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Abstract 

The numerical computation of spraying systems is favourably conducted by applying the 

Euler/Lagrange approach. Although sprays downstream of the breakup region are very often 

rather dilute, droplet collisions may still have a significant influence on the spray evolution 

and especially the produced droplet size spectrum. Consequently, they have to be reliably 

modelled in the Lagrangian tracking approach. For this purpose, the fully stochastic droplet 

collision model is applied, which is numerically very efficient. It is demonstrated that this 

model is largely independent of the considered flow mesh and hence grid size, as well as the 

number of tracked parcels and the Lagrangian time step size. Moreover, this model includes 

the impact efficiency which may remarkably reduce collision rates for a wide droplet size 

spectrum. An essential ingredient of any droplet collision model is the proper description of 

the collision outcome through the so-called collision maps (i.e. the non-dimensional impact 

parameter plotted versus collision Weber number; B = f(We)), where the outcome regions 

(i.e. bouncing, coalescence and stretching or reflexive separation) are demarked by 

appropriate, mostly theory-based boundary lines. There are a number of different correlations 

available which may be applied for this purpose. The structure of the collision maps strongly 

depends on the kind of liquid being atomised. Different types of boundary lines and collision 

map structures are analysed here in detail with regard to the conditional collision rates or 

numbers within a rather simple hollow cone spray. The comparison of the averaged Sauter 

mean diameters along the spray demonstrates the importance of droplet collisions and how 

strongly this result is affected by the presumed droplet collision maps. Crude approximations 

to such collision maps may result in large errors and wrong predictions of the produced 
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droplet size spectrum. Moreover, it is demonstrated that the effective PDF (probability density 

function) of the colliding droplet size ratio has typically a maximum in the range 0.1 < D < 

0.3, a condition where no experimental data are available so far and some of the commonly 

used boundary lines are not suitable. Naturally, the spray simulations are compared to 

experimental data for a water hollow-cone spray, showing excellent agreement if the droplet 

collision map is selected properly. This concerns profiles of both gas and droplet velocities as 

well as droplet concentration development and local droplet size distributions. Expectedly, the 

prediction of the velocities is less sensitive with respect to the presumed droplet collision 

map. 

 

Keywords: Euler/Lagrange computations; hollow-cone spray; binary droplet collisions; 

modelling collision outcomes; collision maps; coalescence; bouncing; separation. 

 

1 Introduction 

Spraying systems have numerous technical and industrial applications but are also an 

everyday companion. Examples are spray drying, spray cooling of surfaces and the 

environment, spray combustion of liquid fuels, spray painting associated with surface coating 

and numerous kinds of spray cans. All of these processes have different objectives and goals, 

but a very common one is the production of very fine droplets with a huge volume specific 

surface area to favour rapid heat and mass transfer as for example in combustion engines. 

Other processes aim to produce a desired droplet size spectrum in order to produce a powder 

with desired properties like in spray dryers. Also, the surface coating through spraying 

systems requires certain droplet sizes in order to yield favourable film thickness and surface 

structure. As a result of the mostly difficult environment a spray is operated in, such as, spray 

drying chamber or combustion chamber, an experimental observation and analysis constitutes 

a huge challenge and is often even impossible (e.g. dense spray region, high temperature and 

pressure environment). Therefore, numerical computations (CFD-computational fluid 

dynamics) of spraying systems have become an attractive approach over the past decades. 

Additionally, this fast development is supported by the growth of computational power and 

the advances in numerical methods and the mostly required models for unresolved transport 

processes. 

A spray, although from the first glance seems to be very simple, involves a number of 

sub-processes which require quite sophisticated models, as atomisation of the liquid being 

determined by the nozzle type, liquid fragment or droplet break-up (i.e. called secondary 
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breakup), droplet collisions, heat and mass transfer and possibly also droplet-wall collisions 

with liquid deposition. 

In principle there are two ways in numerically describing the behaviour of technical 

spraying systems, categorised as dispersed multi-phase flow, the continuum approach, often 

called two-fluid or Euler/Euler method, and the discrete point-particle modelling, called 

Euler/Lagrange method (see e.g. Kolakaluri et al. 2014, Sommerfeld 2017 a)). In two-fluid 

modelling approaches the discrete nature of the spray droplets is lost due to the averaging of 

droplet properties and the interfacial interaction (or coupling) terms between both phases (i.e. 

air and discrete droplets) within the computational control volumes. Therefore, all transport 

process occurring on the scale of the droplets have to be described through theoretically 

derived closures or by additionally plugged-in models, such as a population balance. 

Advantages of the two-fluid approach are seen in the capturing of the nozzle flow, the liquid 

sheet or jet breakup and the dense spray region (see e.g. Platzer and Sommerfeld 2006; 

Sorianao-Palao et al. 2014). The natural way to describe spraying systems is of course the 

Lagrangian approach which was also applied in the early times to simulate entire sprays, in 

this case related to combustion (Dukowicz 1980). In order to represent the real number of 

produced droplets and the correct droplet mass flow rate, the parcel concept was introduced, 

where each computational particle represents a certain number of reals droplets with the same 

properties (Dukowicz 1980). This initiation was followed by numerous studies at Los Alamos 

Laboratories, eventually ending up in the step-by-step extended well-known KIVA-code 

directed towards the simulation of spray combustion (O`Rourke and Amsden 1987; Amsden 

et al. 1989). The well-known deterministic-stochastic droplet collision model, still in use 

today, was developed by O`Rourke (1981). Naturally, also other research groups were 

involved in initial developments of Lagrangian approaches for spray simulations. Exemplary 

the thesis of Bauman (2001) should be mentioned which gives a detailed overview of the 

modelling approaches for the relevant elementary processes being the state-of-the-art at that 

time. As mentioned above, also in a Lagrangian approach a number of models for the 

involved unresolved elementary processes are necessary although this approach, as one is 

moving with the droplets, allows for a more descriptive and mechanistic model development. 

Due to these advantages, the Euler/Lagrange approach is mostly applied to simulate 

different kinds of spraying systems (Fritsching 2004; Woo 2016) and also spray combustion 

(Merci and Gutheil 2014). The focus of this contribution is on modelling of droplet collisions 

and their outcomes as well as the resulting droplet size spectrum produced by a spray. In such 

sprays, where just downstream of the atomisation or break-up region the initial droplet 
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concentration is quite high, droplet collisions will occur and influence the produced droplet 

size distribution further downstream (see for example Rüger et al. 2000). The often-dominant 

collision outcome, namely droplet coalescence, yields an increase of the Sauter mean 

diameter along the spray, when averaged over the entire spray cross-section (Rüger et al. 

2000, Guo et al. 2004). On the other hand, separative droplet collisions are observed causing 

the formation of fine satellite droplets which cause a reduction of the resulting droplet mean 

size (Ko und Ryou 2005). Consequently, for a correct prediction of the produced spray 

droplet size not only atomisation and droplet-break-up have to be modelled properly, but also 

the occurrence and the outcome of droplet collisions. 

Lagrangian droplet collision models 

In order to model droplet collisions in the frame of the Lagrangian droplet parcel concept, 

where only point-masses are tracked, several sub-processes have to be considered 

(Sommerfeld 2017 b), Sommerfeld and Lain 2017). The first step of the collision model is the 

detection of the possibility of a collision between two droplets among several hundred 

thousand of parcels tracked through the computational domain. This may be done in three 

ways: fully deterministic with geometrical construction of crossing trajectories (Sundaram 

and Collins 1996), deterministic-stochastic detection model in the frame of the parcel concept 

(O`Rourke 1981) and fully stochastic detection model where explicitly no information on 

neighbouring droplets is needed (Sommerfeld 2001). More details on these collision detection 

approaches are also provided by Sommerfeld and Pasternak (2019). Nowadays, in spray 

simulations some additional features are considered for improving the classical deterministic-

stochastic collision detection of O`Rourke (1981). This is first of all the strong sensitivity of 

the collision detection on the selected mesh size for flow computations. Such as shortcoming 

was removed by the so-called “no-time-counter” algorithm introduced by Schmidt and 

Rutland (2000) or by using a sphere of influence as a search scope for finding collision 

partners (Guo et al. 2004, Nijdam et al. 2006) or building an adapted collision grid (see e.g. 

Zhang et al. 2012). Moreover, hybrid models were suggested in order to ensure that the 

collision partners always move towards each other just prior to collision, as done by Nordin 

(2001) through an incorporation of a rather expensive droplet tracking collision detection 

method. A detailed analysis and validation of such hybrid models was conducted by Pischke 

et al. (2015) followed by guidelines for a proper selection of hybrid droplet collision models. 

The applied collision detection model also needs to consider the impact efficiency being 

relevant for collisions between small and large droplets (Ho and Sommerfeld 2002), whereby 

the smaller droplets might move around the larger one with the relative flow. Although this is 
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a situation occurring frequently is sprays due to the wide droplet size spectrum, it has been 

neglected in most spray simulations so far. It should be emphasised that neglecting impact 

efficiency the collision rates are remarkably over-predicted (Sommerfeld and Lain 2017). 

This step includes the determination of the collision point on both droplet surfaces, so that the 

collision Weber-number, We, and the non-dimensional impact parameter, B, can be 

calculated: 
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The collision Weber-number, We, is determined with the relative velocity of colliding 

droplets, urel, (see Figure 1), the liquid properties (i.e. ρ and σ are the density and surface 

tension of the fluid) and with the diameter of the smaller droplet dS. By definition B is the 

sinus of the enclosed angle j between the relative velocity vector urel and the position vector 

PSL between the droplets centre points (see Figure 1). These two parameters are used to create 

the well-known collision maps (i.e. B = f(We)) whereby the different collision outcomes may 

be identified, such as bouncing, stretching separation, coalescence and reflexive separation 

(see Figure 2). Moreover, the Ohnesorge-number Oh, being characterised by the liquid 

properties, including the liquid viscosity m together with the droplet diameter, mostly the 

small droplet diameter dS, is very often helpful since it is independent of the relative velocity. 

An additional geometrical parameter especially for sprays, is of course the droplet size ratio 

D. 
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From these numbers one may derive also other non-dimensional parameters which are 

useful to characterise the collision process in different ways (see e.g. Sommerfeld and 

Kuschel 2016), being the Reynolds-number Re and the Capillary-number Ca: 
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here urelax = s/m is the relaxation velocity often used to describe plastic deformations. 

In case the colliding droplets are carrying different liquids, additional non-dimensional 

parameters have to be considered, such as ratios of viscosity and surface tension as well as 

liquid density. 
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The next step in the collision model is the identification of the collision scenario and the 

outcome on the basis of the well-known collision maps, i.e. B = f(We), as illustrated in Figure 

2. The decision about which type of collision is occurring (i.e. bouncing, coalescence or 

stretching and reflexive separation) is based on analytical or theoretical derived boundary 

lines indicated by the lines in Figure 2. The properties of the newly formed droplets depend 

on the collision type at hand and have to be calculated based on mass and momentum 

balances (i.e. number of droplets, droplet sizes and their new velocities). Most of the 

numerical computations of spraying systems or the interaction between two sprays use the 

deterministic-stochastic collision detection model of O`Rourke (1981). 

 

 

Figure 1: Geometry of binary droplet collision with different sized droplets, PS and PL 
indicate the centroids of both droplets, b is the lateral displacement and urel the relative 
velocity in the collision plane x-y, aligned with the collision cylinder axis. 
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Figure 2: Typical droplet collision map where the non-dimensional impact parameter B is 
plotted versus collision Weber-number, We, including typical boundary lines between 
collision outcomes and four characteristic points, specified with the relevant We-number 
(source: Sommerfeld and Pasternak 2019). 

 

The collision maps as illustrated in Figure 2 are being used for many years to classify the 

outcomes of binary droplet collisions. In the lower We-regime, which is considered here (i.e. 

We < 200), one can distinguish between bouncing, coalescence, stretching and reflexive 

separation. These different regimes are demarked by boundary lines either determined 

experimentally or theoretically. These boundary lines are the lower limit of bouncing (B), 

stretching separation-coalescence (SS-C) and reflexive separation-coalescence (RS-C). The 

most common boundary models were summarized and analysed by Sommerfeld and 

Pasternak (2019). Characteristic points in this kind of collision map are transition from 

bouncing to coalescence, called WeB-C, the critical Weber-number WeC, the triple point 

location WeT and for special cases the transition from coalescence to bouncing, called WC-S 

(see Figure 2). 

Some years back, droplet collision outcomes are only modelled by distinguishing between 

coalescence and grazing (grazing combines bouncing and stretching separation in Figure 2) 

collision (see e.g. Gavaises et al. 1996, Rüger et al. 2000, Guo et al. 2004, Nijdam et al. 

2006). Actually, this boundary line goes also back to the work of O`Rourke (1981) which was 

termed coalescence efficiency in this work and specifies the critical impact parameter B* 

below which coalescence occurs (see closed line in Figure 2 going through WC-S). The 

associated correlation was derived based on theory and measurements of Brazier-Smith et al. 

(1972). In these single-boundary-line models only coalescence and grazing are considered as 

an outcome, where grazing implies that the two droplets continue their direction of motion 

after collision, but with reduced velocity magnitude due to dissipation (O`Rourke 1981). 

Mostly grazing is modelled without satellite formation with the argument that their mass is 

negligibly small. All other collision outcomes (e.g. reflexive separation or shattering) are 

neglected including also satellite formation. Such a single boundary line is generally only 

suitable for water where bouncing is not found in the region of small We over the entire B-

regime, or milk spray which does not show bouncing at all (Finotello et al. 2019), but still, 

reflexive separation is not considered, whereby the occurrence of coalescence is 

overestimated. Such a single-line boundary model is of course not suitable for many other 

liquids a mentioned above (see also Sommerfeld and Pasternak 2019). Especially for 

simulating diesel or fuel sprays there should be at least 3 boundary lines considered, namely, 

bouncing, SS-C and RS-C. 
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Spray simulations 

In the numerical computations of Post and Abraham (2002) for Diesel spray injection, the 

collision outcome was described by considering all collision scenarios. Hence, a hybrid model 

was used combining the boundary models of Estrade et al. (1999) for defining the lower 

boundary of bouncing, the Brazier-Smith et al. (1972) model for specifying the coalescence 

efficiency (i.e. upper boundary of coalescence) and the Ashgriz and Poo (1990) model to 

define the region of reflexive separation. Formation of smaller satellite droplets due to 

shattering collision was only considered to occur (Post and Abraham 2002). A comparison of 

the results obtained with the single-line and the composite model showed of course 

completely different fractions for the collision outcomes. For the single-line model they found 

53% coalescence and 47% grazing or stretching separation. The three-line model yielded 

much lower coalescence fractions, only 5%, whereas bouncing without size change 

constitutes now a fraction of 78%. The portion of stretching separation was 16%, while 

reflexive separation amounted only 1%, may be the result of the combination of low B and 

high We. Consequently, the structure of the considered collision map has an immense 

influence on the produced droplet size and hence the spray behaviour. It was shown that when 

solely applying the Brazier-Smith et al. (1972) model the Sauter mean diameter along the 

spray increases at a much higher rate compared to the proposed composite three-line model, 

which is of course provoked by the drastic decrease of the coalescence fraction. Additionally, 

it was shown that the grid resolution has a remarkable effect on the computed collision rates, 

being much higher for finer meshes. This might be associated with a better resolution of flow 

and turbulence properties seen by the droplets. On the other hand, it is known that the 

collision rate obtained by the O`Rourke (1981) collision model itself is depending in grid size, 

but here a finer mesh would result in lower collision rates. As a result, for a too coarse mesh 

the development of the Sauter mean diameter in time is not predicted correctly. 

However, one must state that collision maps and boundary lines obtained for “water” 

(note that here only the Estrade et al. (1999) boundary line is obtained for Ethanol) are not 

suitable for calculations of a Diesel sprays due to the large sensitivity of the results. As 

illustrated in Figure 10 of Post and Abraham (2002) the boundary lines for the model fuel 

tetradecane (Qian and Law 1997) are completely different than those for water. They are 

remarkably shifted to higher We-numbers (i.e. due to viscosity increase) whereby it cannot be 

expected that a diesel spray is correctly predicted with water boundary lines (Post and 

Abraham 2002). A comparison with measurements was unfortunately not performed. In the 

composite droplet collision model used by Kollar et al. (2005) the same collision outcomes 



 
 9 

and the same boundary lines were considered, again neglecting satellite formation after 

separation. 

The composite collision model used by Ko and Ryou (2005) actually only includes the 

regions of coalescence and stretching as well as reflexive separation, defined with the Ashgriz 

and Poo (1990) boundary lines. The small region of bouncing indicated for very small We and 

large B in the utilised water-type collision map was not considered (see Figure 3 in Ko and 

Ryou 2005). The main contribution of their work was related to the development of a satellite 

formation model after separating collisions. With this hybrid model, Euler/Lagrange 

calculations of two interacting water sprays were conducted. The simulations showed that due 

to satellite droplet formation the Sauter mean diameter in the region of interacting sprays is 

considerably lower than in the case of single sprays. 

Also, Mannannur and Reitz (2007) introduced a composite model for the droplet collision 

map using the boundary line for bouncing (Ethanol: Estrade et al. 1999), coalescence-

stretching separation (water: Brazier-Smith et al. 1972) and reflexive separation (water: 

Ashgriz and Poo 1990). In the model for satellite droplet formation they however include 

viscous dissipation, which was neglected by Ko and Ryou (2005). The comparison of 

calculations with the proposed collision model showed a much better, though not perfect, 

agreement with measurements for impinging single droplet streams with different fuels, 

compared to those neglecting satellite droplet formation. A later study of the same group 

(Perini and Reitz 2016) used the same concept for defining the boundary lines of collision 

outcomes as a basis of the numerical prediction of single-pulse dodecane fuel sprays. 

However, they used the concept of the sphere-of-influence to search for parcel collision 

partners in order to relax the grid-size dependence of the collision detection procedure. 

The impingement of two Diesel sprays was numerically computed by Kim et al. (2009) 

introducing some modifications to the classical O`Rourke (1981) collision detection model for 

insuring that the two statistically selected collision parcels are also moving towards each other 

and that the travel distance within one time step should be larger than their initial spatial 

separation (Nordin 2001). Besides not clearly describing how the possible collision partners 

are selected, also no fundamental validation of their model modifications was done, e.g. 

comparison with a fully deterministic collision detection model. For describing the droplet 

collision outcomes, a three-line boundary model was applied also accounting for satellite 

production during separative collisions. Misleadingly, again the boundary lines for water were 

applied for a Diesel spray (Kim et al. 2009). As described already, with the single-boundary 
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line model the coalescence rate is remarkably over-predicted compared to a three-line model 

including bouncing. 

The effect of modified collision maps with increasing pressure (see Qian and Law 1997) 

was modelled by introducing a pressure coefficient in the Estrade et al. (1999) bouncing 

boundary line yielding a displacement to higher Weber numbers with increasing pressure 

(Zhang et al. 2016). Again, the grid-size-dependence of the spray penetration depth was 

shown without a further analysis why with finer meshes the collision rate increases and hence 

droplets become larger yielding higher spray penetration. The results for interacting sprays 

show the same trends mentioned above when comparing single-line and three-line boundary 

models. 

Finally, the question is; which is the influence of the shape of the presumed collision map 

and the considered boundary lines on the calculated spray behaviour. Recent Euler/Lagrange 

calculations of Sommerfeld and Lain (2017) for a hollow cone water spray first of all showed 

that impact efficiency is essential to be accounted for and reduces the overall collision rate by 

20 %. In these simulations a three-boundary line composite model (i.e. water-type collision 

map with bouncing, stretching and reflexive separation) was used. The observed collision 

outcomes were: coalescence 68%, bouncing 16%, stretching 16% and reflexive separation 1% 

when using the SS-C boundary after Ashgriz and Poo (1990). Naturally, the collision rates 

reduce alongside the spray where coalescence and bouncing occurs along the entire spray 

(length of the computational domain 1000 mm). Stretching was only observed until the 

middle region of the spray and reflexive separation just in the initial region, up to about 100 

mm. Due to coalescence, of course, an increase of the averaged Sauter mean diameter along 

the spray was observed (i.e. from about 57 mm at injection to 65 mm at x = 600 mm). Now 

when using another SS-C boundary, for example according to Brazier-Smith et al. (1972) or 

Jiang et al. (1992), the coalescence probability will increase for large B (discussion see below 

in Figure 8) and the Sauter mean diameter grows much more rapidly along the spray. This 

reveals the importance and need of having appropriate boundary line models on droplet 

collision outcomes for refined spray simulations. 

An analysis of the influence of the type of collision map used in spray computations was 

also conducted by Finotello et al. (2019) applying an LES (large eddy simulation)-

Euler/Lagrange approach and the DSMC (direct simulation Monte Carlo) semi-stochastic 

collision model. The comparison of numerically obtained collision frequencies using collision 

maps for water compared to that for milk, showed the highest over-all collisions for water. 

This is caused by the special feature of the milk-type collision map showing no bouncing 
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independent of the solid content. This implies that most collisions result in coalescence 

reducing the droplet number density and hence collision frequency. When the solid content of 

the milk was increased (i.e. increasing viscosity) the SS-C boundary is moved upwards and to 

the right giving even more coalescence, further decreasing droplet number density and 

consequently reducing collision rates. Therefore, this work (Finotello et al. 2019) also 

demonstrates the importance of properly selecting the collision map according to the liquid at 

hand. In this study it was also revealed that even using an LES method for spray predictions, 

turbulent dispersion of the droplets by the unresolved sub-grid-scale turbulence needs to be 

modelled since turbulence remarkably increases droplet collision rate. Finally, it was also 

found (Finotello et al. 2019) that in the case of spray droplet size distributions, the collision 

probability for small size ratios (i.e. D < 0.5) is considerably higher. 

The present contribution highlights the importance of the presumed collision maps on the 

numerically calculated spray evolution and the resulting droplet size distributions. First, the 

fundamentals of the applied Euler/Lagrange approach with the involved models, especially 

the fully stochastic collision model, are described and the considered test case together with 

the applied different collision maps are introduced. In the results section, first the sensitivity 

of the fully stochastic collision model with regard to mesh size, parcel number and 

Lagrangian time step size is analysed. Then the influence of the assumed collision maps on 

the conditional collision numbers along the spray is critically assessed, followed by an 

evaluation of the predicted Sauter mean diameter along the spray and the resulting local 

droplet mass-based distributions. An important contribution is the evaluation of the existing 

droplet size ratios upon collision throughout the spray. Finally, the numerical predictions are 

compared with measurements and the conclusions from the research are presented. 

 

2 Euler/Lagrange approach and test case definition 

The numerical scheme adopted to simulate the dispersed two-phase flow developing in the 

spraying system is the fully coupled stationary and three-dimensional Euler/Lagrange 

approach (Laín et al. 2002). The fluid flow was calculated based on the Euler approach by 

solving the Reynolds-averaged conservation equations (mostly referred to as RANS 

equations) in connection with the standard k-ε turbulence model equations. The effect of the 

particle phase on the fluid flow was accounted for by appropriate source terms in the 

momentum equations as well as the conservation equations for turbulent kinetic energy and 

dissipation rate, i.e. referred to as full two-way coupling (Kohnen and Sommerfeld, 1997). 
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RANS calculation of fluid flow 

The time-dependent three-dimensional conservation equations for an incompressible fluid 

may be written in the general form as: 
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Here, " is the gas density, / its viscosity, &? and @ are the Reynolds-averaged velocity 

components and pressure, respectively. Eqn. (9) – (10) solve for the turbulent variables: the 

turbulent kinetic energy, #, and its dissipation rate, 7. Furthermore, /0 is the turbulent 

viscosity, 5 is the trace of the production tensor which are written as: 

/0 = ";A
#>
7  

(11) 

5 = −"ℛCD !&?!,'  
(12) 

where ℛ?' is the Reynolds Stress tensor, closed in the # − 7 turbulence model as: 

"ℛCD = 2
3 "#G?' − /0 H!&?!,' + !&'!,? I (13) 

and G?' is the Kronecker delta. The model constants adopt the standard values given in Table 

1. 

;A 12 1: ;:< ;:> 

0.09 1.0 1.3 1.44 1.92 

Table 1: Constants for the # − 7 turbulence model. 
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The terms ��� in Eqn. (8) – (10) represent the additional source terms due to the phase 

interaction for the different variables  = {!", #, $} and they will be specified below. 

Lagrangian droplet tracking 

The simulation of the particle phase by the Lagrangian approach requires the solution of 

the equations of the motion for each computational particle along their path. This equation 

includes all interfacial and field forces the particle inertia, drag and gravity-buoyancy. The 

Basset history term, the added mass and the fluid inertia are negligible for the considered high 

ratios of droplet to gas density (in this work of %(10&)). Additionally, it is supposed that 

droplets do not rotate as a rigid body, so that also the rotational lift force may be neglected 

(Sommerfeld et al. 2008). Moreover, the shear-induced lift force is neglected here, as the 

droplets are rather small < 100mm and the shear gradients within the spray flow are not very 

strong as for example in a boundary layer (Sommerfeld et al. 2008). Under such 

approximations, the equations of motion for the droplets are given by: 

� !"�# = $!" (14) 

%! �$!"�# = 34 '� %!  ()($" − $!")|$-⃗ − $-⃗ !| + %!0" 11 − ''!5 (15) 

here,  !" are the droplet coordinates along their trajectories, $!" are its velocity components, 

$" = 6" + $′" is the instantaneous velocity of the gas composed of mean value and 

instantaneous fluctuation, � is the droplet diameter and '! the droplet material density. 

Moreover, %! = 8'!�9/6 is the droplet mass. The drag coefficient is obtained using the 

standard correlation (Schiller and Naumann, 1933): 

() = <24?@!ABC1 + 0.15?@!G.HIJK ?@! ≤ 1000
0.44                                         ?@! > 1000 (16) 

being ?@! = '�|$-⃗ − $-⃗ !|/N the droplet Reynolds number. The instantaneous fluid velocity seen 

by the droplet is obtained by interpolating the fluid mean velocity from the neighbouring grid 

points to the particle position and adding a fluctuating component obtained from a single-step 

Langevin model (Lain and Sommerfeld, 2013). 

The equations to calculate the particle motion are solved by integration of the differential 

equations (Eqn. 14 - 15). For sufficiently small time steps and assuming that the forces remain 
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constant during this time step, the new particle location and the linear velocities are 

calculated. The time step for the particle tracking, O#P, was chosen to be 50 % of the smallest 

of all local relevant time scales, such as the droplet relaxation time, the integral time scale of 

turbulence and the mean inter-particle collision time. Due to the applied series expansion in 

the derivation of the collision probability (Sommerfeld and Zivkovic 1992, Rüger et al. 2000), 

the local inter-particle collision time scale was additionally limited to O#Q < 0.05 SQ. In this 

way the numerical stability of the tracking algorithm is guaranteed (Göz et al 2004). 

When a droplet hits the walls, it is assumed that it deposits and hence the parcel is removed 

from the computations. From an experimental point of view this assumption is also realistic, 

since the droplet liquid was water and the walls consisted of Plexiglass, consequently one has 

wetting conditions. For the purpose of demonstrating the effect of the droplet-wall boundary 

condition also computations with a specular refection of the droplets on the walls will be 

shown. Collisions among droplets are modelled by the fully stochastic approach of 

Sommerfeld (2001) which is described in detail below. 

Influence of droplets on the carrier flow 

After a converged solution of the fluid flow is obtained, a set of parcels (in the standard case 

2,852,000 parcels) is tracked through the flow field until all leave the outlet boundary or stick 

on the wall. The source terms for the momentum equations resulting from the exchange 

between droplets and fluid are obtained on the basis of the Particle-Source-In-Cell (PSI Cell) 

concept (Crowe et al. 1977). Hence, the momentum exchange is calculated by averaging over 

all parcels traversing a given control volume during one Lagrangian calculation. Instead of 

summing up all individual fluid dynamic forces acting on the droplets, which may be quite 

cumbersome, the momentum exchange is calculated from the velocity change of the parcels 

when traversing the control volume. In this procedure however, the external forces have to be 

subtracted yielding the momentum source in the following form: 

� !"##### = − 1
%&'()*+,*+

+
(-.[/*0]+234 − [/*0]+25 − 60 71 −

8
8*9Δ;<>2

 (17) 

where the sum over n indicates averaging along the particle trajectory (time averaging) and 

the sum over k is related to the number of computational particles passing the considered 

control volume with the volume %?@. The mass of an individual droplet is )*+ and ,*+ is the 

number of real droplets in one computational particle. Δ;A is the Lagrangian time step which 

is used in the solution of Eqn. (14) – (15). The source term in the conservation equation of the 
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turbulent kinetic energy, �, are expressed in the Reynolds averaging procedure as (Kohnen 

and Sommerfeld 1997): 

 !" = # $% &'"(((((((( − *+ &'"(((((
,

+-.
 (18) 

 /" = 013
1
�  !" (19) 

where the source term in the 1-equation has been modelled in the standard way with the 

parameter 0/, = 1.8. This value has been used in a wide range, i.e. 1.0 <  0/, < 1.9, 

however, depends on the type of two-phase flow, as well as the particle concentration and 

particle size (Squires and Eaton 1993). 

A converged solution of the coupled two-phase flow system is obtained by successive 

solution of the Eulerian and Lagrangian part, respectively. Initially, the flow field is 

calculated without particle phase source terms until a converged solution is achieved with the 

specified inlet conditions. Thereafter, a large number of parcels are injected and tracked 

through the flow field (2,852,000 computational particles in the present work) and the source 

terms are sampled for each control volume. In the first Lagrangian calculation droplet-droplet 

collisions are not considered, since the required cell-based droplet phase properties are not yet 

available. Hence, for each control volume the droplet concentration, the local droplet size 

distribution and the size-velocity correlations for the mean velocities and the rms values are 

sampled. These properties are updated each Lagrangian iteration in order to allow correct 

calculation of droplet-droplet collisions. Additional droplet phase properties and profiles may 

be sampled for each transverse cell when the computational particles cross a pre-defined 

location. From the second Eulerian calculation, the source terms of the dispersed phase are 

introduced using an under-relaxation procedure which provides the cumulative mean values 

of the source terms in each control volume (Kohnen et al. 1994). For the present calculations 

typically about 50 coupling iterations with an under-relaxation factor between 0.05 and 0.1 

were necessary in order to yield convergence of the Euler-Lagrange coupling. 

Stochastic Droplet Collision Model 

The droplet collision model includes the following steps in order to determine the 

outcome of a binary collision. Since the parcel concept is used in order to include all real 

droplets produced by the spray, all droplets within the considered parcel behave in the same 

way and collide in the same way. These sub-processes in the applied fully stochastic collision 

model are (Sommerfeld 2017 b): 
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· Generation of a fictitious collision partner with size and mean velocities from the 

local droplet population (cell-based droplet properties were evaluated), 

· Determination of the fluctuating velocity components of the fictitious parcel 

considering a possible correlation with those of the real parcel as a result of the 

interaction with the same turbulence structure, 

· Transformation of the velocity components of the involved collision partners so 

that the larger droplet is stationary and the major axis of the collision cylinder is 

aligned with the relative velocity vector, 

· Consideration of the impact efficiency and determination of the boundary droplet 

trajectory (lateral displacement YC) based on the results of Schuch and Löffler 

(1978), 

· Stochastic determination of the impact location on the surface of the larger, 

collector droplet and determination of instantaneous collision Weber-number (Eq. 

(1)) and impact parameter B (Eq. (2)), 

· Determination of the type of droplet collision occurring using the appropriate 

collision map B = f(We), 

· Evaluation of the droplet size (for coalescence only) and velocities after collision 

only for the real parcel and re-transformation into the laboratory frame of 

reference. 

In this study, the fully stochastic collision model is applied where for each computational 

particle, or parcel, and during each Lagrangian time step a fictitious collision partner is 

created from the local population of droplets. The properties of the droplet population in each 

computational cell were statistically sampled during the previous coupling iteration for 

steady-state computations or during the previous Eulerian time step as described above. For 

the considered isothermal spray the required local properties are number concentration and 

size distribution of droplets, as well as the correlations between droplet size and mean 

velocities as well as rms values for each component. For obtaining the properties of the 

fictitious droplet, first a size is randomly drawn from the local cumulative size distribution. 

The next step is the determination of the instantaneous relative velocity between real and 

fictitious droplet. With the fictitious droplet size, the size-velocity correlations give the 

fictitious droplet mean velocity components. Naturally, for colliding droplets, which 

supposedly moved through the same turbulence structures before collision, their velocity 

fluctuation is not completely uncorrelated. Only a fully deterministic collision model would 
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yield the exact instantaneous relative velocity between colliding particles. In the fully 

stochastic collision model, a Langevin model is applied to create the fictitious droplet velocity 

fluctuating components i from that of the real droplet or parcel using a particle-pair velocity 

correlation function depending on the fictitious particle response time and the local integral 

time scale of turbulence, which is the Stokes number St. This correlation function was 

previously determined by comparing particle tracking simulations with results from large 

eddy simulations (LES) for homogeneous isotropic turbulence as described in Sommerfeld 

(2001). Based on the fundamental studies of Lain (2010) this correlation function was revised 

and the fictitious droplet fluctuating velocities are determined in the following way through a 

Langevin model: 

�����,�ʹ =  (!", #$) &'*+-,�ʹ + /� 01 −  (!", #$)3 45  (20) 

 (!", #$) =  (67) = 89: ; 0.019 673
1 + 0.044 67A.B3CD (21) 

0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

 

 

R
(S

t)
 [

 -
 ]

Stokes number [ - ]

 Zaichik & Alipchenkov (2003)

 Sommerfeld (2001)

 Correlation Lain (2010)

 

Figure 3: Particle pair velocity correlation function in dependence of particle Stokes number 
comparing different previously presented theories and correlations. 

 

The correlation (21) was established by solving the Zaichik and Alipchenkov (2003) 

model for the correlation function of particle pair fluctuating velocities and fitting a three-

parameter curve (Lain 2010). From Figure 3, it is obvious that such an expression is more 

appropriate than the two-parameter correlation proposed initially by Sommerfeld (2001). 

Compared to just using the collision probability from kinetic theory, accounting for this 

velocity correlation of colliding droplets reduces drastically the collision frequency of 
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responsive droplets (Sommerfeld 2001). In sprays of course the produced smaller droplets 

have mostly such behaviour, so that neglecting this effect will again drastically influence in 

the predicted droplet size spectrum. In the spray calculations, the fictitious droplet might be 

the smaller or the larger droplet. Having now all properties of both droplets the collision 

probability based on kinetic theory of gases can be calculated: 

� =  
6  ("# + "$)% |&#''''⃗ − &$''''⃗ | -. ∆0$ (22) 

When a random number drawn from a constant probability (i.e. 12: [0,  1]) becomes 

smaller than this probability, a collision takes place. In order to insure, that only binary 

collisions occur and since the probability of only one collision was derived from a series 

expansion, the Lagrangian tracking time step should be small enough not to exceed 10 – 20 % 

of the local inter-particle collision time (Zivkovic and Sommerfeld 1992). 

An essential element which has to be integrated in the impact point determination is the 

impact efficiency which is relevant for a collision between small and large droplets (Ho and 

Sommerfeld 2002). In such a situation the smaller droplet might move around the larger one 

with the relative velocity field, which is a quite frequent phenomenon in sprays due to the 

wide droplet size spectrum normally existing. Effectively, impact efficiency results in a 

reduction of collision cross-section and hence collision rate (Sommerfeld and Lain 2017), 

since often larger droplets will capture smaller droplets due to the existence of high relative 

velocities (see Figure 4). This phenomenon may be described in a coordinate system where 

the larger collector droplet is stationary. Considering only inertial effects, the impact 

efficiency is then defined as the ratio of the circular cross-section from which the small 

droplets comes and just hits the larger droplet to the effective collector cross-section. 

Accounting also for the so-called blocking effect this cross-section diameter is the sum of the 

large and small droplet diameter (Figure 4). Hence, the impact efficiency follows as: 

8 = 9 2 <>
"# + "$

?
%

= 9 @0ABC
@0ABC + D?

E
 (23) 

In the work of Schuch and Löffler (1978) the impact efficiency for inertial effects was 

calculated in dependence of the relative Stokes number which is the small droplet Stokesian 

relaxation time to the time it needs to pass the collector droplet (Ho and Sommerfeld 2002) 

with the relative velocity: 

@0ABC = FG
HGIJJ

= K#  "#% &ABC
18   !"

 (24) 
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here the dS and dL refer to the diameters of the small and large droplet, respectively, rS is 

the small droplet density and urel is the instantaneous relative velocity. The impact efficiency 

(Eq. 23) was then related to the relative Stokes number using two parameters a and b, which 

depend on the collector droplet Reynolds number Rec determined with the relative velocity 

(Schuch and Löffler 1978). This dependence is caused by the fact that with increasing 

collector Reynolds number the flow deviation is increasingly compressed towards the 

collector and so are the streamlines. The numerically obtained different values for the 

constants a and b are provided in Table 2. For that purpose, different numerical approaches 

were used (Schuch and Löffler 1978), such as boundary layer theory for small Rec and 

potential theory for large Rec. The results of the different correlations are given in Figure 5 

together with own simulations which agree fairly well. These simulations were conducted 

solving the three-dimensional Navier-Stokes equations (i.e. without turbulence model) and 

conducting a Lagrangian point-particle tracking of many fine particles. Especially, at higher 

collector Reynolds numbers some differences are observed for small Stokes numbers (i.e. 

small particles) in Figure 5, since in the conducted computations boundary layer and wake of 

the collector are resolved, which is of course not possible by potential theory (Schuch and 

Löffler 1978). For a given relative Stokes number the increase in Reynolds number yields 

growing impact efficiency (Sommerfeld and Lain 2009) due the increasing small particle 

inertia as a result of the stronger flow deflection. 

 

Figure 4: Illustration of inertial impact efficiency for the collision of a small droplet 
approaching a larger collector droplet with the relative velocity (shown in a transformed 
coordinate system where the collector is stationary and the relative velocity is aligned with the 
collision cylinder axis). 

 



 
 20 

Eventually, a collision is only occurring if a randomly drawn lateral displacement L (see 

Sommerfeld 2001) is smaller than the value of Yc. This instantaneous lateral displacement of 

the fine droplet from the axis of the collision cylinder as well as the angular position in the 

cross-section is determined by independent random processes (Sommerfeld 2001). Hence a 

collision occurs only if: 

� ≤ !" + 0.5 $% (25) 

 
Rec a b 

³ 100 0.25 2.0 

60 – 80 0.506 1.84 

40 1.03 2.07 

10 – 20 1.24 1.95 

< 1 0.65 3.7 

 
Table 2: Constants for the correlation proposed by Schuch and Löffler (1978) for the 
inertial impact efficiency (Eq. 23). 

 

Strictly speaking, the above model for considering the inertial impact efficiency may be 

only applied to turbulent flows if the collision complex is much smaller than the smallest 

turbulent eddies, namely the Kolmogorov length scale, or the small droplets are quite inertial 

and hardly follow these small turbulent structures. Hence, here only inertial impacts are 

considered. Otherwise of course the impact efficiency is still very important, but the collision 

geometry is much more complex. In such a situation the trajectories of the small colliding 

droplets are affected by turbulent transport, so that even small droplets moving initially 

outside the collision cross-section might hit the collector due to turbulent diffusion. This 

regime is called turbulent diffusional impact. Thereby the impact efficiency will rise again 

when reducing the Stokes number below about 0.1 (Figure 5). This will happen in a similar 

way if the colliding droplets are very small so that their motion is affected by Brownian 

dispersion. 
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Figure 5: Inertia-based impact efficiency as a function of relative Stokes number, lines: 
correlations proposed by Schuch and Löffler (1978); symbols: numerical calculations 
(Sommerfeld and Lain 2009). 

 

The next step in the droplet collision model is the determination of the collision outcome 

based on the collision maps B = f(We) as it was described above (Figure 2) and the 

theoretically derived boundary lines, which will be presented in the test case description. 

Finally, depending on the type of collision outcome, the properties and especially the 

velocities of the considered droplet have to be determined. The fictitious collision partner is 

not of interest anymore and the number of collisions calculated is identical to the number of 

droplets in the real parcel. 

· If the outcome is bouncing, the parcels are reflected back with opposite normal velocity 

component by keeping the lateral component and thereby neglecting momentum los. 

· In case of coalescence, the same approach used by Rüger et al. (2000) is applied: the new 

velocity of the new parcel is computed as the mass weighted velocity of the colliding 

droplets (R: real and F: fictitious droplet), the new diameter is given by the fact that the 

mass of the new droplet is the sum of the individual masses before collision, however, to 

comply with mass balance the new number of droplets in the coalesced parcel has to be 

reduced accordingly. 
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· In case of stretching separation outcome, the parcels direction of motion is maintained and 

their velocities are reduced due to the dissipation generated by the interaction (O’Rourke, 

1981). 

 ��,�´ = ��  �,!"�#  #,!"�# % �,!& #,!' ()(**)+
-)(**)+

��"�#      (28) 

where .//&0 is the normalised impact parameter obtained with the considered SS-C 

boundary line (e.g. Eq. (31)) at the Weber number of the collision and B is the actual 

impact parameter of the occurring collision. 

· Finally, in case of reflexive separation, it is assumed that the collision partners conserve 

their sizes and are repelling each other but with reduced velocities accounting for the 

dissipation in the collision process (Tennison et al. 1998). 

 ��,�´ = ��  �,!"�#  #,! ± �# % �,!& #,!' 12& 34+
34

��"�#      (29) 

In the numerator ± indicates that the positive sign is used if the real parcel represents the 

small droplet and the negative sign is used if the droplet is the larger one. The dissipation term 

depends on the ratio between the critical Weber-number, WeC (see Figure 2) and the collision 

We-number and is consequently increasing with growing difference between the two. 

 

Discretisation and numerical setup 

The three-dimensional computational domain consists of a cylinder 1 m long and radius 

0.2 m, resembling the experimental rig used in Rüger et al. (2000) as shown in Figure 6 left). 

It was discretized by a non-uniform structured numerical grid consisting of approximately 

700,000 control volumes, which was sufficient to obtain a grid independent solution. The 

mesh was built as an O-grid divided in five blocks where the discretization of the central 

block, containing the cylinder symmetry axis, is much finer than the rest of surrounding 

blocks (Figure 6 right). This arrangement allows reproducing adequately the high mean 

velocity gradients developing in the region close to the nozzle and at the spray border. 

The upper circular boundary of the domain was established as a velocity inlet and it was 

located at 25 mm downstream of the nozzle exit which was the first cross-section where 

simultaneous measurements of both phases were possible (i.e. the liquid sheet breakup was 

largely completed at this location). Measurements of the gas phase were of course only done 

for one line over the cross-section (i.e. from the centre to the wall) providing axial and radial 

mean velocities as well as the turbulent kinetic energy. These data were used to create the 

plane of gas inlet velocities for each control volume. For the determination of the dissipation 
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rate a length scale of le = 12 mm was used. The lower circular cross-section was specified as 

outlet boundary condition (i.e. zero gradient for all properties) and it was located 1000 mm 

below the inlet cross-section. The lateral cylinder wall was set as a non-slip condition for the 

gas phase using standard wall functions. For the droplets, it was defined as an absorbing wall, 

i.e. as soon as a droplet touches the wall it is deposited and removed from the computation. 

For generating the droplet injection conditions at the inlet pane (z = 25 mm) results from PDA 

(phase Doppler anemometry) measurements were available. Again, these measurements were 

done along a single line over the radial range 0 < r < 30 mm in distances of at least one 

millimetre. These data include the local droplet mass flux and the local droplet size 

distributions, as well as the size-velocity correlations for axial and radial mean velocities and 

the associated rms-values. The tangential (or lateral) velocity component for the droplets was 

not measured but may be assumed to be close to zero (hollow cone spray nozzle without 

swirl) and the rms-value should be almost identical to the radial component. Naturally, in the 

droplet or parcel injection procedure, the injection location was randomly selected over the 

entire inlet cross-section (i.e. diameter of 60 mm), however weighted according to the droplet 

mass flux. 

The injection process for each parcel can be summarized as follows: first, a size was 

drawn from the local cumulative distribution function by a random process (the droplet size 

and the local mass flux determine the number of real droplets within a parcel); then, the size-

velocity correlations provide the droplet mean velocity components; moreover, from the 

correlation between the size and rms-values the standard deviations for each velocity 

component are obtained. Hence, the instantaneous fluctuating velocity components were 

drawn from normal distribution functions with these rms-values. 

The droplet parcels were continuously injected at the inlet and simultaneously tracked 

through the beforehand calculated stationary flow field (previous Eulerian computation) until 

all 2,852,000 parcels also have left though the outlet. As described above, during this time for 

each control volume the droplet properties and source terms were sampled. Profiles of all 

velocity components for the gas phase and the relevant droplet phase properties (i.e. droplet 

mean number diameter, droplet concentration and droplet velocity components) were 

evaluated at the measurement locations 25, 50, 100 and 200 mm. 
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Figure 6: Configuration of the spray facility with inlet and outlet section as well as the nozzle 
arrangement as realised in the experiments, test section diameter 400 mm (left), numerical 
grid of the entire computational domain (right). 
 

 

 

Definition of test cases 

The main objective for the numerical simulations of the spray system described above was to 

analyse the influence of the beforehand defined collision map on the predicted spray 

characteristics, mainly the size or size distribution of the eventually produced droplets. This is 

a major goal for many technically realised spraying systems. The considered hollow cone 

water spray measured in detail by Rüger et al. (2000) is the validation case. Hence, the basic 

configuration of the collision map describing individual collision outcomes was that for water 

(Qian and Law 1997; Foissac et al. 2010; Kuschel and Sommerfeld 2013) as shown in Figure 

7 a) with the lower boundary for bouncing, the boundary between stretching separation and 

coalescence (SS-C) and that between reflexive separation and coalescence (RS-C). 
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This collision map for water is a quite special case as bouncing is only observed for large 

impact parameters B (in the following indicated as water-type). The lower bouncing boundary 

is described by the well-known Estrade et al. (1999) correlation given below (Eq. (30)). The 

separation line between stretching separation and coalescence (SS-C) seems to be slightly 

better described by the Ashgriz and Poo (1990) boundary given in Eq. (32) compared to the 

Brazier-Smith et al. (1973) correlation given by Eq. (31) for the region above the bouncing 

boundary (see Figure 7a)). However, when considering the behaviour with decreasing size 

ratio D (Sommerfeld and Pasternak 2019), the Brazier-Smith et al. (1973) correlation (Eq. 

(31)) is superior. As mentioned above, many numerical computations have been performed 

with just a single boundary line between coalescence and grazing, mostly using the Brazier-

Smith et al. (1972) equation (e.g. in O´Rourke 1981). Grazing includes bouncing and 

stretching separation. This approach however completely neglects the occurrence of reflexive 

separation being observed for small B and larger We. In this study, the boundary line RS-C is 

determined with the mostly applied Ashgriz and Poo (1990) correlation specified in Eq. (33). 

When the viscosity of the liquid slightly increases and the surface tension is decreased to 

about half of that for water, bouncing is also observed for small We down to B = 0 as 

illustrated in Figure 7 b) for hexanol alcohol (Sommerfeld and Kuschel 2016). This behaviour 

is also observed for different hydrocarbon droplets in air at atmospheric pressure (Jiang et al. 

1992) as well as tetradecane at different ambient pressures and for different environmental 

gases (Qian and Law 1997). 
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Figure 7: Collision maps experimentally obtained for identical droplets and two different 
liquids with theoretical boundary lines for lower bouncing by Estrade et al. (1999) Eq. (30), 
stretching separation-coalescence (SS-C) by Brazier-Smith et al. (1973) Eq. (31) and Ashgriz 
and Poo (1990) Eq. (32) as well as reflexive separation-coalescence (RS-C) by Ashgriz and 
Poo (1990) Eq. (33); a) water with Estrade shape factor Y = 3.351 (Kuschel and Sommerfeld 
2013), b) hexanol alcohol with Estrade shape factor Y = 3.8 (Sommerfeld and Kuschel 2016). 

Consequently, a series of numerical computations were conducted considering three boundary 

lines using available correlations as already mentioned in Figure 7, namely: 

· The lower boundary of bouncing presented by Estrade et al. (1999) with shape factor Y = 

3.351: 

�� =  ∆�� ∆!" (# $%�&)
' (*+,(-.*,/0 1))! (30) 

2 = 1 − 0.25 (2 − 9)&(1 + 9)      ;<: 9 > 1 

2 = 0.25 9& (3 − 9)                        ;<: 9 ≤ 1 

9 = (1 − B) (1 − Δ) 

· The boundary between stretching separation and coalescence (SS-C) by Brazier-Smith et 

al. (1972), abbreviated by B-S below: 
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· Alternatively, the SS-C boundary by Ashgriz and Poo (1990), abbreviated with A&P 

below: 

�� =
� �� ∆"#$ %& (�'∆) (� *) �∆" +,'+-#./ $0

1$ {(�'1") (� *$) (+,'1" +-)}  (32) 

23 = 4 1 − 14 8& (2 8 − :);(8 + :)                  ?@A � > 0.5����

4 � (3 � − �)                                           "#$ � < 0.5��
 

 &' = *1 − 14 (2 − �)�(1 + �)                             "#$ � > 0.5�'��4 (3 − �)                                                   "#$ � < 0.5�'
 

 � = 12 (�' + ��)(1 − ,);                           � = (1 − ,) (1 + �) 

· And the reflexive separation-Coalescence boundary (RS-C) presented by Ashgriz and Poo 

(1990): 

-/ = 3 67 (1 + ∆ )�  9 − 4(1 + ∆�): ∆ ?@A∆BCD
∆E FGAFH  (33) 

I� = 2 (1 − J)� (1 − J�)@ �⁄ − 1 

I' = 2 (� − J)� (�� − J�)@ �⁄ − �  

J = (1 2⁄ ) , (1 + �) 

All these boundary lines, mostly based on energy balances, include the droplet size ratio as an 

additional parameter which in this study is either fixed to a value of D = 1 or allowed to vary 

according to the size ratio at hand for the detected collision. The test cases considered in this 

study are summarised in Table 3. If the three-boundary line model is considered the bouncing 

boundary is always the same as given by Eq. 30 and also the same curve is used for the RS-C 

boundary (Eq. 33). Moreover, Table 3 includes the resulting droplet collision numbers, within 

the entire computational domain, in total and for the different scenarios of the outcomes, 

which will be discussed below. Please note that all these numbers are real droplet collisions 

and not parcel collision numbers. Actually, in average one parcel represents about 3 real 

droplets whereby for example in Case4 one droplet experiences in average only about 2 

collisions in the entire computational domain. 

In addition, for each case, the cross-sectional averages of the droplet collision numbers for all 

outcome types were determined along the spray. Velocity profiles for the spray droplets at the 
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cross-sections specified above are evaluated and compared to the available experimental data. 

In order to demonstrate the effect of droplet collisions for the different model assumptions, 

also droplet size distributions were sampled at distinct locations within the spray and 

compared to available measurement results. In order to assess the results obtained with the 

different collision maps, cross-sectional averages of the droplet Sauter mean diameter are 

plotted along the spray. Additionally, statistics on the droplet size ratios at the instant of a 

collisions were extracted from the simulations. This is a very important information which 

allows to emphasise needs in additional measurements and model developments. From the 

simulations such PDFs (probability density functions) were evaluated for different cross-

sections in the spray and also conditionally sampled for the different collision outcomes. 

Case 

SS-C 

Boundary 

Impact 

Efficiency Delta Type of collision map 

Total 

Collisions 

Case 0 ---------------- ------------- ------------- No droplet collisions considered ---------------- 

Case 1a A&P no 1 water-type collision map 14,660,163 

Case 1b B-S no 1 water-type collision map 14,496,176 

Case 1c B-S no 1 water-type; single boundary 19,356,063 

Case 2a A&P yes 1 water-type collision map 11,905,523 

Case 2b B-S yes 1 water-type collision map 11,769,630 

Case 2c B-S yes 1 water-type; single boundary 15,869,083 

Case 3 A&P yes variable water-type collision map 13,219,259 

Case 4 B-S yes variable water-type collision map 15,506,068 

Case 5 B-S yes variable bouncing to B=0 13,256,107 

Case 6 B-S yes variable bouncing to B=0; We +20 14,085,238 

 

Case  Bouncing [%] Coalescence [%] Stretching [%] Reflexive [%] 

Case 0 
        Case 1a 4,332,110 29.55 7,139,269 48.70 3,000,229 20.47 188,555 1.29 

Case 1b 3,195,400 22.04 8,151,410 56.23 2,961,680 20.43 187,682 1.29 

Case 1c ------------ --------- 9,650,900 49.86 9,705,163 50.14 ----------- --------- 

Case 2a 3,392,151 28.49 5,241,318 44.02 3,077,978 25.85 194,076 1.63 

Case 2b 2,828,320 24.03 5,736,310 48.74 3,012,580 25.60 192,408 1.63 

Case 2c ------------ --------- 6,880,920 43.36 8,988,163 56.64 ----------- --------- 

Case 3 2,074,007 15.69 9,005,929 68.13 2,121,665 16.05 17,658 0.13 

Case 4 448,121 2.89 14,617,228 94.27 431,918 2.79 8,801 0.06 

Case 5 6,069,098 45.78 6,749,953 50.92 428,303 3.23 8,753 0.07 

Case 6 11,039,401 78.38 2,920,882 20.74 121,805 0.86 3,152 0.02 

 

Table 3: Summary of the considered test cases for the comparison of the different droplet 
collision outcome models (collision maps B = F (We) as summarised in Figure 8) together 
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with the obtained conditional collision numbers and their percentage from the total number of 
collisions. 

The collision maps of all cases considered (Table 3) are summarised in Figure 8 for 

convenience. As mentioned above, the bouncing and RS-C boundary are for all cases were 

kept identical. The emphasis is on the influence of different boundary lines between stretching 

separation and coalescence (SS-C). The comparison of the resulting collision maps with the 

boundary lines for SS-C using the A&P and the B-S correlation are presented in Figure 8 a) 

used for the Cases 1a and 1b as well as for 2a and 2b, for both assuming D = 1 no matter 

which size ratio is at hand in the collisions of the computations. It is clear that using the B-S 

boundary yields a reduction in the occurrence of bouncing and an enhancement of 

coalescence comparted to the A&P boundary. The Cases 3 and 4 consider a variable size ratio 

for the A&P as well as B-S boundary line which is illustrated in Figures 8 b) and c) by adding 

the dashed line for a size ratio of D = 0.5. It should be noted, that with decreasing size ratio 

the bouncing boundary is shifted upwards and the RS-C boundary moves to the right. 

Regarding the SS-C boundary A&P predicts a turning of this line around the point We = 0 

and B = 1 with decreasing size ratio, whereas the B-S curve yields a shift to the right-hand 

side. From experimental observations (e.g. Estrade et al. 1999) it is clear that the such a shift 

obtained with the B-S model is much more realistic than a turning predicted by A&P. 

Unfortunately, there are no experiments available on collisions of water droplets with 

different size ratio. As demonstrated in Figure 8 a) the B-S boundary for D = 1 results in a 

small increase of coalescence and a decrease of bouncing compared to the A&P boundary 

when considering water-type collision maps. Hence, although the A&S model is slightly 

better in demarking the bouncing region for water as shown in Figure 7 a) it completely fails 

to correctly describe the boundary line change with decreasing size ratio. Consequently, the 

mostly used B-S boundary line for SS-C is to be preferred. With decreasing size ratio (here 

only D = 0.5 is shown) the region of coalescence is enlarged much stronger when using the B-

S instead of the A&P boundary (compare Figures 8 b) and c)). Therefore, it is expected that 

with the SS-C boundary according to B-S much larger droplets are produced by the spray. 

For the Case 5 it is now assumed that the bouncing boundary goes down to B = 0, mimicking 

a higher viscous liquid (compare Figures 7 a) and b)) as illustrated in Figure 8 d) only for a 

size ratio of D = 1. The open cycles indicate the bouncing boundary for the water-type 

collision map and corresponds to Case 4 also for D = 1 only. The final collision map 

considered in the present simulation studies imposes a shift of the boundary curves by a value 

of 20 for the We number in order to mimic a much higher viscosity of the droplet liquid 
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(Kuschel and Sommerfeld 2013). For the SS-C boundary again the B-S correlation was used 

(see Figure 8 e)). Expectedly, such a collision map will favour more bouncing collisions, 

whereas the extent of the coalescence region remains almost unchanged. 
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Figure 8: Summary of the different collision maps considered in the numerical computation 
of the spray as summarised in Table 2; boundary lines: bouncing by Estrade et al. (1999) Eq. 
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(30), SS-C by B-S: Brasier-Smith et al. (1972) Eq. (31), SS-C by A&P: Ashgriz and Poo 
(1990) Eq. (32) as well as RS-C by A&P: Ashgriz and Poo (1990) Eq. (33); a) relevant for 
Cases 1a, 1b, 2a and 2b with D = 1 and bouncing ending at triple point (TP); b) relevant for 
Case 3, SS-C by A&P with full lines for D = 1 and dashed lines for D = 0.5; c) relevant for 
Case 4, SS-C by B-S with full lines for D = 1 and dashed lines for D = 0.5; d) relevant for 
Case 4 and 5, SS-C by B-S for D = 1 with two options for bouncing-one: ending at triple point 
(Case 4); -two: ending at B=0; e) relevant for Case 6 (dashed lines) the boundary lines for 
Case 5 (closed lines) are shifted by We = 20 to the right (all boundary lines shown only for D 
= 1. 

4 Results and Discussion 

In this section the obtained numerical results will be discussed on different levels. First the 

conditional droplet collision numbers along the spray according to their outcomes (i.e. 

bouncing, coalescence, stretching and reflexive separation) will be analysed for different 

presumed droplet collision maps. This allows conclusions with regard of the sensitivity of the 

predicted droplet sizes in a spray on the assumed collision maps. This issue will be 

highlighted by considering the droplet Sauter mean diameter along the spray. Then the 

predicted spray properties including droplet phase velocities will be compared with 

experiments accentuating the effect of the assumed droplet collision maps. Finally, also 

predicted local droplet size distributions will be compared. 

Reliability of the fully stochastic droplet collision model 

A review on the concepts of droplet collision detection and modelling was provided by 

Sommerfeld and Pasternak (2019), distinguishing between deterministic, deterministic-

stochastic and fully stochastic collision detection, and by Pischke et al (2015) analysing 

hybrid droplet collision detection models. The fully stochastic droplet collision detection 

model applied in this study is known to be less sensitive to the issues discussed by Pischke et 

al. (2015) and especially the grid dependence of the obtained collision rates. For that purpose, 

spray simulations based on Case 4 (i.e. SS-C boundary by B-S) were conducted also with 

different limitations of the Lagrangian time step, a lower number of tracked parcels and a 

finer numerical grid. It should be noted, that in this study a stationary spray is considered 

only. In order to ensure a relative error of less than 2.5% due to the truncation of the series 

expansion of the collision probability P, the particle tracking time step should be limited to 

Δ�� < 0.05 ��  which was done in the standard computations presented in the following. For 

Case 4 now two additional runs were conducted with limiters of 0.1 and 0.2 yielding of course 

larger values for the total collision number in the spray presented in Table 3. This increase 

was 5.45% for a limiter of 0.1 and 11.96% when selecting a larger limiter of 0.2. A finer 

numerical grid with 1.0 million cells showed no large differences in the predicted flow field 
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of the spray for both gas and droplets. Due to the poorer statistics for the droplet phase in the 

case of a finer numerical grid, also the statistics of the cell-based droplet properties, needed 

for the collision model, is affected. This resulted in slightly lower total collision numbers of 

only 1.54%. Finally, also computations with much lower parcel numbers were conducted, 

again of course giving a poorer statistic for the cell-based droplet properties. In the standard 

case about 2.5 million parcels were tracked and now also simulations with 50% and 25% of 

this parcel number were done. The obtained total collision rates now increased by only 0.8% 

and 1.9% for these much lower parcel numbers. Hence, it may be concluded, that the applied 

fully stochastic collision model is very efficient, robust and reliable. 

Droplet collision rates for different cases 

The reference Case 0 without droplet collisions will be used only for comparing the velocity 

profiles along the spray and some local droplet size distributions. Expectedly, most of the 

droplet collisions occur just downstream of the numerical injection location (i.e. at z = 25 

mm) due to the high droplet concentration and relative velocities, especially between small 

and large droplets. When the spray is spreading radially and the droplet velocity decays, also 

the collision rate drastically decreases and becomes very low from about 1000 mm 

downstream of the injection. 

First the importance of the impact efficiency (IE) for numerical computations of spraying 

systems shall be emphasised. For that purpose, the water-type collision map with three 

boundary lines and with D = 1 for clarity is considered. Hence, the cases 1a and 2a (A&P) as 

well as 1b and 2b (B-S) are compared. A clear picture is obtained by showing a bar chart for 

the collision numbers in the considered outcomes, comparing simulations without and with 

impact efficiency. In Figure 9 the result obtained with the A&P boundary line SS-C is shown. 

Neglecting this important physical effect, yields as to be expected, a drastic reduction of the 

collision numbers for bouncing and coalescence, whereas stretching and reflexive separation 

numbers slightly increase. This implies that neglecting impact efficiency results in an 

overprediction of the total collision number by 23 % in the case of using the A&P boundary 

for SS-C (i.e. compare Cases 1a and 2a). It should however be noted, that collisions affected 

by IE mainly concern smaller droplets that do not hit the collector, whereby eventually the 

Sauter mean diameter is not strongly affected, as will be discussed below. For the B-S 

boundary line model the total collision rates without and with IE (compare Case 1b and 2b) 

are about the same as from the A&P results, as given in Table 3. However, the number of 

coalescence outcomes is higher and bouncing slightly lower for the B-S compared to the A&P 

model as one would expect from Figure 8 a). It is also noticed that the most droplet collisions 
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occur with the outcome coalescence followed by bouncing. The percentage of the different 

collision outcomes in terms of the total collision number for the Cases 1a and 2a can be 

obtained from Table 3. 

Now the number of droplet collisions along the spray is analysed according to the collision 

outcomes summarised in Figure 8. As shown in Figure 10 for the A&P case (see Figure 8 a)) 

the consideration of the impact efficiency reduces the collision rate. Especially as impact 

efficiency becomes more relevant for large B (see Figure 4), the bouncing number is 

remarkably reduced, but also coalescence is diminished as there is a small region with large B 

(see Figure 8 a)). Stretching and reflexive separation are hardly affected (Figure 10), only at a 

farther distance from the injection, where the collision number is anyway below about 100. A 

very similar behaviour is observed for the B-S boundary line between SS-C (not shown here). 

Consequently, the consideration of IE reduces coalescence whereby also the predicted droplet 

size produced by the spray will be overestimated when not accounting for IE. With respect to 

the final Sauter mean diameter this effect is small for the present spray as the droplets not 

colliding or coalescing also are expected to be small. The difference in the Sauter mean 

diameter is actually only about 1%. 
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Figure 9: Number of droplet collisions in total and for the different collision outcomes 
without and with IE (impact efficiency), comparing Case 1a and 2a (SS-C boundary by A&P) 
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Figure 10: Collision numbers along the spray for the different collision outcomes, comparing 
without and with IE based on the SS-C boundary by A&P for D = 1 (i.e. Case 1a and 2a). 

From Figure 8 a) one would assume that there is not a huge difference between the SS-C 

models of A&P and B-S applied to a spray simulation. However, as many droplet collisions 

occur in the region of lower We in the collision map, at least for the spray considered here, 

there will be a remarkable difference in the conditional collision numbers. For illustrating the 

occurrence of the droplet collisions in the B-We space, a collision density plot is presented in 

Figure 11a) for the B-S boundary with IE and D = 1 (Case 2b). Using the same boundary 

lines, however, with consideration of a variable D (Case 4) the collision density plot is very 

similar except for the region of large B and small We due to the shifting of the boundary line 

when D is reduced (Figure 11b). From the collision density plots, it is obvious that many 

collisions are observed for We < 20 over the entire B-range except for a small region below B 

» 0.2 and 0 < We < 20. The number of collisions in the triangular region below a dividing 

line (i.e. We:B; 0:0; 100:1.0) is quite low, namely below about 100, which also implies that 

reflexive separation is rather low. Above this line the collision number is at least one order of 

magnitude higher, indicating that at larger We the occurrence of collisions with larger B is 

more likely to happen. 

The resulting collision numbers along the spray for both the A&P (Case 2a) and the B-S 

(Case 2b) model, both with IE, are compared in Figure 12. Expectedly, with the B-S model 

the number of bouncing collisions is remarkably reduced mainly further downstream the 

nozzle, i.e. z > 0.1 m where the relative velocity and hence the Weber number is smaller. 
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Correspondingly, coalescence is increased in the initial spray region by about the same 

number (see Table 3). Please note that the vertical axis of Figure 12 is logarithmic. For the B-

S model also a small reduction of collision numbers is observed for separation but father 

downstream which is due to the modification of the droplet size spectrum taking place in the 

initial spray region. 

 

 

a) 

b) 
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Figure 11: Collision density plot (i.e. B = f(We)) obtained for the entire spray with boundary 
lines for bouncing by Estrade et al. (1999), reflexive separation (RS-C) by Ashgriz and Poo 
(1990) and the SS-C boundary by B-S with IE and a) D = 1 (i.e. Case 2b); b) with variable D 
(Case 4). 
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Figure 12: Collision numbers along the spray for the different collision outcomes, with IE 
and D = 1, comparing the SS-C boundary by A&P and B-S (i.e. Case 2a and 2b). 

As emphasised previously, many numerical computations of spray systems, including 

combusting sprays, are conducted with single-line boundary collision maps, often using the 

B-S model, which is also done here for comparison. Thereby, of course the occurrence of 

reflexive separation is neglected. Moreover, it is not possible to model any satellite formation 

upon stretching separation. Hence, a single-line model will of course increase the region of 

coalescence and the resulting collision numbers as shown in Figure 13 where the 1-line 

boundary (Case 2c) produces more coalescence and consequently larger droplets than the 3-

line model (Case 2b). Grouping together bouncing and stretching separation (i.e. grazing) is 

not problematic here, since no satellite formation is considered. However, if satellite 

formation is important, a separation between bouncing and stretching separation must be 

considered. The larger droplets produced by the single-line model due to coalescence also 

results in a higher number of stretching separation collisions, larger than the sum of the 

bouncing plus stretching separation number resulting from the 3-line boundary model (see 

Table 3 and Figure 13). Consequently, a one-line boundary model will remarkably 

overpredict the produced droplet size. 
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Figure 13: Collision numbers along the spray for the different collision outcomes, with IE 
and D = 1, comparing the SS-C boundary by the B-S model using a 1-line and a 3-line (Figure 
8a) model (i.e. Case 2b and 2c). 

In any spraying systems the droplets of course have a rather wide size spectrum so that 

colliding droplets have mostly different sizes and hence the size ratio in the boundary line 

equations has to be considered. As discussed above, the B-S boundary line reflects the 

expected behaviour with reduced size ratio much better, especially for 0.5 < D < 1.0 

(Sommerfeld and Pasternak 2019). Therefore, the conditional droplet collision numbers along 

the spray are compared for the Case 2b with D = 1 and the Case 4 with variable D (see Figure 

8 c) in Figure 14. To recapitulate, with decreasing size ratio the bouncing boundary is shifted 

upwards and the SS-C as well as the RS-C boundaries move to the right (Cases 2b and 4). 

Since the region of coalescence increases with decreasing D also the number of coalesced 

droplets increases along the entire spray (Figure 14). Moreover, the region of bouncing is 

shrinking whereby the bouncing rate is reduced in the initial region of the spray but for z > 

0.4 m becomes larger than for the case with D = 1. This might be associated with the fact that 

the number of small droplets in the initial spray has been reduced as they were captured by 

larger ones and coalesce. This will reduce the effect of impact efficiency and yield more 

collisions with large B and hence bouncing occurs. The region of stretching separation 

(Figure 8 c) is shifted to the right wherewith their number is reduced in the initial spray region 

when considering boundary lines with variable D. The same happens with reflexive 

separation. In the farther downstream region, the separation number for variable D is 
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increased compared to D = 1 due to the initially modified droplet size spectrum. In 

conclusion, the consideration of the size ratio in the boundary lines is of immense importance 

and needs to be included for correctly predicting the produced droplet size spectrum. The 

remarkable increase of coalescence yields much larger droplets produced by the spray. The 

consideration of size ratio in the A&P correlation for the SS-C boundary will yield much 

different behaviour and much less coalescence due to the turning of the SS-C boundary with 

decreasing D. An experimental validation for such behaviour for water as droplet liquid (i.e. 

for very small droplet size ratios) is still not available. 
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Figure 14: Collision numbers along the spray for the different collision outcomes, with IE 
and the SS-C boundary by B-S using D = 1 and variable D (i.e. Case 2b and 4). 

Now the situation for liquids with slightly higher dynamic viscosity and reduced surface 

tension is considered as illustrated in Figure 7 b) for hexanol alcohol as a liquid where 

bouncing occurs down to B = 0 for small We. Hence, Case 4 and Case 5 of Table 3 are 

compared (see also Figure 8d). The collision numbers along the spray for these two cases 

show drastic changes with regard to the relative importance of bouncing and coalescence 

(Figure 15). For Case 5 (i.e. bouncing down to B = 0) coalescence is drastically diminished 

whereas bouncing is accordingly augmented. As a result, bouncing is more probable than 

coalescence in this case. This large influence is caused by the large number of droplet 

collisions occurring in the domain of small We-numbers (see Figure 11). Reduced 

coalescence implies a lesser droplet growth whereby also separative collisions are reduced. 
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This effect will be further discussed below in connection with the Sauter diameter along the 

spray. Consequently, the structure of the adopted collision map has a drastic influence on the 

collision outcomes and the produced droplet size spectrum. 
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Figure 15: Collision numbers along the spray for the different collision outcomes, with IE 
and the SS-C boundary by B-S using variable D, comparing the bouncing line commencing at 
the triple point TP (Case 4) and going down to the horizontal axis B=0 (Case 5), see Figure 8 
d). 

In order to give also an idea about the locations where the different types of droplet collisions 

occur in a hollow cone spray, Figure 16 provides a graph showing the differences between 

Case 4 and Case 5, both with the B-S boundary line for SS-C. For a water-type spray 

(bouncing until the triple point location), coalescence is dominant, occurring along the entire 

spray (Figure 16a)). Bouncing only is observed in the initial part of the spray, up to about 300 

mm. The emerging of stretching covers a similar region and reflexive separation (close to 

head-on collisions) is only found very near to the nozzle where large relative velocities are 

observed. Now considering a slightly higher viscosity liquid (i.e. bouncing going down to B = 

0, see Figure 8d)) bouncing becomes the prevailing collision outcome found along the entire 

spray (Figure 16b)). This becomes also obvious from the collision density plot in Figure 11b) 

showing that for low We over the entire B-regime the collision number is very high. 

Coalescence to occur requires now larger Weber numbers and therefore is only found in the 

initial spray region (i.e. up to about 400 mm), a region with a wider droplet size distribution 

and a larger relative velocity. Interestingly, a small strip of coalescence is also found near the 
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centre line up to about 800 mm, which might be caused by small droplet entrainment from the 

outer regions of the spray. The regions for stretching and reflexive separation in Case 5 are 

also a bit smaller than for the water-type case (Case 4). From these results it is clear, 

whenever the boundary lines go through regions of high collision density (see Figure 11), the 

resulting collision outcomes are very sensitive with regard to the structure of the collision 

maps. 

   

a) 
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Figure 16: Comparison of the computed droplet collision locations within the spray 
conditional according to the outcome type comparing a) the water-type case (Case 4) and b) 
the case with slightly elevated dynamic viscosity (Case 5), see also Figure 8 d). 

A further shift of all boundary lines to the right as a consequence of viscosity increase 

(Sommerfeld and Kuschel 2016) results in a movement of the region of coalescence to larger 

Weber numbers. Hence, looking at the collision density plots in Figure 11 the coalescence 

number is further reduced (compare Case 4 and Case 6 in Figure 17). Bouncing on the other 

hand further increases but mainly in the initial region of the spray. Due to the shift of all 

boundary lines to the right also separative collisions are diminished. The observed strong 

changes of collision numbers through small shifts in the boundary lines of collision maps for 

spray liquids with different properties reveals the huge sensitivity of this issue on numerical 

predictions of sprays. 

b) 
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Figure 17: Collision numbers along the spray for the different collision outcomes, with IE 
and the SS-C boundary by B-S using variable D (Case 4) compared with the result where all 
boundary lines are shifted by, We = 20 (Case 6). 

 

Development of spray droplet sizes 

The cross-sectional averaged Sauter mean diameter along the spray is a meaningful way for 

characterising the performance of the different droplet collision outcome models and to 

emphasise their importance for a correct prediction of spray development. Essential for most 

spray applications is of course the produced droplet size spectrum for which a cross-sectional 

averaging is a compact way of presentation. First a direct comparison of the present 

simulations with the experimental data and the axisymmetric computations of Rüger et al. 

(2000) is conducted using the standard droplet collision outcome models (three lines) for the 

SS-C boundary by A&P (Case 3) as well as B-S (Case 4). For that purpose, only the initial 

part of the spray up to 600 mm is considered (Figure 18). In the numerical computation 

without droplet collisions of course the Sauter mean diameter D32,cross should remain constant 

at about 57 mm, as there is no mechanism for changing droplet size. From 300 mm 

downstream the nozzle exit however, the D32,cross is being slightly reduced, which is caused by 

the droplet deposition boundary condition at the walls. Since most likely larger inertial droplet 

hit the walls, they are removed from the computations. Such a deposition naturally also 

happens for the other simulations. The development of the D32,cross for the Case 3 and Case 4 

(A&P and B-S boundary for SS-C) are very similar but expectedly the B-S model gives 
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higher values since more coalescence is occurring due to the different SS-C boundary lines 

(see also Figure 8 a)). The experimental results however show still larger Sauter diameters, a 

similar trend as observed by Rüger et al. (2000), which may be associated with problems in 

accurately measuring dispersed phase concentrations or mass flux by a PDA-system (see e.g. 

Sommerfeld and Tropea 2000). On the other hand, the simulation results of Rüger et al. 

(2000) with the B-S single boundary line (as Case 2c in Table 3) shows the same curve 

progression as the present results, but are slightly below the present simulations (three-line 

boundaries, Case 4) with almost the same slope. Moreover, in the collision model of Rüger et 

al. (2000) no impact efficiency was considered. 
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Figure 18: Cross-sectional averaged Sauter mean diameter along the spray, comparison of 
simulations with no collisions with those for Case 3 (SS-C boundary by A&P) and Case 4 
(SS-C boundary by B-S) as well as those presented by Rüger et al. (2000), experiments and 
Euler/Lagrange computations. 

In order to illustrate the influence of the different droplet collision map structures based on the 

B-S boundary line for SS-C, Figure 19 gives a detailed summary. As previously shown, 

impact efficiency (IE) reduces collision rates within the considered spray, however, only 

slightly coalescence and more pronounced bouncing rates (see Figure 10). Consequently, the 

Sauter mean diameter is only slightly reduced when accounting for IE (compare C1b and C2b 

in Figure 19). In addition, IE reduces mainly the probability of small droplets not hitting the 

collector. Just using a single line boundary model as used by Rüger et al. (2000), gives again 

larger Sauter mean diameter due to more coalescence (i.e. missing of reflexive separation), 

but this is still a bit smaller than for the full 3-line boundary model (compare C2c and C4 in 
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Figure 19). Thereby, the present results for Case 2c come closer to the numerical result of 

Rüger et al. (2000). 
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Figure 19: Cross-sectional averaged Sauter mean diameter along the spray, comparison of 
simulations with no collisions with those for using the SS-C boundary by B-S in connection 
with different collision maps: Case 1b and Case 2b are 3-line boundary models without and 
with IE, Case 2c is a single line boundary model and Case 4 the full three-line boundary 
model with the B-S boundary for SS-C using variable D. 

The influence of different collision outcome maps on the predicted Sauter mean diameter 

D32,cross is further considered in Figure 20 for the Case 0, Case 4, Case 5 and Case 6. 

Regarding these spray simulations it was assumed that the droplets have a specular reflection 

at the walls in order to obtain a result where the Sauter diameter is not affected by the 

disappearance of droplets and hence in Case 0 is almost constant. For the standard water-type 

condition in Case 4, where the bouncing boundary ends at the triple point, and due to the 

strong coalescence occurring in the spray, a remarkable growth of the Sauter mean diameter is 

found, but now due to the rebound wall boundary condition the D32,cross reaches more than 85 

mm (compare with Figure 18). If the bouncing boundary goes down to B = 0 being observed 

for a slightly more viscous liquid (see Figure 7 and Figure 8d)), coalescence is strongly 

diminished and most of the collisions result in bouncing (see Figure 15). Consequently, the 

D32,cross increases rapidly until 50 to 100 mm downstream the nozzle exit and then remains 

almost constant (Figure 20). For the Case 6 where all boundary lines are shifted by We = +20 

in order to mimic an even higher viscous liquid (see Figure 8 e) and Figure 7 for hexanol), the 
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coalescence rate is further reduced and already after 50 mm the Sauter mean diameter remains 

constant. 

In conclusion, essential for predicting the droplet size evolution in a spray is the assumed 

droplet collision map. Approximations to the realistic collision map may yield remarkable 

errors. Besides that, additionally the collision density plot (see Figure 11) is very important, 

which is largely depending on the characteristics of the spray nozzle. Basically, the 

superimposing of collision map and collision density plot gives an indication about which 

type of collision is important. 
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Figure 20: Cross-sectional averaged Sauter mean diameter along the spray, comparison of 
simulations for no collisions with those for Case 4 (SS-C boundary by B-S) as well as those 
predicted by the Case 5 and Case 6 using a specular reflection of the droplets at the wall. 

The changes in Sauter mean diameter development along the spray are remarkable and 

strongly depend on the presumed collision map. In which way a local droplet size distribution 

within the spray is modified by the collision map assumption is shown in Figure 21 for the 

mass-based droplet size PDF. Using the A&P correlation for the SS-C boundary (Case 3), 

gives already a notable shift of the PDF to the right compared to the result neglecting droplet 

collisions. As mentioned before, the B-S boundary is more realistic for water (Case 4) and 

yields an even higher rate of coalescence causing a broadening and a further displacement of 

the PDF to larger droplets. Applying the collision map of Case 5 (i.e. bouncing going down to 

B = 0) the mass-based size PDF (Figure 21) is again shifted back to almost the same result as 

for the case without collisions (Case 0). Even the number of smaller droplets becomes slightly 
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higher, although the Sauter mean diameter is somewhat larger (see Figure 20). Naturally, the 

local droplet size distribution is not only affected by coalescence, but also through the size-

dependent transport of the droplets by the gas phase. 
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Figure 21: Comparison of the droplet mass-based size distributions obtained through 
numerical computations with different assumptions and presumed collision maps; no 
collisions Case 0, with the three-line boundary collision map and the SS-C boundary by A&P 
(Case 3) as well as B-S (Case 4) and the Case 5 with bouncing going down to b = 0; location: 
x = 200 mm, r = 23 mm. 

Droplet collision size ratio 

In the considered spray, the initial droplet size distribution is rather wide and in addition the 

size PDF changes with the radius of injection (see Figure 24 b); the mean number diameter 

changes from about 10 to 45 mm). Therefore, collisions between droplets will mostly occur 

with different sized droplets. In addition, the relative velocity between small and large 

droplets is of course much higher due to their different response to the gas flow field, or due 

to their different inertia when ejected from the nozzle with the same velocity. The numerical 

simulations now allow determining the PDFs of the droplet size ratio � (see Eq. 4) just upon 

collision. Such PDFs were determined by sampling and averaging the values for the various 

cross-sections along the spray. The largest droplet collision rates are in the initial region of the 

spray (compare Figure 16) where most likely large and fast droplets capture small and slower 

ones so that the collision size ratio is initially quite small. In Figure 22a) these size ratio PDFs 

are shown for the Case 1b (i.e. the SS-C boundary is expressed by B-S and the impact 

efficiency (IE) is not considered) indicating that initially (x = 50 mm) the PDF has a 
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maximum at around D = 0.1. Going further downstream the spray, of course the droplets grow 

due to coalescence and small droplets disappear. As a consequence, the collision size ratio is 

shifted to larger values and eventually spans the entire range between 0 and 1. However, the 

probability of equal sized droplet collisions is only 0.5% (Figure 22a). If now the IE is 

accounted for in the collision model, a number of smaller droplets will not collide with the 

larger (collector) droplet since they will move around the collector with the relative flow. As a 

result, the probability of small size ratios upon collision is reduced for all planes along the 

spray (Figure 22b).  
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Figure 22: Cross-section-wise sampled collision size ratio PDFs along the spray (i.e. from x 
= 50 mm to x = 300 mm) obtained from the simulations using the three-line collision map 
with the SS-C boundary by B-S for a) Case 1b with D = 1 but without IE and b) Case 2b with 
D = 1 and also considering IE. 

Now the more realistic case with the three-line collision maps and all boundary lines 

depending on the droplet size ratio upon collision and accounting for impact efficiency is 

considered, namely water-type, Case 4. According to the type of collision outcome for this 

case, the size ratio PDFs are conditionally extracted for all collision types, as well as for 

bouncing, coalescence and stretching (Figure 23). The total size ratio PDFs are of course very 

similar to those for coalescence, since for Case 4 this type of collision is dominant (see also 

Figure 14). Most of the collisions occur at small size ratio with a shift of the PDFs to larger D 

when moving along the spray due to the number of small droplets being reduced through 

coalescence. Consequently, the highest probabilities exist for collision droplet size ratios 

between 0 and 0.4. Both bouncing and stretching separation occur at slightly higher Weber 

numbers (i.e. We > 10 for D = 1, see Figure 8a) and d)) being associated with larger droplets. 

As a result, the collision size ratio PDFs begin at higher D (i.e. D > 0.2) having a similar 

maximum for bouncing and stretching in the range 0.33 < D < 0.5, depending on the cross-
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section within the spray. Since it is more likely that small droplets are captured by collisions, 

the maximum is shifted to larger D when going down the spray. At the last cross-section both 

PDFs show strong oscillations due to the much smaller number of bouncing and stretching 

collision events (see Figure 16 a). 
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Figure 23: Cross-section-wise sampled collision size ratio PDFs along the spray (i.e. from x 
= 50 mm to x = 300 mm) obtained from the simulations of Case 4 using the three-line 
collision map with the SS-C boundary by B-S; a) all collisions, b) coalescence, c) bouncing, 

d) stretching separation. 

These results clearly confirm that small size ratio collisions are dominant. For this regime (i.e. 

D < 0.3) almost no experimental studies are available for validating theoretical correlations 

for the boundary lines. The experiments of Sommerfeld and Pasternak (2019) for polymer 

solutions and sun flower oil were conducted down to a size ratio of about D » 0.34. The 

proposed composite boundary line for SS-C works reasonably well for size ratios 0.5 < D < 

1.0, however failed to capture the experimental boundary for D » 0.34. This also indicates the 

need for further theoretical studies on small size ratio droplet collisions. 
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Comparison of the spray computations with experiments 

The experimental data of Rüger et al. (2000) not only allowed to specify exact gas phase and 

spray inlet conditions, but also provided a number of profiles for gas and droplet phase 

properties (i.e. at 25, 50, 100 and 200 mm downstream of the geometrical nozzle exit). In 

Figure 24 the droplet properties obtained without droplet collisions (Case 0) and with 

collisions and coalescence using the tree-line boundary model with the B-S line for SS-C 

boundary (Case 4 in Table 3) are compared with the measurements. Both simulations were 

conducted with full two-way coupling as described above. Generally, the agreement with the 

experiments is excellent for the spray until 100 mm downstream of the nozzle exit. Only for 

the profiles x = 200 mm some larger differences between the simulations and measurements 

are observed. The predicted radial spread of the spray (Figure 24d) seems to be slightly 

underpredicted which has of course a consequence for the concentration profile (Figure 24a) 

and the droplet number mean diameter (Figure 24b). The overprediction of the droplet size 

was also found by Rüger et al. (2000). Although the predicted Sauter mean diameter for Case 

0 (no collisions) compared to Case 4 (with collisions and coalescence) shows at the 

streamwise x = 200 mm an increase of about 15 mm (see Figure 20 axial distance 0.2m), such 

a difference is not visible in the profiles of the number-based mean diameter (Figure 24b). 

Naturally, the number-based droplet diameter (Figure 24b) is less sensitive against the effect 

of droplet coalescence. For a single coalescence the number in a larger droplet size class is 

only increased by one, whereas for a mass-based size distribution the mass or volume in that 

class is increased by the diameter cubed (compare Figure 25 with Figure 21). In Figure 25, 

two measured number-based droplet size distributions from the core region of the spray are 

compared with numerical computations without (Case 0) and with coalescence (Case 4). 

Nevertheless, even in this dilute spray, the effect of coalescence is clearly visible and the 

number of larger droplets is slightly increasing and accordingly smaller droplets are reduced 

in number. The agreement with the measurements for these two locations is also quite good. 

Most of the profiles presented in Figure 24 show virtually only small difference between the 

Case 0 (without collisions) and Case 4 (with collision using the B-S boundary for SS-C), also 

for the axial and radial droplet velocities. Again, it should be remarked, that the profiles are 

all based on ensemble averaging, namely based on droplet number counts. In addition, the 

considered spray is rather dilute, so that not very many collisions occur to yield remarkable 

differences in the droplet velocities. However, inspecting in more detail, reveals that for the 

profiles at 100 and 200 mm downstream of the nozzle exit and towards the outer edge of the 

spray, mean velocity components are slightly reduced and also droplet fluctuating energy (i.e. 
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defined as �� = 0.5 (�����
 + 2 !����

 )) more distinct (Figure 24e). Since the droplets 

become larger due to coalescence (Case 4) they of course will respond at a lesser extent to the 

mean gas flow and turbulence. 

 

 

 

b) 

a) 

c) 
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Figure 24: Comparison of measured profiles of the droplet phase properties with simulation 
results for the case without droplet collisions (Case 0) and for the Case 4 with the three-line 
boundary collision map (SS-C boundary by B-S), according to Table 3; a) droplet 
concentration, b) droplet number mean diameter, c) droplet axial mean velocity, d) droplet 
radial mean velocity and e) fluctuating energy of droplets. 

d) 

e) 
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Figure 25: Comparison of measured local droplet number-based size distributions with 
numerical results for the cases without (Case 0) and with coalescence (Case 4 with the three-
line boundary collision map, SS-C boundary by B-S); location left: x = 50 mm, r = 10 mm; 
right: x = 200 mm, r = 12 mm. 

4 Conclusions 

Even in reasonably dilute sprays, droplet collisions and the resulting possible coalescence 

have a remarkable influence on the developing droplet size spectrum, however not so much 

on the droplet velocities. Therefore, in a numerical computation of spraying systems, which is 

preferably done by an Euler/Lagrange approach, droplet collisions need to be modelled 

properly including all relevant sub-steps, namely collision detection, impact efficiency and 

collision outcome specification. For deciding on the outcome of binary droplet collisions, so-

called collision maps are being used which distinguish in the lower Weber-number regime 

between bouncing, coalescence and stretching as well as reflexive separation, and are mainly 

based on experimental supported theoretical derived boundary lines. The structure of a 

collision map strongly depends on droplet size ratio and the liquid properties, implying that 

different collision maps have to be used for different applications; e.g. spray cooling, spray 

combustion or spray drying. In the present article, the influence of the presumed collision 

maps on the collision rates for the different outcomes and the eventually produced droplet size 

spectrum was analysed in detail using numerical predictions through the Euler/Lagrange 

approach applied to a stationary hollow-cone spray. The droplet collision model was based on 

the fully stochastic approach, supplemented by the important impact efficiency, correlated 

velocities of the fictitious collision partner and a collision outcome map. It was first of all 

demonstrated that such an efficient fully stochastic collision model is very accurate and the 

obtained collision frequencies are largely independent of mesh size, tracked number of parcels 
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and also the applied Lagrangian tracking time step size. The comparison of the numerical 

results for a number of different presumed model settings and collision maps with respect to 

the total and the conditional collision numbers, as well as the produced droplet sizes allow for 

the following conclusions and suggestions: 

· The consideration of impact efficiency gives overall much lower collision numbers and 

reduces the number of collisions with larger B and thereby bouncing as well as coalescing 

collisions; the resulting Sauter mean diameter is however only slightly lower than without 

IE, since impact efficiency mainly reduces collisions of small droplets. 

· The standard three-line collision map with the B-S (Brazier-Smith et al. 1972) correlation 

for the SS-C (stretching separation-coalescence) dividing line yields much less bouncing 

and increases coalescence compared to the A&P (Ashgriz and Poo 1990) boundary. 

· The B-S boundary line for SS-C is more realistic than the A&P one for water and shows a 

better and more realistic behaviour for decreasing size ratio D (see Sommerfeld and 

Pasternak 2019). 

· For a water type collision map using B-S for the SS-C boundary yields a 30 mm bigger 

Sauter mean diameter compared to a simulation without collisions. 

· Applying only a single-line collision map (i.e. just for SS-C boundary) gives more 

coalescence due to neglecting reflexive separation and therefore a larger Sauter mean 

diameter will result. 

· The consideration of variable size ratio (i.e. D) in the boundary lines reduces bouncing and 

enhances coalescence giving again an increase in Sauter mean diameter at the end of the 

spray. 

· If bouncing is going down to B = 0 at small We number (i.e. observed for many slightly 

higher viscous liquids like alkanes, alcohols and light oils) one obtains much more 

bouncing and accordingly much less coalescence so that the Sauter mean diameter 

becomes only about 6 mm, larger than without considering droplet collisions, but more 

than 20 mm smaller than for a water-type collision map (i.e. bouncing only going to the 

triple point). 

· The superposition of a collision density plot (i.e. occurrence of collisions in a B = f(We) 

plane which is quite specific for the type of spray nozzle considered) with the collision 

map gives a good indication of which type of collision outcomes are relevant. 

· Whenever, a boundary line goes through a region of high collision density, the collision 

outcomes are very sensitive with regard to small changes of the boundary lines, for 

example through changes of size ratio. 
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· It was found that for the considered hollow-cone spray (i.e. droplet size distribution) the 

majority of collisions occur with size ratios between 0.1 < D < 0.3. For this regime an 

experimental verification of the boundary lines is completely missing for any type of 

liquid. 

· The collision map with the B-S correlation for the SS-C boundary was found previously 

(Sommerfeld and Pasternak 2019) to provide meaningful results for droplet size ratios 

between 0.5 > D > 1.0. 

· The computed results using the three-line collision map with B-S correlation for the SS-C 

boundary showed excellent agreements with the measurements regarding droplet 

concentration and droplet velocities as well as local droplet size distributions. 

· The predicted velocity profiles of both phases are less sensitive with regard to the selected 

collision map, since number-based properties in a dilute spray are not very distinctively 

influenced. 

· The numerically predicted local mass-based droplet size distributions are on the other 

hand strongly influenced by coalescence and hence the selected collision map. 

· Any crude approximations of the collision map for the real liquid type in the spray will 

not provide correct results. 
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