DUPLICATE, BERNSTEIN ALGEBRAS AND EVOLUTION ALGEBRAS

A. CONSEIBO - S. SAVADOGO - M. OUATTARA

In this paper, we firstly study a commutative algebra \mathcal{E} over a field F of $\operatorname{Char}(F) \neq 2$ that satisfying $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$. We show that, such an algebra is an evolution algebra. Afterwards, we pay attention to commutative duplicate of a commutative algebra \mathcal{E}. We find necessary and sufficient condition in which the duplicate $D(\mathcal{E})$ is an evolution algebra. And, we finish by studying an evolution algebra that is a Bernstein algebra. We classify that algebras, up to isomorphism, in dimension ≤ 4.

1. Introduction

Given a commutative field F and a finite dimensional algebra \mathcal{E}, we say that \mathcal{E} is an evolution algebra if it admits a basis $B=\left\{e_{1}, \ldots, e_{n}\right\}$ such that

$$
\begin{equation*}
e_{i} e_{j}=0, \text { for } 1 \leq i \neq j \leq n \text { and } e_{i}^{2}=\sum_{k=1}^{n} a_{i k} e_{k}, \text { for } 1 \leq i \leq n \tag{1}
\end{equation*}
$$

Such a basis is called a natural basis of \mathcal{E}. The matrix $M=\left(a_{i k}\right)_{1 \leq i, k \leq n}$ is called the matrix of structural constants of \mathcal{E} relative to the natural basis B. Evolution algebras are commutative ([15]). The origin and the first study of the evolution algebras date from 1941 with the first formulation due to Etherington ([6,

[^0]Page 34]) of strict self-fertilization in the absence of mutation. Subsequently, Holgate extended Etherington's formulation to study the case of partial selffertilization ([9]). It is from work of Tian ([14]) that these algebras were popularized and studied under the denomination of evolution algebras.

In section 2 , we study n-dimensional commutative algebras \mathcal{E} satisfying $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$. We show that such algebras are evolution algebras, then we give a classification in dimension 2,3 and 4 .

In section 3, we exhibit a necessary and sufficient condition for a commutative duplicate of commutative algebra to be an evolution algebra.

In section 4, we characterize the baric algebras that are Bernstein algebras and we give a classification in dimension 2, 3 and 4 .

2. Quadratic forms and evolution algebras

In this section, we study finite dimensional commutative algebra \mathcal{E} over a commutative field F of $\operatorname{Char}(F) \neq 2$ and satisfying $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$.

2.1. Case of dimensions 2 and 3

Example 2.1. Let \mathcal{E} be a commutative 2-dimensional algebra such that $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$. Then \mathcal{E} is an evolution algebra.

Proof. Let $\mathcal{E}=F e_{1} \oplus F e_{2}$ with $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$, i.e. $\mathcal{E}^{2}=F c$ for a certain $c \in \mathcal{E}$. The multiplication table of \mathcal{E} in the basis $\left\{e_{1}, e_{2}\right\}$ is given by $e_{1}^{2}=\alpha c, e_{2}^{2}=\beta c$ and $e_{1} e_{2}=\gamma c$. We set $x=x_{1} e_{1}+x_{2} e_{2} \in \mathcal{E}$ and we have $x^{2}=\left(\alpha x_{1}^{2}+\beta x_{2}^{2}+\right.$ $\left.2 \gamma x_{1} x_{2}\right) c$. For the reduction of the quadratic form $q(x)=\alpha x_{1}^{2}+\beta x_{2}^{2}+2 \gamma x_{1} x_{2}$, we distinguish two cases

- $(\alpha, \beta) \neq 0$. Without loss of generality, we assume that $\alpha \neq 0$. Then $x^{2}=$ $\left(\alpha\left(x_{1}^{2}+\frac{2 \gamma}{\alpha} x_{1} x_{2}\right)+\beta x_{2}^{2}\right) c=\left(\alpha\left(x_{1}+\frac{\gamma}{\alpha} x_{2}\right)^{2}+\left(\beta-\frac{\gamma^{2}}{\alpha}\right) x_{2}^{2}\right) c$. By taking $e_{2}^{\prime}=$ $-\frac{\gamma}{\alpha} e_{1}+e_{2}$, we get $e_{1} e_{2}^{\prime}=0$. Thus, \mathcal{E} is an evolution algebra in the natural basis $\left\{e_{1}, e_{2}^{\prime}\right\}$.
- $\alpha=\beta=0$. We have $x^{2}=2 \gamma x_{1} x_{2} c=\frac{\gamma}{2}\left(\left(x_{1}+x_{2}\right)^{2}-\left(x_{1}-x_{2}\right)^{2}\right) c$. By setting $e_{1}^{\prime}=e_{1}+e_{2}$ and $e_{2}^{\prime}=e_{1}-e_{2}$, we have $\left(e_{1}+e_{2}\right)\left(e_{1}-e_{2}\right)=0$. Consequently, \mathcal{E} is an evolution algebra in the natural basis $\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$.

Example 2.2. Let \mathcal{E} be a commutative 3-dimensional algebra such that $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$. Then \mathcal{E} is an evolution algebra.

Proof. Let $\mathcal{E}=F e_{1} \oplus F e_{2} \oplus F e_{3}$ with $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$, i.e. $\mathcal{E}^{2}=F c$ for a certain $c \in$ \mathcal{E}. The multiplication table of \mathcal{E} in the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ is given by $e_{1}^{2}=\alpha c, e_{2}^{2}=$ $\beta c, e_{3}^{2}=\gamma c, e_{1} e_{2}=\delta c, e_{1} e_{3}=\mu c$ and $e_{2} e_{3}=\lambda c$. Let $x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3} \in \mathcal{E}$,
we have $x^{2}=\left(\alpha x_{1}^{2}+\beta x_{2}^{2}+\gamma x_{3}^{2}+2 \delta x_{1} x_{2}+2 \mu x_{1} x_{3}+2 \lambda x_{2} x_{3}\right) c$. For the reduction of the quadratic form $q(x)=\left(\alpha x_{1}^{2}+\beta x_{2}^{2}+\gamma x_{3}^{2}+2 \delta x_{1} x_{2}+2 \mu x_{1} x_{3}+2 \lambda x_{2} x_{3}\right)$, we distinguish the following cases

- $(\alpha, \beta, \gamma) \neq 0$. Without loss of generality, we assume that $\alpha \neq 0$. Then

$$
\begin{aligned}
x^{2}= & \left(\alpha\left(x_{1}^{2}+2\left(\frac{\delta}{\alpha} x_{2}+\frac{\mu}{\alpha} x_{3}\right) x_{1}\right)+\beta x_{2}^{2}+\gamma x_{3}^{2}+2 \lambda x_{2} x_{3}\right) c \\
= & \left(\alpha\left(x_{1}+\frac{\delta}{\alpha} x_{2}+\frac{\mu}{\alpha} x_{3}\right)^{2}+\left(\beta-\frac{\delta^{2}}{\alpha}\right) x_{2}^{2}+\left(\gamma-\frac{\mu^{2}}{\alpha}\right) x_{3}^{2}+\right. \\
& \left.2\left(\lambda-\frac{\delta \mu}{\alpha}\right) x_{2} x_{3}\right) c
\end{aligned}
$$

i) $\delta^{2}-\beta \alpha \neq 0$ or $\mu^{2}-\gamma \alpha \neq 0$. We can take $\delta^{2}-\beta \alpha \neq 0$, without loss of generality.

$$
\begin{aligned}
x^{2}= & \left(\alpha\left(x_{1}+\frac{\delta}{\alpha} x_{2}+\frac{\mu}{\alpha} x_{3}\right)^{2}+\left(\beta-\frac{\delta^{2}}{\alpha}\right)\left(x_{2}^{2}+2 \frac{\alpha \lambda-\delta \mu}{\alpha \beta-\delta^{2}} x_{2} x_{3}\right)+\right. \\
& \left.\left(\gamma-\frac{\mu^{2}}{\alpha}\right) x_{3}^{2}\right) c \\
= & \left(\alpha\left(x_{1}+\frac{\delta}{\alpha} x_{2}+\frac{\mu}{\alpha} x_{3}\right)^{2}+\left(\beta-\frac{\delta^{2}}{\alpha}\right)\left(x_{2}+\frac{\alpha \lambda-\delta \mu}{\alpha \beta-\delta^{2}} x_{3}\right)^{2}+\right. \\
& \left.\frac{1}{\alpha}\left(\alpha \gamma-\mu^{2}-\frac{(\alpha \lambda-\delta \mu)^{2}}{\alpha \beta-\delta^{2}}\right) x_{3}^{2}\right) c
\end{aligned}
$$

By setting $e_{2}^{\prime}=-\frac{\delta}{\alpha} e_{1}+e_{2}$ and $e_{3}^{\prime}=\frac{1}{\alpha}\left(\frac{\lambda \delta}{\beta}-\frac{\delta^{2} \mu}{\alpha \beta}-\mu\right) e_{1}-\frac{\alpha \lambda-\delta \mu}{\alpha \beta} e_{2}+$ e_{3}, we get $e_{1} e_{2}^{\prime}=e_{1} e_{3}^{\prime}=e_{2}^{\prime} e_{3}^{\prime}=0$. So \mathcal{E} is an evolution algebra in the natural basis $\left\{e_{1}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$.
ii) $\delta^{2}-\beta \alpha=\mu^{2}-\gamma \alpha=0$. Then

$$
\begin{aligned}
x^{2}= & \left(\alpha\left(x_{1}+\frac{\delta}{\alpha} x_{2}+\frac{\mu}{\alpha} x_{3}\right)^{2}+2\left(\lambda-\frac{\delta \mu}{\alpha}\right) x_{2} x_{3}\right) c \\
= & \left(\alpha\left(x_{1}+\frac{\delta}{\alpha} x_{2}+\frac{\mu}{\alpha} x_{3}\right)^{2}+\frac{1}{2}\left(\lambda-\frac{\delta \mu}{\alpha}\right)\right. \\
& \left.\left(\left(x_{2}+x_{3}\right)^{2}-\left(x_{2}-x_{3}\right)^{2}\right)\right) c
\end{aligned}
$$

By taking $e_{2}^{\prime}=\frac{\delta+\mu}{2 \alpha} e_{1}+\frac{1}{2} e_{2}+\frac{1}{2} e_{3}$ and $e_{3}^{\prime}=\frac{\delta-\mu}{2 \alpha} e_{1}+\frac{1}{2} e_{2}-\frac{1}{2} e_{3}$, we obtain $e_{1} e_{2}^{\prime}=e_{1} e_{3}^{\prime}=e_{2}^{\prime} e_{3}^{\prime}=0$. So \mathcal{E} is an evolution algebra in the natural basis $\left\{e_{1}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$.

- $\alpha=\beta=\gamma=0$. Without loss of generality, we can take $\delta \neq 0$. Thus

$$
\begin{aligned}
x^{2} & =2 \delta\left(x_{1} x_{2}+\frac{\mu}{\delta} x_{1} x_{3}+\frac{\lambda}{\delta} x_{2} x_{3}\right) c \\
& =2 \delta\left(\left(x_{1}+\frac{\lambda}{\delta} x_{3}\right)\left(x_{2}+\frac{\mu}{\delta} x_{3}\right)-\frac{\lambda \mu}{\delta^{2}} x_{3}^{2}\right) c \\
& =\left(\frac{\delta}{2}\left(x_{1}+x_{2}+\frac{\lambda+\mu}{\delta} x_{3}\right)^{2}-\frac{\delta}{2}\left(x_{1}-x_{2}+\frac{\lambda-\mu}{\delta} x_{3}\right)^{2}-\frac{2 \lambda \mu}{\delta} x_{3}^{2}\right) c
\end{aligned}
$$

By setting $e_{1}^{\prime}=e_{1}+e_{2}, e_{2}^{\prime}=e_{1}-e_{2}$ and $e_{3}^{\prime}=-\frac{\lambda}{\delta} e_{1}-\frac{\mu}{\delta} e_{2}+e_{3}$, we get $e_{1}^{\prime} e_{2}^{\prime}=$ $e_{1}^{\prime} e_{3}^{\prime}=e_{2}^{\prime} e_{3}^{\prime}=0$. So \mathcal{E} is an evolution algebra in the natural basis $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$.

2.2. General case

Let (\mathcal{E}, b) be a bilinear space. A vector $x \neq 0$ of \mathcal{E} is said to be isotropic if $b(x, x)=0$. Otherwise x is said to be anisotropic. If (\mathcal{E}, b) contains an isotropic vector, then (\mathcal{E}, b) is also called isotropic bilinear space. Otherwise (\mathcal{E}, b) is called anisotropic. A subspace W of \mathcal{E} is totally isotropic if $b(W, W)=0$, i.e. $b(x, y)=0$ for all $x, y \in W$. The radical of a symmetric bilinear form $b(x, y)$ is the set of all x such that $b(x, y)=0$, for all $y \in \mathcal{E}$.

Theorem 2.3 ([10, Theorem 4.1, Witt's Decomposition]). In characteristic $\neq 2$, any quadratic space (\mathcal{E}, q) admits orthogonal sum decomposition

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}_{t} \perp \mathcal{E}_{h y p} \perp \mathcal{E}_{a n} \tag{2}
\end{equation*}
$$

called Witt's decomposition, where $\mathcal{E}_{t}=\operatorname{rad}(q)$ is totally isotropic, $\mathcal{E}_{\text {hyp }}=H_{1} \perp$ $\cdots \perp H_{s}$ is a hyperbolic space and $\mathcal{E}_{\text {an }}$ is an anisotropic space.

Proposition 2.4. Any finite dimensional commutative algebra \mathcal{E} such that $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$ is an evolution algebra. The natural basis being the orthogonal basis of Witt's decomposition of the induced bilinear form.

Proof. Let \mathcal{E} be such an algebra. We choose $c \in \mathcal{E}$ such that $\mathcal{E}^{2}=F c$. For $x, y \in \mathcal{E}, x y=b(x, y) c$ where $b: \mathcal{E} \times \mathcal{E} \rightarrow F$ is a non-zero symmetric bilinear form. The corresponding quadratic form $q: \mathcal{E} \rightarrow F$ is defined by $x^{2}=q(x) c$. If another c^{\prime} is chosen as the generator of \mathcal{E}^{2}, then $c^{\prime}=\lambda c$, for a certain $\lambda \in F^{*}$. The corresponding bilinear form b^{\prime} is $\lambda^{-1} b$. Since q is a quadratic form, Theorem 2.3 tell us, algebra \mathcal{E} admits an orthogonal basis given by Witt's decomposition. It follows that algebra \mathcal{E} is an evolution algebra and the natural basis being the orthogonal basis.

2.3. Classification

Let $\mathcal{E}=\mathcal{E}_{t} \perp \mathcal{E}_{\text {hyp }} \perp \mathcal{E}_{\text {an }}$ be Witt's decomposition of the finite dimensional evolution algebra \mathcal{E} satisfying $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$ over a commutative field F of $\operatorname{Char}(F) \neq$ 2. The Proof of Proposition 2.4 tells us, there are a non-zero symmetric bilinear $b: \mathcal{E} \times \mathcal{E} \rightarrow F$ and $c \in \mathcal{E}$ such that $\mathcal{E}^{2}=F c$ and $x y=b(x, y) c$ for all $x, y \in \mathcal{E}$. Let $q: \mathcal{E} \rightarrow F$ be the corresponding quadratic form of b. We choose a basis $\left\{u_{1}, \ldots, u_{r}\right\}$ of $\mathcal{E}_{\text {an }}$ such that $b\left(u_{i}, u_{j}\right)=0$, for $i \neq j$, and $q\left(u_{i}\right)=d_{i} \neq 0$ $(i=1, \ldots, r)$. Then, we choose a basis $\left\{x_{i}, y_{i}\right\}$ of H_{i} such that $b\left(x_{i}, y_{i}\right)=0$, $q\left(x_{i}\right)=-q\left(y_{i}\right)=1$ and finally, we choose a basis $\left\{v_{1}, \ldots, v_{t}\right\}$ of $\mathcal{E}_{t}=\operatorname{rad}(b)$. Since $x^{2}=q(x) c$, it follows that $x^{3}=q(x) b(x, c) c, \ldots, x^{k+2}=q(x) b(x, c)^{k} c$. If \mathcal{E} is a nil-algebra, then $b(x, c)=0$ for all $x \in \mathcal{E}$; in this case $c \in \mathcal{E}_{t}$. Let us suppose that \mathcal{E} is non-nil. There exists $z \in \mathcal{E}$ such that $b(z, c) \neq 0$. Thus three cases are to be considered.

- c belongs to $\mathcal{E}_{t}=\operatorname{rad}(b)$, i.e. $b(x, c)=0$ for all $x \in \mathcal{E}$. The multiplication table of \mathcal{E} in the basis $\left\{u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{t}\right\}$ is

$$
\begin{equation*}
u_{i}^{2}=d_{i} c \quad(i=1, \ldots, r), \text { the others products are zero. } \tag{3}
\end{equation*}
$$

- c is isotropic, i.e. $b(c, c)=0$ and $c^{2}=0$ but $b(z, c) \neq 0$, for some z. So $c \in$ $\mathcal{E}_{\text {hyp }}$ and then there is an i such that $c=x_{i}+y_{i}$. Without loss of generality, we can assume that $i=1$. In this case $\mathcal{E}=\mathcal{E}_{\text {hyp }} \perp \mathcal{E}_{\text {an }}$, where $\mathcal{E}_{\text {hyp }}=H_{1}$ and the multiplication table of \mathcal{E} in the basis $\left\{u_{1}, \ldots, u_{r}, x_{1}, y_{1}, v_{1}, \ldots, v_{t}\right\}$ is

$$
\begin{equation*}
u_{i}^{2}=d_{i}\left(x_{1}+y_{1}\right) \quad(i=1, \ldots, r), \quad x_{1}^{2}=-y_{1}^{2}=x_{1}+y_{1} \tag{4}
\end{equation*}
$$

the others products are zero.

- c is anisotropic, i.e. $b(c, c) \neq 0$. We have $c^{2}=q(c) c$ and by setting $c^{\prime}=q(c)^{-1} c$, it follows that $c^{\prime 2}=c^{\prime}$ is a non-zero idempotent. The multiplication table of \mathcal{E} in the basis $\left\{v_{1}, \ldots, v_{t}, u_{1}, \ldots, u_{r}\right\}$ is

$$
\begin{equation*}
u_{1}^{2}=u_{1}, u_{i}^{2}=d_{i} u_{1} \quad(i=2, \ldots, r), \text { the others products are zero. } \tag{5}
\end{equation*}
$$

Now, we give a low-dimensional classification of such algebras.
Proposition 2.5. [4, Theorem 4.1] Any 2-dimensional evolution algebra, over a commutative field F of $\operatorname{Char}(F) \neq 2$, satisfying $\operatorname{dim}_{F}\left(\mathcal{E}^{2}\right)=1$ is isomorphic to one of the following algebras :

- $\mathcal{E}_{1}: u_{1}^{2}=u_{2}, u_{2}^{2}=0$.
- $\mathcal{E}_{2}: u_{1}^{2}=-u_{2}^{2}=u_{1}+u_{2}$.
- $\mathcal{E}_{3}: u_{1}^{2}=u_{1}, u_{2}^{2}=0$.
- $\mathcal{E}_{4}(\alpha): u_{1}^{2}=u_{1}, u_{2}^{2}=\alpha u_{1}$, with $\alpha \in F^{*}$.

Proposition 2.6. [3, Theorem 3.5(ii), Table 1] Any 3-dimensional evolution algebra, over a commutative field F of $\operatorname{Char}(F) \neq 2$, satisfying $\operatorname{dim}_{F}\left(\mathcal{E}^{2}\right)=1$ is isomorphic to one of the following algebras

- $\mathcal{E}_{1}: u_{1}^{2}=u_{1}+u_{2}, u_{2}^{2}=-\left(u_{1}+u_{2}\right), u_{3}^{2}=0$.
- $\mathcal{E}_{2}: u_{1}^{2}=u_{1}+u_{2}, u_{2}^{2}=-\left(u_{1}+u_{2}\right), u_{3}^{2}=u_{1}+u_{2}$.
- $\mathcal{E}_{3}: u_{1}^{2}=u_{3}, u_{2}^{2}=0, u_{3}^{2}=0$.
- $\mathcal{E}_{4}(\alpha): u_{1}^{2}=u_{3}, u_{2}^{2}=\alpha u_{3}, u_{3}^{2}=0$, with $\alpha \in F^{*}$.
- $\mathcal{E}_{5}: u_{1}^{2}=u_{1}, u_{2}^{2}=u_{3}^{2}=0$.
- $\mathcal{E}_{6}(\alpha): u_{1}^{2}=u_{1}, u_{2}^{2}=\alpha u_{1}, u_{3}^{2}=0$, with $\alpha \in F^{*}$.
- $\mathcal{E}_{7}(\alpha, \beta): u_{1}^{2}=u_{1}, u_{2}^{2}=\alpha u_{1}, u_{3}^{2}=\beta u_{1}$ with $\alpha, \beta \in F^{*}$.

With regard to dimension 4 , by varying the dimension of \mathcal{E}_{t} from 0 to 3 in the equation (2) and taking account the three cases defined above, we have

Proposition 2.7. Any 4-dimensional evolution algebra, over a commutative field F of $\operatorname{Char}(F) \neq 2$, satisfying $\operatorname{dim}_{F}\left(\mathcal{E}^{2}\right)=1$ is isomorphic to one of the following algebras

- $\mathcal{E}_{1}: u_{1}^{2}=v_{3}, v_{1}^{2}=v_{2}^{2}=v_{3}^{2}=0 ;$
- $\mathcal{E}_{2}: x_{1}^{2}=-y_{1}^{2}=x_{1}+y_{1}, v_{1}^{2}=v_{2}^{2}=0$;
- $\mathcal{E}_{3}: x_{1}^{2}=-y_{1}^{2}=x_{1}+y_{1}, u_{1}^{2}=x_{1}+y_{1}, v_{1}^{2}=0$;
- $\mathcal{E}_{4}(\alpha): x_{1}^{2}=-y_{1}^{2}=x_{1}+y_{1}, u_{1}^{2}=\alpha\left(x_{1}+y_{1}\right), u_{2}^{2}=-\alpha\left(x_{1}+y_{1}\right)$;
- $\mathcal{E}_{5}(\alpha): u_{1}^{2}=v_{2}, u_{2}^{2}=\alpha v_{2}, v_{1}^{2}=v_{2}^{2}=0 ;$
- $\mathcal{E}_{6}: u_{1}^{2}=u_{1}, u_{2}^{2}=u_{3}^{2}=u_{4}^{2}=0$;
- $\mathcal{E}_{7}(\alpha): u_{1}^{2}=u_{1}, u_{2}^{2}=\alpha u_{1}, u_{3}^{2}=u_{4}^{2}=0 ;$
- $\mathcal{E}_{8}(\alpha, \beta): u_{1}^{2}=u_{1}, u_{2}^{2}=\alpha u_{1}, u_{3}^{2}=\beta u_{1}, u_{4}^{2}=0 ;$
- $\mathcal{E}_{9}(\alpha, \beta, \gamma): u_{1}^{2}=u_{1}, u_{2}^{2}=\alpha u_{1}, u_{3}^{2}=\beta u_{1}, u_{4}^{2}=\gamma u_{1} ;$
with $\alpha, \beta, \gamma \in F^{*}$.
Remark 2.8. If F is an algebraically closed field, in particular if any scalar α of F is a square, i.e. $F=F^{2}$, the scalars α, β and γ will be replaced by 1 .

3. Duplicate and evolution algebras

Let \mathcal{E} be a commutative algebra over a commutative field of $\operatorname{Char}(F) \neq 2$, not necessarily associative, nor having an unit element and let $S_{F}^{2}(\mathcal{E})$ be a second symmetric power of the F-linear space \mathcal{E}. Let I and J be two countable parts. The multiplication $\sum_{i \in I}\left(x_{i} \cdot y_{i}\right) \sum_{j \in J}\left(x_{j}^{\prime} \cdot y_{j}^{\prime}\right)=\sum_{i \in I} x_{i} y_{i} \cdot \sum_{j \in J} x_{j}^{\prime} y_{j}^{\prime}$, where $x_{i}, y_{i}, x_{j}^{\prime}, y_{j}^{\prime}$ in \mathcal{E} and $x_{i} \cdot y_{i}$ denotes the symmetric product of x_{i} by y_{i}, defines on $S_{F}^{2}(\mathcal{E})$ a commutative F-algebra structure called a commutative duplicate of \mathcal{E} [11].

The duplicate will be denoted by $D(\mathcal{E})$. The F-linear map $\mu: D(\mathcal{E}) \rightarrow \mathcal{E}^{2}$ defines by $x . y \mapsto x y$ is an onto F-algebra homomorphism called Etherington's homomorphism. We have $D(\mathcal{E}) \operatorname{ker}(\mu)=0$ and $D(\mathcal{E})=\mathcal{E}^{2} \times \operatorname{ker}(\mu)$ (s.d. for semidirect) algebras isomorphism. The semi-direct product is given by $\left(x, x^{\prime}\right)\left(y, y^{\prime}\right)=$ $(x y, \varphi(x, y))$ for all x, y in $\mathcal{E}^{2} ; x^{\prime}, y^{\prime}$ in $\operatorname{ker}(\mu)$ and $\varphi: \mathcal{E}^{2} \times \mathcal{E}^{2} \rightarrow \operatorname{ker}(\mu)$ is a F bilinear map. We set $N_{F}(\mathcal{E})=\operatorname{ker}(\mu)$. If the family $\left\{e_{1}, \cdots, e_{n}\right\}$ is a basis of \mathcal{E}, then $\left\{e_{i} . e_{j} \mid 1 \leq i \leq j \leq n\right\}$ is a basis of $D(\mathcal{E})$, called the canonical basis of $D(\mathcal{E})$ and $\operatorname{dim}(D(\mathcal{E}))=\frac{n(n+1)}{2}$.

Let \mathcal{E} be an evolution algebra in the natural basis $\left\{e_{1}, \cdots, e_{n}\right\}$. We suppose that $D(\mathcal{E})$ is an evolution algebra with the canonical basis as the natural basis.

For $i \neq j$, we have $e_{i} e_{j}=0$, i.e. $e_{i} . e_{j} \in N_{F}(\mathcal{E})$. For $i \neq j$, we have $0=$ $\left(e_{i} \cdot e_{i}\right)\left(e_{j} \cdot e_{j}\right)=e_{i}^{2} . e_{j}^{2}$. Either $e_{i}^{2}=0$ for all $i \in\{1, \ldots, n\}$, i.e. $\mathcal{E}^{2}=0$, or there exists $i_{0} \in\{1, \ldots, n\}$ such that $e_{i_{0}}^{2} \neq 0$ and $e_{j}^{2}=0$ for all $j \neq i_{0}$. So either $\mathcal{E}^{2}=0$ or $\mathcal{E}^{2}=F e_{i_{0}}^{2}$, i.e. $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$. The multiplication table of $D(\mathcal{E})$ in natural basis $\left\{e_{i} . e_{j} \mid 1 \leq i \leq j \leq n\right\}$ is given by $\left(e_{i_{0}} . e_{i_{0}}\right)^{2}=e_{i_{0}}^{2} . e_{i_{0}}^{2}$, the others products are zero.

The canonical basis of $D(\mathcal{E})$ is not always a natural basis.
Example 3.1. Let $\mathcal{E}_{2}: e_{1} e_{1}=e_{1}, e_{2} e_{2}=e_{1}$ be an evolution algebra. By taking $e_{i j}:=e_{i} . e_{j}$, the multiplication table of $D\left(\mathcal{E}_{2}\right)$ in the canonical basis is given by $e_{11}^{2}=e_{11}, e_{11} e_{22}=e_{11}, e_{22} e_{22}=e_{11}$, the others products are zero. Since $e_{11} e_{22} \neq 0$, this basis is not a natural basis. By taking $u=e_{22}-e_{11}$, we get $e_{11}^{2}=e_{11}, e_{11} e_{12}=e_{11} u=e_{12} e_{12}=e_{12} u=u^{2}=0$. The duplicate algebra is an evolution algebra in the natural basis $\left\{e_{11}, e_{12}, u\right\}$.

For z and w in $D(\mathcal{E})$, we notice that the product in $D(\mathcal{E})$ is given by $z w=$ $\mu(z) \cdot \mu(w)$. So, if \mathcal{E} is a zero algebra, then for all $z, w \in D(\mathcal{E})$, we have $z w=$ $\mu(z) \cdot \mu(w)=0$ because $\mu(z)=\mu(w)=0$. Consequently, $D(\mathcal{E})$ is an evolution algebra.

Theorem 3.2. Let \mathcal{E} be a n-dimensional non zero commutative F-algebra and $D(\mathcal{E})$ its commutative duplicate. Then $D(\mathcal{E})$ is an evolution algebra if and only if $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$.

Proof. Let us suppose that $D(\mathcal{E})$ is an evolution algebra in the natural basis $\left\{z_{1}, \ldots, z_{s}\right\}$, with $s=\frac{n(n+1)}{2}$. For $i \neq j$, the equality $z_{i} z_{j}=0$ is equivalent to $\mu\left(z_{i}\right) \cdot \mu\left(z_{j}\right)=0$. Since $\mathcal{E}^{2} \neq\{0\}$, it follows that there exists i_{0} such that $\mu\left(z_{i_{0}}\right) \neq$ 0 . Thus, $\mu\left(z_{j}\right)=0$ for all $j \neq i_{0}, z_{j} \in N_{F}(\mathcal{E})=\{x \in D(\mathcal{E}) \mid x \cdot D(\mathcal{E})=0\}=$ $\operatorname{ann}(D(\mathcal{E}))$, where $\operatorname{ann}(D(\mathcal{E}))$ is the annihilator of $D(\mathcal{E})$. $\operatorname{Sod} \operatorname{dim}\left(N_{F}(\mathcal{E})\right)=$ $s-1$ and $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$.

Conversely, let \mathcal{E} be a commutative F-algebra such that $\operatorname{dim}\left(\mathcal{E}^{2}\right)=1$. According to Proposition 2.4, such an algebra is an evolution algebra, the natural basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ being that orthogonal. Since $D(\mathcal{E}) / N_{F}(\mathcal{E}) \simeq \mathcal{E}^{2}$, it follows that $\operatorname{dim}\left(N_{F}(\mathcal{E})\right)=s-1$. If $e_{i_{0}}^{2} \neq 0$, then $\left(e_{i_{0}} \cdot e_{i_{0}}\right)^{2}=e_{i_{0}}^{2} \cdot e_{i_{0}}^{2} \neq 0$, generates $D(\mathcal{E})^{2}$ and we always deduce from Proposition 2.4 that $D(\mathcal{E})$ is an evolution algebra.

4. Bernstein Algebra

A finite dimensional commutative algebra \mathcal{E} over a commutative field F is said to be baric, if there is nontrivial homomorphism $\omega: \mathcal{E} \longrightarrow F$ of algebras. The baric algebra (\mathcal{E}, ω) is called Bernstein algebra if

$$
\begin{equation*}
x^{2} x^{2}-\omega(x)^{2} x^{2}=0, \text { for all } x \in \mathcal{E} \tag{6}
\end{equation*}
$$

Bernstein algebras have their origins in genetics ([2]). Holgate was the first to use the language of non-associative algebras to translate Bernstein's problem ([8]).
We defined inductively plenary powers of an element $x \in \mathcal{E}$ by :

$$
x^{(1)}=x \text { and } x^{(k+1)}=x^{(k)} x^{(k)}, \quad k \in \mathbb{N},
$$

while that of \mathcal{E} is defined by :

$$
\mathcal{E}^{(1)}=\mathcal{E} \text { and } \mathcal{E}^{(k+1)}=\mathcal{E}^{(k)} \mathcal{E}^{(k)}, k \in \mathbb{N} .
$$

4.1. Some properties of Bernstein algebras

Let (\mathcal{E}, ω) be a Bernstein algebra over a commutative field F of $\operatorname{Char}(F) \neq 2$.
The following results are well known ([16]).

1) The homomorphism $\omega: \mathcal{E} \longrightarrow F$ is the unique weight function of \mathcal{E}.
2) Algebra \mathcal{E} has at least one non-zero idempotent.
3) For an idempotent e of \mathcal{E}, the algebra \mathcal{E} admits the following Peirce decomposition $\mathcal{E}=F e \oplus U_{e} \oplus V_{e}$, where $U_{e}=\left\{x \in \mathcal{E} \left\lvert\, e x=\frac{1}{2} x\right.\right\}$ and $V_{e}=\{x \in \mathcal{E} \mid$ $e x=0\}$. The subspaces U_{e} and V_{e} satisfy the relations

$$
U_{e} V_{e} \subseteq U_{e}, V_{e}^{2} \subseteq U_{e}, U_{e}^{2} \subseteq V_{e} \text { and } U_{e} V_{e}^{2}=0
$$

4) The set of idempotents of \mathcal{E} is given by $\mathcal{I}(\mathcal{E})=\left\{e+\sigma+\sigma^{2} \mid \sigma \in U_{e}\right\}$ for any idempotent e of \mathcal{E}.
5) Let $e_{1}=e+\sigma+\sigma^{2}$, with $\sigma \in U_{e}$, be another idempotent of \mathcal{E}. We have the following relations $U_{e_{1}}=\left\{u+\sigma u \mid u \in U_{e}\right\}$ and $V_{e_{1}}=\left\{v-2\left(\sigma+\sigma^{2}\right) v \mid\right.$ $\left.v \in V_{e}\right\}$. It follows that although the decomposition of the Bernstein algebra depends on the choice of the idempotent e, the dimension of the subspaces U_{e} and V_{e} of \mathcal{E} are invariants of \mathcal{E}. If $r=\operatorname{dim} U_{e}$ and $s=\operatorname{dim} V_{e}$, the pair $(1+r, s)$ is called the type of \mathcal{E}. Also $\operatorname{dim}_{F}\left(U_{e}^{2}\right)$ and $\operatorname{dim}_{F}\left(U_{e} V_{e}+V_{e}^{2}\right)$ are invariants of the algebra \mathcal{E}.
In ([1]), the authors obtain the identities (7) and (8) by linearizing (6).

$$
\begin{align*}
2 x^{2}(x y) & =\omega(x y) x^{2}+\omega\left(x^{2}\right)(x y) \tag{7}\\
4(x z)(x y)+2 x^{2}(z y) & =\omega(z y) x^{2}+2 \omega(x y)(x z)+2 \omega(x z)(x y)+\omega\left(x^{2}\right)(z y) \tag{8}
\end{align*}
$$

for all $x, y, z \in \mathcal{E}$ and replacing y by z in (8), we get

$$
\begin{equation*}
4(x z)^{2}+2 x^{2} z^{2}=\omega(z)^{2} x^{2}+4 \omega(x z)(x z)+\omega\left(x^{2}\right) z^{2} \tag{9}
\end{equation*}
$$

for all $x, z \in \mathcal{E}$.

4.2. Characterization of Bernstein algebras that are evolution algebras

Let F be a commutative field of $\operatorname{Char}(F) \neq 2$.
Theorem 4.1 ([13, Corollary 3.1.4]). A n-dimensional baric evolution algebra (\mathcal{E}, ω) admits a natural basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ such that $\omega\left(e_{1}\right)=1$ and $\omega\left(e_{i}\right)=0$ for $i>1$. Moreover $\mathcal{E}=F e_{1} \oplus \operatorname{ker} \omega$ with $e_{1} \operatorname{ker} \omega=0$.

We deduce from Theorem 4.1 that the algebra (\mathcal{E}, ω) admits a natural basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ which multiplication table is given by

$$
\begin{equation*}
e_{1}^{2}=e_{1}+\sum_{k=2}^{n} a_{1 k} e_{k}, e_{j}^{2}=\sum_{k=2}^{n} a_{j k} e_{k} \tag{10}
\end{equation*}
$$

with $\omega\left(e_{1}\right)=1, \omega\left(e_{j}\right)=0$ and $2 \leq j \leq n$.
In the following, any finite n-dimensional baric evolution algebra will be provided with such a natural basis.

Theorem 4.2 (of characterization). A n-dimensional baric evolution algebra is a Bernstein algebra (\mathcal{E}, ω) if and only if the following conditions are satisfying
i) $\left(e_{1}^{2}\right)^{2}=e_{1}^{2}$;
ii) $e_{i}^{2} e_{j}^{2}=0$, for $2 \leq i, j \leq n$;
iii) $e_{1}^{2} e_{i}^{2}=\frac{1}{2} e_{i}^{2}$, for $2 \leq i \leq n$.

Proof. Let us suppose that algebra (\mathcal{E}, ω) is a Bernstein algebra. Then
(6) leads to i), we take $x=e_{1}$.
(9) gives $i i$, we set $x=e_{i}$ and $z=e_{j}$ with $i, j \neq 1$.
(9) gives $i i i$, we take $x=e_{1}$ and $z=e_{i}$ with $i \neq 1$.

Conversely, it is assumed that conditions i), ii) and iii) are satisfied. Let $x=\sum_{k=1}^{n} x_{k} e_{k}$ be an element of \mathcal{E} with $\omega(x)=x_{1}$. We have the following equalities $x^{2}=\sum_{k=1}^{n} x_{k}^{2} e_{k}^{2}=x_{1}^{2} e_{1}^{2}+\sum_{k=2}^{n} x_{k}^{2} e_{k}^{2}$ and $x^{2} x^{2}=x_{1}^{2} x_{1}^{2} e_{1}^{2} e_{1}^{2}+2 x_{1}^{2} \sum_{k=2}^{n} x_{k}^{2} e_{1}^{2} e_{k}^{2}+$ $\sum_{k, j=2}^{n} x_{k}^{2} x_{j}^{2} e_{k}^{2} e_{j}^{2}=x_{1}^{2}\left(x_{1}^{2} e_{1}^{2}+\sum_{k=2}^{n} x_{k}^{2} e_{k}^{2}\right)=\omega(x)^{2} x^{2}$. So the baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebras.

We see that e_{1}^{2} is a non-zero idempotent of \mathcal{E} and $e_{i}^{2} \in U_{e_{1}^{2}}$ for $i \neq 1$. We deduce that $(\operatorname{ker} \omega)^{2} \subseteq U_{e_{1}^{2}}$.

Proposition 4.3. If a n-dimensional baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra, then
i) $U_{e_{1}^{2}}=\left\{x \in \operatorname{ker} \omega \left\lvert\, e_{1}^{2} x=\frac{1}{2} x\right.\right\}=(\operatorname{ker} \omega)^{2}$ and
ii) $V_{e_{1}^{2}}=\left\{x \in \operatorname{ker} \omega \mid e_{1}^{2} x=0\right\}=\left\langle e_{i}-2 a_{1 i} e_{i}^{2} \mid 2 \leq i \leq n\right\rangle$.

Proof. i) Let us show that $(\operatorname{ker} \omega)^{2}=U_{e_{1}^{2}}$. Since $(\operatorname{ker} \omega)^{2} \subseteq U_{e_{1}^{2}}$, it remains to show that $U_{e_{1}^{2}} \subseteq(\operatorname{ker} \omega)^{2}$. Let $x=\sum_{i=2}^{n} x_{i} e_{i} \in U_{e_{1}^{2}}$,
then $x=2 e_{1}^{2} x=2 \sum_{i=2}^{n} x_{i}\left(a_{1 i} e_{i}^{2}\right) \in(\operatorname{ker} \omega)^{2}$. Hence $U_{e_{1}^{2}} \subseteq(\operatorname{ker} \omega)^{2}$ and $U_{e_{1}^{2}}=$ $(\operatorname{ker} \omega)^{2}$.
ii) For $i \in\{2, \ldots, n\}$, we have $e_{1}^{2}\left(e_{i}-2 a_{1 i} e_{i}^{2}\right)=0$; so $\left\langle e_{i}-2 a_{1 i} e_{i}^{2}\right| 2 \leq$ $i \leq n\rangle \subset V_{e_{1}^{2}}$. Let $x=\sum_{i=2}^{n} x_{i} e_{i} \in V_{e_{1}^{2}}$, then $0=e_{1}^{2} x=\sum_{i=2}^{n} x_{i} a_{1 i} e_{i}^{2}$. Thus $x=$ $\sum_{i=2}^{n} x_{i}\left(e_{i}-2 a_{1 i} e_{i}^{2}\right)$ and we have $V_{e_{1}^{2}} \subset\left\langle e_{i}-2 a_{1 i} e_{i}^{2} \mid 2 \leq i \leq n\right\rangle$. We deduce that $V_{e_{1}^{2}}=\left\langle e_{i}-2 a_{1 i} e_{i}^{2} \mid 2 \leq i \leq n\right\rangle$.

Remark 4.4. If the baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra, then $U_{e_{1}^{2}}^{2}=(\operatorname{ker} \omega)^{(3)}=(\operatorname{ker} \omega)^{2}(\operatorname{ker} \omega)^{2}=0$, i.e. \mathcal{E} is a exceptional Bernstein algebra ([7]).

Definition 4.5 ([17]). Let (\mathcal{E}, ω) be a $(n+1)$-dimensional Bernstein algebra of type $(r+1, s)$. If $\operatorname{ker} \omega$ is a zero algebra, i.e. $(\operatorname{ker} \omega)^{2}=0$, then the algebra \mathcal{E} is called a trivial Bernstein algebra of type $(r+1, s)$.

Remark 4.6. In ([12]), the authors show that an algebra is a Jordan Bernstein algebra if and only if it is a train algebra of rank 3 . We deduce that a finite dimensional evolution algebra (\mathcal{E}, ω) is a Jordan Bernstein algebra if and only if $(\operatorname{ker} \omega)^{2}=0([13$, Theorem 3.2.3]). Thus, the only finite dimensional evolution algebras (\mathcal{E}, ω), that are Jordan Bernstein algebras, are evolution algebras, that are trivial Bernstein algebras.

Proposition 4.7. If a baric evolution algebra (\mathcal{E}, ω) is a 2-dimensional Bernstein algebra, then \mathcal{E} is a trivial Bernstein algebra.

Proof. Since ker $\omega=\left\langle e_{2}\right\rangle$, it follows that there are $\alpha \in F$ such that $e_{2}^{2}=\alpha e_{2}$. $0=(\operatorname{ker} \omega)^{(3)}$ leads to $0=e_{2}^{2} e_{2}^{2}=\alpha^{3} e_{2}$; hence $\alpha^{3}=0$, i.e. $\alpha=0$. We deduce that $(\operatorname{ker} \omega)^{2}=0$ and the algebra \mathcal{E} is a trivial Bernstein algebra.

Proposition 4.8. If a finite-dimensional baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra, then $U_{e_{1}^{2}} V_{e_{1}^{2}}$ is an invariant of \mathcal{E}. Moreover, if $U_{e_{1}^{2}} \neq 0$, then $U_{e_{1}^{2}} V_{e_{1}^{2}} \neq 0$.

Proof. Let $e=e_{1}^{2}+\sigma+\sigma^{2} \in \mathcal{I}(\mathcal{E}), u=u_{1}+\sigma u_{1} \in U_{e}$ and $v=v_{1}-2(\sigma+$ $\left.\sigma^{2}\right) \nu_{1} \in V_{e}$ with $\sigma, u_{1} \in U_{e_{1}^{2}}$ and $v_{1} \in V_{e_{1}^{2}}$. Since $U_{e_{1}^{2}}^{2}=0$, we have $e=e_{1}^{2}+\sigma, u=$ u_{1} and $v=v_{1}-2 \sigma v_{1}$. We also have $u v=u_{1}\left(v_{1}-2 \sigma v_{1}\right)=u_{1} v_{1}-2 u_{1}\left(\sigma v_{1}\right)=$ $u_{1} v_{1}$ because $U_{e_{1}^{2}}\left(U_{e_{1}^{2}} V_{e_{1}^{2}}\right) \subset U_{e_{1}^{2}}^{2}=0$. So $U_{e} V_{e}=U_{e_{1}^{2}} V_{e_{1}^{2}}$.

We assume that $\operatorname{dim}_{F}(\operatorname{ker} \omega)^{2}=k \neq 0$. By renumbering the vectors of the family $\left\{e_{2}, \ldots, e_{n}\right\}$, we can assume that the family $\left\{e_{j}^{2} \mid 2 \leq j \leq k+1\right\}$ is a basis of $(\operatorname{ker} \omega)^{2}$. Set $e_{j}^{2}=\sum_{t=2}^{k+1} \alpha_{j t} e_{t}^{2}$ with $k+2 \leq j \leq n$. If $U_{e_{1}^{2}} V_{e_{1}^{2}}=0$, then we would have $e_{2}^{2}\left(e_{j}-2 a_{1 j} e_{j}^{2}\right)=0$ for $2 \leq j \leq n$. What would result $\left\{\begin{array}{l}a_{2 j}=0,2 \leq j \leq k+1 \\ a_{2 j} \alpha_{j t}=0,2+k \leq j \leq n \text { and } 2 \leq t \leq k+1 .\end{array}\right.$
Thus, we would have $\frac{1}{2} e_{2}^{2}=e_{1}^{2} e_{2}^{2}=e_{1}^{2} \sum_{j=2}^{n} a_{2 j} e_{j}=e_{1}^{2} \sum_{j=k+2}^{n} a_{2 j} e_{j}=$ $\sum_{j=k+2}^{n} a_{2 j} a_{1 j} e_{j}^{2}=\sum_{t=2}^{k+1} \sum_{j=k+2}^{n} a_{1 j}\left(a_{2 j} \alpha_{j t}\right) e_{t}^{2}=0$, so, $e_{2}^{2}=0$. This would contradict linear independence of the family $\left\{e_{j}^{2} \mid 2 \leq j \leq k+1\right\}$. We deduce that $U_{e_{1}^{2}} V_{e_{1}^{2}} \neq 0$.

Lemma 4.9. If a n-dimensional baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra, then the family $\left\{e_{i}^{2} \mid 2 \leq i \leq n\right\}$ is linear dependent.

Proof. We have $\operatorname{ker} \omega=<e_{2}, \ldots, e_{n}>$ and $(\operatorname{ker} \omega)^{2} \subset \operatorname{ker} \omega$. We assume that the family is linear independent. Then $(\operatorname{ker} \omega)^{2}=\operatorname{ker} \omega$; hence $0=(\operatorname{ker} \omega)^{(3)}=$
$(\operatorname{ker} \omega)^{2}=\operatorname{ker} \omega$, this is impossible. We deduce that the family is linear dependent.

Theorem 4.10. If a n-dimensional baric evolution algebra $(\mathcal{E}, \omega)($ with $n>2)$ is a non trivial Bernstein algebra, then $\operatorname{dim}_{F}(\operatorname{ker} \omega)^{2} \leq \frac{1}{2}(n-1)$.
Proof. We have $0 \neq(\operatorname{ker} \omega)^{2} \subsetneq \operatorname{ker} \omega$. We assume that $p=\operatorname{dim}_{F}(\operatorname{ker} \omega)^{2}$. By renumbering the basis vectors, we can assume that $(\operatorname{ker} \omega)^{2}=\left\langle e_{2}^{2}, \ldots, e_{p+1}^{2}\right\rangle$. Let us show that the family $\left\{e_{2}, \ldots, e_{p+1}, e_{2}^{2}, \ldots, e_{p+1}^{2}\right\}$ is linear independent. Let $\left(\alpha_{k}, \beta_{k}\right)_{2 \leq k \leq p+1} \in F^{p} \times F^{p}$ such that

$$
\begin{equation*}
\sum_{k=2}^{p+1}\left(\alpha_{k} e_{k}+\beta_{k} e_{k}^{2}\right)=0 \tag{11}
\end{equation*}
$$

By multiplying (11) by e_{i}, we obtain $\alpha_{i} e_{i}^{2}+\sum_{k=2}^{p+1} \beta_{k} e_{i} e_{k}^{2}=\alpha_{i} e_{i}^{2}+\sum_{k=2}^{p+1} \beta_{k} a_{k i} e_{i}^{2}=$ 0 , either

$$
\begin{equation*}
\alpha_{i}+\sum_{k=2}^{p+1} \beta_{k} a_{k i}=0, \text { for all } i \in\{2, \ldots, p+1\} . \tag{12}
\end{equation*}
$$

By squaring (11), we get
$\sum_{k=2}^{p+1}\left(\alpha_{k}^{2} e_{k}^{2}+\sum_{j=2}^{p+1} 2 \alpha_{k} \beta_{j} e_{k} e_{j}^{2}\right)=\sum_{k=2}^{p+1} \alpha_{k}\left(\alpha_{k}+2 \sum_{j=2}^{p+1} \beta_{j} a_{j k}\right) e_{k}^{2}=0$, either

$$
\begin{equation*}
\alpha_{i}\left(\alpha_{i}+2 \sum_{j=2}^{p+1} \beta_{j} a_{j i}\right)=0, \text { for all } i \in\{2, \ldots, p+1\} . \tag{13}
\end{equation*}
$$

By multiplying (12) by $2 \alpha_{i}$ we get

$$
\begin{equation*}
\alpha_{i}\left(2 \alpha_{i}+2 \sum_{j=2}^{p+1} \beta_{j} a_{j i}\right)=0, \text { for all } i \in\{2, \ldots, p+1\} \tag{14}
\end{equation*}
$$

and by making the difference of (13) and (14), we have $\alpha_{i}^{2}=0$. This leads to $\alpha_{i}=0$, for all $i \in\{2, \ldots, p+1\}$. Then (11) tell us that $\beta_{i}=0, \forall i \in\{2, \ldots, p+1\}$. We deduce that $\operatorname{dim}_{F}(\operatorname{ker} \omega)^{2} \leq \frac{1}{2}(n-1)$.
Corollary 4.11. If a finite n-dimensional baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra such that $\operatorname{dim}\left(U_{e_{1}^{2}}\right)=p$, then $\operatorname{dim}\left(V_{e_{1}^{2}}\right) \geq p$.
Proof. We assume that $(\operatorname{ker} \omega)^{2}=\left\langle e_{2}^{2}, \ldots, e_{p+1}^{2}\right\rangle$ and let us show that the family $\left\{e_{2}-2 a_{12} e_{2}^{2}, \ldots, e_{p+1}-2 a_{1, p+1} e_{p+1}^{2}\right\}$ is linear independent. Let $\left(\alpha_{k}\right)_{2 \leq k \leq p+1} \in$ F^{p} such that $\sum_{k=2}^{p+1} \alpha_{k}\left(e_{k}-2 a_{1 k} e_{k}^{2}\right)=0$.
We have $\sum_{k=2}^{p+1} \alpha_{k}\left(e_{k}-2 a_{1 k} e_{k}^{2}\right)=\sum_{k=2}^{p+1} \alpha_{k} e_{k}-2 a_{1 k} \alpha_{k} e_{k}^{2}=0$. So $\alpha_{k}=0$, for all $k \in\{2, \ldots, p+1\}$ because $\left\{e_{2}, \ldots, e_{p+1}, e_{2}^{2}, \ldots, e_{p+1}^{2}\right\}$ is linear independent. Consequently, the family $\left\{e_{2}-2 a_{12} e_{2}^{2}, \ldots, e_{p+1}-2 a_{1, p+1} e_{p+1}^{2}\right\}$ is linear independent and $\operatorname{dim}\left(V_{e_{1}^{2}}\right) \geq p$.

4.3. Classification

Let (\mathcal{E}, ω) be a Bernstein algebra that is evolution algebra in natural basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ such that $e_{1}^{2}=e_{1}+\sum_{k=2}^{n} a_{1 k} e_{k}$ and $e_{j}^{2}=\sum_{k=2}^{n} a_{j k} e_{k}$. For $\left(a_{12}, \ldots, a_{1 n}\right)=0$, we have $e_{1}^{2}=e_{1}$, i.e. e_{1} is a non-zero idempotent of \mathcal{E} and $e_{1} \operatorname{ker} \omega=0$ leads to \mathcal{E} is of type $(1, n-1)$, constant Bernstein algebra.

4.3.1. Three-dimensional Classification

Theorem 4.12. Let (\mathcal{E}, ω) be an evolution algebra that is a 3-dimensional non trivial Bernstein algebra with canonical basis $\{e, u, v\}$. Then, the algebra \mathcal{E} is isomorphic to $\mathcal{E}_{0}: e^{2}=e, e u=\frac{1}{2} u, u v=u$, the others products are zero.

Proof. Let (\mathcal{E}, ω) be a 3-dimensional non trivial Bernstein algebra that is evolution algebra in the natural basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. The multiplication table of \mathcal{E} in the natural basis is given by $e_{1}^{2}=e_{1}+a_{12} e_{2}+a_{13} e_{3}, e_{2}^{2}=a_{22} e_{2}+a_{23} e_{3}$ and $e_{3}^{2}=a_{32} e_{2}+a_{33} e_{3}$ with $\omega\left(e_{1}\right)=1$ and $\omega\left(e_{2}\right)=\omega\left(e_{3}\right)=0$. We have $(\operatorname{ker} \omega)^{2} \neq 0$ and $1 \leq \operatorname{dim}(\operatorname{ker} \omega)^{2} \leq \frac{1}{2}(3-1)=1$. So $\operatorname{dim}(\operatorname{ker} \omega)^{2}=1$ and we set $(\operatorname{ker} \omega)^{2}=F e_{2}^{2}$. Then the vector $e_{2}-2 a_{12} e_{2}^{2}$ is a non-zero vector of $V_{e_{1}^{2}}$ and we set $e=e_{1}^{2}, u=e_{2}^{2}, v=e_{2}-2 a_{12} e_{2}^{2}$. The multiplication table of \mathcal{E} in the canonical basis $\{e, u, v\}$ is $e^{2}=e, e u=\frac{1}{2} u, u v=e_{2}^{2}\left(e_{2}-2 a_{12} e_{2}^{2}\right)=a_{22} u$ and $v^{2}=\left(e_{2}-2 a_{12} e_{2}^{2}\right)^{2}=e_{2}^{2}-4 a_{12} e_{2}^{2} e_{2}=\left(1-4 a_{12} a_{22}\right) u$. Since the algebra \mathcal{E} is a non trivial Bernstein algebra, it follows that $U_{e_{1}^{2}} V_{e_{1}^{2}} \neq 0$. Consequently, $a_{22} \neq 0$. Let us find a canonical basis $\left\{e^{\prime}, u^{\prime}, v^{\prime}\right\}$ of \mathcal{E} such that $u^{\prime} v^{\prime}=u^{\prime}$ and $v^{\prime 2}=0$. We set $e^{\prime}=e+a u, u^{\prime}=b u$ and $v^{\prime}=c v-2 a u(c v)=c\left(v-2 a a_{22} u\right)$ with $b, c \in F^{*}$. We have $u^{\prime}=u^{\prime} v^{\prime}=b c u v=a_{22} b c u=a_{22} c u^{\prime}$ leads to $c=a_{22}^{-1}$ and $0=v^{\prime 2}=c^{2}\left(v-2 a a_{22} u\right)^{2}=a_{22}^{-2}\left(v^{2}-4 a a_{22} u v\right)=a_{22}^{-2}\left(\left(1-4 a_{12} a_{22}\right)-4 a a_{22}^{2}\right) u=$ $a_{22}^{-2} b^{-1}\left(\left(1-4 a_{12} a_{22}\right)-4 a a_{22}^{2}\right) u^{\prime}$ implies $0=\left(1-4 a_{12} a_{22}\right)-4 a a_{22}^{2}$, i.e. $a=$ $a_{22}^{-2}\left(\frac{1}{4}-a_{12} a_{22}\right)$. We can take $b=1$ and we have $e^{\prime}=e+a_{22}^{-2}\left(\frac{1}{4}-a_{12} a_{22}\right) u$, $u^{\prime}=u$ and $v^{\prime}=a_{22}^{-1}\left(v-a_{22}^{-1}\left(\frac{1}{2}-2 a_{12} a_{22}\right) u\right)$. We deduce that algebra \mathcal{E} is isomorphic to \mathcal{E}_{0}.

4.3.2. Four-dimensional Classification

Theorem 4.13. Let (\mathcal{E}, ω) be an evolution algebra that is 4-dimensional non trivial Bernstein algebra with canonical basis $\{e, u, v, w\}$. Then, \mathcal{E} is isomorphic to one and only one of the following algebras $\mathcal{E}_{1}: u v=u, e^{2}=e$, eu= $\frac{1}{2} u$; $\mathcal{E}_{2}: u v=u w=v w=u, e^{2}=e, e u=\frac{1}{2} u$ and the others products are zero.

The proof of the theorem uses the lemma below which follows from [5, Proof of Theorem, page 1435].

Lemma 4.14. Let \mathcal{E} be a 4-dimensional Bernstein algebra with a canonical basis $\{e, u, v, w\}$ such that $e^{2}=e, e u=\frac{1}{2} u, u v=u, v^{2}=\gamma u, w^{2}=\lambda u, v w=\mu u$ and the others products are zero.

- If $\lambda=\mu=0$, then the algebra \mathcal{E} is isomorphic to \mathcal{E}_{1}.
- If $\lambda \neq 0$, then the algebra \mathcal{E} is isomorphic to \mathcal{E}_{2}.

Where the algebras \mathcal{E}_{1} and \mathcal{E}_{2} are defined in Theorem 4.13.
Proof of Theorem 4.13. Let (\mathcal{E}, ω) be a 4-dimensional non trivial Bernstein algebra that is evolution algebra with the natural basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. The multiplication table of \mathcal{E} in the natural basis is given by $e_{1}^{2}=e_{1}+\sum_{k=2}^{4} a_{1 k} e_{k}$, $e_{j}^{2}=\sum_{k=2}^{4} a_{j k} e_{k}$ with $\omega\left(e_{1}\right)=1$ and $\omega\left(e_{j}\right)=0$ where $2 \leq j \leq 4$. We have $(\operatorname{ker} \omega)^{2} \neq 0$ and $1 \leq \operatorname{dim}(\operatorname{ker} \omega)^{2} \leq \frac{1}{2}(4-1)=1.5$. So $\operatorname{dim}(\operatorname{ker} \omega)^{2}=1$ and we set $(\operatorname{ker} \omega)^{2}=F e_{2}^{2}$. Then $e_{2}-2 a_{12} e_{2}^{2}$ is a non-zero vector of $V_{e_{1}^{2}}$ and there are scalars α_{3}, α_{4} such that $e_{3}^{2}=\alpha_{3} e_{2}^{2}$ and $e_{4}^{2}=\alpha_{4} e_{2}^{2}$. We assume that $a_{23}=$ $a_{24}=0$, then the equality $0=e_{2}^{2} e_{2}^{2}=a_{22}^{2} e_{2}^{2}$ leads to $a_{22}=0$. Thus $e_{2}^{2}=0$, this is impossible and we deduce that $\left(a_{23}, a_{24}\right) \neq 0$. Since $V_{e_{1}^{2}}$ is generated by $\left(e_{2}-2 a_{12} e_{2}^{2}\right),\left(e_{3}-2 a_{13} e_{3}^{2}\right),\left(e_{4}-2 a_{14} e_{4}^{2}\right)$, let us show that $\left\{e_{2}-2 a_{12} e_{2}^{2}, e_{3}-\right.$ $\left.2 a_{13} e_{3}^{2}\right\}$ or $\left\{e_{2}-2 a_{12} e_{2}^{2}, e_{4}-2 a_{14} e_{4}^{2}\right\}$ is a basis of $V_{e_{1}^{2}}$. For this reason, consider the scalars α, β and γ such that $0=\alpha\left(e_{2}-2 a_{12} e_{2}^{2}\right)+\beta\left(e_{3}-2 a_{13} e_{3}^{2}\right)+$ $\gamma\left(e_{4}-2 a_{14} e_{4}^{2}\right)$. Since $\alpha\left(e_{2}-2 a_{12} e_{2}^{2}\right)+\beta\left(e_{3}-2 a_{13} e_{3}^{2}\right)+\gamma\left(e_{4}-2 a_{14} e_{4}^{2}\right)=(\alpha-$ $\left.2\left(\alpha a_{12}+\beta a_{13} \alpha_{3}+\gamma a_{14} \alpha_{4}\right) a_{22}\right) e_{2}+\left(\beta-2\left(\alpha a_{12}+\beta a_{13} \alpha_{3} \gamma a_{14} \alpha_{4}\right) a_{23}\right) e_{3}+(\gamma-$ $\left.2\left(\alpha a_{12}+\beta a_{13} \alpha_{3}+\gamma a_{14} \alpha_{4}\right) a_{24}\right) e_{4}$, it follows that the equality $0=\alpha\left(e_{2}-2 a_{12} e_{2}\right)+\beta\left(e_{3}-2 a_{13} e_{3}^{2}\right)+\gamma\left(e_{4}-2 a_{14} e_{4}^{2}\right)$ gives
$\left(\alpha-2\left(\alpha a_{12}+\beta a_{13} \alpha_{3}+\gamma a_{14} \alpha_{4}\right) a_{22}\right)=\left(\beta-2\left(\alpha a_{12}+\beta a_{13} \alpha_{3}+\gamma a_{14} \alpha_{4}\right) a_{23}\right)=$ $\left(\gamma-2\left(\alpha a_{12}+\beta a_{13} \alpha_{3}+\gamma a_{14} \alpha_{4}\right) a_{24}\right)=0$.

If $a_{23} \neq 0$, for $\beta=0$, we have $\alpha a_{12}+\beta a_{13} \alpha_{3}+\gamma a_{14} \alpha_{4}=0$ because $a_{23} \neq 0$. Hence $\alpha=\gamma=0$ and $\left\{e_{2}-2 a_{12} e_{2}^{2}, e_{4}-2 a_{14} e_{4}^{2}\right\}$ is a basis of $V_{e_{1}^{2}}$.

If $a_{24} \neq 0$, for $\gamma=0$, we have $\alpha=\beta=0$ and we similarly conclude that $\left\{e_{2}-2 a_{12} e_{2}^{2}, e_{3}-2 a_{13} e_{3}^{2}\right\}$ is a basis of $V_{e_{1}^{2}}$.

1) The multiplication table of \mathcal{E} in the canonical basis $\left\{e_{1}^{2}, e_{2}^{2}, e_{2}-2 a_{12} e_{2}^{2}, e_{3}-\right.$ $\left.2 a_{13} e_{3}^{2}\right\}$ is given by $e_{1}^{2} e_{1}^{2}=e_{1}^{2}, e_{1}^{2} e_{2}^{2}=\frac{1}{2} e_{2}^{2}, e_{2}^{2}\left(e_{2}-2 a_{12} e_{2}^{2}\right)=e_{2}^{2} e_{2}=a_{22} e_{2}^{2}$, $e_{2}^{2}\left(e_{3}-2 a_{13} e_{3}^{2}\right)=e_{2}^{2} e_{3}=a_{23} e_{3}^{2}=a_{23} \alpha_{3} e_{2}^{2},\left(e_{2}-2 a_{12} e_{2}^{2}\right)^{2}=e_{2}^{2}-4 a_{12} e_{2}^{2} e_{2}=$ $\left(1-4 a_{12} a_{22}\right) e_{2}^{2},\left(e_{2}-2 a_{12} e_{2}^{2}\right)\left(e_{3}-2 a_{13} e_{3}^{2}\right)=$
$\left(e_{2}-2 a_{12} e_{2}^{2}\right)\left(e_{3}-2 a_{13} \alpha_{3} e_{2}^{2}\right)=-2 a_{13} \alpha_{3} e_{2}^{2} e_{2}-2 a_{12} e_{2}^{2} e_{3}=-2 a_{13} \alpha_{3} e_{2}^{2} e_{2}-$ $2 a_{12} a_{23} e_{3}^{2}=-2 \alpha_{3}\left(a_{13} a_{22}+a_{12} a_{23}\right) e_{2}^{2},\left(e_{3}-2 a_{13} e_{3}^{2}\right)^{2}=\left(e_{3}-2 a_{13} \alpha_{3} e_{2}^{2}\right)^{2}=$ $e_{3}^{2}-4 a_{13} \alpha_{3} e_{2}^{2} e_{3}=e_{3}^{2}-4 a_{13} a_{23} \alpha_{3} e_{3}^{2}=\alpha_{3}\left(1-4 a_{13} a_{23} \alpha_{3}\right) e_{2}^{2}$ and the others products are zero. Since algebra \mathcal{E} is a non trivial Bernstein algebra, we have $U_{e_{1}^{2}} V_{e_{1}^{2}} \neq 0$. Consequently, $\left(a_{22}, a_{23} \alpha_{3}\right) \neq 0$ and we set $e=e_{1}^{2}, u=e_{2}^{2}$. We distinguish the following three cases
a) $a_{22}=0$, then $a_{23} \alpha_{3} \neq 0$ and we set $v=a_{23}^{-1} \alpha_{3}^{-1}\left(e_{3}-2 a_{13} e_{3}^{2}\right), w=e_{2}-$
$2 a_{12} e_{2}^{2}$. The multiplication table of \mathcal{E} in the canonical basis $\{e, u, v, w\}$ is $e^{2}=e, e u=\frac{1}{2} u, u v=u, v^{2}=a_{23}^{-2} \alpha_{3}^{-1}\left(1-4 a_{13} a_{23} \alpha_{3}\right) u, v w=-2 a_{12} u$, $w^{2}=u$ and the others products are zero. We deduce from Lemma 4.14 that the algebra \mathcal{E} is isomorphic to \mathcal{E}_{2}.
b) $\alpha_{3} a_{23}=0$, then $a_{22} \neq 0$, we set $v=a_{22}^{-1}\left(e_{2}-2 a_{12} e_{2}^{2}\right)$ and $w=e_{3}-2 a_{13} e_{3}^{2}$. The multiplication table of \mathcal{E} in the canonical basis $\{e, u, v, w\}$ is given by $e^{2}=e, e u=\frac{1}{2} u, u v=u, v^{2}=a_{22}^{-2}\left(1-4 a_{12} a_{22}\right) u, v w=-2 a_{13} \alpha_{3} u$, $w^{2}=\alpha_{3} u$ and the others products are zero. Lemma 4.14 tells us that, for $\alpha_{3}=0$ we get algebra \mathcal{E}_{1} and for $\alpha_{3} \neq 0$, algebra \mathcal{E} is isomorphic to \mathcal{E}_{2}.
c) $a_{22} a_{23} \alpha_{3} \neq 0$, then we set $v=a_{22}^{-1}\left(e_{2}-2 a_{12} e_{2}^{2}\right)$ and $w=\left(e_{3}-2 a_{13} e_{3}^{2}\right)-$ $a_{22}^{-1} a_{23} \alpha_{3}\left(e_{2}-2 a_{12} e_{2}^{2}\right)$. The multiplication table of \mathcal{E} in the canonical basis $\{e, u, v, w\}$ is $e^{2}=e, e u=\frac{1}{2} u, u v=u, v^{2}=a_{22}^{-2}\left(1-4 a_{12} a_{22}\right) u$, $v w=a_{22}^{-1}\left(e_{2}-2 a_{12} e_{2}^{2}\right)\left(e_{3}-2 a_{13} e_{3}^{2}\right)-a_{22}^{-2} a_{23} \alpha_{3}\left(e_{2}-2 a_{12} e_{2}^{2}\right)^{2}=$ $\left(-2 \alpha_{3} a_{22}^{-1}\left(a_{13} a_{22}+a_{12} a_{23}\right)-a_{22}^{-2} a_{23} \alpha_{3}\left(1-4 a_{12} a_{22}\right)\right) u=$ $-a_{22}^{-2} a_{23} \alpha_{3}\left(2 a_{13} a_{22}^{2} a_{23}^{-1}-2 a_{12} a_{22}+1\right) u, w^{2}=\left(e_{3}-2 a_{13} e_{3}^{2}\right)^{2}+$ $a_{22}^{-2} a_{23}^{2} \alpha_{3}^{2}\left(e_{2}-2 a_{12} e_{2}^{2}\right)^{2}-2 a_{22}^{-1} a_{23} \alpha_{3}\left(e_{3}-2 a_{13} e_{3}^{2}\right)\left(e_{2}-2 a_{12} e_{2}^{2}\right)=$ $\left(\alpha_{3}\left(1-4 a_{13} a_{23} \alpha_{3}\right)+a_{22}^{-2} a_{23}^{2} \alpha_{3}^{2}\left(1-4 a_{12} a_{22}\right)+\right.$
$\left.4 a_{22}^{-1} a_{23} \alpha_{3}^{2}\left(a_{13} a_{22}+a_{12} a_{23}\right)\right) u=\alpha_{3}\left(1+a_{22}^{-2} a_{23}^{2} \alpha_{3}\right) u$ and the others products are zero.

- For $1+a_{22}^{-2} a_{23}^{2} \alpha_{3} \neq 0$, algebra \mathcal{E} is isomorphic to \mathcal{E}_{2}.
- For $1+a_{22}^{-2} a_{23}^{2} \alpha_{3}=0, w^{2}=\alpha_{3}\left(1+a_{22}^{-2} a_{23}^{2} \alpha_{3}\right) u=0$. We have $0=$ $e_{2}^{2} e_{2}^{2}=a_{22}^{2} e_{2}^{2}+a_{23}^{2} e_{3}^{2}+a_{24}^{2} e_{4}^{2}=\left(a_{22}^{2}+a_{23}^{2} \alpha_{3}+a_{24}^{2} \alpha_{4}\right) e_{2}^{2}=$ $a_{22}^{2}\left(1+a_{22}^{-2} a_{23}^{2} \alpha_{3}+a_{22}^{-2} a_{24}^{2} \alpha_{4}\right) e_{2}^{2}=a_{24}^{2} \alpha_{4} e_{2}^{2}$ leads to $\alpha_{4}=0$ because $a_{24} \neq 0$. So $e_{4}^{2}=0$ and we have $\frac{1}{2} e_{2}^{2}=e_{1}^{2} e_{2}^{2}=a_{12} a_{22} e_{2}^{2}+a_{13} a_{23} e_{3}^{2}=$ $\left(a_{12} a_{22}-a_{13} a_{22}^{2} a_{23}^{-1}\right) e_{2}^{2}$ gives $a_{12} a_{22}-a_{13} a_{22}^{2} a_{23}^{-1}=\frac{1}{2}$. Therefore $v w=$ $-a_{22}^{-2} a_{23} \alpha_{3}\left(2 a_{13} a_{22}^{2} a_{23}^{-1}-2 a_{12} a_{22}+1\right) u=0$ and we deduce that algebra \mathcal{E} is isomorphic to \mathcal{E}_{1}.

2) The multiplication table of \mathcal{E} in the canonical basis $\left\{e_{1}^{2}, e_{2}^{2}, e_{2}-2 a_{12} e_{2}^{2}, e_{4}-\right.$ $\left.2 a_{14} e_{4}^{2}\right\}$ is given by $e_{1}^{2} e_{1}^{2}=e_{1}^{2}, e_{1}^{2} e_{2}^{2}=\frac{1}{2} e_{2}^{2}, e_{2}^{2}\left(e_{2}-2 a_{12} e_{2}^{2}\right)=e_{2}^{2} e_{2}=a_{22} e_{2}^{2}$, $e_{2}^{2}\left(e_{4}-2 a_{14} e_{4}^{2}\right)=e_{2}^{2} e_{4}=a_{24} \alpha_{4} e_{2}^{2},\left(e_{2}-2 a_{12} e_{2}^{2}\right)^{2}=e_{2}^{2}-4 a_{12} e_{2}^{2} e_{2}=(1-$ $\left.4 a_{12} a_{22}\right) e_{2}^{2},\left(e_{2}-2 a_{12} e_{2}^{2}\right)\left(e_{4}-2 a_{14} e_{4}^{2}\right)=\left(e_{2}-2 a_{12} e_{2}^{2}\right)\left(e_{4}-2 a_{14} \alpha_{4} e_{2}^{2}\right)=$ $-2 a_{14} \alpha_{4} e_{2}^{2} e_{2}-2 a_{12} e_{2}^{2} e_{4}=-2 a_{14} \alpha_{4} e_{2}^{2} e_{2}-2 a_{12} a_{24} e_{4}^{2}=$
$-2 \alpha_{4}\left(a_{14} a_{22}+a_{12} a_{24}\right) e_{2}^{2},\left(e_{4}-2 a_{14} e_{4}^{2}\right)^{2}=\left(e_{4}-2 a_{14} \alpha_{4} e_{2}^{2}\right)^{2}=$
$e_{4}^{2}-4 a_{14} \alpha_{4} e_{2}^{2} e_{4}=e_{4}^{2}-4 a_{14} a_{24} \alpha_{4} e_{4}^{2}=\alpha_{4}\left(1-4 a_{14} a_{24} \alpha_{4}\right) e_{2}^{2}$ and the others products are zero. We obtain the multiplication table of the algebra defined in 1). We deduce that, for $a_{22}=0$ or for $\alpha_{4} \neq 0$ and $a_{24}=0$ or for $a_{22} a_{24} \alpha_{4}\left(1+a_{22}^{-2} a_{24}^{2} \alpha_{4}\right) \neq 0$, algebra \mathcal{E} is isomorphic to \mathcal{E}_{2}. It is isomorphic to algebra \mathcal{E}_{1} for $\alpha_{4}=0$ or for $a_{22} a_{24} \alpha_{4} \neq 0$ and $1+a_{22}^{-2} a_{24}^{2} \alpha_{4}=0$.

Acknowledgements

The second author thanks Professor Richard Varro for his remarks on the origin of evolution algebras.

REFERENCES

[1] M. T. Alcalde, C. Burgueño, A. Labra and A. Micali, Sur les algèbres de Bernstein. (On Bernstein algebras), Proc. Lond. Math. Soc. (3), 58, 1, 1989, 51-68.
[2] S. Bernstein, Solution of a mathematical problem connected with the theory of heredity., Ann. Math. Stat., 13, 1942, 53-61.
[3] Y. Cabrera Casado, M. Siles Molina and M.V. Velasco, Classification of threedimensional evolution algebras., Linear Algebra Appl., 524, (2017), 68-108. doi.org/10.1016/j.laa.2017.02.015
[4] J.M. Casas, M. Ladra, B.A. Omirov and U.A. Rozikov, On evolution algebras., Algebra Colloq. 21, 2 (2014), 331-342. doi.org/10.1142/ S1005386714000285
[5] T. Cortés, Classification of 4-dimensional Bernstein algebras, Commun. Algebra, 19, 5, 1991, 1429-1443.
[6] I.M.H. Etherington, Non-associative algebra and the symbolism of genetics, Proc. R. Soc. Edinb., Sect. B, Biol., 61, 1941, 24-42.
[7] S. González and J. C. Gutiérrez and C. Martínez, Classification of Bernstein algebras of type (3,n-3), Commun. Algebra, 23, 1, 1995, 201-213.
[8] P. Holgate, Genetic algebras satisfying Bernstein's stationarity principle, J. Lond. Math. Soc., II. Ser., 9, 1975, 613-623.
[9] P. Holgate, Selfing in genetic algebras, J. Math. Biol, 6, 1978, 197-206.
[10] T. Y. Lam, Introduction to quadratic forms over fields. Graduate Studies in Mathematics 67. American Mathematical Society xxi, 550 p. (2005).
[11] A. Micali et M. Ouattara, Dupliquée d'une algèbre et le théorème d'Etherington, Linear Algebra Appl. 153, (1991), 193-207.
[12] M. Ouattara, Sur les algèbres de Bernstein qui sont des T-algèbres., Linear Algebra Appl, ISSN = 0024-3795, 148, 1991, 171-178.
[13] M. Ouattara and S. Savadogo. (2020). Evolution train algebras. Gulf journal of Mathematics, 8(1), 37-51. https://gjom.org/index.php/gjom/article/ view/299
[14] J.P. Tian, Evolution algebras and their applications., Lect. Notes Math. 1921, xi + 125, (2008). doi.org/10.1007/978-3-540-74284-5
[15] J.P. Tian and P. Vojtěchovský, Mathematical concepts of evolution algebras in non-Mendelian genetics, Quasigroups Relat. Syst., 14, 1, 2006, 111-122.
[16] A. Wörz-Busekros, Algebras in genetics, Lect. Notes Biomath, 36, 1980.
[17] A. Wörz-Busekros, Further remarks on Bernstein algebras, Proc. Lond. Math. Soc. (3), 58, 1, 1989, 69-73.
A. CONSEIBO

Université Norbert Zongo, BP 376 Koudougou, Burkina Faso e-mail: andreconsebo@yahoo.fr
S. SAVADOGO

Université Norbert Zongo, BP 376 Koudougou, Burkina Faso e-mail: sara01souley@yahoo.fr
M. OUATTARA

Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso e-mail: ouatt_ken@yahoo.fr

[^0]: Received on August 31, 2020
 AMS 2010 Subject Classification: Primary 17D92, 17A05, Secondary 17D99, 17A60
 Keywords: Evolution algebras, Bernstein algebras, Duplicate, natural basis.

