
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 16, Issue: 5, Month: October, Year: 2021
Article Number: 4308, https://doi.org/10.15837/ijccc.2021.5.4308

CCC Publications

HABCSm: A Hamming Based t-way Strategy based on Hybrid
Artificial Bee Colony for Variable Strength Test Sets Generation

A. K. Alazzawi, H. M. Rais, S. Basri, Y.A. Alsariera, L. F. Capretz, A.A. Imam, A.O. Balogun

Ammar k Alazzawi*, Helmi Md Rais, Shuib Basri, Abdullateef Oluwagbemiga Balogun and
Abdullahi Abubakar Imam
Department of Computer and Information Sciences
Universiti Teknologi PETRONAS, Malaysia
Bandar Seri Iskandar 32610, Perak, Malaysia
*Corresponding author: ammar_16000020@utp.edu.my

Yazan A. Alsariera
Department of Computer Science
Northern Border University, Saudi Arabia
Arar 73222, Saudi Arabia
yazan.ahmad@nbu.edu.sa

Luiz Fernando Capretz
Department of Electrical and Computer Engineering
Western University, Canada
1151 Richmond Street, London, Ontario N6A 5B9, Canada
lcapretz@uwo.ca

Abstract
Search-based software engineering that involves the deployment of meta-heuristics in applicable

software processes has been gaining wide attention. Recently, researchers have been advocating the
adoption of meta-heuristic algorithms for t-way testing strategies (where t points the interaction
strength among parameters). Although helpful, no single meta-heuristic based t-way strategy
can claim dominance over its counterparts. For this reason, the hybridization of meta-heuristic
algorithms can help to ascertain the search capabilities of each by compensating for the limitations
of one algorithm with the strength of others. Consequently, a new meta-heuristic based t-way
strategy called Hybrid Artificial Bee Colony (HABCSm) strategy, based on merging the advantages
of the Artificial Bee Colony (ABC) algorithm with the advantages of a Particle Swarm Optimization
(PSO) algorithm is proposed in this paper. HABCSm is the first t-way strategy to adopt Hybrid
Artificial Bee Colony (HABC) algorithm with Hamming distance as its core method for generating
a final test set and the first to adopt the Hamming distance as the final selection criterion for
enhancing the exploration of new solutions. The experimental results demonstrate that HABCSm
provides superior competitive performance over its counterparts. Therefore, this finding contributes
to the field of software testing by minimizing the number of test cases required for test execution.

Keywords: Software testing, Combinatorial testing, t-way testing, Variable strength interac-
tion, an optimization problem, Hybrid artificial bee colony algorithm.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Agora University Editing House: Journals

https://core.ac.uk/display/478789564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

https://doi.org/10.15837/ijccc.2021.5.4308 2

1 Introduction
One of the most important processes in any Software-Development Life Cycle (SDLC) is Software

Testing [1]. Testing is important for identifying the parts of software that are not performing as
expected (i.e. to prevent the defects or bugs) and for guaranteeing the software comes up with all
of its specifications. This process is expensive, due to the amount of time required to implement the
test sets. For this reason, many strategies are proposed for generating an efficient test set to test
any software system. These include Equivalence Partitioning, Boundary Value Analysis, and Decision
Tables etc. While these strategies are useful for specific problems, they have not effectively addressed
the problems related to very large parameters that are due to interaction. Accordingly, researchers
have made great efforts over the past few years to minimize the size of the test sets in order to lessen
the cost of the software testing process and to preserve their ability to detect defects.

There are a plethora of contributions available in the literature, whose main purpose is to minimize
the number of test cases by removing repeated test cases [2] [3]. Therefore, the execution of test cases
will call for less effort [4]. One of the most effective approaches to lessening the number of test cases
is Combinatorial Testing (CT) [5], otherwise known as Combinatorial Interaction Testing (CIT). CT
has recently been used to test software systems in multiple areas of interest. For example, the number
of configurable parameters of the real software systems is large. As a result, it is impossible to test
all configurations because of limited resources. The empirical evidence shows CT is achieving very
high fault coverage of effectively detecting faults by implementing a small number of test cases on the
system. One of the most efficient and effective kinds of CT is t-way testing (where t is the degree of
interaction strength) for feasible solutions based on the failures caused by the value of t interaction
parameters in the configuration system (inputs).

Many t-way strategies are categorized to algebraic and computational based strategies. Algebraic
strategies are based on exploiting the same mathematical functions as orthogonal arrays (OA) [6].
Despite the fact that these strategies are fast and generate optimal solutions, but they do not support
the high interaction strength of some configurations systems because of the restrictions that exist. To
ease and overcome these restrictions, computational based strategies have been proposed to support
the arbitrary configuration. These strategies generate high-quality solutions [7]. Recently, the efforts
of researchers have been focused on meta-heuristic algorithms as a foundation for t-way strategies.
These include Bat Algorithm [8] [9] [10] [11] [12] [13] , Artificial Bee Colony [14] [15] [16] [17] and
Kidney Algorithm [18], to name just a few. However, it is impossible to find meta-heuristic algorithms
to compensate for other existing algorithms for all optimization problems. Consequently, hybridization
is the most effective and efficient method for improving the performance of t-way strategies, based on
merging and exploiting the strengths of two or more algorithms.

One of the most effective meta-heuristic algorithms is an Artificial Bee Colony (ABC) algorithm
[19], which has been applied successfully to various optimization problems. Several studies have docu-
mented the performance of the ABC algorithm on optimization problems [20] [21] [22] [23]. However,
ABC algorithm has suffered from problems with convergence speed, simple operation of solution de-
velopment and weak information sharing activity. For this reason, many researchers have proposed
variants of the ABC algorithm, either by modifying it based on hybridizations or by improving the
original ABC, such as Bee Swarm Optimization (BSO) [24], gbest-guided ABC (GABC) [25], hybrid
ACO–ABC [26] and others. In this paper, a new meta-heuristic based t-way strategy called Hybrid
Artificial Bee Colony (HABCSm) strategy is being proposed. This strategy is based on merging the
advantages of the Artificial Bee Colony (ABC) algorithm with the advantages of a Particle Swarm
Optimization (PSO) algorithm to improve the performance of the original ABC algorithm. HABCSm
is the first t-way strategy to adopt Hybrid Artificial Bee Colony (HABC) algorithm as its core appli-
cation for generating a final test set and the first to adopt the Hamming distance as the final selection
criterion for enhancing the exploration of new solutions.

The paper is presented as follows: Section 2 presents the theoretical concept of covering array
notation. Followed by related works in section 3. Section 4 provides an overview of the Hybrid
Artificial Bee Colony algorithm. Section 5 discusses the phases of our proposed strategy. .Section 6
shows the results of tuning experiments .Section 7 shows the results of our benchmarking experiments.
Finally, Section 8 provides the overall concluding remarks along with future work.

https://doi.org/10.15837/ijccc.2021.5.4308 3

2 Main Concept of Covering Array Notation
Mathematically, Covering Array (CA) is a widely reputable mathematical theme, whereas CT

depends on the CA for theoretical test set size generation [27]. CA is available as another practical
alternative to the previous (or the oldest) mathematical theme, namely Orthogonal Array (OA), which
is used for the purpose of statistical experiments [28]. In general, each of the software being tested
(SUT) includes several items such as the parameters (P) and value (V) of each parameter and the
interaction strength degree (t).

An orthogonal array utilization is limited in the software testing field because it requires that all
parameters have the same value number, and that each pair of values be covered the same number
of times [6] [29]. Therefore, OA has difficulty producing the test set, and frequently it is quite large.
However, on the positive side, OA is characterized by an ability to easily recognize the combination
which is responsible for causing a failure [30]. To ease and overcome the constraints of OA, CA and
Mixed CA (MCA) have been proposed.

CA is defined by CA (N, t, vp) [1], as a two-dimensional array, where N indicates the number
of test cases (i.e. rows), P indicates the parameter’s number (i.e. columns), V indicates the value
of each parameter, and t indicates the degree of interaction strength . The optimal CA includes the
minimum number of test cases, called test sets. CA is an array N x P, where N indicates the number
of test cases (i.e. rows), and P indicates the parameter’s (i.e. columns). For example, this CA (16,
2, 46) has an interaction strength degree of 2 and the parameter’s number is 6, and these are linked
with 4 values each. In cases where each parameter has a different value, this is called Mixed Covering
Array (MCA) [28], which is defined by MCA (N, t, v1P 1, v2P 2, . . . , viP i). Consider MCA (9, 2, 36

24) as an example. The MCA interaction strength degree is 2 and the parameter’s number is 6, and
these are linked with 3 values each and 4 are linked with 2 values each.

With the rapid improvement in information technology (IT) and complexity in modern software
structure, a Variable Strength Covering Array (VSCA) alongside CA and MCA is been implemented.
A compelling difference was observed in the interaction strength amongst such software structure
parameters [31].VSCA is defined by VSCA (N; t, vP , (CAi)), where CAi is the subdivision of the
main space set with a distinct interaction degree.

3 Related Work
In general, existing state-of-the-art strategies for generating the optimal or best test set sizes are

divided into two approaches: Algebraic and Computational [17] [32]. Mathematicians have typically
utilized the Algebraic approach, where a test set is constructed based on the construction of OA. The
OA is derived from the extension of mathematical functions [33]. Although Algebraic based strategies
are fast, their utilization in the CT field is restricted to small configurations (e.g. all parameters must
have the same exact value number) [2] [34]. Strategies that have utilized the Algebraic approach are
Test Configuration (TConfig), Orthogonal Latin Squares (OLS) [6], CA [1] and MCA [28]. The second
strategy is the Computational approach, which is based on greedy algorithms for generating test set
size to cover the maximum number of combinations. This approach is classified as one-parameter-at-
a-time (OPAT) or one-test-at-a-time (OTAT) approach to generate the final test set size.

The one-parameter-at-a-time approach begins by generating a complete test set for the first two
parameters and expands this process horizontally, and occasionally vertically, by adding one param-
eter at a time per iteration to ensure coverage of all parameters [35]. The known strategies that
adopted OPAT approach are the in-parameter-order (IPO) strategy [35] and its improvements such
as IPAD2 [36], IPOG-D [37] and IPOG [38], to name just a few. One-test-at-a-time strategies begin
by generating a complete test case at a time per iteration to ensure that all interaction components
are covered. The first strategy to adopt this approach is Automatic Efficient Test Generator (AETG)
[39], and this was followed by many other strategies such as Jenny [40], WHITCH [41], TConfig [27],
Test Case Generation (TCG) [42], Deterministic Density Algorithm (DDA) [43], Classification-Tree
Editor eXtended Logics (CTE-XL) [44], Pairwise Independent Combinatorial Testing (PICT) [45] and
Intersection Residual Pair Set Strategy (IRPS) [46].

https://doi.org/10.15837/ijccc.2021.5.4308 4

Recently, researchers began focusing on meta-heuristic algorithms as a main algorithm for t-way
test set generation strategies such as Bat Algorithm (BA) [8] [9] [10] [11] [12] [13] , Hill Climbing (HC)
[28], Simulated Annealing (SA) [27] [28] [31] [41] , Tabu Search (TS) [47] [48] , Artificial Bee Colony
(ABC) [14] [15] [16] , Particle Swarm Optimization (PSO) [49], Cuckoo Search (CS) [50], Ant Colony
Algorithm (ACA) [51], Genetic Algorithm (GA) [52], Kidney Algorithm (KA) [18] and others. The
most essential algorithm used for a 2-way test set generation (also termed pairwise test set generation)
is HC [28]. However, the initial search of HC is sensitive. For this reason, it is apt to be restricted in
the local optima. Another algorithm used successfully for pairwise test set generation is TS [47] [48] .
Due to constraints of HC and TC, and lack of support for a large the interaction strength more than
t=2. Stardom proposed SA as an improvement of HC [27] [28] [31] [41] . SA is used for t-way test
set generation and to support higher interaction strength t ≤ 3, which is dissimilar to HC and TS.
The experimental results have shown that SA outperformed both HC and TC, especially for higher
strengths t ≤ 3. In early studies, the Meta-heuristic algorithms are adopted to generate uniform CA
and VSCA, such as GA [52] and ACA [51], while GA begins searching in all available positions in
order to find the solutions randomly. Therefore, all solutions subjected to repeat cycles of processes
such as mutation and selection, crossover in order to mimic natural selection of biological evolution,
unlike SA, HS and TS. In contrast, ACA was inspired by Ant Colony behaviour in order to find the
best food paths. GA and ACA often are not stuck in local optimum compared to HC, TS and SA.
Moreover, ACA and SA were improved to support a VSCA up to t ≤ 3.

Bestoun et al. [53] proposed the Particle Swarm Test Generator (PSTG) strategy for t-way test set
generation and variable strength PSTG (VS-PSTG) strategy [54] utilizing PSO algorithm. Both the
PSTG and VS-PSTG strategies are based on and inspired by the behaviour of birds in a swarm when
searching for food. Several parameters of PSO have been tuned perfectly to find the best particles
or solutions. PSO was then extended for a better solution called discrete PSO (DPSO) [55], whereby
the candidate solution is represented by a particle’s position. The results of these experiments show
that DPSO outperformed the original PSO by producing optimal or near-optimal solutions. PSO
outperformed GA and ACA in terms of support for high-interaction strengths t=6. However, GA
and ACA had relatively better computation times compared to PSO [56]. HS strategy as proposed
by Alsewari et al. [57] is similar to PSTG and VS-PSTG for t-way test set generation. HS strategy
is inspired by the behaviour of a skilled musician who is creating good music. To explore the search
spaces efficiently, HS strategy used elitism selection that was used in GA, for intensification and
diversification. Furthermore, mathematical equations are used to find relatively better solutions and
a probabilistic gradient to select the current solution neighbour.

4 Hybrid Artificial Bee Colony Algorithm
In 2005, Karaboge proposed the Artificial Bee Colony (ABC) algorithm to solve an optimization

problem [19]. ABC algorithm is considered one of the most efficient meta-heuristics algorithms and can
be applied in many different areas of optimization problems, such as the combinatorial optimization
problem. ABC algorithm mimics the foraging behaviour of honeybees inside the hive. This algorithm
consists of three kinds of bee, where each bee executes a different task in order to find the best food
source (i.e. solution). These three kinds of bees are employed, onlooker and scout bees. Employed
bees begin to explore the entire environment in order to find food sources with the maximum amount
of nectar. Then, they communicate the information about food sources (i.e. profitability, distance,
direction) with other kinds of bees that are waiting inside the hive (i.e. Onlooker bee). Onlooker bees
take the information that is given by the employed bee in order to make the decision to choose the
food with the maximum amount of nectar. The Scout bee works to detect a new or better food source
than the existing food source by randomly searching the environment again.

In the past several years, many meta-heuristic algorithms such as Artificial Bee Colony (ABC) [19]
have achieved significant success in solving optimization problems. ABC algorithm works well and
is appropriate for several optimization problems. However, ABC algorithm has several weaknesses
as well. These include easily becoming stuck in a local optimum when handling some complex prob-
lems (i.e. exploitation process), simple operation of solution development and weak performance of

https://doi.org/10.15837/ijccc.2021.5.4308 5

information sharing activity. For this reason, many researchers have proposed using variants of ABC
algorithm, either by improving the original ABC program or by modifying it based on hybridization.
This would help to even out the exploration and exploitation processes, which would then help to avoid
becoming stuck in the local optimum and create better convergence, as can be seen in Bee Swarm
Optimization (BSO) [24], gbest-guided ABC (GABC) [25], hybrid ACO–ABC [26] and others.

Every meta-heuristic algorithm utilizes a different strategy of exploration and exploitation for op-
timization problems. Recently, new research on optimization problems has been attracting attention.
It uses a hybrid algorithm to overcome the problem of the poor exploitation mechanism of ABC. In
this paper, a new hybrid metaheuristic algorithm is proposed based on merging the advantages of ABC
and PSO. Thus, this paper proposes a new algorithm called Hybrid Artificial Bee Colony (HABC)
algorithm, which utilizes the exploitation ability of PSO (i.e. local search process) and the exploration
ability of ABC (i.e. global search process). While the original PSO has considerable exploitation abil-
ity and a fast convergence speed [58], it has poor exploration ability. By contrast, the original ABC,
has great exploration ability but poor exploitation mechanism abilities [25].

Therefore, this paper proposes a Hybrid Artificial Bee Colony (HABC) algorithm that adopts par-
ticle characteristics of the Particle Swarm Optimization (PSO), such as solution development mecha-
nism, which represents the main operator for exploitation and exploration. The solution development
mechanism of Particle Swarm Optimization (PSO) algorithm (i.e. the exploitation ability process)
is unique and different from an exploitation mechanism of the original Artificial Bee Colony (ABC)
algorithm. The Particle Swarm Optimization (PSO) algorithm solution development mechanism that
formulated in Equation (2). In each iteration, the velocities and positions of the particles are updated
by formulated Equation (2) and Equation (3) respectively.

Based on the assertions stated above, the Hybrid Artificial Bee Colony (HABC) algorithm consists
of five steps: initialization phase, employed bees’ phase Based on the PSO development mechanism,
calculation of the probability of selecting a food source, onlooker bees’ phase and scout bees’ phase.
These phases are explained as follows:

At the beginning of HABC algorithm, the initialization phase begins randomly generate a food
source (i.e., a potential solution for a certain optimization problem) by formulating an equation (1).
Each food source (i.e. solution) is indicated as Xi = (Xi1, Xi2, Xi3,..., XiD), i ⊂ 1, 2, ..., SN , where
SN indicates the swarm size. Where D random number of dimension index. The swarm size is equal
to the number of food sources and Xmin and Xmax are the lower and upper bounds of the food source
position respectively.

xij = xmin,j +rand(0, 1)(xmax,j −xmin,j) (1)

In the employed bee phase, the solution development mechanisms of PSO (i.e. exploitation ability
process) are performed in order to generate new food sources in the search space using equation (2)
and (3) instead of the original equation of employed bee in ABC algorithm. First, each food source
needs to be checked in each iteration, and pbest records the updated status of each one.

V t+1
i,d = W t ∗ V t

i,d + Ct
1 ∗ r1 ∗ (pbestt

i,d −Xt
i,d) + Ct

2 ∗ r2 ∗ (gbestt
i,d −Xt

i,d) (2)

yt+1
i = yt

i + V t+1
i (3)

Where consists of several important parameters such as Velocity parameter, indicated as Vi = (Vi1,
Vi2, Vi3,...,ViD), where velocity is used to control the improvement solutions, the current position of
i particle indicated as yi=(yi1, yi2, yi3,...,yiD), and the previous best position of particle, indicated as
pbesti= (pbesti1, pbesti2, pbesti3,... ,pbestiD). The best position determined among all the previous
best positions is indicated as gbest = (gbesti1, gbesti2, gbesti3,..., gbestiD). Where both C1 and C2
are two positive constants, they indicate the relative influence of the cognition and social components.
W indicates the inertia weight that tools up balance between local exploitation and global exploration

https://doi.org/10.15837/ijccc.2021.5.4308 6

mechanism. Both r1 and r2 indicate the real random value from 0 to 1. The particle’s velocity on
each dimension is clamped to the range [-Vmax, Vmax].

Then, a calculation is done of the probability of selecting a food source by adopting a greedy
selection mechanism to check the better fitness value of the old and new food source using Equation
3. When all criteria have been exhausted, the pbest value will stop the updating process (i.e. solu-
tion development mechanism of PSO in the employed bee phase will be terminated) and the HABC
algorithm performs the onlooker bee phase.

fiti =
{ 1

1+fi
, iffi > 0

1 + |fi|, iffi > 0
(4)

In the onlooker bee phase, the probability (P i) of food source selection is dependent on the amount
of nectar (Xi), where the employed bee propagates the information about the food sources, to the
onlooker bee on the dancing area inside the hive. Then the onlooker bee selects the best food source
with a maximum amount of nectar by a formulated equation (5). After the onlooker bee probability
selection process is finished, the onlooker bee starts a new search for a new food source, while trying
to improve the food source of the employed bee by using a formulated equation (2).

Pi = fiti

SN∑
N=1

fitn
(5)

Upon completion of both the employed and onlooker bee phases, the search process continues
for further improving the food sources. In the scout bee phase, the algorithm will check the search
space for further improvements using a number of trial cycles called "limit" that are formulated by
equation (6). The scout bee selects randomly from best previous solution pbest and generates a new
food source using equation (2). Once the fitness value of a new food source better or equal to the
previous best solution has been identified, the new one will be selected. Otherwise, the previous best
solution is retained.

limit = c.ne.D (6)

Where C is a constant coefficient with a recommended value of 0.5 or 1, Ne indicates the number
of unemployed bees (i.e. onlooker and scout bee), and D indicates the food source positions. The
main steps of HABC algorithm are given below in (Figure 1).

5 Hybrid Artificial Bee Colony (HABCSm) Strategy
In this research, a new strategy is proposed for generating the optimal test set. The HABCSm

strategy undergoes three phases during the construction of the mixed and variable strength t-way test
set generation. The phases illustrated in (Figure 2) processed as follows:

Phase 1. The HABCSm input analysis algorithm exploits the input analyser.
Phase 2. The HABCSm interaction generation algorithm, which is based on the Combination

t-tuple Sets (CTS) generator and Interaction Elements Tuple (IET) generator, generates the required
t-tuples.

Phase 3. The HABCSm test set generation, which is based on exploiting the HABC algorithm
as the core algorithm and the Hamming distance selection criterion for mixed and variable strength
t-way test set generation.These phases will be discussed further and elaborated on in the next three
sub-sections.

https://doi.org/10.15837/ijccc.2021.5.4308 7

Step1: Initializate the Parameters of ABC and PSO:

 Initializates Parameters: NBee, MaxCycle, Limit, W and (C1 and C2).
Assigns parameters and create populations using equation (1).
Initialize the population of solution Xi;
Evaluate the fitness of population Xi;
Set trial = 0 for each populations.

Step2: Employed Bee Based on the PSO development mechanism

 Generates new food source (yi) and Updates the velocity using (2).

Updates the position of food source using Equation (3).

Evaluates the fitness value of (yi) using (4).

Uses a greedy selection mechanism between the old source (Xi) and the new source (yi), to

choose the better one.

Step3: Probability of Selection

 Selection process is dependent on the nectar amount of (Xi) and (yi) using (5).

Step4: Onlooker Bee

 Generates new food source (yi) using (2) for onlooker bee.

Evaluates the fitness value of the new food source (yi).

Uses a greedy selection mechanism to select the better one.

Step5: Scout Bee

 If the food source cannot improve through a number of trial cycles called "limit" using equation

(6).

Replaces (Xi) with a new randomly produced candidate solution.

6: If the stop criterion is satisfied, stop and output.

Figure 1: The main steps of Hybrid Artificial Bee Colony algorithm (HABC).

5.1 Input Analysis

In this section, the input (CA, MCA and VSCA) processing is divided into two main processes:
processing the input components (i.e. parameters and their values), and representing these components
using numerical values. The first process starts by receiving the input and processing the input
components to a set of pre-defined variables in the memory (i.e. interaction strength (t), parameters
(P) and their values (V)).

5.2 Interaction Generation Algorithm

This section includes the generation of the Combination t-tuple Sets (CTS), and the Interaction
Element Tuples (IET), based on the parameters and their value for the configuration system. HABCSm
employs a new-generation approach that reversely generates the Binary Element Set (BES). BES
represents the evaluation of each test case (i.e. the fitness value of each test case provided by HABC
algorithm). This phase includes two algorithms; the CTS and IET generators.

The first algorithm (CTS generator) generates the Combination t-tuple sets (CTS), and after
completing the input analysis, the numerical value will be generated. This numerical value is for the
generation of the element combination, which is the basis of CTS. The generation starts as soon as it
receives the numerical value and the interaction strength (t) value from the input analysis phase.

The second algorithm in this phase is the Interaction Elements Tuple (IET), which is used to
construct all the interaction elements, based on the represented binary element for all the combinations
in CTS. The two processes of generating IET and BES are combined into one algorithm to reduce the
complexity of the generation process (i.e. the generation of all the possible binary elements and the
selection of the binary elements that seems to be inefficient when done separately). IET generation
starts with the selection of all the combinations in the CTS and explores them until all the interaction
elements (IE) are generated for each combination.

https://doi.org/10.15837/ijccc.2021.5.4308 8

Figure 2: An Overview of HABCSm strategy.

5.3 Test Set Generation Algorithm

The HABC algorithm can improve the solution quality because of the global and local search
behaviour it implements. Therefore, the HABC algorithm is employed as a search engine to calculate
the fitness (coverage or weight) of the randomly generated test candidates for the proposed strategy.
To achieve a minimum test set optimization process, the test cases need to effectively and greedily cover
all the t-way tuples, at one time, if possible. The HABC algorithm has conventionally developed on
the assumption of food source numbers within populations. In applying this algorithm for interaction
testing, we assume that the test candidates are food sources and that each source has its own possible
solution (fitness) for the targeted problem. The HABC algorithm search process in the proposed
strategy provides the best global optimum (or optimum test candidate that has the highest coverage
of the t-tuples element values) based on the number of BEs involved. This optimum test candidate
indicates the solution quality in terms of the best food source.

Unlike the standard HABC algorithm, the HABCSm strategy introduces the Hamming distance
classifier (See Equation 7) to decide the final set. Specifically, the Hamming distance classifier measures
two rows of (best) test cases (as string) based on the number of values in which they differ when there
is a tie situation as far as the quality of the test cases are concerned. It is the test case that is at the
greatest distance that will be finally selected by the Hamming distance classifier to ensure sufficient
exploration and exploitation of the search space.

https://doi.org/10.15837/ijccc.2021.5.4308 9

Hammingdistance(d(v)) =
∑
|vi − TCn| (7)

6 Parameter Tuning of HABCSm Strategy
In order to ensure the most optimal results for the HABCSm strategy with regards the test set size,

this section elaborates on the process of the tuning variables for the HABCSm strategy. The control
variables for the HABC algorithm have to be tuned based on the test set generation problem. For
tuning purposes, a well-known test system (covering array) that involves a CA (N; 2, 57) is employed.
The justification for adopting this configuration for the tuning process originates from the use of the
same CA to tune many of the existing t-way strategies [54] [57] [59] . The process of tuning HABCSm
is based on 20 runs for the specified CA with different variables settings. The HABCSm has six main
control variables: Bee population size (NBee), Food source= NBee/2, Limit, Maximum cycle number
(MCN), Self-confidence factor and Swarm confidence factor (C1 & C2), and Inertia weight factor (W)
that control the sizes of the test sets obtained. The size and average of the final test sets for the 20
runs were recorded. Then, the results of the tuned variables are analysed to find the settings that fit
the minimum size and average of the final test sets as shown in (Figure 3) and (Figure 4). The six
variables are executed for all the possible selected settings.

The first variable is bee population size (NBee), which indicates the number of bees involved in
the test set generation. This variable controls the randomly initialized test candidates in the memory.
When the number of test candidates increases, the possibility of finding a better solution (i.e. a test
candidate with maximum interaction elements coverage) improves. The initial values of all control
parameters need to be tuned: The Bee population sizes (NBee) are in the range of [4-9 & 10-100], Food
source= NBee/2, Limit=100, Maximum cycle number (MCN) = [10-100 & 200-2000], Self-confidence
factor and Swarm confidence factor (C1 & C2) = are set between 0.1 and 2.1, and Inertia weight factor
(W) = are set between 0.1 and 1.0. Thus, a set of values is selected in this range and all variables are
selected to fit the test set generation.

Figure 3: Best and Average Test Suite for CA (N; 2, 57).

https://doi.org/10.15837/ijccc.2021.5.4308 10

Figure 4: Best and Average Test Suite for CA (N; 2, 57).

Based on the empirical experiments and the results of this study as shown in Figure 3, the differ-
ences in the test set slightly decreased when the bee population decreased in size. The same observation
applies for Maximum cycle number (MCN), where clearly increasing the MCN can produce a good re-
sult. The HABCSm strategy produces poor outcomes when the number of MCN < 100. On the other
hand, the best outcomes are obtained when the MCN is more than 100 in simulations. Finally, the
best test sets have been recorded when (NBees) = 5 and the (MCN) = 1000. In sum, the HABCSm
strategy generates the best test set size when the MCN is greater than 700.

After determining the best value for (NBees) and the (MCN), it’s important to determine the
Self-confidence factor and Swarm confidence factor (C1 & C2) and Inertia weight factor (W). During
the tuning, the value of (NBees) and the (MCN) are fixed to the values deduced earlier, (NBees) = 5
and the (MCN) = 1000. Different values of (C1 & C2) are tested by fixing the (C1 & C2), and change
the (W) value, and then same process will perform for W (i.e. performing the reverse experiment). As
shown in Figure 4 (C1 & C2) and (W) have major impact on the test size generation. The HABCSm
strategy has poor results with range of (C1 & C2) greater than 0.1 and smaller than 1.2. Whereas
HABCSm strategy performs well in case of (C1 & C2) greater than 1.3 when W increases more than
0.5. Based on the aforementioned discussion, the best test sets have been recorded when (C1 & C2)
= 2.0 and (W) = 0.9.

7 Result and Discussion
This section shows the experiments of HABCSm strategy. The experiments were conducted to

evaluate and compare the efficiency of the proposed HABCSm with our previous work [14] [15] [16]
[60] [61] [62] [63] [64] [65] , based on the original Artificial Bee Colony strategy and Hybrid Artificial
Bee Colony strategy, as well as with existing published work as adopted from [2] [4] [17] [50] [57]
[66] . Whereas implementation times were neglected due to variances in parameter settings (e.g., SA
relies on the Iteration, Cooling schedule, and Starting temperature, while the ABCS relies on the
Bee population size, Food source number, Limit and Maximum cycle number) and running platform
environment (e.g., the implementation language and data structure).

https://doi.org/10.15837/ijccc.2021.5.4308 11

The results of the experiments were performed on the Windows 7 (OS) desktop computer with 3.40
GHz Xeon (R) CPU E3 and 8GB RAM. The Java language JDK 1.8 was used to code and implement
the HABCSm. Due to the randomization characteristics of the proposed HABCSm strategy and
the evidence in the literature, the experiments were run 20 independent times for each configuration
system to get the best results. The best result was reported as bold and shaded cells to give a
better indication. Tables 1 to 7 highlight our experimental results. The selected sets of benchmarked
experiments are as follows:

Referring to experimental sets 1, 2 and 3, the HABCSm strategy displays better performance and
efficiency than the ABC variants (e.g., ABCS and HABC). When the HABCSm strategy is compared
to Jenny, TConfig, PICT, IPOG-D, IPOG, DPSO, PSTG, CS, GS, HSS, ABCS and HABC strategies.
For experimental set 1 in Table 1, the HABCSm generates the best test set sizes (or most minimum
17 out of 40 entries). Clearly, the HABCSm contributes by providing 6 out of the 17 entries with new
minimal test set sizes. Whereas DPSO outperformed all the existing strategies to produce the best
test set sizes (or most minimum of 23 out of 40 entries). The other strategies perform well at low
interaction strengths (t ≤ 3), while TConfig, and PICT have not reported significant or minimum test
set size for any entries.

Table 1: Test set size for CA (N; t, 3P) with 2 ≤ t ≤ 11 and 3 ≤ P ≤ 12.
t P Pure computation strategies AI-based strategies

Jenny
Best

TConfig
Best

PICT
Best

IPOG-D
Best

IPOG
Best

DPSO
Best

PSTG
Best

CS
Best

GS
Best

HSS
Best

ABCS
Best

HABC
Best

HABCSm
Best

HABCSm
Avg.Size

2

3 9 10 10 15 9 9 9 9 9 9 9 9 9 9.80000
4 13 10 13 15 9 9 9 9 9 9 9 9 9 10.5500
5 14 14 13 15 15 11 12 11 11 12 11 12 11 12.6500
6 15 15 14 15 15 14 13 13 13 13 13 13 13 14.2000
7 16 15 16 15 15 14 15 14 14 15 15 15 14 15.3000
8 17 17 16 15 15 15 15 15 15 15 15 15 15 16.2000
9 18 17 17 15 15 15 17 16 15 17 16 16 15 16.8000
10 19 17 18 21 15* 16 17 17 16 17 17 17 16 17.2000
11 17 20 18 21 17 17 17 18 16 17 17 18 17 18.1500
12 19 20 19 21 21 16 18 18 16 18 18 18 18 19.4500

3

4 34 32 34 27 32 27 27 28 27 30 27 27 27 29.7500
5 40 40 43 45 41 41 39 38 38 39 38 39 39 43.0000
6 51 48 48 45 46 33 45 43 43 45 44 43 43 45.5500
7 51 55 51 50 55 48 50 48 49 50 49 47 46 51.2000
8 58 58 59 50 56 52 54 53 54 54 54 53 45 54.3500
9 62 64 63 71 63 56 58 58 58 59 58 56 56 58.8500
10 65 68 65 71 66 59 62 62 61 62 62 61 61 63.5000
11 65 72 70 76 70 63 64 66 63 66 66 68 65 67.0000
12 68 77 72 76 73 65 67 70 67 67 70 72 68 70.2000

4

5 109 97 100 162 97 81 96 94 90 94 98 81 81 91.9500
6 140 141 142 162 141 131 133 132 129 132 135 134 132 137.100
7 169 166 168 226 167 150 155 154 153 154 157 155 149 158.250
8 187 190 189 226 192 171 175 173 173 174 179 177 159 179.250
9 206 213 211 260 210 187 195 195 194 195 197 196 185 197.600
10 221 235 231 278 233 206 210 211 209 212 215 217 212 215.150
11 236 258 249 332 251 221 222 229 223 223 234 237 229 232.200
12 252 272 269 332 272 237 244 253 236 244 251 257 246 244.550

5

6 348 305 310 386 305 244 312 304 301 310 274 245 243 290.100
7 458 477 452 678 466 438 441 434 432 436 442 438 437 445.150
8 548 583 555 756 575 517 515 515 515 515 530 524 523 532.350
9 633 684 637 1043 667 591 598 590 594 597 609 607 605 610.300
10 714 773 735 1118 761 667 667 682 672 670 688 686 683 689.400
11 791 858 822 1372 851 735 747 778 741 753 762 766 751 774.350
12 850 938 900 1449 929 802 809 880 806 809 814 856 854 865.500

6

7 1089 921 1015 1201 921 729 977 973 963 977 944 836 729 922.125
8 1466 1515 1455 1763 1493 1409 1402 1401 1399 1402 1424 1416 1413 1427.55
9 1840 1931 1818 2526 1889 1682 1684 1689 1681 1684 1756 1733 1731 1741.00
10 2160 >day 2165 2834 2262 1972 1980 2027 1980 1991 2055 2038 2019 2028.00
11 2459 >day 2496 3886 2607 2250 2255 2298 2258 2255 2261 2254 2251 2261.00
12 2757 >day 2815 4087 3649 2512 2528 2638 2558 2528 2571 2543 2523 2532.00

Table 2 depicts experimental set 2, where the HABCSm manages to get the best test set sizes (or
most minimum 9 out of 20 entries). Note that 3 out of the 9 best result entries are new minimal test
set sizes obtained by the HABCSm. However, DPSO surpasses all of the other existing strategies in

https://doi.org/10.15837/ijccc.2021.5.4308 12

Table 2: Test set size for CA (N; t, v7) with 2 ≤ t ≤ 6 and 2 ≤ v ≤ 5.
t v Pure computation strategies AI-based strategies

Jenny
Best

TConfig
Best

PICT
Best

IPOG-D
Best

IPOG
Best

DPSO
Best

PSTG
Best

CS
Best

GS
Best

HSS
Best

ABCS
Best

HABC
Best

HABCSm
Best

HABCSm
Avg.Size

2

2 8 7 7 8 8 7 6 6 6 7 7 7 7 7.40000
3 16 15 16 15 17 14 15 15 14 14 15 15 14 15.0000
4 28 28 27 32 28 24 26 25 24 25 25 25 24 26.1000
5 37 40 40 45 42 34 37 37 36 35 38 37 34 37.6500

3

2 14 16 15 14 19 15 13 12 12 12 14 14 13 15.4500
3 54 55 51 50 57 48 50 49 49 50 49 47 46 51.2000
4 124 112 124 114 208 112 116 117 116 121 119 114 110 117.850
5 236 239 241 252 275 216 225 223 221 223 231 226 221 225.475

4

2 31 36 32 40 48 34 29 27 27 29 27 29 27 31.8000
3 169 166 168 226 185 150 155 155 153 155 157 155 149 158.250
4 517 568 529 704 509 472 487 487 486 500 498 488 484 494.500
5 1248 1320 1279 1858 1349 1148 1176 1171 1173 1174 1215 1187 1179 1196.55

5

2 57 56 57 80 128 59 53 53 51 53 54 54 55 57.6500
3 458 477 452 678 608 438 441 439 432 437 439 441 439 445.350
4 1938 1792 1933 2816 2560 1814 1826 1845 1821 1831 1878 1856 1855 1868.20
5 5895 N/A 5814 9198 8091 5400 5474 5479 5463 5468 5630 5601 5588 5608.95

6

2 87 64 72 96 64 64 64 66 65 64 65 64 64 64.0000
3 1087 921 1015 1201 1281 729 977 973 963 916 893 810 792 744.400
4 6127 N/A 5847 5120 4096 5223 5599 5610 5608 4096 5541 5502 5470 5557.20
5 23492 N/A 22502 24808 28513 20525 21595 21597 21532 21748 21645 21592 21565 21610.2

Table 3: Test set size for CA (N; 4,5P) with 5 ≤ p ≤ 10.
P Pure computation strategies AI-based strategies

Jenny
Best

TConfig
Best

PICT
Best

IPOG-D
Best

IPOG
Best

DPSO
Best

PSTG
Best

CS
Best

GS
Best

HSS
Best

ABCS
Best

HABC
Best

HABCSm
Best

HABCSm
Avg.Size

5 837 773 810 1250 908 NA 779 776 769 751 758 759 750 771.150
6 1074 1092 1072 1250 1239 NA 1001 991 984 990 1010 1000 996 1007.30
7 1248 1320 1279 1858 1349 NA 1209 1200 1176 1186 1198 1189 1179 1196.55
8 1424 1532 1468 1858 1792 NA 1417 1415 1371 1358 1413 1386 1354 1360.00
9 1578 1724 1643 2110 1793 NA 1570 1562 1548 1530 1621 1591 1526 1531.40
10 1719 1878 1812 2110 1965 NA 1716 1731 1638 1624 1831 1798 1718 1721.50

Table 4: Test size for VSCA (N, 2, 315, C).
{C} Pure computation strategies AI-based strategies

WHITCH
Best

TVG
Best

ParaOrder
Best

IPOG
Best

Density
Best

PICT
Best

SA
Best

PSTG
Best

GS
Best

ACS
Best

PwiseGen-VSCA
Best

HSS

Best

ABCS
Best

HABC
Best

HABCSm
Best

HABCSm
Avg.Size

Ø 31 22 33 21 21 35 16 19 19 19 16 20 20 20 19 21.300
CA (3, 33) 48 27 27 27 28 81 27 27 28 27 27 27 27 27 27 27.850
CA (3, 34) 59 35 27 39 32 105 27 30 29 27 27 27 32 30 29 34.550
CA (3, 35) 62 41 45 39 40 131 33 38 38 38 33 38 41 39 39 42.550
CA (4, 34) 103 81 NA 81 NA 245 NA 81 81 NA 81 81 81 81 81 81.100
CA (4, 35) 118 103 NA 122 NA 301 NA 97 92 NA 91 94 90 93 90 102.55
CA (4, 37) 189 168 NA 181 NA 505 NA 158 155 NA 158 159 154 154 153 159.65
CA (5, 35) 261 243 NA 243 NA 730 NA 243 243 NA 243 243 243 243 243 243.10
CA (5, 37) 481 462 NA 581 NA 1356 NA 441 441 NA 441 441 446 439 436 446.15
CA (6, 36) 745 729 NA 729 NA 2187 NA 729 729 NA 729 729 729 729 729 729.00
CA (6, 37) 1050 1028 NA 967 NA 3045 NA 966 960 NA NA 902 956 898 830 961.10
CA (3, 34) CA (3, 35) CA (3, 36) 114 53 44 51 46 1376 34 45 NA 40 NA 45 82 82 82 86.000
CA (3, 36) 61 48 49 53 46 146 34 45 46 45 40 45 45 45 45 47.55
CA (3, 37) 68 54 54 58 53 154 41 49 50 48 47 51 50 50 50 52.20
CA (3, 39) 94 62 62 65 60 177 50 57 57 57 57 62 58 60 59 60.20
CA (3, 315) 132 81 82 NS 70 83 67 74 75 76 74 77 81 81 80 82.40

Table 5: Test size for VSCA (N, 2, 43 53 62, C).
{C} Pure computation strategies AI-based strategies

WHITCH
Best

TVG
Best

ParaOrder
Best

IPOG
Best

Density
Best

PICT
Best

SA
Best

PSTG
Best

GS
Best

ACS
Best

PwiseGen-VSCA
Best

HSS
Best

ABCS
Best

HABC
Best

HABCSm
Best

HABCSm
Avg.Size

Ø 48 44 49 43 41 43 36 42 NA 41 NA 42 44 42 42 45.15
CA (3, 43) 97 67 64 83 64 384 64 64 NA 64 NA 64 64 64 64 64.000
MCA (3, 43 52) 164 132 141 147 131 781 100 124 NA 104 NA 116 128 123 121 130.90
CA (3, 53) 145 125 126 136 125 750 125 125 NA 125 NA 125 125 125 125 125.00
MCA (4, 43 51) 354 320 NA 329 NA 1920 NS 320 NA NS NA 320 320 320 320 320.00
MCA (5, 43 52) 1639 1600 NA 1602 NA 9600 NS 1600 NA NS NA 1600 1600 1600 1600 1600.0
CA (3, 43) CA (3, 53) 194 125 129 136 125 8000 125 125 NA 125 NA 125 125 125 125 125.00
MCA (4, 43 51) MCA (4, 52 62) 1220 900 NA 900 NA 288,000 NS 900 NA NS NA 900 900 900 900 900.00
MCA (3, 43) MCA (4, 53 61) 819 750 NA 750 NA 48,000 NS 750 NA NS NA 750 750 750 750 750.00
MCA (3, 43) MCA (5, 53 62) 4569 4500 NA 4500 NA 288,000 NS 4500 NA NS NA 4500 4500 4500 4500 4500.0
MCA (4, 43 52) 510 496 NA 512 NA 2874 NS 472 NA NS NA 453 463 464 461 476.75
MCA (5, 43 52) 2520 2592 NA 2763 NA 15,048 NS 2430 NA NS NA 2430 2403 1600 1600 1600.0
MCA (3, 43 53 61) 254 237 247 215 207 1266 171 206 NA 201 NA 212 213 212 210 216.50
MCA (3, 51 62) 188 180 180 180 180 900 180 180 NA 180 NA 180 180 180 180 180.0
MCA (3, 43 53 62) 312 302 307 NS 256 261 214 260 NA 255 NA 263 266 269 263 268.95

https://doi.org/10.15837/ijccc.2021.5.4308 13

Table 6: Test size for VSCA (N, 2, 1019181716151413121, C).
{C} Pure computation strategies AI-based strategies

WHITCH
Best

PICT
Best

IPOG
Best

Density
Best

TVG
Best

ParaOrder
Best

PSTG
Best

ACS
Best

HSS
Best

SA
Best

PwiseGen-VSCA
Best

GS
Best

ABCS
Best

HABC
Best

HABCSm
Best

HABCSm
Avg.Size

Ø N/A 102 91 N/A 99 N/A 97 N/A 94 N/A 92 N/A 95 93 93 95.25
MCA (N,3, 1019181) N/A 31256 720 N/A 720 N/A 720 N/A 720 N/A 720 N/A 720 720 720 720.00
MCA (N,3, 716151) N/A 19515 221 N/A 210 N/A 210 N/A 210 N/A 210 N/A 210 210 210 210.00
MCA (N,3, 413121) N/A 2397 91 N/A 99 N/A 97 N/A 94 N/A 92 N/A 94 94 93 96.500
MCA (N,3, 101918171) N/A 22878 772 N/A 784 N/A 742 N/A 740 N/A 740 N/A 751 748 746 756.45
MCA (N,3, 1019181), MCA (N,3,716151) N/A N/A 720 N/A 720 N/A 720 N/A 720 N/A 740 N/A 720 720 720 720.00
MCA (N,3, 1019181), MCA (N,6,716151413121) N/A N/A 5041 N/A 5040 N/A 5040 N/A 5040 N/A N/A N/A 5040 5040 5040 5040.0
MCA (N,3, 1019181), MCA (N,3,716151),
MCA (N,3, 413121) N/A N/A 720 N/A 720 N/A 720 N/A 720 N/A 720 N/A 720 720 720 720.00

MCA (N,4,51413121) N/A 1200 142 N/A 123 N/A 120 N/A 120 N/A 120 N/A 121 121 120 123.20
MCA (N,5,10191413121) N/A 124157 2160 N/A 2160 N/A 2160 N/A 2160 N/A 2160 N/A 2160 2160 2160 2160.0
MCA (N,6,716151413121) N/A N/A 5041 N/A 5040 N/A 5040 N/A 5040 N/A 5040 N/A 5040 5040 5040 5040.0

Table 7: Test size for VSCA (N, 2, 330102, C).
{C} Pure computation strategies AI-based strategies

WHITCH
Best

PICT
Best

IPOG
Best

Density
Best

TVG
Best

ParaOrder
Best

SA
Best

HSS
Best

PSTG
Best

GS
Best

ACS
Best

PwiseGen-VSCA
Best

ABCS
Best

HABC
Best

HABCSm
Best

HABCSm
Avg.Size

Ø N/A 100 101 N/A 101 N/A 100 106 102 N/A 100 N/A 107 105 105 109.10
CA (N,3, 320) N/A 940 100 N/A 103 N/A 100 109 105 N/A 100 N/A 120 118 117 122.10
MCA (N,3, 320102) N/A 423 N/S N/A 423 N/A 304 450 481 N/A 304 N/A 504 503 503 507.85
MCA (N,4, 33101) N/A 810 273 N/A 270 N/A N/A 270 270 N/A N/A N/A 270 270 270 270.75
MCA (N,5, 33102) N/A 2800 2700 N/A 2700 N/A N/A 2700 2700 N/A N/A N/A 2700 2700 2700 2700.0
MCA (N,6, 34102) N/A N/A 8100 N/A 8100 N/A N/A 8100 8100 N/A N/A N/A 8100 8100 8100 8100.0

achieving the best test set sizes (or most minimum 11 out of 20 entries). The other strategies shared
the best results for less than 5 entries. Similar to the observations in Table 1, TConfig and PICT as
well as Jenny and IPOG-D, have not reported significant or minimum test set size for any entries.

In experimental set 3, shown in Table 3, the HABCSm, GS and HSS achieve the best test set
sizes overall. Clearly, the HABCSm achieves 50 % of the best sizes (3 out of 6 entries). Additionally,
the best sizes that were achieved are the new best sizes generated by the HABCSm for the system
configurations (P = 5, 8 and 9 with 750, 1354 and 1526 test cases, respectively). The GS retains the
best sizes for 2 test configurations (P = 6 and 7, recording 984 and 1176 test cases, respectively). The
HSS only gives the best results for one entry (P = 10 with 1624 test cases). For experimental set 3,
only 3 strategies were able to achieve the best sizes. The other strategies produce acceptable results
as compared to the best sizes. Whereas DPSO have been not reported any results in the literature.

Referring to the Variable Strength Covering Array (VSCA) benchmarked experimental sets 4, 5,
6 and 7, It is generally observed that probabilistic based strategies outperform deterministic based
strategies for both main-strength and sub-strength generations. Based on experimental set 4 in Table
4, the HABCSm achieves 50 % of the best sizes obtained (8 out of 16 entries). The HABCSm manages
to obtain three new minimal test set sizes (in the following sub-configurations: CA (S, 4, 37), CA
(S, 5, 37), and CA (S, 6, 37)). In these test configurations, SA generates the best test set in general
(9 out of 16 entries). Specifically, the SA in the low interaction strength achieved the best results as
it only supports t up to 3 (t ≤ 3). The PWiseGen-VSCA, ABCS, HSS, HABC and PSTG produce
competitive results as well with 7, 5, 4, 4 and 4 best sizes. The PICT, WHITCH and Density generates
the worst results as it only supports t up to 3 (t ≤ 3) for the variable-strength test configuration.

Table 5 demonstrates that in experimental set 5, the HABCSm outperformed other existing strate-
gies to achieve the best results. The best result achieved was for 11 out of 15 entries. The HABCSm
manages to obtain a new minimal test set size in the case of MCA (S, 4, 43 52) sub-strength con-
figuration with 461 test cases. HABC and HSS perform well to get the best result for 10 out of
15 entries each. Whereas ABCS and PSTG generate the best results for 9 out of 15 entries each.
The other strategies also generated competitive results when compared with the best results. The
WHITCH and PICT consistently produce the worst results for the test configuration. However, GS
and PwiseGen-VSCA have not reported any results in the literature.

Experimental set 6, presented in Table 6, demonstrates acceptable performance by several strate-
gies (e.g., HABCSm, ABCS, HABC, HSS, PSTG, PWiseGen-VSCA, TVG and IPOG) for this test
generation. The HABCSm and PSTG excel in most of the best results (8 out of 11 entries each).
Regarding HSS, ABCS, HABC and PWiseGen-VSCA, these strategies perform equally well, demon-
strating the best test set sizes (7 out of 11 entries each). In the same manner, the IPOG generates
competitive test set size in many sub-strength configurations of the best sizes. The PICT generated

https://doi.org/10.15837/ijccc.2021.5.4308 14

the poorest results in most cases with no best size obtained among all the test configurations (with
some missing results). As for SA, Density, ParaOrder, WHITCH, GS and ACS, no published results
are available. Concerning the experimental set 7 in Table 7, the HABCSm, ABCS, HABC, HSS,
PSTG, SA, IPOG, ACS and TVG are each able to obtain the best sizes (3 out of 6 entries). In fact,
the HABCSm, ABCS, HABC, HSS, TVG, IPOG and PSTG generate the optimal test set size for
high interaction strength (t > 3). However, the SA and ACS dominate in low interaction strength (t
≤ 3). The PICT strategy obtains the best sizes (1 out of 6 entries). Regarding Density, ParaOrder,
WHITCH, GS and PwiseGen-VSCA, no published results are available.

8 Conclusion and Future work
This paper proposes a new Meta-heuristic based t-way strategy called Hybrid Artificial Bee Colony

strategy (HABCSm) based on merging the advantages of the Artificial Bee Colony (ABC) algorithm
with a Particle Swarm Optimization (PSO) algorithm to improve the performance of the original
ABC. HABCSm is the first t-way strategy that adopts HABC algorithm as its core implementation
for generating a final test set and also adopts the Hamming distance as the final selection criterion
enhancing the exploration of new solutions. The experiments that were conducted have shown that
HABCSm has a better performance for generating the best test set size than existing strategies, as
well as variants of ABC. In many entries, HABCSm outperformed the other strategies. However,
if HABCSm failed to generate the optimum results, the generated results were within reasonable
values. The results of the experiment were encouraging. Thus, we are planning to adopt HABCSm
to complete implementation to support automated test execution and other t-way test generation
types. In particular, several t-way features needed to be included (i.e. input-output relations t-way,
sequencing t-way and constraint’s t-way).

References
[1] Cohen, M.B. (2004). Designing test suites for software interactions testing, AUCKLAND UNIV

(NEW ZEALAND).

[2] Esfandyari, S.; Rafe, V. (2018). A tuned version of genetic algorithm for efficient test suite
generation in interactive t-way testing strategy, Information and Software Technology, 94, 165-
185, 2018.

[3] Khan, S.U.R; Lee, S.P.; Ahmad, R.W.; Akhunzada, A.; Chang, V. (2016). A survey on Test
Suite Reduction frameworks and tools, International Journal of Information Management, 36
(6), 963-975, 2016.

[4] Zamli, K.Z; Din, F.; Kendall, G.; Ahmed, B.S. (2017). An experimental study of hyper-heuristic
selection and acceptance mechanism for combinatorial t-way test suite generation, Information
Sciences, 399, 121-153, 2017.

[5] Zamli, K.Z; Din, F.; Baharom, S.; Ahmed, B.S. (2017). Fuzzy adaptive teaching learning-based
optimization strategy for the problem of generating mixed strength t-way test suites, Engineering
Applications of Artificial Intelligence, 59, 35-50, 2017.

[6] Mandl, R. (1985). Orthogonal Latin squares: an application of experiment design to compiler
testing, Communications of the ACM, 28 (10), 1054-1058, 1985.

[7] Cohen, M.B; Dwyer, M.B; Shi, J. (2007). Interaction testing of highly-configurable systems in
the presence of constraints, Proceedings of the 2007 international symposium on Software testing
and analysis, 129–139, 2007.

[8] Alsariera, Y.A; Nasser, A.; Zamli, K. (2016). Benchmarking of Bat-inspired interaction testing
strategy, International Journal of Computer Science and Information Engineering (IJCSIE), 7,
2016.

https://doi.org/10.15837/ijccc.2021.5.4308 15

[9] Alsariera, Y.A; Ahmed, H.A.S; Alamri, H.S and Majid, M.A; Zamli, K. (2018). A bat-inspired
testing strategy for generating constraints pairwise test suite, Advanced Science Letters, 24 (10),
7245-7250, 2018.

[10] Alsariera, Y.A; Zamli, K. (2015). A bat-inspired strategy for t-way interaction testing, Advanced
Science Letters, 21 (7), 2281-2284, 2015.

[11] Alsariera, Y.A; Majid, M.A; Zamli, K. (2015). Adopting the bat-inspired algorithm for interaction
testing, The 8th edition of annual conference for software testing, 14, 2015.

[12] Alsariera, Y.A; Majid, M.A; Zamli, K. (2015). SPLBA: An interaction strategy for testing soft-
ware product lines using the Bat-inspired algorithm, 4th International Conference on Software
Engineering and Computer Systems (ICSECS), 148-153, 2015.

[13] Alsariera, Y.A; Majid, M.A; Zamli, K. (2015). A bat-inspired Strategy for Pairwise Testing,
ARPN Journal of Engineering and Applied Sciences, 10, 2015.

[14] Alazzawi, A.K.; Rais, Helmi, Md.; Basri, S. (2018). Artificial bee colony algorithm for t-way
test suite generation, 4th International Conference on Computer and Information Sciences (IC-
COINS), 1-6, 2018.

[15] Alazzawi, A.K.; Homaid, A.B.; Alomoush, A.; Alsewari, A. (2017). Artificial bee colony algorithm
for pairwise test generatio, Journal of Telecommunication, Electronic and Computer Engineering
(JTEC), 9, 103-108, 2017.

[16] Alsewari, A.; Alazzawi, A.K.; Rassem, T.H.; Kabir, M.N.; Homaid, A.B.; Alsariera, Y.A.; Tairan,
N.M.; Zamli, K. (2017). ABC algorithm for combinatorial testing problem, Journal of Telecom-
munication, Electronic and Computer Engineering (JTEC), 9, 85-88, 2017.

[17] Alazzawi, A.K.; Rais, Helmi, Md.; Basri, S. (2019). ABCVS: An artificial bee colony for generating
variable T-Way test sets, Int. J. Adv. Comput. Sci. Appl., 10 (4), 259-274, 2019.

[18] Homaid, A.B.; Alsewari, A.; Alazzawi, A.K.; Zamli, K. (2018). A kidney algorithm for pairwise
test suite generation, Advanced Science Letters, 24 (10), 7284-7289, 2018.

[19] Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization, Erciyes
university, engineering faculty, computer.

[20] Karaboga, D.; Gorkemli, B. (2019). Solving traveling salesman problem by using combinatorial
artificial bee colony algorithms, International Journal on Artificial Intelligence Tools, 28 (01),
1950004, 2019.

[21] Arslan, S.; Ozturk, C. (2019). Artificial bee colony programming descriptor for multi-class texture
classification, Applied Sciences, 9 (9), 1930, 2019.

[22] Gergin, Z.; Nükhet T.; Şakir E. (2019). Clustering approach using artificial bee colony algo-
rithm for healthcare waste disposal facility location problem, International Journal of Operations
Research and Information Systems (IJORIS), 10 (1), 56-75, 2019.

[23] Xie, F.; Li, F.; Lei, C.; Yang, J.; Zhang, Y. (2019). Unsupervised band selection based on artificial
bee colony algorithm for hyperspectral image classification, Applied Soft Computing, 75, 428-440,
2019.

[24] Akbari, R.; Mohammadi, A.; Ziarati, K. (2010). A novel bee swarm optimization algorithm for nu-
merical function optimization, Communications in Nonlinear Science and Numerical Simulation,
15 (10), 3142-3155, 2010.

[25] Zhu, G.; Kwong, S. (2010). Gbest-guided artificial bee colony algorithm for numerical function
optimization, Applied mathematics and computation, 217 (7), 3166-3173, 2010.

https://doi.org/10.15837/ijccc.2021.5.4308 16

[26] Kefayat, M.; Ara, L.; Niaki, S.N. (2015). A hybrid of ant colony optimization and artificial bee
colony algorithm for probabilistic optimal placement and sizing of distributed energy resources,
Energy Conversion and Management, 92, 149-161, 2015.

[27] Cohen, M.B.; Colbourn, C.J.; Ling, A.H. (2008). Constructing strength three covering arrays
with augmented annealing, Discrete Mathematics, 308 (13), 2709-2722, 2008.

[28] Cohen, M.B.; Gibbons, P.B.; Mugridge, W.B.; Colbourn, C.J. (2003). Constructing test suites
for interaction testing, 25th International Conference on Software Engineering, 38-48, 2003.

[29] Hedayat, A.S.; Sloane, N.J.A.; Stufken, J. (2012). Orthogonal arrays: theory and applications,
Springer Science & Business Media, 2012.

[30] Nie, C.; Leung, H. (2011). A survey of combinatorial testing, ACM Computing Surveys (CSUR),
43 (2), 1-29, 2011.

[31] Cohen, M.B.; Gibbons, P.B.; Mugridge, W.B.; Colbourn, C.J.; Collofello, J.S. (2003). A variable
strength interaction testing of components, Proceedings 27th Annual International Computer Soft-
ware and Applications Conference, 413-418, 2003.

[32] Homaid, A.B.; Alsewari, A.; Zamli, K.; Alsariera, Y.A. (2019). Adapting the elitism on greedy
algorithm for variable strength combinatorial test cases generation, IET Software, 13 (4), 286-294,
2019.

[33] Bush, K.A. (1952). Orthogonal arrays of index unity, The Annals of Mathematical Statistics,
426-434, 1952.

[34] Williams, A.W. (2000). Determination of test configurations for pair-wise interaction coverage,
Testing of Communicating Systems, 59-74, 2000.

[35] Lei, Y.; Tai, K.C. (1998). In-parameter-order: A test generation strategy for pairwise testing,
Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (Cat.
No. 98EX231), 254-261, 1998.

[36] Forbes, M.; Lawrence, J.; Lei, Y.; Kacker, R.N; Kuhn, D.R. (2008). Refining the in-parameter-
order strategy for constructing covering arrays, Journal of Research of the National Institute of
Standards and Technology, 113 (5), 287, 2008.

[37] Lei, Y.; Kacker, R.; Kuhn, D.R.; Okun, V.; Lawrence, J. (2008). IPOG/IPOG-D: efficient test
generation for multi-way combinatorial testing, Software Testing, Verification and Reliability, 18
(3), 125-148, 2008.

[38] Lei, Y.; Kacker, R.; Kuhn, D.R.; Okun, V.; Lawrence, J. (2007). IPOG: A general strategy
for t-way software testing, 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS’07), 549–556, 2007.

[39] Cohen, D.M.; Dalal, S.R.; Fredman, M.L.; Patton, G.C. (1997). The AETG system: An approach
to testing based on combinatorial design, IEEE Transactions on Software Engineering, 23 (7),
437-444, 1997.

[40] Jenkins, "Jenny". Available: http://www.burtleburtle.net/bob/math/, Accesed on 2003.

[41] Cohen, M.B.; Colbourn, C.J.; Ling, A.C. (2003). Augmenting simulated annealing to build in-
teraction test suites, 14th International Symposium on Software Reliability Engineering, 394-405,
2003.

[42] Tung, Y.; Aldiwan, W.S. (2000). Automating test case generation for the new generation mission
software system, IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484), 1, 431-437,
2000.

https://doi.org/10.15837/ijccc.2021.5.4308 17

[43] Bryce, R.C.; Colbourn, C.J. (2009). A density-based greedy algorithm for higher strength covering
arrays, Software Testing, Verification and Reliability, 19 (1), 37-53, 2009.

[44] Lehmann, E.; Wegener, J. (2000). Test case design by means of the CTE XL, Proceedings of
the 8th European International Conference on Software Testing, Analysis & Review (EuroSTAR
2000), Kopenhagen, Denmark, 2000.

[45] Czerwonka, J. (2008). Pairwise testing in the real world: Practical extensions to test-case scenar-
ios, Microsoft Corporation, Software Testing Technical Articles, 2008.

[46] Younis, M.I.; Zamli, K.; Klaib, M.; Soh, Z.H.C.; Abdullah, S.; Isa, N. (2010). Assessing IRPS as
an efficient pairwise test data generation strategy, International Journal of Advanced Intelligence
Paradigms, 2 (1), 90-104, 2010.

[47] Gonzalez-Hernandez, L.; Rangel-Valdez, N.; Torres-Jimenez, J. (2010). Construction of mixed
covering arrays of variable strength using a tabu search approach, International Conference on
Combinatorial Optimization and Applications, 51-64, 2010.

[48] Nurmela, K.J. (2004). Upper bounds for covering arrays by tabu search, Discrete applied mathe-
matics, 138 (1), 143–152, 2004.

[49] Chen, X.; Gu, Q.; Qi, J.; Chen, D. (2010). Applying particle swarm optimization to pairwise
testing, IEEE 34th Annual Computer Software and Applications Conference, 107-116, 2010.

[50] Nasser, A.B.; Sariera, Y.A.; Alsewari, A.R.; Zamli, K. (2015). A Cuckoo Search Based Pair-
wise Strategy For Combinatorial Testing Problem, Journal of Theoretical & Applied Information
Technology, 82 (1), 2015.

[51] Shiba, T.; Tsuchiya, T.; Kikuno, T. (2004). Using artificial life techniques to generate test cases
for combinatorial testing, Proceedings of the 28th Annual International Computer Software and
Applications Conference, 72-77, 2004.

[52] McCaffrey, J.D. (2009). Generation of pairwise test sets using a genetic algorithm, 33rd annual
IEEE international computer software and applications conference, 82 , 626-631, 2009.

[53] Ahmed, B.; Zamli, K.; Lim, C.P. (2012). Constructing a t-way interaction test suite using the par-
ticle swarm optimization approach, International Journal of Innovative Computing, Information
and Control, 8 (1), 431-452, 2012.

[54] Ahmed, B.; Zamli, K. (2011). A variable strength interaction test suites generation strategy using
particle swarm optimization, Journal of Systems and Software, 84 (12), 2171-2185, 2011.

[55] Wu, H.; Nie, C.; Kuo, F.; Leung, H.; Colbourn, C.J. (2014). A discrete particle swarm opti-
mization for covering array generation, IEEE Transactions on Evolutionary Computation, 49 (4),
575-591, 2014.

[56] Rabbi, K.; Mamun, Q.; Islam, M.l. (2015). An efficient particle swarm intelligence based strategy
to generate optimum test data in t-way testing, IEEE 10th Conference on Industrial Electronics
and Applications (ICIEA), 123-128, 2015.

[57] Alsewari, A.; Zamli, K. (2012). Design and implementation of a harmony-search-based variable-
strength t-way testing strategy with constraints support, Information and Software Technology,
54 (6), 553–568, 2012.

[58] Jia, D.; Zheng, G.; Qu, B.; Khan, M.K. (2011). A hybrid particle swarm optimization algorithm
for high-dimensional problems, Computers & Industrial Engineering, 61 (4), 1117-1122, 2011.

[59] Stardom, J. (2001). Metaheuristics and the search for covering and packing arrays, Simon Fraser
University Burnaby.

https://doi.org/10.15837/ijccc.2021.5.4308 18

[60] Alazzawi, A.K.; Rais, H.; Basri, S. (2020). HABC: Hybrid artificial bee colony for generating
variable t-way test sets, Journal of Engineering Science and Technology (JESTEC), 15 (2), 746-
767, 2020.

[61] Alazzawi, A.K.; Rais, H.; Basri, S. (2019). Parameters tuning of hybrid artificial bee colony search
based strategy for t-way testing, Int. J. Innov. Technol. Exploring Eng., 8 (55), 204-212, 2019.

[62] Alazzawi, A.K.; Rais, H.; Basri, S. (2019). Hybrid Artificial Bee Colony Algorithm for t-Way
Interaction Test Suite Generation, Computer Science On-line Conference, 192-199, 2019.

[63] Alazzawi, A.K.; Rais, H.; Basri, S.; Alsariera, Y.A.; Balogun, A.O.; Imam, A.A. (2020). A Hybrid
Artificial Bee Colony Strategy for t-way Test Set Generation with Constraints Support, Journal
of Physics: Conference Series, 1529 (4), 042068, 2020.

[64] Alazzawi, A.K.; Rais, H.; Basri, S.; Alsariera, Y.A. (2020). Pairwise Test Suite Generation Based
on Hybrid Artificial Bee Colony Algorithm, Advances in Electronics Engineering, 137-145, 2020.

[65] Alazzawi, A.K.; Rais, H.; Basri, S.; Alsariera, Y.A. (2019). PhABC: A hybrid artificial bee colony
strategy for pairwise test suite generation with constraints support, IEEE Student Conference on
Research and Development (SCOReD), 106-111, 2019.

[66] Ahmed, B.; Abdulsamad, T.; Potrus, M.Y. (2015). Achievement of minimized combinatorial
test suite for configuration-aware software functional testing using the cuckoo search algorithm,
Information and Software Technology, 66, 13-29, 2015.

Copyright ©2021 by the authors. Licensee Agora University, Oradea, Romania.
This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.
Journal’s webpage: http://univagora.ro/jour/index.php/ijccc/

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:
Alazzawi K. Rais HM.; Basri S.; Alsariera YA; Capretz LF.; Imam AA.; Balogun AO. (2021).
HABCSm: A Hamming Based t-way Strategy based on Hybrid Artificial Bee Colony for Variable
Strength Test Sets Generation, International Journal of Computers Communications & Control, 16(5),
4308, 2021.

https://doi.org/10.15837/ijccc.2021.5.4308

	Introduction
	Main Concept of Covering Array Notation
	Related Work
	Hybrid Artificial Bee Colony Algorithm
	Hybrid Artificial Bee Colony (HABCSm) Strategy
	Input Analysis
	Interaction Generation Algorithm
	Test Set Generation Algorithm

	Parameter Tuning of HABCSm Strategy
	Result and Discussion
	Conclusion and Future work

