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The universal anthropogenic activities and negative climatic 
vagaries have established a rise in atmospheric pollution and 
temperature, salinization of soil, and metal toxicity and these 
evoke diminished agricultural production effects and the grade 
of the crop (Dos Reis et al., 2012) and animals and humans 
wellbeing. Any environmental contaminations are available 
to detriment of the lives of a surrounding organism. Seaweed 
also called marine/macroalgae are non-flowering primitive, 
photosynthetic macrophytes and naturally renewable found 
in oceans around the tidal regions that occupies up to 71% of 
the world. Green, brown and red seaweeds are widely spread 
in the tidal, intertidal and subtidal areas respectively (Rao 
et al., 2018). Macroalgae are bigger, having a simple thallus 
structure without true leaf and roots, they have pseudo roots 
known as hold fasts/rhizoids. Algae possess chlorophyll-a, b, c 
and contain protein, carbohydrate and other plant products 
akin to those of higher plants. They do photosynthesis through 
their thallus (Dawson et al., 1966; Goecke et al., 2010). Algae 
are considered as a primary source of organic compound in an 
aquatic environment and hence it plays a crucial role in the 
food chain (Shalaby, 2011). According to Okolie et al. (2018) 

seaweeds are macroscopically multi-cellular organisms that 
dwell in coastal, marine ecosystems and are the wellspring 
of enzymes, polyunsaturated fatty acids, polysaccharides, 
bioactive peptides, among others. They supply the oxygen 
required for the metabolism among the consuming organisms. 
Additionally, macroalgae have been evidenced to procure a rich 
source of natural bioactive compounds with hypolipidemic, 
anti-inflammatory, antioxidant, hypercholesterolemia, anti-
neoplastic, antifungal, antiviral and antibacterial properties 
(El-Baroty et al., 2017). The ability to adapt, grow effectively 
and potential to serve as additives in food, bio-fertilizer, sodic 
soil refining, and important source of biofuel are few amongst 
macroalgal distinguishing features.

Algae come in sizes from as small as 1 μm to macro-sized 
seaweeds that may enlarge to over fifty meters (Pereira 
et al., 2021). According to Aslam et al. (2010) red algal 
extract (Lithothatmnion calcareum) has substantial mineral 
content and this leads to its utilization in animal and human 
food. Shalaby (2011) coined out that, seaweed consists of 
remarkable secondary metabolites such as phenolic compounds, 
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unsaturated fatty acids, carotenoids, phycobiliprotein pigments, 
polysaccharides. Some of the natural algal products were proven 
to have different biological activities, including anticancer 
activity, antioxidant activity, antimicrobial activities against 
virus, bacteria, and fungi, bioremediation potentials and 
organic fertilizer. Majority of these compounds are produced 
in macroalgae at the last stage of their growth and/or as a 
result of environmental stress inducing some alterations in 
metabolic pathways. The potential for seaweed has been 
studied in the agricultural sector and the need to explore the 
more potentialities is of great advantage. According to Nabti 
et al. (2016) macroalgae are rich in diverse compounds like 
antimicrobial compounds and minerals, phytohormones, 
osmoprotectants, lipids, proteins, carbohydrates and amino 
acids. The advantages of agricultural applications of seaweed 
are numerous and diverse including frost and saline resistance, 
fertilization, improving health and growth of plants namely 
shoot and root elongation, improved water and nutrient uptake, 
stimulation of seed germination, biocontrol and resistance 
toward phytopathogenic organisms and remediation of 
pollutants in contaminated soil (Nabti et al., 2016). Macroalgae 
have such ability to reduce uptake of contaminants at the same 
supply nutrient for plants’ development. Integrating soil with 
seaweed rise plant micro- and macronutrients and improve 
soil biological and physicochemical properties (Khan et al., 
2009). The application of algae to remediate environmental 
contamination known as phycoremediation is a trending issue 
round the globe. Through photosynthesis, algae fix abundant 
CO2 and eradicate excess nutrients effectively at a minimal 
cost also harmful materials and pathogens are removed from 
waste water. Xenobiotics, heavy metals and other chemicals are 
known to be depolluted, altered, accumulated or volatilized 
by algal metabolism (Sunday et al., 2011). This review paper 
aimed at exploring the role macroalgae plays in improving plant 
growth and development, quality of plant product, preventing 
topsoil, relieve abiotic stress and remediation of environmental 
contaminants.

USE AS FERTILIZER AND SOIL REVIVAL

Food demand is among the foremost issues that attract global 
attention due to rapid population growth and plant growth 
slows down drastically due to a decrease in soil fertility and 
the ability to support the growth of different plants species. 
Deficiency in macro and micronutrients, soil pH amongst 
others are the major contributing factors. Inorganic fertilizer has 
been reported to pollute the environment, hence the need to 
devise other means to supplement nutrients required for plant 
growth and development. It has been reported that, along the 
coastal regions, seaweed has been applied to amend the soil 
either directly or in the composted form to achieve excellent 
crop production and where there is nutrient insufficiency to 
reclaimed alkaline soils (Zodape, 2001; Craigie, 2011). One 
distinguishing benefit of seaweed is their ability to condition 
the soil and be used to green manure (Rao et al., 2018). Previous 
researches have proved that Seaweed Fertilizer (SF) is better 
and eco-friendly than other chemical fertilizers (Anantharaj 
& Venkatesalu, 2002) as no pollution is reported upon the use 

of green manure. Seaweed potential to supplement soil with 
the macronutrients such as Magnesium, Calcium, Potassium, 
Phosphorus, Nitrogen, Sulfur, plant growth regulators; 
Cytokinins, Auxins and Gibberellins and trace elements like 
Cu, Zn, and Mn has been documented (Rengasamy, 2004). 
When applied to flowers, crops, vegetables and fruit, some 
improvements included increased nutrients uptake, higher 
yields, improved vigor, increased level of resistance to some pests 
and diseases, the extended shelf life of fruit, seed germination 
enhancement, and improved defense against abiotic stresses 
(Chatzissavvidis & Therios, 2014). Seaweed manure is proven to 
be more important than chemical fertilizers due to its richness in 
organic matter, help in retaining moisture and adding minerals 
as well as making them accessible to plant roots in the upper soil 
level (Jothinayagi & Anbazhagan, 2009). Raghunandan et al. 
(2019) reported that presence of fatty acid, carbohydrate and 
protein in seaweed facilitates nutrient and moisture retention 
in the soil which in turn improve soil texture and stimulate 
activities of soil microorganisms.

A significant quantity of alginate in brown algae which contains 
complex chains helps to anchor topsoil tightly together thus 
preventing soil losses. Seaweed-based manure establishes a 
good environmental condition for root growth by promoting 
microbial activities such as mineralization of nutrients and 
mobilization as well as favoring microbial diversity formation 
(Selvaraj et al., 2004; Battacharya et al., 2015). Soil reaction 
can be considered a crucial factor that triggers multiform of 
other proprieties of soil and positive effect to plant growth. 
The activity of microorganisms, availability and solubility of 
nutrients are some of the most crucial processes which indeed 
depend on pH. The cell wall matrix of Rhodophytes consist of 
sulphated galactan which serves as a protective cover against 
extreme changes in pH, temperature and salinity of soil (Lim 
et al., 2018). Sen et al. (2014) established that utilization 
of Ascophyllum spp. as a conditioner to soil averts losses of 
soil’s top.  Nostoc muscorum promotes stability in saline soil, 
where mostly soil aggregation is attributed to the release of 
exopolysaccharide by microorganisms or supplemented to the 
soil after death and cellular lysis (Singh, 2014). It has been 
reported that brown seaweed sargassum is valuable manure 
since they contain a significant amount of alginate which 
serves as a soil conditioner and alginic acid that accelerate the 
decomposition of organic matter by bacteria thereby increasing 
soil humus and nutrient (Zodape, 2001). Alginate and humic 
acid present in seaweed contribute to the formation of soil 
aggregate in the nonporous soil containing clay with minimum 
organic material. Soil aggregate provide more space for air, water, 
shelter for microorganisms and circulation of nutrient.

PLANT STRESS ALLEVIATION

Abiotic stresses including temperature (heat and cold), salinity 
and drought are universal problem distressing land overtop 
800 million hectares, result in the immensely negative impact 
to plant productivity (Ferchichi et al., 2018). Various abiotic 
factors such as temperature salinity, and drought, are displayed 
as osmotic stress and this trigger secondary effects such as 
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oxidative stress, resulting in accumulation of reactive oxygen 
species (ROS) like superoxide anion (O2

•-) and hydrogen 
peroxide (H2O2) (Mittler, 2002; Khan et al., 2009).

Saline soils are the soils that contain a significant amount of 
sodium salt mainly Na2SO4 or NaCl whereas NaHCO3 and 
Na2CO3 found in alkaline soil both of which have an influential 
effect on the soil properties (Singh & Dhar, 2010). The ability 
of salt stress to cause a drastic decline in vegetative growth, 
yield and quality of fruit has been established (Hegazi et al., 
2014). Seaweeds provide excellent bioactive materials useful 
for salinity stress alleviation. Slight stress due to salinity could 
inflict blighting water–cell relations, physiological drought in 
plants, impairment of cell expansion, and consequential growth 
fare reduction (Hasegawa et al., 2000). In alkaline soil, both 
soluble and solid salts are found in higher concentrations which 
results in osmotic pressure leading to poor quality agricultural 
products. Prolong exposure time to elevated salinity result 
in ionic stress creating a disturbance in the intracellular ions 
homeostasis, which induce dysfunction of membrane and 
metabolic activity diminution and growth inhibition, and 
impose cell death (Hasegawa, 2013). High osmolarity inhibits 
plant growth-promoting rhizobacteria activity which in turn 
affects plant growth and productivity. Previous studies proved 
that the application of a number of kinds of Ascophyllum species 
improved salinity stress tolerance in many plants (Bonomelli 
et al., 2018; Jolinda et al., 2018). A. nodosum, enhances the 
accumulation of antioxidants, minerals, and essential amino 
acids in tomato fruits grown under salinity stress. It has reported 
been by Abdel-Latef et al. (2017) that Sargassum muticum and 
Jania rubens seaweeds have the ability to ameliorate sodium 
chloride salt stress in chickpea. According to Subramanian et 
al. (2011) alginate, diverse polysaccharides and some sulphated 
compounds were depicted to trigger directly the growth of 
root and indirectly guild with microbes and energize the 
plants’ defensive mechanisms and persuade genes involve in 
pathogenesis-related defense in plants (Vera et al., 2011). The 
calcareous red seaweeds algae, L. corallioides and P. calcareum are 
applied to neutralize acid soils, as an agricultural lime substitute 
(McHugh, 2003).

Drought the global concern about the availability of water 
for agricultural use is has been increasing. Amongst abiotic 
stresses, drought is one of the foremost issues decreasing crop 
productivity in many parts of the world (Farooq et al., 2009). 
Plant physiology and crop productivity have been affected by 
drought stress (Table 1). Drought affects plants by inducing 

the production and accumulation of abscisic acid (ABA) 
which regulates closure of stomata causing impairment in 
the photosynthetic pathway (Chaves et al., 2009). Due to the 
complex metabolic pathways involved in drought tolerance, very 
little achievement was attained in generating drought-tolerant 
crop varieties by means of genetic engineering. Hence, devising 
biological processes to alleviate drought stress in plants is the 
better alternative. The use of seaweed extracts can alleviate 
production decline through the improvement of the antioxidant 
system and synthesis of compatible osmolytes. Shukla et al. 
(2017) documented the ability of Ascophyllum nodosum extract 
(ANE) to alleviate drought stress in soybean where they observed 
50% higher relative content in the Ascophyllum nodosum extract 
treatment and reduced the degree of wilting of soybean grown 
under the influences of imposed drought conditions treated 
plants compare with control. Seaweed extract (SWE) of Fucus 
spiralis (macroalgae) was also found suitable in boosting Salvia 
officinalis growth and development under extreme water deficit 
(Mansori et al., 2019).

Treating drought stressed Arabidopsis plant with Ascophyllum 
nodosum extract reduces water lost by inducing concrete 
stomatal conductance control, maintaining the relative higher 
value of water use and mesophyll conductance during the 
last dehydration phase, prevent irreversible photosynthetic 
apparatus damages evoke pre-induced pathways for antioxidant 
defense system in combination with a more efficient energy 
dissipation mechanism were reported (Santaniello et al., 
2017). Macronutrients content of leaf, growth and increase in 
resistance to drought was reported in grapes when treated with 
seaweed extract (Mancuso et al., 2006).

SEAWEED FOR PHYCOREMEDIATION

Toxic metals and organic pollutants are well-thought-out to be 
an obviously environmental challenge for animals and human 
health glob round. Due to urbanization, anthropogenic activities 
of different sources cause the increase in contamination of both 
terrestrial and aquatic by toxic metals and organic pollutants.

Phytoremediation involves the remediation of contaminants 
in a water body using algae (micro- and macroalgae). Fixation 
of CO2 through photosynthesis and removal of extra nutrients 
effectively is achieved by algae at a minimal cost. It gets rid of 
pathogens and other toxic material from the water. Through the 
metabolic process, algae transform, accumulate, detoxify and/
or convert into gasses (volatilization) xenobiotics such as heavy 
metals and other chemicals (Sunday et al., 2018).

It offers an advantage over conventional methods of remediation 
by its effectiveness, efficiency and eco-friendly nature (Sunday 
et al., 2018). Algae use the wastes as nutrients and enzymatically 
degrade the pollutants. Several algal features have qualified 
them model icons for the selective elimination and amassing 
of heavy metals which comprise great ability to tolerate 
exposure to heavy metals, competence to grow under both 
autotrophic and heterotrophic condition, the potentiality for 
genetic manipulation, phototaxy, phytochelatin expression, 

Table 1: Algal species for alleviation of soil salinity stress for 
some crops
Seaweed Spp. Crop Reference

A. brasilense V. faba (Hamaoui et al., 2001) 
A. brasilense C. arietinum (Hamaoui et al., 2001)
H. diazotrophicus H. vulgare (Suarez et al., 2015) 
A. chrococcum Z. mays (Rojas-Tapias et al., 2012) 
A. brasilense L. sativa (Fasciglione et al., 2015) 
P. dispersa C. annuum (Del Amor et al., 2012) 
Brasilense/P. dispersa C. annuum (Nair et al., 2012) 
SWE A. thaliana (Nair et al., 2012)
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and enormous surface area: volume ratios (Kaur et al., 2019). 
The biosorption of HM ions by seaweed biomass may be 
achieved by different mechanisms such as complex formation, 
ion exchange, and electrostatic interaction (Mata et al., 2008) 
being ion exchange the most important (Michalak & Chojnacka, 
2010). Polysaccharides and proteins present in the algae cell 
walls provide the metal‐binding sites (Gupta & Rastogi, 2008).

Mehta and Gaur (2005) coined out that binding capacity of 
a seaweed cell surface to a specific ion rest on several factors 
including chemical state of these sites, the coordination number 
of the metal ion to be sorbed, the number of functional groups 
in the algae matrix, the availability of binding groups for metal 
ions, ability to form the complex and strong affinity of the metal 
to the functional group (Table 2).

REMEDIATION OF HEAVY METAL

According to Abbas et al. (2014) marine algae eliminate directly 
heavy metals from water that is contaminated by two systematic 
approaches; first by a metabolic-dependent absorption into their 
cells at low concentrations, and the next by adsorption process. 
Seaweed cell wall polysaccharides and their derivatives and 
proteins make available the binding sites of metal. Algae have 
various chemical moieties on their surface such as hydroxyl, 
carboxyl, phosphate, and amide, which act as metal-binding 
sites (Igiri et al., 2018) The sorption aptitude of a seaweed cell 
surface to a specific ion depends on more than a few factors 
such as the quantity of functional groups in the algal matrix, 
the number of coordination of the metallic ions to be sorbed, 
metal ions bioavailability, the ability of formation of complexes, 
to metal-to-functional group affinity and their chemical state 
(Ortiz-Calderon et al., 2017). Living algal cells, bioaccumulation 
of heavy metal is achieved by two routes: the first is achieved 
by binding of potentially toxic elements to the cell surface; and 
the second phase is the transport of metal ions into cells actively 
(Flouty et al., 2012). Algal cells in contaminated environment 
absorb heavy toxic metals which are translocated to the cell 
vacuole where they are accumulated. In this phase, binding 
proteins such as phytochelatins (PCs) and/or metallothioneins 
(MTs) bind to absorbed ions to prohibit toxic effects of 
accumulated metal ions in the host cell (Zeraatkar et al., 2016). 
Polymeric substances secreted extracellularly have the potential 
of binding cations and stabilize and make them less harmful and 
non-bioavailable metals in the environment (Figure 5).

However, in the cells of non-living algal biomass, potentially 
toxic elements bind to the cell membrane surface. Hence, 
the process is known as an extracellular process (Godlewska-
Żyłkiewicz, 2001). According to Zeraatkar et al. (2016) non-
living algal biomass is more encouraging as compared to living 
algae because of the large metal ions sorption capacity at a 
significant rate, and it does not require growing nutrients in 
a medium. Non-living algal biomass could be considered as a 
conglomeration of large and complex chain of molecules (such 
as lipids sugars, pectins, cellulose, proteins glycoproteins, etc.) 
(Arief et al., 2008) that act as adsorbents with binding affinity to 
heavy metal cations. Binding to heavy metals can be enhanced 
by either physical (drying, crushing, freezing, heating etc.)/
chemical treatment such as CaCl2, NaOH, HCl, formaldehyde, 
and glutaraldehyde (Bishnoi et al., 2007). Physical treatments 
influence the important role of the cell wall in biosorption of 
metal ions, as non-living cell membrane destruction provides 
more surface area to increase the biosorption capacity and 
release the cell contents for possible increase in binding 
cell components to metal ions whereas chemical treatment 
promote ion exchange when treated with CaCl2 as Ca binds to 
alginate (Bishnoi et al., 2007) cross linkage of functional group 
is promoted by Formaldehyde and glutaraldehyde (Ebrahimi 
et al., 2009), NaOH increase electrostatic interactions of metal 
ion cations while HCl dissolves polysaccharide, denature of the 
cell wall and improve biosorption (Rao et al., 2005). It has been 
reported that seaweed absorbed heavy metal from the soil and 
water bodies (Table 4).

REMOVAL OF EXCESS NUTRIENT

Anthropogenic such as fertilizer application, insecticide, 
industrial waste amongst others yields excessive inorganic 
nutrients such as phosphorus and nitrogen leading to 
eutrophication in water body (Camargo & Alonso, 2006). 
Excessive non-metal nutrients from land to the body bodies 
is the principal water quality problem affecting the quality of 
coral reef health and loss of its communities which in turn cause 
a decrease in transparency of water and increase rate of fish 
mortality (Smith & Schindler, 2009; Amin et al., 2018; Gasim 

Table 2: Colour and cell wall components of three classes of 
seaweed
Division Common name Cell wall

Chlorophyta Green algae glucosides mannan, hydroxyproline, 
xylans, and Cellulose 
(β-1,4-glucopyroside)

Rhodophyta Red algae Cellulose, xylans, several sulfated 
polysaccharides (galactans) 
calcification in some; alginate in 
Corallinaceae

Phaeophyta Brown algae Cellulose, alginic, acid, and sulfated, 
mucopolysaccharides (fucoidan)

Source: Ortiz-Calderon et al. (2017) 

Table 3: Functional groups involve in biosorption of metals
Binding group Structural 

formula
Ligand 
atom

Occurrence in selected 
biomolecules

Hydroxyl -OH O PS, UA, SPS, AA
Phosphodiester >P-O-OH O PL
Carboxyl - C=O-OH O UA, AA
Amine NH2 N Cto, AA
Sulfonate O-S=O O SPS
Thioether -S< S AA
Secondary amine >NH N Cto, PG, Peptide bond
Carbonyl (ketone) C=O O Peptide bond
Amide -C=ONH2 N AA
Imine =NH N AA
Imidazole C-N-H N AA
Phosphonate -OH-P-O-OH O PL
Sulfhydryl (thiol) -SH S AA

PL=Phospholipids; LPS= LipoPS; PS= Polysaccharides; UA= Uronic 
acids; PG= Peptidoglycan; SPS= Sulfated PS; Cto= Chitosan;  
AA= Amino acids; TA= Teichoic acid. Adapted from Zeraatkar et al. (2016)
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et al., 2017; Ishak et al., 2018). Arumugam et al. (2018); He et al. 
(2008) documented the competency of seaweed in absorbing 
high nitrogen concentration and store in its tissue. Rathod et 

al. (2014); Chen et al. (2008) proved the mechanism involved 
physisorption by active site at the surface of biosorbent and hold 
by a chemical bond (chemisorption) while intracellular transfer 
is achieved by active transport followed by biotransformation 
and intracellular accumulation.

CONCLUSION

Seaweeds are both agricultural and environmental tools for 
mitigating pollution, soil reclamation and improvement 
of agricultural productivity. They absorb, transform and 
bioaccumulate heavy metals and other non-heavy ones from the 
environment. Though researches have been previously reported, 
other species of algae need to be explored most especially 
dry biomass. Nevertheless, the need to explore tremendous 
applications of seaweed in these fields is still required.
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reinhardtii
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Figure 1: Schematic representation of heavy metals source by 
anthropogenic activities   
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