation includes handling missing or redundant values, removing misre-

ported or anomalous entries and maybe making some corrections if needed. LL84 data 

is self-reported, therefore many data fields suffer from missing values and outliers. 

4.1 Pre-processing 

First, we remove entries with duplicate or missing Borough, Block and Lot (BBL) num-

ber, because as we have mentioned BBL is a unique spatial identifier for properties in 

NYC. Then we remove observations with zero or missing values in their reported 

weather normalized source EUI and we do the same for total GHG emissions.  

Subsequently, we observe that some features are useless for our study because they con-

tain in all rows a “Not Found” entry. Thus, we dropped the following columns: Water 

Required, DOF Gross Floor Area and DOF Benchmarking Submission Status. Our final 

dataset consists of 15 features which are listed at Table 3. Fields were removed because 

they either suffered from a high percentage of missing values or they were not affecting 

our predictions. 

Table 3: Fields of LL84 kept for analysis 

Borough Weather Normalized Site Electicity Intensity (kWh/ft2)

Self-Reported Gross Floor Area(ft2) Weather Normalized Site Natural Gas Intensity (therms/ft²)

Primary Property Type-Self Selected Water Use Intensity (All Water Sources) (gal/ft²)

Year Built Total GHG Emissions (Metric Tons CO2e)

Number of Buildings ENERGY STAR Score

Occupancy Weather Normalized Site Natural Gas Use (therms)

Weather Normalized Source EUI (kBtu/ft2) Electricity Use - Grid Purchase (kWh)

Weather Normalized Site EUI (kBtu/ft2)  

 

Specifically, features like Property ID, Parent Property ID, NYC Building Identification 

Number(BIN), Address 1, Address 2, Postal Code and Order were excluded because the 

BBL number provided all the information we needed to identify a specific building. Al-

so, Fuel Oil Use (from number 1 to number 6), Diesel Use, Propane Use, District Hot 

Water Use, District Chilled Water Use, District Steam Use, and Annual Maximum De-
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mand columns were dropped because they were almost blank. Figure 4 illustrates the 

process of feature selection. 

 

Figure 4: Diagram of feature selection process 

The next step was to group building type values in order to be compatible with the 

building types listed on Local Law 97. More specifically, the building types were clus-

tered into 9 main categories: Office, Educational, Hotel, Residential, Warehouse, Public 

Building, Retail, Hospital, and Other. Below at Figure 5 we can see the proportion of 

each building type in our dataset. As we can see, residential buildings (multifamily 

housing) appear 68.3% of the times in the energy disclosure dataset and non-residential 

buildings appear only 31.7% of the times. This imbalance between dwellings and non-

residential buildings will make it more difficult to draw conclusions and understand the 

behavior of several building types.  
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Figure 5: Building types after grouping. 

 

To filter our data from misreported or anomalous entries, we apply for each building 

type a logarithmic transformation to the Total GHG values. By doing so, we try to ap-

proximate the normal distribution given that we have observed a log-normal distribution 

in the raw data, as shown in Figure 6. Observations were excluded from the analysis if 

they were falling outside the threshold of two standard deviations from the logged 

mean. 

Figure 6 and Figure 7 show an illustration of the outlier detection process. Observing 

Figure 7, the range of CO2 metric tons emitted annually has been bounded between 123 

tons and 805.3 tons, while the mean value for greenhouse gas emissions is 361.02 met-

ric tons of CO2. As we have mentioned previously, the LL84 dataset is self-reported so 

many values were misreported. As a result, filtering outliers is essential to ensure that 

our predictions are robust and avoid large errors. Figure 8 shows how the building type 

percentages are affected after removing outliers. As we observe, educational buildings 

outnumber offices after dropping anomalous observations, while residential buildings 

remain at the first place of buildings reported. This means that most misreported or 

anomalous values tend to appear in non-residential building types indicating a lack of 

effective BMS systems. 
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 Then, for the rest data fields we replace missing entries with the mean value of the re-

spective column. Finally, we perform one hot encoding for the feature Primary Property 

Type to fit our data in several machine learning algorithms and make our predictions. 

 

 

Figure 6: Histogram of log transformed GHG emissions. The red line shows the log sample 

mean. 
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Figure 7: Top: Histogram of log GHG emissions after removing entries falling out of two stand-

ard deviations from the logged mean for each building type. Bottom: Histogram of the original 

values of GHG emissions after eliminating outliers. 
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Figure 8: The percentage of building types contained in the dataset after removing outliers. 

 

4.2 Patterns 

After performing the initial preprocessing, it is essential to understand the profile of 

buildings reported and discover some useful patterns about annual emissions. Figure 9 

shows which building types are less “green” based on their submitted greenhouse gas 

emissions. As we can see, retail properties tend to emit almost 450 metric tons of CO2 

every year. Hotels seem to be at the second place of the less “green” building types, 

while offices and educational buildings emit approximately 400 metric tons annually. 

Actually, this pattern revealed is expected, as non-residential buildings consume more 

energy on HVAC and lighting systems and indicate high occupancy rates.  

Then, we tried to discover any correlation between different boroughs and their building 

emissions. Indeed, buildings in some boroughs in NYC show lower emission values 

compared to others. By observing Figure 10, it is interesting that within each borough 

we find the same pattern we discovered in Figure 9. More specifically, retail buildings 

show high emissions in all boroughs, especially in Bronx. Also, Manhattan and Queens 

do not indicate excessive emissions compared with Bronx or Staten Island.  
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Figure 9: Annual greenhouse gas emissions according to property type 

 

 

 

Figure 10: Greenhouse gas emissions by borough and property type. 

Next, buildings were grouped according to their recorded year of built in five groups; 

buildings constructed before 1900, between 1900 and 1950, 1950 to 1970, 1970 to 2000 

and after 2000. As shown in Figure 11 new constructions tend to be less energy inten-

sive than older buildings. This illustration indicates that new or refurbished buildings 

are more energy efficient, using greener materials, smart devices and less energy con-

suming heating and ventilation systems. 
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Figure 11: Energy intensity of buildings which were constructed at different time periods. 

 

Exploratory data analysis is a very significant step of predictive analytics, which aims to 

give insights about feature relationships, correlations, useful patterns and help under-

stand the data prior to predictions. A heatmap illustrates the correlations between all 

features as color in two dimensions. Diagonal values are always equal to 1, as they rep-

resent the correlation between two identical attributes, thus values above the diagonal 

are omitted.  

Figure 12 shows how features are related to each other. As we observe, weather normal-

ized site and source electricity intensities are highly correlated, which is not a surprise. 

In addition, natural gas intensity seems to relate to source and site EUI.  Also, the 

logged GHG emissions are extremely correlated with total GHG emissions, as this field 

represents the logarithm of annual emissions. Except from the logarithmic column, 

emissions are correlated with electricity use and gross floor area, while some features 

do not appear that relevant, such as the building type, energy star score, water use, year 

build and occupancy. In this point, it is crucial to remind that some of these features did 

not contain adequate information, so they were replaced with mean values or maybe 

suffered from misreported values. 
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Figure 12: Heatmap illustrating correlations between all features. 
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5 Experimental Results 

This chapter includes the results of the predictions performed for the two problems; the 

first one is about predicting the annual CO2 emissions (in metric tons emitted) using re-

gression and the second one determines which buildings comply to emissions limits via 

classification. 

5.1 Predictions for annual GHG emissions 

Using regression on our data fields that were kept for analysis, the following results are 

achieved (Figure 13). Before applying any machine learning algorithm, a train test split 

was performed, keeping 25% of our data for testing to evaluate our predictions. Also, 

data was standardized using Standard Scaler from Scikit- Learn package. The first algo-

rithm to be examined is Random Forest, which is one of the most powerful algorithms 

across the Decision Trees family.  

In addition, XG Boost Regressor is used which is a tree based boosting algorithm as 

well as Cat Boost Regressor which is a gradient boosting algorithm. Additionally, Arti-

ficial Neural Networks are used, as they are considered one of the most powerful pre-

dictors in the bibliography [19]. Three evaluation metrics were used, Mean Absolute 

Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). For 

the purpose of this study, we mainly focused on minimizing RMSE, because RMSE can 

be more useful when large errors are undesirable. Figure 13 illustrates the RMSE scores 

after performing a 5-fold cross validation to evaluate our models. 
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Figure 13: Cross validation RMSE scores. 

 

As we observe, CatBoost gives the best score among all algorithms used. ANNs outper-

form Random Forest and XGBoost, while XGBoost presents a significant difference on 

all metric scores. The ANN model used in the study is a feed-forward MLP, composed 

of 5 layers in total and thus 3 hidden layers. The number of hidden neurons was chosen 

to be 45 by ‘trial-and-error’ (see Regression Appendix). Also, a Rectified Linear Unit 

(ReLu) activation function is applied on the hidden layers and a linear function for the 

output. Training is stopped when the maximum number of epochs is reached, which is 

100.  

Figure 14 illustrates feature importance using Random Forest. The most significant fea-

ture for CO2 emissions is gross floor area which indicates that the intuition that building 

size affects its energy consumption and emissions is confirmed. Indeed, in [1] where the 

LL84 dataset was used to predict electricity and natural gas use, log building size which 

is the natural logarithm of gross floor area of each property is one of the six more pow-

erful predictors chosen after applying the stepwise feature selection process.  

In our case, the four most important attributes after gross floor area are: Weather nor-

malized site EUI, Normalized Natural Gas Use, Electricity Use and Weather normalized 

source EUI. As we can see, year of construction and building type do not affect green-
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house gas emissions, neither the Energy Star score. At this point, it is essential to clarify 

that the dataset used is self-reported, as mentioned in the previous section, so many en-

tries may be misreported, or missing and replaced by a mean value. So, these attributes 

could have been more powerful to predict CO2 emissions if they contained actual values 

for each property. Also, almost 75% of the buildings examined are residential, so this 

imbalance may affect the importance of property type. 

 

 

Figure 14: Feature importance using Random Forest 

 

In predictive analytics, hyperparameter tuning is a step that is rarely omitted from a 

complete analysis procedure. Generally, default values perform well, but hyper tuning 

can lead to more accurate results. By reviewing the documentation of each algorithm 

but also the bibliography, we tried to find the right parameter grid in order to improve 

our models. Table 4 shows which parameters were chosen to be examined and which 

were the final selections after performing a grid search using GridSearchCV from the 

model selection Scikit-Learn package. 
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Table 4: The initial grid and final selections for each of the examined hyperparameters 

Model 
  Hyperparameters     

     
RF  n_estimators min_samples_leaf min_samples_split 

 Initial grid 100,200,300,500,1000 1, 2 1, 2 

 Final selection 1000 1 2 

     
XGBoost  n_estimators min_samples_leaf min_samples_split 

 Initial grid 100,200,300,500,1000 1, 2 1, 2 

 Final selection 1000 1 1 

     
CatBoost  n_estimators depth 12_leaf_reg 

 Initial grid 100,200,300,500,1000 2, 4, 6, 8, 10 1, 2, 3 

 Final selection 1000 10 1 

     
ANN  epochs batch_size optimizer 

 Initial grid 100,500,1000 10,25,32 adam, rmsprop 

  Final selection 1000 10 adam 

 

By observing the final selections for all algorithms, we can easily detect several similar-

ities among them. More precisely, for all tree- based algorithms 1000 number of trees 

(estimators) were chosen which indicates that the default value of 100 estimators was 

not adequate to produce satisfactory results. Also, the minimum number of samples re-

quired for leaf nodes is equal to 1 for both Random Forest and XGB. Then, a very time-

consuming grid search was conducted to discover the best hyperparameters for ANNs. 

The results have shown that the ideal number of epochs is 1000, the batch size equal to 

10 and an ‘adam’ optimizer. Adam optimization is a stochastic gradient decent method 

based on adaptive estimation of first and second order moments [4]. Figure 15 illus-

trates the progress in MSE validation scores by increasing the number of epochs of 

ANNs training phase. The final RMSE scores are shown in Table 5 below. The im-

provement for all models is obvious, while ANNs gave the best RMSE score. 
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Figure 15: Cross validation MSE scores according to number of epochs 

 

Table 5: Regression results after the selection of the optimal hyperparameters 

  
Random Forest XGBoost Catboost ANN 

RMSE 19,67 19,82 17,25 15,69 

 

5.2 Predicting compliance 

After forecasting the metric tons of CO2 emitted from buildings annually, there is a need 

to predict if their environmental footprint exceeds the acceptable limit. Environmental 

regulations not only impact building owners, who must pay a fine per excessive metric 

ton, but also aid achieving global goals which are crucial for reducing greenhouse gas 

emissions. The goal here, is to predict compliance for properties contained in the LL84 

dataset, using the LL97 carbon limits for each building type.   

So far, the constructed models aimed to predict the metric tons of greenhouse gas emit-

ted annually through regression. Now, the possible results of our predictions are two 

values: yes or no; yes for compliance and no for the opposite, thus a binary classifica-

tion problem is examined. The preprocessing phase does not differ from the one we per-
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formed for the regression problem. A new data field was constructed, which stores the 

total GHG emissions in kilograms CO2 in order to be compatible with LL97 compliance 

limits. Then, the limits for all building types were calculated by multiplying the limits 

per square feet with self-reported gross floor area. If total CO2 emissions are less or 

equal to this boundary, this property complies to LL97 legislation, so the target label 

created is equal to 1, elsewhere the target label is set to 0. Figure 16 shows a diagram of 

this procedure. 

 

Figure 16: Features used for the classification problems 

 

Figure 17 illustrates the percentage of buildings belonging to class “yes” and to class 

“no”. We can easily observe that the imbalance is significant, as almost 80% of proper-

ties do not exceed the acceptable boundaries for greenhouse gas emissions, concerning 

the regulation for the period 2024-2029. The same imbalance is observed for years 

2030-2034 in Figure 18, but this time almost 80% of buildings do not comply to envi-

ronmental standards. Not surprisingly, in the future environmental regulations will be-

come stricter, as the need to decarbonize all sectors of human activity will grow. 
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Figure 17: Target labels for compliance in LL97 for the period 2024-2029. 

 

 

Figure 18: Target labels for compliance in LL97 for the period 2030-2034. 

 

5.2.1 Predictions for 2024-2029 

For this binary classification problem, we exclude the feature “self-reported gross floor 

area” because it was used to calculate the limits for compliance and thus it will affect 

our predictions. It is essential to note that the features kept for prediction are the same 

that have been used for the regression problem, minus one which is the gross floor area 

of the property that was explained above. So, the goal here is to predict compliance for 
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buildings according to their characteristics and their energy use. Table 6 shows the 

fields used for predictions. 

 

Table 6: Features used for analysis for the classification problems 

Borough Weather Normalized Site Electicity Intensity (kWh/ft²)

Primary Property Type-Self Selected Weather Normalized Site Natural Gas Intensity (therms/ft²)

Year Built Water Use Intensity (All Water Sources) (gal/ft²)

Number of Buildings Total GHG Emissions (Metric Tons CO2e)

Occupancy ENERGY STAR Score

Weather Normalized Source EUI (kBtu/ft²) Weather Normalized Site Natural Gas Use (therms)

Weather Normalized Site EUI (kBtu/ft²) Electricity Use - Grid Purchase (kWh)  

 

 As it was mentioned before, the target variable takes two possible values 1 or 0 for 

properties which do or do not comply for this specific period, respectively. A train/test 

split was conducted keeping 25% of our data to evaluate the predictions. In addition, 

standardization was performed both on the train and test set to enhance our predictions’ 

accuracy. We used the accuracy score from the Scikit-Learn package to evaluate our 

predictions. 

A stratified 5-fold cross validation was performed to evaluate the predictions quality. 

Stratified cross validation was used because a significant class imbalance was observed 

and mentioned previously. Three algorithms were used for prediction; Random Forest, 

XGBoost and CatBoost, while ANNs were left out of the analysis to reduce complexity 

and execution time. Also, by looking at Figure 19, all algorithms performed well, and 

cross-validation accuracy scores were impressively high. CatBoost and Random Forest 

results seem almost identical, while XGBoost gives the lowest accuracy score. 
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Figure 19: Cross validation accuracy scores for Random Forest, XGBoost and CatBoost. 

 

Figure 20 shows which features are more important for the classification problem, using 

as base predictor the Random Forest classifier. The most significant features are Weath-

er normalized Site EUI and Weather normalized Source EUI. Also, natural gas intensity 

and energy star seem to be important for our predictions.  

Comparing this figure with the feature importance for the regression problem analyzed 

previously, source and site EUI were significant predictors in both regression and classi-

fication problem. As it was mentioned, gross floor area, which was the most important 

attribute for predicting CO2 emissions through regression was eliminated from predict-

ing compliance because it was used to calculate the limits and thus it would distort our 

predictions.  

Surprisingly, energy star score tends to be more important here than previously and the 

opposite happens for electricity use. It is obvious that site EUI importance score is by 

far higher than source EUI in both cases. An explanation for that could be the fact that 

site energy use intensity is the amount of heat and electricity consumed by a building as 

reflected in utility bills. On the contrary, source EUI represents the total amount of raw 

fuel that is required to operate the building and it incorporates all transmission, delivery, 

and production losses.  
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Consequently, it is more likely that building owners are more aware of their site energy 

use by looking at their bills, but more unlikely to have calculated their source energy 

use properly. So, site EUI tends to be more reliable for our predictions, because it has a 

lower possibility to be misrecorded in the LL84 dataset. However, the Environmental 

Protection Agency (EPA) suggested that source energy is the most equitable unit of 

evaluation and provides a complete assessment of energy efficiency in a building [3]. 

 

 

Figure 20: Feature importance using Random Forest classifier 

 

After testing the models with their default values, a grid search was conducted to deter-

mine if there are any hyperparameters which will enhance model accuracy. Usually de-

fault values perform well, but improvement is always desirable.  For Random Forest 

and XGBoost we focused on tuning the number of trees (‘n_estimators’), 

‘min_samples_leaf’ and ‘min_samples_split’. For CatBoost classifier, ‘n_estimators’, 

‘depth’ and ‘12_leaf_reg’ were examined. The starting values and final selections for 
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hyperparameters of the models are shown in Table 7 below. Any hyperparameters not 

displayed were not changed and thus left at the defaults. 

Table 7: The initial grid and final selections for each of the chosen hyperparameters  

Model 
  Hyperparameters     

     
RF  n_estimators min_samples_leaf min_samples_split 

 Initial grid 

50, 80, 100, 120, 140, 

200 1, 2 1, 2 

 Final selection 50 1 2 

     
XGBoost  n_estimators min_samples_leaf min_samples_split 

 Initial grid 

50, 80, 100, 120, 140, 

200 1, 2 1, 2 

 Final selection 200 1 1 

     
CatBoost  n_estimators depth 12_leaf_reg 

 Initial grid 

50, 80, 100, 120, 140, 

200 2, 4, 6, 8, 10 1, 2, 3 

  Final selection 200 10 1 

 

 

Table 8 illustrates the models’ prediction performance tested on unknown data. Random 

Forest is the most powerful predictor with accuracy score 98,7%. XGB and CatBoost 

have also performed well with small differences between them. Random Forest has 

shown a significant improvement after choosing the appropriate hyperparameters, while 

CatBoost score is slightly higher than before.  

Table 8: Classification results for the period 2024-2029 

2024-2029 
Random Forest XGBoost Catboost 

Accuracy 0,9870 0,9835 0,9857 

 

5.2.2 Predictions for 2030-2034 

The acceptable CO2 limits emitted from buildings for the period 2030-2034 are much 

lower than the limits of the previous period examined, but the procedure is almost iden-

tical. Specifically, gross floor area was excluded from the analysis for the same reason 

mentioned before and the same algorithms were tested to compare the accuracies be-
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tween these different periods. As previously, a stratified 5-fold cross validation was per-

formed to evaluate the models. The mean accuracy score obtained is illustrated in Fig-

ure 21. Observing models’ accuracy CatBoost and Random Forest perform almost iden-

tically, but XGBoost is slightly worse. However, the difference between all algorithms 

is less than 1% which is not significant. In Figure 22, we notice the same pattern con-

cerning feature importance, as expected. 

 

Figure 21: Cross validation accuracy scores for Random Forest, XGBoost and CatBoost. 
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Figure 22: Feature importance using Random Forest classifier 

 

Then, a grid search was conducted to discover the best hyperparameters for our prob-

lem. Again, we examine ‘n_estimators’, ‘min_samples_leaf’ and ‘min_samples_split’ 

for Random Forest and XGB, and the parameters ‘depth’, ‘12_leaf_reg’, ‘n_estimators’ 

for CatBoost classifier, respectively. The initial values tested and the final selections for 

the hyperparameters are shown in Table 9. 

The final results are shown in Table 10 below. As we can see, the accuracy scores have 

improved after choosing the right hyperparameters and CatBoost slightly outperforms 

the other two algorithms tested. The displayed results indicate the accuracy scores ob-

tained by making predictions to our test set. 
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Table 9: The initial grid and final selections for each of the chosen hyperparameter 

Model 
  Hyperparameters     

     
RF  n_estimators min_samples_leaf min_samples_split 

 Initial grid 

50, 80, 100, 120, 

140, 200 1, 2 1, 2 

 Final selection 80 1 2 

     
XGBoost  n_estimators min_samples_leaf min_samples_split 

 Initial grid 

50, 80, 100, 120, 

140, 200 1, 2 1, 2 

 Final selection 200 1 1 

     
CatBoost  n_estimators depth 12_leaf_reg 

 Initial grid 

50, 80, 100, 120, 

140, 200 2, 4, 6, 8, 10 1, 2, 3 

  Final selection 200 10 1 

 

 

Table 10: Classification results for the period 2030-2034 

 2030-2034 Random Forest XGBoost Catboost 

Accuracy 0,9810 0,9814 0,9818 
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6 Evaluation and Discussion 

Emissions forecasting for the building sector is a complex problem, which requires de-

tailed information about building characteristics and technologies, as well as a deep un-

derstanding of the domain. Although domain knowledge is not considered compulsory 

in predictive analytics, problems like the one that is approached in this dissertation 

could help give insights and explanations to the observations that arise from the whole 

process. The bibliography around building emissions is still limited, as most of the stud-

ies examine electrical load prediction. So, the purpose of this work was to fill this gap 

and aims to give useful information about buildings’ environmental footprint. 

This work aims to forecast annual greenhouse gas emissions from several large build-

ings reported and also predict if a certain building complies to environmental regula-

tions. These two problems can be useful for different reasons, as the result of a regres-

sion problem is a continuous number, while a binary classification problem answers 

with yes or no. Therefore, predicting the environmental footprint through regression 

could help governments, engineers and decision makers have a clear picture of the 

amounts of CO2 emitted from the building sector and thus take actions like retrofits, or 

energy efficiency measures, renewables etc.  

The results from the classification problem for the two periods (2024-2029, 2030-2034) 

give insights about the percentage of buildings in New York City which falls into the 

acceptable boundaries and thus is considered as environmentally friendly. Most im-

portantly, it is a tool for informing building owners about whether their property is 

ready to meet the environmental requirements and prepare them for any potential 

measures they need to take. Indeed, this is a zero-cost way to be aware of whether a 

building complies to the legislations or not, which in other cases would require energy 

benchmarking, which holds several limitations and can be time consuming. 
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6.1 Pre-processing and ML algorithm selection 

As analyzed in detail in 4.1, a pre-processing step was performed before making any 

predictions. This step was very crucial for the analysis procedure because the dataset 

suffered from numerous missing values, as well as outliers. Therefore, a selection was 

made to keep only attributes that contained useful information and would contribute to 

our predictions. Most of the input variables are related to energy data for each property, 

like energy use intensity and electricity use, as well as data about fuel consumption and 

water use. Afterwards, buildings were grouped in nine building types to agree with the 

types given in LL97 tables. According to building type, an outlier detection process has 

been applied.  

This approach aimed to detect any outliers by type to ensure that representative values 

from each building category are preserved. Then, categorical fields were encoded to fit 

into multiple machine learning algorithms. Finally, a brief exploratory data analysis re-

vealed some interesting patterns about CO2 emissions. Non-residential buildings have 

shown higher levels of CO2, especially high-occupied buildings like hospitals, schools 

and universities or malls and retail stores. The main reason of increased emissions in 

these types of buildings is their need to adapt to their occupants’ needs quickly, as well 

as their higher energy requirements. Also, aging buildings are less friendly to the envi-

ronment than new constructions, because of their lack in energy efficient technologies 

and materials.  

In this study, four different machine learning algorithms were examined, which exhibit 

different strengths and weaknesses. Generally, tree-based boosting or bagging algo-

rithms perform remarkably well, even without choosing the best hyperparameters. In 

fact, Random Forest and CatBoost gave very good results both in regression and classi-

fication. Also, their execution time is only a few seconds or couple minutes when tun-

ing. On the other hand, ANNs are strong predictors according to bibliography and it was 

obvious that outperformed in terms of RMSE scores. However, their execution time is 

longer compared with the other models used and trying to find the best hyperparameters 

required many hours even with a small parameter grid. The basic conclusion about the 

selection of the best algorithm is that the complexity of the model was not so large as to 

let any of the algorithms the chance to stand out. As it is clear from the results, the dif-

ference between them for the classification problem is lower than 1%.  
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6.2 Extracted knowledge 

The most important results of this work are briefly listed below: 

• The most important predictors for the regression problem are the gross floor ar-

ea, source and site energy use intensity, electricity and natural gas use. That 

means that these characteristics could be the key in decarbonizing buildings, 

while building type and use do not play such significant role. 

• ANNs outperformed all other algorithms tested, reaching the lowest RMSE 

score.  

• Number of epochs affects RMSE results the most for ANNs. Indeed, the RMSE 

score for 1000 epochs of training was almost 5 tons of CO2 lower than the score 

resulting from 100 epochs. 

• Tree based algorithms’ performance is affected from the number of trees. It is 

clearly noticed that all algorithms performed better when the number of estima-

tors increased from the default value of 100 to 1000. 

• For the classification problems, for the first period (2024-2029) almost 80% of 

the buildings contained in our dataset comply with LL97, while for the second 

period (2030-2034) only 20% of the buildings fulfill the requirements. This in-

dicates the need to make a transition towards greener technologies and energy 

efficiency refurbishments in the next few years. 

• For both periods examined, the most significant features were source and site 

EUI, reaching a higher importance score than the one observed at the regression 

problem. Also, electricity and natural gas use were significant attributes as be-

fore, and this time energy score was one of the strongest predictors for the two 

binary classification problems. As a result, building owners should try to im-

prove their energy score for achieving emission compliance. 

• Random Forest presented the highest accuracy score among all for the first peri-

od, while at the second period the best algorithm was CatBoost. However, the 

difference between all algorithms tested was marginal, so the performance was 

overall good. 
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6.3 Threats to validity 

Most of the times, scientific works suffer from several threats that might affect the va-

lidity of the results. These threats may be caused by either the data acquisition proce-

dure, the selection of specific methods or algorithms, or even by the nature of data it-

self. In our case, the dataset used was LL84 which was self- reported, thus the accuracy 

of the data contained is questionable, especially in fields where building owners are not 

familiar with, like source energy use intensity or occupation percentage. 

 Although a preprocessing and data cleaning procedure has been followed, still it was 

difficult to understand if all entries are correct or detect all anomalous ones. In addition, 

as it was mentioned in 4.1, several features have been eliminated from the analysis be-

cause they contained too many missing or non-valid values. The fields excluded would 

probably help the analysis and give more insights about buildings behavior and charac-

teristics. 

Also, the majority of the buildings examined were residential and the commercial build-

ings were very limited. This imbalance does not favor the results and makes it harder to 

draw conclusions about specific property types and their environmental footprint. 

Finally, the selected metric for the classification problems was accuracy, which is not 

always the most appropriate metric especially when class imbalance is present. As it 

was observed, in both periods the ones were way more numerous than zeros or the op-

posite, so maybe another metric would be more appropriate like precision or recall.  
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7 Conclusions and Future Di-
rections 

This chapter summarizes the results and presents ideas for future work. This research 

focused on predicting greenhouse gas emissions caused by the building sector, focusing 

on single buildings and their characteristics. The purpose of the study was to analyze the 

factors affecting building emissions and fill the gap in the bibliography, which mainly 

focuses on energy performance and energy load forecasting. 

7.1 Conclusions 

Understanding building environmental footprint is a crucial component of improving 

urban sustainability plans, reach carbon reduction goals, as well as achieve higher levels 

of energy efficiency and comfort. Numerous cities and countries all over the world have 

already adopted energy use and carbon reduction plans, mainly focused on advancing 

energy efficiency for the existing building stock. To support these goals and comply to 

the regulations, the implementation of energy disclosure policies requiring buildings of 

a certain size or type to report their energy consumption, has created new streams of da-

ta. These data can provide useful information about urban energy dynamics, give in-

sights about greenhouse gas emissions and aid growing data-driven strategies for 

achieving more efficient buildings with less or nearly zero carbon emissions. 

The analysis presented here aims to predict the total greenhouse gas emissions of build-

ings using the LL84 self-reported energy disclosure data from properties in New York. 

Using the acceptable limits of carbon by building category, which are provided by a 

carbon reduction legislation applied in NYC, we tried to predict whether a building 

complies to the carbon law for two periods. In this problem we used the same dataset 

(LL84), which includes information about the building and its energy and water use. 

Using four machine learning algorithms for the regression problem and three for the 

classification problems, the results suggest that the data from LL84 sample can produce 

reasonably accurate predictions of carbon emissions across the city at a building scale. 
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Overall, we found little differences depending on the machine learning methods used, 

based on the resultant RMSE values for the regression part and the accuracy scores for 

the classification of the two periods examined. ANNs provide the most accurate predic-

tions reaching the lowest RMSE score, while Random Forest and CatBoost are the best 

algorithms chosen for the classification problems, respectively. It is also observed that 

building size and energy use intensity play a major role in its environmental footprint. 

Most samples represented multifamily housing buildings which made it difficult to con-

clude which building type or use contributes more to excessive emissions. However, the 

pattern revealed was that buildings that are highly occupied and consume more energy 

per square feet, such as malls, hospitals, schools or universities, and offices, tend to be 

less green than other building types. Also, in order to comply to carbon reduction regu-

lations building owners will be obliged to take action to decarbonize their properties in 

the next few years.   

The findings presented in this work can create new opportunities for data-driven envi-

ronmental policies in cities and give more insights of how decarbonization goals can be 

achieved. 

7.2 Future research directions 

This work focuses on a complex problem which requires time-consuming analysis and 

multiple approaches. This dissertation tried to cover as many aspects as possible given 

the time and data available for such purpose. However, there is always space for im-

provement and need to explore more aspects in most studies. 

Future studies should collect more energy disclosure data from previous years and may-

be incorporate new data which will be publicly available by the end of the year. It is ob-

vious that more data always lead to more accurate and reliable results. Also, data from 

different regions or cities along with weather information would provide a more com-

prehensive view of carbon emissions caused by the urban building stock. In this work, 

most of the buildings examined were residential, so it was difficult to draw conclusions 

about commercial properties, which need to be examined more, as their emissions were 

proved to be higher than dwellings. 

In addition, future works could try more machine learning algorithms, as well as feature 

selection techniques, which could improve performance. Regarding ANNs implementa-
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tion, a more detailed selection of hyperparameters is desirable to explore their dynamic 

in these types of problems. 

Finally, it is essential to mention the importance of focusing on forecasting emissions, 

as there is little research on this specific field. Combining building with transportation 

data could also be an idea for future research, as the transportation sector accounts for a 

significant amount of urban carbon emissions and could be beneficial for city-scale lev-

el sustainability plans. 
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DATA PREPROCESSING 

 

#import libraries and dataset 

import numpy as np 

import pandas as pd 

from nltk.stem.snowball import SnowballStemmer 

import seaborn as sns 

 

stemmer = SnowballStemmer('english') 

df_train = pd.read_excel('/content/drive/My Drive/dissertation/nyc.xlsx', sheet_name='Informati

on and Metrics') 

# encoding="ISO-8859-1" 

 

‘#### DROPS’ 

df_train = df_train[df_train['BBL - 10 digits'].notna()] #drop rows where BBL is nan 

df_train = df_train[df_train['Weather Normalized Source EUI (kBtu/ft²)'].notna()] #drop rows w

here source eui is nan 

df_train = df_train[(df_train['Weather Normalized Source EUI (kBtu/ft²)'] != 0)] #drop rows wh

ere source eui is zero 

df_train = df_train[(df_train['Total GHG Emissions (Metric Tons CO2e)'] != 0)] #drop rows wh

ere ghg is zero 

df_train = df_train[df_train['Total GHG Emissions (Metric Tons CO2e)'].notna()] #drop rows w

here ghg is nan 

 

df_train['BBL - 10 digits'] = df_train['BBL - 10 digits'].astype(int) 

df_train['SelfReported Gross Floor Area (ft²)'] = df_train['Self-

Reported Gross Floor Area (ft²)'].astype(int) 

df_train.drop_duplicates(['BBL - 10 digits']) 

 

‘#### New dataframe containing only the features kept for analysis’ 

new_df = pd.DataFrame(df_train[['Borough','Self-

Reported Gross Floor Area (ft²)','Primary Property Type -

 Self Selected','Year Built','Number of Buildings', 'Occupancy','Weather Normalized Source EU

I (kBtu/ft²)','Weather Normalized Site EUI (kBtu/ft²)','Weather Normalized Site Electricity Inten

sity (kWh/ft²)','Weather Normalized Site Natural Gas Intensity (therms/ft²)','Water Use Intensity

 (All Water Sources) (gal/ft²)','Total GHG Emissions (Metric Tons CO2e)','Metered Areas (Ener

gy)','Metered Areas  (Water)','ENERGY STAR Score','Weather Normalized Site Natural Gas U

se (therms)','Electricity Use - Grid Purchase (kWh)']]) 

 

 

# encode borough 

new_df['Borough'] = new_df['Borough'].replace({"Manhattan": 1 ,"Bronx": 2,"Brooklyn" : 3,"Q

ueens" : 4,"Staten Island" : 5,"Pine Hill" : 6}) 

 

#group building types 
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new_df['Primary Property Type - Self Selected'] = new_df['Primary Property Type -

 Self Selected'].replace(['K-12 School','College/University','Pre-

school/Daycare','Library','Other - Education','Adult Education'],'Educational') 

new_df['Primary Property Type - Self Selected'] = new_df['Primary Property Type -

 Self Selected'].replace(['Hotel','Residence Hall/Dormitory'],'Hotel') 

new_df['Primary Property Type - Self Selected'] = new_df['Primary Property Type -

 Self Selected'].replace(['Office','Medical Office','Financial Office','Veterinary Office','Mailing 

Center/Post Office'],'Office') 

new_df['Primary Property Type - Self Selected'] = new_df['Primary Property Type -

 Self Selected'].replace(['Multifamily Housing','Other -

 Lodging/Residential','Residential Care Facility'],'Residential') 

new_df['Primary Property Type - Self Selected'] = new_df['Primary Property Type -

 Self Selected'].replace(['Urgent Care/Clinic/Other Outpatient','Other -

 Special-

ty Hospital','Hospital (General Medical & Surgical)','Outpatient Rehabilitation/Physical Therapy

'],'Hospital') 

new_df['Primary Property Type - Self Selected'] = new_df['Primary Property Type -

 Self Selected'].replace(['Retail Store','Supermarket/Grocery Store','Other -

 Mall','Strip Mall','Enclosed Mall'],'Malls and Stores') 

new_df['Primary Property Type - Self Selected'] = new_df['Primary Property Type -

 Self Selected'].replace(['Non-Refrigerated Warehouse','Self-

Storage Facility','Refrigerated Warehouse'],'Warehouse') 

new_df['Primary Property Type - Self Selected'] = new_df['Primary Property Type -

 Self Selected'].replace(['Senior Care Community','Worship Facility','Police Station','Fire Station

','Parking','Other - Public Services','Other -

 Entertain-

ment/Public Assembly','Fitness Center/Health Club/Gym','Performing Arts','Social/Meeting Hal

l','Movie Theater','Courthouse','Museum','Bank Branch'],'Public Building') 

 

for item in new_df['Primary Property Type - Self Selected']: 

  if item not in ['Educational','Hotel','Office','Residential','Hospital','Malls and Stores','Warehous

e','Public Building']: 

    new_df['Primary Property Type - Self Selected'] = new_df['Primary Property Type -

 Self Selected'].replace(item,'Other') 

‘#### OUTLIER DETECTION’ 

#sort values 

new_df.sort_values(by='Primary Property Type - Self Selected',inplace=True) 

new_df.reset_index(drop=True, inplace=True) 

 

#index for each building type 

new_df[new_df['Primary Property Type - Self Selected'] == 'Educational' ].index 

new_df[new_df['Primary Property Type - Self Selected'] == 'Hospital' ].index 

new_df[new_df['Primary Property Type - Self Selected'] == 'Hotel' ].index 

new_df[new_df['Primary Property Type - Self Selected'] == 'Office' ].index 

new_df[new_df['Primary Property Type - Self Selected'] == 'Other' ].index 

new_df[new_df['Primary Property Type - Self Selected'] == 'Public Building' ].index 

new_df[new_df['Primary Property Type - Self Selected'] == 'Residential' ].index 



  -65- 

new_df[new_df['Primary Property Type - Self Selected'] == 'Malls and Stores' ].index 

new_df[new_df['Primary Property Type - Self Selected'] == 'Warehouse' ].index 

 

#LOG10 of Total GHG emissions 

new_df['loglog'] = np.log10(new_df['Total GHG Emissions (Metric Tons CO2e)'])  

 

#educational 

ed1 = 2 * new_df['loglog'][0:2361].std() + new_df['loglog'][0:2361].mean() 

ed2 =   new_df['loglog'][0:2361].mean() - 2 * new_df['loglog'][0:2361].std() 

# drop entries which are above or below the boundary 

new_df.drop(list(new_df[new_df['loglog']> ed1].index),inplace=True) 

new_df.drop(list(new_df[new_df['loglog']< ed2].index),inplace=True) 

 

#hospital 

hos1 = 2 * new_df['loglog'][2362:2548].std() + new_df['loglog'][2362:2548].mean() 

hos2 =   new_df['loglog'][2362:2548].mean() - 2 * new_df['loglog'][2362:2548].std() 

new_df.drop(list(new_df[new_df['loglog']> hos1].index),inplace=True) 

new_df.drop(list(new_df[new_df['loglog']< hos2].index),inplace=True) 

 

#hotel 

hot1 = 2 * new_df['loglog'][2549:3426].std() + new_df['loglog'][2549:3426].mean() 

hot2 =   new_df['loglog'][2549:3426].mean() - 2 * new_df['loglog'][2549:3426].std() 

new_df.drop(list(new_df[new_df['loglog']> hot1].index),inplace=True) 

new_df.drop(list(new_df[new_df['loglog']< hot2].index),inplace=True) 

 

#retail  

mall1 = 2 * new_df['loglog'][3427:3825].std() + new_df['loglog'][3427:3825].mean() 

mall2 =   new_df['loglog'][3427:3825].mean() - 2 * new_df['loglog'][3427:3825].std() 

new_df.drop(list(new_df[new_df['loglog']> mall1].index),inplace=True) 

new_df.drop(list(new_df[new_df['loglog']< mall2].index),inplace=True) 

 

#office 

off1 = 2 * new_df['loglog'][3826:6229].std() + new_df['loglog'][3826:6229].mean() 

off2 =   new_df['loglog'][3826:6229].mean() - 2 * new_df['loglog'][3826:6229].std() 

new_df.drop(list(new_df[new_df['loglog']> off1].index),inplace=True) 

new_df.drop(list(new_df[new_df['loglog']< off2].index),inplace=True) 

 

#other 

oth1 = 2 * new_df['loglog'][6230:7269].std() + new_df['loglog'][6230:7269].mean() 

oth2 =   new_df['loglog'][6230:7269].mean() - 2 * new_df['loglog'][6230:7269].std() 

new_df.drop(list(new_df[new_df['loglog']> oth1].index),inplace=True) 

new_df.drop(list(new_df[new_df['loglog']< oth2].index),inplace=True) 

 

#public 

pub1 = 2 * new_df['loglog'][7270:8189].std() + new_df['loglog'][7270:8189].mean() 

pub2 =   new_df['loglog'][7270:8189].mean() - 2 * new_df['loglog'][7270:8189].std() 

new_df.drop(list(new_df[new_df['loglog']> pub1].index),inplace=True) 

new_df.drop(list(new_df[new_df['loglog']< pub2].index),inplace=True) 
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#residential 

res1 = 2 * new_df['loglog'][8190:27265].std() + new_df['loglog'][8190:27265].mean() 

res2 =   new_df['loglog'][8190:27265].mean() - 2 * new_df['loglog'][8190:27265].std() 

new_df.drop(list(new_df[new_df['loglog']> res1].index),inplace=True) 

new_df.drop(list(new_df[new_df['loglog']< res2].index),inplace=True) 

 

#warehouse 

war1 = 2 * new_df['loglog'][27266:27922].std() + new_df['loglog'][27266:27922].mean() 

war2 =   new_df['loglog'][27266:27922].mean() - 2 * new_df['loglog'][27266:27922].std() 

new_df.drop(list(new_df[new_df['loglog']> war1].index),inplace=True) 

new_df.drop(list(new_df[new_df['loglog']< war2].index),inplace=True) 

 

#replace nan values with the mean value of the respective column 

 

mean_water = new_df['Water Use Intensity (All Water Sources) (gal/ft²)'].mean() 

new_df['Water Use Intensity (All Water Sources) (gal/ft²)'] = new_df['Water Use Intensity (All 

Water Sources) (gal/ft²)'].fillna(mean_water) 

mean_el =  new_df['Weather Normalized Site Electricity Intensity (kWh/ft²)'].mean() 

new_df['Weather Normalized Site Electricity Intensity (kWh/ft²)'] = new_df['Weather Normaliz

ed Site Electricity Intensity (kWh/ft²)'].fillna(mean_el) 

mean_es =  new_df['ENERGY STAR Score'].mean() 

new_df['ENERGY STAR Score'] = new_df['ENERGY STAR Score'].fillna(mean_es) 

mean_therms =  new_df['Weather Normalized Site Natural Gas Use (therms)'].mean() 

new_df['Weather Normalized Site Natural Gas Use (therms)'] = new_df['Weather Normalized S

ite Natural Gas Use (therms)'].fillna(mean_therms) 

mean_grid =  new_df['Electricity Use - Grid Purchase (kWh)'].mean() 

new_df['Electricity Use - Grid Purchase (kWh)'] = new_df['Electricity Use -

 Grid Purchase (kWh)'].fillna(mean_grid) 

 

 

#one hot encoding for the property type column 

df_dummies = pd.get_dummies(new_df['Primary Property Type - Self Selected'], prefix='type') 

new_df = pd.concat([new_df, df_dummies], axis=1) 

new_df.head() 

 

REGRESSION 

 

#TRAIN-TEST SPLIT 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import confusion_matrix,accuracy_score,classification_report 

from sklearn.metrics import roc_auc_score,roc_curve,scorer 

from sklearn.metrics import f1_score 

import statsmodels.api as sm 

from sklearn.metrics import precision_score,recall_score 

from yellowbrick.classifier import DiscriminationThreshold 
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from sklearn import metrics 

from sklearn.preprocessing import scale 

 

cols    = [i for i in new_df.columns if i not in 'Primary Property Type -

 Self Selected'+'loglog'+'Total GHG Emissions (Metric Tons CO2e)'+'Metered Areas (Energy)' 

+ 'Metered Areas  (Water)' ] 

target_col = ["Total GHG Emissions (Metric Tons CO2e)"] 

 

# features 

X = new_df[cols]  

 

# Target variable 

y = new_df['Total GHG Emissions (Metric Tons CO2e)'] 

 

# split X and y into training and testing sets 

train_X,test_X,train_Y,test_Y=train_test_split(X,y,test_size=0.25,random_state=0) 

 

#SCALING 

from sklearn import preprocessing 

from sklearn.preprocessing import StandardScaler 

 

scaler = StandardScaler().fit(train_X) 

train_X = scaler.transform(train_X)  

test_X = scaler.transform(test_X)  

 

#CROSS VALIDATION SCORES FOR ALL ALGORITHMS 

 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import GridSearchCV, cross_val_score, StratifiedKFold, learning

_curve, cross_validate 

from sklearn.model_selection import StratifiedKFold 

from xgboost import XGBRegressor 

from catboost import CatBoostRegressor 

import seaborn as sns 

import matplotlib.pyplot as plt 

from keras.wrappers.scikit_learn import KerasRegressor 

from keras.layers import Dense, Activation 

from keras.models import Sequential 

from keras.callbacks import History  

 

def build_ann(): 

    model = Sequential() 

    # Adding the input layer and the first hidden layer 

    model.add(Dense(41, activation = 'relu', input_dim = 20)) 

 

    # Adding the second hidden layer 

    model.add(Dense(units = 41, activation = 'relu')) 
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    # Adding the third hidden layer 

    model.add(Dense(units = 41, activation = 'relu')) 

 

    # Adding the output layer 

    model.add(Dense(units = 1)) 

    # Compiling the ANN 

    model.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics = ['mse']) 

 

    return model  

 

model  =  KerasRegressor(build_fn=build_ann, batch_size=10, epochs=100) 

accura-

cies = cross_val_score(estimator= model, X=train_X, y=train_Y, cv=5, scoring="neg_root_mea

n_squared_error") 

 

mean=accuracies.mean() 

print(mean) 

 

random_state = 42 

skfold = StratifiedKFold(5) 

regressors = [] 

regressors.append(RandomForestRegressor(random_state=random_state)) 

regressors.append(XGBRegressor(random_state=random_state)) 

regressors.append(CatBoostRegressor(random_state=random_state)) 

 

cv_results = [] 

for regressor in regressors : 

    cv_results.append(cross_val_score(regressor, train_X, train_Y, scoring = "neg_root_mean_sq

uared_error", cv = 5, n_jobs=-1, verbose=2)) 

 

cv_means = [] 

cv_std = [] 

for cv_result in cv_results: 

    cv_means.append(abs(cv_result.mean())) 

    cv_std.append(abs(cv_result.std())) 

 

cv_means.append(abs(mean)) 

cv_std.append(abs(accuracies.std())) 

 

cv_res = pd.DataFrame({"CrossVal_RMSE":cv_means,"CrossValerrors": cv_std,"Algorithm":[

"Random Forest", "XGBoost", "CatBoost","ANN"]}) 

%matplotlib inline 

 

plt.figure(dpi = 1200) 

plt.figure(figsize=(12,10)) 

# sns.set(font_scale=3)   
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g = sns.barplot("CrossVal_RMSE","Algorithm",data = cv_res, palette="Set2",orient = "h",**{'x

err':cv_std}) 

g.set_xlabel("RMSE", fontsize = 14) 

g.set_ylabel("Algorithm",fontsize = 14) 

 

# plt.xlim(0.85,1) 

# plt.xticks(np.arange(0.85, 1, 0.01), fontsize = 12) 

plt.yticks(fontsize = 12) 

g = g.set_title("Cross validation RMSE scores",fontsize = 14) 

# plt.savefig('compare_classifiers.jpg', format='jpg', dpi=600) 

# plt.savefig('filename.png', dpi=600, bbox_inches='tight') 

 

 

# GRID SEARCH FOR ALL ALGORITHMS 

 

#Random Forest 

 

RF = RandomForestRegressor(random_state=42) 

 

ex_param_grid = {'n_estimators': [100,200,300,500,1000], 

        'min_samples_leaf': [1,2], 

        'min_samples_split': [1,2]} 

 

gsRF = GridSearchCV(RF,param_grid = ex_param_grid, cv=5, scoring="neg_root_mean_squar

ed_error", n_jobs= -1, verbose = 1) 

 

gsRF.fit(train_X,train_Y) 

 

y_pred = gsRF.predict(test_X)  

print('Mean Absolute Error (MAE):', metrics.mean_absolute_error(test_Y, y_pred)) 

print('Mean Squared Error:', metrics.mean_squared_error(test_Y, y_pred)) 

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(test_Y, y_pred))) 

 

RF_best = gsRF.best_estimator_ 

print("Best Score: ",gsRF.best_score_) 

print("Best estimator: ",RF_best) 

 

#XGBOOST 

 

XGB = XGBRegressor(random_state=42) 

 

ex_param_grid = {'n_estimators': [100,200,300,500,1000], 

        'min_samples_leaf': [1,2], 

        'min_samples_split': [1,2]} 

 

gsXGB = GridSearchCV(XGB,param_grid = ex_param_grid, cv=5, scoring="neg_root_mean_s

quared_error", n_jobs= -1, verbose = 1) 

 

gsXGB.fit(train_X,train_Y) 
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y_pred = gsXGB.predict(test_X)  

print('Mean Absolute Error (MAE):', metrics.mean_absolute_error(test_Y, y_pred)) 

print('Mean Squared Error:', metrics.mean_squared_error(test_Y, y_pred)) 

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(test_Y, y_pred))) 

 

XGB_best = gsXGB.best_estimator_ 

print("Best Score: ",gsXGB.best_score_) 

print("Best estimator: ",XGB_best) 

 

#CATBOOST 

CAT = CatBoostRegressor(random_state=42) 

 

ex_param_grid = {'n_estimators': [100,200,300,500,1000], 

        'depth':[2,4,6,8,10], 

        'l2_leaf_reg':[1,2,3]} 

 

gsCAT = GridSearchCV(CAT,param_grid = ex_param_grid, cv=5, scoring="neg_root_mean_s

quared_error", n_jobs= -1, verbose = 1) 

 

gsCAT.fit(train_X,train_Y) 

 

y_pred = gsCAT.predict(test_X)  

print('Mean Absolute Error (MAE):', metrics.mean_absolute_error(test_Y, y_pred)) 

print('Mean Squared Error:', metrics.mean_squared_error(test_Y, y_pred)) 

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(test_Y, y_pred))) 

 

CAT_best = gsCAT.best_params_ 

print("Best Score: ",gsCAT.best_score_) 

print("Best estimator: ",CAT_best) 

 

##TUNING ANNs## 

def build_ann():  #(optimizer) otan kanw grid search 

    model = Sequential() 

    # Adding the input layer and the first hidden layer 

    model.add(Dense(45, activation = 'relu', input_dim = 22)) 

 

    # Adding the second hidden layer 

    model.add(Dense(units = 45, activation = 'relu')) 

 

    # Adding the third hidden layer 

    model.add(Dense(units = 45, activation = 'relu')) 

 

    # Adding the output layer 

    model.add(Dense(units = 1)) 

    # Compiling the ANN 

    model.compile(optimizer = 'adam', loss = 'mean_squared_error', metrics = ['mse']) 

 

    return model  
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model  =  KerasRegressor(build_fn=build_ann, batch_size = 25, epochs = 1000) 

model.fit(train_X,train_Y) 

 

y_pred = model.predict(test_X)  

print('Mean Absolute Error (MAE):', metrics.mean_absolute_error(test_Y, y_pred)) 

print('Mean Squared Error:', metrics.mean_squared_error(test_Y, y_pred)) 

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(test_Y, y_pred))) 

 

 

Number of hidden neurons RMSE 

32 23,164836 

40 21,15863 

45 20,473213 

50 21,491717 

 

 

LIMITS FOR 2024-2029 

 

#convert tons to kilograms  

new_df['Total GHG Emissions (kg CO2e)'] = new_df['Total GHG Emissions (Metric Tons CO2

e)']*1000 

 

limits = {"medical office":23.81, 

          "retail": 11.81, 

          "assembly": 10.74, 

          "hotel": 9.87, 

          "office": 8.46, 

          "school": 7.58, 

          "multifamily housing": 6.75, 

          "factory": 5.74, 

          "storage/warehouse": 4.26} 

new_df['limits'] = np.nan 

 

new_df['limits'][0:1617].fillna(limits['school'],inplace = True) #educational 

new_df['limits'][1617:1676].fillna(limits['medical office'],inplace = True) #hospital 

new_df['limits'][1676:2115].fillna(limits['hotel'],inplace = True) #hotel 

new_df['limits'][2115:2342].fillna(limits['retail'],inplace = True) #malls and stores 

new_df['limits'][2342:3477].fillna(limits['office'],inplace = True) #office 

new_df['limits'][3477:4008].fillna(limits['factory'],inplace = True) #other 

new_df['limits'][4008:4468].fillna(limits['assembly'],inplace = True) #public building 

new_df['limits'][4468:19042].fillna(limits['multifamily housing'],inplace = True) #residential 

new_df['limits'][19042:19417].fillna(limits['storage/warehouse'],inplace = True) #warehouse 

 

#limits 
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new_df['compliance limit'] = new_df['limits']*new_df['Self-Reported Gross Floor Area (ft²)'] 

new_df['comply'] = 0 

 

for i in range(len(new_df)): 

  if new_df['Total GHG Emissions (kg CO2e)'][i] <= new_df['compliance limit'][i]: 

    new_df.loc[i,'comply'] = 1 

 

LIMITS FOR 2030-2034 

limits2 = {"medical office":11.93, 

          "retail": 4.3, 

          "assembly": 4.2, 

          "hotel": 5.26, 

          "office": 4.53, 

          "school": 3.44, 

          "multifamily housing": 4.07, 

          "factory": 1.67, 

          "storage/warehouse": 1.1} 

new_df['limits2'] = np.nan 

 

new_df['limits2'][0:1617].fillna(limits2['school'],inplace = True) #educational 

new_df['limits2'][1617:1676].fillna(limits2['medical office'],inplace = True) #hospital 

new_df['limits2'][1676:2115].fillna(limits2['hotel'],inplace = True) #hotel 

new_df['limits2'][2115:2342].fillna(limits2['retail'],inplace = True) #malls and stores 

new_df['limits2'][2342:3477].fillna(limits2['office'],inplace = True) #office 

new_df['limits2'][3477:4008].fillna(limits2['factory'],inplace = True) #other 

new_df['limits2'][4008:4468].fillna(limits2['assembly'],inplace = True) #public building 

new_df['limits2'][4468:19042].fillna(limits2['multifamily housing'],inplace = True) #residential 

new_df['limits2'][19042:19417].fillna(limits2['storage/warehouse'],inplace = True) #warehouse 

 

new_df['compliance limit2'] = new_df['limits2']*new_df['Self-Reported Gross Floor Area (ft²)'] 

new_df['comply2'] = 0 

 

for i in range(len(new_df)): 

  if new_df['Total GHG Emissions (kg CO2e)'][i] <= new_df['compliance limit2'][i]: 

    new_df.loc[i,'comply2'] = 1 

   

CLASSIFICATION 

 

#TRAIN- TEST SPLIT 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import confusion_matrix,accuracy_score,classification_report 

from sklearn.metrics import roc_auc_score,roc_curve,scorer 

from sklearn.metrics import f1_score 

import statsmodels.api as sm 
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from sklearn.metrics import precision_score,recall_score 

from yellowbrick.classifier import DiscriminationThreshold 

from sklearn import metrics 

from sklearn.preprocessing import scale 

 

cols    = [i for i in new_df.columns if i not in 'Primary Property Type -

 Self Selected'+'loglog' + 'comply'+ 'comply2' +'Self-

Report-

ed Gross Floor Area (ft²)'+ 'Total GHG Emissions (kg CO2e)' +'limits' +'limits2' +'compliance li

mit'+ 'compliance limit2' + 'Total GHG Emissions (Metric Tons CO2e)'+'Metered Areas (Energ

y)' + 'Metered Areas  (Water)'] 

 

# features 

X = new_df[cols]  

 

# Target variable 

y = new_df['comply'] # “comply” for the first period and “comply2” for the second period 

 

# split X and y into training and testing sets 

train_X,test_X,train_Y,test_Y=train_test_split(X,y,test_size=0.25,random_state=0) 

 

#SCALING 

from sklearn import preprocessing 

from sklearn.preprocessing import StandardScaler 

 

scaler = StandardScaler().fit(train_X) 

train_X = scaler.transform(train_X)  

test_X = scaler.transform(test_X)  

 

# CROSS VALIDATION SCORES FOR ALL ALGORITHMS 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import GridSearchCV, cross_val_score, StratifiedKFold, learning

_curve, cross_validate 

from sklearn.model_selection import StratifiedKFold 

from xgboost import XGBClassifier 

from catboost import CatBoostClassifier 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

random_state = 42 

skfold = StratifiedKFold(5) 

classifiers = [] 

classifiers.append(RandomForestClassifier(random_state=random_state)) 

classifiers.append(XGBClassifier(random_state=random_state)) 

classifiers.append(CatBoostClassifier(random_state=random_state)) 
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cv_results = [] 

for classifier in classifiers : 

    cv_results.append(cross_val_score(classifier, train_X, train_Y, scoring = "accuracy", cv = skf

old, n_jobs=-1, verbose=2)) 

 

cv_means = [] 

cv_std = [] 

for cv_result in cv_results: 

    cv_means.append(cv_result.mean()) 

    cv_std.append(cv_result.std()) 

 

cv_res = pd.DataFrame({"CrossVal_accuracy":cv_means,"CrossValerrors": cv_std,"Algorithm"

:["Random Forest", "XGBoost", "CatBoost"]}) 

%matplotlib inline 

 

plt.figure(dpi = 1200) 

plt.figure(figsize=(12,10)) 

# sns.set(font_scale=3)   

 

g = sns.barplot("CrossVal_accuracy","Algorithm",data = cv_res, palette="Set2",orient = "h",**

{'xerr':cv_std}) 

g.set_xlabel("Accuracy", fontsize = 14) 

g.set_ylabel("Algorithm",fontsize = 14) 

 

plt.xlim(0.85,1) 

plt.xticks(np.arange(0.85, 1, 0.01), fontsize = 12) 

plt.yticks(fontsize = 12) 

g = g.set_title("Cross validation accuracy scores",fontsize = 14) 

# plt.savefig('compare_classifiers.jpg', format='jpg', dpi=600) 

# plt.savefig('filename.png', dpi=600, bbox_inches='tight') 

 

#GRID SEARCH FOR ALL ALGORITHMS 

 

#RANDOM FOREST 

RF = RandomForestClassifier(random_state=42) 

 

ex_param_grid = {'n_estimators': [50,80,100,120,140,200], 

        'min_samples_leaf': [1,2], 

        'min_samples_split': [1,2]} 

 

gsRF = GridSearchCV(RF,param_grid = ex_param_grid, cv=skfold, scoring="accuracy", n_job

s= -1, verbose = 1) 

 

gsRF.fit(train_X,train_Y) 

 

y_pred = gsRF.predict(test_X)  

print("Accuracy: ",metrics.accuracy_score(test_Y,y_pred)) 
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RF_best = gsRF.best_estimator_ 

print("Best Score: ",gsRF.best_score_) 

print("Best estimator: ",RF_best) 

 

#XGBOOST 

XGB = XGBClassifier(random_state=42) 

 

ex_param_grid = {'n_estimators': [50,80,100,120,140,200], 

        'min_samples_leaf': [1,2], 

        'min_samples_split': [1,2]} 

 

gsXGB = GridSearchCV(XGB,param_grid = ex_param_grid, cv=skfold, scoring="accuracy", n

_jobs= -1, verbose = 1) 

 

gsXGB.fit(train_X,train_Y) 

 

y_pred = gsXGB.predict(test_X)  

print("Accuracy: ",metrics.accuracy_score(test_Y,y_pred)) 

 

XGB_best = gsXGB.best_estimator_ 

print("Best Score: ",gsXGB.best_score_) 

print("Best estimator: ",XGB_best) 

 

#CATBOOST 

CAT = CatBoostClassifier(random_state=42) 

 

ex_param_grid = {'n_estimators': [50,80,100,120,140,200], 

        'depth':[2,4,6,8,10], 

        'l2_leaf_reg':[1,2,3]} 

 

gsCAT = GridSearchCV(CAT,param_grid = ex_param_grid, cv=skfold, scoring="accuracy", n_

jobs= -1, verbose = 1) 

 

gsCAT.fit(train_X,train_Y) 

 

y_pred = gsCAT.predict(test_X)  

print("Accuracy: ",metrics.accuracy_score(test_Y,y_pred)) 

 

CAT_best = gsCAT.best_params_ 

print("Best Score: ",gsCAT.best_score_) 

print("Best estimator: ",CAT_best) 

 

 

PLOTS 

#HEATMAP 

corr = new_df.corr() 

mask = np.zeros_like(corr, dtype=np.bool) 

mask[np.triu_indices_from(mask)] = True  
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f, ax = plt.subplots(figsize=(40, 25), tight_layout=True) 

cmap = sns.diverging_palette(220, 10, as_cmap=True) 

sns.heatmap(corr, mask=mask, cmap=cmap, vmax=1, vmin=-

1, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot = True, annot_kws={"

size": 20}) 

ax.axes.xaxis.set_ticklabels([]) 

plt.yticks(rotation=0, size = 36) 

plt.xticks(size = 36) 

plt.title('Heatmap')  

plt.show() 

 

# TOTAL GHG EMISSIONS VS PROPERTY TYPE 

plt.figure(dpi = 1200) 

plt.figure(figsize = (20,9)) 

result = new_df.groupby(["Primary Property Type -

 Self Selected"])['Total GHG Emissions (Metric Tons CO2e)'].mean().reset_index().sort_values(

'Total GHG Emissions (Metric Tons CO2e)') 

sns.barplot(x='Primary Property Type -

 Self Selected', y="Total GHG Emissions (Metric Tons CO2e)", data=new_df, order=result['Pri

mary Property Type -

 Self Selected']) #formerly: sns.barplot(x='Id', y="Speed", data=df, palette=colors, order=result['

Id']) 

# plt.ylim(0,300000) 

 

# la-

bels4 = ['Warehouse','Other','Residential','Public Building','Hospital','Office','Educational','Hotel

','Retail'] 

plt.xticks(fontsize = 12) 

plt.xlabel('Primary Property Type - Self Selected',fontsize = 15) 

plt.ylabel('Total GHG Emissions (Metric Tons CO2e)', fontsize = 15) 

plt.show(sns) 

 

# TOTAL GHG VS TYPE AND BOROUGH 

plt.figure(dpi = 1200) 

plt.figure(figsize = (20,9)) 

 

sns.barplot(x="Borough", y="Total GHG Emissions (Metric Tons CO2e)", hue="Primary Prope

rty Type - Self Selected", data=new_df) 

plt.xticks(np.arange(5),['Brooklyn','Bronx','Queens','Manhattan','Staten Island'],fontsize = 14) 

plt.ylabel("Total GHG Emissions (Metric Tons CO2e)", size=14) 

plt.xlabel("Borough", size=16) 

plt.title("GHG Emissions by Borough and Property Type", size=18) 

# plt.savefig("grouped_barplot_Seaborn_barplot_Python.png") 

 

#YEAR OF BUILT VS SOURCE EUI 

rslt_df1 = new_df[new_df['Year Built'] < 1900] 

rslt_df2 = new_df[(new_df['Year Built'] >=1900) & (new_df['Year Built']<1950)]  
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rslt_df3 = new_df[(new_df['Year Built'] >=1950) & (new_df['Year Built']<1970)]  

rslt_df4 = new_df[(new_df['Year Built'] >=1970) & (new_df['Year Built']<2000)]  

rslt_df5 = new_df[new_df['Year Built'] >=2000]  

 

y1 = rslt_df1['Weather Normalized Site EUI (kBtu/ft²)'].mean() 

y2 = rslt_df2['Weather Normalized Site EUI (kBtu/ft²)'].mean() 

y3 =rslt_df3['Weather Normalized Site EUI (kBtu/ft²)'].mean() 

y4 = rslt_df4['Weather Normalized Site EUI (kBtu/ft²)'].mean() 

y5 = rslt_df5['Weather Normalized Site EUI (kBtu/ft²)'].mean() 

years2 = [y1,y2,y3,y4,y5] 

xl2 = ['before 1900','1900-1950','1950-1970','1970-2000','after 2000'] 

 

plt.figure(dpi = 1200) 

plt.figure(figsize = (12,8)) 

sns.barplot(x=xl2, y=years2)  #formerly: sns.barplot(x='Id', y="Speed", data=df, palette=colors, 

order=result['Id']) 

# plt.ylim(0,300000) 

# plt.xticks(np.arange(5),['Brooklyn','Bronx','Queens','Manhattan','Staten Island'],fontsize = 16) 

 

plt.xlabel('Year Built',fontsize = 16) 

plt.ylabel('Weather normalized site EUI', fontsize = 16) 

 

plt.show(sns) 

 

# PIE CHART WITH BUILDING TYPE PROPORTIONS 

new_df['Primary Property Type - Self Selected'].value_counts() 

jj = {"Residential":19076, "Office": 2404, "Educational": 2362, "Other":1040, "Public Building

": 920, 

      "Hotel": 878, "Warehouse": 657, "Retail": 399, "Hospital": 187} 

 

data = [19076,2404,2362,1040,920,878,657,399,187] 

la-

bels = ["Residential","Office","Educational","Other","Public Building","Hotel","Warehouse","

Retail","Hospital"] 

# plot = new_df.plot.pie(y=j, figsize=(10, 10)) 

my_explode = (0.1, 0, 0,0,0,0,0,0,0) 

plt.figure(figsize=(10,8)) 

plt.pie(data,autopct='%1.1f%%', shadow = True, explode=my_explode) 

plt.legend(labels, loc = "best") 

plt.show() 

 

#LOGGED GHG EMISSIONS DISTRIBUTION BEFORE DROPPING OUTLIERS 

new_df['loglog'].describe() 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 
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plt.figure(dpi = 1200) 

plt.figure(figsize = (20,9)) 

sns.histplot(new_df['loglog'], kde=True, color = 'blue', bins = 50) 

sns.set_style("white")  

plt.xlabel("log(mt CO2)") 

plt.ylabel("Count") 

# plt.xlim(2,3) 

# plt.title("GHG") 

plt.axvline(np.mean(new_df['loglog']),color='r', linestyle='--') 

plt.text(8,5800,"mean: 2.54" ,color = 'black',size = 12) 

plt.text(8,5500,"std: 0.49" ,color = 'black',size = 12) 

plt.text(8,5200,"min: -0.69" ,color = 'black',size = 12) 

plt.text(8,4900,"max: 8.72" ,color = 'black',size = 12) 

 

#LOGGED GHG EMISSIONS DISTRIBUTION AFTER DROPPING OUTLIERS 

 

new_df['loglog'].describe() 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

plt.figure(dpi = 1200) 

plt.figure(figsize = (20,9)) 

sns.histplot(new_df['loglog'], kde=True, color = 'blue', bins = 50) 

sns.set_style("white")  

plt.xlabel("log(mt CO2)") 

plt.ylabel("Count") 

plt.xlim(1.8,3.2) 

# plt.title("GHG") 

plt.axvline(np.mean(new_df['loglog']),color='r', linestyle='--') 

 

plt.text(3,560,"mean: 2.51" ,color = 'black',size = 12) 

plt.text(3,540,"std: 0.2" ,color = 'black',size = 12) 

plt.text(3,520,"min: 2.08" ,color = 'black',size = 12) 

plt.text(3,500,"max: 2.9" ,color = 'black',size = 12) 

 

#PLOT ORIGINAL TOTAL GHG EMISSIONS DISTRIBUTION AFTER DROPPING OUT-

LIERS 

 

new_df['Total GHG Emissions (Metric Tons CO2e)'].describe() 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

plt.figure(dpi = 1200) 

plt.figure(figsize = (20,9)) 

sns.histplot(new_df['Total GHG Emissions (Metric Tons CO2e)'], kde=True, color = 'blue', bins

 = 50) 
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sns.set_style("white")  

plt.xlabel("mt CO2") 

plt.ylabel("Count") 

# plt.xlim(0,500000) 

# plt.title("GHG") 

plt.axvline(np.mean(new_df['Total GHG Emissions (Metric Tons CO2e)']),color='r', linestyle='-

-') 

 

plt.text(700,700,"mean: 361.02" ,color = 'black',size = 12) 

plt.text(700,670,"std: 168.28" ,color = 'black',size = 12) 

plt.text(700,640,"min: 123.0" ,color = 'black',size = 12) 

plt.text(700,610,"max: 805.3" ,color = 'black',size = 12) 

 

#FEATURE IMPORTANCE PLOT 

 

importance = rfr.feature_importances_ 

for i,v in enumerate(importance): 

  print('Feature: %0d, Score: %.5f' % (i,v)) 

# plot feature importance 

plt.figure(dpi = 1200) 

plt.figure(figsize=(12,10)) 

labels1 = np.asarray([i for i in range(len(importance))]) 

labels2 = cols 

plt.bar([x for x in range(len(importance))], importance, tick_label = labels2) 

plt.xticks(rotation = 90) 

 

# ax.set_xticks(idx) 

plt.show() 

 

#MSE VALIDATION SCORE VS NUMBER OF EPOCHS FOR ANNs 

 

print(history.history['val_mse']) 

plt.figure(dpi = 1200) 

plt.figure(figsize=(12,10)) 

plt.plot(history.history['val_mse']) 

plt.ylabel("MSE validation score", fontsize = 20) 

plt.xlabel("Epochs", fontsize = 20) 

plt.xticks(fontsize = 18) 

plt.yticks(fontsize = 18) 

plt.show() 

 

 

 

 

 

 


