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Abstract  
 

 

This dissertation is the final part required for the completion of the MSc in Data 

Science at the International Hellenic University (IHU). The main goal of this study is 

to develop a book recommendation system based on collaborative filtering. 

Furthermore, a comparison is held between the performance of the system when the 

recommendations are based on simple ratings and when they are based on the result of 

sentiment analysis over customer comments. The algorithms examined are based on 

the KNN methodology and Singular Value Decomposition (SVD). The technique 

used to conclude in the algorithm with the best performance and generalization was 

cross-validation and the metrics that were examined were precision and recall.    

Our findings show that the utilization of user comments as the input in our system 

instead of ratings, results in an increase in precision and a decrease in recall. For a 

book recommendation system, precision can be a more important indicator as it refers 

to the number of relevant recommendations which, eventually is the purpose of such a 

system. In particular the best performance was achieved with a 10-fold cross 

validation for the top 10 suggested items and resulted in an increase of 10% in the 

prediction score. As mentioned already the was a simultaneous decrease in the recall 

score which also influenced the F-score negatively and in particular it led to a 

decrease of 0.06%. 
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Chapter 1: Introduction 
 

 

The rapid growth of the Internet in the 21st century has led to major changes in all 

aspects of everyday life. Every day more than 2.5 quintillion bytes of data are created 

providing huge amounts of various information. Furthermore, the technological 

advance has given the possibility, even to regular users, to access any kind of 

information from many different devices, at any time.  

More and more people use the World Wide Web in order to receive updates about 

events, work from home, entertain themselves, and purchase products online. During 

2020, the pandemic of Corona-virus forced, even more, the digitalization of things 

since there was a need for completing almost every procedure without the physical 

presence of people. Even though access to any kind of information is facilitated, the 

huge amounts of data create a more severe problem, which is the choice of the correct 

information. This phenomenon is well known as “Information Overload”. 

The urgent need for appropriate results enhanced the introduction of Recommendation 

Systems. They are considered one of the most powerful digital tools of the century. 

They appear all around the web and find application in many fields such as on-line 

retail, entertaining platforms, informative blogs, and newspapers, etc. The system acts 

as a guide for the average user and focuses on proposing the right content at the right 

time. The item of the proposal can be almost anything, from a music song or a video 

to a new product. That way the user does not have to spend time and effort in 

evaluating every information in order to conclude to the one he really needs. 

 

1.1 How and when the recommendation systems 

started  
 

 

The systems originated in the 70s, and two references exist for early recommender 

systems. The first one derives from Duke University and employs a distributed 

discussion system about newsgroup named “Usenet”. In this system, the users could 

make posts that were classified into newsgroups and even in sub-categories, if 

necessary. The second one refers to a recommender system named “Grundy”. It was 

implemented for book recommendations to people that have been already organized 

in categories according to their stereotypes. 

Later, in the 90s, content filtering made its appearance to fulfill the need for large-

scale information systems. Afterward, in 1992 the first system of collaborating 

filtering named “Tapestry” was designed by Xerox Palo Alto. This system permitted 
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the search of documents in a database based on their content, as well as, on other 

users’ reactions. For example, the system could retrieve all the documents that include 

the word “car” and user A has considered “fast”. It was based on the opinion that if 

the users are involved in the process, the information filtering would be more 

effective. Unlike other recommender systems of that time, “Tapestry” based its 

proposals not only on the evaluation of an item when it arrived, but, also on the 

humans’ perspective about it. 

Later, in 1994, the first recommender system that used rating data appeared with the 

name “Grouplens”, and, in 1997, “Movielens” became the first movie recommender 

system, which, also, provided a very important dataset for the research community. 

“Grouplens” goal was to make suggestions about Usenet articles based on other 

people’s ratings. This way the system could identify people with the same taste based 

on their likes and dislikes. Afterward, it proposed articles to the user that people with 

the same taste also liked. This is well known as the near neighbor technique.  

In general, after the 90s many recommender systems were introduced such as 

“Firefly” for music fans, “RINCO” for music recommendations based on social 

information filtering, “Fab” which allowed users to create content-based filters, and 

many more. Gradually, the recommender systems gained popularity in the field of 

commerce and marketing intending to increase revenue from sales, and facilitate the 

user experience by reducing the effort and time spent. Then, the Amazon 

recommender system was created and was based both on collaborative and content-

based filtering as well as input from the user via web browsing.  

One of the greatest revolutions in the field was in 2006 when Netflix released an open 

competition for the best collaborating filtering model. This model should be able to 

use previous user ratings and provide predictions about film ratings. In 2009 the 

BellKor's Pragmatic Chaos team won the prize of 1000000 dollars achieving a 

10.06% prediction on the pre-existing Netflix algorithm [6]. 

From 2010 and onwards there are many systems-oriented in social media, human 

decision making, personalization for mobile services, and information heterogeneity.    

 

1.2 What is a recommendation system? 
 

A Recommender System (RS) is a tool that tries to predict the user’s preferences and 

make suggestions. It is considered to be part of the general concept of information 

filtering since it combines all information available at a time to propose “items”. With 

the term “item” we refer in a more abstract way to the produced recommendations. 
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The main goal of an RS is to collect and propose documents, products, information, or 

services that the user might want to find.  

It can be defined as a means of assistance for the users when there is not enough time, 

experience, or knowledge to evaluate all the perspectives on a web page [32].      

Due to the current “information overload”, which can be explained as a situation 

where the received information is too much to process and understand, RS can play a 

significant role in decision making by providing personalized and exclusive 

suggestions. This is why in recent years many different systems are developed in 

increasingly diverse areas of activity. Fig. 1, describes the architecture of a 

recommendation system. 

 

Figure 1: Architecture of a Recommendation System [12] 

 

 

 

 1.3 Fields of implementation 
 

Recommender systems have gained great popularity over the past years on many 

online platforms. This section is devoted to some of the most well-known cases. 

 

Amazon  

 

Amazon is very famous for the personalization experience that offers to the 

customers. In the beginning, Amazon started as an online bookstore but gradually 

became one of the most well-known shopping platforms that include a huge variety of 

products, and nowadays even services. In the middle of the 90s, the main algorithmic 

approach for recommendations was item-based collaborative filtering. Furthermore, it 

was focused on the users, since the first step of the algorithm was to find similar 

patterns in other users and then discover what items those users have seen or picked, 
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but the current user has not found yet. Over the years, the Amazon algorithm for a 

recommendation has improved so much that currently as soon as a user visits the site, 

he finds recommendations based on his past researches and purchases on the 

homepage. In addition, the shopping cart proposes extra items that may be 

complements to the already selected items. At the end of the user’s purchase, more 

proposals appear for later buys. This way, Amazon was able to build a personal store 

for every client who visits the online platform in the past 20 years. The prototype 

algorithm has found a great response over the World Wide Web and was implemented 

in many online sites. Nowadays, Amazon is the world’s largest online retailer and a 

great part of its revenue annually derives from the item’s proposals [38].  

 

Facebook  

 

Facebook was the first social networking site that met such a great success and was 

created in 2004. Originally, it was designed as a platform only for college students but 

soon gained great popularity all over the world, hosting over 2.6 billion active users. 

Facebook proposal framework gives recommendations on “people you may know”. 

These suggestions depend on user profiling. In other words, the system evaluates user 

information such as work, education, mutual friends, and groups in which a person 

might participate and proposes new people with similar profiles [13].  

Some researchers have tried to approach the algorithm over the past years with the 

Baatarjav approach being the most popular. He designed a group recommendation 

system using hierarchical clustering and decision trees in order to suggest to the users 

the most appropriate groups based on their profiles [4]. 

 

YouTube  

 

YouTube is currently the largest platform for video creating and sharing with 300 

hours of video uploading every minute. It was established in 2005 and it stores more 

than a billion videos. The existence of such a huge variety of content makes the user’s 

choice very difficult and complex. This is why the platform has developed many 

features for suggestions and has also launched its recommendation system. The goal 

of the system is to provide the right video suggestions to the user so that he will be 

satisfied and entertained.  For this purpose, YouTube implements a top-N 

recommender that reviews the user’s latest activity and refreshes regularly. 

Furthermore, the system tries to promote the large variety of content that exists on the 

site, but, concerning the client’s privacy and personal data protection. In order to 

provide suggestions, the YouTube RS collects metadata and statistics of the video, as 

well as user data such as likes and comments. The algorithm behind the prementioned 

procedure has known a great success over the years, making the platform the most 

popular one in this kind of online service [10], [42]. 
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Netflix  

 

Netflix is the most popular Streaming Services platform around the world. It includes 

thousands of movies, including even its own productions and series. Since the options 

are limitless Netflix as well developed its RS, which is based on a combination of 

different algorithms according to the user’s needs. One of those algorithms is a 

Personalized Video Ranker (PVR), which is mainly used for suggesting the genre of a 

video given the user’s profile. This algorithm, also, needs to be general enough in 

order to provide a general ranking in the whole catalog of movies, so, there are many 

limitations in personalization. Furthermore, a Top-N video ranker is devoted to 

finding the best proposals in the whole movie catalog for each user in correspondence 

to his needs regardless of the movie genre. This permits a higher level of 

personalization and user profiling. Additionally, there are other algorithms as 

“trending now”, “continue watching” and “video similarity”, which, as the ones 

mentioned, rely on machine learning techniques and statics to provide the best 

recommendations to the active user [15].  

In 2006, Netflix released a dataset of 100 million anonymous ratings and offered the 

prize of 1 million dollars to the team that could beat Cinematch’s accuracy, which 

was the current system used. This move triggered the programming community 

worldwide and many new recommendation systems were created, some of which are 

still used by the platform [6]. 

 

1.4 Benefits of RS 
 

 

The great success of the RS derives from the fact that they are beneficial both for the 

users and the company that implements them.  

From the website’s point of view, an RS can contribute to revenue growth and an 

increase in total sales. An RS can bring more users to the website via personalized 

emails and directed blasts. Furthermore, it can promote relevant or complementary 

content and propose items that the user will be more willing to buy. Additionally, the 

systems can promote new or unpopular items to targeted users, creating new sales 

opportunities. They enhance quick and automated profiling and personalization in the 

web pages. So, the products in a platform can change and are situated according to 

each client and his preferences.  Nevertheless, an RS can provide accurate and up to 

date reports to the website about the traffic and the direction of the promotive actions 

[29].  

It is, also, very important to mention that such a system can improve customer 

satisfaction and loyalty. It can increase sales by generating tailored needs for the 

visitors and propose similar products connected to the ones they already purchased. 

So, it supports customer loyalty as it shows that the business takes time to understand 
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the needs of its clients. To continue, with the implementation of those systems the 

users can get engaged easily to the website since they are in the position to dive into 

the product offering without performing search after search. As a consequence, it is 

very likely that a shopper will turn into a customer and that a current customer will 

remain loyal to the website as he is fulfilled by its services [29]. 

From the user’s point of view though, an RS presents also many advantages. It can 

reduce the time and effort a user spends while shopping by proposing things that will 

be more interesting and useful to the active user. Moreover, the system can aid in the 

discovery of new items which is a service many users appreciate. Lastly, the RS 

releases the user from the position of having to manage the chaotic amount of 

information within a web page [29]. 

 

1.5 Open Challenges 
 

 

Some of the main open topics regarding the implementation of a recommendation 

system and the work that has been done so far are presented below.  

 

Obtain user’s preferences and generation of profiles 

 

In many cases, implicit user feedback is widely available and can be acquired with 

minimum effort. For example, it is very easy to track the users clicks on a web site 

and receive it as feedback for a specific item. Past actions can contribute to predicting 

future ones. So, more and more approaches focus on using consistent and accessible 

implicit information. In such occasions, the problem that arises is that in such an 

implementation we can only receive records that are either positive or missing. In the 

missing category, the items that exist can be both the ones the user ignored as well as 

the ones that would never be proposed to the user by his preferences [39].  

Another interesting aspect of the data acquisition problem can be the sentiment 

analysis of the users’ feedback. This approach is constantly evolving and many 

techniques are being developed with a view to evaluating the emotions and the 

attitude of the consumer [39]. 

 

User interface 

 

A very important challenge according to RS is to examine the mechanisms through 

which the user’s inputs are received regardless of the models that are used to provide 

the recommendations. This means that while interacting with a consumer apart from 
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the final decision of selecting or not an item, there are many more information that 

can be collected.  

Even though nowadays we are able to collect more and more information about the 

user’s preferences it is not yet clear if all these data bring more benefit than loss to the 

system [39]. 

 

Privacy 

 

It is very essential to ensure the safety of the data used in the construction of an RS. 

Especially, after the institutionalization of the GDPR law, the protection of the user’s 

information has become one of the main issues that need to be taken into 

consideration, since the user actions are a vital part of the recommendation process. In 

many cases, the feedback can reveal apart from the preferences of a user, details about 

his political or relational beliefs, sexual preferences, and in general sensitive 

information. Thus, huge privacy concerns are aroused and the need of finding a 

balance regarding the amount of information asked and collected is more crucial than 

ever [39]. 

 

1.6 Scope of the dissertation 
 

The scope of this study is to create and evaluate a book recommendation system based 

on collaborative filtering. After explaining the different variations of an RS and 

stressing some of the most relevant and important work that has been done already, a 

real dataset is being examined.  The purpose is to test whether and how the comments 

of the users can be more helpful in a recommendation than the actual ratings 

concerning the generation of better suggestions by the system.  

 

1.7 Dissertation outline 
 

In the first chapter, an outline of the history, as well as the definition of the 

recommender systems, is presented. Furthermore, some of the most popular cases of 

implementation in the past 30 years in different fields, highlight their significance in 

online retail, commerce, and services. Additionally, the main advantages that an RS 

can offer to the user and the website are analyzed. Finally, we highlight some of the 

main challenges regarding the recommendation systems, define the scope of this 

dissertation and, provide a short description for each of the following chapters.  

In the second chapter, we explain the types of recommendation systems and the 

different inputs of data and ratings for an item. Furthermore, we describe the main 

similarity measures that are used for the implementation of the systems and provide 
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an overview of the most important evaluation metrics that are used to assess the 

performance of the systems.  

In chapter three, a literature review for the state of the art in RS is presented. We 

examine the work that has been done so far and searches for similarities and 

differences with our approach. We investigate the problems that have come up and try 

to understand the reasons behind them.  

In chapter four, we describe the details of the selected dataset and the preprocessing 

that has been done in order to use the data in our study.   

In the fifth chapter, we describe the Python code that has been used in the study and 

provide a holistic overview of the purpose of each action and the libraries used. Also, 

we outline the evaluation of our system and compare the findings.  

Finally, in chapter six we present the conclusions regarding the dissertation and 

propose some ideas for future work. 
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Chapter 2:  Background 
 

 

In this chapter, we present the main concepts of recommender systems and provide 

the core knowledge that is a prerequisite for this dissertation. In more detail, we 

introduce the main types of recommendation systems and the most common users’ 

inputs. Furthermore, we examine the similarity measures with the most frequent 

implementation in an RS and we display the main criteria used in the evaluation of the 

performance of an RS. 

 

2.1 Types of Recommendation Systems 
 

Recommender systems can be personalized, non-personalized, item to item correlated, 

attributed based, and people to people correlated. They can be either of short duration 

or long one according to their usage. They can be automated in the case that the 

system needs no input or only minimal input from the user and manual if the user 

must put a lot more details. Personalized systems are automatic and have their basis 

on the user’s preferences and personal tastes such as favorite music, color, and movie. 

Non-personalized ones are based only on the ratings of the users of the website. These 

systems are more straight forward and easy in implementation as they require less 

effort to produce results and are also considered automatic as the user input is 

unnecessary. These systems are also long-lived since they can be implemented in 

many users regardless of their characteristics. Attributed-based recommender 

systems’ information is generated by the item’s features. This system is considered 

manual as the user has to search for a specific kind of product to generate a 

recommendation and it can be considered as long-lived or not, regarding the time that 

it remembers the user’s preferences. Item to item correlation system recommends 

items based on other items for which the user has already expressed a preference. 

These are widely used in the web sites when new products are released and they 

generate proposal based on what the user has already placed in his cart. They are 

manual as they require input from the user (already chosen items) and short-lived. 

People to people systems search for similarities between different users and propose 

items other customers had bought or rated in the past. They are considered manual as 

it is mandatory that previous ratings or buys have been made and their duration 

depends on the design [37]. 

Over the past years, many types of RS have been developed and applied in different 

fields of the Web. Furthermore, they are extensively used in search engine machines 

as well. Even though various models have been employed over the past two decades, 

most of them have their base in four main recommendation types [34]. The 

approaches vary on the domain they address, the knowledge that they use, and 

especially in the algorithmic methods. 
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2.1.1 Content based filtering 
 

Content-based filtering mainly focuses on the item, and its descriptive characteristics 

are used to create recommendations. The RS proposes options based on the user’s 

previous interactions with similar items and combines them with the content 

information of each one of them. The term content denotes the items’ descriptions. By 

analyzing the user’s actions, the system creates a profile based on past preferences 

and this is how the user is represented. So, the main goal is to match a profile with an 

item that the customer would like to see or buy [2]. 

 

This approach originates from information retrieval and information filtering research. 

The recommended item indicates textual information and it is described with 

keywords and according to weights. The techniques mainly used, are divided into two 

categories, heuristic-based methods, and Model-based ones. The techniques used for 

the first class are KNN, clustering, and TD-IDF for information retrieval, while for 

the second are Bayesian classifiers, Artificial neural networks, decision trees, and 

clustering with a view to recommending appropriate content, based on the 

characteristics of the item and the preferences of the user [41]. 

 

The main advantage of this system is that it can be used with a small dataset even if 

there are not enough ratings and still generate good recommendations. This is because 

the active user might have rated items with common features. As a result, the RS will 

be able to make use of these ratings and combine them with the item’s content in 

order to make suggestions even if there are no past references to the specific item [3].  

The main disadvantages of such a system are limited content analysis, 

overspecialization, and new user problem. 

  

New user problem 

Even if those systems are very effective at recommending new items, they are not 

able to handle the new users because they need past user references and ratings for the 

training procedure, which are not available. Therefore, it is very difficult to generate 

valuable and accurate recommendations for a new customer item [3]. 

 

Limited content analysis 

In order to make appropriate recommendations the system depends heavily on the 

item’s features. For this reason, the attributes must be in a form that is easily 

evaluated by the system, for example in a textual one. Information retrieval 

techniques work particularly well with this type of data but they really straggle with 

multimedia records such as audio and video. Another important issue with limited 

content analysis is that since the items are characterized by a set of features it is 
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possible that two different items have the same set. When this occurs, the 

recommendations can be affected since it is impossible to differentiate between the 

items [2].  

 

Overspecialization 

Content-based filtering makes proposals based on the items that the user has liked, 

purchased, or rated before. Therefore, the recommendations consist of similar items 

and the introduction of new ones is almost impossible. An easy way to overpass this 

problem is by proposing some random items to the active user. Furthermore, another 

problem with overspecialization is that the suggestion of comparable items is not 

desired every time. For example, it is likely that a customer would not be interested in 

books that refer to the same event (e.g., World War 2) since he has already purchased 

or reviewed one or more of this genres or categories [2].   

 

 

2.1.2. Collaborative Filtering 
 

 

Collaborative filtering uses mainly the past behavior of a user, like his ratings and 

transactions without the need of creating a new profile for the user. It is dedicated to 

relating participants’ dependencies among products to identify a potential association 

between the user and the product [21]. 

It can be divided into heuristic-based and model-based methods depending on the 

methods utilized for rating estimation. The heuristic method uses rating data, duration 

time, purchasing binary data, and clicks as inputs and acquire results based on the 

total customer database. The system compares the current user with every participant 

in the dataset in terms of similarity using different metrics as correlation coefficient 

and Jaccard similarity. Afterward, the value of the product, which is about to be 

proposed, is predicted using a KNN procedure. Eventually, the active customer will 

be recommended the highest rated products of his neighbors. This system usually is 

based on web mining techniques, KNN, decision trees, graph theory, and SVMs. 

Model-based includes the training of data and checking about the validity of the 

model by implementing test data. Then, the system predicts the rating value of the 

products the active costumer has not yet evaluated. In terms of comparison with the 

heuristic method, the model-based methodology only introduces a part of the active 

user’s data and gives prediction values and presents. Some of the main procedures the 

system involves are clustering, association rule mining, Artificial Neural Networks, 

Linear regression, maximum entropy, latent semantic analysis, and Markov processes.  

Collaborative filtering can overpass some of the drawbacks mentioned in the content-

based approach since different users’ ratings are being collected and implemented and 
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as a result, it is feasible to propose dissimilar items from the ones reviewed in the past 

[2]. 

But there are important disadvantages as well, such as cold starting problem, sparsity 

problem, gray sheep problem, and scalability problem with the two first being the 

more important [41]. 

 

Cold-start problem 

This problem is met in the new entries either for a product or a user as the system 

does not have enough data. So, when a new user appears there are no references for 

his behavior and the RS cannot come up with a relevant proposal. The same applies in 

the case a new item appears since it still does not have any ratings. 

 

Sparsity problem 

It is one of the most important problems since in the majority of cases the items do 

not have enough ratings in order to be recommended. This is because a normal user 

can evaluate only a few of the items in comparison with the total number that exists 

on the website and the needs for recommendations are much more demanding. This 

problem can cause complexity in finding similar users [2]. 

 

 

2.1.3 Knowledge based filtering 
 

This approach is particularly useful when there is a lack of ratings. It can apply in 

fields such as automotive, real estate, and luxurious products and services. It is 

evident that items included in the prementioned categories are not purchased very 

often and therefore they are not reviewed as well. As a result, the recommendations in 

these cases are very poor. This problem can be resolved with the implementation of a 

knowledge-based approach in which the ratings are not used in the recommendation 

process. On the contrary, the proposals are presented based on the requirements or 

constraints of the user in comparison with the item characteristics. During this 

process, the systems also use knowledge bases which include information about 

similarity guidelines with a view to providing better results. In reality, the knowledge 

bases are so essential that the whole approach is named after them.  

Knowledge-based systems can be categorized into constraint-based and case-based 

recommender systems. In constraint-based, the recommendations are heavily 

influenced by the rules the users establish on the characteristics of the item. These 

restrictions consist of the domain knowledge for the system and they facilitate the 

generation of recommendations. In the case-based approach, the user identifies 

specific marks or goals and the system tries to retrieve items with similar 

characteristics by implementing similarity metrics [3]. 
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The main advantages of these systems are that they are very sensitive to the changes 

in user’s choices and also, they overcome the “ramp-up” problem. The “ramp-up” 

problem refers to the difficulty of a system in making suggestions before it has 

collected a specific number of user preferences and items’ ratings and its concept is 

very close to the cold-start problem. But, on the other hand, some drawbacks also 

exist in this approach. The most important is, that for the operation of the system 

domain expertise or perhaps knowledge in engineering is needed and the cost and 

effort for construction can be exceptionally high. In addition, the recommendation 

abilities of the system are not dynamic, so it is impossible for the model to adapt to 

short term changes [8]. 

In table 1, the differences of the three categories examined so far are depicted. 

 

 

Approach Input Output 

 

 

Content Based 

Ratings + item 

content 

Recommendations based on the 

attributes of the item combine 

with the past users’ actions 

 

Collaborative 

Ratings of the user 

+ neighbors’ ratings 

Recommendations based on the 

actions of the user and the 

matching users 

 

Knowledge based 

User rules + item 

content + domain 

knowledge 

Recommendations based on 

specification regarding the 

features of the item 
Table 1: Differences of Recommendation Systems 

 

 

2.1.4 Hybrid model  
 

The three mentioned approaches take advantage of different inputs and can be 

implemented in different cases with great success. But, since all of them present 

specific weaknesses, hybridization can be implemented as a method to get the 

maximum benefits. This means that mainly the first two approaches, content-based 

and collaborative filtering, are combined in a way to generate more valuable and 

accurate recommendations. The hybrid approach is highly influenced by ensemble 

learning in the field of machine learning, where, different algorithmic models are 

combined with a view to creating a hyper-model [3]. 

Over the past year, several ways of creating a hybrid model have been introduced. 

The main approaches are the following:  

1) Employ both content-based and collaborative filtering independently and then mix 

the results. 

2) Introduce some features from one approach to the other 
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3) Compose a hyper-model that includes characteristics of both content-based and 

collaborative filtering. 

 

The hybrid approach can combine different systems and various inputs so that it can 

offer solutions to the major limitations of the individual approaches. For example, the 

cold start problem which is very difficult to overcome in collaborative filtering can be 

resolved with the initialization of a content-based system that does not depend on 

previous ratings [2]. 

 

2.2 Types of input data 
 

In order to create a functional system, a great amount of data should be collected. 

Usually, the systems use information that includes demographics, item features, and 

customer preferences. We can divide the input data into five main categories. The first 

one would be rating data and it basically includes rating scores, likes and dislikes as 

well as comments about an item or a purchase. The simplest way to collect this type 

of information is to voluntarily get the users’ opinion for purchases they have already 

made and build a valid and sufficient dataset. The second type is transaction data that 

includes metadata about the purchases such as the date, quantity, possible discount, 

and price. The Behavior Pattern data is another important type of inputs. This 

category involves information such as the browsing duration, how many times a user 

has clicked, the links that a web page might include, and all the commands that a user 

can make in a site for example save, copy, bookmark, scroll, search, refresh and even 

download some content. The fourth type is production data. In the case of music or 

movie recommendations, those data refer to the singer or actor, release date, ticket 

price, production firm, and so on. In the case of websites or documents, it is related to 

the content description using keywords, links to others, the topic, and the viewed 

times. Finally, another important category of input data is demographics. 

Demographics include general and overall information about the users such as 

preferences of specific age or gender group, financial data, job, and hobbies. This 

information can be extracted from the user’s profile and can be used to create 

categories for the users [37]. 

 

According to [35], there are various types of ratings as well.  

• Numerical: use a number of stars usually from 1 to 5 to evaluate an item 

• Ordinal: use a set of words to describe the satisfaction of the user according to 

each item such as “excellent, very good, good, bad, very bad”  

• Binary: the user is offered only two choices, “good” and “bad” in order to 

evaluate an item 

• Unary: this type of rating designates that the is a positive reaction from the 

user which can be a purchase, a good evaluation, or even just the search and 
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observation of the item. If this type of rating is missing it indicates that there is no 

information available about the item or the user. 

• Tags: the user has the capability of commenting on the items the system is 

proposing  

 

Input data can also be classified as explicit or implicit. We can characterize as explicit 

the user input regarding the rating of an item. For example, likes and dislikes, as well 

as scale rating systems, are included. Rating scores may vary depending on the 

product and the website but the most common systems are the ones of 5 or 10 stars. 

On the other hand, implicit input refers to the user’s actions. Some of the most 

common examples are the time spent on a page or an item, adding an item to a wish 

list, and the purchase history. Even though it is hard to obtain implicit data, they 

provide more insight details about the user’s behavior.   

 

 

2.3 Similarity measures  
 

 

Similarity measures are of high importance especially in collaborative filtering where 

the comparison between users or items needs to be examined. The most well-known 

metrics are cosine, Jaccard and Pearson similarity [9].  

Cosine similarity (equation 1) is a metric used to define how similar two non-negative 

vectors are, by calculating the cosine angle between them. The main disadvantage of 

this method is that it classifies null or missing values as negative ones.  

 

Equation 1: Cosine similarity 

 

Pearson similarity (equation 2) is a similarity metric used to compute the linear 

correlation between two vectors and receives values from -1 to 1 with 0 indicating no 

correlation at all [9].  

  

Equation 2:  Pearson similarity 
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Jaccard similarity / coefficient as denoted in equation 3 takes into consideration the 

number of mutual choices between users. It measures the volume of items that have 

been reviewed and does not refer to the absolute ratings the users have provided to the 

products. Two users will be considered as similar when they have both evaluated a lot 

if common items. In reality this means that if two users have evaluated the same item, 

one positively and the other negatively, according to Jaccard similarity the users are 

considered as alike. So, the major disadvantage of the method is that it produces 

limited results so the users cannot be easily discriminated [9].  

 

Equation 3: Jaccard similarity 

 

 

When Jaccard similarity is used in combination with another similarity measure then 

the drawbacks can be eliminated and the results are more accurate and beneficial.  

 

 

2.4 Evaluation of recommendation systems  
 

 

A very significant issue regarding an RS is its evaluation. How well does a system 

behave and how can we measure its results? An RS can be evaluated using two 

different approaches, online and offline. In the online method, the valuation is heavily 

related to the active user’s reactions regarding the current recommendation. This way 

the straight influence on the end-user can be measured. However, it is usually very 

difficult to collect this type of validation since they demand the constant involvement 

of the active user, and as a result, this technique cannot provide valuable results for 

the research. Offline evaluation methods can be implemented in an RS and can 

provide more detailed insights about its performance. This method gives the ability to 

test different datasets and combine them with a view to obtaining a better 

generalization performance. When we refer to offline evaluation, accuracy is not an 

adequate metric for the evaluation so it is essential to determine extra criteria that will 

aid in the assessment of an RS [3], [9]. 

 

a. Accuracy metrics 

Despite the significance of complementary metrics, accuracy still remains the sole 

more important measurement in a RS evaluation. Offline evaluation can be 

implemented by assessing the accuracy of the rating values that are predicted or by 
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assessing the accuracy of the ordering of the proposed items [3], [9]. The most 

frequent accuracy metrics are described below.  

 

Predictive accuracy metrics 

The predictive accuracy metrics evaluate how similar and precise the predicted ratings 

the system produces about an item are, in comparison to the actual ratings. The main 

tools are denoted below.  

 

Precision – Recall – F-score 

 

To define these metrics, we assume that the items are divided into two categories. The 

first consists of the items that are retrieved and the user has full awareness of every 

item, and the second consists of the items that were not recommended.  

As precision, we define the ratio of the relevant items that were recommended over 

the total items that were recommended as depicted in equation 4. It resembles the 

probability that a recommended item is actually relevant to the user’s preferences 

[17].  

 

Equation 4: Precision 

 

As recall, we define the ratio of the relevant items that were recommended over the 

total relevant items that exist for the user’s profile as descripted in equation 5.  Recall, 

resembles the chance that an appropriate item will be retrieved [17].  

 

Equation 5: Recall 

 

 

F-score, is defined as the harmonic mean between precision and recall and it is 

displayed by equation 6. It combines both of the prementioned metrics and results in a 

more representative quantification [17]. 

 



25 
 

 

Equation 6: F1-Score 

 

 

ROC curves  

 

Another way to express the relationship between precision and recall is the Receiver 

Operating Characteristics curve (ROC curve) which can be characterized as an 

improvement of the f-score since as a metric it is not dependent on the size of the 

recommendation set. The ROC curve introduces the True positive rate (TPR) which is 

shown in equation 7 and is equal to the recall, and the False positive rate (FPR) which 

is presented in equation 8. The false-positive rate denotes the ratio of irrelevant items 

that were incorrectly proposed to the user as relevant and can be characterized as a 

“wrong” recall [9].  

 

Equation 7: True positive rate 

              

Equation 8: False positive rate 

 

The ROC curve is created by plotting the “wrong” recall – FPR on the x-axis and the 

correct recall – TPR on the y-axis. Both, TPR and FPR are calculated in percentage so 

the range of the axis is between 0 and 100. The area under the ROC curve indicates 

the effectiveness of the RS used and it is called AUC (or Area Under the Curve) area. 

Like, recall and precision the ROC curve makes a binary hypothesis of relevant and 

non-relevant items, so each time an item can be correctly proposed or not. If every 

relevant item on the recommendation list is proposed before the irrelevant ones then 

the perfect ROC curve is constructed. The major disadvantage of this method is that a 

big volume of data is needed in every step, in order to produce valuable results and 

distinguish accurately between relevant items and non-relevant ones [9]. 
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Mean Absolute Error – Rooted Mean square Error -Mean Square 

Error  

 

The Mean Absolute Error (MAE) as described in equation 9 calculates the mean 

absolute divergence of a predicted rating and the actual one the user has eventually 

provided. The main advantages of this method are that in the first place it is a method 

particularly easy in understanding and implementation and secondly it can produce 

statistical results of high importance. In addition, this method does not incorrectly 

punish the large errors as there is not a squared term [9].  

  

Equation 9: Mean Absolute Error 

 

Another variation of the MAE is the Mean Absolute error which is depicted in 

equation 10. The advantage of this method is that it can be very efficient with small 

values in producing accurate results. The square root of it is known as root mean 

squared error (RMSE) and is described in equation 11. The main gain of using it 

instead of MSE is that the results are expressed in the same unit as the user ratings 

and not on the square of that quantity as in MSE. At the same time, the main 

drawback is that due to the fact that the squared term is in the summation, RMSE 

tends to incorrectly penalize the large errors [3]. 

 

 

Equation 10: Mean Squared Error 

   

Equation 11: Root Mean Squared Error 

 

 

Rank accuracy metrics 

 

This metric evaluates the ability of an RS at suggesting items with the same order as 

the user would have selected them. It is an appropriate way of measuring the RS 
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algorithms that are used with a view to generating ordered recommendation lists for 

the users when the recommendations are not of a binary type. The main disadvantage 

of this metric is presented in cases where the user does not care about the items’ 

rating. 

Ranking metrics are not adequate to evaluate the accuracy of an RS at predicting the 

order of a single item, so in order to obtain an overall view of the system’s 

performance, it is important to be combined with the predictive accuracy metrics that 

were described in the previous section [17]. 

 

Prediction rating correlation  

 

As it is already clarified, when evaluating an RS, it is very essential to examine the 

relationship between the produced rating list and the actual sequence of items that the 

user selects which is commonly known as “ground truth”. Since the ordering 

sequence is discrete, it is very normal for ties to exist in the ground truth, so there is a 

need not to incorrectly “punish” the system in the case it rates improperly two items 

that are in the same position. The most popular method is to use a rank correlation 

coefficient as it is capable of comparing even non-binary rankings, it can provide a 

holistic evaluation for the RS and it can be easily understood by the scientific and 

research community [17]. The two main approaches are: 

 

Spearman rank correlation coefficient 

 

It measures how dissimilar two impartial ratings are, regardless of the true features’ 

values and it is depicted in equation 12 [17]. 

 

Equation 12: Spearman correlation coefficient 

 

In order to calculate the spearman coefficient, we need to place both the predicted 

recommendation items and the ground truth in the correct sequence. Then, the 

Spearman correlation is similar to the Pearson (described already), for these orders of 

items. The values that can take are from -1 to 1 and it is more efficient with small 

values. The Spearman coefficient can be computed for every user and then, get an 

average value for all the users, or it can be computed overall ratings at once. An 

important problem with this method is that the ties that may exist between the items 

can produce noise to the assessment of the RS [3]. 
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Kendall rank correlation coefficient 

 

It measures how strong the relationship of two ordered recommended lists is and to 

what direction it moves- positive, negative, neutral. Even, though the Kendall 

coefficient is a very simple and easy to implement the method, it is not widely used 

for the evaluation of an RS. 

 

b) Non-accuracy metrics  

It is essential for an RS not only to be accurate but also to provide an adequate and 

pleasing experience to the end-user. So, apart from being accurate, an RS must also be 

efficient. For example, a system might be able to predict only the very obvious items, 

which are the ones that the end-user does not actually a suggestion for. Or, the same 

might apply for the least obvious or irrelevant items that there is no possibility that the 

user will buy. Therefore, other evaluation metrics should be determined that validate 

the system’s effectiveness beyond accuracy. The most important of them are 

presented below [3], [17]. 

 

Coverage 

 

It measures for what part of the dataset the system can generate recommendations and 

it denotes the domain of items that can be suggested. A system with small coverage is 

usually less satisfactory for the users since there are a lot of limitations in the 

proposals they can make. The easiest way to define the coverage of a system is by 

measuring how many of the total items, recommendations can be generated, and take 

the percentage. To do so, we can just select arbitrary pairs of user-item, request a 

forecast for every set, and measure the rate for which an expectation was given. An 

important note is that coverage should be measured in parallel with accuracy so as the 

users will not intentionally change their predictions and affect the final outcome. 

 

Learning rate 

 

RS include also learning algorithms, and it is evident that the quality and quantity of 

suggestions can vary depending on the amount of data available. More information 

should result in more accurate recommendations. The quantity of data needed can 

differ from system to system as there are cases where a model can produce adequate 

results with only a few entries and cases where the model requires a greater number of 

entries. The learning rate of a system can be distinguished into three classes. The first 

is the overall learning rate, which depends on the total number of ratings in the 

systems. The second is the per item learning rate indicates the quality of 



29 
 

recommendations for an item regarding the whole number of reviews existing for it. 

The last one is the per-user learning rate that denotes the quality of suggestions for a 

user regarding the number of reviews the user has provided.  

 

Serendipity 

 

This “metric” refers to the innovation in an RS system. It happens many times that an 

RS might propose a very popular item or an item that has been already purchased by 

the user. In both cases, the proposal is meaningless as it adds no extra value, and it 

can be characterized as an “obvious” recommendation. Even though the users might 

sometimes appreciate recommendations of items they are already familiar with, the 

introduction of “serendipity” is inevitable. That way, potentially interesting new 

recommendations can be generated that otherwise might never be examined by the 

end-user. There is no simple way to measure “serendipity” since it rates how much a 

recommended item is attractive or unexpected for a user. 

 

Confidence 

 

Most of the time, the users might wonder about the certainty of the system’s 

recommendations which can be tackled as a matter of confidence. In other words, 

they may ask about “how guaranteed is it that the generated suggestions are correct?”. 

The goal of the RS is to create a positive experience for the user and assist him in 

buying what he needs, so it is essential to incorporate confidence in this procedure. 

Although, confidence is really hard to measure. since it is a complex phenomenon and 

it cannot be described by one-dimensional measures, it is clear that if a system does 

not include confidence to some extent, the recommended results will be less useful 

and accurate. 
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Chapter 3: Literature 

Review 
 

3.1 Background and examples of online systems 

and engines for book recommendations  
 

During the past years, interesting work and research have been done in the field of 

recommendation systems. Even though they are mainly used in the field of e-

commerce and on-line services, they are many cases where the systems were 

introduced in the area of book recommendations. Some of the most significant online 

book retailers are presented below.  

Whichbook.net is a platform that uses collaborative filtering to generate suggestions 

about what book the user should read next, and it is based on the idea that similar 

users will like the same books. So, based on the author or the title the system proposes 

items that match each customer’s reading list. Common items with the ones existing 

in the reading list are proposed to the user [11]. 

Librarything.com is an online service that supports book cataloging for the user. It 

implements a hybrid RS based on the site’s library categories combined with the 

user’s preferences according to their reading lists. Furthermore, it proposes links for 

relevant bookstores [31]. 

Booklamp.com is yet another book recommendation system that was purchased from 

Apple in 2014. The system predicts user preference by analyzing the book’s 

viewpoint, tone, and writing in order to propose books in a similar style. The main 

advantage is that it can remove noisy features from the datasets such as marketing and 

advertising, and so it is one of the most effective systems so far [31]. 

Bookexplorer.com is an engine that supports the functionality of searching for books. 

Books are stored in lists and as soon as a user selects a book the whole category is 

also presented. It implements collaborative filtering within each list [31]. 

 

3.2 Related Work 
 

3.2.1 Building a Book Recommender system using 

time-based content filtering 
 

The authors in [31] suggest an RS that combines both user preference and item 

features with time. The system takes into consideration the period that an item stays in 

the favorite list over a specific time window. Each item in the list has a counter that is 
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updated every time the user checks that item. The highest the result of the counter the 

higher the possibilities of it being recommended. The system takes into consideration 

the counters of all users, and not only of the particular one, in order to achieve variety 

in the recommendations. Over the defined time frame the books’ counters can change 

and become more or less favorite, ensuring that the list is updated at any given point. 

Content-based filtering is implemented to process user preferences and results in 

recommendations of a specific category of books. In addition to that, the user is given 

the possibility to search for a category or a particular book, and, when this procedure 

finishes, the preferences are registered. It is essential to regularly update the 

preferences, as the system is dynamic and the lists can change over time.  

The paper concludes that the addition of the time dimension in the system results in 

better book recommendations. In particular, time is a criterion that was not used 

before in order to explain the accuracy of the system which from a point and on was 

stuck in generating the same proposals. The proposed model, not only is able to 

provide meaningful recommendations with fewer ratings than usual but also, the extra 

temporal dimension can lead to higher user satisfaction and more useful and related 

suggestions. The system was set under examination by a group of participants that 

were asked to evaluate how the addition of the time impacts the recommendations and 

the final outcome of the survey was used to evaluate the proposed RS in the research. 

Out of the total, 74% concluded that they observed meaningful changes to their 

recommendations, that could change on a daily, weekly, or monthly basis. 

Furthermore, over 70% of the people, found these changes valuable and gave the 

system an overall score of 8 out of 10 or above. 

 

3.2.2 A graph-based recommender system for digital 

library 

 

In [18], the authors introduce a two-layer graph recommender system that applies to 

content-based, collaborative, and hybrid filtering. The system incorporates user-to-

user, book-to-book, and book-to-user correlation, and the tested dataset was obtained 

by a foremost Chinese bookstore, containing information about books, costumes, and 

transactions. The books and customers are represented as feature vectors. The book’s 

vector contains information regarding the book and its content such as the title, genre, 

abstract, etc. and the customer vector contains the client’s demographics. Then, the 

vectors are compared using similarity measures. The second step, introduces the 

modeling of books, customers, and transactions in a two-layer graph, one layer for the 

books and one layer for the customers, using the weights obtained by the similarities 

in the first stage. In the book layer, every node denotes a book and every link denotes 

the similarity between them. In the customer layer, each node denotes a client and 

each link denotes the similarity in terms of demographics. Finally, a link between the 

two layers represents a purchase, so the inter-links can be referred to as the 

transaction’s history.  
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The system implemented acts as a graph search engine, which focuses on discovering 

convincing relationships between the items by using different searching methods. The 

produced model is simple and understandable and also, can be applied to all of the 

main approaches concerning an RS. If only the book-to-book similarity is taken into 

consideration then the model becomes a content-based one, whereas, if only the 

customer-to-customer correlation is used, the approach is clearly collaborative. If all 

the correlations are combined then the model results in a hybrid one.  

In the paper, all the prementioned approaches were tested in terms of precision and 

recall, using low and high degree association search methods. The evaluation part was 

split into two different approaches. Initially, a hold-out test, similar to the concept of 

cross-validation, was held by selecting randomly 100 clients and their book purchases 

in date order. The purchases were divided into the older ones that consisted of the 

training dataset and the more recent consisted of the test dataset. The first set was 

used to train the algorithm and produce recommendations and the second set was used 

to compare the findings with the real purchases. In addition, ANOVA tests were run 

to examine the impact of the degree of associations of the suggestions on precision 

and recall. The hybrid system outperformed the content-based and collaborative 

filtering with a precision of 2,76% and recall 14,52% on the low-degree association 

and 3,32% and 13,51% respectively on the high-level association. Furthermore, a 

statistically significant difference with regards to precision and recall was noticed 

between the three approaches, whereas there was no significant difference between 

the level of association.  

After the hold-out testing, another evaluation called “subject evaluation” was 

implemented. Two well-educated Taiwan citizens were selected to suggest books 

based on their knowledge, experience, and information available on online book 

stores. Three clients were randomly selected and six recommendation lists were 

generated based on their history purchase, which was available to the two “subjects” 

as reference. Using the lists, the “subjects” could get a basic insight on the clients’ 

interests, and, afterward, they were asked to create a new list of recommendations 

using books that were included in the initial six lists. The final list was used as a 

benchmark to compare the different system designs. The outcome was that the 

content-based filtering outperformed the other two methods both in precision and 

recall with a score of 16% and 36,3%, respectively, for the low degree association and 

with a score of 18,3% and 38,1%, respectively, for the high degree association. The 

difference between low and high degree association was not found significant and the 

fact that the content-based design was the best one can be explained by the idea that 

the “subjects” have selected most of their recommendations based on the theme and 

content of the books available.  

The findings conclude that the hybrid model was the one with the best performance 

based on the results of the hold-out test and the content-based model was the best 

based on the results of the subject test, but in both cases, there was no important 

improvement regarding the level of associations.  
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3.2.3 Book Recommendation System through content 

based and collaborative filtering method 
 

 

The authors in [26] introduce a hybrid approach that combines content-based and 

collaborative filtering with keyword-based filtering and data mining. Regarding the 

keyword-based filtering, the user is asked to passwords matching his preferences that 

are stored in a database and will be used for future recommendations. In terms of data 

mining, the ECLAT (Equivalence class Clustering and bottom-up Lattice Traversal) 

algorithm is introduced to spot the repeated items. This algorithm can parse the items 

from the beginning and only one time to identify the most relevant and frequent ones, 

which makes it very quick and efficient. The proposed procedure is completed in 6 

steps. Firstly, the whole book dataset is scanned and the irrelevant items are removed. 

In the next stage, a data preprocessing procedure results in the extraction of only the 

useful information for the next steps. In the third stage, the transactions are filtered 

and the books are classified by category and sub-category. In the fourth step, content-

based filtering is implemented based on the preferences of the user and in the fifth 

one, collaborative filtering is used to evaluate the book’s content by combining 

ratings and reviews. Finally, the book with the most ratings is recommended to the 

user. The authors highlight that the main challenges for the RS were regarding the fact 

that there is no way of evaluating the validity of the users’ ratings and also, the fact 

that the system can be used only by people that have the knowledge of using a 

computer and the Internet. The study concludes that with the implementation of this 

system, the suggestions generated reached a high level of fulfillment regarding the 

user’s requirements and also, benefited efficiency and productivity. 

 

 

 

3.2.4 Hybrid attribute and personality-based 

recommender system for book recommendation 
 

 

In [16], the authors introduce a hybrid approach using an attribute-based system, 

enriched by personality features. The first step is to create a user profile by forming a 

preference matrix. Attributes included in the matrix vary according to the user’s 

prerequisites and objectives and include the title, author, price, genre, etc. The second 

stage is to generate a neighborhood by finding the similarities between the active user 

and the rest of the users. Except for collaborative filtering, the personality factor is 

also implemented as the model takes into consideration the relationship between the 

interests of the users and their rating behavior. In the third step, the MSV-MSL (Most 

Similar Visited Material to the Most Similar Learner) method is introduced to 

calculate the score of the book. Since all the mentioned steps are completed the 
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recommendations are generated based on the predicted ratings. The datasets used in 

the study are the Bookcrossing and the Amazon review, and the metrics used to 

evaluate the performance of the system were precision, recall, and f-score. During the 

evaluation of the RS different approaches of the MSV-MSL regarding the user 

similarity have been experimented, such as including patterns only with ratings or 

only with personality or with a combination of both. For the Bookcrossing dataset, the 

approach of only utilizing the personality achieved the higher f-score (0,035) in 

comparison to the other two. The paper reaches the conclusion that at least for this 

dataset the addition of personality factor can increase the F-score and hence, provide 

better results. On the other hand, for the Amazon dataset, the inclusion of the 

personality leads to a decrease in the F-score by almost 75%. The final results proved 

that the system was more accurate for the Bookcrossing dataset as it involves real 

features in comparison with the Amazon review dataset. Furthermore, the study 

reaches the conclusion that the performance of the RS and the quality of the generated 

suggestion depend heavily on the datasets used and the included attributes. 

 

 

3.2.5 Web-based personalized hybrid book 

recommendation system 
 

In [20], the authors introduce a book web-based RS. A computer server is used to 

support the procedure which is connected to the database where the information for 

the users and the demographics are stored. Furthermore, the database involves the 

books dataset and the relevant ratings combined with the factor of time as the older 

ratings are eliminated. Furthermore, the database includes another dataset that 

includes the information derived from the web. According to the authors, different 

software can be used to achieve the desired outcome such as Apache Hadoop or a 

relational database such as MySQL. After the required data are stored in the 

repository two main approaches of filtering are applied to generate recommendations, 

content-based, and collaborative. In the next step, demographic filtering is also 

executed based on the personal features of the user such as age and sex, with a view to 

generating more personalized proposals. Furthermore, web scraping is used to extract 

useful and meaningful information for the recommendation process. Even though, 

issues such as confidence in the system and data security arise, the authors conclude 

that the addition of the web factor can surpass the limitations originating from the 

filtering approaches and enhance the power and efficiency of the RS. 

 



35 
 

 

3.2.6 An Implicit Feedback model for Goodreads 

Recommendations  
. 

In [22], the author suggests a RS that is based on implicit data. To implement so, 

Spark library and ALS algorithm are used for the building and evaluation of the 

model. The dataset used for the study is the Goodreads book dataset which consists of 

876K of users and 223M of interactions. Due to limitations of speed and memory, 

eventually only the 25% of the original dataset was used and all the users and books 

with less than 10 interactions were excluded. Afterwards, the dataset was split in train 

set, validation set and test set with percentages of 60%, 20% and 20%, accordingly. 

The alternative least squares algorithm (ALS) was implemented to perform matrix 

factorization and calculate the user-item matrices. It can be described as follows: 

 

Equation 13: Alternative least square algorithm 

where R represents the ratings matrix and U and V the user-books matrices. The aim 

is to minimize the least square errors of the ratings and regularize. The algorithm is an 

iterative one which implies that it will repeat until convergence. For each user, a data 

frame that consisted of 500 predicted items and the ranked order of items the users 

have interacted with, was created and was used to implement a ranking metrics’ 

evaluation. In particular, the metric used to identify the best fit that should be used in 

the next step for the test set were Mean Average Precision (MAP), precision at k and 

Normalized Discounted Cumulative Gain (NDCG). Before the evaluation a tuning on 

the hyperparameters, rank, regParam, and alpha, was performed to optimize the 

model’s performance. After a grid search, the best model based on NDGG and 

precision at k was found with rank = 30, redParam = 0.05 and alpha = 15. The 

evaluation results on the validation set are depicted in figure 2:  

 

Figure 2: Evaluation results 

 

Finally, the scores do not differ on the test set which implies that the model did not 

overfit. The author concludes that further work can be accomplished with more 

computational and time resources that can support multiple combinations of 

hypermeters and a bigger portion of the original dataset.   
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 3.2.7 Recommending user generated item lists 
 

 

In the paper [23] the authors stress the fact that the existing RS mainly proposes 

individual items and attempt to study the generated list items, a feature that starts to 

find implementation over different recommendation engines. The different properties 

of these lists are examined, and an algorithm based on a Bayesian ranking model, 

called Lire, is proposed for the generation of personalized item lists. Different 

baseline algorithms are also introduced in order to test the performance of the newly 

generated model. In particular, the approaches that are initially followed are a 

popularity-based approach, collaborative filtering with implicit data, and a Markov-

based approach for recommendations. 

The popularity-based approach is grounded on the idea that the item lists are sorted by 

the number of votes received and every user is recommended the top lists that have 

received the most votes. This algorithm is called GLB (GLoBal) as it is not taking 

into consideration personalized statistics but global ones. Two more variations of this 

approach are exploited, the PPOP (Personalized Popularity) and the PIF (Personalized 

Item Frequency). The first one can be described by the assumption that the user is 

only interested in lists that include items that he is familiar with. So, instead of simply 

recommending the most popular lists across all users, the algorithm recommends the 

most highly rated lists that include at least one item the user has interacted with. The 

second algorithm is based on the same assumption as PIF, but it ranks the lists by the 

number of items the user has interacted with and recommends the top ones by 

supporting the idea that the more familiar items existing in a list, the more interesting 

the list is for the user.  

Regarding the collaborative filtering approach, since the feedback is implicit which 

means that the feedback is in terms of votes, the authors adopt the BPR (Bayesian 

Personalized Ranking) method. Every user and every item are associated with a latent 

factor, and then the similarity to other factors can be predicted by their dot product.  

For the Markov-based approach, the adapted algorithm is LME (Latent Markov 

Embedding) where every item is associated with a latent factor. In this case, there is a 

difference regarding the fact that is algorithm is mainly used for generating playlists, 

where the items included are supposed to be in sequential order. To achieve this, the 

authors calculate the take into consideration the probability of each list being created 

as a series of Markov transitions.  

Finally, the LIRE model is proposed which is based on the idea that each user, item, 

and list are associated with a joint latent factor of k dimensionality. The two main 

points under examination is the overall quality of the list and the user’s interest in the 

items included in it. The model is further categorized into two variations. The first one 

is called UNIFORM and the second one is called DCG (Discount Cumulative Gain). 

The main difference is that the second model tries to also capture the influence that 

the order of items appearing in the list might have on the user.  
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The final step is to evaluate the algorithms and compare their quality. The book list 

dataset was obtained by Goodreads and a sample of 10% of all the user-generated lists 

was used for the evaluation. The metric utilized to measure the performance of the 

algorithms was the AUC score and the results are presented in the plot. The LIRE 

models outperformed all the baseline ones and the score of the UNIFORM was higher 

than the DCG. As a final comment, the authors stress out the fact that the UNIFORM 

algorithm is much slower than the DCG during training as it has to “visit” all the 

items included in an item list. 

 

 

Figure 3: Comparative results for the proposed models 

 

 

 

3.2.7 Hierarchical Gating Networks for Sequential 

Recommendation 
 

 

The authors in [25] introduce a hierarchical gating network (HGN) as an attempt to 

overcome the two main problems the sequential recommender systems face, which 

are the difficulty of modeling the interests of the long-term users and the difficulty of 

identifying the interests of the short-term users. The proposed model is using the 

Bayesian Personalized ranking model (BPR) with a view to capturing the preferences 

of both types of users. The users’ interests are represented by a user-item series in 

chronological sequence and the tasks focus on recommending to every user a list of 

items from a set S of items and evaluate if the items will appear in the generated 

recommendation list. The training data consists of ordered implicit feedback and the 

model is constructed by a feature gating module, an instance gating module, and an 

item to item product module. The architecture of HGN can be presented by three 

steps, the embedding layer, the gating layer, and the prediction layer. The input in the 

embedding layer is an order of items, where every item is denoted by a unique index. 
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When the data enters the layer, it gets transformed into a real-valued vector of a lower 

dimension. The gating module afterward acts like a “filter” and selects which data can 

pass to the next level where the latent features and items are selected. Furthermore, 

before the prediction layer, an item to item product module is implemented to capture 

the relations between the items and to identify how similar or dissimilar they are. 

Finally, the prediction layer calculates a score that is influenced by the user’s long-

term interests, the user’s short-term interests, and the item-item product.  

To examine the performance of the suggested model, five datasets from different 

fields were used, the MovieLens-20M, Amazon Books, Amazon-CDs, Goodreads-

Children, and Goodreads-Comics. Only the users with more than 10 interactions 

participated in the final datasets, as well as the items with more than five ratings, in 

order to eliminate the noise. For every user, 70% of the interactions were used for 

training, 20% for testing, and the last 10% for tuning of the hyperparameters. The 

evaluation metrics utilized in the study are Recall@k and NDCG@k. The first one 

denotes the percentage of the user’s rated items that appear in the top k recommended 

ones and the second metric is the normalized discounted cumulative gain at k which 

also takes into consideration the position of the recommended items. To compare the 

performance of HGN classical methods of implicit feedback and state-of-the-art 

methods were tested. In particular, the methods that participated are BPRMF 

(Bayesian Personalized Ranking based matrix), GRU4Rec (gated recurrent unit for 

recommendations), GRU4Rec+ (improved method of GRU4Rec), NextItNet (next 

item recommendation net), Caser (convolutional sequence embedding model), and 

SASec (self-attention based sequential model). The proposed method (HGN) 

outperformed all of the other methods in both Recall@k and NDCG@k and the final 

results are presented in figure 4.  

 

 

Figure 2: Recall@k and NDCG@k results 

 

Furthermore, the suggested method also outperformed the others in training time for 

all of the five datasets.  
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3.2.9 The 50/50 Recommender: a Method 

Incorporating Personality into Movie Recommender 

systems 
 

In paper [30], the authors introduce a movie RS that takes into consideration the 

user’s personality. For this purpose, collaborative filtering methods are being 

implemented and further combined with a personality test. The dataset used for the 

implementation of the model is MovieLens 100k which includes 100000 ratings for 

1700 different movies and from 1000 unique users. The first step is the rating function 

which follows the basic steps of collaborative filtering. Initially, the function isolates 

the ratings of the active user and the algorithm K-NN is implemented based on 

Pearson correlation to find the users that are more similar to the active one. Then, the 

products that the similar users preferred are identified and the predictions are 

generated based on the Prediction Rating Formula. The formula generates the 

hypothetical rating that the active user would give to the referred products and the top 

10 items are recommended based on their scores. The next step is the Big Five 

Personality test, where the active user is called to reply to 50 questions that identify 

how his/her personality is structured. The final step is to combine the personality tests 

with the K-NN algorithm in different two different variations of percentages, 50/50 

and 80/20. For the evaluation of the proposed model, 30 people were assigned to try a 

modified version of the RS. The users tried an RS based only on K-NN, a 50/50 

model, and an 80/20 model, and they had to give a score from 1 to 3 to their preferred 

one, with 3 being the highest rating. 36.92% of the users voted in favor of the 50/50 

system, and only 28.72% preferred the 80/20 model. The results imply that 

considering the user’s personality when designing an RS can improve the quality of 

the system. The authors conclude that more different variations of percentages can be 

tested to improve the results and raise the point that does to the evaluation process, 

which cannot guaranty that it is completely random and impartial, the approach can 

face validity risks. 

 

 

3.2.10 Promoting Diversity in Content Based 

Recommendation using Feature Weighting and LSH 
 

In [5] the study focuses on stimulating the diversity of recommendation systems in e-

commerce by combining a content-based filtering approach, feature weighting, and 

LSH (Locality-Sensitive-Hashing). The architecture of the method is constructed in 

three steps. The first one calculates a weighted matrix to denote the set of products. 

Then, the Minhash technique is implemented to generate compressed representations 

of the set of products and to find the highest similarity between sets, using the Jaccard 
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formula. Lastly, the system generates suggestions based on LSH Forest. Two datasets 

are used to evaluate the proposed system, Best price dataset, which was created by 

real e-commerce data, and a prepossessed form of the already existing RetailRocket 

dataset. In the first step, since each product is presented by a text that contains 

information about its features, the goal is to generate matrices that indicate the 

importance of the terms for every item. Afterward, a weight is given to each term by 

utilizing the TF-IDF formula.  The second step is to use the Minhash method to 

enhance computational speed. The result of this step is that the TF-IDF matrices 

created at step one for each item, are now represented by the Minhash signature which 

is much smaller in length. Finally, the LSH Forest method is introduced to find the 

most similar items by using the Minhash signatures created in the previous step and 

recommend the k top similar items. The evaluation was constructed separately for 

each dataset. For the first dataset 11 scenarios were taken into consideration, each one 

with different feature weights, in order to evaluate the diversity of the 

recommendations. The results indicate that indeed the system integrates diversity as 

each generated top 10 recommendation set includes products that belong in different 

brands, subcategories, and in some cases even in different categories. For the second 

dataset, the generated dataset of the top 10 recommendations was compared to the 

actual products the user “visits” in the next product pages. Apparently, in 94% to 97% 

of the cases, at least one of the recommended items matches the real views of 

products, unrelatedly to the feature importance. The authors conclude that the results 

were very encouraging about the performance of the system since diversity is a very 

important factor for the success of an RS and can be as significant as similarity. 

 

 

3.2.11 MuSIF: A product Recommendation System 

Based on Multi-source Implicit Feedback 
 

The authors in [36] propose a new recommender system, MuSIF for product 

recommendations incorporating multi-source implicit feedback. The model is based 

on Collaborative filtering with Matrix Factorization and Association Rule Mining. 

The architecture of the system is implemented in three stages and the main algorithm 

is a variation of IF CF using Alternative Least Squares (ALS). The first step is the 

implicit Matrix Factorization. To do so, user-item matrices must be generated as well 

as implicit rating values that will represent the user-item score. Since the selected 

algorithm performs better with binary values the cases are divided into “interaction 

with the item” (denoted by 1) and “no interaction” (denoted by 0). Also, a formula 

that calculates confidence is created to represent the preference level of a user towards 

an item. Then, the model calculates the factor vectors by minimizing the proposed 

cost function and predictions can be achieved by calculating the dot product of the 

user-item factor vectors. The second step is the Association Rule Mining (ARM), in 

order to overcome the sparsity problem of the data. It is implemented in order to make 

the matrices created in the previous step denser with rules extraction and fill in the 
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missing values. Finally, the last step is the preparation of the factor vectors before the 

ALS optimization, which is achieved with the introduction of the SVD algorithm for 

the decomposition of the user-item matrices. The evaluation of the system was 

conducted with different transformations of the user-item matrix and the chosen 

metric was the Mean Percentile Ranking (MPR). The dataset used for the evaluation 

was the Retail rocket including items, users, and events-actions (“view”, 

“transaction”, and “add-to-cart”). The model was initially evaluated in terms of 

performing taking into consideration only the transaction events and then all the three 

types. The case when only “transactions” participate in the evaluation was called 

“Single-source evaluation” and the case when all the events participate was named 

“Multi-source evaluation”. To continue with, the system was evaluated in terms of 

performance when methods that enhance accuracy were applied. So, eventually, four 

comparisons were constructed between the single-source and multi-source matrices 

utilizing different methods, the standard, the implementation of ARM, the 

initialization of user-item factor vectors, and the enhancement of the matrix combined 

with the initialization of factor vectors. After the implementation of all the methods, 

the authors conclude that the single-source matrix outperformed the multi-source one 

in all the methods tested. Even, the best performance of multi-source was not enough 

to compete with the single-source one which obtained a higher score of 5.18%. The 

authors support that the results were mainly influenced by the sparsity of the matrices 

and not necessarily because the single-source is a better model. More specifically, the 

multi-source model is ten times less dense than the single-source one. Finally, the two 

models were tested also in terms of coverage and resulted that the multi-source model 

is more appropriate for generating recommendations as it was able to propose 16022 

different items to 43827 users, while the single-source model was able to generate 

only 106 items to 1056 users. 
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Chapter 4: Dataset  

 
4.1 Dataset  
 

The dataset introduced in this dissertation is the “Goodreads book reviews” which 

was created in 2017 from Goodreads.com by collecting more than two million books, 

found on public shelves. For this reason, all the users along with their reviews are 

represented by an ID in order to preserve anonymity. The books are further 

categorized by gender in “Children”, “Comics”, “Fantasy & Paranormal”, “History & 

Bibliography”, “Mystery, Thriller & Crime”, “Poetry”, “Romance” and “Young 

Adult”. For the sake of speed and computing power, only one gender was selected for 

investigation in the dissertation, the “Comics” genre. The dataset is saved under JSON 

format and contains the user's reviews and ratings [27], [28]. 

 

Data description 

 

The subset “goodreads_reviews_comics_graphic.json.gz” consists of 542,338 rows, 

one for every rating, and 11 columns with relevant information about the reviews. The 

most important attributes are:  

  

- user_id: unique number for identification for each user 

- book_id: unique number for identification for each book 

- review_id: unique number for identification for each review 

- rating: the user rating on the book  

- review_text: the text of the review that the user gave to the book 

 

The first five random rows of the dataset are depicted in figure 5:  

 

https://drive.google.com/uc?id=1V4MLeoEiPQdocCbUHjR_7L9ZmxTufPFe
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Figure 3: Preview of the first 5 rows of the dataset 

 

 

4.2 Dataset Preprocessing 
 

In this part, the preprocess and selection of the appropriate variables is descripted and 

justified. Due to limited resources and computational power only the 50% of the 

datasets was kept for building the recommender systems. By, using the 

“train_test_split” function of the “sklearn” library, a random separation of the datasets 

was achieved. After this procedure the “books” dataset consisted of 44706 entries and 

the “reviews” dataset of 271169.  

Figure 6 and figure 7 provide an insight on the distribution of the user’s ratings and 

their corresponding ratio. As it is evidence, the majority of the books has received a 

rating over the average and, in particular, the most frequent rating among the reviews 

is 4. It is important to note that the reviews with rating equal to zero were excluded 

from the dataset as they did not provide consistent information.     

 

Figure 4: Rating's distribution 
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Figure 5: Percentage distribution of the ratings 

  

 

To continue with, we further process the dataset with a view to avoiding the “cold-

start” problem in our recommendation system. This problem refers to the difficulty of 

the system in generating relevant recommendations when the information provided 

for the users or the items are not adequate. In our case, this problem can be detected 

when there are not enough ratings for a book or there are users that have rated very 

few items. To overcome it, we select to continue only with the books that have been 

rated more than 10 times and with the users that have rated 50 or more items in our 

dataset. This step also improves the speed of our program as after the selection of 

books the dataset entries are decreased to 96220 and after the selection of the users 

the final dataset consists of 27547 rows. Furthermore, by selecting only a subset of 

our original dataset we achieve to make it less dense.  
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Chapter 5: Methodology 

 
Our approach focuses on the creation of a recommender system based on 

collaborative filtering and sentiment analysis with a view to is to recommend products 

to customers based on their previous ratings for other products. In order to 

understand, how and if the comment reviews are a better identifier for the future 

rating, we initially construct the model using the user ratings, and then we substitute 

them with the score obtained after the sentiment analysis. For this purpose, the 

programming language used is Python, as it is one of the most powerful and user-

friendly languages, and is widely used in the field of scientific computing. The 

version of Python implemented in this thesis project is 2.7.13 and the procedures of 

experimenting and building of the recommender system were done on Jupiter 

notebook. Jupiter notebook is an open-source web-based application that facilitates 

the creation and sharing of live codes but also supports procedures like data cleaning, 

machine learning, and visualization. Different libraries are utilized for the purpose of 

this study like “Surprise” for the construction and evaluation of the model, “nltk” for 

text preprocessing, and “TextBlob” for the sentiment analysis. 

 

 

5.1 Surprise Library 
 

Surprise is a build-in library for the creation and evaluation of recommender systems 

and specifically focused on rating predictions. It includes classical datasets, as the 

MovieLens, directly in the package, but user-defined datasets can also be applied by 

incorporating pandas data frames. The library provides various algorithms for 

predictions from simple similarity-based ones to algorithms that depend on Matrix 

Factorization. Furthermore, it involves methods for the evaluation of the models such 

as cross-validation and methods for hyper-parameter selection like grid search. For 

this study, the algorithms that are taken under examination are SVD with one 

variation and K-NN with the other three variations. In addition, the grid-search tool is 

used for selecting the best parameters for the models and cross-validation for their 

evaluation [19]. 
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5.2 Sentiment analysis  

 

Sentiment analysis can be described as a process of identification of feelings and 

emotions from texts, speeches, social media posts, etc. By implementing Natural 

Language Processing (NLP), the process can categorize the text as negative, positive 

or neutral and assign a score within the range -1 to 1, with -1 being completely 

negative and 1 being completely positive.  

Initially, the “NLTK” library was used for text processing. The Natural Language 

Toolkit plays a very important role in transforming the data in a format that can be 

easier to extract sentiment from, and can support different machine learning 

algorithms [14]. The steps that were followed to construct the text data in the 

appropriate form are described below:  

1) Transform the reviews data to “string form” 

2) Lowercase all reviews (helps increasing the speed of the sentiment calculation) 

3) Remove punctuation and special characters (special characters can be described as 

non-alphabetic and non-numeric values) 

4) Remove the stop words (which are very common words with no special predictive 

power) 

5) Remove the suffixes by using the Stemming algorithm with a view to reducing all 

words with the same root to a common form 

Then, the “Text Blob” library is implemented to calculate the sentiment scores. Text 

Blob is a python library that can extract noun phrases by utilizing NLTK features 

[24].  

By the end of this step, each review is now related to a new rating score that is based 

on the sentiment extracted from the review text and those scores are going to be used 

as ratings for the predictions. 

 

 

5.2 SVD algorithm 
 

The SVD algorithm is met in literature under different names. Some of them are 

“factor analysis”, “principal component decomposition (PCD)” and “empirical 

orthogonal function (EOF)”. The name SVD was promoted by Simon Funk during the 

Netfix Prize competition in 2008. The singular value decomposition is a technique of 

generating low-rank approximation. The algorithm can generalize easier to higher 

dimensions. The method decomposes a matrix into three other matrices following the 

formula [33]:  

SVD(A) = U x S x 𝑉𝑇   
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where:   

A is an m x n matrix 

U is an m x n orthogonal matrix  

S is an n x n diagonal matrix  

V is an n x n orthogonal matrix  

The diagonal entries (𝑠1, 𝑠2,..., 𝑠𝑟) of S have the property that 𝑠𝑖 > 0 and 𝑠1 ≥ 𝑠2 ≥ ... ≥ 

𝑠𝑟 and are called singular values. The columns of matrix U are called left singular 

values and the columns of matrix V are called right singular vectors. The algorithm 

has the property of generating the best low-rank linear approximation of the original 

matrix A. Since the S entries are ordered, the reduction procedure is implemented by 

recalling the first k singular values in order to produce the reduced matrix 𝑆𝑘. Then, 

the matrices U and V are also reduced to generated the matrices 𝑈𝑘 and 𝑉𝑘. The 𝑈𝑘 

and 𝑉𝑘 matrices are created by eliminating (r-k) columns and (r-k) rows respectively 

form the original matrices. The multiplication of the three new reduced matrices 

produces the matrix 𝐴𝑘, which is the nearest approximation of the original matrix A. 

The new generated matrix is a rank-k matrix and can be described with the formula:  

𝐴𝑘 = 𝑈𝑘 x 𝑆𝑘 x 𝑉𝑘 

According to research, the low-rank approximation of the original space can be an 

improved solution due to the decreased no=ise that can be introduced into our data 

deriving for the user-item relation. The SVD algorithm generates an array of 

uncorrelated eigenvectors where each user and each item are represented by their 

resembling eigenvector. The lower dimension representation can be really valuable 

for Collaborative filtering as it contributes in mapping users that have rated similar 

items into the space traversed by the same eigenvectors.  

When the ratings matrix is decomposed the generation of predictions can be done be 

computing the dot products between m pseudo-users and n pseudo-items [33]. The 

surprise library in python includes the basic SVD algorithm and an extension to that 

which is denoted as SVDpp or SVD++. The predictions of SVD are calculated based 

on the formula: 

𝑟̂𝑢𝑖=  μ +  𝑏𝑖+  𝑏𝑢 + 𝑞𝑖
𝑇 x  𝑝𝑢 

where μ represents the average rating, 𝑏𝑖, 𝑏𝑢 represent the observed deviations of 

items and users from the average (bias) and the dot product represents the interest of 

user u towards item i. To obtain the factors b, q and p the model minimizes the 

regularized squared error on the array of known ratings as described by the formula:  

min
𝑝,𝑞,𝑏

∑ (𝑟𝑢𝑖𝑢,𝑖 ∈ 𝜅 −𝜇 −  𝑏𝑢 − 𝑏𝑖 −  𝑞𝑖
𝑇  𝑝𝑢) 2+  λ (‖𝑝𝑢‖2 + ‖𝑞𝑖‖2 + 𝑏𝑢 2 + 𝑏𝑖 

2) 

where 

• k is the array of user-item pairs for which the ratings are known 

• λ is the regularization term 
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So, the model is training by fitting the already observed ratings with a view to 

generalizing to the future predictions [21]. 

The extension of SVD takes into account also the implicit ratings by initializing the 𝑦𝑗 

terms that describe the case of a user u rated the item j regardless of the rating value 

and the above prediction formula is transformed as follows:  

𝑟̂𝑢𝑖=  μ +  𝑏𝑖+  𝑏𝑢 + 𝑞𝑖
𝑇 x ( 𝑝𝑢 + |𝐼𝑢|−1/2 ∑ 𝑦𝑗𝑗∈𝐼𝑢

) 

The most important parameters of the models that will be tested in order to find the 

best values for them during the grid search are “n_epochs”, “lr_all” and “reg_all” 

[19].  

• n_epochs describes the iterations of stochastic gradient descent which is 

implemented for the minimization of regularized squared error 

• lr_all expresses the learning rate of the parameters 

• reg_all expresses the regularization of parameters  

 

 

 

5.3 K-NN algorithm  
 

 

K-NN is one of the simplest, yet most famous algorithms in supervised machine 

learning which can be further applied for recommendation systems. It belongs to the 

category of “lazy” algorithms and it is a non-parametric method based on the 

similarity between the distance of two instances x and y, using different distance 

measures like Euclidian, Manhattan distance or cosine similarity.  The core idea 

behind the algorithm is that if the majority of the k most similar neighbors of our 

entry belong to a certain category, then our entry belongs to the same category. In our 

case, K-NN can be applied to calculate both user and item similarities. One of the 

hardest decisions than need to be taken refer to selection of the appropriate neighbors’ 

number k [1]. This obstacle is tackled by implemented a grid search for identifying 

our model’s best parameters as will be described in the next section.  

In surprise library different variations of the classic K-NN algorithm are included as 

described below:  

• KNN Basic 

 

The prediction of the ratings is given by the following formula(equation 14) 

which is based on the similarities between users:  
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Equation 14: KNN (basic) predictions 

 

• KNN with Z score 

 

This variation also takes into account the z-score normalization for each user and the 

predicted ratings are given by the formula, where 𝜇𝑢 is the score for each user: 

 

 

Equation 15: KNN (with Z-score) Predictions 

• KNN with Means  

This variation takes into account the mean ratings and can be implemented both 

for the user and the item. So, in the first case it considers as well the mean rating 

of each user and in the second one, it considers the mean rating of each item. The 

predicted ratings can be calculated with the following formula (equation 16):  

 

 

Equation 16: KNN (with Means) Predictions 

 

The most important parameters of all the variations of KNN that will be set under 

examination during the grid search are the “bsl_options”,“k” and “sim_options” 

where, 

• bsl_options represent a dictionary of options for the baseline estimates 

computation. Baselines can be defined in two ways, using Stochastic 

Gradient Descent (SGD) or using Alternating Least Squares (ALS) [19]. 

• k denotes the maximum number of neighbors that should be taken into 

consideration [19]. 

• sim_options denotes the distance measure that should be used from the 

available ones and also involves the parameter “user_based” which can 
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take the values True or False depending on whether we want to compute 

similarities between users or items [19]. 

 

5.4 Grid search for hyper-parameter selection  
 

 

Grid search is a tuning technique widely known in the field of machine learning that 

tries to compute the optimum values of hyperparameters.  In this study we introduce 

the grid search method which is simply an exhaustive searching over a manually 

determined set of the hyperparameter space. The performing metric used to complete 

the search is cross validation of 5 folds and the accuracy metrics to define the best 

parameters are Root Square Mean Error (RMSE) and Mean Average Error (MAE) 

that where described in section 2.4. In the following images we can see the part of the 

python code used for the grid search, the outcome for every algorithm and the 

computational time of the procedure.  

 

a) user ratings 

 

 

Figure 6: Grid search results and computational time for SVD algorithms (a)  
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Figure 7: Grid search results and computational time for KNN algorithms (a) 

 

In particular, the best parameters for both of the SVD algorithms regarding the results 

of rmse are “n_epochs” = 25, “lr_all” = 0.01 and “reg_all” = 0.4. Regarding the mae 

the best parameters are “n_epochs” = , “lr_all” = and “reg_all”= .The computational 

time for this search was approximately 2172.061 seconds. We select to continue with 

the best parameters of RMSE in order to decrease the computational time and 

furthermore because both RMSE and MAE “agree” on the outcome. 

 For the KNN algorithms regarding the results of RMSE the best parameters are the 

alternative least squares for the estimation of the baseline approach, For the basic 

KNN the similarity metric is MSD and the similarities should be computed on the 

users. The number of k differs for RMSE and MAE but we decide to proceed with the 

results of RMSE so the number of nearest neighbors is 20. MSD stands for Mean 

Squared Difference which computes the similarity between all pairs of users (or 

items). Only the common users or common items are taking into consideration and the 

formula to calculate the similarities can be described as follows: 
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Equation 17: Mean squared difference 

 For the other two approaches the number for nearest neighbors is 60 and the best 

similarity metric is cosine similarity, the formula of which is defined in section 2.3. 

Regarding the MAE the best parameters agree with the parameters of RMSE. The 

computational time for this search was approximately 1611 seconds. Again, we select 

only to continue with the best parameters in terms of RMSE.  

 

b) ratings after sentiment analysis 

 

 

Figure 8: Grid search results and computational time for SVD algorithms (b) 

 

According to figure 10, the best parameters for both of the SVD algorithms regarding 

the results of RMSE and MAE are “n_epochs” = 20, “lr_all” = 0.007 and “reg_all” = 

0.6. The computational time for this search was approximately 2027 seconds. 
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Figure 9: Grid search results and computational time for KNN algorithms (b) 

 

For the KNN algorithms regarding the results of RMSE (figure 11) the best 

parameters are the alternative least squares for the estimation of the baseline 

approach. In addition, the similarity metric is MSD and the similarities should be 

computed on the users as the “user_based” parameter was set to “True”. The number 

of neighbors differs between the models and the two metrics but we decide to proceed 

with the parameters computed based on RMSE. So, for the basic KNN the number of 

k is 50 and for the other two modes it is 60. The computational time was 

approximately 2437 seconds.  

 

 

5.5 Cross-validation for the selection of the best 

algorithm  
 

 K-fold cross–validation is an evaluating technique for machine learning models 

during which, the input data are divided randomly into k equal segments. In each 
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iteration, it uses k-1 folds of data for training and the remaining data for estimation. 

Using accuracy as the assessment metric, the predictive performance of the model is 

evaluated on each fold [7].  In our study we select to perform a 5-fold cross validation 

to calculate the “rmse” and “mae” of our algorithms in order to decide which one will 

provide the best predictions.  

 

a) user-ratings 

In the first case where we use the ratings provided by the users as input for the future 

predictions, we test the proposed models using a 5-fold cross validation. The accuracy 

metrics taking into consideration are again RMSE and MAE. We also calculate the 

fitting and testing time as well as the over computational time. The results are 

presented in Fig. 12.  

 

Figure 10: 5-fold cross validation results (a) 

 

The overall computational time is presented in the following table. It is obvious that 

the fastest algorithm is the KNN basic but, it is not the one with the best performance. 

 

 

Table 2: Computational time of all algorithms (a) 

Model Computational time (in seconds) 

SVD 33.132 

SVDpp 328.222 

KNN basic 4.297 

KNN with Z score 7.931 

KNN with Means (user-user) 7.3 

KNN with Means (item-item) 18.875 

 

Furthermore, we visually present the results for the different algorithms in a RMSE 

and MAE plot (fig. 12-13). The best scores are achieved in both of the cases by the 
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SVD algorithm, which will be the one selected to generate the future 

recommendations.  

 

 

 

Figure 11: RMSE plot (a) 

 

 

 

Figure 12: MAE plot (a) 

 

b) sentiment analysis scores 

 

After implementing the sentiment analysis on the user reviews, we repeat the same 

procedure in order to evaluate the proposed algorithms and conclude to the best model 

for our predictions. The table below depicts the outcome for the 6 models in terms of 

RMSE, MAE, fit time and test time.  
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Figure 13: 5-fold cross validation results 

 

The overall computational time is presented in the following table. It is obvious that 

the KNN based algorithms are much faster, but yet as presented in fig. 15-17, they do 

not have the best performance.  

 

Table 3: Computational time of all algorithms (b) 

Model Computational time (in seconds) 

SVD 22.656 

SVDpp 289.274 

KNN basic 5.205 

KNN with Z score 6.568 

KNN with Means (user-user) 5.503 

KNN with Means (item-item) 10.263 

 

 

 

Figure 14: RMSE plot (b) 
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Figure 15: MAE plot (b) 

 

In this case the best performing model is the SVDpp with a very small difference 

from the basic SVD. The predictions on the user’s ratings will be computed using this 

model and the best combination of parameters.  
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Chapter 6: Results and 

Evaluation 
 

 

 

The two metrics used for the evaluation are precision@k and recall@k. Precision@k 

denotes the number of relevant items that were recommended on the top k generated 

recommendations so in other terms the proportion of correctly recommended items 

over the total number of items. Recall@k denotes the correctly recommended item 

over the set of relevant items. 

 

a) user ratings  
 

For the user ratings we tested the precision and recall of the SVD algorithm, for the 

top 5 and 10 recommendations using 5-fold and 10-fold cross validation. The results 

of the mean precision and recall along with their standard deviations are presented in 

table 4 and table 5. We test the precision and recall in the first 5 and the first 10 

recommended items to the user and examine the number of the relevant items that are 

recommended and the total of the proportion of the relevant items included in the 

recommendations.  

 

Table 4: Precision results (a) 

k/ No-fold cross 

validation 

5-fold cross validation  10-fold cross validation  

5 80.266% (0.683%) 78.573% (1.039%) 

10 80.406% (0.658%) 81.634% (1.152%) 

 

 

Table 5: Recall results (a) 

k/ No-fold cross 

validation 

5-fold cross validation  10-fold cross validation  

5 61.679% (1.282%) 55.398% (1.310%) 

10 69.445% (0.551%) 74.411% (1.152%) 

 

 

In terms of precision and recall the best score is achieved with a 10-fold cross 

validation and by calculating the top 10 recommendations. In particular the score 

explains that from the first 10 recommended items the 8 are relevant to the user’s 
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preferences and the 74% of the relevant items are recommended in the top 10 

suggestions. In general, we see that all results regarding precision are close to 80% 

and the ones regarding recall are close to 65%. The outcomes generated support the 

idea that the using the methodology described in chapter 5, we can obtain good 

recommendations based on the ratings of the users.  

In figures 16-17 we can see the plot of precision and recall at top 5 items with a 5-fold 

cross-validation and then, the plot of the best performing combination. the top 10 

recommended items with a 10-fold cross-validation.  

 

 

Figure 16: SVD precision and recall plot (5-fold cross validation) (a) 

 

 

 

Figure 17: SVD precision and recall plot (10-fold cross validation) (a) 
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b) ratings of sentimental analysis  
 

Then, we examined the prementioned metrics over the second case which uses the 

method of sentiment analysis to the comments in order to assign each text to a rating 

number. In tables 6 and 7, the results of this experiment using a variation of the basic 

SVD algorithm, are presented. We again examine the cases of the top 5 and top 10 

recommended items with a 5-fold and 10-fold cross validation.  

 

Table 6: Precision results (b) 

k/ No-fold cross 

validation 

5-fold cross validation  10-fold cross validation  

5 88.419% (0.0522%) 89.148% (0.306%) 

10 88.333% (0.475%) 89.329% (0.244%) 

 

Table 7: Recall results (b) 

k/ No-fold cross 

validation 

5-fold cross validation  10-fold cross validation  

5 46.020% (1.700%) 59.416% (2.303%) 

10 45.774% (1.460%) 59.591% (1.406%) 

 

 

In terms of precision and recall the best score is achieved for the top 10 

recommendations with a 10-fold cross validation. In particular almost 9 out of the 10 

items that are recommended to the user are relevant and around 60% of the relevant 

items are recommended in the top 10.  

To continue with, in figures 20 and 21, we can see the results at k=5, for a 5-fold 

cross-validation then the best performing combination of variables which is the top 10 

recommendations with a 10-fold cross validation. In both cases, users’ ratings and the 

score obtained after the sentiment analysis, the best results are obtained by the same 

combination of attributes. In general, we see that all results regarding precision are 

close to 90% and the ones regarding recall are close to 55%. 
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Figure 18: SVDpp precision and recall plot (5-fold cross-validation) (b) 

 

Figure 19: SVDpp precision and recall plot (10-fold cross-validation) (b) 

 

As observed by using the ratings obtained by the sentiment analysis as the indicator 

for the future ratings we result in an increase in the precision of our model. At the 

same time, as the precision increases the recall decreases since there is a trade-off 

between those metrics. So, we cannot improve the one without effecting the other.  

To obtain a more general view we can also introduce the F-score for both cases 

calculated by the formula in equation 6. For the user rating case, we achieve an F-

score@10 = 0.78 and for the case of sentiment analysis, we achieve an F-score@10 = 

0.72.  

The main conclusion that can be drawn by observing the results is that in case (b) we 

were able to achieve a better score for precision but at the same time, we dropped in 

the score of recall. This means that less of the relevant items in total are recommended 

to the users while the final recommendations are more relevant. Both attempts result 
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in good scores and the fact that in general, the initial experiment resulted in a higher 

total does not mean that the second approach can be also useful.  

For a recommender system, precision can be more important than recall, as it depicts 

the number of relevant recommendations that the user gets, while recall simply 

expresses the performance of the system in recommending as less irrelevant items as 

possible [40]. In the case of creating a book RS as in our project, the decrease of false 

positives or in other terms the better precision scores from a user point of view is 

more important. Having more false positives can be costly to the system, as the 

possibility of the users purchasing a new item decreases. Furthermore, if the 

recommendations are not relevant enough, it is possible that the user might eventually 

leave our platform due to the lack of interest. Since the better precision was achieved 

by the analysis of the textual comments, we can assume that the new scores provide a 

more detailed insight about the preferences of the users than a simple integer number.  

On the other hand, if we select to follow the common approach of using the ratings, 

we can achieve a higher recall, which means that a higher percentage of relevant 

items are recommended to the end-user but the top recommendations are not that 

relevant as in the previous case. An explanation for the higher recall score could be 

the more limited dataset in the second case, as for the sentiment analysis it is 

obligatory for the users to have placed a textual comment on the item. It is impossible 

to be included in the dataset of the second case if the user has not provided a 

comment, while in the first case we can generate results just by the ratings. This 

means that maybe some relevant items were eventually excluded and never 

recommended to the users because of the lack of textual reviews. In the case of a 

higher recall, the benefit is that there is a bigger variety of items that are suggested so 

there are bigger chances that all the relevant items appear to the end-users.  

It is important to mention that the measures used for the evaluation have the drawback 

of not being able to also test the positions in which the items are proposed to the 

users.  

It is also important to highlight some of the threats to the validity of the findings and 

facts that can influence the results. In the case of the user rating, the results can be 

generalized more easily as the 0-5 rating is an indicator that includes fewer biases 

than the comments. Since the sentiment analysis was contacted using a pre-set python 

library, the Textblob library it is practically impossible to test whether the comments 

are correctly assigned to a score and if this score depicts the actual evaluation of the 

user. Furthermore, in the second case, we can only use the part of our dataset that 

includes a user’s comment but, in many cases, the information gathered about an item 

is lacking the textual critic. As a result, it is certainly easier to generalize the results of 

the first experiment that is based only on the numerical ratings.  

Another important point that might influence the results is that the library used to 

extract the sentiment of the user comments is performing significantly well in English 

but for other languages, the results are not so good since the library uses Google 

Translate to detect the language and process it. It is possible that important 

information is lost during that process or maybe the final outcome is not that valid 

with respect to the original test.  
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In addition, the results of these experiments are depicting the best possible outcomes. 

In each case, the threshold that discriminates between a relevant and an irrelevant 

recommendation is found through trial and error and by testing different levels. As a 

consequence, if we try to generalize to different datasets even of the same field or 

even from the same site, the results might differ.  

Finally, the study was conducted only for a specific genre of books and, in particular 

the comic one, so, the conclusions drawn refer to a specific category of people that 

read comics and potentially share common characteristics. An experiment contacted 

in the whole Goodreads dataset would be in a position to provide more general results 

at least for this type of item but, unfortunately, due to limited resources, this was not 

possible.  
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Chapter 7: Conclusion and 

Future Work 

 

7.1 Conclusion 
 

 

Based on the recommendation system and the results that were generated after 

different experiments some interesting results have been extracted. This dissertation 

project follows the technique of collaborative filtering and examines multiple 

algorithms. After testing each one of them, taking into consideration the RMSE and 

MAE scores, the best performing algorithm appears to be the SVD which is based on 

the principle of singular value decomposition.  

The main subject of research in this project was to examine how the recommendations 

might change, when, instead of using the actual ratings that the user provides 

regarding an item, we use the available textual information, i.e., the comments. The 

dataset used in this study was extracted by the goodreads.com and consisted of the 

book comic collection of the website.  

Initially, using the SVD algorithm and the best parameters which were found after a 

grid search, the best results in terms of precision@k and recall@k were obtained with 

a 10-fold cross validation and when the predictions were regarding the top 5 relevant 

items. After processing the textual information of each review, we repeated the 

procedure using a variation of the SVD algorithm since it achieved better RMSE and 

MAE scores when tested on the new data. The outcome was an increase in the 

precision@k and a decrease in the recall@k. The best results were obtained again 

with a 10-fold cross-validation and the top 10 predictions.  

In terms of precision@k after taking into consideration the textual information we 

were able to achieve an increase of almost 10%. This means that after examining the 

commends and the system used them as input data, more relevant recommendations to 

the preferences of the user were generating. Since recall and precision are a trade-off, 

the achieved increase in precision can only result in a decrease in the recall@k which 

leds to a smaller percentage of the total relevant items being recommended. In order 

to test the experiment in a more general way, the F-score@k was calculated as well 

and the result was a decrease of 0.06%. This can indicate that the first experiment is 

already a good model but depending on the way we want to design our system and 

which metric we consider to be more important we can result in meaningful and 

valuable outcome also with the second experiment. 
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7.2 Future Work 
 

Future work should examine more datasets to validate whether the same results can be 

generalized. It could also test different fields of recommendations and expand in the 

field of book recommendations.  

Furthermore, more algorithms could be tested in order to achieve potentially better 

results. In the field of collaborative filtering, an extenction could be a combination of 

both the user ratings and also the scores achieved after implementing a sentiment 

analysis on the user comments.  

Another expansion of this work could be the creation of a hybrid recommendation 

system that will also combine content-based filtering techniques to improve the 

results of this study.  

Finally, the next step should be a deeper and more insightful testing on how the 

tradeoff between precision@k and recall@k works and whether there is a chance of 

achieving better results in terms of both metrics or even utilize new ones to test the 

outcome of this project.  

 

 

 

 

 

 

 

 



66 
 

References  
 

 

 

1. Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data 

mining and recommendation system using K-Nearest Neighbor (KNN) 

classification method. Applied Computing and Informatics, 12(1), 90-108 

 

2. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of 

recommender systems: a survey of the state-of-the-art and possible extensions. 

IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–

749. doi:10.1109/tkde.2005.99  

 

3. Aggarwal, C. C. (2016). Recommender Systems: The Textbook 

 

4. Baatarjav, E. A., Phithakkitnukoon, S., & Dantu, R. (2008, November). Group 

recommendation system for facebook. In OTM Confederated International 

Conferences" On the Move to Meaningful Internet Systems" (pp. 211-219). 

Springer, Berlin, Heidelberg  

 

5. Beleveslis, D., & Tjortjis, C. (2020, June). Promoting Diversity in Content 

Based Recommendation Using Feature Weighting and LSH. In IFIP 

International Conference on Artificial Intelligence Applications and 

Innovations (pp. 452-461). Springer, Cham. 

 

6. Bennett, J., & Lanning, S. (2007, August). The netflix prize. In Proceedings of 

KDD cup and workshop (Vol. 2007, p. 35). 

 

7. Browne, M. W. (2000). Cross-validation methods. Journal of mathematical 

psychology, 44(1), 108-132. Koren, Y., Bell, R., & Volinsky, C. (2009).  

8. Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of 

library and information systems, 69(Supplement 32), 175-186 

 

9. Candillier, L., Jack, K., Fessant, F., & Meyer, F. (2009). State-of-the-art 

recommender systems. In Collaborative and Social Information Retrieval and 

Access: Techniques for Improved User Modeling (pp. 1-22). IGI Global 

 

10. Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., ... & 

Sampath, D. (2010, September). The YouTube video recommendation system. 

In Proceedings of the fourth ACM conference on Recommender systems (pp. 

293-296). 

 



67 
 

11. Davies, J. E. What shall I read next? Developing tools for reader support. 

Proceedings of IFLA General Conference and Council, Vol. 68, 2002 

 

12. Eckhardt, A. (2009). Various aspects of user preference learning and 

recommender systems. In DATESO (pp. 56-67). 

 

13. Frigui, H., Krishnapuram, R.: Clustering by competitive agglomeration. 

Pattern Recognition Journal 30(7), 1109–1119 (1997) 

 

14. Garg, P., & Bassi, V. G. (2016). Sentiment analysis of twitter data using 

NLTK in python (Doctoral dissertation) 

 

15. Gomez-Uribe, C. A., & Hunt, N. (2015). The netflix recommender system: 

Algorithms, business value, and innovation. ACM Transactions on 

Management Information Systems (TMIS), 6(4), 1-19.  

 

16. Hariadi, A. I., & Nurjanah, D. (2017, November). Hybrid attribute and 

personality based recommender system for book recommendation. In 2017 

International Conference on Data and Software Engineering (ICoDSE) (pp. 1-

5). IEEE. 

 

17. Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). 

Evaluating collaborative filtering recommender systems. ACM Transactions 

on Information Systems (TOIS), 22(1), 5-53 

 

18. Huang, Z., Chung, W., Ong, T. H., & Chen, H. (2002, July). A graph-based 

recommender system for digital library. In Proceedings of the 2nd 

ACM/IEEE-CS joint conference on Digital libraries (pp. 65-73). 

 

19. Hug, N. (2020). Surprise: A Python library for recommender systems. Journal 

of Open Source Software, 5(52), 2174. 

 

20. Kanetkar, S., Nayak, A., Swamy, S., & Bhatia, G. (2014, August). Web-based 

personalized hybrid book recommendation system. In 2014 International 

Conference on Advances in Engineering & Technology Research (ICAETR-

2014) (pp. 1-5). IEEE. 

21. Koren, R. Bell and C. Volinsky, "Matrix Factorization Techniques for 

Recommender Systems," in Computer, vol. 42, no. 8, pp. 30-37, Aug. 2009, 

doi: 10.1109/MC.2009.263 

 

22. Lee, S. An Implicit Feedback Model for Goodreads Recommendations. 

 

23. Liu, Y., Xie, M., & Lakshmanan, L. V. S. (2014). Recommending user 

generated item lists. Proceedings of the 8th ACM Conference on 

Recommender Systems - RecSys ’14. doi:10.1145/2645710.2645750  



68 
 

 

24. Loria, S. (2018). textblob Documentation. Release 0.15, 2 

 

25. Ma, C., Kang, P., & Liu, X. (2019, July). Hierarchical gating networks for 

sequential recommendation. In Proceedings of the 25th ACM SIGKDD 

International Conference on Knowledge Discovery & Data Mining (pp. 825-

833). 

 

26. Mathew, P., Kuriakose, B., & Hegde, V. (2016, March). Book 

Recommendation System through content based and collaborative filtering 

method. In 2016 International conference on data mining and advanced 

computing (SAPIENCE) (pp. 47-52). IEEE. 

 

27. Mengting Wan, Julian McAuley, "Item Recommendation on Monotonic 

Behavior Chains", in RecSys'18. [bibtex] 

 

28. Mengting Wan, Rishabh Misra, Ndapa Nakashole, Julian McAuley, "Fine-

Grained Spoiler Detection from Large-Scale Review Corpora", in ACL'19. 

[bibtex] 

 

29. Mohamed, M. H., Khafagy, M. H., & Ibrahim, M. H. (2019, February). 

Recommender systems challenges and solutions survey. In 2019 International 

Conference on Innovative Trends in Computer Engineering (ITCE) (pp. 149-

155). IEEE 

 

30. Nalmpantis O. and Tjortjis C., 'The 50/50 Recommender: a Method 

Incorporating Personality into Movie Recommender Systems', CCIS 

'Communications in Computer and Information Science, pp. 498-507, 2017, 

Springer-Verlag 

 

31. Rana, C., & Jain, S. K. (2012). Building a Book Recommender system using 

time-based content filtering. WSEAS Transactions on Computers, 11(2), 

2224-2872 

 

32. Resnick P, Varian HR. Recommender systems. Commun ACM 

1997;40(3):56–8. http://dx.doi.org/10.1145/245108.24512   

    

33. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2002, December). 

Incremental singular value decomposition algorithms for highly scalable 

recommender systems. In Fifth international conference on computer and 

information science (Vol. 1, No. 012002, pp. 27-8) 

 

34. Satyanarayana, K. (2011). A STUDY OF RECOMMENDER SYSTEM ON 

DIFFERENT PERSPECTIVES 

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FMengtingWan%2Fmengtingwan.github.io%2Fraw%2Fmaster%2Fpaper%2Frecsys18_mwan.pdf&sa=D&sntz=1&usg=AFQjCNGGcNRW1tSZKPWO0yZsr8mj7MkWuw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FMengtingWan%2Fmengtingwan.github.io%2Fraw%2Fmaster%2Fpaper%2Frecsys18_mwan.pdf&sa=D&sntz=1&usg=AFQjCNGGcNRW1tSZKPWO0yZsr8mj7MkWuw
https://www.google.com/url?q=https%3A%2F%2Fdblp.uni-trier.de%2Frec%2Fbibtex%2Fconf%2Frecsys%2FWanM18&sa=D&sntz=1&usg=AFQjCNEy2HDVC1K59JJWybzGgq3MafQcWQ
https://www.google.com/url?q=https%3A%2F%2Fwww.aclweb.org%2Fanthology%2FP19-1248&sa=D&sntz=1&usg=AFQjCNG8xlMi09lyuzzMI8lCW58wrBEGsQ
https://www.google.com/url?q=https%3A%2F%2Fwww.aclweb.org%2Fanthology%2FP19-1248&sa=D&sntz=1&usg=AFQjCNG8xlMi09lyuzzMI8lCW58wrBEGsQ
https://www.google.com/url?q=https%3A%2F%2Fdblp.uni-trier.de%2Frec%2Fbibtex%2Fconf%2Facl%2FWanMNM19&sa=D&sntz=1&usg=AFQjCNG5Igm7tWfvFHlCyvCPxIciDzqK4Q
https://www.ihu.edu.gr/tjortjis/The%2050%2050%20Recommender%20a%20Method%20Incorporating%20Personality%20into%20Movie%20Recommender%20Systems.pdf
https://www.ihu.edu.gr/tjortjis/The%2050%2050%20Recommender%20a%20Method%20Incorporating%20Personality%20into%20Movie%20Recommender%20Systems.pdf
https://link.springer.com/chapter/10.1007/978-3-319-65172-9_42
https://link.springer.com/chapter/10.1007/978-3-319-65172-9_42


69 
 

 

35. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering 

recommender systems. In: The Adaptive Web, pp. 291–324. Springer Berlin / 

Heidelberg (2007) 

 

36. Schoinas, Ι., & Tjortjis, C. (2019, May). MuSIF: a product recommendation 

system based on multi-source implicit feedback. In IFIP International 

Conference on Artificial Intelligence Applications and Innovations (pp. 660-

672). Springer, Cham. 

 

37. Sivapalan, S., Sadeghian, A., Rahnama, H., & Madni, A. M. (2014, August). 

Recommender systems in e-commerce. In 2014 World Automation Congress 

(WAC) (pp. 179-184). IEEE 

 

38. Smith, B., & Linden, G. (2017). Two decades of recommender systems at 

Amazon. com. Ieee internet computing, 21(3), 12-18 

 

39. Sodera, N., & Kumar, A. (2017). Open problems in recommender systems 

diversity. 2017 International Conference on Computing, Communication and 

Automation (ICCCA). doi:10.1109/ccaa.2017.8229776  

 

40. Subramaniyaswamy, V., Logesh, R., Chandrashekhar, M., Challa, A., & 

Vijayakumar, V. (2017). A personalised movie recommendation system based 

on collaborative filtering. International Journal of High Performance 

Computing and Networking, 10(1/2), 54. doi:10.1504/ijhpcn.2017.083199 

 

41. Wei, K., Huang, J., & Fu, S. (2007, June). A survey of e-commerce 

recommender systems. In 2007 international conference on service systems 

and service management (pp. 1-5). IEEE. 

 

42. Zhou, R., Khemmarat, S., & Gao, L. (2010, November). The impact of 

YouTube recommendation system on video views. In Proceedings of the 10th 

ACM SIGCOMM conference on Internet measurement (pp. 404-410) 

 


