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IMPROVED MODEL OF POWDER BLEND COMPACTING IN A ROLL COMPACTOR 

Abstract. A new mathematical model of mineral fertilizer compacting using a roll compactor is developed. This model 
is based on the transition to the values of stress tensor components averaged over the cross-sectional area of the powder mix-
ture flow. To define these stresses, equations of equilibrium of the elementary layer determined in the mixture by two planes 
perpendicular to the flow direction are composed. To obtain relatively simple analytical relations in the calculations, the hy-
pothesis of a power-law dependence of hydrostatic pressure on mixture density, accepted in the framework of the Johansen 
model, was used. In order to take into account changes in the mechanical characteristics of the mixture (angle of internal 
friction, coefficient of external friction, transverse strain coefficient) while compacting, we approximated the known experi-
mental dependencies of the corresponding characteristics on the density. The inter-particle cohesion parameter was taken to 
be proportional to the hydrostatic pressure. The model allows calculating the gap between the rolls surfaces for a given initial 
bulk density and the required flake density. With the known gap value, the distribution of the axial average stresses in the 
powder mixture, the normal and shear stresses on the rolls’ surfaces are determined. The results of the calculations of the rolls 
surface gap and the normal roll pressure diagram are compared with the experimental data given in the literature for the urea 
compacting process. 

Keywords: compacting, powder mixture, roll compactor, equilibrium equations, stress tensor components, internal fric-
tion angle, inter-particle cohesion

For citation: Chizhik S. A., Volchek O. М., Prushak V. Ya. Improved model of powder blend compacting in a roll compactor. Vestsi 
Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnych navuk = Proceedings of the National Academy of Sciences 
of Belarus. Physical-technical series, 2021, vol. 66, no. 3, pp. 288–297. https://doi.org/10.29235/1561-8358-2021-66-3-288-297

С. А. Чижик1, О. М. Волчек2, В. Я. Прушак3

1Президиум Национальной академии наук Беларуси, Минск, Республика Беларусь 
2Барановичский государственный университет, Барановичи, Брестская область, Республика Беларусь 

3Солигорский Институт проблем ресурсосбережения с Опытным производством, Солигорск, Минская область, 
Республика Беларусь

УСОВЕРШЕНСТВОВАННАЯ МОДЕЛЬ ПРЕССОВАНИЯ ПОРОШКОВОЙ СМЕСИ В ВАЛКОВОМ ПРЕССЕ

Аннотация. Разработана математическая модель прессования минерального удобрения на валковом прессе. 
Данная модель основана на переходе к усредненным по площади поперечного сечения потока порошковой смеси 
значениям компонент тензора напряжений. Для определения этих напряжений составляются уравнения равнове-
сия элементарного слоя, выделяемого в смеси двумя плоскостями, перпендикулярными к направлению потока. 
Для обес печения возможности получения относительно простых аналитических соотношений при расчетах ис-
пользована принятая в рамках модели Йохансена гипотеза о степенной зависимости гидростатического давления от 
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плотности смеси. Для учета изменения механических характеристик смеси (угла внутреннего трения, коэффициента 
внешнего трения, коэффициента поперечной деформации) в процессе прессования производилась аппроксимация 
известных экспериментальных зависимостей соответствующих характеристик от плотности. Параметр межчастич-
ного сцепления принимался пропорциональным гидростатическому давлению. Модель позволяет вычислить значе-
ние зазора между поверхностями валов при заданных значениях исходной насыпной плотности смеси и требуемой 
плотности плитки. При известном значении зазора устанавливаются распределения осевых усредненных напряже-
ний в порошковой смеси, нормального и сдвигового напряжений на поверхности валов. Результаты расчетов зазора 
между поверхностями валов и эпюры нормального давления на вал сопоставлены с приведенными в литературных 
источниках экспериментальными данными для процесса прессования мочевины.

Ключевые слова: прессование, порошковая смесь, валковый пресс, уравнения равновесия, компоненты тензора 
напряжений, угол внутреннего трения, межчастичное сцепление
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Introduction. The modern stage of technological equipment development is characterized, in par-
ticular, by increased requirements for the quality of manufactured products. In addition, in a competitive 
environment, the role of premier choice of design and process values, providing the required level of 
quality while meeting the reliability criterion and reducing the costs, is high. This indicates the rele-
vance of further improvement of calculation methods that allow predicting the power and energy equip-
ment load during the technological processes. 

At present, the technology of dry granulation of powder bulk materials by compacting without use 
of binding agents is widely used in production of mineral fertilizers. The most important and expensive 
equipment in the process lines, however, is a roll compactor (Figure 1), that works as follows: the initial 
bulk material is fed through the feed system in the area between two rotating against each other rolls, 
where the material is compacted and formed into sheet (flakes), which are further crushed, classified 
and additionally treated. Further optimization of process parameters for compacting the bulk materials 
and improvement of roll compactors’ design is an important scientific and technical task, which can-
not be successfully solved without relevant mathematical modeling of compacting processes of powder 
bulk materials.

When describing the process of mineral fertil-
izers compacting on roll compactors [1], the sim-
plified Johansen model [2, 3] is currently mainly 
used. The main disadvantages of this model are 
the following.

1. A plane stress state of a powder mixture is 
considered. The axial component of the stress ten-
sor corresponding to the direction of the compact-
ing rolls is neglected. 

2. The cohesion between the particles in the 
powder mixture is not taken into account. In the 
classical Johansen model, the limit state of a ma-
terial is defined by one characteristic, the angle 
of internal friction. In later modifications of this 
model [4] the angle between the coordinate axis 
and the slip line is also introduced. In this case, 
along with the minimum (residual) angle of inter-
nal friction, the effective angle of internal friction 
is included in the limit state equation. However, 
even in the paper [4] the calculations are made 
without taking into account the cohesion of the 
powder mixture particles. 

3. The contact area between the powder mix-
ture and the rollers surfaces is divided into a feed 
and sealing area. This does not consider the final Figure 1. Roll compactor PVP 1000 ç 650MG
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extrusion area in which the already formed flakes are displaced. By neglecting this area, the calculated 
value of the longitudinal (in the direction of the mixture movement) stress, when the flake comes out of 
rolls contact, reaches its maximum value. However, in the absence of extrusion, the cross-sectional av-
erage of this stress should be zero. 

4. The change in mixture characteristics with a change in density is not taken into account. It was 
experimentally found out [5] that during compacting such characteristics as internal friction angle and 
external friction coefficient (with the roll surface) change by a factor of two or more.

The noted weaknesses of the Johansen model are eliminated in the frame of the Katashinsky–Stern 
model, described in detail, in particular, in the paper [6]. However, this refined model also has a number 
of weaknesses.

1. The real region of space occupied by the powder mixture during compacting is replaced by a pris-
matic area whose width is equal to the gap between the roll surfaces. This assumption allows the model 
to be used only in the range of small angles of powder capture.

2. In the sealing area, using Katashinsky–Stern model, Coulomb’s law for shear stress on rolls sur-
face is assumed to be fulfilled. At the same time, the sealing area is characterized by the cohesion of 
powder particles to the roll surface and the shear stress within this area changes its direction.

In relation to the above, the aim of this study is to develop a combined mathematical model of a roll 
compactor, which would take advantage and eliminate the disadvantages of the existing calculation 
methods. 

Description of the calculation methods. The operation of a roll compactor is schematically shown 
in Figure 2. The following designations are adopted in the figure: R – roll radius; p0 – feed pressure; hs – 
gap between roll surfaces; ω – angular velocity of rolls; θ – current angle, varying from 0 to α; α – angle 
defining the beginning of feed area; γ – angle defining the boundary between feed and sealing areas; 
β – angle defining the boundary between sealing and extrusion areas. Roller-compaction is described 
in Cartesian coordinates. The x-axis is vertical, equispaced from the surfaces of neighbouring rolls and 
directed opposite to the movement of the powder mixture. The y-axis is horizontal and runs through the 
centres of the neighbouring rolls. The z-axis is perpendicular to the pattern plane. The thickness of the 
rolls (dimension along the z-axis) is H. 

Figure 2. Operation mode of a roll compactor

The limit state of the mixture for all areas will be described by the equation [5]
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4
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4
2
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σ σ τ δ σ σ δy x xy y x k−( ) + = + +( )sin .ctg  (1)

Here σx, σy are the axial components of the stress tensor; τxy is the shear component of the stress tensor; 
δ is effective angle of internal friction; k is the inter-particle cohesion parameter.
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The condition of plain strain is also fulfilled for all areas. Namely, the axial strain corresponding to 
the z-axis (εz = 0) and the shear strains in the xz and yz planes are equal to zero.

The axial component of the stress tensor z is related to the values of σx and σy

 σ µ σ σz x y= +( ). (2)

Here is the transverse strain coefficient (Poisson’s ratio) of the material. In the Katashinski–Stern model, 
the average axial stress is expressed as follows 

 σ σ σ σ µ σ σ= + +( ) = + +
1

3

1

3
1x y z x y( )( ). (3)

This value corresponds to the actual hydrostatic pressure.
To keep the elegance of analytical relationships derived from the Johansen model, we use the ap-

proach proposed in paper [7]. Namely, we determine a thin layer of powder mixture by two planes par-
allel to the yz plane and placed at a small distance dx = R · dθ from each other. We replace the real values 
of the axial stresses σx, σy with their y-coordinate averaged values σxav, σyav, which will not depend on y. 
Let us use the averaged stress components in generating the equilibrium equations of the elementary 
layer. Without repeating the transformations described in detail in the paper [7], we give only two rela-
tions obtained in this paper. The equilibrium equation in projections on the x-axis appears as the equality 

 
d
d

s px
x f

σ
θ

θ σ θ θ τ θav
av( cos ) sin sin cos .1+ − + = −  (4)

Where p, τf are normal and shear stress acting on the layer from the surface side of the roll; s = hs/(2R) – 
design value introduced for brevity of further entries.

The equilibrium equation for the part of elementary layer in projections onto the y-axis can be trans-
formed to the form 
 σ τ θy fpav = + tg . (5)

In the paper [7] the transition to the averaged components of the stress tensor is not explicitly spec-
ified. However, the equations (4), (5) are composed exactly for the averaged components, which do not 
depend on the y-coordinate.

The structure being considered and its loading mode are symmetrical against the xz plane. 
Consequently, the shear stress value τxy averaged over the y-coordinate is zero τxyav = 0. Using jointly 
relations (1) and (3) for the averaged axial components of the stress tensor we obtain
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Equations (4)–(6) will be used for all three areas in the field where the powder is in contact with the rolls. 
Let us consider each area separately.
Feed area. In the feed area the density of the powder mixture varies slightly and can be assumed 

equal to the initial bulk density ρb. Consequently, the mixture characteristics δ, µ and k, which in gen-
eral depend on density, can be assumed constant. In the feed area, Coulomb’s law is true for the shear 
stress τf on the roll surface
 τ f fp= . (7)

Here f is the coefficient of friction between the powder mixture particles and the roll surface. The value 
of f generally depends on the density of the mixture. For the feed area, the friction coefficient takes the 
value fb corresponding to the density ρb.

For characteristics δ, µ and f of most known mineral fertilizers the experimental dependence on den-
sity is known and given, in particular, in the paper [5]. The dependence on average axial stress is more 
often used [5] for the inter-particle cohesion parameter

 k c c= +σ 0. (8)

Here c, c0 are constants determined by approximation of the experimental dependencies. If baking and 
caking effects can be neglected for a given material, then с0 = 0. Later on we will only use the constant c. 
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In the feed area, the k value is taken as constant and corresponding to the maximum value of the 
average axial stress σγ for this area, which is achieved at θ = γ

 k cb = σγ . (9)

Using relations (5)–(7) and making mathematical transformations, we obtain the differential equa-
tion for the averaged hydrostatic pressure 
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In equation (10), for brevity, the functions of angle θ 
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and combination of constants are given
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Here δb, µb are the values of the powder mixture characteristics corresponding to the bulk density ρb.
According to the first equality (6), the value of the average axial stress σα at angle θ = α is given by 

the relation 
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The value of the angle α limiting the contact area between the powder mixture and the roll surface is 
determined from the continuity of the pressure gradient, which is zero outside the contact area 

 p Q c Q Q0 1 1 2 0b b b b( ) cos ( ( ) ( )) .α σ δ α αγ+ + =  (13)

To determine the angle α from this equation with a non-zero value of the coefficient c and an un-
known value σγ is impossible. The value α will be determined during considering the sealing area.

The solution of differential equation (10) is 

 σ θ σ σ ζ η η ζα γ
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α
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Knowing the function σav(θ), we determine the angle θ dependence of the averaged axial stresses on 
the formulas (6) and (2). The material characteristics δ, µ, k take the values δb, µb and kb. Using relations 
(5) and (7) together for the values p and τf we obtain 

 p
f

f py
f( )

( )
, ( ) ( ).θ

σ θ

θ
τ θ θ=

+
=av

b

b
tg1

 (15)

Sealing area. In the sealing area, the mixture density increases from ρb to the final flake density ρd. 
In order to keep the possibility of obtaining relatively simple analytical relations for this area, we use 
one of the basic assumptions of the Johansen model relating to the power law dependence of the average 
axial stress on the density 
	 σ ∼ ρK. (16)

Here K is the compaction ratio in the Johansen model, which is a characteristic of the powder mixture. 
Using assumption (16), a differential equation [4, 7] can be derived for the average axial stress in the 
sealing area 
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An angle function θ is introduced here 

 Q K s
s
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θ
θ

=
+ −
+ −

tg
1 2

1
 (18)

The boundary condition for the average axial stress in the sealing area follows from the require-
ments of stress continuity σ and gradient dσ/dθ in the transition from the feed area to the sealing area 
(θ = γ). Initially the gradient continuity condition is drawn up 

 Q w Q Q1 2b b b( ) ( ) ( ).γ γ γ+ =  (19)

Solving this non-linear equation, we determine the angle γ. According to the function (14) taking 
into account relations (12) and (13) at a known value γ we set up expression for voltage σγ 
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From this non-linear equation we find out the angle α. Then from the equation (13) we find out σγ

 σ
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δ α αγ = − +( )
p Q

c Q Q
0 1

1 2
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Knowing γ and σγ, the solution of the differential equation (17) is as follows 
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With a known function σav(θ), the ratio (16) allows determining the dependence of the mixture den-
sity on the angle θ 
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When using relations (2) and (6) to determine the averaged axial stresses in the sealing 
area, the density functions δρ, µρ, fρ must be substituted for the specific values of characteristics 
δ, µ, f. In accordance with the equality (23) these dependencies can be presented by functions of angle θ: 
δ δ ρ δ ρ θ δ θ δρ θ= = = =( ) ( ( )) ( ) .

The function corresponding to the inter-particle cohesion parameter kθ is defined according to (8) at 
c0 = 0: k k cθ θ σ θ= =( ) ( ).av  Thus, in the sealing area the axial stresses are given by the relations 
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As noted above, Coulomb’s law for the shear surface stress τf is not met in the sealing area. 
Therefore, we use relations (4) and (5) to determine the surface distributed forces p and τf with known 
functions σxav(θ) and σyav(θ). After performing mathematical transformations we obtain 

 
τ θ σ θ σ θ θ θ
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 (25)

The roll compactor is designed in such a way that ensures the required flake density value ρd. 
Therefore, the value of the compaction factor z = ρd/ρb z is a given one. 

Knowing z and using the relation (16), the value of the average axial stress at the transition to the 
extrusion area (θ = β) can be determined 

 σ σβ γ= zK . (26)
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To ensure the continuity of the mixture flow, an inverse relationship must be maintained between 
the density ρθ in a given cross-section and the elementary volume Vθ, corresponding to that cross-section 

	 ρθ ∼ 1/Vθ. (27)

Here the elementary volume is defined by the ratio

 V h R Hdx s R H dsθ θ θ θ θ= + − = + −( ( cos )) ( cos ) cos .2 1 1 2
2  (28)

We use the ratio (27) taking into account (28) for the cross-sections θ = γ (ρb) and θ = β (ρd)
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Let us solve the equation (29) with respect to the angle β
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Formulas (26) and (30) can be considered as boundary conditions for the extrusion area.
Extrusion area. Within this area, the density of the object to be compacted remains unchanged and 

is ρd. Therefore, the characteristics δ, µ, f and k take the values δd, µd, fd and kd corresponding to ρd. In 
this case kd = сσβ. Coulomb’s law is fulfilled for the contact stresses p and τf in the extrusion area

 τ f fp= − . (31)

The minus sign in the last equation reflects the change in direction of the shear contact stress com-
pared to the feed area.

Performing the same transformations as for the feed area, we obtain a differential equation similar 
to (10)
 d

d
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The functions Q1d (θ) and Q2d (θ) are defined by the relations 
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Similarly to the feed area, a combination of characteristic values is also entered 
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The solution of equation (32) taking into account the boundary condition σav(β) = σβ is
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As noted above, in the absence of extrusion, the averaged axial stress σxav, when the flake leaves the 
contact with the roll (θ = 0), is zero. Consequently

 σ σ σβ0 0= =av d( ) .w

By writing down the function (34) for θ = 0, we obtain the following equation (34) 

 Q Q d d Q d2 1
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d d d( )exp ( ) exp ( )ζ η η ζ η η
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ββ β
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 +
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If the density of the flake is given, then the equation (35) is used to determine the design parameter 
s that provides the required compaction factor z. 
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An example of the calculation method application. As an example of the application of the de-
veloped mathematical model we consider the process of compacting the urea with rolls of radius 
R = 0.04 m and thickness H = 0.03 m. In the absence of additional feed pressure the value of p0 is taken 
as equal to 0.1 MPa. For this process, the experimental data are given in paper [5].

The experimental dependencies [5] of the internal friction angle tangent tgδ, transverse strain fac-
tor µ and external (with roll surface) friction coefficient f on powder mixture density in the range from 
ρb = 1.0 kg/m3 to ρmax = 2.1 kg/m3 will be approximated by the function 

 µ µ
ρ ρ

ρ ρ
ρ ρ

ρ ρρ = +
−
−









 +

−
−









b

b

b

b

b

A B
max

.

max

.

0 5

 (36)

Here A, B are least-squares approximation coefficients. Ratios similar to (36) are also written down for 
tgδ and f.

The results of the approximation are shown in the Table 1. The table 1 also shows the values of cor-
relation coefficients χ of the experimental values and the results of using the functions (36) to assess 
the accuracy.

The coefficient determining the growth rate of the inter-particle cohesion parameter is c = 0.29. The 
compaction index K for the Johansen model is determined by approximation of the experimental depend-
ence of density on average axial stress ρ(σ), given in [5], in the range of densities from ρb to ρmax. The va lue 
was K = 8.32 with correlation coefficient χ = 0.82. 

Let us use the developed model to calculate 
the design parameter s for given flake density ρd in 
the range of 1.5 to 2.1 kg/m3. At the same time five 
functions Q1b, Q2b, Q, Q1d, Q2d of the angle θ and 
the required parameter s are initially made using 
the formulas (11), (18) and (33). Then non-linear 
equation (19) is solved and the angle γ is found out 
as a function of the parameter s. Then the func-
tion β(s) is defined by formula (30). Once done, 
non-linear equation (35) is solved and parame-
ter s is found out. 

Figure 3 shows the results of the calculations 
and their comparison with the experimental rela-
tionship borrowed from paper [5]. An acceptable 
accuracy of the calculated estimates can be noted. 

By determining the parameter s at a given val-
ue of sealing coefficient, the values of angles γ and 
β can be calculated in accordance with the devel-
oped model. After that by solving the non-linear 
equation (20) we determine the angle α. Under the 
formula (21) we calculate the tension σγ, and using 
the formula (26) we calculate σβ. Table 2 shows 
the calculation results of the above-mentioned pa-
rameters of compaction process for the analyzed 
process at z = 2.07. Parameter s = 0.00434. 

The values given in the table and the param-
eter s are sufficient to establish an explicit form 
of dependence of the average axial stress on the 
angle for the feed, sealing and extrusion areas, re-
spectively, using the basic data from the formulas 
(14), (22) and (34). Then, in each area, the depend-
encies on the averaged axial stresses θ are deter-
mined. In addition, the functions p(θ) and τf(θ) 

T a b l e  1.  Approximation results of the 
experimental dependencies of the powder mixture (urea) 

characteristics on density

Characteristic ρ = ρb A B χ

tgδ 0.52 –0.20 –0.50 0.92
µ 0.21 0.12 0.20 0.89
f 0.16 –0.08 –0.03 0.96

Figure 3. Dependence of the sealing factor z on the relative 
(referred to the roll’s diameter) thickness of the gap between 
the roll surfaces. The block curve – experimental dependence 
from [5]; the dashed curve – calculated dependence obtained 

using the developed model

T a b l e  2.  Results of calculating urea rolling 
parameters at z = 2.07

Boundary α γ β

Angle, degree 18.52 10.96 4.09
σ, MPa 0.12 0.25 112.91



296 Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2021, vol. 66, no. 3, pp. 288–297 �

are determined also. For this example (urea at z = 2.07) the normal contact pressure stress diagram is 
given in paper [5]. Figure 4 compares this stress diagram with the results of the developed model. As 
for the graphs in Figure 3, we can speak about acceptable accuracy of the contact pressure prediction. 
The slightly lower estimates for the sealing area are due to the use of assumption (16) borrowed from 
Johansen’s model. 

Figure 4. Dependence of normal pressure p on the roll on the angle θ while urea compacting at 
sealing factor z = 2.07: block curve – experimental dependence from [5]; dashed curve – calculated 

dependence obtained using the developed model

Conclusion. A mathematical model of mineral fertilizer compacting using a roll compactor is de-
veloped. Unlike the previously used Johansen model, it allows to take into account comprehensively the 
presence of three non-zero axial stresses in a powder mixture, the influence of inter-particle cohesion 
and its dependence on hydrostatic pressure, changes of mixture characteristics when density changes, 
the presence of three characteristic areas (feeding, sealing and extrusion), where the mixture contacts 
the roll. The model developed enables to derive relatively simple analytical relationships for the parame-
ters that determine the power load of the material to be compacted and of the rolls. The calculation is the 
solution of three non-linear equations, followed by the use of the derived functional relationships. Within 
the framework of the developed model, it is possible to establish the dependence of the sealing factor on 
the relative gap between the roll surfaces. Previously while designing, the corresponding experimental 
dependencies were used. Comparison of the usage results of the model with the empirical z(s) relation-
ship for urea showed acceptable accuracy of the evaluated estimates calculated. Slightly overestimated 
gap values for small (up to 1.7) sealing coefficients are due to the neglect of backing and caking effects 
(the inter-particle cohesion parameter is assumed to be zero in the absence of hydrostatic compression), 
and using the hypothesis of a power-dependence of hydrostatic pressure on density in the sealing area 
(Johansen model assumption). The same assumptions lead to slightly underestimated pressure on the roll 
from the material being compacted. In this case, the calculated diagram of this pressure describes the 
known experimental data for the urea compaction with an acceptable accuracy. 
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