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Abstract 

In our days, the Semantic Web has gained a lot of popularity since it provides standard 

ways regarding sharing and retrieving data. A key component of the Semantic Web is 

Ontology Engineering where it includes the tasks of ontology development and ontology 

alignment. These kinds of tasks require extensive human labor and a profound domain 

knowledge. There is a great need of automated solutions in Ontology Engineering. Ma-

chine Learning techniques are applied to various domains in order to provide experts with 

such solutions. 

This thesis investigates the application of Machine Learning in Ontology Engineering by 

applying such techniques in the domain of e-Government and particularly on European 

Union’s Vocabularies. Specifically, this thesis has two objectives: a) Solve the problem 

of “Sub-property Link Prediction” in an ontology set. b) Introduce an “Ontology Search 

Tool” based on pre-trained vector representations (text-embeddings). The experimental 

results are inspiring and indicate that Machine Learning techniques are applicable in On-

tology Engineering.   
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1 Introduction 

Over the recent years, the amount of data available on the Web has grown exponentially. 

There is a great need for a common framework that allows the exploitation and reuse of 

these data. Semantic Web (SW) provides such a solution by enabling users to find, share 

and combine data1. A key advantage of the SW is that data can be interpreted by machines 

[1]. SW has proven over the years that is applicable in industries like biology and human 

sciences and has a great potential regarding other industries [2]. There are also numerous 

studies that aim to incorporate SW with e-Government [3]. Data on SW are defined using 

agreed ontologies. There are many definitions of an ontology throughout the literature. Α 

definition that stands out suggests the following [4]: 

 “an ontology specifies a rich description of the:  

❏ terminology, concepts, nomenclature  

❏ relationships among and between concepts and individuals  

❏ sentences distinguishing concepts, refining definitions and relationships (con-

straints, restrictions, regular expressions)  

relevant to a particular domain or area of interest” (Kendall & McGuinness, 2019, p. 2).  

Ontologies enable data to be represented in a common structured manner based on RDF, 

RDFS and OWL languages while using commonly agreed vocabularies from the Seman-

tic Web community. An ontology consists of two aspects: a) the vocabularies that define 

the naming of classes, properties and relationships and b) the controlled vocabularies that 

define the common lists of possible property values (e.g., an agreed list of country names).  

Ontologies are also widely explored by European Union’s authorities for cross-border 

data exchange between different Member States. Towards achieving cross-border seman-

tic interoperability, the European Commission in cooperation with the World Wide Web 

Consortium (W3C) has published ontologies on different domains, like e-Government. 

W3C is an international community that aims at developing Web standards. The EU Core 

                                                 

1 https://www.w3.org/2001/sw/Activity  

https://www.w3.org/2001/sw/Activity
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Vocabularies along with the DCAT Application Profile for Data Portals in Europe and 

the Asset Description Metadata Schema (ADMS) consist of some of the great outcomes 

of such initiatives. The creation and promotion of data standards is crucial for Semantic 

Interoperability. Ontologies rely on experts' subjectivity meaning that different Ontolo-

gies may be created in a certain domain of knowledge. Due to this fact, ontology align-

ment techniques are necessary in order to achieve knowledge integration and thus seman-

tic interoperability.   

Ontologies are created by domain experts throughout a process named ontology engineer-

ing (OE). OE includes a set of procedures regarding processes of the ontology develop-

ment, the ontology alignment, the ontology life cycle, tools, methodologies and languages 

[5]. However, ontology engineering requires extensive manual labor for the identification 

of the proper ontologies that describe the concepts of interest as there is an enormous 

amount of published data standards. As an initial step towards solving this problem, the 

research community has created the Linked Open Vocabularies (LOV), which is a cata-

logue of published vocabularies and ontologies [6]. LOV also includes a tool for search-

ing on the catalogue that helps ontology engineers easily identify existing vocabularies 

related to their concepts of interest. However, many vocabularies that are included in 

LOV are out of date and are not W3C recommendations, which decreases the quality of 

the search results of the tool. Another initiative from the Semantic Interoperability Com-

munity (SEMIC) is the Core Data Model Mapping Directory that hosts a collection of 

mappings between the Core Vocabularies and related Core Data Models and includes 

search capabilities. However, this tool applies only to the EU Core Vocabularies. Another 

important aspect of ontology engineering is ontology alignment, where the task is to iden-

tify similar entities with an exact or narrow match to be able to merge various data on the 

Semantic Web. This process also requires extensive human labor. Therefore, there is a 

need to develop automated solutions that will help ontology engineers with the tasks of 

ontology development and ontology alignment. 

The objectives of this thesis are concerning the improvement of ontology engineering by 

implementing machine learning techniques. There are two main objectives: a) Firstly, the 

problem of ‘Link prediction in a set of ontologies’ is encountered. More thoroughly, the 

ontologies used are concerning the domain of e-Government in European Union. By im-

plementing machine learning techniques along with pre-trained vector representation 

models, this thesis focuses on capturing the existence of relation among properties in a 
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set of EU’s ontologies. b) Secondly, an ‘Ontology search tool’ based on pre-trained vector 

representations is introduced aiming to help experts with the tasks of ontology develop-

ment and ontology alignment. Specifically, the purpose of this tool is to help ontology 

engineers identify the entities and ontologies of their interest by providing a search query.      

The rest of the thesis is organized as follows: Chapter 2 sets a background of word vector 

representations together with ontology vector representations. Moreover, it provides an 

overview of the ontologies retrieved from the EU’s Publications Office. Chapter 3 gives 

an analysis of the dataset generated for the experiments as well as a description of the 

pre-processing pipeline, the pre-trained vector representation models and the machine 

learning algorithms implemented. In Chapter 4 the comparative results are demonstrated 

regarding the different techniques applied. Chapter 5 discusses the finding of this thesis 

and detects some limitations. Finally, chapter 6 gives a conclusion of what has been 

achieved and also points out a future direction.   
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2 Literature Review  

This chapter provides a review of the research on literature on text vector representations 

(text embeddings) and ontology vector representations based on text embeddings. Fur-

thermore, it provides an overview of the ontologies retrieved from the European Union’s 

Publications Office. 

 

2.1 Text embeddings 

Word embeddings are vector representations of words which enable numerous operations 

between text and machines. This allows machine learning algorithms to understand the 

meaning behind words. In addition, word embeddings can be observed as a set of tech-

niques which aim to represent words as real valued-vectors in a vector space. Words are 

represented by unique vector representations and similar words must have similar vector 

representations. One of the main advantages of such approaches is that these vectors are 

dense and have less features in comparison to one-hot encoding vectors. Having these 

characteristics, they could be used by neural networks in various machine learning tasks 

[7]. These distributed representations are generated based on the usage of words in a cor-

pus. This means that words used in similar contexts will be represented by similar word 

embeddings. This is based on the “distributional hypothesis” where it is assumed that 

words with similar context should have similar meaning [8]. 

There are two main categories of word embeddings techniques: Frequency based Embed-

ding and Prediction based Embedding [9]. In the first category there are three types of 

vector models: Count Vector, TF-IDF Vector and Co-Occurrence Vector.  

Count Vector generates the embedding of each word based on a vocabulary which is 

created according to a corpus of documents [10]. The number of times a word appears in 

a document is counted resulting in a “word to document” matrix. The size of such matrix 

is [D X T] where D is the number of documents and T the number of terms in the vocab-

ulary.  
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The second frequency based embedding model are TF-IDF vectors [11]. This model uses 

term-frequency and inverse document-frequency to create a “word to document” matrix. 

Specifically, this method considers the occurrence of words in the entire corpus providing 

a more reliable score for infrequent but rather significant terms.  

Finally, Co-Occurrence vectors are produced based on the Co-Occurrence matrix. In or-

der to create this matrix a fixed context window must be declared. Then the co-occurrence 

of words is computed by counting how many times they occur inside a predefined context 

window. After that, the matrix generated is decomposed using principal component anal-

ysis and singular value decomposition techniques generating the word embeddings [12]. 

On the other hand, Prediction based Embeddings like Word2vec [13] and Glove [14]  tend 

to predict a word in a given context by assigning probabilities to words used for analogy 

and similarity tasks. 

One of the most widely used word embedding methods is Word2vec. It is an unsupervised 

technique using a two-layer neural network in order to generate the word embeddings 

from contextual information. As input Word2vec accepts a corpus of words produced by 

a number of documents. The aim of Word2vec is to project every word of this corpus in 

the vector space.  

Its word is represented by a unique embedding and similar words must have similar em-

beddings. Regarding Word2vec’s architecture, two main models exist: CBOW [15] and 

Skip-Gram [13]. 

The CBOW model generates a vector representation from a word by predicting this word 

based on its surrounding words. In detail, the neural network model accepts as input the 

surrounding words inside a fixed-sliding window and tries to predict the target word. The 

basic case of CBOW is setting the parameter of the fixed-sliding window equal to 1 word 

as demonstrated in figure. Considering a corpus size of V both the input and output layers 

are one-hot encoded of size [1 X V] except the cell that indexes the position of the target 

word. According to its architecture two sets of weights exist. The first one is located be-

tween the input and the hidden layer while the second one is between the hidden and the 

output layer and their sizes are [V X N] and [N X V] respectively. The hyper-parameter 

N defines the number of neurons in the hidden layer which is also the number of the 

dimensions of the vector representation.  
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Figure 1: A CBOW model with only one word in the context 

 

 

 

On the other hand, Skip-gram’s topology can be considered as an inverse CBOW. In this 

model the neural network aims to predict the surrounding words from a current word. As 

in CBOW, a fixed-sliding window must be set. The model accepts as input a word and 

tries to predict the surrounding word inside the fixed-sliding window. The figures illus-

trate the topology of both models CBOW and Skip-Gram.  
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Figure 2: The CBOW model predicts the current word based on the context. The Skip-gram 

model predicts surrounding words given the current word 

 

 

Global Vectors (GloVe) is an extension of the Word2vec method for generating word 

embeddings. Approaches like Latent Semantic Analysis (LSA) are efficient in learning 

global text statistics rather than local statistics like Word2vec. GloVe algorithm is based 

on both approaches by combining global and local statistics in order to generate the word 

vector representations. This means that GloVe combines both the local context infor-

mation of words along with their word-occurrences in a corpus.  

Apart from Word2vec and Glove, FastText is another word embedding approach [16]. It 

is an extension of Word2vec with the only difference that it feeds n-grams into a Neural 

Network instead of individual words. The vector representation for words, are produced 

by adding up the vector representations of their n-grams.  

ELMo word embeddings are generated using a two-layer bidirectional language model 

[17]. This model accepts as an input word characters rather an entire word. Moreover, the 

vector representation produced for a word is actually a function of the entire sentence 

containing that word. This is a crucial characteristic of this method since it tackles the 

phenomenon of polysemy.  

Much like ELMo, BERT tackles polysemy by generating contextualized embeddings 

which may differ according to the context of the sentence [18]. It is a deeply bidirectional, 

unsupervised language representation model which is pre-trained on a corpus. Specifi-

cally, the contextual relations among words are learned by utilizing a Transformer. The 
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Transformer reads the entire sequence of words in one pass allowing the model to learn 

the context of a word based on its surrounding words.  

  

Another thing worth mentioning is the existence of pre-trained word embeddings. These 

kinds of embeddings are considered to capture general language aspects since they are 

generated by training in a large collection of documents consisting of billions of words. 

Then it can be used in order to solve other problems. Techniques like this enable Transfer 

Learning [19] which offers various benefits like improving the overall-performance, 

avoiding over-modelling and demanding less computational resources in machine learn-

ing tasks.  

 

2.2 Text Embeddings for Ontology Engineering 

Machine learning algorithms demand a set of features that are informative and discrimi-

nating. An ontology is specified as a set of triplets (C, P, I) where ‘C’ stands for the classes 

(subject) which represent the concept. In addition, ‘P’ stands for the properties denoting 

the relations (predicate) while ‘I’ indicates the individuals (object) [20].This specification 

allows ontologies to be interpreted as a graph network. Applying machine learning tasks 

to graph networks creates the need to construct a feature vector representation for the 

nodes and edges. To do that, the knowledge of those networks, both in the instance and 

ontology level, should be transformed into numerical representations aka embeddings. 

Producing high quality embeddings regarding ontology concepts is crucial for machine 

learning oriented ontology alignment, induction and enrichment tasks.  

 

Generating ontology vector representations can be accomplished by employing word em-

beddings. In their study, Y. Zhang and X. Wang [21] aim to generate ontology embed-

dings by using word embeddings. It is worth mentioning that it is one of the first studies 

which tries to merge word embeddings with ontologies. To do so, a hybrid method is used 

in order to combine word embeddings and edit distance. The word embeddings are gen-

erated using Wikipedia. Edit distance is a string based metric which measures the simi-

larity among two words and is used in various matching systems like  RiMOM [22], AS-

MOV [23]  and AgreementMaker [24]. In detail, an element-level matcher is introduced 
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which accepts two ontologies as input and outputs their alignment. As the authors state, 

an improvement would be to extract the word embeddings on a domain corpus especially 

for ontology alignment tasks.   

An implementation of Word2vec can be found for ontology enrichment in Turkish lan-

guage [25]. The vector representations are generated using the Turkish Wikipedia (Vi-

kipedi). In detail, these embeddings are created based on the metadata of pages of Vi-

kipedi and used as a golden standard to evaluate their approach of ontology enrichment.  

Moreover, semi-automated ontology induction methods exist which are using word em-

beddings along with the contribution of domain experts [26]. This approach aims to ex-

ploit concepts, hierarchy, properties and relations from unstructured data like text. In or-

der to generate the embeddings CBOW, Skip-Gram and Glove methods are applied on 

the text separately. Then, hierarchical clustering is performed on these embeddings. Fi-

nally, with the help of domain experts, who evaluate the clusters, the ontology compo-

nents are created. 

Wnet2vec is a framework where vector representations are generated from WordNet [27]. 

In order to obtain the embeddings a part of the Princeton WordNet is used. A semantic 

space is created from a semantic network. In detail, an ontological graph is converted into 

an embeddings matrix where it is used to measure the semantic similarity between words. 

Its performance is also compared with word2vec. Before creating the embedding matrix, 

principal component analysis is performed in order to reduce the size of the vectors to 

850 dimensions. Word2vec embeddings are generated by training over a 100-token col-

lection of texts. After comparing both methods on Simlex-999 dataset, wnet2vec outper-

forms word2vec. This happens due to the fact that wnet2vec embeddings are based on 

internal language resources. This means that WordNet captures the relations among 

words since it is crafted by experts while word2vec searches for this relation statistically 

on a given context window. Thus, word2vec may not be able to capture some of the lex-

ical knowledge in the minds of speakers.   

There are also frameworks that take advantage of pre-trained word embedding models. 

Specifically, the DeepAlignment framework refines pre-trained word embeddings of en-

tities so that they can be used in ontology alignment tasks [28]. To do so, counter-fitting 

method is applied [29]. This method uses semantic lexicons in order to extract synonymy 

and antonymy relations. Then, these relations are used in order to refine the pre-trained 

word vector representations. This method enables the infusion of domain knowledge in 
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the ontology embeddings which are generated. In particular, the counter-fitting method 

generates new vector representations based on synonymy and antonymy constraints using 

a non-convex optimization method. The ontology alignment is accomplished using the 

Stable Marriage algorithm over the pairwise distance between the embeddings of the on-

tological entities 

In their study D. Gromann and T. Declerck examine the use of pre-trained word embed-

dings of four different languages in an ontology matching process [30]. The pre-trained 

word representations are obtained from three repositories: Polyglot [31], FastText [32] 

and Word2vec. Regarding the ontology alignment, two ontologies describing Industry 

classification systems are used, the Classification Standard (GICS) and the Industry Clas-

sification Benchmark (ICB). This approach focuses on the labels of the ontology entities. 

Cosine similarity is used as a metric in order to measure the similarity among the vector 

representations combined in the previous step.  

Furthermore, another method proposed tries to predict the RDF Schema from the instance 

level of a graph by using pre-trained word2vec embeddings [33]. The author of this work 

aims to visualize the RDF schema by combining characteristic sets with embeddings. This 

approach takes place on the instance level of a RDF graph rather than the schema of the 

graph. In fact, the ontology of the graph is considered loosely defined and thus it left out 

of this framework. On the other hand, this approach tries to generate the ontology behind 

the data.  A characteristic set consists of the relations that a subject holds in a RDF graph. 

Moreover, this study uses two methods regarding the embeddings generation: a) Pre-

trained word2vec embeddings and b) RDF2vec Embeddings generated by the instance 

level of the RDF graph.  

RDF2vec is a tool for generating vector representations from a graph. Most of its appli-

cations are on the instance level of a graph [34]. The aim of the RDF2vec framework is 

the projection of the latent representation of entities into a lower dimensional feature 

space focusing on RDF graphs. Firstly, the RDF graph must be converted into a set of 

sequences of entities. To do so, two approaches are used: a) a modification of Weisfeiler-

Lehman Subtree RDF graph kernels and b) graph walks.  

In graph walks, the breadth-first algorithm takes place. Specifically, in the first iteration 

the paths are generated by exploring the direct outgoing edges. Then, until a finite number 

of iterations all the connected nodes explored according to the edges from the previous 

step. Finally, by combining the sequences of the nodes the set of sequences is created. 
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Regarding the modification of Weisfeiler-Lehman Subtree graph kernel this algorithm 

uses the Weisfeiler-Lehman test in so the number of subtrees shared between a number 

of graphs is calculated. In order to employ this approach to RDF graphs two modifications 

take place. Firstly, the edges of the graphs are directed. Secondly, the implementation of 

tracking the neighboring labels for the sake of consistency. Then, word2vec is employed 

in order to learn the embeddings. These entity representations can be used in various ma-

chine learning tasks like content-based recommender systems, link predictions, type pre-

diction and graph completion. 

RDF2Vec framework is also used in classification of ontology alignment changes [35]. 

It is implemented in order to identify the changes in ontologies which may interfere with 

ontology alignment. For this reason, RDF embeddings and classification algorithms are 

used. Identifying whether a change on an ontology may interfere on the alignment be-

tween this particular ontology with another one is a difficult task which relies on a de-

tailed set of rules. This set of rules in most cases are not applicable to other domains so 

re-using them is not always valid. In this approach, the embeddings are generated from 

the ontologies as well as their alignment. In the next step, these vectors are used to train 

a classifier in order to identify whether a change affected the alignment or not. This ap-

proach is universal since it does not depend on a set of specified rules and could be applied 

in any alignment.  

Implementations of using RDF2Vec in ontology alignment tasks can be found also in the 

private sector [36]. In detail, schema matching processes are exploited by creating a 

framework for fully automated schema matching regarding the private sector. Schema 

matching and ontology matching can be considered as analogous terms since all the tech-

niques for ontology matching are applicable to schema matching. Finally, by implement-

ing RDF2Vec the concept vectors can be obtained. It is worth mentioning that this study 

tries to incorporate the semantic techniques and approaches into the business world.  

ALOD2Vec matcher aims to merge RDF2Vec with the Semantic Web technologies [37]. 

Specifically, it tries to align two ontologies by using WebIsALOD as an external source 

of knowledge [38]. WebIsALOD consists of the hypernym relations of LOD. These rela-

tions are extracted using the Common Crawl tool. These kinds of relations are crucial for 

the Semantic Web Ontologies. In particular, hypernym relations incorporate tail-entity 

relations for instance level data. Vector representations are generated on WebIsALOD 

dataset using RDF2Vec and used as background knowledge for the ontology alignment 
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task. Regarding the alignment process, the descriptions of the ontologies are obtained and 

matched using simple string-matching techniques. The ontology entities which are not 

matched in the first step are then matched to the background knowledge embeddings 

which are pre-computed as mentioned above. The label of the ontology entities is matched 

to the concepts of theme embeddings. After that, several candidates are obtained which 

are ranked according to a similarity measure. 

Regarding the Semantic Web technologies, users in LOD can utilize the SPARQL mech-

anism in order to submit queries on a great collection of linked RDF datasets. They often 

come across with empty answer sets since their query may not be able to retrieve any 

particular information. For this reason, a framework is proposed which aims to solve this 

issue by generating graph embeddings on the instance level of a knowledge graph [39]. 

To do so, graph embeddings are generated from the RDF graph using TrasnE [40]. This 

model is chosen since it is capable of persevering the correlations among entities and 

relations. This way the inherent structure of the knowledge is preserved and projected to 

the vector space in contrast to neural-language based models like RDF2vec which cannot 

capture the relations between two entities while generating the embeddings. After gener-

ating the embeddings, this framework focuses on the SPARQL query which returns an 

empty set. In detail, the query is divided into parts. Using these parts along with the RDF 

embeddings it calculates alternative answers and provides them back to the user. Finally, 

each alternative answer is accompanied by an alternative query which may help users to 

refine their original queries. 

The TransE framework generates embeddings by modeling the relations of a knowledge 

graph to translations in the embedding space. It mainly focuses on instance level data 

rather than ontology concepts. The main goal of TransE is to provide a way in order to 

complete missing relations in a graph without requiring any extra knowledge. In detail, it 

examines the hierarchical relationships since they have a crucial role in the majority of 

most knowledge graphs. As the authors state, they try to capture the key relations of a 

knowledge graph. In knowledge graphs, the relations that are 1-to-1 between different 

types of entities are of great value since they efficiently improve modeling. An example 

could be “author of” where an author and book are connected via such a relation. TransE 

focuses on such relations by including them in its process. Another key feature of this 

framework is its scalability. TransE is used in modeling the WordNet and Freebase 

knowledge bases in order to perform link prediction tasks.  
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TransE is also used in a framework which aims to produce high quality vector represen-

tations for the instance level of a network based on the relations among the concepts of 

an ontology [41]. This framework mainly focuses on Datalog± rather RDFS or OWL 

languages. Various types of vector space embeddings on the instance level of a 

knowledge graph are explored. The generated relation embeddings are obtained using 

TransE while DistMult is used to form the regions [42]. In addition, this framework mod-

els the relations of an ontology as constraints to these regions. It is considered that the 

relations of ontology formulate rules which can be translated to spatial constraints. After 

that, the framework checks whether an embedding captures the rules of the ontology. If 

this is the case, then this embedding is called a geometric model of the ontology. This 

prerequisite ensures that high quality representations are obtained from a knowledge 

graph. 

Another framework worth mentioning which focuses on the instance level of a network 

is node2vec [43]. This framework generates embeddings for nodes in a network. It fo-

cuses on the instance level of networks rather than the ontology level. The goal of this 

approach is to create embeddings that maximize the likelihood of preserving network 

neighborhoods of nodes. In other words, it tries to capture the communities of the net-

work. Creating such a framework is crucial since it could be used across several super-

vised machine learning tasks. Until recently, a common method to extract features from 

a network was with human intervention since it required domain specific knowledge. On 

the opposite side, node2vec extracts the communities of the network by implementing a 

variety of biased random walks. Node2vec generates the feature vectors that embed nodes 

in the same neighbor but also captures the information regarding nodes which have the 

same role in a neighbor (e.g. central node). Moreover, an extension of the Skip-gram 

method is applied where the goal is to optimize an objective function. To achieve that, it 

utilizes stochastic gradient descent with backpropagation on a neural network with one 

hidden layer. Another key feature of node2vec is that its major phases are parallelizable, 

making it a scalable graph embedding algorithm. After their generation, the embeddings 

are used in order to solve link prediction and multi-label classification problems. 

The Global-RDF embeddings come in contrast to RDF2vec methodology [44]. This 

method introduces a new embedding approach inspired by Global Vectors (GloVe) on 

the instance level of a knowledge graph. In this approach, the vectors are generated based 

on the global patterns rather than the local patterns like paths, walks or kernels. To achieve 
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this, a co-occurrence matrix is built from a graph regarding the instance level. In order to 

compute this co-occurrence matrix an algorithm based on Personalized PageRank called 

Bookmark-Coloring Algorithm is applied. This framework allows a faster computation 

of the Personalized PageRank. The experimental results indicate an equivalent perfor-

mance in comparison with RDF2Vec which is based on local patterns. 

EmbedS framework takes into consideration both the ontology and the instance level of 

a graph in order to generate instance level embeddings [45]. In most approaches the on-

tology of a graph is often not taken into consideration. This results in cases where simple 

constraints referred to in an ontology are left aside (e.g. a book cannot be a friend of 

institution). Thus, it cannot take advantage of the rich and useful metadata information 

provided by an ontology. EmbedS is applied on a particular RDF dataset along with its 

ontology in the same vector space. This enables the calculation of ontological constraints 

and thus it could be used for further actions like feeding up a machine learning model.  

Another approach which combines embeddings from both the instance and the ontology 

level of a knowledge graph is the JOIE framework [46].. It consists of two main compo-

nents: a) the Cross-view Association Model and b) the Intra-view Model. The Cross-view 

Association Model is incorporated by two methods. The first method is called cross-view 

grouping and presumes the instance and the ontology level of a knowledge graph so they 

can be embedded into the same vector space. On the other hand, the second method is 

called cross-view transformation and uses two separate embedding spaces which will be 

combined by mapping the instance level embeddings to the ontology vector space. The 

Intra-view model is responsible for maintaining the structure in both the instance and the 

ontology level views. Two approaches are used: a) the Default Intra-view model and b) 

the Hierarchy-Aware Intra-view Model. The first one generates embeddings from the tri-

plets while the second one focuses on the ontology. In particular, the Hierarchy-Aware 

Intra-view Model concentrates on the meta-relations provided by an ontology like “sub-

class of” since they provide crucial knowledge regarding the hierarchy structure. Finally, 

the framework combines the two main components mentioned above, in a joint function. 

In comparison to the JOIE framework, HONOR combines these embeddings in the on-

tology vector space in order to perform a supervised normalization for entities extracted 

from text [47]. 

Another novel implementation of embeddings regarding the instance level is introduced 

in KGvec2go [48]. In detail, KGvec2go offers embeddings as a service. The vector 
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representations are obtained on the instance level entities via a Web query rather than 

generating the embeddings from a knowledge graph. Simply, it can be understood as pre-

trained graph embeddings from four popular knowledge graphs. In particular, this frame-

work generates the embedding using RDF2vec but with a more efficient walk generation 

process. As mentioned above four knowledge graphs are exploited: DBpedia, 

WebIsALOD, Wiktionary and WordNet. Combining these knowledge graphs, it could be 

extremely beneficial for various applications. The innovation of this framework comes to 

the way it provides embeddings calculations online. Users can use a Web API in order to 

consume these embeddings. This API allows embeddings to be used by less powerful 

devices such as tablets or smartphones. Specifically, similarity and N-closest entities cal-

culations could be performed online by only providing the name of concepts rather than 

a URI. Users also have the ability to download the pretrained embeddings and merge 

them in their applications according to their needs. This framework is also available for 

running in an HTTP server.   

There are numerous RDF embeddings approaches and knowledge graph embeddings 

methodologies but most of these efforts focus on creating embeddings on data instances 

rather than the ontology. OWL2Vec framework focuses directly on the ontologies. It re-

lies on a modified version of RDF2Vec [49]. In detail, this framework consists of three 

stages: a) the Ontology projection, b) the Walk Strategy and c) the Concept Embeddings. 

In the Ontology projection the ontology is projected into a graph where the nodes repre-

sent concepts while the edges represent possible relations.  

While in the Walk Strategy the walk on the ontology graph takes place. One of the key 

features of this approach is that the weights on the edges could be adjusted in order to 

give more significance to the taxonomic relationships or to the object properties.  

Finally, the Concept Embeddings stage is using Word2vec and FastText in order to com-

pute the concept embeddings. This method is flexible due to the fact that different concept 

embeddings could be created from different types of corpora sentences. 

On2Vec aims to predict the relations among ontological entities in an ontology using 

embeddings generated from an ontology graph [50]. The main characteristic of ontology 

graphs is that they have comprehensive semantic relations. These relations hold facts re-

garding the hierarchy as well as the transitivity and symmetry of properties. The motiva-

tion behind the proposed model is a more pliable approach on generating ontology graph 

embeddings which do not rely on text corpora like other studies [51][52][53][54][55].  
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On2Vec is a translation-based graph embedding model that aims to identify the compre-

hensive ontology semantic relations. In detail, it consists of two main components: a) the 

Component-specific Model and b) the Hierarchy Model. The first one implements spe-

cific projections on the source and target concepts so the relational properties could be 

preserved. The second one applies a perceptive learning process on the hierarchical struc-

ture of the relations. In their experiments, the ontologies of Yago, ConceptNet and DBpe-

dia OWL are used. Finally, after generating the ontology embeddings a relation prediction 

is performed between concepts.  

Until now, there are few approaches which introduce ontology embedding to Neural Net-

works. In their study A. Benarab, F. Rafique and J. Sun introduce a methodology where 

the ontology embeddings are generated using multiple neural networks along with a neu-

ral network autoencoder  [56]. The aim of this methodology is to create low representa-

tions of ontological entities in order to be ready for machine learning and deep learning 

procedures. In particular, this approach focuses on the semantic relations. This multi-

neural network model aims to generate an object based on the subject and the relation of 

a triplet. For this reason, the relations are modeled in a neural network. Having multiple 

neural networks for a number of specified relations will form the model. One of the lim-

itations of such an approach is the creation of sparse vectors. To deal with this issue an 

autoencoder neural network is used. The autoencoder is an unsupervised method consist-

ing of an encoder and a decoder. It is a five-layer neural network with three hidden layers. 

The goal is to minimize a loss function. The full model consisting of the multiple neural 

networks along with the autoencoder is demonstrated in Figure 3: The architecture of the 

Multiple Neural Networks along with a Neural Network autoencoder as proposed in [56]. 
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Figure 3: The architecture of the Multiple Neural Networks along with a Neural Network auto-

encoder as proposed in [56]. 

 

 

 

Evaluating the quality of an ontology embedding is still in a premature stage. Specific 

evaluation metrics are proposed regarding the quality of ontology embeddings in this 

study [57]. It is stated that there is no systematic approach for evaluating the quality of 

embeddings in general. The focus of this work is to provide an “intrinsic metric” to solve 

the above issue. In detail, there are three aspects: a) the categorization, b) the hierarchical 

and c) the relational aspect. The first aspect focuses on both the instance level of the data 

and the ontology. The aspects ‘b’ and ‘c’ take only into consideration the ontology. Spe-

cifically, three metrics are proposed regarding the hierarchical aspect which focus on the 

ontology classes and subclasses rather than the relations: absolute semantic error, seman-

tic Relatedness metric and Visualizations. In the relation aspect, two metrics are intro-

duced: sectional preference and semantic transition distance. These metrics examine the 

relations among the ontology concepts. 

 

 

 



  -19- 

2.3 European Union’s Business Collections 

 

In this part of this chapter the Business Collections2 retrieved from the official site of 

European Union’s Publications Office are analyzed. Business Collections are sets of vo-

cabularies, ontologies and application profiles aiming to provide interoperable solutions 

to both the public and the private sector in the European Union. Apart from the Business 

Collections, the “Asset Description Metadata Schema Application Profile” (ADMS-AP) 

and the schemas in “Schema.org” are exploited.  

 

Akoma Ntoso for European Union (AKN4EU) 

AKN4EU provides a common structure for EU Legislative Documents. Having a com-

mon structure for legislative documents is crucial regarding interoperability. Apart from 

that, it creates a productive environment for interinstitutional legislative processes among 

institutions in the EU. AKN4EU is based on XML and aims to enable the exchange of 

legal documents. Specifically, it is constructed according to Akoma Ntoso and OASIS 

standards. Akoma Ntoso provides a set of representations in XML format of parliamen-

tary, legislative and judiciary documents. OASIS goal is to create a path to standardiza-

tion in international policy and procurement via open source and open standards. In its 

current version AKN4EU accommodates legal acts adopted through the ordinary legisla-

tive procedure and their legislative proposals. The future versions aim to develop inter-

institutional standards for the exchange of structured content. 

 

Book Interchange Tag Suite (BITS)  

The BITS ontology has been selected for the production of general publications by the 

Publications Office of the European Union. This ontology is based on XML. Publishers 

can use this ontology in order to exchange book content. In detail, it defines the elements 

and attributes which are used to describe textual and graphical contents.  

 

 

                                                 

2 https://op.europa.eu/en/web/eu-vocabularies/business-collections  

https://op.europa.eu/en/web/eu-vocabularies/business-collections
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Common Data Model (CDM) 

The CDM ontology is constructed according to the Functional Requirements for Biblio-

graphic Records (FRBR) model. Based on FRBR principles CDM uses OWL and RDFS 

technologies in order to represent the relations and the attributes among the ontology en-

tities. Using the VOWL component in Protégé tool3 the graph representation of the on-

tology is generated. 

 

 

 

Figure 4: CDM Ontology graph generated using Protégé tool. 

 

FRBR entity relationship model captures all the information regarding the material and 

tasks that are associated with bibliographic resources. In simpler words, it tries to model 

the bibliographic universe by offering a structurer among bibliographic concepts [58]. 

 

 

 

                                                 

3 https://protege.stanford.edu/  

https://protege.stanford.edu/
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Core Vocabularies  

The Core Vocabularies form a collection of re-usable data models. They capture the main 

attributes of an entity in a context-neutral approach. They are used in various scenarios. 

In particular, the Core Vocabularies constitute the starting point of information systems 

development. They are used for designing the conceptual and logical data models of a 

new system which also denotes their extensibility. Furthermore, they support a better in-

formation exchange among systems. In addition, they are used in various data integration 

processes between legacy systems which use different data models. Another great use of 

these vocabularies concerns the publication of Open data. They are used as a common 

export format among several portals. There are six Core Vocabularies. The Core Business 

Vocabulary models the characteristics of a legal entity. These characteristics may consist 

of the name, address activity etc. of a legal entity. The Core Location Vocabulary aligns 

with the INSPIRE data specifications and captures the main characteristics of a location. 

The Core Person Vocabulary models the characteristics of a person (e.g. name). The Core 

Public Organization Vocabulary designates the public organizations in the EU. The Core 

Public Service Vocabulary models the characteristics of services offered by public ad-

ministrations e.g. title, description, inputs, outputs, providers, locations, etc. The Core 

Evidence and Criterion Vocabulary includes the means and the principles that must be 

held by a private entity in order to participate in public procurement.  

 

The Digital Europa Thesaurus (DET) 

The DET aims to model the web content in order to be retrieved, managed and aggregated 

across the European Commission’s public communication. It reuses EuroVoc concepts 

along with concepts from other resources in order to describe web content. The DET can 

be characterized as multilingual thesaurus.  

 

European Legislation Identifier (ELI) 

The ELI framework provides as standardized format for online legislation metadata. Hav-

ing a common format among these information enables the access, exchange and reuse 

across the Member States and organizations of the EU. In detail, the ELI ontology creates 
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a model regarding the online legislation metadata exchanging. The legislation description 

is based on FRBR principles.  

  

eProcurement 

The use of electronic means regarding the transactions and communications for buying 

supplies and services to be used by public sector organizations is called eProcurement.  

This collection aims to the migration of public procurements to eProcurement by setting 

the standards for these procedures in the digital era. In detail, TED XML schemas along 

with authority tables and taxonomies are used to form this standard. Tenders Electronic 

Daily (TED) is the online version of the 'Supplement to the Official Journal' of the EU, 

dedicated to European public procurement. Publishing on TED requires the use of three 

schemas: a) the Reception, b) the Internal and c) Publication schema. The Reception 

schema includes all the forms that must be filled by all senders. The Internal schema is 

used inside the Publication Office. Finally, the Publication schema is used to publish the 

notice on TED’s website. 

 

Europass 

In order to understand the skills and qualifications but also improve the transparency in-

side the EU, the Europass framework is created. This framework is a set of web-based 

tools and information that aims in better communication of skills and qualifications. It 

consists of a collection of Vocabularies. They are mainly used in Europass CV template, 

Europass Digital Credentials etc.  

 

European Skills, Competences, Qualifications and Occupations (ESCO) 

ESCO is the European multilingual classification of Skills, Competences, Qualifications 

and Occupations. It models the occupations, skills, qualifications and their relations that 

are relevant in the EU labor market. Furthermore, it offers job mobility since it creates a 

standard among the concepts mentioned above across boards.  

 

The European Science Vocabulary (EuroSciVoc) 

The EuroScivoc is a taxonomy created by the result of CORDIS. It is organized using 

semi-automatic Natural Language Processing techniques. This is a multilingual 
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taxonomy containing over 1000 categories, which are described using relevant keywords 

derived from CORDIS, in 6 languages. Specifically, it is created to be used as a reference 

vocabulary for the Open Science community.  

 

Formalized Exchange of Electronic Publications (Formex) 

The exchange of data among the Publication Office and its contractors is done by using 

the Formex format. Formex models the logical markup for documents published in the 

Official Journal of the European Union.  

 

IMMC Core Metadata 

This data model defines a set of the minimum metadata that are needed in the legal deci-

sion-making process. It enables a standard approach regarding information exchange be-

tween the institutions of the Publication Office. 

 

Official Journal Electronic Exchange Protocol (OJEEP) 

The OJEEP is a protocol responsible for the data exchange among the production system 

for the Official Journal of the European Union (PlanJO) and the printing contractors of 

the Official Journal. To accomplish its goal, this protocol consists of various scalable 

schemas which set the business requirements while enabling flawless information ex-

change.  

 

 

OP Core metadata element set 

This metadata model is created by the Publications Office of the EU and it is based on 

the Duplin Core metadata set. In particular, any resource published by the Publications 

Office should contain the 16 elements of OP core set.  

 

DCAT Application profile for data portals in Europe (DCAT-AP) 

The DCAT-AP is a specification for datasets in Europe. It is created according to Data 

Catalogue vocabulary (DCAT). DCAT is an RDF vocabulary which enables the use of a 

standard model so the metadata could be aggregated in multiple catalogs. In detail, 
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datasets using DCAT vocabulary are more discoverable since they could be retrieved by 

using the same search engine across multiple data portals. DCAT Application Profile as 

mentioned above is specification for metadata aiming to assist semantic interoperability. 

To achieve this goal, it reuses EuroVoc metadata vocabulary and mappings to existing 

vocabularies like Dublin Core. In other words, DCAT-AP provides a model which en-

sures consistency regarding the description of metadata and supports two main groups: a) 

the Data Reusers and b) Data Providers. The first group benefits from the fact that datasets 

can be easily retrieved because of the quality of their metadata. On the other hand, since 

the metadata is available across multiple data portals this enables availability at a low cost 

for the Data providers. 

 

Asset Description Metadata Schema (ADMS) 

The ADMS vocabulary is created in order to describe semantic interoperability solutions. 

There are three main stakeholders who use this vocabulary: a) the Solution Providers, b) 

the Content aggregators and c) the ICT developers. The first group is able to share and 

standardized metadata across platforms enabling discoverability. The Content aggrega-

tors can retrieve these metadata and provide them in a single point of access. This enables 

the ICT developers to search on one access point in order to explore interoperability so-

lutions. The ADMS-AP extends the use of ADMS by providing solutions on political, 

legal, organizational and technical interoperability layers. A newer version of ADMS is 

also available. The main feature of the new version is the alignment with DCAT since it 

utilizes the DCAT classes rather than ADMS classes.  

 

Schema.org 

Schema.org is a shared vocabulary enabling developers and engineers to take advantage 

of existing schemas making their applications interoperable 4. It is founded by Google, 

Microsoft, Yahoo and Yandex which are well known key players in the web. Developing 

a schema is done by an open community process mainly using GitHub5 or by email. Vo-

cabularies in Schema.org support various encodings such as RDFa, Microdata and JSON-

                                                 

4 https://schema.org/   

5 https://github.com/schemaorg/schemaorg  

https://schema.org/
https://github.com/schemaorg/schemaorg
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LD. One of the benefits of using such vocabularies is that they can be extended to cover 

developers’ needs regarding their applications. Currently, Schema.org consists of 836 

Types. Types are equivalent to Classes. Each Type holds two sets of properties: a) Prop-

erties from each Type and b) Properties from Thing. Regarding the first set of properties, 

they are created in order to describe a specific Type. Properties from Thing type, are 

common properties for all Types since every Type is a Thing. 
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3 Material and Methods 

This chapter describes the methods implemented for text preprocessing, embeddings gen-

eration, feature extraction and finally the models used for the task of classification.  

3.1 Introduction  

The goal of this thesis is to examine the implementation of machine learning models with 

emphasis on word vector representations in the field of ontology engineering while fo-

cusing on the European Unions’ ontologies. Specifically, it tries to tackle the problem of 

link prediction in an ontology set. In detail, this thesis focuses on the ‘sub-property’ rela-

tion among the entities in the ontology set. This problem is encountered as a classification 

task since it focuses on the prediction of whether two properties are connected or not. In 

addition, the Ontology Scout Tool (OS Tool) is introduced which is an ontology search 

tool based on pre-trained vector representation aiming to help ontology engineers identify 

concepts and ontologies of their interest. This chapter is divided into two main sections. 

The first section refers to the sub-property link prediction in an ontology set while the 

next section refers to the proposed ontology search tool. Regarding the first section, the 

procedure of obtaining the dataset is described. Moreover, a presentation of the Pretrained 

Embeddings Models which are used in order to generate the vector representations takes 

place. Then, the pipeline of Preprocessing and Feature extraction is thoroughly explained. 

Last but far from least, the Machine Learning Models along with their parameterization 

are demonstrated.   

Apart from the problem of sub-property link prediction, an ontology search tool based on 

vector representations is also proposed in this thesis. The OS Tool is oriented towards 

ontology engineers and aims to provide assistance regarding tracking their ontologies of 

interests. In detail, it acts as an information retrieval tool based on pre-trained vector rep-

resentations which provides ontology engineers and experts with fundamental infor-

mation for the tasks of ontology development and ontology alignment. 
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3.2 Sub-Property Link Prediction in European Un-

ion’s Ontology Set 

3.2.1 Dataset 

The dataset used in this thesis is created by exploiting the official European Unions on-

tologies. Since there is not an available dataset the following pipeline is followed in order 

to generate a balanced dataset for the link prediction task. The pipeline includes the fol-

lowing steps which will be later further analyzed: 

a) Ontology parsing  

b) Sub-property pairs extraction     

c) False Subproperty pairs generation 

d) Candidate pairs generation 

 

3.2.1.1 Ontology Parsing 

In this step, the ontologies are loaded and parsed using RDFLib Python’s library6. This 

library is specifically created for working with RDF files. In addition, RDFLib also in-

cludes useful APIs for parsing data files of type RDF/XML, N3, NTriples, N-Quads, Tur-

tle, TriX, RDFa and Microdata. The vast majority of the ontologies provided by the offi-

cial European Union portal are in RDF/XML and Turtle format. In some cases where 

RDFLib could not parse various ontologies, the Protégé tool7 is used to transform these 

particular ontologies into another format. Specifically, this procedure took place for BITS 

ontology where it transformed from XML into Turtle format. Moreover, due to incom-

patibilities of “ADMS version 2.0” ontology and RDFLib library, the “ADMS version 

1.0” is used instead. Since the goal of this thesis is to use machine learning models in 

order to predict the sub-property relation between two properties only the following on-

tologies which hold concepts which have the type of property are parsed and loaded: 

CDM, ELI, European Commission Conceptual Framework, DCAT, European 

                                                 

6 https://rdflib.readthedocs.io/en/stable/  

7 https://protege.stanford.edu/  

https://rdflib.readthedocs.io/en/stable/
https://protege.stanford.edu/
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Qualification Framework SKOS AP EU, DET SKOS AP EU, the Core Vocabularies, 

BITS and ADMS Version 1.0. 

After parsing the ontologies, a network is created which contains the ontologies in the 

form of a graph. In detail, the created graph contains 971961 triples. 

 

 

 

Figure 5: Parsing the ontologies creates a network of ontologies which forms a graph.  

 

 

3.2.1.2 Sub-property pairs extraction 

From the graph created like explained above, the sub-property pairs are extracted. To do 

so, the SPARQL Query Language8 is used. Specifically, the query generated aims to re-

trieve URIs which are connected with the “rdfs:subPropertyOf” relation of the RDF 

Schema data modeling vocabulary9.  

All the URIS retrieved must hold at least one string value in order to generate word vector 

representations but also additional linguistic features which later will be used to train and 

test the machine learning models. For this reason, only Properties which have at least a 

label are retrieved. The results of the SPARQL query are loaded to a table. The total 

                                                 

8 https://www.w3.org/TR/rdf-sparql-query/  

9 https://www.w3.org/TR/rdf-schema/  

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-schema/
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number of the retrieved property pairs is 1119. Moreover, an extra column is added named 

“Link” with value equal to 1 which indicates that the two URIs have a sub-property rela-

tion. Since it is a sub-property relation the URIs in the tale are labeled “super-property 

URI” and “property URI” accordingly.  

 

 

 

Figure 6: From the ontology graph the properties with the sub-property relation are extracted. 

These properties have link equal to 1 since it actually exists a connection between them. 

 

 

Figure 7: After extracting the properties with the sub-property relation they are loaded to a ta-

ble. 
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3.2.1.3 False Sub-property pairs generation 

In this part, the methodology of creating the false pairs is analyzed. It is important to 

generate false pairs in order to train the machine learning models. Based on the actual 

pairs generated from the graph, the false pairs are generated. Firstly, a list of the unique 

super-property URIs is extracted. Then, a random choice among these URIs takes place 

where its URI has equal probability of being chosen. For the super-property URI selected 

a new random choice of a URI is performed excluding all the URIs where the super-

property URI has an actual sub-property relation. Finally, an extra column named “Link” 

with value equal to 0 is added as indicating that the two URIs do not have a sub-property 

relation. The resulted table has 1119 lines in order to create a balanced dataset for training 

and testing the machine learning models in later sections. 

 

Figure 8: The table of false sub-property pairs. These pairs are generated from the table in cre-

ated in Figure 7: After extracting the properties with the sub-property relation they are loaded to 

a table.  

 

 

By concatenating both the sets which hold the actual and false URI pairs the dataset is 

created having 2238 lines.   
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Figure 9: By concatenating the actual with false sub-property sets the dataset is generated.  

 

3.2.1.4 Candidate pairs generation 

In order to evaluate the performance of the machine learning algorithms on predicting the 

sub property relation between two properties we must have a test set. Creating the test set 

is done by splitting the dataset crafted above, into two sets: a) the training set and the test 

set. In detail, a stratified split takes place so both the training set and the test set are bal-

anced regarding the “Link” class. The size of the test set is 20% of the original dataset 

including 448 pairs of URIs. Apart from the test set an extra set is generated for testing 

purposes. The candidate pairs are generated based on the URIs which are included in the 

test set. Concerning the candidate pairs generation, they are generated in respect to the 

word vector representations of the labels and comments of the URIs in the test set. For 

each unique “super-property” URI in the test set, 5 candidate property URIs are generated 

based on the cosine similarity of their label and comment vector representations. For this 

reason, Sentence-BERT is used which is a modification of the pretrained BERT network. 

More analytically, Sentence-BERT (SBERT) model utilizes siamese and triplet network 

structures to generate semantically meaningful sentence embeddings [59]. Generating the 

sentence embeddings for the labels and comments is done using the “distilbert-base-nli-

stsb-mean-tokens” model which is optimized for semantic textual similarity and also has 

a balance in terms of speed and performance. For each unique “super-property” URI in 

the test set the label embedding is calculated while for all property URIs the embedding 

of their labels and comments are calculated. Each embedding generated using the SBERT 

model has 768 dimensions. Having such a number of dimensions comes with a high 

memory and computation cost. On the other hand, having a large number in vector rep-

resentations provides a great detail for each sentence in the vector space which is crucial 

for the purpose of generating candidate pairs. For each unique “Super-property” the 
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cosine similarity of its label embedding along with the property label and comment em-

beddings are calculated. Then, the highest cosine between the “super-property” label and 

the property label and  

“super-property” label and the property comment is kept serving as a ranking measure. 

The top 5 property URIs along with the “super-property” URI form the candidate pairs 

and are appended in a table. The size of this table is 765 lines which is the number of the 

unique “super-property” URIs in the test set multiplied by five since this is the number of 

candidate pairs generated. Finally, the existence of relation between the candidate pairs 

is derived from the original test set and is demonstrated to a column named “Link” rep-

resenting the relation of the two URIs accordingly. Figure 10 demonstrates the closest 

labels to “is motivated by” label in a two-dimensional vector space produced by perform-

ing principal component analysis to the vector representations transforming them from 

768 to 2 dimensions.  

 

Figure 10: The closest labels to “is motivated by” in a two-dimensional space. 
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3.2.2 Pretrained Embedding Models 

The purpose of this thesis is to examine the implementation of machine learning methods 

with emphasis on word vector representations in the field of ontologies. For this reason, 

4 Pretrained Embedding Models are used. The implementation of these 4 different models 

results in 4 separate solutions for the problem of this thesis. In detail, for each pre-trained 

embedding model a different set of features is created. This approach enables the com-

parison among these models in terms of their accuracy and other measures in the link 

prediction task. While the embedding models may differ, the whole pipeline explained in 

the feature extraction section is common for all approaches.  

 

As mentioned above this thesis takes advantage of 4 different pretrained embeddings 

models which are used to generate the embeddings for the labels and the comments of the 

properties in the dataset.  

The following models are used in order to generate the vector representations: 

a) Sentence-Bert b) spaCy c) Word2vec-Gensim d) Glove.  

To extract the labels and comments for each property a SPARQL query is constructed 

which retrieves the necessary data. The result of this query is then passed in a table for 

further analysis as shown in Figure 11. Since vector representations as well as other lin-

guistic features which are constructed in this thesis are based on Natural Language Pro-

cessing techniques, the Properties retrieved must have a label while the existence of a 

comment is optional. For Properties which do not have a comment the value in “nan”. 

For any “nan” comment, its embedding will be a vector of zeros across all dimensions so 

it could be later used to calculate the cosine similarity between properties but also in 

machine learning tasks. 
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Figure 11: The labels and comments for all URIs are extracted in a table. 

 

 

3.2.2.1 Sentence Bert  

As mentioned above, the Sentence-Bert (SBERT) model is used to generate the candidate 

pairs which will later be used to test the machine learning algorithms. The SBERT model 

is also used to derive vector representations regarding the labels and comments of the 

properties which will be used for training the machine learning algorithms. Since the 

SBERT model is able to produce embeddings directly from a sentence, the labels and 

comments for each property are passed through that model generating their corresponding 

embeddings. The size of each embedding is 768 dimensions. For the properties which 

hold no comments a vector of zeros is produced for each dimension so they could be used 

in machine learning. In SBERT, the “distilbert-base-nli-stsb-mean-tokens” model is used 

which is optimized for semantic textual similarity. Specifically, this model is trained on 

the SNLI10 and the Multi-Genre NLI11 datasets.  

 

                                                 

10  https://www.aclweb.org/anthology/D15-1075/  

11 https://www.aclweb.org/anthology/N18-1101/  

https://www.aclweb.org/anthology/D15-1075/
https://www.aclweb.org/anthology/N18-1101/
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3.2.2.2 spaCy 

SpaCy12 is a library focusing on the implementation of Natural Language Processing ap-

plications and pipelines. This library provides a variety of models in numerous languages 

like English, German, Greek, Japanese and others. Apart from the above, it also provides 

various Multi-language models which can be used for comparison among different lan-

guages. In this thesis the “en_core_web_sm” pretrained model is utilized which provides 

sentence embeddings directly. It is a multi-task Convolutional Neural Network trained on 

OntoNotes [60]. 

The number of dimensions of the embeddings generated is 96. Furthermore, spaCy sen-

tence embeddings models handle internally text preprocessing operations like punctua-

tion removal and lower-case transformation.  

 

3.2.2.3  Word2vec Gensim 

Gensim13 is an open-source library that contains efficient implementations of Natural 

Language Processing functionalities for the task of topic modeling. With Gensim, the 

embeddings are generated using the “GoogleNews-vectros-negative300” pre-trained em-

beddings model. These embeddings are trained on Google News dataset and provide word 

vector representations of 300 dimensions. This model is capable of providing word and 

phrase vector representations than sentence embeddings [13]. Moreover, it does not in-

clude a text preprocessing pipeline. For this reason, all labels and comments are passed 

through a text preprocess function where lower-case transformation, punctuation and stop 

words removal take place. After that, they are ready to be used to generate the word vector 

representations. For the purpose of this thesis, in order to derive the sentence embeddings 

for each label and comment, the mean vector representation of the words is calculated. 

For example, if a comment is constituted by 10 words, the embedding for this comment 

will be the mean vector of these 10 words. This procedure results in an embedding of 300 

dimensions which represents the whole comment.  

 

                                                 

12 https://spacy.io/  

13 https://radimrehurek.com/gensim/models/word2vec.html  

https://spacy.io/
https://radimrehurek.com/gensim/models/word2vec.html
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3.2.2.4 GloVe 

Global Vectors is an unsupervised technique for generating word vector representations. 

It is based on global text statistics by deriving semantic relations among words from the 

co-occurrence matrix [14]. In this thesis the “glove.6b.300d” model is used which is 

trained on Wikipedia 201414 and Gigaword 515 datasets. The size of these vector repre-

sentations is 300 dimensions. Since these embeddings come in the form of a dictionary, 

there is no text preprocessing pipeline and only provide word vector representations. For 

this reason, as mentioned above, all labels and comments are passed through a text pre-

process function and sentence embeddings are generated by calculating the mean vector 

for each individual word vector representation.  

 

After generating the vector representations regarding the labels and comments for each 

property, the junction of these vectors with the original data takes place.  

 

 

Figure 12: The final dataset including the actual and false sub-property pairs along with the em-

bedding for their labels and comments. 

 

 

 

                                                 

14 https://wiki.dbpedia.org/Downloads2014  

15 https://catalog.ldc.upenn.edu/LDC2011T07  

https://wiki.dbpedia.org/Downloads2014
https://catalog.ldc.upenn.edu/LDC2011T07
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3.2.3 Text Preprocessing 

Text is a valuable source of information which can be found in all fields of science and 

technology. It is an unstructured form of data which may contain noisy content. Cleaning 

the text requires a solid understanding of the field, so the mining of the text could result 

in meaningful insights. For this reason, the implementation of text cleaning actions is 

crucial and must take place before feature engineering and machine learning modeling. 

Labels and comments of properties are in text form. Text processing is implemented by 

using Natural Language Toolkit (NLTK)16 and Regular Expressions (RE)17 Python librar-

ies. The techniques utilized for this problem are presented as follows: 

 

Lowercase transformation 

Since Python is a case sensitive programming language all alphabetical characters are 

converted to lowercase. This conversion enables the models to capture that two words 

have the same meaning despite their differentiation in letter cases.  

 

URLs removal 

Numerous comments include external links which refer to specific sources. Nevertheless, 

for the purpose of this thesis they are noisy text rather than meaningful information. 

Hence, all external links starting with “https” or “http” are removed.  

 

Punctuations removal 

In the field of ontologies and especially the labels and comments of the properties in the 

dataset, punctuations do not have any significant importance. Thus, they are removed 

from all text fields.  

 

Tags removal 

There are cases where the comments of some properties may contain tags. An example 

of a tag is most commonly a word starting with “@”. Since they do not provide any 

                                                 

16 https://www.nltk.org/  

17 https://docs.python.org/3/library/re.html  

https://www.nltk.org/
https://docs.python.org/3/library/re.html
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additional information regarding the actual Property but may refer to external sources 

they are completely removed. 

 

Tokenization 

Converting text into a list of words (tokens) is an essential part of text preprocessing 

pipelines. Having tokens is mandatory for feature engineering which will be used in ma-

chine learning models.  

 

Stop-words removal 

Stop-words is a set of words that are frequently used and do not provide any actual in-

sights. In this thesis, the set of stop-words provided from the NLTK library is utilized in 

order to remove them from all labels and comments.  

 

Stemming 

Stemming is the process which recognizes and maintains the root of a word. This is ex-

tremely significant since words which share the same root after stemming are considered 

as the same. This process is applied in all labels and comments in advance of feature 

engineering. It is not applied for the generation of vector representations.  

 

 

 

3.2.4 Feature Extraction 

 Length of labels 

This is a basic feature which calculates the number of words regarding the labels of the 

properties.  

 

Number of common words 

This feature calculates the number of common words between two string values. In this 

thesis, the number of common words for the following pairs is extracted: “super-
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property” label & property label and “super-property” label & property comment. The 

feature is an integer number which demonstrates the number of common words.  

 

Ratio number of common words and length of labels 

This ration combines the “Number of common words” and “Length of labels” features. 

In detail, it divides the number of common words between the labels by the average string 

length of both labels.  

 

 

The features below are extracted for the following pairs: “super-property” label & prop-

erty label, “super-property” comment & property comment, “super-property” label & 

property comment and “super-property” comment & property label.  

 

 

Fuzzy Logic 

Fuzzy logic is a form of multi-valued logic that deals with reasoning that is approximate 

rather than fixed and exact. Fuzzy String Matching is the process of finding strings that 

approximately match a pattern. For the purpose of this thesis FuzzyWuzzy18 library’s 

method “fuzz ratio” is implemented in order to calculate the edit distance between some 

ordering of the tokens in both input strings. 

 

 

Jaccard Similarity 

The transformation of a sentence into a set of words enables the use of Jaccard Similarity 

measure. It is the ratio of the size of the intersection divided by the size of the union for 

two sets.  

 

 

 

                                                 

18 https://github.com/seatgeek/fuzzywuzzy  

https://github.com/seatgeek/fuzzywuzzy
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TF-IDF Cosine Similarity 

Cosine Similarity is a measure of similarity between two non-zero vectors of an inner 

product space. Firstly, a TF-IDF transformation is applied in order to get real-valued vec-

tors. Using the TfidfVectorizer19, TF-IDF is implemented. Then the cosine similarity is 

measured.  

 

Embeddings Cosine Similarity 

The cosine similarity regarding the embeddings generated from the pretrained embedding 

model is calculated.  

 

Embeddings Values 

Since the number of dimensions of a vector representation is pre-defined, it enables the 

transformations of embeddings to separate features. Each value of an embedding is ap-

pended to a separate column creating a new feature. This approach allows the machine 

learning algorithms to take full advantage of the vector representations in the dataset. 

 

 

 

3.2.5 Machine Learning Models 

In this section, the machine learning models utilized are analyzed. In total nine models 

are trained and tested regarding the problem of this thesis. Specifically, the models are 

trained on the training set which is obtained as described in the Dataset section. A sum-

mary of each machine learning model follows: 

 

K-nearest Neighbors (k-NN): 

K-NN algorithm is an instance-based learner and relies on a distance metric for the clas-

sification. It belongs to the family of non-parametric models [61]. The only parameter 

that users should define is the number of nearest neighbors which are evaluated in order 

                                                 

19 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html  

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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to assign a class a given observation. In this thesis, the number of nearest neighbors is set 

to 3. 

 

Naive Bayes (NB): 

NB constitutes a probabilistic classifier inspired by the Bayes theorem under a simple 

assumption which is that the attributes are conditionally independent. This method is 

widely used because of its simplicity and its generally good results. Every pair of features 

being classified is independent of each other. In this thesis Guassian Naive Bayes algo-

rithm is implemented which assumes that the likelihood of the features is Gaussian.  

 

Decision Trees (DT): 

Like K-NN, DT is a non-parametric algorithm utilized for classification. In classification, 

the leaves of the tree demonstrate the class labels [62]. The branches demonstrate the path 

that an observation follows regarding the features which leads to a leaf. The minimum 

number of samples required to separate a node is set to two while there is no limitation 

for the maximum depth. This means that the nodes are scaled until all leaves are pure or 

include less than two samples.  

 

Random Forests (RM): 

RM is a special case of Bootstrap aggregating methods and belongs to the ensemble learn-

ing algorithms family. It is implemented by fitting a number of Decision Tree classifiers 

on the dataset. Regarding classification problems, the prediction of a class for an obser-

vation is the mode of the classes predicted by the DT [63]. The number of trees utilized 

for RM classifier is fifteen while their maximum depth is set to six.  

 

Support Vector Machines (SVC): 

SVC is a non-probabilistic supervised machine learning method. It is implemented by 

separating the classes in space by leaving the widest possible gap between them. During 

the testing phase the unseen observations are mapped to this space and assigned to a class 

according to the part of the gap they fall [64]. The regularization parameter must be set 

for this algorithm. In this model it is set by using a standardization method which subtracts 

the mean and scales to standard deviation.  
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Support Vector Machines Bagging: 

Bootstrap aggregating or Bagging is an ensemble learning method aiming to improve the 

metrics regarding a machine learning algorithm by combining the predictions from mul-

tiple models [65]. This method is utilized by using ten Support Vector Machines models 

whoοse configuration is explained above.  

 

Neural Networks: 

Multilayer Perceptron (MLP) belongs to the family of Neural Networks. In this thesis the 

MLP implemented uses a nonlinear activation function in order to classify data that are 

not linearly separable. Every node in a layer connects to all nodes in the following layer 

making the network fully connected. Neural Networks in general are structured in three 

main layers, the input, the hidden and the output layer. The number of hidden layers is 

set to 20 while the number of epochs is set to ten. Regarding the learning phase, the 

method of indirect optimization is used. Finally, ‘Adam’ optimizer and Rectified Linear 

Unit activation function are utilized.   

 

 

Adaptive Boosting (Adaboost): 

Adaboost is a boosting algorithm that concentrates on the observations that are harder to 

classify by an iterative process. Adaboost iteratively fits a classifier to observations which 

are misclassified by focusing on the weights specifically for these instances [66]. 

This method is implemented by using 100 models of the Adaboost-SAMME algorithm 

[67].  

 

 

 

Extreme Gradient Boosting (XGBoost): 

XGBoost is a relatively new algorithm in machine learning. It is a scalable machine learn-

ing system for tree boosting [68]. One of its key advantages is the computation speed and 

scalability over a single machine which is comparable to other methods using a distributed 
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set up. XGBoost utilizes a tree learning algorithm which handles sparse data. Then it 

applies a sketch procedure enabling instance weights in tree learning to be handled more 

efficiently.  

 

3.3 Ontology Scout Tool 

This thesis proposes Ontology Scout Tool (OS Tool) an ontology search tool which is 

based on pre-trained vector representations. OS Tool addresses to ontology engineers and 

experts aiming to develop an ontology or perform ontology alignment tasks. It is imple-

mented by parsing a set of ontologies resulting in an ontology set. This procedure is sim-

ilar to the Ontology parsing section mentioned above regarding the problem of sub-prop-

erty link prediction. Since it is based on pre-trained embeddings, Sentence-Bert (SBERT) 

model is utilized. SBERT is used to derive vector representations regarding the labels and 

comments of all instances in the ontology network. These can later be used in the retriev-

ing process. As explained in previous sections, SBERT is capable of producing embed-

dings directly from a sentence. OS Tool takes advantage of this feature since its users 

may use multiple keywords to a query. Then this query is transformed to an embedding 

using SBERT and it is compared with the embeddings generated from the ontology net-

work in the vector space. Finally, a sorted list of the instances is retrieved according to 

their cosine similarity with the query. The size of each embedding is 768 dimensions. 

Having such a number of dimensions provides detailed vector representations but in-

creases the computational cost of this tool. For instances which do not hold any label or 

comment, a vector of zeros is produced for each dimension so they could be used in ma-

chine learning. As in the previous section, the “distilbert-base-nli-stsb-mean-tokens” 

model is utilized since it is optimized for semantic textual similarity. A prototype of OS 

Tool is demonstrated in the Experimental Results Section.  
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4 Experimental Results 

This section describes the experiments conducted for the proposed method of sub-prop-

erty link prediction in the EU's ontology set. Moreover, the Ontology Scout Tool (OS 

Tool) prototype is introduced. Regarding the link prediction problem, the different em-

bedding techniques described in the Pretrained Embedding Models section are compared. 

As explained in Material and methods, 4 different approaches are implemented based on 

the embeddings models used. For each approach 9 machine learning models are trained 

and tested regarding the problem of this thesis. Furthermore, the results obtained are con-

cerning the test and candidates set. Since it is a classification problem all methods are 

compared in terms of accuracy and precision for the above two sets. Accuracy and preci-

sion are calculated as shown below:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑏 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑏 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
 

Regarding the candidates set, the “Mean Average Precision” is measured for each method 

since it is a standard evaluation metric in Information Retrieval [69]. MAP is calculated 

as follows: 

𝑀𝐴𝑃 =  
1

|𝐶|
∑

1

5
∑

1

𝑘
∑ 𝑟𝑒𝑙(𝑖)

𝑘

𝑖

5

𝑘=1

|𝐶|

𝑐=1

 

where 𝑟𝑒𝑙(𝑖) is 1 if the URIs have the sub-property relation and 0 otherwise, C is 153 

which is the number of the unique Super-property URIs. Moreover, k is the number of 

pairs with the highest relevant score. For these experiments, 𝑘 is defined to be 5 since the 

top 5 Property URIs are kept to generate the candidate pairs along with a Super-property 

URI as explained in Candidate pairs generation section.  

More analytically, for each pre-trained embedding model 9 machine learning algorithms 

are trained. This means that 36 different models are obtained and compared in terms of 

the metrics mentioned above. The same data preprocessing pipeline is used for all 36 

models. Since each embedding model produces a different vector representation regard-

ing the size, the models may differ in number of features. This happens because the values 
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of each vector representation are used to produce features. With this assumption the size 

of each dataset in terms of features is the following: Sentence-Bert 3094, spaCy 406, 

Word2vec 1222 and Glove 1222 features. Each algorithm is trained on the training set 

and tested on the test and candidates set. The best models are furtherly explored by ap-

plying techniques like Hyperparameter Optimization and Principal Component analysis. 

Finally, a presentation of Ontology Scout Tool prototype takes place along with examples 

regarding retrieving information from an ontology set.  

4.1 Implementation  

4.2 Sub-Property Link Prediction in European Un-

ion’s Ontology Set 

4.2.1 Results on Test Set  

Firstly, the results obtained from the test set are demonstrated. As mentioned above, 36 

different models are trained and tested in terms of accuracy and precision. Table 1 pro-

vides a table holding the accuracies for each model. 

Table 1: Accuracy Scores on Test Set  

 Sentence-Bert Spacy Word2Vec Glove 

AdaBoost 0,9554 0,9531 0,9554 0,9576 

Decision Trees 0,9531 0,9397 0,9509 0,9286 

K-NN 0,6674 0,6741 0,9330 0,8348 

MLP 0,8839 0,9129 0,9621 0,9598 

Naïve Bayes 0,6429 0,8527 0,7121 0,6920 

Random Forest 0,9598 0,9576 0,9554 0,9621 

SVM 0,9241 0,9754 0,9442 0,9420 
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As it shown, the SVM in combination with spaCy pre-trained embeddings scores the 

highest accuracy of 97,54% while SVM Bagging-Glove and XGBoost-Word2Vec come 

second with 96,88% accuracy. The SVM-Bagging method belongs in 3 out of the top 5 

models in terms of accuracy. On the other hand, the Naive Bayes-Sentence-Bert and k-

NN-Sentence-Bert models hold the lowest scores in terms of accuracy. In detail, their 

scores are 64,29% and 66,74 respectively. Figure 13 demonstrates the models in terms of 

accuracy. Overall, 31 out of 36 models hold scores above 80%. Moreover, the Naive 

Bayes and k-NN models hold the lowest scores in combination with all 4 pre-trained 

embedding models.  

 

 

Figure 13: This bar chart demonstrates the combinations of machine learning models and pre-

trained embedding models with their accuracies on the Test Set  

 

 

Regarding the precision of the models, the SVM-spaCy holds the highest value of 

97,55%. As before, the SVM Bagging-Glove and XGBoost-Word2Vec models come 

SVM Bagging 0,9665 0,9509 0,9643 0,9688 

XGBoost 0,9598 0,9621 0,9688 0,9621 
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after the SVM-spaCy in terms of precision with 96,89% and 96,93 respectively. Oppo-

sitely, the k-NN-Sentence-Bert model has the lowest precision of 67,66%. The Naive-

Bayes and k-NN models hold the lowest precision scores which aligns with the findings 

obtained regarding the accuracy of these models. Figure 14 illustrates the relation of ac-

curacy and precision of the models. It demonstrates a strong correlation between the two 

metrics especially, for accuracies higher than 80%. 

 

Table 2: Precision Scores on Test Set 

 Sentence-Bert Spacy Word2Vec Glove 

AdaBoost 0,9555 0,9534 0,9557 0,9587 

Decision Trees 0,9531 0,9400 0,9512 0,9287 

K-NN 0,6766 0,6742 0,9333 0,8365 

MLP 0,8842 0,9153 0,9621 0,9600 

Naïve Bayes 0,6883 0,8537 0,7388 0,7234 

Random Forest 0,9599 0,9578 0,9555 0,9623 

SVM 0,9242 0,9755 0,9444 0,9423 

SVM Bagging 0,9668 0,9518 0,9649 0,9689 

XGBoost 0,9600 0,9625 0,9693 0,9628 
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Figure 14: Scatter-plot of the 36 models regarding their precision and accuracy on the Test Set  

4.2.2 Results on Candidates Set 

In this section, the results obtained from the candidates set are illustrated. The procedure 

of obtaining the candidate set is thoroughly described in the Dataset section. 

 

 

Table 3: Accuracy Scores on Candidates Set 

 Sentence-Bert Spacy Word2Vec Glove 

AdaBoost 0,8392 0,8484 0,8654 0,8484 

Decision Trees 0,8588 0,8353 0,8458 0,8549 

K-NN 0,6235 0,6824 0,7817 0,7752 

MLP 0,8471 0,8340 0,8627 0,8863 

Naïve Bayes 0,8340 0,8288 0,8261 0,8340 

Random Forest 0,8000 0,8222 0,8183 0,8144 

SVM 0,8444 0,8732 0,8680 0,8719 
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SVM Bagging 0,8654 0,8732 0,8719 0,8680 

XGBoost 0,8627 0,8549 0,8680 0,8601 

 

 

In general, 33 out of the 36 models have an accuracy score between 80% to 88,63%. The 

MLP-Glove model has the highest value of 88,63%. In addition, the SVM-spaCy and 

SVM Bagging-spaCy models score 87.32% which is the second highest score. It is with 

mentioning that the Support Vector Machines models which include the SVM and SVM 

Bagging methods are found in 7 out of top 10 models as the Figure 15 suggests. Further-

more, all the k-NN models score the lowest accuracy. Similar results found in the test set. 

Particularly, for the candidates set all the Random-Forests models score slightly higher 

than the k-NN models. The spaCy pre-trained embedding model holds the 2 out of top 5 

models while the Sentence-Bert models holds 2 out of the lowest 5 five models. 

 

 

 

Figure 15: This bar chart demonstrates the combinations of machine learning models and pre-

trained embedding models with their accuracies on the Candidates Set 
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In terms of precision, the SVM-spaCy scores 94,07% which is slightly above the MLP-

Glove model’s precision of 94,06%. While there is no significant change in the ranking 

of models regarding precision in comparison with accuracy, the Decision Trees-Sentence-

Bert model scores 93.79% in terms of accuracy. On the opposite side, the k-NN-spaCy 

model holds the lowest precision score of 86.84%.  

 

 

 

 

 

 

Table 4: Precision Scores on Candidates Set 

 Sentence-Bert Spacy Word2Vec Glove 

AdaBoost 0,9294 0,9310 0,9344 0,9310 

Decision Trees 0,9379 0,9221 0,9306 0,9291 

K-NN 0,8811 0,8684 0,9231 0,9114 

MLP 0,9308 0,9286 0,9354 0,9406 

Naïve Bayes 0,8979 0,9311 0,9106 0,9073 

Random Forest 0,9290 0,9267 0,9278 0,9255 

SVM 0,9353 0,9407 0,9349 0,9373 

SVM Bagging 0,9391 0,9345 0,9342 0,9381 

XGBoost 0,9338 0,9323 0,9349 0,9333 

 

 



-52- 

Apart from the accuracy and precision metrics, the “Mean Average Precision” is also 

measured since it is a more comprehensive metric for evaluating the machine learning 

models for this problem.  

 

Table 5: Mean Average Precision on Candidates Set 

 Sentence-Bert Spacy Word2Vec Glove 

AdaBoost 0,1678 0,1697 0,1731 0,1697 

Decision Trees 0,1718 0,1671 0,1692 0,1710 

K-NN 0,1247 0,1365 0,1563 0,1550 

MLP 0,1694 0,1668 0,1725 0,1773 

Naïve Bayes 0,1668 0,1658 0,1652 0,1668 

Random Forest 0,1600 0,1644 0,1637 0,1629 

SVM 0,1689 0,1746 0,1736 0,1744 

SVM Bagging 0,1731 0,1746 0,1744 0,1736 

XGBoost 0,1725 0,1710 0,1736 0,1720 

 

 

As illustrated in Table 5 the MLP-Glove along with the SVM Bagging-spaCy and the 

SVM-spaCy perform better in terms of MAP in comparison with the other models. In 

detail, the MLP-Glove holds a MAP of 17,73% while the SVM Bagging-spaCy and 

SVM-spaCy models score 17.46%. Contrarily, the k-NN and Random Forests models 

hold the lowest MAPs. In depth, MAP ranking aligns with the accuracy ranking for the 

candidates set. It is found that the MAP and accuracy have a perfect linear relationship 

with a correlation coefficient equal to 1 as it is demonstrated in Figure 16. 
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Figure 16: Scatter-plot of the 36 models regarding their mean average precision and accuracy on 

the Candidates Set 

 

While the MAP and accuracy have a perfect linear relation, the MAP and precision have 

a correlation equal to 86,04%.  

 

Figure 17: Scatter-plot of the 36 models regarding their mean average precision and precision 

on the Candidates Set 
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Overall, the MLP-Glove and SVM-spaCy models outstand the other models in terms of 

accuracy, precision and mean-average-precision in the candidates set and test set respec-

tively. For this reason, these particular models are used in a Hyperparameter optimization 

process.  

 

 

4.2.3 Hyperparameter Optimization 

 

As mentioned above, for the MLP-Glove and SVM-spaCy models are used in a hyperpa-

rameter optimization process. The GridSearchCV20 method is used for applying this pro-

cess. Specifically, this method is an exhaustive search over pre-specified parameters for 

a model. It is applied by performing a cross validation to the training set. Then after com-

paring the models of each optimization regarding an evaluation metric, it returns a set 

including the best parameters.  For the purpose of this thesis, the cross-validation param-

eter is set to 10 folds while for accuracy is set a evaluation metric. The accuracy metric 

is preferred over other metrics since it holds a perfect linear relation to the MAP according 

to the experiments above. Table 6 include the parameters utilized for the optimization 

process.  

 

 

 

 

 

 

 

 

 

                                                 

20 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html  

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Table 6: Hyperparameter Optimization for MLP-Glove and SVM-spaCy models 

MLP-Glove  SVM-spaCy 

Parameters Values   Parameters Values 

Hidden layer size 
5, 10, 15, 20, 

25, 30  
Regularization  1, 10 

Batch size  
50, 100, 150,  

200, 300  
Kernel 

Linear, 

RBF 

Maximum iteration 
10, 30, 50, 

70   
Gamma 

Scale, 

Auto  

   
Degree 1, 2, 3, 4, 5 

   
Probability True, False 

   
Maximum iteration 

10, 30, 50, 

70 

 

Regarding the MLP-Glove optimization, after 1200 different fits of the model the highest 

accuracy obtained on the training set, using a 10-fold cross validation, is 97.26%. This 

score is obtained by using 30 hidden layers, 50 as the batch size and 70 maximum itera-

tions. While for the SVM-spaCy the best parameters after 3200 fits are the following: 

Regularization: 10, Degree: 1, Gamma: Scale, Kernel: RBF, Maximum iteration: 70 and 

Probability: True. Using these parameters an accuracy of 92,06% is obtained in the train-

ing set with a 10-fold cross validation. Since the primary focus of this thesis is to create 

a machine learning model in predicting the relation among ontology properties in unseen 

data, the best parameters for each model are used for training the MLP-Glove and SVM-

spaCy models. The models are tested on the candidates set using the accuracy, precision 

and MAP evaluation metrics.  

Despite the highest accuracy of the MLP-Glove in the training set during Hyperparameter 

optimization, the SVM-spaCy obtains a higher score in the candidates set of 90,2%. 

Moreover, the MLP-Glove has a precision of 93,62% while the SVM-spaCy 92,24%. In 

terms of the MAP the SVM-spaCy outperforms MLP-Glove with a value of 18,03%.  
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Embracing the results for the candidates set before the Hyperparameter optimization, for 

MLP-Glove there is slight improvement of 0,44% in precision after optimization while 

the accuracy and MAP are decreasing. In addition, for the SVM-spaCy model the accu-

racy and MAP are increased to 90,2% and 18.03% respectively. Overall, these are the 

highest scores obtained for these evaluation metrics regarding candidates set so far. On 

the other hand, there is a decrease in the precision of the SVM-spaCy model after optimi-

zation.  

 

 

Table 7: Metrics before and after the Hyperparameter Optimization Process 

 Accuracy Precision MAP 

 
Before 
Optimization 

After 
Optimization 

Before 
Optimization 

After 
Optimization 

Before 
Optimization 

After 
Optimization 

MLP-

Glove 
0,8863 0.8588 0,9406 0.9362 0,1773 0.1717 

SVM-

spaCy 
0,8732 0.902 0,9353 0.9222 0,1746 0.1803 

 

4.2.4 Principal Component Analysis 

Considering the evaluation metrics obtained for both models regarding the candidates set 

after the Hyperparameter optimization, the SVM-spaCy model along with its best param-

eters is used in Principal Component Analysis (PCA) implementation since it holds the 

highest accuracy and MAP obtained in the experiments. PCA aims to determine the opti-

mal number of components for a machine learning model which maximizes its perfor-

mance. As mentioned in previous sections, the SVM-spaCy model is trained on 406 fea-

tures. Since the candidates set is considered to be unseen data, PCA is performed on the 

training set using cross validation. In order to decrease the computational cost, a 5-fold 

cross validation takes place. Moreover, the evaluation metric regarding the performance 

is set to be the accuracy because of its linear relation with the MAP. Finally, in contem-

plation of the computational cost, PCA is performed in the range of 400 to 10 components 

decreasing by 10. As demonstrated in Figure 18, the highest accuracy is scored using 170 

components.  
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Figure 18: Principle Component Analysis SVM-spaCy from 400 to 10 components decreasing 

by 10 components 

 

 

 

Figure 19: Principle Component Analysis SVM-spaCy from 200 to 100 components decreasing 

by 5 components 

 

Due to this fact, PCA is applied in the range of 200 to 100 decreasing by 10 components. 

In conclusion, since the accuracy is increasing after 160 components and starts decreasing 

after 120, PCA takes place in the range of 170 to 101 decreasing by 1 component. Ac-

cording to the score obtained from the training set, using 5-fold cross validation, the op-

timal number of components is 141 with 91,56% of accuracy.  

 

 

Figure 20: Principle Component Analysis SVM-spaCy from 170 to 101 components decreasing 

by 1 component 
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Finally, the SVM-spaCy model is trained using the best parameters and PCA is applied 

using 141 components and tested on the candidates set. A significant decrease in accuracy 

and the MAP evaluation metrics is observed after PCA. While the precision is decreased 

to 91,5%, the accuracy and MAP scores are 72,02% and 14,4% respectively as it is 

demonstrated in Table 8. 

 

Table 8: Metrics before and after Principal Component Analysis 

 Accuracy Precision MAP 

 

Before 

PCA 

After 

PCA Before PCA After PCA 

Before 

PCA After PCA 

SVM-spaCy 0.902 0.7202 0.9222 0.915 0.1803 0.144 

 

 

4.3 Ontology Scout Tool (OS Tool) 

OS Tool is an ontology search tool based on vector representations. Its aim is to help 

ontology engineers during ontology development and ontology alignment tasks. It is built 

using SBERT pre-trained embeddings. Regarding its graphical user interface, the Tkinter 

python’s library21 is utilized. Users provide a search query and retrieve relevant entities 

of the ontologies which are pre-loaded to the OS Tool. For the purpose of this thesis, the 

European Union’s ontologies are pre-loaded creating an ontology set as explained in the 

Ontology parsing section. 

The Figure 21 demonstrates a prototype of the OS Tool. As mentioned above, users pro-

vide the tool with a query. The query may contain multiple keywords in the form of a 

phrase. Then this query is transformed to an embedding using SBERT. The query embed-

ding is placed in the vector space among with the other embeddings generated from the 

labels and comments of the ontology set. After that, the query embedding is compared 

with all other embeddings in terms of cosine similarity. Since an entity may have a label 

                                                 

21 https://docs.python.org/3/library/tkinter.html  

https://docs.python.org/3/library/tkinter.html
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and a comment the maximum cosine similarity between their embeddings and the query 

embedding is considered as the similarity of the query and the entity. This means that if 

the cosine similarity of the query-label embeddings is greater than the query-comment 

embeddings then the first one is set as the similarity between the query and the entity. 

Finally, a sorted list of the entities is retrieved according to the similarity with the query. 

 

Figure 21: The Ontology Scout Tool GUI 

 

Assuming that users provide the query “data science”, a table of the entities is retrieved 

descending on the cosine similarity which is obtained as explained above. The table of 

the entities contains information regarding their label, comment, type and the URI.  
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Figure 22: The results of “data science” query on the Ontology Scout Tool 
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5 Discussion 

In the previous section, several experiments are conducted in order to predict the relation 

among properties in an ontology set. As the results indicate, the Support Vector Machines 

along with the spaCy pre-trained embeddings are the best combination of models in the 

problem of this thesis. In detail, the SVM-spaCy model holds the first place in terms of 

accuracy and precision in the test set and in precision regarding the candidates set. Fur-

thermore, it retains the second place in terms of accuracy and MAP in the candidates set 

having slightly lower values than the Multilayer Perceptron-Glove model. After the hy-

perparameter optimization at the SVM-spaCy model there is an increase in the accuracy 

and MAP while the precision decreases imperceptibly. In addition, applying Principal 

Component Analysis results to a higher accuracy in the training set but a notable decrease 

in the candidates set. A justification of the lower accuracy after PCA may be the loss of 

information by shrinking the dimensions of the dataset. Taking into account the overall 

performance of the models applied for this problem, the majority of models has an accu-

racy above 80% in the candidates set. This result is encouraging since it justifies that the 

machine learning models are able to identify the pairs which have the sub-property rela-

tion despite the fact their labels and comments are related according to their embeddings. 

Specifically, all algorithms except the k-NN models score above the threshold of 80%.  

It is worth mentioning that the Support Vector Machine techniques (SVM and SVM Bag-

ging) have a significant high performance regarding this problem both in the test set and 

the candidates set. The candidates set is generated using the Sentence-Bert pre-trained 

embeddings. SBERT produces sentence embeddings of the size of 768 dimensions. Hav-

ing such a number of dimensions provides a great detail in the vector space. Despite this 

fact, SBERT in combination with the machine learning algorithms has a relatively low 

ranking in comparison with the other pre-trained embedding models. While the results 

are promising, there are some limitations which this thesis is aware of. First of all, the 

size of the dataset is relatively small since it focuses on European Union’s vocabularies 

which hold the sub-property relation. Regarding this relation, it denotes the relation 
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among a property and its properties belonging under the first one rather than the fact that 

two properties are the same.  

 

Figure 23: Scatter-plot of the 36 models regarding their mean average precision and accuracy on 

the Candidates Set before Hyperparameter Optimization and PCA. The colors indicate the pre-

trained embedding model.   

 

 

 

Apart from the sub-property link prediction problem, an ontology search tool is intro-

duced named Ontology Scout Tool (OS Tool). The prototype created provides ontology 

engineers with information regarding a query. This tool may support their decisions re-

garding ontology development and alignment tasks. It is based on SBERT pre-trained 

embeddings model because it is fast and reliable in computing the query embedding. On-

tologies aim to propel data integration and knowledge extraction via reusing concepts and 

relations that already exist. Using this tool, ontology engineers may acquire a strong in-

dication about which ontologies have an association with their query helping them to 

target specific ontologies and explore them in detail. One of the great advantages of the 

OS Tool is that ontology engineers can pre-load the ontologies of their interest. As stated 

in previous sections, the OS Tool is a prototype and hence it is an early stage. This means 

that there are several further steps that can improve the OS Tool. The results retrieved 

from the OS Tool rely on the SBERT embeddings which rely on a certain methodology 

and a specific corpus. For this reason, several pre-trained embedding models should be 
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tested in regards to the OS Tool. A more sophisticated way may be the average cosine 

similarity among the entities and the query obtained by several pre-trained embedding 

models. In addition, other distance metrics may be used to measure the similarity between 

the query and the entities in the vector space. Furthermore, at this early stage the OS Tool 

takes into consideration only the labels and comments of an URI rather than its relations 

with other entities. Finally, further improvements may take place regarding the graphical 

user interface of the tool but for the purpose of this thesis they are out of scope.  
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6 Conclusion and Future Work 

This thesis tried to improve ontology engineering by implementing machine learning 

techniques and pre-trained vector representation models in an ontology set. Specifically, 

the ontologies used are concerning the domain of e-Government in European Union. 

These ontologies are retrieved from the official site of the European Union’s Publica-

tion office. More thoroughly, this thesis tackled the problem of sub-property link pre-

diction in an ontology set while introducing an ontology search tool that aims to assist 

ontology engineers in their tasks. The results proved that predicting the sub-property re-

lation is feasible with a significant high accuracy. Furthermore, the ontology search tool 

helps ontology engineers to focus on their concepts and ontologies of interest by provid-

ing a query.   

Support Vector Machines (SVM) in combination with the “en_core_web_sm” spaCy 

pre-trained embedding model outperformed the rest of the models in the problem of 

sub-property link prediction. After the parameter optimization, the accuracy obtained 

from the SVM-spaCy model is 90.2%. Furthermore, the ontology search tool which is 

based on Sentence-Bert pre-trained embedding model can help ontology engineers to 

easily identify existing ontologies related to the entities of their interest. The results of 

this thesis indicate that applying machine learning techniques in the field of ontology 

engineering is attainable and can help reduce the extensive human labor.   

Since the dataset generated was based on European Union’s ontologies, a possible fu-

ture direction is to apply these methodologies in various sets of ontologies. Also, the 

problem of link prediction focused on the sub-property relation among properties. An-

other future direction is to focus on the sub-class relation among entities in an ontology 

set. Finally, regarding the ontology search tool, the vector representations are obtained 

from SBERT pre-trained embedding model which relies on a specific corpus. As a next 

step, the pre-trained embeddings can be generated from a corpus from a domain which 

aligns with the ontologies of users’ interest. 
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