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TOPOLOGICAL INDICES FOR THE ANTIREGULAR GRAPHS

E. MUNARINI

We determine some classical distance-based and degree-based topo-
logical indices of the connected antiregular graphs (maximally irregular
graphs). More precisely, we obtain explicitly the k-Wiener index, the
hyper-Wiener index, the degree distance, the Gutman index, the first, sec-
ond and third Zagreb index, the reduced first and second Zagreb index,
the forgotten Zagreb index, the hyper-Zagreb index, the refined Zagreb
index, the Bell index, the min-deg index, the max-deg index, the symmet-
ric division index, the harmonic index, the inverse sum indeg index, the
M-polynomial and the Zagreb polynomial.

1. Introduction

In chemical graph theory, there are several distance-based or degree-based topo-
logical indices used to describe the structure of a connected graph G = (V,E).
The most common distance-based indices are the k-Wiener indices

Wk(G) = ∑
{u,v}⊆V (G)

d(u,v)k =
1
2 ∑

u,v∈V (G)

d(u,v)k (k ∈ Z)

where the first sum is over all pairs of distinct vertices of G, while the second
sum is over all ordered pairs of vertices of G. For k = 1, we have the original
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Wiener index,W(G) =W1(G), introduced by Wiener in 1947 in order to deter-
mine the boiling point of paraffins [47, 48]. For k = −1, we have the Harary
index [29, 39, 50, 52], H(G) = W−1(G). Another index of this kind is the
hyper-Wiener index [30, 40], defined by

WW(G) =
1
2
(
W1(G)+W2(G)

)
.

Two classical generalizations of the Wiener index are the degree distance
[7, 22], defined by

D(G) = ∑
{u,v}⊆V (G)

(d(u)+d(v))d(u,v) =
1
2 ∑

u,v∈V (G)

(d(u)+d(v))d(u,v) ,

and the Gutman index [22], defined by

Gut(G) = ∑
{u,v}⊆V (G)

d(u)d(v)d(u,v) =
1
2 ∑

u,v∈V (G)

d(u)d(v)d(u,v) .

Two of the oldest degree-based topological indices are the first and second
Zagreb index [26, 27], defined by

M1(G) = ∑
{v,w}∈E(G)

(d(v)+d(w)) = ∑
v∈V (G)

d(v)2

M2(G) = ∑
{v,w}∈E(G)

d(v)d(w) .

In addition to these classical indices, we have a huge host of other degree-based
descriptors [17, 23, 46]. For instance, we have the third Zagreb index (or Al-
bertson index, or irregularity) [2, 11, 12]

M3(G) = ∑
{v,w}∈E(G)

|d(v)−d(w)|

= ∑
{v,w}∈E(G)

(max(d(v),d(w))−min(d(v),d(w))) ,

the reduced first Zagreb index [8]

RM1(G) = ∑
v∈V (G)

(d(v)−1)2 = M1(G)+ |V (G)|−4|E(G)| ,

the reduced second Zagreb index1 [16]

RM2(G) = ∑
{u,v}∈E(G)

(d(u)−1)(d(v)−1)

1See [18, 52] for some recent results on these indices.
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and the difference of Zagreb indices ∆M(G) = M2(G)−M1(G), related by the
identity

RM2(G) = ∆M(G)+ |E(G)| ,

the forgotten Zagreb index (or F-index) [15, 17]

F(G) = ∑
{v,w}∈E(G)

(d(v)2 +d(w)2) = ∑
v∈V (G)

d(v)3 ,

the hyper-Zagreb index [44]

HM(G) = ∑
{v,w}∈E(G)

(d(v)+d(w))2 = F(G)+2M2(G) ,

the refined Zagreb index

r(G) = ∑
{v,w}∈E(G)

d(v)d(w)(d(v)+d(w)) ,

the Bell index [3, 17]

B(G) = ∑
v∈V (G)

(
d(v)−2

|E(G)|
|V (G)|

)2

= M1(G)−4
|E(G)|2

|V (G)|

and the associated variance of the vertex degrees [3]

Var(G) =
1

|V (G)| ∑
v∈V (G)

d(v)2− 1
|V (G)|2

(
∑

v∈V (G)

d(v)

)2

=
B(G)

|V (G)|
,

the min-deg index and the max-deg index

Mmin(G) = ∑
{v,w}∈E(G)

min(d(v),d(w))

Mmax(G) = ∑
{v,w}∈E(G)

max(d(v),d(w)) ,

the symmetric division index [20, 21]

SSD(G) = ∑
{v,w}∈E(G)

(
min(d(v),d(w))
max(d(v),d(w))

+
max(d(v),d(w))
min(d(v),d(w))

)

= ∑
{v,w}∈E(G)

(
d(v)
d(w)

+
d(w)
d(v)

)
= ∑
{v,w}∈E(G)

d(v)2 +d(w)2

d(v)d(w)
.



280 E. MUNARINI

Other two similar descriptors are the harmonic index [9, 13, 23, 53–55]

h(G) = ∑
{v,w}∈E(G)

2
d(v)+d(w)

and the inverse sum index (or inverse sum indeg index) [38, 43, 46]

I(G) = ∑
{v,w}∈E(G)

1
1

d(v) +
1

d(w)

= ∑
{v,w}∈E(G)

d(v)d(w)
d(v)+d(w)

.

A natural generalization of these indices is the M-polynomial [6]

M(G;x,y) = ∑
{v,w}∈E(G)
d(v)≤d(w)

xd(v)yd(w) = ∑
{v,w}∈E(G)

xmin(d(v),d(w))ymax(d(v),d(w)) (1)

or the symmetric Zagreb polynomial

Z(G;x,y) = M(G;x,y)+M(G;y,x) = ∑
{v,w}∈E(G)

(xd(v)yd(w)+ xd(w)yd(v)) . (2)

For x = y = q, we have the (first) Zagreb polynomial [5, 10, 25]

Z(G;q) =
1
2

Z(G;q,q) = ∑
{v,w}∈E(G)

qd(v)+d(w) . (3)

The previous distance-based descriptors can be retrieved from these polynomi-
als. For instance, we have [6]

M1(G) = Z′(G;1) (4)

Mmin(G) =

[
∂

∂x
M(G;x,y)

]
x=y=1

(5)

Mmax(G) =

[
∂

∂y
M(G;x,y)

]
x=y=1

(6)

M2(G) =

[
∂ 2

∂x∂y
M(G;x,y)

]
x=y=1

(7)

M3(G) =

[
∂

∂y
M(G;x,y)− ∂

∂x
M(G;x,y)

]
x=y=1

(8)

r(G) =

[
∂

∂q

[
ΘxΘyM(G;x,y)

]
x=y=q

]
q=1

(9)

where Θt = t ∂

∂ t . Moreover, if G is connected and is not a single isolated vertex,
then we have

SSD(G) =
∫ 1

0

[
ΘxZ(G;x,y)

]
x=1

y
dy (10)
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h(G) = 2
∫ 1

0

Z(G;q)
q

dq (11)

I(G) =
∫ 1

0

[
ΘxΘyM(G;x,y)

]
x=y=q

q
dq . (12)

Finally, the degree polynomial of G is defined by

D(G;q) = ∑
v∈V (G)

qd(v) .

In this paper, we will determine all these indices for the connected antireg-
ular graphs [1, 31–33, 35] (also called maximally nonregular graphs [56], or
quasiperfect graphs [4, 37, 42]). Since in any graph of order at least two there
are at least two vertices with the same degree, an antiregular graph is a graph
with at most two vertices with the same degree. For any n ∈ N, n≥ 2, there ex-
ists only one connected antiregular graph An on n vertices and there exists only
one non-connected antiregular graph on n vertices (given by the complementary
graph An). The antiregular graph An can be described in several ways. Here, we
consider An as the graph with vertex set [n] = {1,2, . . . ,n}, where two vertices
i, j ∈ [n] are adjacent whenever i+ j ≥ n+1. See Figure 1 for some examples.
Notice that An contains exactly two vertices of the same degree (for n≥ 2).
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Figure 1: The first connected antiregular graphs An.

The antiregular graphs can also be defined recursively [35]. Recall that the
sum of two graphs G1 and G2 is the graph G1+G2 obtained by the disjoint union
of the two graphs, and that the complete sum of G1 and G2 is the graph G1 �G2
obtained by G1+G2 joining every vertex of G1 to every vertex of G2. Then, the
connected antiregular graphs are defined by the recurrence

An+2 = K1 � (K1 +An) (13)

with the initial conditions A0 = K0 and A1 = K1, where Kn denotes the complete
graph on n vertices. Notice that, for simplicity, we start from the empty graph
A0, even if it is not connected. See Figure 2 for a schematic representation of
this recurrence.
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Figure 2: Recurrent structure of the connected antiregular graphs, where u = 1
and v = n+2. In particular dn+2(u) = 1 and dn+2(v) = n+1.

The number of edges of An is given by

`n =
⌊n

2

⌋⌈n
2

⌉
=

⌊
n2

4

⌋
=

2n2−1+(−1)n

8
. (14)

These numbers form sequence A002620 in [45], and have generating series

`(t) = ∑
n≥0

`ntn =
t2

(1− t)3(1+ t)
. (15)

The degree of a vertex i in An is

dn(i) =

{
i if i≤ b n

2c
i−1 if i≥ b n

2c+1

while the distance between two vertices i and j in An is

dn(i, j) =


0 if i = j
1 if i 6= j , i+ j ≥ n+1
2 if i 6= j , i+ j ≤ n .

Remark 1.1. Consider An+2 and its decomposition described in Figure 2. Then,
we have dn+2(w) = dn(w)+1 and dn+2(w1,w2) = dn(w1,w2) for all vertices w,
w1 and w2 belonging to the subgraph isomorphic with An. These simple remark
will be used several times in the rest of the paper.

Remark 1.2. To obtain some of the mentioned descriptors, we will use some el-
ementary techniques from the theory of formal series (see [19, 41] for a classical
introduction). In particular, we will often use the identity

∑
n≥0

(
n− r+ s

s

)
tn =

tr

(1− t)s+1 (r,s ∈ N) .
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2. Wiener indices

The k-Wiener indices can be determined directly in a very simple way, as shown
in the next theorem.

Theorem 2.1. The k-Wiener indices of the antiregular graphs An are

Wk(An) = 2k
(

n
2

)
− (2k−1)

⌊n
2

⌋⌈n
2

⌉
. (16)

In particular, the Wiener, the hyper-Wiener and the Harary indices are

W(An) = n2−n−
⌊n

2

⌋⌈n
2

⌉
WW(An) = 3

(
n
2

)
−2
⌊n

2

⌋⌈n
2

⌉
H(An) =

1
2

(
n
2

)
+

1
2

⌊n
2

⌋⌈n
2

⌉
.

Proof. Let i and j be two distinct vertices of An. Since dn(i, j) = 1 when i and
j are adjacent and dn(i, j) = 2 when i and j are not adjacent, we have at once

Wk(An) = `n +2k
((

n
2

)
− `n

)
= 2k

(
n
2

)
− (2k−1)`n

which simplifies in (16).

The first values of the Winer indexW(An) are: 0, 0, 1, 4, 8, 14, 21, 30, 40,
52, 65, 80, 96, 114, 133 (sequence A006578 in [45]). The first values of the
hyper-Winer index WW(An) are: 0, 0, 1, 5, 10, 18, 27, 39, 52, 68, 85, 105,
126, 150, 175 (sequence A035608 in [45]). The first values of the Harary index
H(An) are: 0, 0, 0, 1/2, 1, 2, 3, 9/2, 6, 8, 10, 25/2, 15, 18, 21, 49/2, 28, 32, 36,
81/2, 45, 50, 55, 121/2, 66, 72, 78, 169/2.

Notice that the recurrent structure of the antiregular graphs (described in
Figure 2) implies a simple recurrence for the Wiener indices. This approach
will be used very often, in the sequel.

Theorem 2.2. The k-Wiener indices w(k)
n =Wk(An) satisfy the linear recurrence

w(k)
n+2 = w(k)

n +(2k +1)n+1 (17)

with the initial values w(k)
0 = w(k)

1 = 0.
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Proof. Consider An+2 and the decomposition in Figure 2. Then, we have

w(k)
n = dn+2(u,v)k + ∑

w∈V (An)

dn+2(u,w)k

+ ∑
w∈V (An)

dn+2(v,w)k + ∑
w1,w2∈V (An)

dn+2(w1,w2) .

Now, by Remark 1.1, we have

w(k)
n+2 = 1+2kn+n+ ∑

w1,w2∈V (An)

dn(w1,w2) = 1+2kn+n+w(k)
n .

This is recurrence (17).

In the sequel, we will need the following result.

Theorem 2.3. The generating series for the k-Wiener indices of the antiregular
graphs An is

Wk(t) = ∑
n≥0
Wk(An) tn =

t2 +2kt3

(1− t)3(1+ t)
. (18)

In particular, the generating series for the Wiener indices is

w(t) = ∑
n≥0
W(An) tn =

t2 +2t3

(1− t)3(1+ t)
. (19)

Proof. By formula (16) and series (15), we have

∑
n≥0
Wk(An) tn = 2k

∑
n≥0

(
n
2

)
tn− (2k−1)`(t) =

2kt2

(1− t)3 −
(2k−1)t2

(1− t)3(1+ t)

which simplifies in series (18). Equivalently, this series can be obtained by the
recurrence and the initial values stated in Theorem 2.2.

3. Degree distance

In this case, we start by obtaining a recurrence for the degree distances.

Theorem 3.1. The degree distances dn =D(An) satisfy the recurrence

dn+2 = dn +n2 +7n+2+6`n +2wn (20)

with the initial values d0 = d1 = 0.
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Proof. Consider An+2 and the decomposition in Figure 2. By Remark 1.1, we
have

dn+2 = (dn+2(u)+dn+2(v))dn+2(u,v)

+ ∑
w∈V (An)

(dn+2(u)+dn+2(w))dn+2(u,w)

+ ∑
w∈V (An)

(dn+2(v)+dn+2(w))dn+2(v,w)

+ ∑
{w1,w2}⊆V (An)

(dn+2(w1)+dn+2(w2))dn+2(w1,w2)

= n+2+2 ∑
w∈V (An)

(2+dn(w))+ ∑
w∈V (An)

(n+2+dn(w))

+ ∑
{w1,w2}⊆V (An)

(2+dn(w1)+dn(w2))dn(w1,w2)

= n+2+4n+4`n +(n+2)n+2`n +2wn +dn

= n2 +7n+2+6`n +2wn +dn .

This is recurrence (20).

Now, by using the previous result, we can obtain the generating series for
the degree distances.

Theorem 3.2. The generating series for the degree distances dn is

d(t) = ∑
n≥0

dntn =
2t2(1+3t +4t2)

(1− t)4(1+ t)2 . (21)

Proof. By recurrence (20), with the relative initial values, we obtain at once the
equation

d(t)
t2 = d(t)+ ∑

n≥0
(n2 +7n+2)tn +6`(t)+2w(t)

or

d(t) = t2d(t)+
2t2(1+2t−2t2)

(1− t)3 +6t2`(t)+2t2w(t)

from which we have

d(t) =
2t2(1+2t−2t2)

(1− t2)(1− t)3 +
6t2

1− t2 `(t)+
2t2

1− t2 w(t) .

By series (15) and (19), we obtain series (21).

Finally, by their generating series, we can derive an explicit expression for
the degree distances.
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Theorem 3.3. The degree distance of the antiregular graph An is

D(An) =
16n3−18n2−10n+9

24
+(−1)n 2n−3

8
. (22)

Proof. Series (21) admits the following decomposition in partial fractions:

d(t) =
4

(1− t)4 −
19
2

1
(1− t)3 +

13
2

1
(1− t)2 −

5
8

1
1− t

+
1
4

1
(1+ t)2 −

5
8

1
1+ t

.

Hence, extracting the coefficient of tn, we have the identity

dn = 4
(

n+3
3

)
− 19

2

(
n+2

2

)
+

13
2

(
n+1

1

)
− 5

8
+(−1)n 1

4

(
n+1

1

)
− (−1)n 5

8

which simplifies in (22).

4. Gutman index

Also in this case, we start by determining a recurrence for the Gutman indices.
Then, from this recurrence, we obtain their generating series, and, finally, by
expanding this series, we obtain an explicit formula for these indices.

Theorem 4.1. The Gutman indices gn = Gut(An) satisfy the recurrence

gn+2 = gn +dn +wn +2(n+3)`n +n2 +4n+1 (23)

with the initial values g0 = g1 = 0.

Proof. Consider An+2. By the decomposition described in Figure 2 and by Re-
mark 1.1, we have

gn+2 = dn+2(u)dn+2(v)dn+2(u,v)

+ ∑
w∈V (An)

dn+2(u)dn+2(w)dn+2(u,w)

+ ∑
w∈V (An)

dn+2(v)dn+2(w)dn+2(v,w)

+ ∑
{w1,w2}⊆V (An)

dn+2(w1)dn+2(w2)dn+2(w1,w2)

= n+1+2 ∑
w∈V (An)

(dn(w)+1)+(n+1) ∑
w∈V (An)

(dn(w)+1)

+ ∑
{w1,w2}⊆V (An)

(dn(w1)+1)(dn(w2)+1)dn(w1,w2)

= n+1+2(2`n +n)+(n+1)(2`n +n)
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+ ∑
{w1,w2}⊆V (An)

(dn(w1)dn(w2)+dn(w1)+dn(w2)+1)dn(w1,w2)

= n2 +4n+1+2(n+3)`n +gn +dn +wn .

This is recurrence (23).

Theorem 4.2. The generating series for the Gutman indices is

g(t) = ∑
n≥0

gntn =
t2(1+4t +13t2 +6t3 +4t4)

(1− t)5(1+ t)3 . (24)

Proof. By recurrence (23), with the relative initial values, we immediately have
the equation

g(t)
t2 = g(t)+d(t)+w(t)+2 ∑

n≥0
(n+3)`ntn + ∑

n≥0
(n2 +4n+1)tn

or

g(t) = t2g(t)+ t2d(t)+ t2w(t)+2t2
∑
n≥0

(n+3)`ntn + t2
∑
n≥0

(n2 +4n+1)tn

from which we have

g(t) =
t2

1− t2 d(t)+
t2

1− t2 w(t)+
2t2

1− t2 (t`′(t)+3`(t))+
t2

1− t2
1+3t−2t2

(1− t)3 .

Using series (21), (19) and (15) and simplifying, we obtain series (24).

Theorem 4.3. The Gutman index of the antiregular graph An is

Gut(An) =
14n4−16n3−8n2 +4n+3

96
+(−1)n 4n2−4n−1

32
. (25)

Proof. Series (24) admits the following decomposition in partial fractions:

g(t) =
7
2

1
(1− t)5 −

39
4

1
(1− t)4 +

73
8

1
(1− t)3 −

49
16

1
(1− t)2 +

7
32

1
1− t

+
1
4

1
(1+ t)3 −

1
2

1
(1+ t)2 +

7
32

1
1+ t

.

Hence, extracting the coefficient of tn, we have the identity

gn =
7
2

(
n+4

4

)
− 39

4

(
n+3

3

)
+

73
8

(
n+2

2

)
− 49

16

(
n+1

1

)
+

7
32

+(−1)n 1
4

(
n+2

2

)
− (−1)n 1

2

(
n+1

1

)
+(−1)n 7

32

which simplifies in (25).

The first values of the Gutman index gn are: 0, 1, 6, 27, 66, 154, 284, 514,
820, 1295, 1890, 2741, 3766, 5152, 6776, 8884, 11304, 14349.
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5. Zagreb indices

The first Zagreb index can be obtained directly in the following simple way.

Theorem 5.1. The first Zagreb index of the antiregular graph An is

M1(An) =
n(n−1)(2n−1)

6
+
⌊n

2

⌋2
. (26)

Proof. The degree sequence of An is
(
1,2, . . . ,bn

2c,b
n
2c, . . . ,n− 1

)
, where bn

2c
is the only element repeated twice. Therefore, we have

M1(An) =
n−1

∑
k=1

k2 +
⌊n

2

⌋2

which simplifies in (26).

Remark 5.2. Also the indices mn = M1(An) satisfy a recurrence. Indeed, by
using the decomposition of An+2 (see Figure 2) and Remark 1.1, we have

mn+2 = dn+2(u)2 +dn+2(v)2 + ∑
w∈V (An)

dn+2(w)2

= 1+(n+1)2 + ∑
w∈V (An)

(dn(w)+1)2

= n2 +2n+2+ ∑
w∈V (An)

(dn(w)2 +2dn(w)+1)

= n2 +2n+2+mn +4`n +n

that is
mn+2 = mn +4`n +n2 +3n+2 .

Now, let m(t) = ∑n≥0 mntn be the generating series for the indices mn. Then, by
the above recurrence with the initial values m0 = m1 = 0, we have at once the
equation

m(t)
t2 = m(t)+4`(t)+ ∑

n≥0
(n2 +3n+2)tn

that is

m(t) = t2m(t)+4t2`(t)+
2t2

(1− t)3

or

m(t) =
4t2

1− t2 `(t)+
2t2

(1− t2)(1− t)3 .

Finally, by series (15), we obtain the generating series

m(t) = ∑
n≥0

mntn =
2(t2 + t3 +2t4)

(1− t)4(1+ t)2 (27)
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For the second Zagreb index, we proceed by first obtaining a recurrence,
then their generating series and, finally, an explicit formula.

Theorem 5.3. The second Zagreb indices Mn = M2(An) satisfy the recurrence

Mn+2 = Mn +mn +(2n+3)`n +(n+1)2 (28)

with the initial values M0 = M1 = 0.

Proof. Consider An+2 and its decomposition in Figure 2. By Remark 1.1, we
have

Mn+2 = dn+2(u)dn+2(v)+ ∑
w∈V (An)

dn+2(v)dn+2(w)

+ ∑
{w1,w2}∈E(An)

dn+2(w1)dn+2(w2)

= n+1+(n+1) ∑
w∈V (An)

(dn(w)+1)

+ ∑
{w1,w2}∈E(An)

(dn(w1)+1)(dn(w2)+1)

= n+1+(n+1)(2`n +n)

+ ∑
{w1,w2}∈E(An)

(dn(w1)dn(w2)+dn(w1)+dn(w2)+1)

= (n+1)(2`n +n+1)+Mn +mn + `n

= (2n+3)`n +(n+1)2 +Mn +mn .

This is recurrence (28).

Theorem 5.4. The generating series for the second Zagreb indices of the con-
nected antiregular graphs is

M(t) = ∑
n≥0

Mntn =
t2(1+2t +9t2 +4t3 +4t4)

(1− t)5(1+ t)3 . (29)

Proof. By recurrence (28) and the relative initial values, we obtain the equation

M(t)
t2 = M(t)+m(t)+ ∑

n≥0
(2n+3)`ntn + ∑

n≥0
(n+1)2tn

that is

M(t) = t2M(t)+ t2m(t)+ t2(2t`′(t)+3`(t))+
t2(1+ t)
(1− t)3
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from which we have

M(t) =
t2

1− t2 m(t)+
t2

1− t2 (2t`′(t)+3`(t))+
t2(1+ t)

(1− t2)(1− t)3 .

Replacing series (27) and (15), we obtain series (29).

Theorem 5.5. The second Zagreb index of the antiregular graph An is

M2(An) =
10n4−16n3 +8n2 +4n−3

96
+(−1)n (2n−1)2

32
. (30)

Proof. Series (29) admits the following decomposition in partial fractions:

M(t) =
5
2

1
(1− t)5 −

29
4

1
(1− t)4 +

59
8

1
(1− t)3 −

47
16

1
(1− t)2 +

9
32

1
1− t

+
1
4

1
(1+ t)3 −

1
2

1
(1+ t)2 +

9
32

1
1+ t

.

Then, we have the identity

Mn =
5
2

(
n+4

4

)
− 29

4

(
n+3

3

)
+

59
8

(
n+2

2

)
− 47

16

(
n+1

1

)
+

9
32

+(−1)n 1
4

(
n+2

2

)
− (−1)n 1

2

(
n+1

1

)
+(−1)n 9

32

which simplifies in (30).

For the third Zagreb index, we proceed, as before, by obtaining a recurrence,
the generating series and, finally, an explicit formula.

Theorem 5.6. The third Zagreb indices µn = M3(An) satisfy the recurrence

µn+2 = µn−2`n +n2 +n (31)

with the initial values µ0 = µ1 = 0.

Proof. Consider An+2 and its decomposition in Figure 2. Then, by Remark 1.1,
we have

µn+2 = |dn+2(u)−dn+2(v)|+ ∑
w∈V (An)

|dn+2(v)−dn+2(w)|

+ ∑
{w1,w2}∈E(An)

|dn+2(w1)−dn+2(w2)|

= n+ ∑
w∈V (An)

(n−dn(w))+ ∑
{w1,w2}∈E(An)

|dn(w1)−dn(w2)|

= n+n2−2`n +µn .

This is recurrence (31).
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Theorem 5.7. The generating series for the third Zagreb indices of the con-
nected antiregular graphs is

µ(t) = ∑
n≥0

µntn =
2t3

(1− t)4(1+ t)2 . (32)

Proof. By recurrence (31) and the relative initial values, we obtain the equation

µ(t)
t2 = µ(t)−2`(t)+

2t
(1− t)3

that is

µ(t) = t2
µ(t)−2t2`(t)+

2t3

(1− t)3

from which we have

µ(t) =
2t3

(1− t2)(1− t)3 −
2t2

1− t2 `(t) .

Replacing series (15), we obtain series (32).

Theorem 5.8. The third Zagreb index of the antiregular graph An is

M3(An) =
2n3−5n

24
− (−1)n n

8
. (33)

Proof. Series (32) admits the following decomposition in partial fractions:

µ(t) =
1
2

1
(1− t)4 −

1
(1− t)3 +

3
8

1
(1− t)2 −

1
8

1
1− t

− 1
8

1
(1+ t)2 +

1
8

1
1+ t

.

Then, we have the identity

µn =
1
2

(
n+3

3

)
−
(

n+2
2

)
+

3
8

(
n+1

1

)
− 1

8
− (−1)n 1

8

(
n+1

1

)
+(−1)n 1

8

which simplifies in (33).

Now, using the previous results, we can deduce very easily the reduced Za-
greb indices, the Bell index (and the variance of the vertex degrees), the forgot-
ten Zagreb index and the hyper-Zagreb index.

Theorem 5.9. The reduced Zagreb indices of the antiregular graph An are

RM1(An) =
8n3−30n2 +22n+15

24
+(−1)n 2n−5

8
(34)

RM2(An) =
10n4−48n3 +56n2 +12n−27

96
+(−1)n (3−2n)2

32
. (35)
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Proof. For the reduced Zagreb indices we have RM1(An) = M1(An)+ n− 4`n

and RM2(An)=M2(An)−M1(An)+`n. By formulas (30), (26), (14) and identity
bn

2c=
2n−1+(−1)n

4 , we can deduce straightforwardly the stated formulas.

Theorem 5.10. The Bell index of the antiregular graph An is

B(An) =
n(n−1)(2n−1)

6
+
⌊n

2

⌋2
(

1− 4
n

⌈n
2

⌉2
)

(n≥ 1) . (36)

Proof. Immediate consequence of the definition of the Bell index and of identity
(26).

Theorem 5.11. The forgotten Zagreb index of the antiregular graph An is

F(An) =
n2(n−1)2

4
+
⌊n

2

⌋3
. (37)

Proof. Since the degree sequence of An is
(
1,2, . . . ,bn

2c,b
n
2c, . . . ,n− 1

)
, we

have

F(An) =
n−1

∑
k=1

k3 +
⌊n

2

⌋3

which simplifies in (37).

Theorem 5.12. The hyper-Zagreb index of the antiregular graph An is

HM(An) =
22n4−40n3 +20n2 +4n−3

48
+
⌊n

2

⌋3
+(−1)n (2n−1)2

16
. (38)

Proof. Since HM(An) = F(An)+2M2(An), by identities (37) and (30), we have

HM(An) =
n2(n−1)2

4
+
⌊n

2

⌋3

+
10n4−16n3 +8n2 +4n−3

48
+(−1)n (2n−1)2

16
.

By simplifying, we obtain identity (38).

The first values of these indices are listed in the following table.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
M1(An) 0 0 2 6 18 34 64 100 156 220 310 410 542
M2(An) 0 0 1 4 19 44 106 192 354 560 895 1300 1901
M3(An) 0 0 0 2 4 10 16 28 40 60 80 110 140

RM1(An) 0 1 0 1 6 15 34 59 100 149 220 301 410
RM2(An) 0 0 0 0 5 16 51 104 214 360 610 920 1395

B(An) 0 0 0 2
3 2 26

5 10 124
7 28 380

9 60 910
11 110

F(An) 0 0 2 10 44 108 252 468 848 1360 2150 3150 4572
HM(An) 0 0 4 18 82 196 464 852 1556 2480 3940 5750 8374
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6. Zagreb polynomials

For the Zagreb polynomials we obtain a recurrence and then their generating
series. First, however, we need the following result.

Lemma 6.1. The generating series of the degree polynomials Dn(q) = D(An;q)
of the connected antiregular graphs is

D(q; t) = ∑
n≥0

Dn(q) tn =
t− (1−q)t2−q2t3

(1− t)(1−qt)(1−qt2)
. (39)

Proof. Since the degree sequence of An is
(
1,2, . . . ,bn

2c,b
n
2c, . . . ,n− 1

)
, we

have

Dn(q) =
n−1

∑
k=1

qk +qbn/2c =
1−qn

1−q
−1+qbn/2c .

Consequently, we have the generating series

D(q; t) =
1

1−q

(
1

1− t
− 1

1−qt

)
− 1

1− t
+

1+ t
1−qt2

which simplifies in series (39).

Theorem 6.2. The M-polynomials Mn(x,y) = M(An;x,y) of the connected an-
tiregular graphs satisfy the recurrence

Mn+2(x,y) = xyMn(x,y)+ xyn+1Dn(x)+ xyn+1 (40)

with the initial values M0(x,y) = M1(x,y) = 0.
In particular, the Zagreb polynomials Zn(q) = Z(An;q) satisfy the recur-

rence
Zn+2(q) = q2Zn(q)+qn+2Dn(q)+qn+2 (41)

with the initial values Z0(q) = Z1(q) = 0.

Proof. Consider An+2 and its decomposition in Figure 2. By Remark 1.1, we
have

Mn+2(x,y) = xmin(dn+2(u),dn+2(v))ymax(dn+2(u),dn+2(v))

+ ∑
w∈V (An)

xmin(dn+2(v),dn+2(w))ymax(dn+2(v),dn+2(w))

+ ∑
{w1,w2}∈E(An)

xmin(dn+2(w1),dn+2(w2))ymax(dn+2(w2),dn+2(w1))

= xyn+1 + ∑
w∈V (An)

xdn(w)+1yn+1
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+ ∑
{w1,w2}∈E(An)

xmin(dn(w1),dn(w2))+1ymax(dn(w2),dn(w1))+1

= xyn+1 + xyn+1Dn(x)+ xyMn(x,y) .

This is recurrence (40). Recurrence (41) can be obtain with a similar argument,
or by setting x = y = q and using formula (3).

Theorem 6.3. The generating series for the M-polynomials is

M(x,y; t) = ∑
n≥0

Mn(x,y) tn =
xyt2(1+(1− x)yt− y2t2)

(1− yt)(1− xyt)(1− xyt2)(1− xy2t2)
. (42)

In particular, the generating series for the Zagreb polynomials is

Z(q; t) = ∑
n≥0

Zn(q) tn =
q2t2(1+(q−q2)t−q2t2)

(1+qt)(1−qt)2(1−q2t)(1−q3t2)
. (43)

Proof. By recurrence (40) and its initial values, we have the equation

M(x,y; t)
t2 = xyM(x,y; t)+ xD(x;yt)+

xy
1− yt

from which we have

M(x,y; t) =
xyt2

1− xyt2 D(x;yt)+
xyt2

(1− yt)(1− xyt2)
.

By replacing series (39), we obtain series (42). Series (43) can be obtained from
recurrence (40), or by setting x = y = q and using formula (3).

Remark 6.4. In a similar way, we can prove that the symmetric Zagreb poly-
nomials Zn(x,y) = Z(An;x,y) satisfy the recurrence

Zn+2(x,y) = xyZn(x,y)+ xyn+1Dn(x)+ xn+1yDn(y)+ xy(xn + yn) (44)

with the initial values Z0(x,y) = Z1(x,y) = 0, and that their generating series
Z(x,y; t) = ∑n≥0 Zn(x,y) tn is

Z(x,y; t) =
xyt2N(x,y; t)

(1− xt)(1− yt)(1− xyt)(1− xyt2)(1− x2yt2)(1− xy2t2)
(45)

where N(x,y; t) = 2− 2xyt − (x+ y)2t2 + xy(xy(x+ y) + (x− y)2 + x+ y)t3−
x2y2(x2 + y2−2x−2y)t4−2x3y3t5.

All the distance-based indices can be obtained, or reobtained, by using series
(42). For instance, we have the following results.
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Theorem 6.5. The min-deg and the max-deg indices of the antiregular graph
An are

Mmin(An) =
1
16

(2n3−2n2 +n+1+(−1)n(3n−1)) (46)

Mmax(An) =
1

48
(n−1)(10n2 +4n−3+(−1)n3) . (47)

Proof. By formulas (5) and (6) and by series (42), we have

∑
n≥0

Mmin(An) tn =
t2 +2t4

(1− t)4(1+ t)2

=
3
4

1
(1− t)4 −

7
4

1
(1− t)3 +

21
16

1
(1− t)2 −

1
4

1
1− t

+
3
16

1
(1+ t)2 −

1
4

1
1+ t

∑
n≥0

Mmax(An) tn =
t2 +2t3 +2t4

(1− t)4(1+ t)2

=
5
4

1
(1− t)4 −

11
4

1
(1− t)3 +

27
16

1
(1− t)2 −

1
8

1
1− t

+
1

16
1

(1+ t)2 −
1
8

1
1+ t

.

Expanding this series we obtain formulas (46) and (47).

Theorem 6.6. The refined Zagreb index of the antiregular graph An is

r(An) =
288n5−710n4 +620n3 +50n2−248n+45

1920

+(−1)n 76n3−114n2 +56n−9
384

.

(48)

Proof. Using formula (9) and series (42), it is straightforward to obtain the gen-
erating series

r(t) = ∑
n≥0

r(An) tn =
2t2(1+4t +29t2 +32t3 +53t4 +17t5 +8t6)

(1− t)6(1+ t)4 .

Then, by decomposing this series in partial fraction, we have

r(t) =
18

(1− t)6 −
503
8

1
(1− t)5 +

661
8

1
(1− t)4 −

789
16

1
(1− t)3 +

49
4

1
(1− t)2

− 85
128

1
1− t

+
19
16

1
(1+ t)4 −

95
32

1
(1+ t)3 +

155
64

1
(1+ t)2 −

85
128

1
1+ t

.

Hence, we have the identity

rn = 18
(

n+5
5

)
− 503

8

(
n+4

4

)
+

661
8

(
n+3

3

)
− 789

16

(
n+2

2

)
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+
49
4

(
n+1

1

)
− 85

128
+(−1)n 19

16

(
n+3

3

)
− (−1)n 95

32

(
n+2

2

)
+(−1)n 155

64

(
n+1

1

)
− (−1)n 85

128

which simplifies in (48).

Theorem 6.7. The symmetric division index of the antiregular graph An is

SSD(An) =
6n2−8n+3+(−1)n

8

+
2n−1+(−1)n

4

n

∑
k=1

(−1)k−1

k
+

1− (−1)n

4n
(n≥ 1) .

(49)

Proof. Using formula (10) and series (45), it is straightforward to obtain the
generating series

∑
n≥0

SSD(An) tn =
3t2 +3t3− t4 + t5

4(1− t)3(1+ t)
+

t
4(1+ t)

ln
1

1− t
− t + t2

4(1− t)2 ln
1

1+ t
.

The coefficients of the series
3+3t− t2 + t3

4(1− t)3(1+ t)
=

3
2

1
(1− t)3 −

13
4

1
(1− t)2 +

19
8

1
1− t

− 1
8

1
1+ t

− 1+ t
2

are (for n≥ 2)

3
2

(
n+2

2

)
− 13

4

(
n+1

1

)
+

19
8
− (−1)n

8
=

6n2−8n+5− (−1)n

8
.

The coefficients of the series t
1+t ln 1

1−t are (for n≥ 1)

n−1

∑
k=1

(−1)n−k−1

k
= (−1)n

n

∑
k=1

(−1)k−1

k
+

1
n

The coefficients of the series t+t2

(1−t)2 ln 1
1+t are (for n≥ 2)

n

∑
k=1

(−1)k

k
(n− k)+

n−1

∑
k=1

(−1)k

k
(n− k−1)

=
n

∑
k=1

(−1)k

k
(2n−2k−1)+

(−1)n

n

= (2n−1)
n

∑
k=1

(−1)k

k
−2

n

∑
k=1

(−1)k +
(−1)n

n

= (2n−1)
n

∑
k=1

(−1)k

k
+2

1− (−1)n

2
+

(−1)n

n
.

Summing all these coefficients, we obtain identity (49).
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The first values of these indices are listed in the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12
Mmin(An) 0 1 2 7 12 24 36 58 80 115 150 201
Mmax(An) 0 1 4 11 22 40 64 98 140 195 260 341

r(An) 0 2 12 88 260 790 1690 3650 6546 11796 18946 30518

SSD(An) 0 2 5
29
3

47
3

467
20

647
20

4519
105

5779
105

34639
504

42199
504

463937
4620

7. Harmonic index

To determine the harmonic index of an antiregular graph we will use the Zagreb
polynomials obtained in the previous section. First of all, we have

Theorem 7.1. The harmonic index of the antiregular graph An+1 is

h(An+1) = 2
b n−1

2 c

∑
k=0

1
n+ k+1

+2
n

∑
k=0

⌊
n− k

2

⌋
1

n+ k+1
. (50)

Proof. For n≥ 2, the antiregular graph An has no isolated vertices. So, for any
two adjacent vertices i and j, we have i+ j ≥ n+ 1 and consequently dn(i)+
dn( j)≥ i+ j−2≥ n−1≥ 1. Since Z0(q) = Z1(q) = 0, there exist polynomials
zn(q) such that Zn(q) = qnzn(q) for every n ∈ N. If z(q; t) is the generating
series for these polynomials, then, by identity (43), the generating series for the
polynomials zn+1(q) is

z(q; t)
t

=
Z(q; t/q)

t
=

t(1+ t−qt(1+ t)
(1+ t)(1− t)2(1−qt)(1−qt2)

.

This series admits the following decomposition in partial fractions:

z(q; t)
t

=
t

1− t
1

1−qt2 +
t2

(1+ t)(1− t)2
1

1−qt
.

Since [45, A004526]

t2

(1+ t)(1− t)2 =
n

∑
k=0

⌊n
2

⌋
tn ,

we have

zn+1(q) =
b n−1

2 c

∑
k=0

qk +
n

∑
k=0

⌊
n− k

2

⌋
qk

and

Zn+1(q) = qn+1zn+1(q) =
b n−1

2 c

∑
k=0

qn+k+1 +
n

∑
k=0

⌊
n− k

2

⌋
qn+k+1 .

So, by formula (11), we obtain at once identity (50).
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As we will prove in the next theorem, the harmonic indices can be expressed
in terms of the harmonic numbers [19, 36]

Hn =
n

∑
k=1

1
k
= 1+

1
2
+ · · ·+ 1

n
.

Theorem 7.2. The harmonic index of the antiregular graph An+1 is

h(An+1) = (2n+1)H2n +2Hn+d n
2 e−

5
2
Hn− (2n+1)H2d n

2 e

+
2n+1

2
Hd n

2 e−nHb n
2 c−n .

(51)

Proof. For the first sum appearing in identity (50), we have

b n−1
2 c

∑
k=0

1
n+ k+1

=
1

n+1
+ · · ·+ 1

n+ bn−1
2 c+1

=Hn+b n−1
2 c+1−Hn .

For the second sum appearing in identity (50), we have
n

∑
k=0

⌊
n− k

2

⌋
1

n+ k+1
=

n

∑
k=0

⌊
k
2

⌋
1

2n− k+1

=
bn/2c

∑
k=0

k
2n−2k+1

+
b(n−1)/2c

∑
k=0

k
2n−2k

=
bn/2c

∑
k=0

n+ 1
2 −

1
2(2n−2k+1)

2n−2k+1
+

1
2

b(n−1)/2c

∑
k=0

n− (n− k)
n− k

=

(
n+

1
2

) bn/2c

∑
k=0

1
2n−2k+1

− 1
2

(⌊n
2

⌋
+1
)

+
n
2

b(n−1)/2c

∑
k=0

1
n− k

− 1
2

(⌊
n−1

2

⌋
+1
)
.

For the two sums appearing in this last expression, we have
bn/2c

∑
k=0

1
2n−2k+1

=
1

2n+1
+

1
2n−1

+ · · ·+ 1
2n−2bn/2c+1

=
1

2n+1
+

1
2n−1

+ · · ·+ 1
2dn/2e+1

=
1

2n+1
+

1
2n

+
1

2n−1
+ · · ·+ 1

2dn/2e+2
+

1
2dn/2e+1

− 1
2

(
1
n
+ · · ·+ 1

dn/2e+1

)
=H2n+1−H2dn/2e−

1
2
(
Hn−Hdn/2e

)
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and

b(n−1)/2c

∑
k=0

1
n− k

=
1
n
+

1
n−1

+ · · ·+ 1
n−bn−1

2 c
=Hn−Hn−b n−1

2 c−1 .

Furthermore, we have
⌊n

2

⌋
+
⌊n−1

2

⌋
= n−1 and n−bn−1

2 c−1 = dn
2e, for every

n ∈ N. Hence, we have

2
n

∑
k=0

⌊
n− k

2

⌋
1

n+ k+1
= (2n+1)

(
H2n+1−H2dn/2e−

1
2
(
Hn−Hdn/2e

))
+n
(
Hn−Hd n

2 e

)
−
(⌊n

2

⌋
+

⌊
n−1

2

⌋
+2
)

= (2n+1)H2n +1− (2n+1)H2dn/2e−
1
2
(2n+1)Hn

+
1
2
(2n+1)Hdn/2e+nHn−nHd n

2 e− (n−1+2)

= (2n+1)H2n− (2n+1)H2dn/2e−
1
2
Hn +

1
2
(2n+1)Hdn/2e−nHd n

2 e−n .

In conclusion, we have the identity

hn+1 = 2Hn+b n−1
2 c+1−2Hn +(2n+1)H2n− (2n+1)H2dn/2e

− 1
2
Hn +

1
2
(2n+1)Hdn/2e−nHd n

2 e−n

which simplifies in identity (51).

The first values of the harmonic index hn (for n≥ 1) are:

0, 1,
4
3
,

9
5
,

226
105

,
325
126

,
13589
4620

,
43177
12870

,
335339
90090

,
8431639
2042040

,
261886013
58198140

,
6484601
1322685

.

8. Inverse sum index

In order to compute a first expression for the inverse sum index, we will use2

another nice property of the antiregular graphs, i.e. the fact that they are split
graphs. Recall that a split graph [14, 34] is a graph G whose vertex set V can be
partitioned into two sets X and Y such that the induced subgraph on X is an in-
dependent set and the induced subgraph on Y is a complete graph. The partition
{X ,Y} is a split partition of G. An antiregular graph An admit the canonical
split partition {Xn,Yn}, where the subset Xn = {1,2, . . . ,bn/2c} is independent
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Figure 3: Canonical splitting of the antiregular graphs A8 and A9.

and the subset Yn = {bn/2c+1,bn/2c+2, . . . ,n} induces a complete graph. See
Figure 3 for two examples.

With respect to the canonical split partition of An, we have that the degree
of an element of Xn is

dn(k) = k for k = 1,2, . . . ,bn/2c (52)

and the degree of an element of Yn is

dn(bn/2c+ k) = bn/2c−1+ k for k = 1,2, . . . ,dn/2e. (53)

Then, we have the following result.

Theorem 8.1. The inverse sum index of the antiregular graph An is

I(An) =
dn/2e

∑
h,k=1
h<k

(bn/2c−1+h)(bn/2c−1+ k)
2bn/2c−2+h+ k

+
bn/2c

∑
h=1

dn/2e

∑
k=dn/2e−h+1

h(bn/2c−1+ k)
bn/2c−1+h+ k

.

(54)

Proof. Consider the canonical split partition {Xn,Yn} of An. Then, by the defi-
nition of the inverse sum index, we immediately have the identity

I(An) =
dn/2e

∑
h,k=1
h<k

dn(bn/2c+h)dn(bn/2c+ k)
dn(bn/2c+h)+dn(bn/2c+ k)

+
bn/2c

∑
h=1

dn/2e

∑
k=dn/2e−h+1

dn(h)dn(bn/2c+ k)
dn(h)+dn(bn/2c+ k)

.

which simplifies in identity (54) by formulas (52) and (53).

2This approach, clearly, can be used also in the other cases.
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The first values of the inverse sum index In (for n≥ 1) are:

0,
1
2
,

4
3
,

83
20

,
796
105

,
3653
252

,
309269
13860

,
75323
2145

,
804397
16380

,
56838385

816816
,

4262035621
46558512

,
1285453627

10581480
.

In the next theorem, we give an alternative formula for the inverse sum
index, by using a more formal approach.

Theorem 8.2. The inverse sum index of the antiregular graph An+2 is

In+2 =
n

∑
k=0

⌈
n− k

2

⌉
n+ k+2

4

− 1
4

n

∑
k=0

(
n− k+2

3

)
1

n+ k+2
+
(⌊n

2

⌋
+1
)2

+
(⌊n

2

⌋⌈n
2

⌉
− (n+2)

⌊n
2

⌋
−1
)
(Hn+bn/2c+2−Hn+1) .

(55)

Proof. By formula (12), the generating series of the inverse sum index of the
antiregular graphs is

∑
n≥0

I(An) tn =
∫ 1

0

[
ΘxΘyM(x,y; t)

]
x=y=q

q
dq

where M(x,y; t) is the generating series (42). Consider, for simplicity, the series

J(q; t) =

[
ΘxΘyM(x,y; t)

]
x=y=q

q
and W (q; t) =

q
t2 J(q; t/q) .

By a straightforward calculation, we have

W (q; t) =
2t

(1− t)2(1+ t)
1

(1−qt)3 +
t2 +3t3

(1− t)3(1+ t)2
1

(1−qt)2

+
2t3 + t4 + t5

(1− t)4(1+ t)3
1

1−qt
+

4
1− t

1
(1−qt2)3

+
−3+ t +5t2

(1− t)3(1+ t)
1

(1−qt2)2 +
t3

(1− t)3(1+ t)
1

1−qt2 .

Since we have the expansions

t
(1− t)2(1+ t)

= ∑
n≥0

⌊
n+1

2

⌋
tn = ∑

n≥0

⌈n
2

⌉
tn [45,A004526]

t2 +3t3

(1− t)3(1+ t)2 = ∑
n≥0

⌈n
2

⌉
(n−1) tn [45,A265225]
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2t3 + t4 + t5

(1− t)4(1+ t)3 = ∑
n≥0

(
n2

4

⌈n
2

⌉
− 1

4

(
n+2

3

))
tn [45,A023856]

−3+ t +5t2

(1− t)3(1+ t)
= ∑

n≥0

(
n−3+

⌊n
2

⌋)
tn [45,A032766]

t3

(1− t)3(1+ t)
= ∑

n≥0

⌊
n−1

2

⌋⌈
n−1

2

⌉
tn [45,A002620],

then we have

Wn(q) = 2
n

∑
k=0

⌈
n− k

2

⌉(
k+2

2

)
qk +

n

∑
k=0

⌈
n− k

2

⌉
(n− k−1)

(
k+1

1

)
qk

+
n

∑
k=0

(
(n− k)2

4

⌈
n− k

2

⌉
− 1

4

(
n− k+2

3

))
qk

+4
bn/2c

∑
k=0

(
k+2

2

)
qk +

bn/2c

∑
k=0

(
n−2k−3+

⌈
n−2k

2

⌉)(
k+1

1

)
qk

+
bn/2c

∑
k=0

⌊
n−2k−1

2

⌋⌈
n−2k−1

2

⌉
qk .

The general term of the first three sums is⌈
n− k

2

⌉
(k+2)(k+1)+

⌈
n− k

2

⌉
(n− k−1)(k+1)

+
(n− k)2

4

⌈
n− k

2

⌉
− 1

4

(
n− k+2

3

)
=

=

⌈
n− k

2

⌉
(k+1)(n+1)+

(n− k)2

4

⌈
n− k

2

⌉
− 1

4

(
n− k+2

3

)
=

(n+ k+2)2

4

⌈
n− k

2

⌉
− 1

4

(
n− k+2

3

)
while the general term of the last three sums is

4
(

k+2
2

)
+

(
n−2k−3+

⌈
n−2k

2

⌉)
(k+1)+

⌊
n−2k−1

2

⌋⌈
n−2k−1

2

⌉
=

= 2(k+2)(k+1)+
(

n−2k−3+
⌈n

2

⌉
− k
)
(k+1)

+

(⌊
n−1

2

⌋
− k
)(⌈

n−1
2

⌉
− k
)

= (k+1)
(

n− k+1+
⌈n

2

⌉)
+

(⌊
n+1

2

⌋
−1
)⌊n

2

⌋
− (n−1)k+ k2
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= n+ k+1+ k
⌈n

2

⌉
+
⌊n

2

⌋⌈n
2

⌉
.

So, we have

Wn(q) =
n

∑
k=0

(
(n+ k+2)2

4

⌈
n− k

2

⌉
− 1

4

(
n− k+2

3

))
qk

+
bn/2c

∑
k=0

(
n+ k+1+

⌊n
2

⌋
k+
⌊n

2

⌋⌈n
2

⌉)
qk .

Being J(q; t) = qt2W (q; t), we have Jn+2(q) = qn+1Wn(q) and consequently

In+2 =
∫ 1

0
Jn+2(q) dq =

∫ 1

0
qn+1Wn(q) dq

=
n

∑
k=0

⌈
n− k

2

⌉(
(n+ k+2)2

4
− 1

4

(
n− k+2

3

))
1

n+ k+2

+
bn/2c

∑
k=0

(
n+ k+1+

⌊n
2

⌋
k+
⌊n

2

⌋⌈n
2

⌉) 1
n+ k+2

=
n

∑
k=0

⌈
n− k

2

⌉
n+ k+2

4
− 1

4

n

∑
k=0

(
n− k+2

3

)
1

n+ k+2

+
(

n+1+
⌊n

2

⌋⌈n
2

⌉) bn/2c

∑
k=0

1
n+ k+2

+
(⌊n

2

⌋
+1
) bn/2c

∑
k=0

k
n+ k+2

.

Since

bn/2c

∑
k=0

k
n+ k+2

=
bn/2c

∑
k=0

(n− k+2)− (n+2)
n+ k+2

=
⌊n

2

⌋
+1− (n+2)

bn/2c

∑
k=0

1
n+ k+2

and

bn/2c

∑
k=0

1
n+ k+2

=
1

n+2
+ · · ·+ 1

n+ bn/2c+2
=Hn+bn/2c+2−Hn+1 ,
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we have(
n+1+

⌊n
2

⌋⌈n
2

⌉) bn/2c

∑
k=0

1
n+ k+2

+
(⌊n

2

⌋
+1
) bn/2c

∑
k=0

k
n+ k+2

=

=
(

n+1+
⌊n

2

⌋⌈n
2

⌉) bn/2c

∑
k=0

1
n+ k+2

+
(⌊n

2

⌋
+1
)(⌊n

2

⌋
+1− (n+2)

bn/2c

∑
k=0

1
n+ k+2

)

=
(⌊n

2

⌋
+1
)2
+
(⌊n

2

⌋⌈n
2

⌉
− (n+2)

⌊n
2

⌋
−1
) bn/2c

∑
k=0

1
n+ k+2

=
(⌊n

2

⌋
+1
)2
+
(⌊n

2

⌋⌈n
2

⌉
− (n+2)

⌊n
2

⌋
−1
)
(Hn+bn/2c+2−Hn+1) .

In conclusion, we have formula (55).

Formula (55) can be further simplified. To do that, we need the following
two lemmas.

Lemma 8.3. We have the identity

n

∑
k=0

⌈
n− k

2

⌉
(n+ k+2) = (n+2)

⌈n
2

⌉⌈n+1
2

⌉
+

n(n+1)(2n+1)
24

− 1
4

⌈n
2

⌉
.

(56)

Proof. By replacing k with n− k, we have

n

∑
k=0

⌈
n− k

2

⌉
(n+ k+2) =

n

∑
k=0

⌈
k
2

⌉
(n+2+n− k)

= (n+2)
n

∑
k=0

⌈
k
2

⌉
+

n

∑
k=0

⌈
k
2

⌉
(n− k) .

For the first sum, we have the generating series

∑
n≥0

(
n

∑
k=0

⌈
k
2

⌉)
tn =

1
1− t ∑

n≥0

⌈n
2

⌉
tn

=
t

(1− t)3(1+ t)
= ∑

n≥0

⌊
n+1

2

⌋⌈
n+1

2

⌉
tn

and so
n

∑
k=0

⌈
k
2

⌉
=
⌈n

2

⌉⌈n+1
2

⌉
.
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Similarly, for the second sum, we have the generating series

∑
n≥0

(
n

∑
k=0

⌈
k
2

⌉
(n− k)

)
tn = ∑

n≥0
n tn ·∑

n≥0

⌈n
2

⌉
tn

=
t

(1− t)2 ·
t

(1− t)2(1+ t)
=

t2

(1− t)4(1+ t)
.

This is the generating series of sequence A002623, and so

n

∑
k=0

⌈
k
2

⌉
(n− k) =

n(n+1)(2n+1)
24

− 1
4

⌈n
2

⌉
.

Hence, we have identity (56).

Lemma 8.4. We have the identity

n

∑
k=0

(
n− k+2

3

)
1

n+ k+2
=

2
3
(n+1)(n+2)(2n+3)(H2n+1−Hn)

− 1
9
(n+2)(8n2 +23n+18) .

(57)

Proof. First, we rewrite our sum as follows

n

∑
k=0

(
n− k+2

3

)
1

n+ k+2
=

n

∑
k=0

(
k+2

3

)
1

2n− k+2
=

1
6

n

∑
k=0

k3 +3k2 +2k
2n− k+2

.

Now, we express the polynomial k3+3k2+2k as a linear combination of powers
of 2n− k+2. Let α = 2n+2. Then, we have

k3 +3k2 +2k = (α− (α− k))3 +3(α− (α− k))2 +2(α− (α− k))

=−(α− k)3 +3(α +1)(α− k)2− (3α
2 +6α +2)(α− k)+(α +2)(α +1)α

=−(2n− k+2)3 +3(2n+3)(2n− k+2)2−2(6n2 +18n+13)(2n− k+2)

+4(n+1)(n+2)(2n+3) .

Moreover, we have

n

∑
k=0

1
2n− k+2

=
1

2n+2
+ · · ·+ 1

n+2

=H2n+2−Hn+1 =H2n+1−Hn−
1
2

1
n+1

.
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Using these identities, we have

n

∑
k=0

k3 +3k2 +2k
2n− k+2

=

=
n

∑
k=0

(
− (2n− k+2)2 +3(2n+3)(2n− k+2)−2(6n2 +18n+13)

)
+4(n+1)(n+2)(2n+3)

n

∑
k=0

1
2n− k+2

= 4(n+1)(n+2)(2n+3)
(
H2n+1−Hn−

1
2

1
n+1

)
−

n

∑
k=0

(
k2 +(2n+5)k+2(2n2 +7n+6)

)
= 4(n+1)(n+2)(2n+3)(H2n+1−Hn)−2(n+2)(2n+3)

−
(

n(n+1)(2n+1)
6

+(2n+5)
(

n+1
2

)
+2(2n2 +7n+6)(n+1)

)
= 4(n+1)(n+2)(2n+3)(H2n+1−Hn)−

2
3
(8n3 +39n2 +64n+36).

So, we have identity (57).

Finally, by identities (55), (56) and (57), we have (after some simplifica-
tions) the following closed form for the inverse sum index of the connected
antiregular graphs.

Theorem 8.5. The inverse sum index of the antiregular graph An+2 is

In+2 =
(⌊n

2

⌋⌈n
2

⌉
− (n+2)

⌊n
2

⌋
−1
)
(Hn+bn/2c+2−Hn+1)

− 1
6
(n+1)(n+2)(2n+3)(H2n+1−Hn)

+
n+2

4

⌈n
2

⌉⌊n
2

⌋
+
⌊n

2

⌋2
− 4n−25

16

⌊n
2

⌋
+

70n3 +393n2 +641n+576
288

.

(58)

We conclude with the following asymptotic expansion.

Theorem 8.6. For n→+∞, we have the asymptotic expansion

I(An)∼
(

11
36
− ln2

3

)
n3 ' 0.0745065n3 . (59)
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Proof. We will use the following property: let α = {an}n∈N and β = {bn}n∈N
be two real sequences such that an, bn > 0 and an ≤ bn for all n ∈ N, and

lim
n→+∞

an =+∞ and lim
n→+∞

bn

an
= L ∈ R .

Then, for the numbers

H(α,β )
n =

bn

∑
k=an

1
k
=Hbn−Han−1 ,

we have
lim

n→+∞
H(α,β )

n = lnL .

By this property, we have the limits

lim
n→+∞

(Hn+bn/2c+2−Hn+1) = ln
3
2

and lim
n→+∞

(H2n+1−Hn) = ln2 .

Hence, by formula (58), we obtain straightforwardly the asymptotic expansion
(59).

Remark 8.7. Notice that, with a similar argument, we can obtain the asymptotic
expansion also for the harmonic index. Indeed, being

h(An+1) = 2
(
Hn+b n−1

2 c+1−Hn

)
+(2n+1)

(
H2n+1−H2d n

2 e−
1
2
(Hn−Hd n

2 e)

)
+n
(
Hn−Hn−b n−1

2 c−1

)
−n−1 ,

we have
h(An)∼ (2ln2−1)n as n→+∞ .
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gree, Časopis Pěst. Mat. 98 (1973), 305–306, 316.
[38] K. Pattabiraman, Inverse sum indeg index of graphs, AKCE Int. J. Graphs Comb.

15 (2018), 155–167.
[39] D. Plavšić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the

characterization of chemical graphs, J. Math. Chem. 12 (1993), 235–250.
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[42] J. Sedláček, Perfect and quasiperfect graphs, Časopis Pěst. Mat. 100 (1975), no.

2, 135–141.
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