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1. Presentation. The two prime examples of deterministic evolutionary game dynamics are the
replicator dynamics (RD) and the best response dynamics (BRD).

In the framework of a symmetric two person game with K ×K payoff matrix A played within a single
population, the replicator equation is given by

ẋk
t = xk

t

(

ekAxt − xtAxt

)

, k ∈ K (RD) (1)

where K is the set of pure strategies, ∆ = ∆(K) is the set of mixed strategies (the simplex on K), ek

is the kth unit vector in ∆, xt ∈ ∆ is the composition of the population at time t with xk
t denoting the

frequency of strategy k. It was introduced by Taylor and Jonker [25] as the basic selection dynamics
for the evolutionary games of Maynard Smith [20], see Hofbauer and Sigmund [16] for a summary. The
interpretation is that in an infinite population of replicating players, the per capita growth rate of the
frequencies of pure strategies is linearly related to their payoffs.

In the same framework, the best reply dynamics is defined by the differential inclusion on ∆

żt ∈ BR(zt) − zt, t ≥ 0 (BRD) (2)

It was introduced by Gilboa and Matsui [10] and studied further by Hofbauer [14], Hofbauer and Sigmund
[16], and Cressman [5]. Here BR(z) ⊂ ∆ denotes the set of all pure and mixed best replies to the strategy
profile z ∈ ∆. The interpretation is that in an infinite population of players, in each small time interval, a
small fraction of players revises their strategies and changes to a best reply against the present population
distribution. It is the prototype of a population model of rational (but myopic) behaviour.

(BRD) is closely related to the fictitious play process introduced by Brown [4], which models repeated
decision making by a single decision maker in each role of the game. Consider a bimatrix game played
repeatedly and let (xn, yn) denote the strategies at step n. The (discrete-time) fictitious play process
satisfies for all n > 0, xn+1 ∈ BR1(Yn), yn+1 ∈ BR2(Xn) where Xn = 1

n

∑n
s=1 xs, Yn = 1

n

∑n
s=1 ys,

and BRi is the set of best replies for player i. In a continuous time setting, letting (xt, yt) denote the

strategies at time t, the process satisfies for all t > 0, xt ∈ BR1(Yt), yt ∈ BR2(Xt) where Xt = 1
t

∫ t

0 xsds

and Yt = 1
t

∫ t

0 ysds. This implies that Zt = (Xt, Yt) satisfies the continuous fictitious play equation

Żt ∈
1

t
(BR(Zt) − Zt) , t > 0 (CFP ) (3)

where BR(Zt) = BR1(Yt) × BR2(Xt). This is equivalent to (BRD) via the change in time Zes = zs.

1

http://homepage.univie.ac.at/Josef.Hofbauer/
mailto:Josef.Hofbauer@univie.ac.at
http://homepage.univie.ac.at/Josef.Hofbauer/
mailto:sorin@math.jussieu.fr
mailto:sorin@math.jussieu.fr
http://www.ceremade.dauphine.fr/~viossat/
mailto:viossat@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~viossat/
http://books.google.fr/books?id=bBTJaFugTYMC&dq=Evolution+and+the+Theory+of+Games+Maynard+Smith&pg=PP1&ots=2vRvgPyN7I&sig=b721yo3J_OPL82gvCbM3Fja591c&hl=fr&sa=X&oi=book_result&resnum=4&ct=result
http://books.google.fr/books?id=Um2zw7Qmy1cC&dq=Evolutionary+games+and+population+dynamics+Hofbauer+Sigmund&pg=PP1&ots=um0gV00hq4&sig=gPKAlqmmjrb11egDcAkxkgcaHqg&hl=fr&sa=X&oi=book_result&resnum=4&ct=result
http://www.jstor.org/page/termsConfirm.jsp?redirectUri=/stable/pdfplus/2938230.pdf
http://books.google.fr/books?id=Um2zw7Qmy1cC&dq=Evolutionary+games+and+population+dynamics+Hofbauer+Sigmund&pg=PP1&ots=um0gV00hq4&sig=gPKAlqmmjrb11egDcAkxkgcaHqg&hl=fr&sa=X&oi=book_result&resnum=4&ct=result
http://books.google.fr/books?id=187BOmBvyvQC&dq=Evolutionary+dynamics+and+Extensive+form+games+Cressman&pg=PP1&ots=HSE2HtJa4N&sig=x-0BsWLZxQY4NPxUjh82fiAWqHI&hl=fr&sa=X&oi=book_result&resnum=4&ct=result


2 Hofbauer et al.: Time average replicator and best reply dynamics
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

Despite the different interpretations of (RD) and (BRD) and the different dynamic characters, there
are amazing similarities in the long run behaviour of these two dynamics. This has been summarized in
the following heuristic principle, see Gaunersdorfer and Hofbauer [9] and Hofbauer [14]:

For many games, the long run behaviour (t → ∞) of the time averages Xt = 1
t

∫ t

0
xsds of the trajectories

xt of the replicator equation is the same as for the BR trajectories.

In this paper we will provide a rigorous statement that largely explains this heuristics. We show that
for any interior solution of (RD), for every t > 0, the solution xt at time t is an approximate best reply
against its time-average Xt, and the approximation gets better as t → ∞. This implies that Xt is a
perturbed solution of (BRD) and hence the limit set of Xt has the same properties as a limit set of a
true orbit of (BRD), i.e. it is invariant and internally chain transitive under (BRD); these terms will be
explained in section 5. The main tool to prove this result is the logit map, which is a canonical smoothing
of the best response correspondence. We show that xt equals the logit approximation at Xt with error
rate 1

t .

2. Unilateral processes. We are interested in consequences for games but it is instructive to con-
sider the point of view of one player, without hypotheses on the behaviour of the others. This gives rise to
the unilateral process, defined below. There are two interpretations : the first one is that a single decision
maker repeatedly chooses a mixed strategy, receives a corresponding stream of payoffs, and adapts his
behaviour accordingly, without necessarily knowing whether he is facing Nature or other decision makers.
Alternatively, we may think of a game played between several populations (one per role in the game) and
consider the evolution of behaviour in one population according to a given dynamics without hypotheses
on the evolution of other populations; in particular, without assuming that the other populations evolve
according to the same dynamics.

In both cases, the player - or the population of players - is facing a (measurable) outcome process
U = {Ut, t ≥ 0}, with values in the cube C = [−c, c]K ⊂ R

K where K is his finite set of actions and c is
some positive constant. The outcome Ut is a vector ; its component Uk

t is the payoff received at time t
if k is the action played at that time. The constant c is a bound on the payoffs. The cumulative vector
valued outcome up to stage t is St =

∫ t

0 Usds and its time average is denoted by Ūt = 1
t St.

br denotes the (payoff based) best reply correspondence from C to the simplex ∆ on K, defined by

br(U) = {x ∈ ∆; 〈x, U〉 = max
y∈∆

〈y, U〉}

The U-fictitious play process (FPP) is defined on ∆ by the differential inclusion

Ẋt ∈
1

t
[br(Ūt) − Xt] (FPP ) (4)

The U-replicator process (RP) is specified by the following equation on ∆:

ẋk
t = xk

t [Uk
t − 〈xt, Ut〉], k ∈ K (RP ). (5)

Explicitly, in the framework of an N -player game with finite strategy sets Ki for each player i ∈ N
and payoff for player i defined by a function Gi from

∏

i∈N Ki to R one has, considering player 1,

Uk
t = G1(k, x−1

t ), where xt = (x1
t , x

−1
t ) ∈

∏

i∈N ∆i, with ∆i = ∆(Ki) denoting the simplex on Ki. This
describes the vector valued payoff process that player 1 is facing.
If all players follow a (payoff based) fictitious play dynamics, each time average strategy satisfies (4). For
N = 2 this is (CFP).
If all players follow the replicator process then (5) yields the N -player replicator equation on

∏

i∈N ∆i,

ẋik
t = xik

t [Gi(k, x−i
t ) − Gi(xt)] k ∈ Ki, i ∈ N. (6)

Finally, in the framework of a symmetric two person game with payoff matrix A played within a single
population, Ut = Axt, Uk

t = ekAxt and (5) yields (RD).

3. Logit rule and perturbed best reply. Define the Logit map L from R
K to ∆ by

Lk(V ) =
exp V k

∑

j exp V j
. (7)

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WFW-45NJFN9-8-1&_cdi=6805&_user=616844&_orig=browse&_coverDate=11%2F30%2F1995&_sk=999889997&view=c&wchp=dGLzVtb-zSkzk&md5=b2b7939b31b680d5d05aa7188aeafdf3&ie=/sdarticle.pdf
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Given η > 0, let [br]η be the correspondence from C to ∆ with graph being the η-neighborhood for the
uniform norm of the graph of br.
The L map and the br correspondence are related as follows:

Proposition 3.1 For any U ∈ C and ε > 0

L(U/ε) ∈ [br]η(ε)(U)

with η(ε) → 0 as ε → 0.

Proof. Given η > 0, define the correspondence Dη from C to ∆ by

Dη(U) = {x ∈ ∆; (Uk + η < max
j∈K

U j ⇒ xk ≤ η), ∀k ∈ K}.

and note that Dη ⊂ [br]η.
Let ε(η) satify

exp(−η/ε(η)) = η.

By definition of L, one has for all (j, k)

Lk(U/ε) =
exp((Uk − U j)/ε)

1 +
∑

ℓ 6=j exp((U ℓ − U j)/ε)

and it follows that ε ≤ ε(η) implies
L(U/ε) ∈ Dη(U).

Finally define η(ε) to be the inverse function of ε to get the result. �

Remarks. L is also given by

L(V ) = argmaxx∈∆{〈x, V 〉 −
∑

k

xk log xk},

see e.g. Rockafellar [23, p. 148]. Hence introducing the (payoff based) perturbed best reply brε from C
to ∆ defined by

brε(U) = argmaxx∈∆{〈x, U〉 − ε
∑

k

xk log xk}

one has
L(U/ε) = brε(U)

and proposition 3.1 follows also from Berge’s maximum theorem (Berge [3, p. 116]). The map brε is the
logit ε-approximation of the br correspondence.

4. Explicit representation of the replicator process.

4.1 CEW. The following procedure has been introduced in discrete time in the framework
of on-line algorithms under the name “multiplicative weight algorithm” (Freund and Schapire [7],
Littlestone and Warmuth [19]). We use here the name (CEW) (continuous exponential weight) for the
process defined, given U , by

xt = L(

∫ t

0

Usds) (CEW ) (8)

4.2 Properties of CEW . The main property of (CEW) that will be used is that it provides an

explicit solution of (RD). In fact applying the Logit map to the cumulative outcome stream
∫ t

0
Usds

generates a replicator process for the current outcome stream Ut.

Proposition 4.1 (CEW ) satisfies (RP ).

Proof. Taking the derivative of log xk
t leads to

ẋk
t

xk
t

= Uk
t −

∑

j

U j
t exp

∫ t

0
U j

vdv
∑

m exp
∫ t

0
Um

v dv

http://books.google.fr/books?hl=fr&id=wj4Fh4h_V7QC&dq=Rockafellar+Convex+Analysis&printsec=frontcover&source=web&ots=jtC9Y3rLCu&sig=ZKFXKCLBcG25vHMuKJ9m0_gKlto&sa=X&oi=book_result&resnum=7&ct=result
http://books.google.fr/books?hl=fr&id=TyDeuKolqJIC&dq=Topological+Spaces+Berge&printsec=frontcover&source=web&ots=g6-SUMkRyn&sig=GfhkBvlqwzly4USyFiSScpcNf5c&sa=X&oi=book_result&resnum=3&ct=result#PPA98,M1
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4 Hofbauer et al.: Time average replicator and best reply dynamics
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

which is

ẋk
t = xk

t [Uk
t − 〈xt, Ut〉]

hence gives the previous (RP) equation (5). �

Note that (CEW) specifies the solution starting from the barycenter of ∆. The link with the best
reply correspondence is the following.

Proposition 4.2 CEW satisfies

xt ∈ [br]δ(t)(Ūt)

with δ(t) → 0 as t → ∞.

Proof. Write

xt = L(

∫ t

0

Usds) = L(t Ūt) ∈ [br]η(1/t)(Ūt)

by Proposition 3.1, with U = Ūt and ε = 1/t. Let δ(t) = η(1/t). �

4.3 Time average. We describe here the consequences for the time average behavior process.
Define

Xt =
1

t

∫ t

0

xsds

Proposition 4.3 If xt is (CEW) then Xt satisfies

Ẋt ∈
1

t
([br]δ(t)(Ūt) − Xt)

with δ(t) → 0 as t → ∞.

Proof. Since

Ẋt =
1

t
(xt − Xt)

the result follows from Proposition 4.2. �

4.4 Initial conditions. The solution of (RP ) starting from x0 ∈ int∆ is given by xt = L(U0 +
∫ t

0 Usds) with Uk
0 = log xk

0 . The average process satisfies

Ẋt ∈
1

t
([br]δ(t)(U0/t + Ūt) − Xt). (9)

which can be written as

Ẋt ∈
1

t
([br]α(t)(Ūt) − Xt). (10)

with α(t) → 0 as t → ∞.

5. Consequences for games. Consider a 2 person (bimatrix) game (A, B). If the game is sym-
metric this gives rise to the single population replicator dynamics (RD) and best reply dynamics (BRD)
as defined in section 1. Otherwise, we consider the two population replicator dynamics

ẋk
t = xk

t

(

ekAyt − xtAyt

)

, k ∈ K1 (11)

ẏk
t = yk

t

(

xtBek − xtByt

)

, k ∈ K2

and the (BRD) dynamics corresponding to (2). Let M be the state space (a simplex ∆ or a product of
simplices ∆1 × ∆2).
We now use the previous results with the U process being defined by Ut = Ayt for player 1, hence
Ūt = AYt. Note that1 br(AY ) = BR1(Y ).

1The following result is not true for general N person games, with N ≥ 3, due to the nonlinearity of their payoff functions.

However, Proposition 5.1 still holds for N person games with linear incentives.
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Proposition 5.1 The limit set of every replicator time average process Xt starting from an initial point
x0 ∈ intM is a closed subset of M which is invariant and internally chain transitive (ICT) under (BRD).

Here the limit set of a process Xt is the set of all accumulation points of Xt as t → ∞. A set A is
invariant under a (set-valued) flow Φt generated by a differential inclusion such as (BRD), if for every
x ∈ A there exists a solution x, defined for all t ∈ R, with x(0) = x and x(t) ∈ A for all t ∈ R. For
compact sets A this is equivalent to A ⊂ Φt(A) for all t ∈ R, see Benäım et al. [1, Lemma 3.3]. A set A is
internally chain transitive (ICT) if any two points x, y ∈ A can be connected by finitely many arbitrarily
long pieces of orbits lying completely within A with arbitrarily small jumps between them. For the precise
definition see Benäım et al. [1, section 3.3].

Proof of Proposition 5.1. Equation (10) implies that Xt satisfies a perturbed version of (CFP)
hence Xet is a perturbed solution to the differential inclusion (BRD), according to Definition II of
Benäım et al. [1]. Now apply Theorem 3.6 of that paper. �

A consequence of Proposition 5.1 is the following.

Proposition 5.2 Let A be the global attractor (i.e., the maximal invariant set) of (BRD). Then the
limit set of every replicator time average process Xt starting from an initial point x0 ∈ intM is a subset
of A.

We now discuss some consequences and special cases.

1) If the time average of an interior orbit of the replicator dynamics converges then the limit is a
Nash equilibrium. Indeed, by Proposition 5.1 the limit is a singleton invariant set of (BRD), and
hence a Nash equilibrium. In particular, the time average of a periodic orbit in intM is an interior
Nash equilibrium. (This statement is wrong for 3 person games, see Plank [21] for a counterexample.) As
another consequence one obtains: If an interior orbit of the replicator dynamics converges then the limit is
a Nash equilibrium. (For a direct proof which works also for N -person games, see Hofbauer and Sigmund
[16, Theorem 7.2.1].)

2) For 2 person zero-sum games, the global attractor of (BRD) equals the (convex) set of Nash equilibria
(this is a strengthened version of Brown and Robinson’s convergence result for fictitious play (Robinson
[22]), due to Hofbauer and Sorin [17]). Therefore, by Proposition 5.2 the time averages of (RD) converge
to the set of Nash equilibria as well. For a direct proof (in the special case when an interior equilibrium
exists) see Hofbauer and Sigmund [16, 11.2.6]. Note that orbits of (RD) in general do not converge, but
oscillate around the set of Nash equilibria, as in the matching pennies game.

3) In potential games the only ICT sets of (BRD) are (connected subsets of) components of Nash
equilibria, see Benäım et al. [1, Theorem 5.5]. Hence, by Proposition 5.1 time averages of (RD) converge
to such components. In fact, orbits of (RD) themselves converge, since the common payoff function is an
increasing Ljapunov function, see Hofbauer and Sigmund [16, Theorem 11.2.2].

4) For games with a strictly dominated strategy, the global attractor of (BRD) is contained in a face of
M with no weight on this strategy. Hence time averages of (RD) converge to this face, i.e., the strictly
dominated strategy is eliminated on the average. In fact, the frequency of a strictly dominated strategy
under (RD) vanishes, see Hofbauer and Sigmund [16, Theorem 8.3.2].

5) Consider now the rock–paper–scissors game with payoff matrix A =





0 −b2 a3

a1 0 −b3

−b1 a2 0



, ai, bi > 0

in a single population setting. There are two cases, see Gaunersdorfer and Hofbauer [9]. If a1a2a3 ≥
b1b2b3 then the NE x̂ is the global attractor of (BRD). Hence, Proposition 5.2 implies that the time
averages of (RD) converge to x̂ as well. Note that in case of equality, a1a2a3 = b1b2b3 the orbits of (RD)
oscillate around x̂ and hence do not converge, only their time averages do. If a1a2a3 < b1b2b3 then there
are two ICT sets under (BRD), x̂ and the Shapley triangle, see Gaunersdorfer and Hofbauer [9]. Then
Proposition 5.1 implies that time averages of (RD) converge to one of these, whereas the limit set of
all non-constant orbits of (RD) is the boundary of M . However, our results do not show that for most
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orbits, the time average converges to the Shapley triangle. This still requires a more direct argument, as
in Gaunersdorfer and Hofbauer [9].

6) If x̂ ∈ intM is the global attractor of (BRD), then time averages of (RD) converge to x̂. In the
literature on (RD) the following sufficient condition for the convergence of its time averages is known: If
the (RD) is permanent, i.e., all interior orbits have their ω–limit set contained in a compact set in intM ,
then the time averages of (RD) converge to the unique interior equilibrium x̂. (See Hofbauer and Sigmund
[16, Theorem 13.5.1].) It is tempting to conjecture that, for generic payoff matrices A, permanence of
(RD) is equivalent to the global attractor of (BRD) being equal to the unique interior equilibrium.

6. External consistency. Another property related to the average outcome process and (CEW) is
external consistency (sometimes called “no regret”).

6.1 Definition. A procedure satisfies external consistency if for each process U with values in R
K ,

it produces a process {xt} ∈ ∆, such that for all k
∫ t

0

[Uk
s − 〈xs, Us〉]ds ≤ Ct = o(t)

This property says that the (expected) average payoff induced by {xt} along the play is asymptotically
not less than the payoff obtained by any fixed choice k ∈ K, see Fudenberg and Levine [8].

6.2 CEW. We recall this result from Sorin [24], where the aim is to compare discrete and continuous
time procedures.

Proposition 6.1 (CEW) satisfies external consistency.

Proof. Define Wt =
∑

k∈K expSk
t . Then

Ẇt =
∑

k

exp(Sk
t )Uk

t =
∑

k

Wt xk
t Uk

t = 〈xt, Ut〉Wt.

Hence

Wt = W0 exp(

∫ t

0

〈xs, Us〉ds).

Thus, Wt ≥ exp(Sk
t ) for every k, implies:

∫ t

0

〈xs, Us〉ds ≥

∫ t

0

Uk
s ds − log W0.

�

6.3 RP. In fact a direct and simpler equivalent proof is available, see Hofbauer [15].

Proposition 6.2 (RP ) satisfies external consistency.

Proof. By integrating equation (5), one obtains, on the support of x0:
∫ t

0

[Uk
s − 〈xs, Us〉]ds =

∫ t

0

ẋk
s

xk
s

ds = log(
xk

t

xk
0

) ≤ − log xk
0 .

�

Remark. This proof shows in fact more: for any accumulation point x̄ of xt, one component x̄k will
be positive hence the corresponding asymptotic average difference in payoffs will be 0. In fact if xk

tn
→ x̄k

then
1

tn

∫ tn

0

[Uk
s − 〈xs, Us〉]ds → 0 as tn → +∞.

Back to a game framework this implies that if player 1 follows (RP) then the set of accumulation
points of the empirical correlated distribution process will belong to her reduced Hannan set, see
Fudenberg and Levine [8], Hannan [11], Hart [12]:

H̄1 = {θ ∈ ∆(S); G1(k, θ−1) ≤ G1(θ), ∀k ∈ S1, with equality for at least one component}.

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WFW-45NJFN9-8-1&_cdi=6805&_user=616844&_orig=browse&_coverDate=11%2F30%2F1995&_sk=999889997&view=c&wchp=dGLzVtb-zSkzk&md5=b2b7939b31b680d5d05aa7188aeafdf3&ie=/sdarticle.pdf
http://books.google.fr/books?id=Um2zw7Qmy1cC&dq=Evolutionary+games+and+population+dynamics+Hofbauer+Sigmund&pg=PP1&ots=um0gV00hq4&sig=gPKAlqmmjrb11egDcAkxkgcaHqg&hl=fr&sa=X&oi=book_result&resnum=4&ct=result
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V85-3YB56JR-N-2&_cdi=5861&_user=616844&_orig=browse&_coverDate=09%2F30%2F1995&_sk=999809994&view=c&wchp=dGLbVlz-zSkzV&md5=b7d540ed8f63f34c60e3846c64de0dec&ie=/sdarticle.pdf
http://www.springerlink.com/content/y118367m23078167/fulltext.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V85-3YB56JR-N-2&_cdi=5861&_user=616844&_orig=browse&_coverDate=09%2F30%2F1995&_sk=999809994&view=c&wchp=dGLbVlz-zSkzV&md5=b7d540ed8f63f34c60e3846c64de0dec&ie=/sdarticle.pdf
http://www.ma.huji.ac.il/~hart/abs/heurist.html
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6.4 Internal consistency. A procedure satisfies internal consistency (or “conditional no regret”) if
for each process U with values in R

K , it produces a process {xt} ∈ ∆, such that for all k and all j
∫ t

0

xj
s[U

k
s − U j

s ]ds ≤ C′
t = o(t)

In a discrete-time context, this property says that the average payoff on periods where j was played
is asymptotically not less than the payoff that would have been received on these periods by any fixed
choice k ∈ K (Foster and Vohra [6]). In a game context, if all players use a procedure satisfying internal
consistency, then the set of accumulation points of the empirical correlated distribution process will
belong to the set of correlated equilibria (Hart and Mas-Colell [13]).

The example due to Viossat [26] of a game where the limit set for the replicator dynamics is disjoint
from the unique correlated equilibrium shows that (RP) does not satisfy internal consistency.

7. Comments. We can now compare several processes in the spirit of (payoff based) fictitious play.
The original fictitious play process (I) is defined by

xt ∈ br(Ūt)

The corresponding time average satisfies (CFP ).
With a smooth best reply process (see Hopkins [18]) one has (II)

xt = brε(Ūt)

and the corresponding time average satisfies a smooth fictitious play process.
Finally the replicator process (III) satisfies

xt = br1/t(Ūt)

and the time average follows a time dependent perturbation of the fictitious play process.
In (I), the process {xt} follows exactly the best reply correspondence, but does not have good unilateral
properties.
On the other hand for (II), {xt} satisfies a weak form of external consistency, with an error term α(ε)
vanishing with ε (Fudenberg and Levine [8], Benäım et al. [2]).
In contrast, (III) satisfies exact external consistency due to a both smooth and vanishing approximation
of br.
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