
 -i-

Using Machine Learning

for Ontology Engineering

on EU Vocabularies

George Patrikios

SID: 3308180017

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

-ii-

JANUARY 2021

THESSALONIKI – GREECE

Using Machine Learning

for Ontology Engineering

on EU Vocabularies

George Patrikios

SID: 3308180017

Supervisor: Dr Christos Berberidis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Data Science

 -iii-

JANUARY 2021

THESSALONIKI – GREECE

Abstract

In our days, the Semantic Web has gained a lot of popularity since it provides standard

ways regarding sharing and retrieving data. A key component of the Semantic Web is

Ontology Engineering where it includes the tasks of ontology development and ontology

alignment. These kinds of tasks require extensive human labor and a profound domain

knowledge. There is a great need of automated solutions in Ontology Engineering. Ma-

chine Learning techniques are applied to various domains in order to provide experts with

such solutions.

This thesis investigates the application of Machine Learning in Ontology Engineering by

applying such techniques in the domain of e-Government and particularly on European

Union’s Vocabularies. Specifically, this thesis has two objectives: a) Solve the problem

of “Sub-property Link Prediction” in an ontology set. b) Introduce an “Ontology Search

Tool” based on pre-trained vector representations (text-embeddings). The experimental

results are inspiring and indicate that Machine Learning techniques are applicable in On-

tology Engineering.

-iv-

Acknowledgements

I wish to thank my supervisor Dr. Christos Berberidis for his guidance and assistance

throughout my studies. Also, I would like to thank the professors, all of whom I had the

chance to meet and elaborate during my studies. In addition, I would particularly like

to thank the PhD candidate, Konstantinidis Ioannis, for providing me with his valuable

feedback, experience and time during this thesis.

Furthermore, I would like to express my deepest gratitude to Angela and my dear friends,

Giannis and Vaggelis. Finally, I devote this thesis to my family, Anastasios-Aphrodite-

Despoina, for their unconditional love and support throughout my years of study.

George Patrikios

04/01/2021

 -v-

Contents

ABSTRACT ... III

ACKNOWLEDGEMENTS ... IV

CONTENTS ... V

1 INTRODUCTION .. 1

2 LITERATURE REVIEW .. 5

2.1 TEXT EMBEDDINGS ... 5

2.2 TEXT EMBEDDINGS FOR ONTOLOGY ENGINEERING ... 9

2.3 EUROPEAN UNION’S BUSINESS COLLECTIONS ... 19

3 MATERIAL AND METHODS ... 27

3.1 INTRODUCTION ... 27

3.2 SUB-PROPERTY LINK PREDICTION IN EUROPEAN UNION’S ONTOLOGY SET . 28

3.2.1 Dataset .. 28

 3.2.1.1 Ontology Parsing ... 28

 3.2.1.2 Sub-property pairs extraction... 29

 3.2.1.3 False Sub-property pairs generation 31

 3.2.1.4 Candidate pairs generation .. 32

3.2.2 Pretrained Embedding Models .. 34

 3.2.2.1 Sentence Bert... 35

 3.2.2.2 spaCy ... 36

 3.2.2.3 Word2vec Gensim ... 36

 3.2.2.4 GloVe ... 37

 3.2.3 TEXT PREPROCESSING ... 38

 3.2.4 FEATURE EXTRACTION .. 39

3.2.5 Machine Learning Models .. 41

3.3 ONTOLOGY SCOUT TOOL .. 44

-vi-

4 EXPERIMENTAL RESULTS ... 45

4.1 IMPLEMENTATION .. 46

4.2 SUB-PROPERTY LINK PREDICTION IN EUROPEAN UNION’S ONTOLOGY SET 46

4.2.1 Results on Test Set .. 46

4.2.2 Results on Candidates Set.. 49

4.2.3 Hyperparameter Optimization ... 54

4.2.4 Principal Component Analysis .. 56

4.3 ONTOLOGY SCOUT TOOL (OS TOOL) .. 58

5 DISCUSSION ... 61

6 CONCLUSION AND FUTURE WORK .. 65

BIBLIOGRAPHY ... 66

 -1-

1 Introduction

Over the recent years, the amount of data available on the Web has grown exponentially.

There is a great need for a common framework that allows the exploitation and reuse of

these data. Semantic Web (SW) provides such a solution by enabling users to find, share

and combine data1. A key advantage of the SW is that data can be interpreted by machines

[1]. SW has proven over the years that is applicable in industries like biology and human

sciences and has a great potential regarding other industries [2]. There are also numerous

studies that aim to incorporate SW with e-Government [3]. Data on SW are defined using

agreed ontologies. There are many definitions of an ontology throughout the literature. Α

definition that stands out suggests the following [4]:

 “an ontology specifies a rich description of the:

❏ terminology, concepts, nomenclature

❏ relationships among and between concepts and individuals

❏ sentences distinguishing concepts, refining definitions and relationships (con-

straints, restrictions, regular expressions)

relevant to a particular domain or area of interest” (Kendall & McGuinness, 2019, p. 2).

Ontologies enable data to be represented in a common structured manner based on RDF,

RDFS and OWL languages while using commonly agreed vocabularies from the Seman-

tic Web community. An ontology consists of two aspects: a) the vocabularies that define

the naming of classes, properties and relationships and b) the controlled vocabularies that

define the common lists of possible property values (e.g., an agreed list of country names).

Ontologies are also widely explored by European Union’s authorities for cross-border

data exchange between different Member States. Towards achieving cross-border seman-

tic interoperability, the European Commission in cooperation with the World Wide Web

Consortium (W3C) has published ontologies on different domains, like e-Government.

W3C is an international community that aims at developing Web standards. The EU Core

1 https://www.w3.org/2001/sw/Activity

https://www.w3.org/2001/sw/Activity

-2-

Vocabularies along with the DCAT Application Profile for Data Portals in Europe and

the Asset Description Metadata Schema (ADMS) consist of some of the great outcomes

of such initiatives. The creation and promotion of data standards is crucial for Semantic

Interoperability. Ontologies rely on experts' subjectivity meaning that different Ontolo-

gies may be created in a certain domain of knowledge. Due to this fact, ontology align-

ment techniques are necessary in order to achieve knowledge integration and thus seman-

tic interoperability.

Ontologies are created by domain experts throughout a process named ontology engineer-

ing (OE). OE includes a set of procedures regarding processes of the ontology develop-

ment, the ontology alignment, the ontology life cycle, tools, methodologies and languages

[5]. However, ontology engineering requires extensive manual labor for the identification

of the proper ontologies that describe the concepts of interest as there is an enormous

amount of published data standards. As an initial step towards solving this problem, the

research community has created the Linked Open Vocabularies (LOV), which is a cata-

logue of published vocabularies and ontologies [6]. LOV also includes a tool for search-

ing on the catalogue that helps ontology engineers easily identify existing vocabularies

related to their concepts of interest. However, many vocabularies that are included in

LOV are out of date and are not W3C recommendations, which decreases the quality of

the search results of the tool. Another initiative from the Semantic Interoperability Com-

munity (SEMIC) is the Core Data Model Mapping Directory that hosts a collection of

mappings between the Core Vocabularies and related Core Data Models and includes

search capabilities. However, this tool applies only to the EU Core Vocabularies. Another

important aspect of ontology engineering is ontology alignment, where the task is to iden-

tify similar entities with an exact or narrow match to be able to merge various data on the

Semantic Web. This process also requires extensive human labor. Therefore, there is a

need to develop automated solutions that will help ontology engineers with the tasks of

ontology development and ontology alignment.

The objectives of this thesis are concerning the improvement of ontology engineering by

implementing machine learning techniques. There are two main objectives: a) Firstly, the

problem of ‘Link prediction in a set of ontologies’ is encountered. More thoroughly, the

ontologies used are concerning the domain of e-Government in European Union. By im-

plementing machine learning techniques along with pre-trained vector representation

models, this thesis focuses on capturing the existence of relation among properties in a

 -3-

set of EU’s ontologies. b) Secondly, an ‘Ontology search tool’ based on pre-trained vector

representations is introduced aiming to help experts with the tasks of ontology develop-

ment and ontology alignment. Specifically, the purpose of this tool is to help ontology

engineers identify the entities and ontologies of their interest by providing a search query.

The rest of the thesis is organized as follows: Chapter 2 sets a background of word vector

representations together with ontology vector representations. Moreover, it provides an

overview of the ontologies retrieved from the EU’s Publications Office. Chapter 3 gives

an analysis of the dataset generated for the experiments as well as a description of the

pre-processing pipeline, the pre-trained vector representation models and the machine

learning algorithms implemented. In Chapter 4 the comparative results are demonstrated

regarding the different techniques applied. Chapter 5 discusses the finding of this thesis

and detects some limitations. Finally, chapter 6 gives a conclusion of what has been

achieved and also points out a future direction.

 -5-

2 Literature Review

This chapter provides a review of the research on literature on text vector representations

(text embeddings) and ontology vector representations based on text embeddings. Fur-

thermore, it provides an overview of the ontologies retrieved from the European Union’s

Publications Office.

2.1 Text embeddings

Word embeddings are vector representations of words which enable numerous operations

between text and machines. This allows machine learning algorithms to understand the

meaning behind words. In addition, word embeddings can be observed as a set of tech-

niques which aim to represent words as real valued-vectors in a vector space. Words are

represented by unique vector representations and similar words must have similar vector

representations. One of the main advantages of such approaches is that these vectors are

dense and have less features in comparison to one-hot encoding vectors. Having these

characteristics, they could be used by neural networks in various machine learning tasks

[7]. These distributed representations are generated based on the usage of words in a cor-

pus. This means that words used in similar contexts will be represented by similar word

embeddings. This is based on the “distributional hypothesis” where it is assumed that

words with similar context should have similar meaning [8].

There are two main categories of word embeddings techniques: Frequency based Embed-

ding and Prediction based Embedding [9]. In the first category there are three types of

vector models: Count Vector, TF-IDF Vector and Co-Occurrence Vector.

Count Vector generates the embedding of each word based on a vocabulary which is

created according to a corpus of documents [10]. The number of times a word appears in

a document is counted resulting in a “word to document” matrix. The size of such matrix

is [D X T] where D is the number of documents and T the number of terms in the vocab-

ulary.

-6-

The second frequency based embedding model are TF-IDF vectors [11]. This model uses

term-frequency and inverse document-frequency to create a “word to document” matrix.

Specifically, this method considers the occurrence of words in the entire corpus providing

a more reliable score for infrequent but rather significant terms.

Finally, Co-Occurrence vectors are produced based on the Co-Occurrence matrix. In or-

der to create this matrix a fixed context window must be declared. Then the co-occurrence

of words is computed by counting how many times they occur inside a predefined context

window. After that, the matrix generated is decomposed using principal component anal-

ysis and singular value decomposition techniques generating the word embeddings [12].

On the other hand, Prediction based Embeddings like Word2vec [13] and Glove [14] tend

to predict a word in a given context by assigning probabilities to words used for analogy

and similarity tasks.

One of the most widely used word embedding methods is Word2vec. It is an unsupervised

technique using a two-layer neural network in order to generate the word embeddings

from contextual information. As input Word2vec accepts a corpus of words produced by

a number of documents. The aim of Word2vec is to project every word of this corpus in

the vector space.

Its word is represented by a unique embedding and similar words must have similar em-

beddings. Regarding Word2vec’s architecture, two main models exist: CBOW [15] and

Skip-Gram [13].

The CBOW model generates a vector representation from a word by predicting this word

based on its surrounding words. In detail, the neural network model accepts as input the

surrounding words inside a fixed-sliding window and tries to predict the target word. The

basic case of CBOW is setting the parameter of the fixed-sliding window equal to 1 word

as demonstrated in figure. Considering a corpus size of V both the input and output layers

are one-hot encoded of size [1 X V] except the cell that indexes the position of the target

word. According to its architecture two sets of weights exist. The first one is located be-

tween the input and the hidden layer while the second one is between the hidden and the

output layer and their sizes are [V X N] and [N X V] respectively. The hyper-parameter

N defines the number of neurons in the hidden layer which is also the number of the

dimensions of the vector representation.

 -7-

Figure 1: A CBOW model with only one word in the context

On the other hand, Skip-gram’s topology can be considered as an inverse CBOW. In this

model the neural network aims to predict the surrounding words from a current word. As

in CBOW, a fixed-sliding window must be set. The model accepts as input a word and

tries to predict the surrounding word inside the fixed-sliding window. The figures illus-

trate the topology of both models CBOW and Skip-Gram.

-8-

Figure 2: The CBOW model predicts the current word based on the context. The Skip-gram

model predicts surrounding words given the current word

Global Vectors (GloVe) is an extension of the Word2vec method for generating word

embeddings. Approaches like Latent Semantic Analysis (LSA) are efficient in learning

global text statistics rather than local statistics like Word2vec. GloVe algorithm is based

on both approaches by combining global and local statistics in order to generate the word

vector representations. This means that GloVe combines both the local context infor-

mation of words along with their word-occurrences in a corpus.

Apart from Word2vec and Glove, FastText is another word embedding approach [16]. It

is an extension of Word2vec with the only difference that it feeds n-grams into a Neural

Network instead of individual words. The vector representation for words, are produced

by adding up the vector representations of their n-grams.

ELMo word embeddings are generated using a two-layer bidirectional language model

[17]. This model accepts as an input word characters rather an entire word. Moreover, the

vector representation produced for a word is actually a function of the entire sentence

containing that word. This is a crucial characteristic of this method since it tackles the

phenomenon of polysemy.

Much like ELMo, BERT tackles polysemy by generating contextualized embeddings

which may differ according to the context of the sentence [18]. It is a deeply bidirectional,

unsupervised language representation model which is pre-trained on a corpus. Specifi-

cally, the contextual relations among words are learned by utilizing a Transformer. The

 -9-

Transformer reads the entire sequence of words in one pass allowing the model to learn

the context of a word based on its surrounding words.

Another thing worth mentioning is the existence of pre-trained word embeddings. These

kinds of embeddings are considered to capture general language aspects since they are

generated by training in a large collection of documents consisting of billions of words.

Then it can be used in order to solve other problems. Techniques like this enable Transfer

Learning [19] which offers various benefits like improving the overall-performance,

avoiding over-modelling and demanding less computational resources in machine learn-

ing tasks.

2.2 Text Embeddings for Ontology Engineering

Machine learning algorithms demand a set of features that are informative and discrimi-

nating. An ontology is specified as a set of triplets (C, P, I) where ‘C’ stands for the classes

(subject) which represent the concept. In addition, ‘P’ stands for the properties denoting

the relations (predicate) while ‘I’ indicates the individuals (object) [20].This specification

allows ontologies to be interpreted as a graph network. Applying machine learning tasks

to graph networks creates the need to construct a feature vector representation for the

nodes and edges. To do that, the knowledge of those networks, both in the instance and

ontology level, should be transformed into numerical representations aka embeddings.

Producing high quality embeddings regarding ontology concepts is crucial for machine

learning oriented ontology alignment, induction and enrichment tasks.

Generating ontology vector representations can be accomplished by employing word em-

beddings. In their study, Y. Zhang and X. Wang [21] aim to generate ontology embed-

dings by using word embeddings. It is worth mentioning that it is one of the first studies

which tries to merge word embeddings with ontologies. To do so, a hybrid method is used

in order to combine word embeddings and edit distance. The word embeddings are gen-

erated using Wikipedia. Edit distance is a string based metric which measures the simi-

larity among two words and is used in various matching systems like RiMOM [22], AS-

MOV [23] and AgreementMaker [24]. In detail, an element-level matcher is introduced

-10-

which accepts two ontologies as input and outputs their alignment. As the authors state,

an improvement would be to extract the word embeddings on a domain corpus especially

for ontology alignment tasks.

An implementation of Word2vec can be found for ontology enrichment in Turkish lan-

guage [25]. The vector representations are generated using the Turkish Wikipedia (Vi-

kipedi). In detail, these embeddings are created based on the metadata of pages of Vi-

kipedi and used as a golden standard to evaluate their approach of ontology enrichment.

Moreover, semi-automated ontology induction methods exist which are using word em-

beddings along with the contribution of domain experts [26]. This approach aims to ex-

ploit concepts, hierarchy, properties and relations from unstructured data like text. In or-

der to generate the embeddings CBOW, Skip-Gram and Glove methods are applied on

the text separately. Then, hierarchical clustering is performed on these embeddings. Fi-

nally, with the help of domain experts, who evaluate the clusters, the ontology compo-

nents are created.

Wnet2vec is a framework where vector representations are generated from WordNet [27].

In order to obtain the embeddings a part of the Princeton WordNet is used. A semantic

space is created from a semantic network. In detail, an ontological graph is converted into

an embeddings matrix where it is used to measure the semantic similarity between words.

Its performance is also compared with word2vec. Before creating the embedding matrix,

principal component analysis is performed in order to reduce the size of the vectors to

850 dimensions. Word2vec embeddings are generated by training over a 100-token col-

lection of texts. After comparing both methods on Simlex-999 dataset, wnet2vec outper-

forms word2vec. This happens due to the fact that wnet2vec embeddings are based on

internal language resources. This means that WordNet captures the relations among

words since it is crafted by experts while word2vec searches for this relation statistically

on a given context window. Thus, word2vec may not be able to capture some of the lex-

ical knowledge in the minds of speakers.

There are also frameworks that take advantage of pre-trained word embedding models.

Specifically, the DeepAlignment framework refines pre-trained word embeddings of en-

tities so that they can be used in ontology alignment tasks [28]. To do so, counter-fitting

method is applied [29]. This method uses semantic lexicons in order to extract synonymy

and antonymy relations. Then, these relations are used in order to refine the pre-trained

word vector representations. This method enables the infusion of domain knowledge in

 -11-

the ontology embeddings which are generated. In particular, the counter-fitting method

generates new vector representations based on synonymy and antonymy constraints using

a non-convex optimization method. The ontology alignment is accomplished using the

Stable Marriage algorithm over the pairwise distance between the embeddings of the on-

tological entities

In their study D. Gromann and T. Declerck examine the use of pre-trained word embed-

dings of four different languages in an ontology matching process [30]. The pre-trained

word representations are obtained from three repositories: Polyglot [31], FastText [32]

and Word2vec. Regarding the ontology alignment, two ontologies describing Industry

classification systems are used, the Classification Standard (GICS) and the Industry Clas-

sification Benchmark (ICB). This approach focuses on the labels of the ontology entities.

Cosine similarity is used as a metric in order to measure the similarity among the vector

representations combined in the previous step.

Furthermore, another method proposed tries to predict the RDF Schema from the instance

level of a graph by using pre-trained word2vec embeddings [33]. The author of this work

aims to visualize the RDF schema by combining characteristic sets with embeddings. This

approach takes place on the instance level of a RDF graph rather than the schema of the

graph. In fact, the ontology of the graph is considered loosely defined and thus it left out

of this framework. On the other hand, this approach tries to generate the ontology behind

the data. A characteristic set consists of the relations that a subject holds in a RDF graph.

Moreover, this study uses two methods regarding the embeddings generation: a) Pre-

trained word2vec embeddings and b) RDF2vec Embeddings generated by the instance

level of the RDF graph.

RDF2vec is a tool for generating vector representations from a graph. Most of its appli-

cations are on the instance level of a graph [34]. The aim of the RDF2vec framework is

the projection of the latent representation of entities into a lower dimensional feature

space focusing on RDF graphs. Firstly, the RDF graph must be converted into a set of

sequences of entities. To do so, two approaches are used: a) a modification of Weisfeiler-

Lehman Subtree RDF graph kernels and b) graph walks.

In graph walks, the breadth-first algorithm takes place. Specifically, in the first iteration

the paths are generated by exploring the direct outgoing edges. Then, until a finite number

of iterations all the connected nodes explored according to the edges from the previous

step. Finally, by combining the sequences of the nodes the set of sequences is created.

-12-

Regarding the modification of Weisfeiler-Lehman Subtree graph kernel this algorithm

uses the Weisfeiler-Lehman test in so the number of subtrees shared between a number

of graphs is calculated. In order to employ this approach to RDF graphs two modifications

take place. Firstly, the edges of the graphs are directed. Secondly, the implementation of

tracking the neighboring labels for the sake of consistency. Then, word2vec is employed

in order to learn the embeddings. These entity representations can be used in various ma-

chine learning tasks like content-based recommender systems, link predictions, type pre-

diction and graph completion.

RDF2Vec framework is also used in classification of ontology alignment changes [35].

It is implemented in order to identify the changes in ontologies which may interfere with

ontology alignment. For this reason, RDF embeddings and classification algorithms are

used. Identifying whether a change on an ontology may interfere on the alignment be-

tween this particular ontology with another one is a difficult task which relies on a de-

tailed set of rules. This set of rules in most cases are not applicable to other domains so

re-using them is not always valid. In this approach, the embeddings are generated from

the ontologies as well as their alignment. In the next step, these vectors are used to train

a classifier in order to identify whether a change affected the alignment or not. This ap-

proach is universal since it does not depend on a set of specified rules and could be applied

in any alignment.

Implementations of using RDF2Vec in ontology alignment tasks can be found also in the

private sector [36]. In detail, schema matching processes are exploited by creating a

framework for fully automated schema matching regarding the private sector. Schema

matching and ontology matching can be considered as analogous terms since all the tech-

niques for ontology matching are applicable to schema matching. Finally, by implement-

ing RDF2Vec the concept vectors can be obtained. It is worth mentioning that this study

tries to incorporate the semantic techniques and approaches into the business world.

ALOD2Vec matcher aims to merge RDF2Vec with the Semantic Web technologies [37].

Specifically, it tries to align two ontologies by using WebIsALOD as an external source

of knowledge [38]. WebIsALOD consists of the hypernym relations of LOD. These rela-

tions are extracted using the Common Crawl tool. These kinds of relations are crucial for

the Semantic Web Ontologies. In particular, hypernym relations incorporate tail-entity

relations for instance level data. Vector representations are generated on WebIsALOD

dataset using RDF2Vec and used as background knowledge for the ontology alignment

 -13-

task. Regarding the alignment process, the descriptions of the ontologies are obtained and

matched using simple string-matching techniques. The ontology entities which are not

matched in the first step are then matched to the background knowledge embeddings

which are pre-computed as mentioned above. The label of the ontology entities is matched

to the concepts of theme embeddings. After that, several candidates are obtained which

are ranked according to a similarity measure.

Regarding the Semantic Web technologies, users in LOD can utilize the SPARQL mech-

anism in order to submit queries on a great collection of linked RDF datasets. They often

come across with empty answer sets since their query may not be able to retrieve any

particular information. For this reason, a framework is proposed which aims to solve this

issue by generating graph embeddings on the instance level of a knowledge graph [39].

To do so, graph embeddings are generated from the RDF graph using TrasnE [40]. This

model is chosen since it is capable of persevering the correlations among entities and

relations. This way the inherent structure of the knowledge is preserved and projected to

the vector space in contrast to neural-language based models like RDF2vec which cannot

capture the relations between two entities while generating the embeddings. After gener-

ating the embeddings, this framework focuses on the SPARQL query which returns an

empty set. In detail, the query is divided into parts. Using these parts along with the RDF

embeddings it calculates alternative answers and provides them back to the user. Finally,

each alternative answer is accompanied by an alternative query which may help users to

refine their original queries.

The TransE framework generates embeddings by modeling the relations of a knowledge

graph to translations in the embedding space. It mainly focuses on instance level data

rather than ontology concepts. The main goal of TransE is to provide a way in order to

complete missing relations in a graph without requiring any extra knowledge. In detail, it

examines the hierarchical relationships since they have a crucial role in the majority of

most knowledge graphs. As the authors state, they try to capture the key relations of a

knowledge graph. In knowledge graphs, the relations that are 1-to-1 between different

types of entities are of great value since they efficiently improve modeling. An example

could be “author of” where an author and book are connected via such a relation. TransE

focuses on such relations by including them in its process. Another key feature of this

framework is its scalability. TransE is used in modeling the WordNet and Freebase

knowledge bases in order to perform link prediction tasks.

-14-

TransE is also used in a framework which aims to produce high quality vector represen-

tations for the instance level of a network based on the relations among the concepts of

an ontology [41]. This framework mainly focuses on Datalog± rather RDFS or OWL

languages. Various types of vector space embeddings on the instance level of a

knowledge graph are explored. The generated relation embeddings are obtained using

TransE while DistMult is used to form the regions [42]. In addition, this framework mod-

els the relations of an ontology as constraints to these regions. It is considered that the

relations of ontology formulate rules which can be translated to spatial constraints. After

that, the framework checks whether an embedding captures the rules of the ontology. If

this is the case, then this embedding is called a geometric model of the ontology. This

prerequisite ensures that high quality representations are obtained from a knowledge

graph.

Another framework worth mentioning which focuses on the instance level of a network

is node2vec [43]. This framework generates embeddings for nodes in a network. It fo-

cuses on the instance level of networks rather than the ontology level. The goal of this

approach is to create embeddings that maximize the likelihood of preserving network

neighborhoods of nodes. In other words, it tries to capture the communities of the net-

work. Creating such a framework is crucial since it could be used across several super-

vised machine learning tasks. Until recently, a common method to extract features from

a network was with human intervention since it required domain specific knowledge. On

the opposite side, node2vec extracts the communities of the network by implementing a

variety of biased random walks. Node2vec generates the feature vectors that embed nodes

in the same neighbor but also captures the information regarding nodes which have the

same role in a neighbor (e.g. central node). Moreover, an extension of the Skip-gram

method is applied where the goal is to optimize an objective function. To achieve that, it

utilizes stochastic gradient descent with backpropagation on a neural network with one

hidden layer. Another key feature of node2vec is that its major phases are parallelizable,

making it a scalable graph embedding algorithm. After their generation, the embeddings

are used in order to solve link prediction and multi-label classification problems.

The Global-RDF embeddings come in contrast to RDF2vec methodology [44]. This

method introduces a new embedding approach inspired by Global Vectors (GloVe) on

the instance level of a knowledge graph. In this approach, the vectors are generated based

on the global patterns rather than the local patterns like paths, walks or kernels. To achieve

 -15-

this, a co-occurrence matrix is built from a graph regarding the instance level. In order to

compute this co-occurrence matrix an algorithm based on Personalized PageRank called

Bookmark-Coloring Algorithm is applied. This framework allows a faster computation

of the Personalized PageRank. The experimental results indicate an equivalent perfor-

mance in comparison with RDF2Vec which is based on local patterns.

EmbedS framework takes into consideration both the ontology and the instance level of

a graph in order to generate instance level embeddings [45]. In most approaches the on-

tology of a graph is often not taken into consideration. This results in cases where simple

constraints referred to in an ontology are left aside (e.g. a book cannot be a friend of

institution). Thus, it cannot take advantage of the rich and useful metadata information

provided by an ontology. EmbedS is applied on a particular RDF dataset along with its

ontology in the same vector space. This enables the calculation of ontological constraints

and thus it could be used for further actions like feeding up a machine learning model.

Another approach which combines embeddings from both the instance and the ontology

level of a knowledge graph is the JOIE framework [46].. It consists of two main compo-

nents: a) the Cross-view Association Model and b) the Intra-view Model. The Cross-view

Association Model is incorporated by two methods. The first method is called cross-view

grouping and presumes the instance and the ontology level of a knowledge graph so they

can be embedded into the same vector space. On the other hand, the second method is

called cross-view transformation and uses two separate embedding spaces which will be

combined by mapping the instance level embeddings to the ontology vector space. The

Intra-view model is responsible for maintaining the structure in both the instance and the

ontology level views. Two approaches are used: a) the Default Intra-view model and b)

the Hierarchy-Aware Intra-view Model. The first one generates embeddings from the tri-

plets while the second one focuses on the ontology. In particular, the Hierarchy-Aware

Intra-view Model concentrates on the meta-relations provided by an ontology like “sub-

class of” since they provide crucial knowledge regarding the hierarchy structure. Finally,

the framework combines the two main components mentioned above, in a joint function.

In comparison to the JOIE framework, HONOR combines these embeddings in the on-

tology vector space in order to perform a supervised normalization for entities extracted

from text [47].

Another novel implementation of embeddings regarding the instance level is introduced

in KGvec2go [48]. In detail, KGvec2go offers embeddings as a service. The vector

-16-

representations are obtained on the instance level entities via a Web query rather than

generating the embeddings from a knowledge graph. Simply, it can be understood as pre-

trained graph embeddings from four popular knowledge graphs. In particular, this frame-

work generates the embedding using RDF2vec but with a more efficient walk generation

process. As mentioned above four knowledge graphs are exploited: DBpedia,

WebIsALOD, Wiktionary and WordNet. Combining these knowledge graphs, it could be

extremely beneficial for various applications. The innovation of this framework comes to

the way it provides embeddings calculations online. Users can use a Web API in order to

consume these embeddings. This API allows embeddings to be used by less powerful

devices such as tablets or smartphones. Specifically, similarity and N-closest entities cal-

culations could be performed online by only providing the name of concepts rather than

a URI. Users also have the ability to download the pretrained embeddings and merge

them in their applications according to their needs. This framework is also available for

running in an HTTP server.

There are numerous RDF embeddings approaches and knowledge graph embeddings

methodologies but most of these efforts focus on creating embeddings on data instances

rather than the ontology. OWL2Vec framework focuses directly on the ontologies. It re-

lies on a modified version of RDF2Vec [49]. In detail, this framework consists of three

stages: a) the Ontology projection, b) the Walk Strategy and c) the Concept Embeddings.

In the Ontology projection the ontology is projected into a graph where the nodes repre-

sent concepts while the edges represent possible relations.

While in the Walk Strategy the walk on the ontology graph takes place. One of the key

features of this approach is that the weights on the edges could be adjusted in order to

give more significance to the taxonomic relationships or to the object properties.

Finally, the Concept Embeddings stage is using Word2vec and FastText in order to com-

pute the concept embeddings. This method is flexible due to the fact that different concept

embeddings could be created from different types of corpora sentences.

On2Vec aims to predict the relations among ontological entities in an ontology using

embeddings generated from an ontology graph [50]. The main characteristic of ontology

graphs is that they have comprehensive semantic relations. These relations hold facts re-

garding the hierarchy as well as the transitivity and symmetry of properties. The motiva-

tion behind the proposed model is a more pliable approach on generating ontology graph

embeddings which do not rely on text corpora like other studies [51][52][53][54][55].

 -17-

On2Vec is a translation-based graph embedding model that aims to identify the compre-

hensive ontology semantic relations. In detail, it consists of two main components: a) the

Component-specific Model and b) the Hierarchy Model. The first one implements spe-

cific projections on the source and target concepts so the relational properties could be

preserved. The second one applies a perceptive learning process on the hierarchical struc-

ture of the relations. In their experiments, the ontologies of Yago, ConceptNet and DBpe-

dia OWL are used. Finally, after generating the ontology embeddings a relation prediction

is performed between concepts.

Until now, there are few approaches which introduce ontology embedding to Neural Net-

works. In their study A. Benarab, F. Rafique and J. Sun introduce a methodology where

the ontology embeddings are generated using multiple neural networks along with a neu-

ral network autoencoder [56]. The aim of this methodology is to create low representa-

tions of ontological entities in order to be ready for machine learning and deep learning

procedures. In particular, this approach focuses on the semantic relations. This multi-

neural network model aims to generate an object based on the subject and the relation of

a triplet. For this reason, the relations are modeled in a neural network. Having multiple

neural networks for a number of specified relations will form the model. One of the lim-

itations of such an approach is the creation of sparse vectors. To deal with this issue an

autoencoder neural network is used. The autoencoder is an unsupervised method consist-

ing of an encoder and a decoder. It is a five-layer neural network with three hidden layers.

The goal is to minimize a loss function. The full model consisting of the multiple neural

networks along with the autoencoder is demonstrated in Figure 3: The architecture of the

Multiple Neural Networks along with a Neural Network autoencoder as proposed in [56].

-18-

Figure 3: The architecture of the Multiple Neural Networks along with a Neural Network auto-

encoder as proposed in [56].

Evaluating the quality of an ontology embedding is still in a premature stage. Specific

evaluation metrics are proposed regarding the quality of ontology embeddings in this

study [57]. It is stated that there is no systematic approach for evaluating the quality of

embeddings in general. The focus of this work is to provide an “intrinsic metric” to solve

the above issue. In detail, there are three aspects: a) the categorization, b) the hierarchical

and c) the relational aspect. The first aspect focuses on both the instance level of the data

and the ontology. The aspects ‘b’ and ‘c’ take only into consideration the ontology. Spe-

cifically, three metrics are proposed regarding the hierarchical aspect which focus on the

ontology classes and subclasses rather than the relations: absolute semantic error, seman-

tic Relatedness metric and Visualizations. In the relation aspect, two metrics are intro-

duced: sectional preference and semantic transition distance. These metrics examine the

relations among the ontology concepts.

 -19-

2.3 European Union’s Business Collections

In this part of this chapter the Business Collections2 retrieved from the official site of

European Union’s Publications Office are analyzed. Business Collections are sets of vo-

cabularies, ontologies and application profiles aiming to provide interoperable solutions

to both the public and the private sector in the European Union. Apart from the Business

Collections, the “Asset Description Metadata Schema Application Profile” (ADMS-AP)

and the schemas in “Schema.org” are exploited.

Akoma Ntoso for European Union (AKN4EU)

AKN4EU provides a common structure for EU Legislative Documents. Having a com-

mon structure for legislative documents is crucial regarding interoperability. Apart from

that, it creates a productive environment for interinstitutional legislative processes among

institutions in the EU. AKN4EU is based on XML and aims to enable the exchange of

legal documents. Specifically, it is constructed according to Akoma Ntoso and OASIS

standards. Akoma Ntoso provides a set of representations in XML format of parliamen-

tary, legislative and judiciary documents. OASIS goal is to create a path to standardiza-

tion in international policy and procurement via open source and open standards. In its

current version AKN4EU accommodates legal acts adopted through the ordinary legisla-

tive procedure and their legislative proposals. The future versions aim to develop inter-

institutional standards for the exchange of structured content.

Book Interchange Tag Suite (BITS)

The BITS ontology has been selected for the production of general publications by the

Publications Office of the European Union. This ontology is based on XML. Publishers

can use this ontology in order to exchange book content. In detail, it defines the elements

and attributes which are used to describe textual and graphical contents.

2 https://op.europa.eu/en/web/eu-vocabularies/business-collections

https://op.europa.eu/en/web/eu-vocabularies/business-collections

-20-

Common Data Model (CDM)

The CDM ontology is constructed according to the Functional Requirements for Biblio-

graphic Records (FRBR) model. Based on FRBR principles CDM uses OWL and RDFS

technologies in order to represent the relations and the attributes among the ontology en-

tities. Using the VOWL component in Protégé tool3 the graph representation of the on-

tology is generated.

Figure 4: CDM Ontology graph generated using Protégé tool.

FRBR entity relationship model captures all the information regarding the material and

tasks that are associated with bibliographic resources. In simpler words, it tries to model

the bibliographic universe by offering a structurer among bibliographic concepts [58].

3 https://protege.stanford.edu/

https://protege.stanford.edu/

 -21-

Core Vocabularies

The Core Vocabularies form a collection of re-usable data models. They capture the main

attributes of an entity in a context-neutral approach. They are used in various scenarios.

In particular, the Core Vocabularies constitute the starting point of information systems

development. They are used for designing the conceptual and logical data models of a

new system which also denotes their extensibility. Furthermore, they support a better in-

formation exchange among systems. In addition, they are used in various data integration

processes between legacy systems which use different data models. Another great use of

these vocabularies concerns the publication of Open data. They are used as a common

export format among several portals. There are six Core Vocabularies. The Core Business

Vocabulary models the characteristics of a legal entity. These characteristics may consist

of the name, address activity etc. of a legal entity. The Core Location Vocabulary aligns

with the INSPIRE data specifications and captures the main characteristics of a location.

The Core Person Vocabulary models the characteristics of a person (e.g. name). The Core

Public Organization Vocabulary designates the public organizations in the EU. The Core

Public Service Vocabulary models the characteristics of services offered by public ad-

ministrations e.g. title, description, inputs, outputs, providers, locations, etc. The Core

Evidence and Criterion Vocabulary includes the means and the principles that must be

held by a private entity in order to participate in public procurement.

The Digital Europa Thesaurus (DET)

The DET aims to model the web content in order to be retrieved, managed and aggregated

across the European Commission’s public communication. It reuses EuroVoc concepts

along with concepts from other resources in order to describe web content. The DET can

be characterized as multilingual thesaurus.

European Legislation Identifier (ELI)

The ELI framework provides as standardized format for online legislation metadata. Hav-

ing a common format among these information enables the access, exchange and reuse

across the Member States and organizations of the EU. In detail, the ELI ontology creates

-22-

a model regarding the online legislation metadata exchanging. The legislation description

is based on FRBR principles.

eProcurement

The use of electronic means regarding the transactions and communications for buying

supplies and services to be used by public sector organizations is called eProcurement.

This collection aims to the migration of public procurements to eProcurement by setting

the standards for these procedures in the digital era. In detail, TED XML schemas along

with authority tables and taxonomies are used to form this standard. Tenders Electronic

Daily (TED) is the online version of the 'Supplement to the Official Journal' of the EU,

dedicated to European public procurement. Publishing on TED requires the use of three

schemas: a) the Reception, b) the Internal and c) Publication schema. The Reception

schema includes all the forms that must be filled by all senders. The Internal schema is

used inside the Publication Office. Finally, the Publication schema is used to publish the

notice on TED’s website.

Europass

In order to understand the skills and qualifications but also improve the transparency in-

side the EU, the Europass framework is created. This framework is a set of web-based

tools and information that aims in better communication of skills and qualifications. It

consists of a collection of Vocabularies. They are mainly used in Europass CV template,

Europass Digital Credentials etc.

European Skills, Competences, Qualifications and Occupations (ESCO)

ESCO is the European multilingual classification of Skills, Competences, Qualifications

and Occupations. It models the occupations, skills, qualifications and their relations that

are relevant in the EU labor market. Furthermore, it offers job mobility since it creates a

standard among the concepts mentioned above across boards.

The European Science Vocabulary (EuroSciVoc)

The EuroScivoc is a taxonomy created by the result of CORDIS. It is organized using

semi-automatic Natural Language Processing techniques. This is a multilingual

 -23-

taxonomy containing over 1000 categories, which are described using relevant keywords

derived from CORDIS, in 6 languages. Specifically, it is created to be used as a reference

vocabulary for the Open Science community.

Formalized Exchange of Electronic Publications (Formex)

The exchange of data among the Publication Office and its contractors is done by using

the Formex format. Formex models the logical markup for documents published in the

Official Journal of the European Union.

IMMC Core Metadata

This data model defines a set of the minimum metadata that are needed in the legal deci-

sion-making process. It enables a standard approach regarding information exchange be-

tween the institutions of the Publication Office.

Official Journal Electronic Exchange Protocol (OJEEP)

The OJEEP is a protocol responsible for the data exchange among the production system

for the Official Journal of the European Union (PlanJO) and the printing contractors of

the Official Journal. To accomplish its goal, this protocol consists of various scalable

schemas which set the business requirements while enabling flawless information ex-

change.

OP Core metadata element set

This metadata model is created by the Publications Office of the EU and it is based on

the Duplin Core metadata set. In particular, any resource published by the Publications

Office should contain the 16 elements of OP core set.

DCAT Application profile for data portals in Europe (DCAT-AP)

The DCAT-AP is a specification for datasets in Europe. It is created according to Data

Catalogue vocabulary (DCAT). DCAT is an RDF vocabulary which enables the use of a

standard model so the metadata could be aggregated in multiple catalogs. In detail,

-24-

datasets using DCAT vocabulary are more discoverable since they could be retrieved by

using the same search engine across multiple data portals. DCAT Application Profile as

mentioned above is specification for metadata aiming to assist semantic interoperability.

To achieve this goal, it reuses EuroVoc metadata vocabulary and mappings to existing

vocabularies like Dublin Core. In other words, DCAT-AP provides a model which en-

sures consistency regarding the description of metadata and supports two main groups: a)

the Data Reusers and b) Data Providers. The first group benefits from the fact that datasets

can be easily retrieved because of the quality of their metadata. On the other hand, since

the metadata is available across multiple data portals this enables availability at a low cost

for the Data providers.

Asset Description Metadata Schema (ADMS)

The ADMS vocabulary is created in order to describe semantic interoperability solutions.

There are three main stakeholders who use this vocabulary: a) the Solution Providers, b)

the Content aggregators and c) the ICT developers. The first group is able to share and

standardized metadata across platforms enabling discoverability. The Content aggrega-

tors can retrieve these metadata and provide them in a single point of access. This enables

the ICT developers to search on one access point in order to explore interoperability so-

lutions. The ADMS-AP extends the use of ADMS by providing solutions on political,

legal, organizational and technical interoperability layers. A newer version of ADMS is

also available. The main feature of the new version is the alignment with DCAT since it

utilizes the DCAT classes rather than ADMS classes.

Schema.org

Schema.org is a shared vocabulary enabling developers and engineers to take advantage

of existing schemas making their applications interoperable 4. It is founded by Google,

Microsoft, Yahoo and Yandex which are well known key players in the web. Developing

a schema is done by an open community process mainly using GitHub5 or by email. Vo-

cabularies in Schema.org support various encodings such as RDFa, Microdata and JSON-

4 https://schema.org/

5 https://github.com/schemaorg/schemaorg

https://schema.org/
https://github.com/schemaorg/schemaorg

 -25-

LD. One of the benefits of using such vocabularies is that they can be extended to cover

developers’ needs regarding their applications. Currently, Schema.org consists of 836

Types. Types are equivalent to Classes. Each Type holds two sets of properties: a) Prop-

erties from each Type and b) Properties from Thing. Regarding the first set of properties,

they are created in order to describe a specific Type. Properties from Thing type, are

common properties for all Types since every Type is a Thing.

 -27-

3 Material and Methods

This chapter describes the methods implemented for text preprocessing, embeddings gen-

eration, feature extraction and finally the models used for the task of classification.

3.1 Introduction

The goal of this thesis is to examine the implementation of machine learning models with

emphasis on word vector representations in the field of ontology engineering while fo-

cusing on the European Unions’ ontologies. Specifically, it tries to tackle the problem of

link prediction in an ontology set. In detail, this thesis focuses on the ‘sub-property’ rela-

tion among the entities in the ontology set. This problem is encountered as a classification

task since it focuses on the prediction of whether two properties are connected or not. In

addition, the Ontology Scout Tool (OS Tool) is introduced which is an ontology search

tool based on pre-trained vector representation aiming to help ontology engineers identify

concepts and ontologies of their interest. This chapter is divided into two main sections.

The first section refers to the sub-property link prediction in an ontology set while the

next section refers to the proposed ontology search tool. Regarding the first section, the

procedure of obtaining the dataset is described. Moreover, a presentation of the Pretrained

Embeddings Models which are used in order to generate the vector representations takes

place. Then, the pipeline of Preprocessing and Feature extraction is thoroughly explained.

Last but far from least, the Machine Learning Models along with their parameterization

are demonstrated.

Apart from the problem of sub-property link prediction, an ontology search tool based on

vector representations is also proposed in this thesis. The OS Tool is oriented towards

ontology engineers and aims to provide assistance regarding tracking their ontologies of

interests. In detail, it acts as an information retrieval tool based on pre-trained vector rep-

resentations which provides ontology engineers and experts with fundamental infor-

mation for the tasks of ontology development and ontology alignment.

-28-

3.2 Sub-Property Link Prediction in European Un-

ion’s Ontology Set

3.2.1 Dataset

The dataset used in this thesis is created by exploiting the official European Unions on-

tologies. Since there is not an available dataset the following pipeline is followed in order

to generate a balanced dataset for the link prediction task. The pipeline includes the fol-

lowing steps which will be later further analyzed:

a) Ontology parsing

b) Sub-property pairs extraction

c) False Subproperty pairs generation

d) Candidate pairs generation

3.2.1.1 Ontology Parsing

In this step, the ontologies are loaded and parsed using RDFLib Python’s library6. This

library is specifically created for working with RDF files. In addition, RDFLib also in-

cludes useful APIs for parsing data files of type RDF/XML, N3, NTriples, N-Quads, Tur-

tle, TriX, RDFa and Microdata. The vast majority of the ontologies provided by the offi-

cial European Union portal are in RDF/XML and Turtle format. In some cases where

RDFLib could not parse various ontologies, the Protégé tool7 is used to transform these

particular ontologies into another format. Specifically, this procedure took place for BITS

ontology where it transformed from XML into Turtle format. Moreover, due to incom-

patibilities of “ADMS version 2.0” ontology and RDFLib library, the “ADMS version

1.0” is used instead. Since the goal of this thesis is to use machine learning models in

order to predict the sub-property relation between two properties only the following on-

tologies which hold concepts which have the type of property are parsed and loaded:

CDM, ELI, European Commission Conceptual Framework, DCAT, European

6 https://rdflib.readthedocs.io/en/stable/

7 https://protege.stanford.edu/

https://rdflib.readthedocs.io/en/stable/
https://protege.stanford.edu/

 -29-

Qualification Framework SKOS AP EU, DET SKOS AP EU, the Core Vocabularies,

BITS and ADMS Version 1.0.

After parsing the ontologies, a network is created which contains the ontologies in the

form of a graph. In detail, the created graph contains 971961 triples.

Figure 5: Parsing the ontologies creates a network of ontologies which forms a graph.

3.2.1.2 Sub-property pairs extraction

From the graph created like explained above, the sub-property pairs are extracted. To do

so, the SPARQL Query Language8 is used. Specifically, the query generated aims to re-

trieve URIs which are connected with the “rdfs:subPropertyOf” relation of the RDF

Schema data modeling vocabulary9.

All the URIS retrieved must hold at least one string value in order to generate word vector

representations but also additional linguistic features which later will be used to train and

test the machine learning models. For this reason, only Properties which have at least a

label are retrieved. The results of the SPARQL query are loaded to a table. The total

8 https://www.w3.org/TR/rdf-sparql-query/

9 https://www.w3.org/TR/rdf-schema/

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-schema/

-30-

number of the retrieved property pairs is 1119. Moreover, an extra column is added named

“Link” with value equal to 1 which indicates that the two URIs have a sub-property rela-

tion. Since it is a sub-property relation the URIs in the tale are labeled “super-property

URI” and “property URI” accordingly.

Figure 6: From the ontology graph the properties with the sub-property relation are extracted.

These properties have link equal to 1 since it actually exists a connection between them.

Figure 7: After extracting the properties with the sub-property relation they are loaded to a ta-

ble.

 -31-

3.2.1.3 False Sub-property pairs generation

In this part, the methodology of creating the false pairs is analyzed. It is important to

generate false pairs in order to train the machine learning models. Based on the actual

pairs generated from the graph, the false pairs are generated. Firstly, a list of the unique

super-property URIs is extracted. Then, a random choice among these URIs takes place

where its URI has equal probability of being chosen. For the super-property URI selected

a new random choice of a URI is performed excluding all the URIs where the super-

property URI has an actual sub-property relation. Finally, an extra column named “Link”

with value equal to 0 is added as indicating that the two URIs do not have a sub-property

relation. The resulted table has 1119 lines in order to create a balanced dataset for training

and testing the machine learning models in later sections.

Figure 8: The table of false sub-property pairs. These pairs are generated from the table in cre-

ated in Figure 7: After extracting the properties with the sub-property relation they are loaded to

a table.

By concatenating both the sets which hold the actual and false URI pairs the dataset is

created having 2238 lines.

-32-

Figure 9: By concatenating the actual with false sub-property sets the dataset is generated.

3.2.1.4 Candidate pairs generation

In order to evaluate the performance of the machine learning algorithms on predicting the

sub property relation between two properties we must have a test set. Creating the test set

is done by splitting the dataset crafted above, into two sets: a) the training set and the test

set. In detail, a stratified split takes place so both the training set and the test set are bal-

anced regarding the “Link” class. The size of the test set is 20% of the original dataset

including 448 pairs of URIs. Apart from the test set an extra set is generated for testing

purposes. The candidate pairs are generated based on the URIs which are included in the

test set. Concerning the candidate pairs generation, they are generated in respect to the

word vector representations of the labels and comments of the URIs in the test set. For

each unique “super-property” URI in the test set, 5 candidate property URIs are generated

based on the cosine similarity of their label and comment vector representations. For this

reason, Sentence-BERT is used which is a modification of the pretrained BERT network.

More analytically, Sentence-BERT (SBERT) model utilizes siamese and triplet network

structures to generate semantically meaningful sentence embeddings [59]. Generating the

sentence embeddings for the labels and comments is done using the “distilbert-base-nli-

stsb-mean-tokens” model which is optimized for semantic textual similarity and also has

a balance in terms of speed and performance. For each unique “super-property” URI in

the test set the label embedding is calculated while for all property URIs the embedding

of their labels and comments are calculated. Each embedding generated using the SBERT

model has 768 dimensions. Having such a number of dimensions comes with a high

memory and computation cost. On the other hand, having a large number in vector rep-

resentations provides a great detail for each sentence in the vector space which is crucial

for the purpose of generating candidate pairs. For each unique “Super-property” the

 -33-

cosine similarity of its label embedding along with the property label and comment em-

beddings are calculated. Then, the highest cosine between the “super-property” label and

the property label and

“super-property” label and the property comment is kept serving as a ranking measure.

The top 5 property URIs along with the “super-property” URI form the candidate pairs

and are appended in a table. The size of this table is 765 lines which is the number of the

unique “super-property” URIs in the test set multiplied by five since this is the number of

candidate pairs generated. Finally, the existence of relation between the candidate pairs

is derived from the original test set and is demonstrated to a column named “Link” rep-

resenting the relation of the two URIs accordingly. Figure 10 demonstrates the closest

labels to “is motivated by” label in a two-dimensional vector space produced by perform-

ing principal component analysis to the vector representations transforming them from

768 to 2 dimensions.

Figure 10: The closest labels to “is motivated by” in a two-dimensional space.

-34-

3.2.2 Pretrained Embedding Models

The purpose of this thesis is to examine the implementation of machine learning methods

with emphasis on word vector representations in the field of ontologies. For this reason,

4 Pretrained Embedding Models are used. The implementation of these 4 different models

results in 4 separate solutions for the problem of this thesis. In detail, for each pre-trained

embedding model a different set of features is created. This approach enables the com-

parison among these models in terms of their accuracy and other measures in the link

prediction task. While the embedding models may differ, the whole pipeline explained in

the feature extraction section is common for all approaches.

As mentioned above this thesis takes advantage of 4 different pretrained embeddings

models which are used to generate the embeddings for the labels and the comments of the

properties in the dataset.

The following models are used in order to generate the vector representations:

a) Sentence-Bert b) spaCy c) Word2vec-Gensim d) Glove.

To extract the labels and comments for each property a SPARQL query is constructed

which retrieves the necessary data. The result of this query is then passed in a table for

further analysis as shown in Figure 11. Since vector representations as well as other lin-

guistic features which are constructed in this thesis are based on Natural Language Pro-

cessing techniques, the Properties retrieved must have a label while the existence of a

comment is optional. For Properties which do not have a comment the value in “nan”.

For any “nan” comment, its embedding will be a vector of zeros across all dimensions so

it could be later used to calculate the cosine similarity between properties but also in

machine learning tasks.

 -35-

Figure 11: The labels and comments for all URIs are extracted in a table.

3.2.2.1 Sentence Bert

As mentioned above, the Sentence-Bert (SBERT) model is used to generate the candidate

pairs which will later be used to test the machine learning algorithms. The SBERT model

is also used to derive vector representations regarding the labels and comments of the

properties which will be used for training the machine learning algorithms. Since the

SBERT model is able to produce embeddings directly from a sentence, the labels and

comments for each property are passed through that model generating their corresponding

embeddings. The size of each embedding is 768 dimensions. For the properties which

hold no comments a vector of zeros is produced for each dimension so they could be used

in machine learning. In SBERT, the “distilbert-base-nli-stsb-mean-tokens” model is used

which is optimized for semantic textual similarity. Specifically, this model is trained on

the SNLI10 and the Multi-Genre NLI11 datasets.

10 https://www.aclweb.org/anthology/D15-1075/

11 https://www.aclweb.org/anthology/N18-1101/

https://www.aclweb.org/anthology/D15-1075/
https://www.aclweb.org/anthology/N18-1101/

-36-

3.2.2.2 spaCy

SpaCy12 is a library focusing on the implementation of Natural Language Processing ap-

plications and pipelines. This library provides a variety of models in numerous languages

like English, German, Greek, Japanese and others. Apart from the above, it also provides

various Multi-language models which can be used for comparison among different lan-

guages. In this thesis the “en_core_web_sm” pretrained model is utilized which provides

sentence embeddings directly. It is a multi-task Convolutional Neural Network trained on

OntoNotes [60].

The number of dimensions of the embeddings generated is 96. Furthermore, spaCy sen-

tence embeddings models handle internally text preprocessing operations like punctua-

tion removal and lower-case transformation.

3.2.2.3 Word2vec Gensim

Gensim13 is an open-source library that contains efficient implementations of Natural

Language Processing functionalities for the task of topic modeling. With Gensim, the

embeddings are generated using the “GoogleNews-vectros-negative300” pre-trained em-

beddings model. These embeddings are trained on Google News dataset and provide word

vector representations of 300 dimensions. This model is capable of providing word and

phrase vector representations than sentence embeddings [13]. Moreover, it does not in-

clude a text preprocessing pipeline. For this reason, all labels and comments are passed

through a text preprocess function where lower-case transformation, punctuation and stop

words removal take place. After that, they are ready to be used to generate the word vector

representations. For the purpose of this thesis, in order to derive the sentence embeddings

for each label and comment, the mean vector representation of the words is calculated.

For example, if a comment is constituted by 10 words, the embedding for this comment

will be the mean vector of these 10 words. This procedure results in an embedding of 300

dimensions which represents the whole comment.

12 https://spacy.io/

13 https://radimrehurek.com/gensim/models/word2vec.html

https://spacy.io/
https://radimrehurek.com/gensim/models/word2vec.html

 -37-

3.2.2.4 GloVe

Global Vectors is an unsupervised technique for generating word vector representations.

It is based on global text statistics by deriving semantic relations among words from the

co-occurrence matrix [14]. In this thesis the “glove.6b.300d” model is used which is

trained on Wikipedia 201414 and Gigaword 515 datasets. The size of these vector repre-

sentations is 300 dimensions. Since these embeddings come in the form of a dictionary,

there is no text preprocessing pipeline and only provide word vector representations. For

this reason, as mentioned above, all labels and comments are passed through a text pre-

process function and sentence embeddings are generated by calculating the mean vector

for each individual word vector representation.

After generating the vector representations regarding the labels and comments for each

property, the junction of these vectors with the original data takes place.

Figure 12: The final dataset including the actual and false sub-property pairs along with the em-

bedding for their labels and comments.

14 https://wiki.dbpedia.org/Downloads2014

15 https://catalog.ldc.upenn.edu/LDC2011T07

https://wiki.dbpedia.org/Downloads2014
https://catalog.ldc.upenn.edu/LDC2011T07

-38-

3.2.3 Text Preprocessing

Text is a valuable source of information which can be found in all fields of science and

technology. It is an unstructured form of data which may contain noisy content. Cleaning

the text requires a solid understanding of the field, so the mining of the text could result

in meaningful insights. For this reason, the implementation of text cleaning actions is

crucial and must take place before feature engineering and machine learning modeling.

Labels and comments of properties are in text form. Text processing is implemented by

using Natural Language Toolkit (NLTK)16 and Regular Expressions (RE)17 Python librar-

ies. The techniques utilized for this problem are presented as follows:

Lowercase transformation

Since Python is a case sensitive programming language all alphabetical characters are

converted to lowercase. This conversion enables the models to capture that two words

have the same meaning despite their differentiation in letter cases.

URLs removal

Numerous comments include external links which refer to specific sources. Nevertheless,

for the purpose of this thesis they are noisy text rather than meaningful information.

Hence, all external links starting with “https” or “http” are removed.

Punctuations removal

In the field of ontologies and especially the labels and comments of the properties in the

dataset, punctuations do not have any significant importance. Thus, they are removed

from all text fields.

Tags removal

There are cases where the comments of some properties may contain tags. An example

of a tag is most commonly a word starting with “@”. Since they do not provide any

16 https://www.nltk.org/

17 https://docs.python.org/3/library/re.html

https://www.nltk.org/
https://docs.python.org/3/library/re.html

 -39-

additional information regarding the actual Property but may refer to external sources

they are completely removed.

Tokenization

Converting text into a list of words (tokens) is an essential part of text preprocessing

pipelines. Having tokens is mandatory for feature engineering which will be used in ma-

chine learning models.

Stop-words removal

Stop-words is a set of words that are frequently used and do not provide any actual in-

sights. In this thesis, the set of stop-words provided from the NLTK library is utilized in

order to remove them from all labels and comments.

Stemming

Stemming is the process which recognizes and maintains the root of a word. This is ex-

tremely significant since words which share the same root after stemming are considered

as the same. This process is applied in all labels and comments in advance of feature

engineering. It is not applied for the generation of vector representations.

3.2.4 Feature Extraction

 Length of labels

This is a basic feature which calculates the number of words regarding the labels of the

properties.

Number of common words

This feature calculates the number of common words between two string values. In this

thesis, the number of common words for the following pairs is extracted: “super-

-40-

property” label & property label and “super-property” label & property comment. The

feature is an integer number which demonstrates the number of common words.

Ratio number of common words and length of labels

This ration combines the “Number of common words” and “Length of labels” features.

In detail, it divides the number of common words between the labels by the average string

length of both labels.

The features below are extracted for the following pairs: “super-property” label & prop-

erty label, “super-property” comment & property comment, “super-property” label &

property comment and “super-property” comment & property label.

Fuzzy Logic

Fuzzy logic is a form of multi-valued logic that deals with reasoning that is approximate

rather than fixed and exact. Fuzzy String Matching is the process of finding strings that

approximately match a pattern. For the purpose of this thesis FuzzyWuzzy18 library’s

method “fuzz ratio” is implemented in order to calculate the edit distance between some

ordering of the tokens in both input strings.

Jaccard Similarity

The transformation of a sentence into a set of words enables the use of Jaccard Similarity

measure. It is the ratio of the size of the intersection divided by the size of the union for

two sets.

18 https://github.com/seatgeek/fuzzywuzzy

https://github.com/seatgeek/fuzzywuzzy

 -41-

TF-IDF Cosine Similarity

Cosine Similarity is a measure of similarity between two non-zero vectors of an inner

product space. Firstly, a TF-IDF transformation is applied in order to get real-valued vec-

tors. Using the TfidfVectorizer19, TF-IDF is implemented. Then the cosine similarity is

measured.

Embeddings Cosine Similarity

The cosine similarity regarding the embeddings generated from the pretrained embedding

model is calculated.

Embeddings Values

Since the number of dimensions of a vector representation is pre-defined, it enables the

transformations of embeddings to separate features. Each value of an embedding is ap-

pended to a separate column creating a new feature. This approach allows the machine

learning algorithms to take full advantage of the vector representations in the dataset.

3.2.5 Machine Learning Models

In this section, the machine learning models utilized are analyzed. In total nine models

are trained and tested regarding the problem of this thesis. Specifically, the models are

trained on the training set which is obtained as described in the Dataset section. A sum-

mary of each machine learning model follows:

K-nearest Neighbors (k-NN):

K-NN algorithm is an instance-based learner and relies on a distance metric for the clas-

sification. It belongs to the family of non-parametric models [61]. The only parameter

that users should define is the number of nearest neighbors which are evaluated in order

19 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

-42-

to assign a class a given observation. In this thesis, the number of nearest neighbors is set

to 3.

Naive Bayes (NB):

NB constitutes a probabilistic classifier inspired by the Bayes theorem under a simple

assumption which is that the attributes are conditionally independent. This method is

widely used because of its simplicity and its generally good results. Every pair of features

being classified is independent of each other. In this thesis Guassian Naive Bayes algo-

rithm is implemented which assumes that the likelihood of the features is Gaussian.

Decision Trees (DT):

Like K-NN, DT is a non-parametric algorithm utilized for classification. In classification,

the leaves of the tree demonstrate the class labels [62]. The branches demonstrate the path

that an observation follows regarding the features which leads to a leaf. The minimum

number of samples required to separate a node is set to two while there is no limitation

for the maximum depth. This means that the nodes are scaled until all leaves are pure or

include less than two samples.

Random Forests (RM):

RM is a special case of Bootstrap aggregating methods and belongs to the ensemble learn-

ing algorithms family. It is implemented by fitting a number of Decision Tree classifiers

on the dataset. Regarding classification problems, the prediction of a class for an obser-

vation is the mode of the classes predicted by the DT [63]. The number of trees utilized

for RM classifier is fifteen while their maximum depth is set to six.

Support Vector Machines (SVC):

SVC is a non-probabilistic supervised machine learning method. It is implemented by

separating the classes in space by leaving the widest possible gap between them. During

the testing phase the unseen observations are mapped to this space and assigned to a class

according to the part of the gap they fall [64]. The regularization parameter must be set

for this algorithm. In this model it is set by using a standardization method which subtracts

the mean and scales to standard deviation.

 -43-

Support Vector Machines Bagging:

Bootstrap aggregating or Bagging is an ensemble learning method aiming to improve the

metrics regarding a machine learning algorithm by combining the predictions from mul-

tiple models [65]. This method is utilized by using ten Support Vector Machines models

whoοse configuration is explained above.

Neural Networks:

Multilayer Perceptron (MLP) belongs to the family of Neural Networks. In this thesis the

MLP implemented uses a nonlinear activation function in order to classify data that are

not linearly separable. Every node in a layer connects to all nodes in the following layer

making the network fully connected. Neural Networks in general are structured in three

main layers, the input, the hidden and the output layer. The number of hidden layers is

set to 20 while the number of epochs is set to ten. Regarding the learning phase, the

method of indirect optimization is used. Finally, ‘Adam’ optimizer and Rectified Linear

Unit activation function are utilized.

Adaptive Boosting (Adaboost):

Adaboost is a boosting algorithm that concentrates on the observations that are harder to

classify by an iterative process. Adaboost iteratively fits a classifier to observations which

are misclassified by focusing on the weights specifically for these instances [66].

This method is implemented by using 100 models of the Adaboost-SAMME algorithm

[67].

Extreme Gradient Boosting (XGBoost):

XGBoost is a relatively new algorithm in machine learning. It is a scalable machine learn-

ing system for tree boosting [68]. One of its key advantages is the computation speed and

scalability over a single machine which is comparable to other methods using a distributed

-44-

set up. XGBoost utilizes a tree learning algorithm which handles sparse data. Then it

applies a sketch procedure enabling instance weights in tree learning to be handled more

efficiently.

3.3 Ontology Scout Tool

This thesis proposes Ontology Scout Tool (OS Tool) an ontology search tool which is

based on pre-trained vector representations. OS Tool addresses to ontology engineers and

experts aiming to develop an ontology or perform ontology alignment tasks. It is imple-

mented by parsing a set of ontologies resulting in an ontology set. This procedure is sim-

ilar to the Ontology parsing section mentioned above regarding the problem of sub-prop-

erty link prediction. Since it is based on pre-trained embeddings, Sentence-Bert (SBERT)

model is utilized. SBERT is used to derive vector representations regarding the labels and

comments of all instances in the ontology network. These can later be used in the retriev-

ing process. As explained in previous sections, SBERT is capable of producing embed-

dings directly from a sentence. OS Tool takes advantage of this feature since its users

may use multiple keywords to a query. Then this query is transformed to an embedding

using SBERT and it is compared with the embeddings generated from the ontology net-

work in the vector space. Finally, a sorted list of the instances is retrieved according to

their cosine similarity with the query. The size of each embedding is 768 dimensions.

Having such a number of dimensions provides detailed vector representations but in-

creases the computational cost of this tool. For instances which do not hold any label or

comment, a vector of zeros is produced for each dimension so they could be used in ma-

chine learning. As in the previous section, the “distilbert-base-nli-stsb-mean-tokens”

model is utilized since it is optimized for semantic textual similarity. A prototype of OS

Tool is demonstrated in the Experimental Results Section.

 -45-

4 Experimental Results

This section describes the experiments conducted for the proposed method of sub-prop-

erty link prediction in the EU's ontology set. Moreover, the Ontology Scout Tool (OS

Tool) prototype is introduced. Regarding the link prediction problem, the different em-

bedding techniques described in the Pretrained Embedding Models section are compared.

As explained in Material and methods, 4 different approaches are implemented based on

the embeddings models used. For each approach 9 machine learning models are trained

and tested regarding the problem of this thesis. Furthermore, the results obtained are con-

cerning the test and candidates set. Since it is a classification problem all methods are

compared in terms of accuracy and precision for the above two sets. Accuracy and preci-

sion are calculated as shown below:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑏 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝐴𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑏 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

Regarding the candidates set, the “Mean Average Precision” is measured for each method

since it is a standard evaluation metric in Information Retrieval [69]. MAP is calculated

as follows:

𝑀𝐴𝑃 =
1

|𝐶|
∑

1

5
∑

1

𝑘
∑ 𝑟𝑒𝑙(𝑖)

𝑘

𝑖

5

𝑘=1

|𝐶|

𝑐=1

where 𝑟𝑒𝑙(𝑖) is 1 if the URIs have the sub-property relation and 0 otherwise, C is 153

which is the number of the unique Super-property URIs. Moreover, k is the number of

pairs with the highest relevant score. For these experiments, 𝑘 is defined to be 5 since the

top 5 Property URIs are kept to generate the candidate pairs along with a Super-property

URI as explained in Candidate pairs generation section.

More analytically, for each pre-trained embedding model 9 machine learning algorithms

are trained. This means that 36 different models are obtained and compared in terms of

the metrics mentioned above. The same data preprocessing pipeline is used for all 36

models. Since each embedding model produces a different vector representation regard-

ing the size, the models may differ in number of features. This happens because the values

-46-

of each vector representation are used to produce features. With this assumption the size

of each dataset in terms of features is the following: Sentence-Bert 3094, spaCy 406,

Word2vec 1222 and Glove 1222 features. Each algorithm is trained on the training set

and tested on the test and candidates set. The best models are furtherly explored by ap-

plying techniques like Hyperparameter Optimization and Principal Component analysis.

Finally, a presentation of Ontology Scout Tool prototype takes place along with examples

regarding retrieving information from an ontology set.

4.1 Implementation

4.2 Sub-Property Link Prediction in European Un-

ion’s Ontology Set

4.2.1 Results on Test Set

Firstly, the results obtained from the test set are demonstrated. As mentioned above, 36

different models are trained and tested in terms of accuracy and precision. Table 1 pro-

vides a table holding the accuracies for each model.

Table 1: Accuracy Scores on Test Set

 Sentence-Bert Spacy Word2Vec Glove

AdaBoost 0,9554 0,9531 0,9554 0,9576

Decision Trees 0,9531 0,9397 0,9509 0,9286

K-NN 0,6674 0,6741 0,9330 0,8348

MLP 0,8839 0,9129 0,9621 0,9598

Naïve Bayes 0,6429 0,8527 0,7121 0,6920

Random Forest 0,9598 0,9576 0,9554 0,9621

SVM 0,9241 0,9754 0,9442 0,9420

 -47-

As it shown, the SVM in combination with spaCy pre-trained embeddings scores the

highest accuracy of 97,54% while SVM Bagging-Glove and XGBoost-Word2Vec come

second with 96,88% accuracy. The SVM-Bagging method belongs in 3 out of the top 5

models in terms of accuracy. On the other hand, the Naive Bayes-Sentence-Bert and k-

NN-Sentence-Bert models hold the lowest scores in terms of accuracy. In detail, their

scores are 64,29% and 66,74 respectively. Figure 13 demonstrates the models in terms of

accuracy. Overall, 31 out of 36 models hold scores above 80%. Moreover, the Naive

Bayes and k-NN models hold the lowest scores in combination with all 4 pre-trained

embedding models.

Figure 13: This bar chart demonstrates the combinations of machine learning models and pre-

trained embedding models with their accuracies on the Test Set

Regarding the precision of the models, the SVM-spaCy holds the highest value of

97,55%. As before, the SVM Bagging-Glove and XGBoost-Word2Vec models come

SVM Bagging 0,9665 0,9509 0,9643 0,9688

XGBoost 0,9598 0,9621 0,9688 0,9621

-48-

after the SVM-spaCy in terms of precision with 96,89% and 96,93 respectively. Oppo-

sitely, the k-NN-Sentence-Bert model has the lowest precision of 67,66%. The Naive-

Bayes and k-NN models hold the lowest precision scores which aligns with the findings

obtained regarding the accuracy of these models. Figure 14 illustrates the relation of ac-

curacy and precision of the models. It demonstrates a strong correlation between the two

metrics especially, for accuracies higher than 80%.

Table 2: Precision Scores on Test Set

 Sentence-Bert Spacy Word2Vec Glove

AdaBoost 0,9555 0,9534 0,9557 0,9587

Decision Trees 0,9531 0,9400 0,9512 0,9287

K-NN 0,6766 0,6742 0,9333 0,8365

MLP 0,8842 0,9153 0,9621 0,9600

Naïve Bayes 0,6883 0,8537 0,7388 0,7234

Random Forest 0,9599 0,9578 0,9555 0,9623

SVM 0,9242 0,9755 0,9444 0,9423

SVM Bagging 0,9668 0,9518 0,9649 0,9689

XGBoost 0,9600 0,9625 0,9693 0,9628

 -49-

Figure 14: Scatter-plot of the 36 models regarding their precision and accuracy on the Test Set

4.2.2 Results on Candidates Set

In this section, the results obtained from the candidates set are illustrated. The procedure

of obtaining the candidate set is thoroughly described in the Dataset section.

Table 3: Accuracy Scores on Candidates Set

 Sentence-Bert Spacy Word2Vec Glove

AdaBoost 0,8392 0,8484 0,8654 0,8484

Decision Trees 0,8588 0,8353 0,8458 0,8549

K-NN 0,6235 0,6824 0,7817 0,7752

MLP 0,8471 0,8340 0,8627 0,8863

Naïve Bayes 0,8340 0,8288 0,8261 0,8340

Random Forest 0,8000 0,8222 0,8183 0,8144

SVM 0,8444 0,8732 0,8680 0,8719

-50-

SVM Bagging 0,8654 0,8732 0,8719 0,8680

XGBoost 0,8627 0,8549 0,8680 0,8601

In general, 33 out of the 36 models have an accuracy score between 80% to 88,63%. The

MLP-Glove model has the highest value of 88,63%. In addition, the SVM-spaCy and

SVM Bagging-spaCy models score 87.32% which is the second highest score. It is with

mentioning that the Support Vector Machines models which include the SVM and SVM

Bagging methods are found in 7 out of top 10 models as the Figure 15 suggests. Further-

more, all the k-NN models score the lowest accuracy. Similar results found in the test set.

Particularly, for the candidates set all the Random-Forests models score slightly higher

than the k-NN models. The spaCy pre-trained embedding model holds the 2 out of top 5

models while the Sentence-Bert models holds 2 out of the lowest 5 five models.

Figure 15: This bar chart demonstrates the combinations of machine learning models and pre-

trained embedding models with their accuracies on the Candidates Set

 -51-

In terms of precision, the SVM-spaCy scores 94,07% which is slightly above the MLP-

Glove model’s precision of 94,06%. While there is no significant change in the ranking

of models regarding precision in comparison with accuracy, the Decision Trees-Sentence-

Bert model scores 93.79% in terms of accuracy. On the opposite side, the k-NN-spaCy

model holds the lowest precision score of 86.84%.

Table 4: Precision Scores on Candidates Set

 Sentence-Bert Spacy Word2Vec Glove

AdaBoost 0,9294 0,9310 0,9344 0,9310

Decision Trees 0,9379 0,9221 0,9306 0,9291

K-NN 0,8811 0,8684 0,9231 0,9114

MLP 0,9308 0,9286 0,9354 0,9406

Naïve Bayes 0,8979 0,9311 0,9106 0,9073

Random Forest 0,9290 0,9267 0,9278 0,9255

SVM 0,9353 0,9407 0,9349 0,9373

SVM Bagging 0,9391 0,9345 0,9342 0,9381

XGBoost 0,9338 0,9323 0,9349 0,9333

-52-

Apart from the accuracy and precision metrics, the “Mean Average Precision” is also

measured since it is a more comprehensive metric for evaluating the machine learning

models for this problem.

Table 5: Mean Average Precision on Candidates Set

 Sentence-Bert Spacy Word2Vec Glove

AdaBoost 0,1678 0,1697 0,1731 0,1697

Decision Trees 0,1718 0,1671 0,1692 0,1710

K-NN 0,1247 0,1365 0,1563 0,1550

MLP 0,1694 0,1668 0,1725 0,1773

Naïve Bayes 0,1668 0,1658 0,1652 0,1668

Random Forest 0,1600 0,1644 0,1637 0,1629

SVM 0,1689 0,1746 0,1736 0,1744

SVM Bagging 0,1731 0,1746 0,1744 0,1736

XGBoost 0,1725 0,1710 0,1736 0,1720

As illustrated in Table 5 the MLP-Glove along with the SVM Bagging-spaCy and the

SVM-spaCy perform better in terms of MAP in comparison with the other models. In

detail, the MLP-Glove holds a MAP of 17,73% while the SVM Bagging-spaCy and

SVM-spaCy models score 17.46%. Contrarily, the k-NN and Random Forests models

hold the lowest MAPs. In depth, MAP ranking aligns with the accuracy ranking for the

candidates set. It is found that the MAP and accuracy have a perfect linear relationship

with a correlation coefficient equal to 1 as it is demonstrated in Figure 16.

 -53-

Figure 16: Scatter-plot of the 36 models regarding their mean average precision and accuracy on

the Candidates Set

While the MAP and accuracy have a perfect linear relation, the MAP and precision have

a correlation equal to 86,04%.

Figure 17: Scatter-plot of the 36 models regarding their mean average precision and precision

on the Candidates Set

-54-

Overall, the MLP-Glove and SVM-spaCy models outstand the other models in terms of

accuracy, precision and mean-average-precision in the candidates set and test set respec-

tively. For this reason, these particular models are used in a Hyperparameter optimization

process.

4.2.3 Hyperparameter Optimization

As mentioned above, for the MLP-Glove and SVM-spaCy models are used in a hyperpa-

rameter optimization process. The GridSearchCV20 method is used for applying this pro-

cess. Specifically, this method is an exhaustive search over pre-specified parameters for

a model. It is applied by performing a cross validation to the training set. Then after com-

paring the models of each optimization regarding an evaluation metric, it returns a set

including the best parameters. For the purpose of this thesis, the cross-validation param-

eter is set to 10 folds while for accuracy is set a evaluation metric. The accuracy metric

is preferred over other metrics since it holds a perfect linear relation to the MAP according

to the experiments above. Table 6 include the parameters utilized for the optimization

process.

20 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

 -55-

Table 6: Hyperparameter Optimization for MLP-Glove and SVM-spaCy models

MLP-Glove SVM-spaCy

Parameters Values Parameters Values

Hidden layer size
5, 10, 15, 20,

25, 30
Regularization 1, 10

Batch size
50, 100, 150,

200, 300
Kernel

Linear,

RBF

Maximum iteration
10, 30, 50,

70
Gamma

Scale,

Auto

Degree 1, 2, 3, 4, 5

Probability True, False

Maximum iteration

10, 30, 50,

70

Regarding the MLP-Glove optimization, after 1200 different fits of the model the highest

accuracy obtained on the training set, using a 10-fold cross validation, is 97.26%. This

score is obtained by using 30 hidden layers, 50 as the batch size and 70 maximum itera-

tions. While for the SVM-spaCy the best parameters after 3200 fits are the following:

Regularization: 10, Degree: 1, Gamma: Scale, Kernel: RBF, Maximum iteration: 70 and

Probability: True. Using these parameters an accuracy of 92,06% is obtained in the train-

ing set with a 10-fold cross validation. Since the primary focus of this thesis is to create

a machine learning model in predicting the relation among ontology properties in unseen

data, the best parameters for each model are used for training the MLP-Glove and SVM-

spaCy models. The models are tested on the candidates set using the accuracy, precision

and MAP evaluation metrics.

Despite the highest accuracy of the MLP-Glove in the training set during Hyperparameter

optimization, the SVM-spaCy obtains a higher score in the candidates set of 90,2%.

Moreover, the MLP-Glove has a precision of 93,62% while the SVM-spaCy 92,24%. In

terms of the MAP the SVM-spaCy outperforms MLP-Glove with a value of 18,03%.

-56-

Embracing the results for the candidates set before the Hyperparameter optimization, for

MLP-Glove there is slight improvement of 0,44% in precision after optimization while

the accuracy and MAP are decreasing. In addition, for the SVM-spaCy model the accu-

racy and MAP are increased to 90,2% and 18.03% respectively. Overall, these are the

highest scores obtained for these evaluation metrics regarding candidates set so far. On

the other hand, there is a decrease in the precision of the SVM-spaCy model after optimi-

zation.

Table 7: Metrics before and after the Hyperparameter Optimization Process

 Accuracy Precision MAP

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

MLP-

Glove
0,8863 0.8588 0,9406 0.9362 0,1773 0.1717

SVM-

spaCy
0,8732 0.902 0,9353 0.9222 0,1746 0.1803

4.2.4 Principal Component Analysis

Considering the evaluation metrics obtained for both models regarding the candidates set

after the Hyperparameter optimization, the SVM-spaCy model along with its best param-

eters is used in Principal Component Analysis (PCA) implementation since it holds the

highest accuracy and MAP obtained in the experiments. PCA aims to determine the opti-

mal number of components for a machine learning model which maximizes its perfor-

mance. As mentioned in previous sections, the SVM-spaCy model is trained on 406 fea-

tures. Since the candidates set is considered to be unseen data, PCA is performed on the

training set using cross validation. In order to decrease the computational cost, a 5-fold

cross validation takes place. Moreover, the evaluation metric regarding the performance

is set to be the accuracy because of its linear relation with the MAP. Finally, in contem-

plation of the computational cost, PCA is performed in the range of 400 to 10 components

decreasing by 10. As demonstrated in Figure 18, the highest accuracy is scored using 170

components.

 -57-

Figure 18: Principle Component Analysis SVM-spaCy from 400 to 10 components decreasing

by 10 components

Figure 19: Principle Component Analysis SVM-spaCy from 200 to 100 components decreasing

by 5 components

Due to this fact, PCA is applied in the range of 200 to 100 decreasing by 10 components.

In conclusion, since the accuracy is increasing after 160 components and starts decreasing

after 120, PCA takes place in the range of 170 to 101 decreasing by 1 component. Ac-

cording to the score obtained from the training set, using 5-fold cross validation, the op-

timal number of components is 141 with 91,56% of accuracy.

Figure 20: Principle Component Analysis SVM-spaCy from 170 to 101 components decreasing

by 1 component

-58-

Finally, the SVM-spaCy model is trained using the best parameters and PCA is applied

using 141 components and tested on the candidates set. A significant decrease in accuracy

and the MAP evaluation metrics is observed after PCA. While the precision is decreased

to 91,5%, the accuracy and MAP scores are 72,02% and 14,4% respectively as it is

demonstrated in Table 8.

Table 8: Metrics before and after Principal Component Analysis

 Accuracy Precision MAP

Before

PCA

After

PCA Before PCA After PCA

Before

PCA After PCA

SVM-spaCy 0.902 0.7202 0.9222 0.915 0.1803 0.144

4.3 Ontology Scout Tool (OS Tool)

OS Tool is an ontology search tool based on vector representations. Its aim is to help

ontology engineers during ontology development and ontology alignment tasks. It is built

using SBERT pre-trained embeddings. Regarding its graphical user interface, the Tkinter

python’s library21 is utilized. Users provide a search query and retrieve relevant entities

of the ontologies which are pre-loaded to the OS Tool. For the purpose of this thesis, the

European Union’s ontologies are pre-loaded creating an ontology set as explained in the

Ontology parsing section.

The Figure 21 demonstrates a prototype of the OS Tool. As mentioned above, users pro-

vide the tool with a query. The query may contain multiple keywords in the form of a

phrase. Then this query is transformed to an embedding using SBERT. The query embed-

ding is placed in the vector space among with the other embeddings generated from the

labels and comments of the ontology set. After that, the query embedding is compared

with all other embeddings in terms of cosine similarity. Since an entity may have a label

21 https://docs.python.org/3/library/tkinter.html

https://docs.python.org/3/library/tkinter.html

 -59-

and a comment the maximum cosine similarity between their embeddings and the query

embedding is considered as the similarity of the query and the entity. This means that if

the cosine similarity of the query-label embeddings is greater than the query-comment

embeddings then the first one is set as the similarity between the query and the entity.

Finally, a sorted list of the entities is retrieved according to the similarity with the query.

Figure 21: The Ontology Scout Tool GUI

Assuming that users provide the query “data science”, a table of the entities is retrieved

descending on the cosine similarity which is obtained as explained above. The table of

the entities contains information regarding their label, comment, type and the URI.

-60-

Figure 22: The results of “data science” query on the Ontology Scout Tool

 -61-

5 Discussion

In the previous section, several experiments are conducted in order to predict the relation

among properties in an ontology set. As the results indicate, the Support Vector Machines

along with the spaCy pre-trained embeddings are the best combination of models in the

problem of this thesis. In detail, the SVM-spaCy model holds the first place in terms of

accuracy and precision in the test set and in precision regarding the candidates set. Fur-

thermore, it retains the second place in terms of accuracy and MAP in the candidates set

having slightly lower values than the Multilayer Perceptron-Glove model. After the hy-

perparameter optimization at the SVM-spaCy model there is an increase in the accuracy

and MAP while the precision decreases imperceptibly. In addition, applying Principal

Component Analysis results to a higher accuracy in the training set but a notable decrease

in the candidates set. A justification of the lower accuracy after PCA may be the loss of

information by shrinking the dimensions of the dataset. Taking into account the overall

performance of the models applied for this problem, the majority of models has an accu-

racy above 80% in the candidates set. This result is encouraging since it justifies that the

machine learning models are able to identify the pairs which have the sub-property rela-

tion despite the fact their labels and comments are related according to their embeddings.

Specifically, all algorithms except the k-NN models score above the threshold of 80%.

It is worth mentioning that the Support Vector Machine techniques (SVM and SVM Bag-

ging) have a significant high performance regarding this problem both in the test set and

the candidates set. The candidates set is generated using the Sentence-Bert pre-trained

embeddings. SBERT produces sentence embeddings of the size of 768 dimensions. Hav-

ing such a number of dimensions provides a great detail in the vector space. Despite this

fact, SBERT in combination with the machine learning algorithms has a relatively low

ranking in comparison with the other pre-trained embedding models. While the results

are promising, there are some limitations which this thesis is aware of. First of all, the

size of the dataset is relatively small since it focuses on European Union’s vocabularies

which hold the sub-property relation. Regarding this relation, it denotes the relation

-62-

among a property and its properties belonging under the first one rather than the fact that

two properties are the same.

Figure 23: Scatter-plot of the 36 models regarding their mean average precision and accuracy on

the Candidates Set before Hyperparameter Optimization and PCA. The colors indicate the pre-

trained embedding model.

Apart from the sub-property link prediction problem, an ontology search tool is intro-

duced named Ontology Scout Tool (OS Tool). The prototype created provides ontology

engineers with information regarding a query. This tool may support their decisions re-

garding ontology development and alignment tasks. It is based on SBERT pre-trained

embeddings model because it is fast and reliable in computing the query embedding. On-

tologies aim to propel data integration and knowledge extraction via reusing concepts and

relations that already exist. Using this tool, ontology engineers may acquire a strong in-

dication about which ontologies have an association with their query helping them to

target specific ontologies and explore them in detail. One of the great advantages of the

OS Tool is that ontology engineers can pre-load the ontologies of their interest. As stated

in previous sections, the OS Tool is a prototype and hence it is an early stage. This means

that there are several further steps that can improve the OS Tool. The results retrieved

from the OS Tool rely on the SBERT embeddings which rely on a certain methodology

and a specific corpus. For this reason, several pre-trained embedding models should be

 -63-

tested in regards to the OS Tool. A more sophisticated way may be the average cosine

similarity among the entities and the query obtained by several pre-trained embedding

models. In addition, other distance metrics may be used to measure the similarity between

the query and the entities in the vector space. Furthermore, at this early stage the OS Tool

takes into consideration only the labels and comments of an URI rather than its relations

with other entities. Finally, further improvements may take place regarding the graphical

user interface of the tool but for the purpose of this thesis they are out of scope.

 -65-

6 Conclusion and Future Work

This thesis tried to improve ontology engineering by implementing machine learning

techniques and pre-trained vector representation models in an ontology set. Specifically,

the ontologies used are concerning the domain of e-Government in European Union.

These ontologies are retrieved from the official site of the European Union’s Publica-

tion office. More thoroughly, this thesis tackled the problem of sub-property link pre-

diction in an ontology set while introducing an ontology search tool that aims to assist

ontology engineers in their tasks. The results proved that predicting the sub-property re-

lation is feasible with a significant high accuracy. Furthermore, the ontology search tool

helps ontology engineers to focus on their concepts and ontologies of interest by provid-

ing a query.

Support Vector Machines (SVM) in combination with the “en_core_web_sm” spaCy

pre-trained embedding model outperformed the rest of the models in the problem of

sub-property link prediction. After the parameter optimization, the accuracy obtained

from the SVM-spaCy model is 90.2%. Furthermore, the ontology search tool which is

based on Sentence-Bert pre-trained embedding model can help ontology engineers to

easily identify existing ontologies related to the entities of their interest. The results of

this thesis indicate that applying machine learning techniques in the field of ontology

engineering is attainable and can help reduce the extensive human labor.

Since the dataset generated was based on European Union’s ontologies, a possible fu-

ture direction is to apply these methodologies in various sets of ontologies. Also, the

problem of link prediction focused on the sub-property relation among properties. An-

other future direction is to focus on the sub-class relation among entities in an ontology

set. Finally, regarding the ontology search tool, the vector representations are obtained

from SBERT pre-trained embedding model which relies on a specific corpus. As a next

step, the pre-trained embeddings can be generated from a corpus from a domain which

aligns with the ontologies of users’ interest.

-66-

Bibliography

[1]. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific

american, 284(5), 34-43.

[2]. Feigenbaum, L., Herman, I., Hongsermeier, T., Neumann, E., & Stephens, S.

(2007). The semantic web in action. Scientific American, 297(6), 90-97.

[3]. Klischewski, R. (2003, September). Semantic web for e-government. In Interna-

tional Conference on Electronic Government (pp. 288-295). Springer, Berlin, Hei-

delberg.

[4]. Kendall, E. F., & McGuinness, D. L. (2019). Ontology engineering. Synthesis Lec-

tures on The Semantic Web: Theory and Technology, 9(1), i-102.

[5]. Gal, A. (2009). Ontology Engineering. In Encyclopedia of Database Systems

(pp.1972-1973). Springer US

[6]. Vandenbussche, P. Y., Atemezing, G. A., Poveda-Villalón, M., & Vatant, B. (2017).

Linked Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on

the Web. Semantic Web, 8(3), 437-452.

[7]. Goldberg, Y. (2017). Neural network methods for natural language processing. Syn-

thesis Lectures on Human Language Technologies, 10(1), 1-309.

[8]. Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146-162.

[9]. Naili, M., Chaibi, A. H., & Ghezala, H. H. B. (2017). Comparative study of word em-

bedding methods in topic segmentation. Procedia computer science, 112, 340-349.

[10]. Li, Y., & Yang, T. (2018). Word embedding for understanding natural language: a

survey. In Guide to Big Data Applications (pp. 83-104). Springer, Cham.

[11]. Rajaraman, A., & Ullman, J. D. (2011). Mining of massive datasets. Cambridge Uni-

versity Press.

[12]. Chen, X., Chen, B., Zhang, C., & Hao, T. (2017, September). Discovering the re-

cent research in natural language processing field based on a statistical approach.

In International Symposium on Emerging Technologies for Education (pp. 507-517).

Springer, Cham.

[13]. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in

neural information processing systems (pp. 3111-3119).

 -67-

[14]. Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vec-

tors for word representation. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP) (pp. 1532-1543).

[15]. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

[16]. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors

with subword information. Transactions of the Association for Computational

Linguistics, 5, 135-146.

[17]. Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettle-

moyer, L. (2018). Deep contextualized word representations. arXiv preprint

arXiv:1802.05365.

[18]. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

[19]. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on

knowledge and data engineering, 22(10), 1345-1359.

[20]. Jain, S., & Kumar, P. Semantic Web, Ontologies and E-Government: A Review.

[21]. Zhang, Y., Wang, X., Lai, S., He, S., Liu, K., Zhao, J., & Lv, X. (2014). Ontology

matching with word embeddings. In Chinese computational linguistics and natural

language processing based on naturally annotated big data (pp. 34-45). Springer,

Cham.

[22]. Li, J., Tang, J., Li, Y., & Luo, Q. (2008). Rimom: A dynamic multistrategy ontology

alignment framework. IEEE Transactions on Knowledge and data

Engineering, 21(8), 1218-1232.

[23]. Jean-Mary, Y., & Kabuka, M. (2007, September). Asmov: Ontology alignment with

semantic validation. In Joint SWDB-ODBIS Workshop (pp. 15-20).

[24]. Cruz, I. F., Antonelli, F. P., & Stroe, C. (2009). AgreementMaker: efficient matching

for large real-world schemas and ontologies. Proceedings of the VLDB

Endowment, 2(2), 1586-1589.

[25]. Pembeci, İ. (2016). Using word embeddings for ontology enrichment. International

Journal of Intelligent Systems and Applications in Engineering, 4(3), 49-56.

[26]. Gupta, N., Podder, S., Sengupta, S., & Annervaz, K. M. (2016, December). Domain

ontology induction using word embeddings. In 2016 15th IEEE International Confer-

ence on Machine Learning and Applications (ICMLA) (pp. 115-119). IEEE.

[27]. Saedi, C., Branco, A., Rodrigues, J., & Silva, J. (2018, July). Wordnet embeddings.

In Proceedings of the third workshop on representation learning for NLP (pp. 122-

131).

[28]. Kolyvakis, P., Kalousis, A., & Kiritsis, D. (2018, June). Deepalignment: Unsuper-

vised ontology matching with refined word vectors. In Proceedings of the 2018

-68-

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long Papers) (pp. 787-

798).

[29]. Mrkšić, N., Séaghdha, D. O., Thomson, B., Gašić, M., Rojas-Barahona, L., Su, P.

H., ... & Young, S. (2016). Counter-fitting word vectors to linguistic con-

straints. arXiv preprint arXiv:1603.00892.

[30]. Gromann, D., & Declerck, T. (2018, May). Comparing pretrained multilingual word

embeddings on an ontology alignment task. In Proceedings of the Eleventh Interna-

tional Conference on Language Resources and Evaluation (LREC 2018).

[31]. Al-Rfou, R., Perozzi, B., & Skiena, S. (2013). Polyglot: Distributed word representa-

tions for multilingual nlp. arXiv preprint arXiv:1307.1662.

[32]. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T. (2016).

Fasttext. zip: Compressing text classification models. arXiv preprint

arXiv:1612.03651.

[33]. Meimaris, M. (2019). Visualizing Implicit RDF Schema with the Help of Embed-

dings. In EDBT/ICDT Workshops.

[34]. Ristoski, P., & Paulheim, H. (2016, October). Rdf2vec: Rdf graph embeddings for

data mining. In International Semantic Web Conference (pp. 498-514). Springer,

Cham.

[35]. Jurisch, M., & Igler, B. (2018). RDF2Vec-based classification of ontology alignment

changes. arXiv preprint arXiv:1805.09145.

[36]. Portisch, J. P. Towards Matching of Domain-Specific Schemas Using General-Pur-

pose External Background Knowledge.

[37]. Portisch, J., & Paulheim, H. (2018). ALOD2Vec matcher. OM@ ISWC, 2288, 132-

137.

[38]. Hertling, S., & Paulheim, H. (2017, October). WebIsALOD: providing hypernymy re-

lations extracted from the web as linked open data. In International Semantic Web

Conference (pp. 111-119). Springer, Cham.

[39]. Wang, M., Wang, R., Liu, J., Chen, Y., Zhang, L., & Qi, G. (2018, October). To-

wards empty answers in sparql: Approximating querying with rdf embedding.

In International semantic web conference (pp. 513-529). Springer, Cham.

[40]. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013).

Translating embeddings for modeling multi-relational data. In Advances in neural

information processing systems (pp. 2787-2795).

[41]. Gutiérrez-Basulto, V., & Schockaert, S. (2018). From knowledge graph embedding

to ontology embedding? An analysis of the compatibility between vector space rep-

resentations and rules. arXiv preprint arXiv:1805.10461.

[42]. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., & Gamon, M. (2015,

September). Representing text for joint embedding of text and knowledge bases.

 -69-

In Proceedings of the 2015 conference on empirical methods in natural language

processing (pp. 1499-1509).

[43]. Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 855-864).

[44]. Cochez, M., Ristoski, P., Ponzetto, S. P., & Paulheim, H. (2017, October). Global

RDF vector space embeddings. In International Semantic Web Conference (pp.

190-207). Springer, Cham.

[45]. Diaz, G. I., Fokoue, A., & Sadoghi, M. (2018). EmbedS: Scalable, Ontology-aware

Graph Embeddings. In EDBT (pp. 433-436).

[46]. Hao, J., Chen, M., Yu, W., Sun, Y., & Wang, W. (2019, July). Universal representa-

tion learning of knowledge bases by jointly embedding instances and ontological

concepts. In Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining (pp. 1709-1719).

[47]. Ferré, A., Deléger, L., Zweigenbaum, P., & Nédellec, C. (2018, May). Combining

rule-based and embedding-based approaches to normalize textual entities with an

ontology. In Proceedings of the Eleventh International Conference on Language

Resources and Evaluation (LREC 2018).

[48]. Portisch, J., Hladik, M., & Paulheim, H. (2020). KGvec2go--Knowledge Graph Em-

beddings as a Service. arXiv preprint arXiv:2003.05809.

[49]. Holter, O. M., Myklebust, E. B., Chen, J., & Jimenez-Ruiz, E. (2019). Embedding

OWL ontologies with OWL2Vec. In CEUR Workshop Proceedings (Vol. 2456, pp.

33-36). Technical University of Aachen.

[50]. Chen, M., Tian, Y., Chen, X., Xue, Z., & Zaniolo, C. (2018, May). On2vec: Embed-

ding-based relation prediction for ontology population. In Proceedings of the 2018

SIAM International Conference on Data Mining (pp. 315-323). Society for Industrial

and Applied Mathematics.

[51]. Culotta, A., & Sorensen, J. (2004, July). Dependency tree kernels for relation ex-

traction. In Proceedings of the 42nd Annual Meeting of the Association for Compu-

tational Linguistics (ACL-04) (pp. 423-429).

[52]. Fundel, K., Küffner, R., & Zimmer, R. (2007). RelEx—Relation extraction using de-

pendency parse trees. Bioinformatics, 23(3), 365-371.

[53]. Giuliano, C., & Gliozzo, A. (2008, August). Instance-based ontology population ex-

ploiting named-entity substitution. In Proceedings of the 22nd International Confer-

ence on Computational Linguistics (Coling 2008) (pp. 265-272).

[54]. Mousavi, H., Atzori, M., Gao, S., & Zaniolo, C. (2014). Text-mining, structured que-

ries, and knowledge management on web document corpora. ACM SIGMOD

Record, 43(3), 48-54.

-70-

[55]. Wang, T., Li, Y., Bontcheva, K., Cunningham, H., & Wang, J. (2006, June). Auto-

matic extraction of hierarchical relations from text. In European Semantic Web Con-

ference (pp. 215-229). Springer, Berlin, Heidelberg.

[56]. Benarab, A., Rafique, F., & Sun, J. (2019, February). An Ontology Embedding Ap-

proach Based on Multiple Neural Networks. In Proceedings of the 2019 11th Inter-

national Conference on Machine Learning and Computing (pp. 186-190).

[57]. Alshargi, F., Shekarpour, S., Soru, T., & Sheth, A. P. (2018). Metrics for evaluating

quality of embeddings for ontological concepts.

[58]. Plassard, M. F. (Ed.). (1998). Functional requirements for bibliographic rec-

ords (Vol. 19). De Gruyter Saur.

[59]. Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using si-

amese bert-networks. arXiv preprint arXiv:1908.10084.

[60]. Marcus, R. W. E. H. M., Palmer, M., Ramshaw, R. B. S. P. L., & Xue, N. OntoNo-

tes: A Large Training Corpus for Enhanced Processing.

[61]. Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46(3), 175-185.

[62]. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... & Zhou, Z. H.

(2008). Top 10 algorithms in data mining. Knowledge and information sys-

tems, 14(1), 1-37.

[63]. Ho, T. K. (1998). The random subspace method for constructing decision for-

ests. IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-

844.

[64]. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3),

273-297.

[65]. Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and

systems magazine, 6(3), 21-45.

[66]. Onan, A., Korukoğlu, S., & Bulut, H. (2016). Ensemble of keyword extraction meth-

ods and classifiers in text classification. Expert Systems with Applications, 57, 232-

247.

[67]. Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics

and its Interface, 2(3), 349-360.

[68]. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge dis-

covery and data mining (pp. 785-794).

[69]. Beitzel, S. M., Jensen, E. C., Frieder, O., LIU, L., & ÖZSU, M. (2009). MAP.

 -71-

