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LIKELIHOOD GEOMETRY OF CORRELATION MODELS

C. AMÉNDOLA - P. ZWIERNIK

Correlation matrices are standardized covariance matrices. They form an
affine space of symmetric matrices defined by setting the diagonal entries
to one. We study the geometry of maximum likelihood estimation for
this model and linear submodels that encode additional symmetries. We
also consider the problem of minimizing two closely related functions of
the covariance matrix: the Stein’s loss and the symmetrized Stein’s loss.
Unlike the Gaussian log-likelihood these two functions are convex and
hence admit a unique positive definite optimum. Some of our results hold
for general affine covariance models.

1. Introduction

Learning a covariance matrix is arguably one of the most basic problems in
statistics. Learning structured covariance matrices has many applications rang-
ing from signal processing to high-dimensional statistics. A type of structure
that is most relevant in this article is given by affine constraints. More specif-
ically, we focus on the problem of estimating a correlation, that is, a positive
definite matrix Σ such that the diagonal entries are 1. This problem has ap-
peared in statistics in many different contexts [4, 9, 11, 14, 16, 17].

The literature on estimating the correlation matrix focuses on two canon-
ical problems. In the first, the data are represented by a symmetric positive
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semidefinite (PSD) matrix S and the goal is to estimate the correlation matrix
Σ by finding a suitable projection of S on the space of correlation matrices; see
e.g. [4, 20]. In the second problem, each entry of Σ can be estimated from a
different sample and, in consequence, the data is represented by a symmetric
but not necessarily PSD matrix [9]. In this paper we focus on the first scenario
assuming that S is positive definite.

The maximum likelihood estimation problem in this context has been stud-
ied recently in [20, Section 4] from an optimization and probabilistic point of
view. In this paper we analyze it through the lenses of algebra and geometry.

The likelihood geometry of the bivariate correlation model has been an-
alyzed in some detail; see [11, Example 18.3], [2, Example 2.38], and [17,
Section 2.1]. In this bidimensional case, estimating the correlation parameter
reduces to solving a cubic equation, so that the likelihood can have either one
or three (real) critical points. To distinguish between these two situations it is
enough to study the discriminant of the cubic polynomial. In this paper we
perform a careful analysis of the discriminant locus to identify not only when
there are three critical points, but also when all three points correspond to posi-
tive definite solutions (Theorem 3.1). We provide a similar study of the second
derivative of the likelihood function to discover a rather surprising fact: for
most statistically relevant data points, the likelihood function is concave (The-
orem 3.2). Moreover, restricting to the equicorrelation model we are able to
generalize the results on the number and nature of the critical points of the like-
lihood to any dimension. In particular, estimating the equicorrelation parameter
reduces to solving a generalized cubic equation (Theorem 5.4).

A similarly detailed analysis is typically not possible for general linear cor-
relation models. For the unrestricted correlation model we show that even in
low-dimensional cases, the likelihood function can have many positive definite
critical points. There are, however, some unexpected and positive features that
are common to all linear correlation models. Although the likelihood function
is typically not a concave function, we show that for linear correlation models
there are always some data points for which this function is globally concave
(Proposition 4.4). This is in sharp contrast to the general covariance model. As
an alternative to the non-convex problem of optimizing the likelihood function,
we propose minimizing two other functions that are also popular in covariance
matrix estimation: the Stein’s loss and the symmetrized Stein’s loss. We show
that, like the former, the latter is strictly convex (Proposition 2.1). All three
functions appear in statistics in the context of likelihood-based inference for
Gaussian data and they also lead to pseudolikelihood estimators for a wide range
of non-Gaussian scenarios. Minimizing the Stein’s loss in the correlation model
was recently considered in [4], or more generally, as a Bregman projection on
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affine models in [6, 12].
The paper is organized as follows. In Section 2 we introduce the three loss

functions we consider over the space of correlation matrices. We analyze in
detail the bivariate correlation model in Section 3, which serves as the basis
for the study that follows. In Section 4 we look at the likelihood geometry of
the most general unrestricted correlation model, and provide a simple efficient
algorithm to optimize Stein’s loss. On the other extreme, we consider the sim-
plest one dimensional model, the equicorrelation model, in Section 5. We show
that it exhibits many similarities with the bivariate case. Finally, we conclude in
Section 6 with natural follow-up questions and possible future directions.

2. Three loss functions

Denote by Sn the set of n×n symmetric matrices and by Sn
+ its subset given by

all positive definite matrices. Define the divergence function I ∶ Sn
+×Sn

+→R

I(Σ1∥Σ2) = ⟨Σ1,Σ
−1
2 ⟩− logdet(Σ1Σ

−1
2 )−n, (1)

where ⟨Σ1,Σ
−1
2 ⟩ = trace(Σ1Σ

−1
2 ) is the standard inner product on Sn. Note that

I(Σ1∥Σ2) is convex both in Σ1 and K2 = Σ
−1
2 (but not in Σ2). Fenchel duality also

implies that I(Σ1∥Σ2) ≥ 0 with equality if and only Σ1 = Σ2.
Based on this divergence function we define two functions. For a fixed

S ∈Sn
+, the entropy loss is I(S∣∣Σ). Similarly, the Stein’s loss is defined as I(Σ∥S).

The Stein’s loss is a convex function of Σ but the entropy loss is not. Up to
constant factors, the entropy loss function is the negative of the Gaussian log-
likelihood and the Stein’s loss is the negative dual likelihood; see [19]. For this
reason the optimum of the entropy loss is called here the maximum likelihood
estimator (MLE) and the optimum of the Stein’s loss is called the dual MLE.

Since the divergence is not symmetric, it is useful to define the symmetrized
Stein’s loss:

L(Σ,S) = 1
2
(I(S∣∣Σ)+ I(Σ∣∣S)) = 1

2
(⟨S,Σ−1⟩+ ⟨Σ,S−1⟩)−n.

The symmetrized Stein’s loss has been recently used in the context of high-
dimensional matrix estimation, e.g. [13, 18]. Following [15] we list some basic
properties of the symmetrized Stein’s loss:

(i) L(Σ,S) is nonnegative, and zero if and only if Σ = S.

(ii) L(Σ,S) = L(S,Σ),

(iii) L(Σ,S) = L(Σ
−1,S−1),
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(iv) L(Σ,S) = L(PT
ΣP,PT SP) for all invertible P ∈Rn×n.

These properties made the symmetrized Stein’s loss a convenient tool for
theoretical analysis in statistics. As we argue in this paper, it can also offer a
valuable and numerically tractable alternative to both the maximum likelihood
estimator and the dual likelihood estimator. This observation is based on the
following, rather surprising, result.

Proposition 2.1. The symmetrized Stein’s loss L(Σ,S) is a strictly convex func-
tion both in Σ ∈ Sn

+ and in K = Σ
−1.

Remark 2.2. In the following proof and throughout we use the standard ex-
pressions for directional derivatives of functions of Σ. Denoting by ∇U the
directional derivative in the direction U ∈ Sn we have ∇U⟨Σ,S−1⟩ = ⟨U,S−1⟩ and

∇U⟨S,Σ−1⟩ = ⟨S,∇U Σ
−1⟩ = −⟨S,Σ−1UΣ

−1⟩.

Moreover,
∇U logdetΣ = ⟨Σ−1,U⟩.

From this it immediately follows that the gradient of ⟨S,Σ−1⟩ is −Σ
−1SΣ

−1 and
the gradient of logdetΣ is Σ

−1.

Proof of Proposition 2.1. We show that L(Σ,S) is a strictly convex function in
Σ. The proof that it is also strictly convex in K =Σ

−1 is analogous. Since ⟨Σ,S−1⟩
is linear in Σ, it is enough to show that ⟨S,Σ−1⟩ is strictly convex. We check the
second order conditions for convexity. The directional derivative in the direction
U ∈ Sn satisfies

∇U⟨S,Σ−1⟩ = −⟨S,Σ−1UΣ
−1⟩.

Computing the directional derivative of ∇U L(Σ,S) in the direction V ∈ Sn gives

∇V∇U⟨S,Σ−1⟩ = ⟨S,Σ−1V Σ
−1UΣ

−1⟩+ ⟨S,Σ−1UΣ
−1V Σ

−1⟩.

The function ⟨S,Σ−1⟩ is strictly convex if and only if ∇U∇U⟨S,Σ−1⟩ > 0 for all
U ∈ Sn, U ≠ 0. We have

∇U∇U⟨S,Σ−1⟩ = 2⟨S,KUKUK⟩

where S is positive definite and KUKUK is positive semidefinite. It follows that
∇U∇U⟨S,Σ−1⟩ ≥ 0, and ∇U∇U⟨S,Σ−1⟩ = 0 if and only if KUKUK = 0 (equiv.
UKU = 0). It remains to show that, for any positive definite K and symmetric
U , UKU = 0 if and only if U = 0. But this is clear: if U ≠ 0 then there exists x
such that y =Ux ≠ 0. This means xTUKUx = yT Ky > 0 and thus UKU ≠ 0.
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All three loss functions are continuously differentiable with respect to Σ,
making them suitable to optimization by standard techniques. Their gradients
take a simple form. We consistently use the notation K = Σ

−1 and W = S−1.

Proposition 2.3. Let S ∈ S+n be fixed. Then the gradient of the entropy loss is

∇I(S∥Σ) = K−KSK.

The gradient of the Stein’s loss is

∇I(Σ∥S) = W −K.

The gradient of the symmetrized Stein’s loss is

∇L(Σ,S) = 1
2
(W −KSK).

Proof. The expression for the gradient of L(Σ,S) follows from the proof of
Proposition 2.1. The other two cases can be verified in a similar way.

Denote by Sn
0 the set of all n×n symmetric matrices with zeros on the diag-

onal. The set of correlation matrices is precisely (In +Sn
0)∩Sn

+, where In is the
identity matrix. Given a vector subspace L ⊆ Sn

0 we consider the linear correla-
tion model

(In+L)∩Sn
+. (2)

Given a fixed matrix S ∈ Sn
+, the goal is to optimize the entropy loss, the Stein’s

loss, and the symmetrized Stein’s loss over this model.
The following result gives equations describing the critical points in the

problem of minimizing the three loss functions over any spectrahedron (A+L)∩
Sn
+. The case of correlation models is recovered by taking A = In and L ⊆ Sn

0.

Theorem 2.4. Consider the model obtained by restricting Sn
+ to an affine sub-

space A+L for A ∈ Sn
+ and a linear subspace L ⊆ Sn. A necessary condition for

Σ ∈ Sn to be a local minimum of the entropy loss is that

Σ−A ∈L and K−KSK ∈L⊥. (3)

A necessary condition for Σ to be a local minimum of the Stein’s loss

Σ−A ∈L and K−W ∈L⊥. (4)

A necessary condition for Σ to be a local minimum of the symmetrized Stein’s
loss

Σ−A ∈L and W −KSK ∈L⊥. (5)

If Σ ∈ Sn
+, the last two conditions are also sufficient.



564 C. AMÉNDOLA - P. ZWIERNIK

Proof. All three loss functions are continuously differentiable and the model
(A+L)∩Sn

+ is relatively open in A+L. Therefore, a necessary condition for
Σ ∈ A+L to be a local minimum is that all directional derivatives in the direc-
tions U ∈ L are zero. Conditions (3), (4), and (5) then follow from the gradient
formula in Proposition 2.3. The last two conditions are also sufficient if Σ ∈ Sn

+
because these optimization problems are convex, see Proposition 2.1.

Since the Stein’s loss and the symmetrized Stein’s loss are convex functions
of Σ, these two functions admit a unique optimum in (In +L)∩Sn

+. However,
the entropy loss may admit several local optima. In all cases there will typi-
cally be many complex critical points. Given the algebraic nature of the critical
equations, this number famously does not depend on S if it is generic.

Definition 2.5. Let S be a generic covariance matrix. The ML degree is the
number of complex solutions to (3), the dual ML degree the number of complex
solutions to (4), and the SSL degree the number of complex solutions to (5).

While the ML degree and dual ML degree1 for linear covariance models
have been studied before in algebraic statistics (see [5, 19]), the SSL degree we
propose is novel and it should be interesting to study it further. Note that, unlike
the function I(Σ1∥Σ2) whose critical points give rise to the first two degrees, the
symmetrized Stein’s loss L(Σ,S) is itself an algebraic function.

3. The bivariate correlation model

In this section we study in detail the bivariate correlation model. Thus, n = 2 and
the model consists of all matrices of the form

Σ = [1 ρ

ρ 1
] for ρ ∈ (−1,1).

The problem of optimizing the entropy loss over this model is relatively well
studied; see [11, Example 18.3], [2, Example 2.38], and [17, Section 2.1]. Here
we largely extend the existing results.

3.1. Critical points of the entropy loss

The derivative of the entropy loss I(S∥Σ) with respect to ρ is 2
(1−ρ2)2 f (ρ),

where
f (ρ) = ρ(ρ

2−1)−S12(1+ρ
2)+ρ(S11+S22).

1The term reciprocal ML degree has been used recently to refer to the dual ML degree [3, 8].
We prefer dual from an optimization standpoint, following the original definition from Efron [7].
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This polynomial has three roots, two of which may be complex. Note that
f (−1) =−2S12−S11−S22 < 0 and f (1) =−2S12+S11+S22 > 0 (since S is positive
definite) and hence f has at least one root in the open interval (−1,1). As a
consequence, if f (ρ) has a unique root in R, this unique root corresponds to a
positive definite correlation matrix.

The polynomial f (ρ) depends on S only through a = S11+S22
2 and b = S12 and

with this notation we have

f (ρ) = ρ
3−bρ

2−ρ(1−2a)−b. (6)

The condition that S is positive definite implies that a > ∣b∣. Following [11]
we use the discriminant to get the conditions on S that ensure there is a single
critical point. The discriminant is

∆ f (b,a) = −4[b4−(a2+8a−11)b2+(2a−1)3] (7)

and f (ρ) has a single root in R if and only if ∆ f (b,a) < 0. When ∆ f (b,a) = 0
there is an additional double root and there are three real roots when ∆ f (b,a)>0.

Figure 1: Likelihood geometry for the bivariate correlation model. The bound-
ary of the positive definite cone is given by a = ∣b∣ (dashed black line). The zero
set of the discriminant ∆ f (b,a) is given by a red curve. In the red regions, the
cubic in (6) has three real solutions. The yellow shaded region corresponds to
(b,a) for which the entropy loss is convex; see Figure 2.

To add to the standard discussion of this example we note that even when
f (ρ) has three real roots, the other two roots may not lie in (−1,1) in which case
the entropy loss still has a unique optimum in the constrained region. To get the
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full understanding of the likelihood geometry we depict the situation in Figure 1.
The red curves represent the zero locus of the discriminant ∆ f (b,a). This zero
locus divides the cone a > ∣b∣ into four chambers: the central region where the
discriminant is negative and three red regions where it is positive. All (b,a)
that lie in the central chamber lead to a unique real critical point: the MLE. The
points on the discriminant locus correspond to an additional double root. Since
f (1)= 2(a−b), f has a root at ρ = 1 if and only if a= b. This shows that the right
top part of the discriminant corresponds to a double point in (1,∞). Indeed, the
double point depends continuously on (b,a) and the only point where it could
be equal to 1, namely when a = b = 3+2

√
2 (the right black dot in Figure 1), it

is equal to ρ = 1+
√

2 > 1. Similarly, the fact that f (−1) = −2(a+b) implies that
the left component of the discriminant corresponds to double roots in (−∞,−1).
At the point where it could be equal to −1, a = −b = 3+ 2

√
2, it is actually

equal to ρ = −1−
√

2 < −1. Finally, the central component of the discriminant
corresponds to double points ρ ∈ (−1,1). The two points where the discriminant
locus intersects the boundary point are a = b = 3−2

√
2 and a = −b = 3−2

√
2.

These correspond to the double roots ρ = 1−
√

2 and ρ = −1+
√

2 respectively.
This completes the picture of the situation.

Theorem 3.1. For the bivariate correlation model, there is at least one positive
definite critical point of the entropy loss function. There are three positive def-
inite critical points if and only if ∆ f (b,a) > 0 and a < 1

2 (corresponding to the
bottom red region in Figure 1).

Proof. Since S is positive definite we have that a > ∣b∣. Since f (−1) < 0 and
f (1) > 0, it is clear that f has always at least one root in (−1,1). As noted
above, we get a unique real root (and hence a unique root in (-1,1)) when (b,a)
lies in the central chamber of the cone a > ∣b∣. Crossing the discriminant into
the right red region introduces two extra real roots in (1,∞). Since the roots of
the cubic are continuous in (b,a), we are guaranteed that none of them moves
to (−1,1) unless we cross the dashed line. By the same continuity argument,
we see that the left red region has exactly one solution in (−1,1) and that the
bottom red region corresponds to exactly three solutions in (−1,1).

3.2. Convexity of the entropy loss

Even when the entropy loss has a unique minimum, it does not need to be con-
vex for ρ ∈ (−1,1). To understand better the complexity of this optimization
procedure we now study precisely when the entropy loss is convex. We do it by
studying the second order condition for convexity. The second derivative of the
entropy loss with respect to ρ is equal to 2

(1−ρ2)3 g(ρ), where

g(ρ) = 2a−1−6bρ +6aρ
2−2bρ

3+ρ
4.
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The entropy loss is convex if and only if g(ρ) ≥ 0 for ρ ∈ (−1,1). We have
g(−1) = 8(a+b) and g(1) = 8(a−b). Both quantities are strictly positive in the
cone a > ∣b∣ and they can be zero only if a = −b and a = b respectively.

As for the polynomial f , we get a full picture by careful analysis of the
discriminant locus. The discriminant ∆g(b,a) of g(ρ) is

∆g ∶= −256(27b6−27(2a2+6a−5)b4+9(3a4+36a3−32a2+8a+1)b2

−(2a−1)(9a2−2a+1)2) (8)

Figure 2: Likelihood geometry for the bivariate correlation model. To the plot
of the cone in Figure 1 we add in the zero set of the sextic discriminant ∆g(b,a).
It is given by the blue curve (the central component) and the two green curves.

The somewhat complex boundary where the sextic ∆g(b,a) = 0 vanishes is
sketched in Figure 2. The central component of the discriminant is given by
the blue line that crosses the a-axis at (b,a) = (0, 1

2). Two extra components
that intersect the graph of a = ∣b∣ (dashed line) are given in green. The points
(b,a) where the discriminant is non-negative, given by the reddish cone in the
center, corresponds to the situation when g(ρ) ≥ 0 for all ρ ∈R. In this case the
entropy function is of course convex in (−1,1) but convexity still holds under
weaker conditions. The discriminant locus corresponds to double roots of the
equation g(ρ) = 0. Since g(1) = 8(a− b), g can have a root at ρ = 1 if and
only if a = b. This implies that the upper right branch of the discriminant locus
corresponds to double roots in (1,∞). We check this in the same way as earlier
for the polynomial f using the fact that double roots are continuous in (b,a)
and the point (b,a) on the intersection of the right branch of the discriminant
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locus on the dashed line corresponds to a double root greater than 1. Similarly,
g(−1) = 8(a+b) is zero if and only if a = −b, which implies that the left upper
branch of the discriminant locus corresponds to a double root in (−∞,−1). The
central component of this locus corresponds to a double root in (−1,1).

Theorem 3.2. The entropy function in the bivariate correlation model is convex
over (−1,1) if and only (b,a) lies in the region above the central component
of the discriminant ∆g(b,a) (corresponding to the union of the reddish and two
yellow regions in Figure 2).

Proof. Since g(ρ) is globally positive for (b,a) inside the central chamber de-
termined by the components (the reddish region in the figure) and because the
roots are continuous in (b,a), crossing one of the green lines can introduce
roots only in (−∞,−1) or in (1,+∞). We conclude that g(ρ) has no root in
(−1,1) unless we are below the central component. In particular, it remains al-
ways positive in the interval (−1,1) and this is enough to guarantee convexity.
Crossing the central component of the discriminant locus introduces two roots
−1 < ρ1 < ρ2 < 1. Then g is negative in (ρ1,ρ2) and therefore the entropy loss is
not convex in this region.

We conclude this section by noting that the analysis is much simpler for the
Stein’s loss, where the unique maximizer is given explicitly. We study this and
the symmetrized Stein’s loss in Section 5 as the special case of the equicorrela-
tion model. There we show that the dual ML degree is 2 and give the formula for
the optimum of the Stein’s loss. We also show that the SSL degree is 4. We find
this last number to be surprising. It indicates that, although the symmetrized
Stein’s loss is convex (and hence easier to handle from an optimization point of
view), from an algebraic standpoint it is more complicated.

4. The unrestricted correlation model

The unrestricted model corresponds to the case when L = Sn
0 in (2). Recall that

we denote K =Σ
−1 and W = S−1. By Theorem 2.4, any optimal correlation matrix

must satisfy:

(a) for the entropy loss: Ki j = (KSK)i j for i ≠ j,

(b) for the Stein’s loss: Ki j =Wi j for i ≠ j,

(c) for the symmetrized Stein’s loss: (KSK)i j =Wi j for i ≠ j.

Solving these equations leads to high-degree polynomial systems. Some
results on the ML degree, dual ML degree, and SSL degree for small n are
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reported in Table 1. The case n = 2 was covered in great detail in Section 3.
If n = 3 the dual ML degree is 5, the ML degree is 15, and the SSL degree is
28. Overall, the table indicates that the SSL degree increases faster than the ML
degree, which increases faster than the dual ML degree. We currently have no
conjectures on a general formula for these sequences. The numbers for n > 4
were computed using LinearCovarianceModels.jl as introduced in [19].

n 1 2 3 4 5 6 7 8 9

SSL degree 1 4 28 292 ? ? ? ? ?

ML degree 1 3 15 109 1077 13695 ? ? ?

dual ML degree 1 2 5 14 43 144 522 2028 8357

Table 1: The different algebraic degrees for the space of correlation matrices.

4.1. Likelihood geometry

Positive definite critical points The entropy loss may lead to many local op-
tima, which can substantially complicate the maximum likelihood estimation.
We provide basic analysis moving directly to the case n = 3 with the ML de-
gree equal to 15. To obtain a better understanding of the multi-modality of the
entropy loss, we study what happens to the MLE and critical points when we
observe the ray S = tIn (multiple of the identity matrix). Denote by (s12,s13,s23)
the coordinates of the linear space I3+S3

0. The 15 critical points are exactly:

(a) The origin (0,0,0) (i.e. the identity matrix)

(b) The six points (±
√

1−2t,0,0), (0,±
√

1−2t,0) and (0,0,±
√

1−2t).

(c) The four points (α,−α,α),(−α,−α,α),(α,α,−α),(−α,−α,−α).

(d) The four points (β ,−β ,β),(−β ,−β ,β),(β ,β ,−β),(−β ,−β ,−β).

where

α = t −1+
√

t2−18t +9
4

β = t −1−
√

t2−18t +9
4

.

First we see the nature of these critical points. All of them are real when
0 < t < 1

2 . The roots of t2 −18t +9 are t = 3(3±2
√

2) and the points in (c) and
(d) are real whenever 0 < t < 3(3−2

√
2) or t > 3(3+2

√
2). However, if we want

them all to be positive definite, we need to restrict to the first interval. Thus the
number of positive definite critical points is 15 when 0 < t < 1/2. When t = 1/2
seven of them collapse to the origin which gives 9 positive definite critical points
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which is then true for all 1/2 ≤ t < 3(3−2
√

2). When t = 3(3−2
√

2) the eight
points in (c) and (d) collapse to four points giving 5 positive definite critical
points. For t > 3(3−2

√
2) we have a single positive definite solution.

By evaluating each of these critical points in the entropy loss, we obtain
expressions that we can compare for every t > 0. All the points in the same
group (a), (b), (c), (d) or (e) evaluate to the same likelihood value. Thus, for
example, when t < 1

2 , we see that the points in (d) give the MLE. On the other
hand, when t > 3(3−2

√
2), then the origin is the MLE.

Convexity of the entropy function The entropy function is, in general, not
convex. In the bivariate case we have seen however that convexity over the set
of correlation matrices In+Sn

0 happens for many data points. This motivates the
following definition.

Definition 4.1. For an affine model M = (A+L)∩S+n , its convexity cone C(M)
is the set of all S ∈ Sn

+ for which I(S∥Σ) is a convex function on M.

In the bivariate correlation model the convexity cone is described in Theo-
rem 3.2. The name of the convexity cone is justified by the following result.

Proposition 4.2. Fix an affine model M ⊆ Sn
+. Then C(M) is closed under mul-

tiplications by a scalar t ≥ 1.

Proof. Suppose S ∈C(M). If t > 0 then

I(tS∥Σ) = tI(S∥Σ)+(t −1)(n− logdet(S−1
Σ))−n logt.

On the right hand side the only two terms that depend on Σ are tI(S∥Σ) and
−(t −1) logdet(Σ). The first is convex over M by assumption whenever t > 0.
The second is convex over Sn

+ whenever t ≥ 1.

Remark 4.3. For the unrestricted covariance model M = Sn
+ the convexity cone

C(M) is empty. By [20, Proposition 3.1], I(S∥Σ) is convex in and only in the
region where 2S−Σ is positive definite and so there is no S for which I(S∥Σ) is
convex over Sn

+. So a first interesting question is to characterize models M for
which C(M) is nonempty.

Regarding the question in Remark 4.3, the following result shows that the
convexity cone is always non-empty for any linear correlation model.

Proposition 4.4. If S = tIn for t ≥ n/2 then I(S∥Σ) is convex over the set of all
correlation matrices. In particular, for every linear correlation model M, its
convexity cone is non-empty.
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Proof. In light of Proposition 4.2 it is enough to show that the statement holds
for S = n

2 In. We will verify the second order conditions for convexity. By Propo-
sition 2.3, ∇U I(S∥Σ) = ⟨K−KSK,U⟩ for any U ∈ Sn. Similarly, if V ∈ Sn then

∇V∇U I(S∥Σ) = ⟨∇V (K−KSK),U⟩ = ⟨−KV K+KV KSK+KSKV K,U⟩.

Thus, if U =V and S = n
2 In

∇U∇U I(S∥Σ) = tr(KUKUK(2S−Σ)) = tr(KUKUK(nIn−Σ)).

To show that this is always nonnegative for every U ∈ Sn, we use the fact that
KUKUK and nIn−Σ are always positive semidefinite. For nIn−Σ, this follows
from the fact that the maximum eigenvalue of any correlation matrix is bounded
above by tr(Σ) = n.

4.2. Numerical optimization of the Stein’s loss

Let K(x) be the matrix equal to W = S−1 outside the diagonal and whose diag-
onal is x = (x1, . . . ,xn). By item (b) in the beginning of this section we get that
the unique correlation matrix Σ̌ that optimizes the Stein’s loss satisfies Ǩi j =Wi j

for i ≠ j. In other words, Ǩ = Σ̌
−1 satisfies Ǩ =K(x∗) for some x∗ ∈Rn. We now

exploit this dimensionality reduction (from matrices to vectors) to construct a
simple numerical scheme to optimize the Stein’s loss, which provides a compu-
tationally efficient alternative to the algorithm developed in [4].

Proposition 4.5. The unique point Σ̌ optimizing the Stein’s loss over the set of
correlation functions satisfies Ǩ = K(x∗), where x∗ ∈Rn is the maximum of the
concave function

f (x) = logdetK(x)− tr(K(x)), x ∈Rn. (9)

Proof. The Lagrangian of the problem of minimizing I(Σ∣∣S) over the set of
correlation matrices is

L(Σ,Λ) = ⟨Σ,W ⟩− logdet(ΣW)−n+ ⟨Λ,Σ− In⟩,

where Λ is a diagonal n×n matrix of Lagrange multipliers. The dual function
is h(Λ) = infΣ∈Sn

+
L(Σ,Λ) and the infimum is obtained for Σ = (W +Λ)−1. After

plugging this in we obtain

h(Λ) = logdet(W +Λ)− logdetW − tr(Λ)
= logdet(W +Λ)− tr(W +Λ)−(logdetW − tr(W)).

The convex dual problem is given by maximizing h(Λ) over all diagonal matri-
ces Λ. A simple reparametrization K(x) =W +Λ concludes the proof.



572 C. AMÉNDOLA - P. ZWIERNIK

The optimization problem of maximizing (9) can be very reliably done using
gradient descent, which can be complemented with Newton’s method after some
burn-in steps. Denoting Σ(x) = (K(x))−1 we get

∇ f (x) = diag(Σ(x))−1 and ∇2 f (x) = −Σ(x)○Σ(x), (10)

where ○ denotes the Hadamard product. Our basic implementation of this can
easily handle n in the hundreds.

Finally we note that, alternatively, a simple coordinate descent scheme is
possible. For any A ∈ Sn denote by A∖i,i the vector Rn−1 whose elements are Ai j

for j ≠ i. Similarly, A∖i denotes the matrix in Sn−1 obtained from A by removing
its i-th row and i-th column.

Lemma 4.6. The maximum of f (x) with respect to xi with other entries of x
fixed is

x∗i = 1+Wi,∖i(K∖i(x))−1W∖i,i.

Proof. By (10), ∂ f
∂xi

(x) = 0 if and only if Σii(x) = 1. Since Σii(x) = detK∖i(x)
detK(x) ,

equivalently detK∖i(x) = detK(x). By a standard Schur complement argument,

detK(x) = (Kii(x)−Ki,∖i(x)(K∖i)−1K∖i,i)detK∖i(x).

Since Kii(x) = xi and Ki,∖i(x) =Wi,∖i the corresponding partial derivative van-
ishes if xi−Wi,∖i(K∖i(x))−1W∖i,i = 1.

Note that since f is a smooth and strictly concave, it is clear that this coor-
dinate descent procedure converges.

5. Equicorrelation model

An interesting example of a tractable linear correlation models is the equicorre-
lation model, which consists of positive definite matrices for which Σi j = ρ for
all i ≠ j. In other words Σ = (1−ρ)In+ρ11T , where 1 ∈Rn is the vector of ones
and so L = span{11T − In} in (2). We denote this model by En. Note that E2 is
precisely the bivariate correlation model studied in Section 3.

The common off-diagonal entry ρ for every matrix in En necessarily sat-
isfies − 1

n−1 < ρ < 1 for Σ = (1−ρ)In +ρ11T to be positive definite. This is a
consequence of the following well-known result.

Lemma 5.1. If A = (x− y)In + y11T then detA = (x− y)n−1(x+ y(n− 1)) and
A ∈ Sn

+ if and only if

x > 0 and − x
n−1

< y < x.
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Furthermore, if det(A) ≠ 0 then

A−1 = 1
x−y

(In−
y

x+(n−1)y
11T) .

In this way, if Σ = (1−ρ)In +ρ11T then from Lemma 5.1 we obtain that
K = (c−d)In+d11T , with

c = 1
1−ρ

1+(n−2)ρ

1+(n−1)ρ
, d = − 1

1−ρ

ρ

1+(n−1)ρ
. (11)

5.1. Algebraic degrees

In this section we consider the problem of maximizing the entropy loss, the
Stein’s loss, and the symmetrized Stein’s loss for the equicorrelation model En.
We start with a useful result that exploits the symmetry of the model to simplify
our calculations. Define the symmetrized versions of S and W = S−1 as

S = 1
n!
∑

P∈Sn

PSPT , W = 1
n!
∑

P∈Sn

PWPT ,

where Sn is the set of all n×n permutation matrices. The crucial observation is
that the equicorrelation model is invariant under the permutation group action.

Lemma 5.2. For every S ∈ Sn and Σ ∈ En it holds that

⟨S,Σ−1⟩ = ⟨S,Σ−1⟩ and ⟨Σ,W ⟩ = ⟨Σ,W ⟩.

Proof. If Σ ∈ En then PΣPT = Σ and PT
Σ
−1P = Σ

−1 for every P ∈ Sn, so that

⟨S,Σ−1⟩ = 1
n!
∑

P∈Sn

⟨S,PT
Σ
−1P⟩ = 1

n!
∑

P∈Sn

⟨PSPT ,Σ−1⟩ = ⟨S,Σ−1⟩.

The equality ⟨Σ,W ⟩ = ⟨Σ,W ⟩ is argued in the same way.

Lemma 5.2 immediately implies that optimizing the entropy loss I(S∥Σ) is
equivalent to optimizing the entropy loss I(S∥Σ) (the difference between the two
does not depend on Σ). Similarly, optimizing I(Σ∥S) is equivalent to optimizing
I(Σ∥W−1). Moreover,

L(Σ,S) = 1
2(⟨S,Σ

−1⟩+ ⟨Σ,W ⟩)−n for all S ∈ Sn
+ and Σ ∈ En.

Let c̄, d̄ denote the diagonal and the off-diagonal entry of W so that W =
(c̄− d̄)In+d11T . Recall that c,d are the corresponding entries of K.
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Theorem 5.3. The dual ML degree in the equicorrelation model En is 2 for any
n ≥ 2. If d̄ = 0 then the unique critical point is ρ̌ = 0. If d̄ ≠ 0, there are two
critical points given by

ρ̌ = 1+(n−2)d̄±
√

(nd̄+1)2−4d̄
2(n−1)d̄

. (12)

The unique positive definite solution Σ̌ corresponds to the solution that takes the
negative sign in (12). Moreover, Ǩ = Σ̌

−1 is equal to d̄ outside of the diagonal
and all its diagonal entries are equal and given by taking the positive sign in

1
2
(1−(n−2)d̄±

√
(nd̄+1)2−4d̄) . (13)

Proof. For the Stein’s loss the condition that the critical point Ǩ must satisfy is
⟨Ǩ−W,11T −In⟩ = 0, or in other words, the sums of all the off-diagonal elements
of both Ǩ and W are equal. Using (11) the critical equation becomes

− 1
1−ρ

ρ

1+(n−1)ρ
= d̄. (14)

If d̄ = 0 there is a unique solution given by ρ = 0. If d̄ ≠ 0, this leads to a quadratic
equation in ρ:

(n−1)d̄ρ
2−((n−2)d̄+1)ρ − d̄ = 0

with roots satisfying (12). We can rewrite (14) as −ρ = d̄(1−ρ)(1+(n−1)ρ).
Geometrically, this corresponds to intersecting the line −ρ with the parabola
d̄(1−ρ)(1+(n−1)ρ). If d̄ > 0, the intersection point with larger ρ coordinate
has ρ > 1 and thus does not lead to a positive definite solution. The other solution
clearly satisfies − 1

n−1 < ρ < 0. This point is obtained by choosing the negative
sign in (12). Similarly, if d̄ < 0 the intersection point with the larger ρ coordinate
satisfies 0 < ρ < 1 and the other intersection point satisfies ρ < − 1

n−1 . The former
is given by choosing the negative sign in (12) and the latter by the positive
sign. We conclude that in both cases we should take the negative sign in (12) to
guarantee − 1

n−1 < ρ < 1. The last part of the statement follows from the formula
for the off-diagonal entry of Σ

−1 by taking ρ = ρ̌ .

For the entropy loss, we have no guarantee that there is a unique positive
definite solution and the situation becomes slightly more complicated, but also
more interesting.

Let a,b be the diagonal and the off-diagonal entry of S, so that S = (a−b)In+
b11T . Using Lemma 5.2, to optimize I(S∥Σ) over the equicorrelation model En,
we can equivalently optimize

I(S∥Σ) = (n−1) log(1−ρ

a−b )+ log(1+ρ(n−1)
a+b(n−1) )+n(ac+bd(n−1)−1), (15)
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where c,d are the entries of K = Σ
−1 as given in (11). Recall that c̄, d̄ denote the

entries of W = (c̄− d̄)In + d̄11T . The next result provides both the ML degree
and the SSL degree we had promised at the end of Section 3.

Theorem 5.4. The ML degree of the equicorrelation model En is 3 for any n ≥ 2.
The critical points are given by solutions of the cubic equation fn(ρ) = 0, where

fn(ρ) ∶= (n−1)ρ
3+((n−2)(a−1)−(n−1)b)ρ

2+(2a−1)ρ −b. (16)

The SSL degree of En is 4 for any n ≥ 2. The critical points satisfy the quartic

(n−1)2d̄ρ
4−2(n2−3n+2)d̄ρ

3+((n2−6n+6)d̄+(n−2)a−(n−1)b)ρ
2

+2(a+(n−2)d̄)ρ + d̄−b = 0.

Proof. If K = (c−d)In+d11T and S = (a−b)In+b11T then the matrix KSK has
the form (x−y)In+y11T with

y = ad(2c+(n−2)d)+b((c+(n−2)d)2+(n−1)d2) .

The critical point of I(S∥Σ) must satisfy that y = d. Using (11), this translates
to a cubic equation (16). To compute the SSL degree, note that, by Lemma 5.2,
L(Σ,S) = 1

2(⟨S,Σ
−1⟩+ ⟨Σ,W ⟩)−n. Since c̄, d̄ are the entries of W , we have

L(Σ,S) = n
2
(c̄+ac+(n−1)(d̄ρ +bd))−n.

The equation ∂

∂ρ
L(Σ,S) = 0 is equivalent to the vanishing of the given quartic

polynomial in ρ .

5.2. Positive definite critical points

Recall that the ML degree is three and thus the cubic fn(ρ) = 0 in (16) always
has a real root. Note that fn(−1) = − n

(n−1)2 (a+ (n−1)b) and fn(1) = n(a−b).

Since S ∈ Sn
+, by Lemma 5.1 we have that fn(1) > 0 and fn(−1) < 0. This means

that in fact fn always has a root in (− 1
n−1 ,1) which corresponds to a positive

definite solution. It has precisely one real root if its discriminant

∆ f ,n(b,a) = −4(n−1)3b4+12(n−2)(a−1)b3

−4(n−1)((3n2−13n+13)a2−2a(3n2−8n+8)+3n2−n+1)b2

+4(n−2)(a−1)((n2−6n+6)a2−(2n2−n+1)a+n2)b

+(2a−1)2((n−2)2a2−2n2a+n2) (17)

is negative. Conversely, if ∆ f ,n > 0 there are three real roots and if ∆ f ,n = 0 one of
them is a double root. Note that if n = 2 then ∆ f ,n is precisely the discriminant
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∆ f in (1) and the underlying geometry was carefully explained in Section 3.
To get a complete picture for how multiple roots may arise in this optimization
problem, we follow the same strategy as for the bivariate model. The main
difference is that the region is no longer symmetric about the a-axis since the
left boundary a = −(n−1)b moves toward it; see Figure 3.

Figure 3: Likelihood geometry for n > 2. The set of all points in the positive
definite cone such that a = 1 is marked in green.

One stark difference from the n = 2 case that can be appreciated in Figure 3
is that for n > 2 the discriminant ∆ f ,n(b,a) crosses the a-axis three times, not

only at the point (0, 1
2) but also when b = n(n±2

√
n−1)

(n−2)2 . Note however that both of
these extra points converge to 1 as n→∞.

The discriminant intersects the boundary of the positive definite cone in four
points. On the a = b side these are given by b = ±2

√
n(n−1)+2n−1 (note that

as n→∞, one goes to 0 and the other goes to ∞) while on the a = −(n−1)b
side these are: b = 1

(
√

n±1)2 . This means that as n→∞ these points converge to
(b,a) = (0,1). One of the consequences is that the red chamber in the bottom
shrinks in area towards zero.

In summary, we observe the following pattern for every n ≥ 2. Inside the
positive definite cone there are four chambers induced by the discriminant locus
(the non-central chambers are marked in red in Figure 3). The large central
chamber leads to only one real critical point of the entropy loss. On the other
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hand, if (b,a) lies in one of the other chambers, then there are 3 real critical
points in the entropy loss. However, in the two side red chambers there are
two extra critical points outside the positive definite cone (that is, there is a
unique positive definite solution to the likelihood equations) and only the bottom
chamber (which shrinks as n grows) induces all three positive definite solutions.

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

The density of the distance from the truth

D
en

si
ty

Sample size
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50

Figure 4: Density plots for the Euclidean distance of (b,a) from (ρ
∗,1) where

ρ
∗ = 0.5 for n = 2 (solid lines) and n = 10 (dashed lines). In both cases we

consider sample sizes, 2,10,50.

Remark 5.5. From the mathematical perspective we would like to understand
the geometry of the entropy loss for every pair b,a for which the entropy loss
is defined. However, it is important to note that statisticians will typically care
only about a small neighborhood of (b∗,a∗) = (ρ

∗,1), where ρ
∗ is the true data

generating correlation. To illustrate this point, we show in Figure 4 the distri-
bution of the distance of (b,a) from (ρ

∗,1) assuming that the data follow the
Gaussian distribution with covariance in En and that ρ

∗ = 0.5. Even for small n
and relatively small sample sizes this distance is small with a very high proba-
bility. A similar behavior will be observed for any sub-Gaussian distribution.

Remark 5.5 has an interesting consequence for our analysis. Although the
entropy loss can have three positive definite critical points, in statistical practice
this will happen rarely even for small sample sizes; see Figure 5.
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Figure 5: The probability that the entropy loss in the equicorrelation model
En has one critical point or equivalently, the probability that ∆(b,a) < 0, as a
function of the true correlation and the sample size.

5.3. Convexity

In the equicorrelation model En, the entropy loss given in (15) depends on S
only through the entries a,b of the symmetrized matrix S (up to a term that does
not depend on ρ). To describe the convexity cone C(En) (c.f. Definition 4.1) it
is then enough to find for which matrices S the entropy loss is convex. We do it
by studying the second order condition for convexity. The second derivative of
the entropy loss with respect to ρ is equal to

n(n−1)
(1−ρ)3(1+(n−1)ρ)3 gn(ρ),

where

gn(ρ) = 2a−1+2b(n−2)−(6b(n−1)+n−2)ρ +6a(n−1)ρ
2 (18)

+ ((2a−1)(n−2)−2b(n−1))(n−1)ρ
3+(n−1)2

ρ
4.

The entropy loss is convex in the positive definite cone, which by Lemma 5.1
consists of equicorrelation matrices with ρ ∈ (− 1

n−1 ,1), if and only if gn(ρ) ≥ 0
in this interval.

Since gn(− 1
n−1) =

2n2(a+b(n−1))
(n−1)2 and gn(1) = 2(a−b)n2 are positive in Sn

+, we
believe that a similar analysis to the one for the bivariate case in Section 3 is
possible. Alternatively, a simple lower bound for C(En) can be easily obtained
without studying the discriminant ∆g,n of gn.

Lemma 5.6. In the equicorrelation model En, if the entries a and b of S satisfy

− a
n−1

+ n
2(n−1) ≤ b ≤ a− n

2(n−1) (19)
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then the entropy loss function is strictly convex in the positive definite cone.

Proof. We use the result from [20, Proposition 3.1] which states that whenever
2S−Σ ≻ 0, the conclusion follows. In our case, the diagonal entries of 2S−Σ

are 2a− 1 and the off-diagonal entries equal 2b−ρ . Hence, by Lemma 5.1,
2S−Σ ≻ 0 if and only if 2a > 1 and − 2a−1

n−1 < 2b−ρ < 2a−1, or equivalently,

2a > 1 and 1+2(b−a) < ρ < 2b+ 2a−1
n−1

.

Since − 1
n−1 < ρ < 1 always holds for all ρ in the correlation model, to conclude

that the function is globally convex, we need that 2b+ 2a−1
n−1 ≥ 1 and 1+2(b−a) ≤

− 1
n−1 . We easily show that this is equivalent to − a

n−1 +
n

2(n−1) ≤ b≤ a− n
2(n−1) .

6. Further examples and open questions

Our study of the likelihood geometry of linear correlation models leads to sev-
eral new insights both for linear correlation models and general affine covari-
ance models. We believe that some of them can be further explored from an
statistical as well as an algebraic perspective. In what follows we offer some
guidance on potential open questions that we found particularly interesting.

The convexity cone One of the new objects to study is the convexity cone,
which we showed to be always non-empty for every linear correlation model. It
would be useful to describe the convexity cone for the unconstrained correlation
model. Another question is whether we can describe the convexity cone of one-
dimensional linear correlation models directly in terms of their generator. It
follows from the proof of Proposition 4.4 that the convexity cone of an affine
covariance model M is always non-empty when we can uniformly bound the
maximal eigenvalue of the matrices Σ ∈ M. It would be interesting to see if this
eigenvalue condition is necessary for non-emptiness of the convexity cone.

The symmetrized Stein’s loss and other losses In this paper we proposed
the study of the SSL degree, the number of complex solutions to the critical
equations of the symmetrized Stein’s loss. In all our calculations we observed
that the dual ML degree is smaller than the ML degree, which is then smaller
than the SSL degree. If these inequalities hold for general models, this would
indicate that, despite its algebraicity, the symmetrized Stein’s loss may be rel-
atively harder to handle from an algebraic point of view. Currently we do not
know how to prove this.
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Data leading to the same critical point One interesting aspect of the likeli-
hood geometry, which we did not study in detail here, concerns the geometry
of the data matrices S that lead to the same critical point Σ

∗. Directly from the
critical equations in Theorem 2.4 we get the following remark.

Remark 6.1. If Σ
∗ is a fixed point in an affine covariance model M = A+L,

then the set of all S ∈ Sn
+ for which I(S∥Σ) has Σ

∗ as one of its critical points is
a linear subspace of Sn

+. Indeed, if U1, . . . ,Uk are the generators of L then Σ
∗

is a critical point of I(S∥Σ) for data S if and only if ⟨K∗ −K∗SK∗,Ui⟩ = 0 for
i = 1, . . . ,k. This is a linear condition in S.

The closely related study of all S that lead to the same global minimum of
the entropy loss is more subtle. To illustrate, consider the bivariate correlation
model in Section 3. Fix Σ

∗ in the model with an underlying correlation ρ . Then
the linear space from Remark 6.1 is given in (b,a) by the equation f (ρ) = 0
(linear in a,b), that is, ρ

3−bρ
2−ρ(1−2a)−b = 0. Consider any point (b,a) on

this line that does not lie in the bottom red region in Figure 1. By Theorem 3.1
every such point leads to a unique critical point of the entropy loss, and thus
the fixed ρ is the optimal point for the data (b,a). However, if (b,a) lies in the
bottom red region then ρ may not be the optimum, so careful analysis is needed
to understand the full picture. The set of all data S for which Σ

∗ is a global
maximum is a generalization of a Voronoi cell. The analogue sets for discrete
statistical models have been studied recently in [1].

We note that Remark 6.1 extends to the Stein’s loss: the set of all W = S−1 ∈
Sn
+ for which I(Σ∥S) has Σ

∗ as a critical point forms a linear subspace of Sn
+.

Other interesting correlation models There are certainly other tractable and
interesting linear correlation models that one can consider. A one-dimensional
example is given by the tridiagonal equicorrelation model, where Σ is a corre-
lation matrix satisfying Σi j = ρ if ∣i− j∣ = 1, and Σi j = 0 for all other pairs i ≠ j.
In this case the linear subspace L defining this model is generated by a single
element U such that Ui j = 1 if ∣i− j∣ = 1 and Ui j = 0 otherwise.

If n = 3, the results are as in the equicorrelation case: the three algebraic
degrees are 2,3,4. It is a natural question whether there is a deeper reason for
this. If n = 4, the dual ML degree is 4, the ML degree is 7, and the SSL-degree
is 8. The dual ML degree sequence is actually 2⌊ n

2⌋. To prove this fact we use
the following auxiliary result.

Lemma 6.2. The determinant δn of the symmetric tridiagonal matrix of dimen-
sion n ≥ 2, with 1’s on the diagonal and ρ in the upper/lower diagonal, satisfies

δn =
⌊n/2⌋
∑
i=0

(−1)i(n− i
i

)ρ
2i,
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where in addition we set δ0 = δ1 = 1. Moreover,

det(Σ)Ki j = (−1)i+ j
ρ

j−i
δi−1δn− j for i < j.

Proof. This can be inferred from the formulas (5) and (9) in [10] noting that
their matrix Mn links to ours via Σ = ρMn with their D equal to 1

ρ
.

Theorem 6.3. The dual ML degree in the tridiagonal equicorrelation model is
2⌊ n

2⌋ for any n ≥ 1. The critical points are the solutions to the polynomial:

sδn+ρ

n−1

∑
i=1

δi−1δn−i−1 = 0, (20)

where s =∑n−1
i=1 Wi,i+1 and δn is as in Lemma 6.2.

Proof. The critical equation is that s is equal to ∑n−1
i=1 Ki,i+1. Using Lemma 6.2,

this is equivalent to (20). It remains to show that the polynomial in (20) has
degree 2⌊ n

2⌋ as long as s ≠ 0. The degree of ρδi−1δn−i−1 is 2(⌊ i−1
2 ⌋+ ⌊ n−i−1

2 ⌋)+1,
which is strictly less than the degree of δn. To show this, we consider four cases
depending on the parity of n and i. If n is odd then the degree of ρδi−1δn−i−1 is
n−2, which is less than deg(δn) = n−1. If n is even then deg(ρδi−1δn−i−1) ∈ {n−
1,n−3}, which again is less than deg(δn) = n. This means that the polynomial
(20) in ρ has degree 2⌊n/2⌋, with leading coefficient

s(−1)⌊n/2⌋(n− ⌊n/2⌋
⌊n/2⌋ ).
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