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TANGENT QUADRICS IN REAL 3-SPACE

T. BRYSIEWICZ - C. FEVOLA - B. STURMFELS

We examine quadratic surfaces in 3-space that are tangent to nine given
figures. These figures can be points, lines, planes or quadrics. The num-
bers of tangent quadrics were determined by Hermann Schubert in 1879.
We study the associated systems of polynomial equations, also in the
space of complete quadrics, and we solve them using certified numeri-
cal methods. Our aim is to show that Schubert’s problems are fully real.

1. Introduction

There are 3264 conics tangent to five given conics in the projective plane P2,
and there exist five explicit conics so that all 3264 complex solutions are real
[2, 12]. We here study such tangency questions in one dimension higher. We
consider quadrics (i.e. quadratic surfaces) in P3. Schubert [13] found that there
are 666841088 quadrics tangent to nine given quadrics in P3. Our ultimate goal
is to decide whether there exist nine real quadrics so that all complex solutions
are real. In this article we present first steps towards answering that question.

Our study centers around Schubert’s triangle which is displayed in Figure 1.
For each triple (α,β ,γ) ∈N3 with α +β + γ = 9, the triangle shows the number
pα`β hγ of quadrics that pass through α given points, are tangent to β given
lines, and are tangent to γ given planes. The two pictures, in blue and red,
illustrate the geometric meaning of the entries p3`3h3 = 104 and p2`5h2 = 128.
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Figure 1: Schubert’s triangle for tangency of quadrics in 3-space.

Schubert derives these numbers in [13, §22]. In [13, page 106] he argues as
follows. Quadrics degenerate into complete flags, consisting of a point on a line
in a plane in P3. Such a flag counts with multiplicity two, since q = 2(p+`+h),
by Proposition 2.2. We seek quadrics that satisfy one of the three tangency
conditions, for each of the nine given flags. The number of such quadrics equals

q9 = 29 ∑
α+β+γ=9

9!
α!β !γ! ⋅ p

α`β hγ = 29(⋯+1680 ⋅104+⋯+756 ⋅128+⋯). (1)

The second equation is in the cohomology ring of the space of complete quadrics.
In (1) we multiply each entry in Schubert’s triangle with the corresponding
trinomial coefficient 9!

α!β !γ! , we add up the products, we multiply the sum by
29 = 512, and we obtain q9 = 666841088. This derivation is the analogue in P3

of the pentagon count for the 25(p+`)5 = 3264 conics in [2, Figure 3].
Schubert’s calculus predicts the number of complex solutions to a system

of polynomial equations that depend on geometric figures like lines and planes
in P3. In this article we study these polynomial equations and present practical
tools for solving them. Our main interest is in solutions over the real numbers R.

This paper is organized as follows. In Section 2 we introduce coordinates for
points, lines, planes and quadrics, and derive the polynomials that describe our
tangency conditions. Section 3 is dedicated to the space of complete quadrics,
a variety in P9×P20×P9. We determine its prime ideal, we recover Schubert’s
triangle as its multidegree, and we write our tangency conditions in that setting.

In Section 4 we argue that Schubert’s triangle is mostly real. We present ex-
plicit instances where all tangent quadrics are real. These instances were found
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by substantial computations using the software HomotopyContinuation.jl

[3]. Our computations and the certification process are described in Section 5.
In Section 6 we turn to Schubert’s pyramid. It gives the numbers pα`β hγqδ

of quadrics through α points that are tangent to β lines, γ planes and δ quadrics;
see Figure 2. At the top of this pyramid lives q9 = 666841088. We discuss the
associated polynomial systems and we state two conjectures about their reality.

2. Coordinates and Equations

We begin with the coordinates that describe our geometric figures. A point P in
P3 is represented by a vector p = (p1, p2, p3, p4). A line can be given by a 2×4
matrix L, and a plane by a 3×4 matrix H. We often use Plücker coordinates

` = (`12,`13,`14,`23,`24,`34) and h = (h234,−h134,h124,−h123).

Here `i j is the 2×2 minor of L with column indices i and j. Note the Plücker
relation `12`34−`13`24+`14`23 = 0. Likewise hi jk denote the 3×3 minors of H.

Remark 2.1. Inclusion relations are written in Plücker coordinates as follows:

P ⊂H ∶ p1h234− p2h134+ p3h124− p4h123,

P ⊂ L ∶ p1`23− p2`13+ p3`12 , p1`24− p2`14+ p4`12,
p1`34− p3`14+ p4`13 , p2`34− p3`24+ p4`23,

L ⊂H ∶ `12h134−`13h124+`14h123 , `12h234−`23h124+`24h123,
`13h234−`23h134+`34h123 , `14h234−`24h134+`34h124.

A triple (P,L,H) satisfying P ⊂ L ⊂ H is called a complete flag. The variety of
complete flags is irreducible of dimension six in P3 ×P5 ×P3. The prime ideal
of this flag variety is generated by the nine quadrics above, together with the
Plücker relation. These ten generators form a Gröbner basis [11, Theorem 14.6].

Each quadric in P3 is represented by a symmetric 4×4 matrix X = (xi j). The
point P lies on the quadric X if PXPT = 0. Similarly, the condition for X to be
tangent to a line L or to a plane H is given by the vanishing of the polynomial

det(LXLT ) = `(∧2X)`T or det(HXHT ) = h(∧3X)hT . (2)

Here ∧iX denotes the i-th exterior power of the 4×4 matrix X . The entries of
∧iX are the i× i minors of X . The rows and columns are labeled so that (2) holds.

Suppose we are given α points Pi, β lines L j, and γ planes Hk, all generic,
where α +β +γ = 9. We wish to solve these nine homogeneous equations for X :

PiXPT
i = det(L jXLT

j ) = det(HkXHT
k ) = 0 for 1 ≤ i ≤ α, 1 ≤ j ≤ β , 1 ≤ k ≤ γ. (3)
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Here X is an unknown symmetric 4× 4 matrix, viewed as a point in P9, that
satisfies det(X) /= 0. Bézout’s Theorem suggests that the number of complex
solutions to (3) equals 1α2β 3γ . This number is correct when α ≥ 4 and γ ≤ 2.
In all other cases, the equations (3) have extraneous solutions that are removed
by saturation with respect to the ideal ⟨det(X)⟩. This saturation step can be
carried out in Macaulay2 [8]. For each choice of (α,β ,γ), we obtain a Gröbner
basis that reveals the number of solutions in P9. This computation proves the
correctness of Schubert’s triangle. For solving (3) numerically, see Section 5.

We next discuss the condition for X to be tangent to a fixed quadric U = (ui j).

Lemma 2.1. The condition for two quadrics U and X to be tangent in P3 is given
by the discriminant of the quartic f (t) = det(U + tX). This is an irreducible
polynomial with 67753552 terms of degree (12,12) in the 20 unknowns ui j, xi j.

Proof. The tangency condition means that the intersection curve of the quadrics
U and X is singular in P3. By the Cayley trick of elimination theory [7, §3.2.D],
this is singular if and only if the line spanned by U and X in P9 is tangent to the
hypersurface {det(X) = 0}. That condition is given by the discriminant of f (t),
which is known as the Hurwitz form of {det(X) = 0}. We found its expansion
into 67753552 monomials with the computer algebra system Maple.

We denote the above discriminant by Σ(U,X). If U is a symmetric matrix
with random entries in R or C then Σ(U,X) is a polynomial of degree 12 in
ten unknowns xi j with 241592 terms. Given nine quadrics U1, . . . ,U9 in P3, the
quadrics tangent to these solve the following equations in P9:

Σ(U1,X) = Σ(U2,X) = ⋯ = Σ(U9,X) = 0 and det(X) /= 0. (4)

Bézout’s Theorem suggests that the nine equations have 129 complex solutions,
but the inequation decreases that number to q9 = 666841088. We derived this in
the Introduction from Figure 1. A key ingredient was the identity q= 2(p+`+h).

We next prove this identity by an explicit geometric degeneration. Let V be
an invertible real 4×4 matrix, and let P ⊂ L ⊂H be the flag given by its first three
rows. We introduce a parameter ε > 0, and we consider the quadric defined by

Uε = V−1 ⋅diag(ε
3,ε2,ε,1) ⋅(V−1)T . (5)

We investigate the behavior of the tangency condition for Uε and X , as ε → 0.

Proposition 2.2. The leading form in ε of the specialized Hurwitz form equals

Σ(Uε ,X) = (PXPT )2 ⋅ det(LXLT )2 ⋅ det(HXHT )2 ⋅ε8 + higher terms in ε. (6)

This implies the identity q = 2(p+`+h) in the appropriate cohomology ring.
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Proof. The factorization in (6) can be seen directly from the discriminant of

f (t) = det(Uε + tX) = c0+c1t +c2t2+c3t3+c4t4.

The coefficients ci are polynomials in ε with orders of vanishing 6,3,1,0,0 at
ε = 0. The discriminant has vanishing order 8 at ε = 0, and this order is uniquely
attained by its monomial c2

1c2
2c2

3. The factors c1,c2,c3 map to those in (6).

3. Complete Quadrics

A geometric setting for our tangency problems is the space of complete quadrics.
By definition, this is the variety obtained as the closure of the image of the map

P9 ⇢ P9×P20×P9 , X ↦ (X , ∧2X , ∧3X) =∶ (X ,Y,Z). (7)

Here X = (xi j) and Z = (zi jk,lmn) are symmetric 4×4 matrices and Y = (yi j,kl) is
a symmetric 6×6 matrix. The rows and columns of Y and Z are indexed just
like the entries of ` and h. The N3-homogeneous ideal I4 of that 9-dimensional
variety lives in the polynomial ring Q[X ,Y,Z] in 10+21+10 = 41 unknowns.

Theorem 3.1. The space of complete quadrics is a smooth variety of dimension
nine. Its prime ideal I4 is minimally generated by 164 polynomials, namely
● one linear form of degree (010), i.e. y12,34−y13,24+y14,23,
● 20 quadrics of degree (020), e.g. y12,24y24,34−y13,24y24,24+y14,24y23,24,
● 15 quadrics of degree (101), e.g. x11z123,234−x12z123,134+x13z123,124−x14z123,123,
● 64 quadrics of degree (011), e.g. y12,13z123,134−y13,13z123,124+y13,14z123,123,
● 64 quadrics of degree (110), e.g. x11y12,23−x12y12,13+x13y12,12.
Schubert’s triangle in Figure 1 equals the multidegree of I4 in the N3-grading.

Proof. The closure of the image of (7) is irreducible of dimension nine since X
appears in the first coordinate. The smoothness of this variety is well-known in
the theory of spherical varieties. For a new perspective and proof see [10, §3.C].

The 164 polynomials were found by computation using Macaulay2 [8]. To
show that they generate the prime ideal I4, we use [6, Proposition 23] induc-
tively. We eliminate one variable that occurs linearly in some equation and is
not a zero-divisor modulo the current ideal. After checking these hypotheses,
we replace the ideal by the elimination ideal, which is prime by induction. This
process was found to work for various natural orderings of the entries in X ,Y,Z.

The multidegree is a standard construction for multigraded commutative
rings [11, Section 8.5]. For a variety in a product of projective spaces, it is
the class of that variety in the cohomology ring of the ambient space. The built-
in command multidegree in Macaulay2 takes only a few seconds to find the
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multidegree from our 164 polynomials. The output of this Macaulay2 compu-
tation is a ternary form in the unknowns T0,T1,T2. It has 55 terms of degree
codim(I4) = 29. The coefficient of T 9−α

0 T 20−β

1 T 9−γ

2 is the number pα`β hγ in
Figure 1. This computation is an ab initio derivation of Schubert’s triangle.

The variety V(I4) captures degenerations of quadrics that matter in inter-
section theory [10]. We saw this in Proposition 2.2 where the quadric becomes
a flag P ⊂ L ⊂H. The relationship to the flag variety is made precise as follows:

Corollary 3.2. The variety of complete flags in P3 is the inverse image of V(I4)
under the componentwise Veronese embedding P3×P5×P3 ↪ P9×P20×P9.

Proof. The Veronese map takes (p,`,h) to the rank one matrices (X ,Y,Z) =
(pT p, `T `, hT h). Substituting this into I4 and saturating by the irrelevant ideal
of P3×P5×P3 yields the Gröbner basis for the flag variety in Remark 2.1.

We next lift our tangency conditions from the space P9 of symmetric ma-
trices X to the space of complete quadrics in P9 ×P20 ×P9. We write B =
⟨X⟩ ∩ ⟨Y ⟩ ∩ ⟨Z⟩ for the irrelevant ideal of that product of projective spaces.

The condition that a quadric contains a point p is the linear form pX pT in
the unknown X . Similarly, tangency to a line ` is the linear form `Y `T in the
unknown Y , and tangency to a plane h is the linear form hZhT in the unknown Z.
Without loss of generality, we can assume that one given figure is a coordinate
subspace in P3. Then the three linear forms are variables x11, y12,12 or z123,123.

However, if we augment I4 by one such variable then the resulting ideal is
not prime. To get the correct prime ideal we must saturate by the irrelevant ideal
B. We first summarize what happens when we add the constraint for a point.
The result is the same for the plane constraint if we swap the roles of X and Z.

Proposition 3.3. The saturation ((I4 + ⟨x11⟩) ∶ B∞) is the prime ideal of the
variety of complete quadrics that contain a given point. It has 13 minimal gen-
erators in addition to the 164 generators of I4, namely ten of degree (020) and
one each of degree (100), (003) and (011). The multidegree of this ideal is the
triangle of size eight that is obtained by deleting the lower right edge in Figure 1.

Proof. This is proved by a Macaulay2 computation. The new equation of de-
gree (100) is x11. The new equation of degree (003) is the complementary 3×3
minor of Z. Generators of degree (020) arise from Bareiss formula which says
that x11 times any 3×3 minor of X containing x11 equals a 2×2 minor of Y .

Proposition 3.4. The saturation ((I4+⟨y12,12⟩) ∶B∞) is the prime ideal for the
complete quadrics that are tangent to a line. It has three minimal generators, of
degrees (010),(200),(002), in addition to the 164 generators of I4. This is one
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entry of Y and the corresponding 2×2 minors of X and Z. The multidegree is
the triangle of size eight obtained by deleting the top edge in Figure 1.

It would be desirable to extend Theorem 3.1 to n×n matrices for n ≥ 5, i.e. to
identify minimal generators for the multihomogeneous prime ideal of the space
of complete quadrics. These are relations among all minors of a symmetric n×n
matrix that respect the fine grading coming from the size of the minors. Results
by Bruns et al. [4] indicate that relations of degree ≤ 2 will not suffice.

4. Schubert’s Triangle

At present, we have the following result on the reality of Schubert’s triangle.

Theorem 4.1. For at least 46 of the 55 problems in Schubert’s triangle, there
exists an open set of real instances, consisting of α points, β lines and γ planes,
such that all complex solutions in P9 to the polynomial equations in (3) are real.
For the other nine problems, the current status is summarized in Remark 4.3.

Example 4.2. Fix (α,β ,γ) = (3,3,3). We consider the configuration

p = (1, 439
922 ,−

347
271 ,

67
343) , (1,− 211

484 ,
153
346 ,

257
254) , (1,− 575

404 ,
131
320 ,−

37
42),

` = (− 92
159 ,−

92
293 ,

120
307 ,

77
256 ,

76
391 ,

96
311) , (

107
114 ,

18
383 ,−

109
116 ,

37
217 ,

45
307 ,

47
264) ,

(− 365
302 ,−

45
368 ,

172
209 ,

74
245 ,

25
62 ,

87
353),

h = ( 193
182 ,

75
397 ,−

244
631 ,

195
272) , (

91
307 ,−

17
122 ,−

553
837 ,

70
309) , (

919
295 ,

103
36 ,

1199
371 ,

57
176).

All 104 complex quadrics tangent to these nine figures are found to be real.
Thus, this is a fully real instance for the scenario shown in blue in Figure 1.

Remark 4.3. Up to the natural involution, given by swapping points and planes,
there are 30 distinct tangency problems in Schubert’s triangle. For five of the
problems we have not yet succeeded in verifying reality. They are as follows:

(α,β ,γ) (3,4,2) (3,5,1) (2,6,1) (1,7,1) (1,8,0)
Schubert’s count over C 112 80 104 104 92

Our current record over R 110 74 96 84 84

For instance, we know two points, six lines and a plane in P3
R such that 96 real

quadrics are tangent to these figures. The remaining eight quadrics are complex.
This is derived from Example 4.4 by replacing point P3 with a plane. For the
(1,8,0) case with 84 real solutions we use eight tangent lines as in Example 4.6.
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Discussion and proof of Theorem 4.1. All our instances of full reality or maxi-
mal reality, along with the software that certifies correctness, can be found at

htt ps ∶ //mathrepo.mis.mpg.de (8)

For instance, for (α,β ,γ) = (3,3,3), this website contains the configuration in
Example 4.2, along with the 104 tangent quadrics. Each quadric is determined
by its nine points of tangency. The coordinates of these points form a 104×9×4
tensor of floating point numbers in Julia format. The proof of correctness was
carried out with the certification technique in [1], as discussed in Section 5.

We now present some ideas that were helpful in creating fully real instances.
Figures given by the standard basis e1,e2,e3,e4 lead to sparse equations in (3).

Example 4.4. The condition for X to be tangent to the six coordinate lines is

I = ⟨xiix j j −x2
i j ∶ 1 ≤ i < j ≤ 4⟩. (9)

This is the complete intersection of eight prime ideals, each isomorphic to the
ideal J generated by all 2×2 minors of X . The eight primes are Ui jk ⋆J, where
⋆ is the Hadamard product, and Ui jk is the 4×4 matrix with entries (−1)i, (−1) j

and (−1)k in positions (2,3), (2,4) and (3,4), and entries 1 everywhere else.
Seven of these scaled Veronese varieties contain matrices of rank 3 or 4. Their
union is defined by the radical ideal (I ∶ J), which has degree 56. This is Schu-
bert’s number for α = 3,β = 6,γ = 0. We seek three points such that all 56
quadrics containing these and satisfying I are real. One choice that works is

P1 = (1,2,8,7), P2 = (1,1,9,2), P3 = (2,5,3,1).

Our six given lines meet pairwise, and they are not generic. This leads to 48 of
the 56 quadrics being cones. To get 56 smooth quadrics, one perturbs the lines.

We refer to the article [9] by Kahle and Wagner for a general study of the
ideal of principal 2×2 minors of a symmetric n×n matrix of unknowns. Their
results elucidate the decomposition we found for the special case n = 4 in (9).

Example 4.5. The condition for X to be tangent to the four coordinate planes is
the ideal generated by the four principal 3×3 minors. Saturating by the ideal of
all 3×3 minors yields a prime ideal K of codimension 4 and degree 21. This is
Schubert’s number for α = 5,β = 0,γ = 4. It is easy to find five points so that all
21 quadrics containing these and satisfying K are real. This instance is generic.

The ideal K is generated by 10 cubics and 12 quartics. The 5-dimensional
variety cut out by K in P9 has the following nice parametric representation:

X =
⎛
⎜⎜
⎝

x12x13x14 x12 x13 x14
x12 x12x23x24 x23 x24
x13 x23 x13x23x34 x34
x14 x24 x34 x14x24x34

⎞
⎟⎟
⎠

where det
⎛
⎝

x12x34 1 1
1 x13x24 1
1 1 x14x24

⎞
⎠
=0.

https://mathrepo.mis.mpg.de/TangentQuadricsInThreeSpace/index.html
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Our final technique was inspired by the solution to Shapiro’s conjecture [14].

Example 4.6. Consider the lines ` = (1,2t,3t2,t2,2t3,t4) that are tangent to the
twisted cubic curve {(1 ∶ t ∶ t2 ∶ t3)}. There is a surface of quadrics tangent to
all such lines. We choose nine nearby lines, by slightly perturbing nine tangent
lines. Our fully real instance for (α,β ,γ) = (0,9,0) was found in this manner.

5. Numerical Methods

We now explain our techniques for solving the equations (3) and for certifying
the correctness of their solutions. Each instance is presented in the Plücker
coordinates of Remark 2.1. Following (2) and Section 3, each line specifies a
linear equation in Y = ∧2X and each plane gives a linear equation in Z = ∧3X .

The numerical software HomotopyContinuation.jl due to Breiding and
Timme [2, 3] is easy to use, even for those who are not yet familiar with julia.
We now go over our steps in solving the system for the instance in Example 4.2.

The input is a system of 11 equations in 11 unknowns, namely the ten entries
of the matrix X and one more variable D. One equation is D = det(X), another
specifies a random affine chart, ∑1≤i< j≤4 ci jxi j = 1, and the others are the tan-
gency conditions. Our equations are entered into HomotopyContinuation.jl:

Equations=System(vcat(Point_Conditions,

Line_Conditions,

Plane_Conditions,

det(X)-D, Affine_Chart))

After entering S=solve(Equations), the following output appears:
Tracking 216 paths... 100% |||||||||||||||| Time: 0:00:11

# paths tracked: 216

# non-singular solutions (real): 104 (104)

# singular endpoints (real): 84 (83)

# total solutions (real): 188 (187)

This suggests that the program tracked 216 = 1α2β 3γ paths from a total degree
start system and that it found 104 real nonsingular solutions. The variable S is a
104-element array of solutions, each of which is an 11-element array of floating
point numbers. The first coordinate is D, and the last ten are the coordinates of X.

The following code extracts the 17-th element of S and prints that quadric:
quadric=solutions(S)[17]

@var x[1:4]

Quadric=expand(x’*(X(Equations.variables=>real(quadric)))*x)

-2.974732003076*x2*x1-1.289476735251*x2*x3-10.97658863786*x3*x1+

+8.372046844711*x4*x1+8.886907306683*x4*x2+9.704839838537*x4*x3+

-5.810893956281*x1^2+2.645663598009*x2^2-5.046922439351*x3^2+0.6937980589394*x4^2

These julia fragments give a first impression. The details may be found at (8).
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One key question about numerical output is whether it can serve as a math-
ematical proof. How can we be sure that the 104 solutions are indeed solutions
and moreover, that they are distinct, real, and nondegenerate? This is addressed
by the process of a-posteriori certification, which generates an actual proof.

We carry this out using the Krawczyk method, implemented by Breiding,
Rose and Timme [1]. It is based on interval arithmetic and is now available
as a standard feature in HomotopyContinuation.jl. We note that this im-
plementation represents a significant advance over Smale’s α-certification that
was used for the 3264 real quadrics in [2, Proposition 1]. This advance has two
aspects. First, the new method in [1] is much faster. Second, its output gives a
bounding box, allowing us to easily certify that the quadrics are nondegenerate.

We now show how certification works for our instance. The input is easy:

C=certify(Equations,S)

The program creates a certificate C, and it reports on that as follows:
CertificationResult

===================

• 104 solutions given

• 104 certified solutions (104 real)

• 104 distinct certified solutions (104 real)

The certificate C is a list of 104 lists of 22 intervals I1, . . . ,I11,J1, . . . ,J11 in R.
The product B = ∏11

i=1(Ii + im ⋅ Ji) is a box in C11 ≃ R22. That box provably
contains a unique solution to Equations, verified by interval arithmetic.

Checking that these boxes are disjoint proves that the 104 solutions are dis-
tinct. Checking that B is the only box which intersects the complex conjugate
of B itself proves that this solution is real. Checking that 0 is not contained in
I1, the interval for the unknown D proves that the quadric is nondegenerate.

The following command displays the certifying box B for the 17-th quadric:

C.certificates[17].certified_solution

(1.459827495775684e-6 ± 2.2938e-14) + (0.0 ± 2.2938e-14)im

(-0.9684823260468921 ± 1.516e-09) + (0.0 ± 1.516e-09)im

(-0.24789433358973637 ± 2.2975e-11) + (0.0 ± 2.2975e-11)im

(0.44094393300164797 ± 1.1016e-09) + (0.0 ± 1.1016e-09)im

(-0.9147157198219121 ± 1.3088e-09) + (0.0 ± 1.3088e-09)im

(-0.10745639460424983 ± 3.3522e-10) + (0.0 ± 3.3522e-10)im

(-0.8411537398918771 ± 1.0251e-09) + (0.0 ± 1.0251e-09)im

(0.6976705703926359 ± 9.7633e-10) + (0.0 ± 9.7633e-10)im

(0.7405756088903332 ± 1.1508e-09) + (0.0 ± 1.1508e-09)im

(0.8087366532114602 ± 1.202e-09) + (0.0 ± 1.202e-09)im

(0.11563300982325174 ± 7.2217e-10) + (0.0 ± 7.2217e-10)im

Remark 5.1. Finding the fully real instances for Theorem 4.1 was a challenge.
We implemented a heuristic hill-climbing algorithm similar to the one in [5].
The idea is to begin at some configuration C of α real points, β real lines, and γ

real planes, solve the equations, and sample many nearby instances. If one has
more real solutions, then C is updated to be that instance. Otherwise, the new C
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is the instance with the same number of real solutions, but whose complex so-
lutions are closest to becoming real. This is measured by the minimum norm of
the complex parts of each nonreal solution. In this fashion, one greedily travels
through the parameter space towards instances with more real solutions. A ma-
jor issue with such methods is that they get stuck in local maxima. Our success
came from many iterations beginning at different randomly chosen parameters.
A host of numerical tolerances determine the behavior of this algorithm. Once
the number of real solutions approaches the maximum, the instances often be-
come so ill-conditioned that serious monitoring of these tolerances is required.

6. Schubert’s Pyramid

We now finally come to the analogue in P3 of the number 3264. The following
conjecture motivated this project. We hope that it can be resolved in the future.

Conjecture 6.1. There exist nine quadrics in P3
R such that all 666841088 com-

plex quadrics that are tangent to these nine are defined over the real numbers R.

We propose a combinatorial gadget for approaching this problem. Schu-
bert’s pyramid is a tetrahedron of 220 intersection numbers pα`β hγqδ , where
(α,β ,γ,δ) ∈N4 with α +β + γ +δ = 9. Here q = 2(p+ `+h) denotes the coho-
mology class of the complete quadrics tangent to a given quadric in P3. Thus the
pyramid organizes the number of quadrics tangent to nine figures, as in Figure 2.

Figure 2: Two consecutive levels in Schubert’s pyramid
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The levels in Schubert’s pyramid are the triangles for fixed δ . Each entry in
level δ is twice the sum of the three entries in level δ −1 that lie below it. For
instance, for δ = 2 we marked 3712 = 2 ⋅(576+576+704). This counts quadrics
through two points that are tangent to three lines, two planes and two quadrics.

Making Schubert’s triangle fully real is only a first step towards Conjec-
ture 6.1. What we really want is to find one single instance of nine real flags:

P1 ⊂ L1 ⊂H1 , P2 ⊂ L2 ⊂H2 , . . . , P9 ⊂ L9 ⊂H9. (10)

We want those nine flags to exhibit full reality, simultaneously for all their many
tangency problems. Such a configuration (10) would be the 3-dimensional ana-
logue to the pentagon in [2, Figure 3]. To state this precisely, we consider an
arbitrary function ψ ∶ {1,2, . . . ,9}→ {P,L,H}. This defines a polynomial system

det(ψ(i)i ⋅X ⋅ψ(i)T
i ) = 0 for i = 1,2, . . . ,9. (11)

This has the form (3), where α = ∣ψ−1(P)∣, β = ∣ψ−1(L)∣, and γ = ∣ψ−1(H)∣.
Thus, an instance (10) of nine flags gives a collection of 39 polynomial systems.
For each of these, the number of solutions is one entry in Schubert’s triangle.

Conjecture 6.2. There exist nine real flags (10) in P3 such that each complex
solution X to any of the 39 associated polynomial systems (11) is a real quadric.

If Conjecture 6.2 is true, then we can approach Conjecture 6.1 as follows.
We are given (p+ `+h)9 = 1302424 real quadrics X that solve the 39 systems.
Each solution becomes 29 distinct solutions under the deformation in Proposi-
tion 2.2, where the nine flags for ε = 0 become nine smooth quadrics for ε > 0.

This process can be performed in stages, from the bottom to the top of the
pyramid, but its numerical implementation will not be easy. One hope is that
reality can be controlled using the results by Ronga, Tognoli and Vust in [12].
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