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Abstract
In this paper, we reflect upon control intervention practices

habitually exerted by healthcare authorities in tropical areas

that suffer from incidental outbreaks of dengue fever, in

particular, the city of Cali, Colombia. Such control inter-

ventions, principally based on the insecticide spraying, are

carried out sporadically in order to overcome an ongoing

epidemic or at least to reduce its size. It is worth pointing

out that control actions of this type do not usually account

for sufficient budget because epidemic outbreaks are dif-

ficult to predict. In practical terms, these occasional con-

trol interventions are performed by spraying, as quickly as

possible, all existing stock of insecticide (regardless of its

lethality) and employing all available manpower. The goal

of this paper is to design better strategies for insecticide-

based control actions, which are capable of preventing more

human infections at no additional cost, and to reveal the

obsolescence of current vector eradication practices. Our

approach relies on dynamic optimization, where the num-

ber of averted human infections is maximized under bud-

get constraint and subject to a simple dengue transmission

model amended with one control variable that stands for

the insecticide spraying. As a result, we obtain structurally

robust control intervention policies that demonstrate better

performance and higher resilience to possible budget limi-

tations than traditional modus operandi.
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1 INTRODUCTION

Dengue fever has been ranked by the World Health Organization as the most frequent and persistent

vector-borne viral disease in the world, and dengue morbidity is strongly correlated with the presence

and abundance of Aedes aegypti mosquitoes,1 which act as the principal transmitters of four serotypes

of the dengue virus (DENV1-4). The recovery from an infection caused by one serotype grants a life-

long immunity to this particular serotype. However, people recently recovered from primary dengue

infection are more predisposed to secondary infections by other (heterologous) serotypes than people

never infected with dengue virus, and secondary dengue infections may lead to more acute disease

manifestations, such as severe dengue (also known as dengue haemorrhagic fever) and dengue shock

syndrome.2

The pathogen of DENV is transmitted between mosquitoes and human hosts during the cycle of

blood-feeding because the female mosquitoes need to ingest human blood in order to mature their eggs.

In recent decades, the incidence of dengue has increased dramatically worldwide, and this is

attributed to various reasons, namely:

• Climate changes and global warming jointly provide more favorable conditions for mosquito repro-

duction and their expansion into new geographic areas.

• Ongoing urbanization processes in many tropical countries result in dense settlements with poor

sanitation conditions in and around metropolitan areas; therefore, people are forced to store water

for domestic needs and this increments the number of mosquito breeding sites.

• Increase of the people mobility facilitates the expansion of all four serotypes of DENV into new

geographic areas.

In the absence of effective vaccine against all dengue serotypes,3 the disease control efforts are

usually centered on reduction of the local mosquito density. These control measures can be subdivided

into two groups:

1. Routinary control actions, which are carried out repetitively by the public healthcare authorities in

dengue-endemic areas and regardless of the presence (or absence) of the disease outbreaks. These

actions are usually regarded as preventive and their respective (fixed) costs are fully covered by

municipal government sources of public healthcare entities.

2. Coercive control actions, which are eventually applied in order to overcome an ongoing epidemic

or at least to reduce its size when a disease outbreak is officially declared. The costs of such actions

are not fully anticipated in the yearly budget of local healthcare entities. Therefore, the challenging

issue here is related to optimizing the use of all available resources for averting as many human

infections as possible.

In this paper, we address the second group of control intervention measures by applying a mathe-

matical approach based on dynamic optimization. In Section 2, we present the general panorama of

dengue morbidity and persistence in the city of Cali, Colombia and also describe the current practices

of local healthcare authorities for implementation of coercive control measures aimed at reduction of

vector population and eventual suppression of dengue outbreaks in the city.

The principle goal of this paper consists of showing that these practices are not the best, and to

design better strategies for coercive control actions, which are capable of preventing more human

infections than currently used policies without increasing the overall costs of control intervention mea-

sures. To reach this goal, we introduce in Section 3 a stylized dynamical model for dengue transmission
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amended with one control variable that models an external intervention aimed at reduction of mosquito

population by means of insecticide spraying. Furthermore, we formulate an optimal control problem

that aims at designing of optimal strategies for coercive control measures based on the insecticide

spraying.

In Section 4, we provide numerical solution of the formulated optimal control problem under differ-

ent scenarios, which combine three types of insecticide employed for control interventions (with low,

medium, and high lethality) and various options of budget constraints, including their absence. For all

scenarios, we also provide estimations for expected number of human infections, which can be avoided

by applying optimal control policies instead of the policies habitually used in practice.

Finally, Section 5 discusses the results of this paper and provides solid arguments for revisal of

existent vector control policies in the city of Cali, Colombia, as well as in other municipalities suffering

from occasional outbreaks of vector-borne diseases.

2 DENGUE PANORAMA IN CALI, COLOMBIA

Cali (full name in Spanish: Santiago de Cali) is the capital of the Valle del Cauca department, and

the most populous city in southwestern Colombia, with an estimated 2.370 000 of actual residents

and strictly increasing population density.4 The city spans 560.3 km2 and it is located at elevation of

about 1.000 m over sea level. All year around, the daily temperatures in Cali have very little seasonal

variations (23-28◦C) due to its closeness to the equator (Latitude: 3◦26′13′′ N, Longitude: 76◦31′20′′
W). The latter, combined with intermittent and abundant rainfalls, provides the ideal conditions for fast

reproduction and persistence of A. aegypti mosquitoes in the region. On the other hand, the presence

and abundance of A. aegypti mosquitoes is strongly correlated with dengue infections. Therefore, Cali

is considered hyperendemic city with regard to dengue morbidity.5,6

Figure 1 clearly shows that dengue morbidity in Cali has endemo-epidemic patterns with epidemics

repeated every 2-4 years. These patterns are explained by simultaneous circulation of four DENV

serotypes during dengue outbreaks (see epidemic peaks, which occurred in 2010, 2013, and 2016 in

Figure 1) and strong predominance of one particular DENV serotype during interepidemic (or endemic)

periods.5,7

The public healthcare authorities are fully aware of the dengue presence and persistence in the city,

and routinary control actions have never been suspended in Cali during the last decades. Namely, all

rainwater catch basins located along the streets in residential and commercial areas are being routinely

treated with larvicides in order to reduce the overall vector density in the city. It is worthwhile to

note that these rainwater catch basins are the principal breeding sites of A. aegypti mosquitoes in Cali.

These preventive control measures are carried out regardless of the number of dengue cases reported

to the Municipal Secretariat of Public Health (MSPH) by all local healthcare institutions, and they are

also (implicitly) reflected in the numbers of yearly dengue cases displayed in Figure 1. Without such

measures, a much higher number of dengue infections would have been expected.

On the other hand, prediction of epidemic outbreaks is a challenging task, and public healthcare

authorities must use certain criteria and underlying tools in order to determine whether the actual

disease state should be regarded or not as (potentially) epidemic. The most comprehensive and detailed

definition of epidemic disease state is provided in the official report of the American Public Health

Association8 and affirms the following.

“…An epidemic or outbreak is defined as the occurrence in a community or region of a group of

illnesses of similar nature clearly in excess of normal expectancy, and derived from a common or from

a propagated source. The number of cases indicating presence of an epidemic will vary according to
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F I G U R E 1 Annual dengue incidence in Cali, Colombia, during 2001–2016.

Source: SIVIGILA, Municipal Secretariat of Public Health (MSPH, Cali – Colombia)

the infectious agent, size and type of population exposed, previous experience or lack of exposure to

the disease, and time and place of occurrence; epidemicity is thus relative to usual frequency of the

disease in the same area, among the specified population, at the same season of year…”

According to the above definition, the number of historical cases of the disease registered in the

same region during past years (or past disease frequencies viewed as time series) can be essentially

helpful in classifying the present disease state as either epidemic or endemic. The difference between

these two states is defined by the degree of the disease “expectancy.” If the number of cases reported

in present day (week, month) is close to its “expected value,” the actual situation is categorized as

endemic. Otherwise, when the number of cases reported in present day (week, month) is considerably

higher than its “expected value,” the actual situation is categorized as (potentially) epidemic. Thus,

the key issue here is to estimate the so-called “expected values” for each forthcoming time step. These

“expected values” can be calculated by means of standard statistical tools (such as calculating the rates

of incidence, their means, standard deviations, confidence intervals, etc.) and using the information of

historical disease cases registered in the same locality during the past 5-10 years.

This technique is known as the establishing of endemic corridor9,10 (or endemic range, or endemic

channel), which is a graphic expression of a frequency band with upper/lower limits and expected

values of disease cases given by the underlying time series. Figure 2 provides the time series of dengue

cases registered in Cali, Colombia during 2009-2015 (dark blue line), drawn over the endemic corridor

with upper and lower limits (marked by two red lines), and the expected values of dengue cases (plotted

by the green line).

When the number of reported cases exceeds the upper limit of endemic corridor, the local healthcare

authorities should declare an epidemics of dengue and request that the local government authorities pro-

vide resources for additional coercive control actions, which usually consist of the insecticide spraying

around the neighborhoods with higher number of registered dengue cases. Local governments usually

assign very limited resources (in terms of monetary funds or insecticide supplies) for such additional
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F I G U R E 2 Registered cases of dengue in Cali, Colombia during 2009-2015 (dark blue line); two red lines mark

the upper and lower limits of the endemic corridor, while the green line denotes an expected number of dengue cases.

Source: SIVIGILA, Municipal Secretariat of Public Health (MSPH, Cali – Colombia)

control measures, and the lump amounts may vary from one epidemic outbreak to another. Therefore,

the current practices in Cali, Colombia comprise the insecticide spraying at the maximal attainable

capacity of manpower and until fully depleting all available stock of the insecticide.

The purpose of this paper is to show that these practices are not the best and to provide better

intervention policies for coercive control actions based on the insecticide spraying. Our approach relies

on the optimal control theory that allows to design different policies for control intervention aimed at

suppressing the dengue outbreaks. To this purpose, we present in the following section a simple stylized

model of dengue transmission, which is amended with control variable whose role consists of modeling

the insecticide spraying.

3 OPTIMAL CONTROL FOR ROSS-MACDONALD MODEL

In this section, we present the classical model that captures the core features related to indirect

transmission of various vector-borne diseases, including dengue fever. However, our version of the

model includes one exogenous variable that models an external intervention by mean of insecticide

spraying (Subsection 3.1). This model, besides being rather simple, is quite plausible and exposi-

tive, because it allows to assess the number of human infections with and without control interven-

tion. Further, this model is employed to formulate an optimal control problem that seeks to design

new control policy with better performance than habitual vector control practices commonly used

by local healthcare authorities. This optimal control problem is presented and formally solved in

Subsection 3.2.

3.1 Dengue transmission model with control variable
Ronald Ross and George Macdonald are fairly credited with developing the mathematical formaliza-

tion of the theory that explains and describes the mechanism of vector-borne pathogen transmission

between mosquitoes and human hosts. Nowadays, there exists a group of mathematical models under

the common name of “Ross-Macdonald models” (see a comprehensive review accomplished by

Smith et al11). Despite its simplicity, all models of Ross-Macdonald type include epidemiological
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and entomological concepts and metrics for measuring the pathogen transmission and, therefore, can

capture the essentials of vector-borne disease propagation.

Our study is focused on the epidemic Ross-Macdonald model in canonical form initially proposed

by Aron and May12 and further amended with control variables.13 It is worthwhile to note that this

model includes the fractions of infected mosquitoes 0 ≤ 𝑉 (𝑡) ≤ 1 and human hosts 0 ≤ 𝐻(𝑡) ≤ 1 and

describes their dynamics during a short time-lapse 𝑡 ∈ [0, 𝑇 ] of the epidemic outbreak. In other words,

the model application to interepidemic periods (characterized by endemic persistence of the disease at

low levels) will not be considered in our study because no coercive control actions are actually needed

during such periods. For the sake of simplicity, both populations (mosquitoes and human hosts) are

normalized to unity and remain essentially invariant during [0, 𝑇 ]. Other principal assumptions of this

model are:

• Both populations are homogeneous in terms of attraction, exposure, and susceptibility.

• Once infected, the mosquitoes do not recover and die being infectious.

• There is no mortality associated with the disease neither for humans nor for mosquitoes.

• The latency is ignored in both populations.

• Only susceptible (or fully recovered) individuals may get infected and the gradual acquisition of

immunity by human hosts is ignored.

First four assumptions are customary for simplified models that describe the dengue dynamics dur-

ing the disease outbreaks and within interepidemic periods. However, the fifth assumption is consonant

only with dengue epidemic outbursts where all four DENV serotypes circulate simultaneously in the

environment, that are rather typical for Colombia.14

The controlled Ross-Macdonald model is then described by the system of two differential

equations:

dV
dt

= 𝛼 𝑝𝑉 𝐻(1 − 𝑉 ) − [𝛿 + 𝑢(𝑡)]𝑉 , 𝑉 (0) = 𝑉0 > 0, (1a)

dH
dt

= 𝛼 𝑝𝐻 𝜉 𝑉 (1 − 𝐻) − 𝛾 𝐻, 𝐻(0) = 𝐻0 > 0, (1b)

and all its entries are described in Table 1.

Equation (1a) basically states that the fraction of infected mosquitoes, 𝑉 (𝑡), increases at each day

𝑡 ∈ [0, 𝑇 ] by the average number of effective contacts between susceptible mosquitoes, (1 − 𝑉 (𝑡)), and

infected human individuals, 𝐻(𝑡) (ie, infectious bites taken by mosquitoes on infected people), and

decreases daily with natural and insecticide-induced mortality.

Equation (1b) reveals that the fraction of infected humans, 𝐻(𝑡), increases at each day 𝑡 ∈ [0, 𝑇 ] by

the average number of effective contacts between susceptible human hosts, (1 − 𝐻(𝑡)), and infected

mosquitoes, 𝑉 (𝑡), (ie, infectious mosquito bites received by people) and decreases with recovery of

human individuals.

Epidemic models of Ross-Macdonald type (1) implicitly assume the simplest population dynamics

of female mosquitoes, both susceptible, 1 − 𝑉 (𝑡), and infected with DENV pathogen, 𝑉 (𝑡). Thus, the

total population of female mosquitoes or vectors (normalized to unity) is assumed essentially invariant,

with recruitment rate matching the mortality rate (both denoted by 𝛿, see Figure 3). By keeping this

assumption, we consider the “worst” scenario and suppose that mosquito population is capable of

recovering quickly to its original size after coercive control measures.
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T A B L E 1 Entries of the model (1)

Notation Description Role
0 ≤ 𝑉 (𝑡) ≤ 1 Fraction of infected mosquitos at the moment t State variable

0 ≤ 𝐻(𝑡) ≤ 1 Fraction of infected human hosts at the moment t State variable

0 ≤ 𝑢(𝑡) ≤ 𝑢max Mosquito mortality rate due to insecticide spraying at the moment t Control variable

0 < 𝑢max < 1 Maximum efficiency (% of lethality) of insecticide Constant

𝜉 > 0 average number of female mosquitoes per one human host Constant

𝛼 > 0 The human blood feeding rate, the proportion of mosquitoes that

feed on humans each day (the number of bites on a human, per

mosquito and per day)

Constant

0 < 𝑝𝑉 < 1 The proportion of infected human hosts that are infectious (or a

probability for a mosquito to become infected after biting an

infected human)

Constant

0 < 𝑝𝐻 < 1 The proportion of infected mosquitoes that are infectious (or a

probability for a human to become infected when bitten by an

infected mosquito)

Constant

0 < 𝛿 < 1 Rate of mosquito natural mortality (an average mosquito lifespan is

1∕𝛿 days)

Constant

0 < 𝛾 < 1 Rate of human recovery from the disease (in average, a person

remains infected during 1∕𝛾 days)

Constant

F I G U R E 3 Block diagram of the Ross-Macdonald model in canonical form with 𝑢(𝑡) = 0

In the absence of external intervention (ie, when 𝑢(𝑡) = 0), the disease dynamics is illustrated in

Figure 3. According to the description given in Table 1, 𝑢(𝑡) is an external control action aimed at

suppressing the mosquito population. In mathematical terminology, this control action is a piecewise

continuous real function

𝑢(⋅) ∈ 𝑃𝐶[0, 𝑇 ] and 𝑢(𝑡) ∈ 𝑈 = [0, 𝑢max] for all 𝑡 ∈ [0, 𝑇 ], (2)

where 𝑈 = [0, 𝑢max] determines the set of admissible controls, which is compact in ℝ+.
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For better understanding of the control action 𝑢(𝑡), let 𝑣(𝑡) ∈ [0, 1], 𝑡 ∈ [0, 𝑇 ] be the share of the

amount of insecticide available per day. Thus, 𝑣(𝑡) = 0.5 means that, on the day 𝑡, only a half of

daily available insecticides should be used. On the other hand, let 𝑢(𝑡) = 𝑢max𝑣(𝑡), where 0 < 𝑢max < 1
denotes the insecticide lethality, so we have 0 ≤ 𝑢(𝑡) ≤ 𝑢max. Under such setting, 𝑢(𝑡)∕𝑢max = 0.5
expresses that, on the day 𝑡, only the half of daily available insecticides should be used.

Further, let 𝐶1 > 0 be the average daily societal cost of having one infected human individual (eg,

treatment, temporary disability, etc.) and let 𝐶2 > 0 be the average daily cost of control intervention

𝑢(𝑡) (eg, insecticide and spraying supplies, manpower costs, etc.). Suppose that 𝐶2 < 𝐶1 and there is

a limited amount of external resources 0 < 𝐵 < 𝐶2 𝑢max 𝑇 available to implement this control action

𝑢(𝑡) within a time interval [0, 𝑇 ]; in other words, we have the so-called isoperimetric constraint

𝑇

∫
0

𝐶2 𝑢(𝑡)𝑑𝑡 = 𝐵 (3)

imposed upon 𝑢(𝑡). Thus, the core problem of a decision maker (who acts outside of the model (1))

consists of choosing an optimal control strategy 𝑢∗(𝑡) ∈ 𝑈, 𝑡 ∈ [0, 𝑇 ] that satisfies the budget constraint

(3) in order to minimize the total costs associated with human infections during an ongoing dengue

outbreak, as well as the overall costs of control intervention measures. This goal can be expressed

mathematically by the following objective:

 (𝑢) =
𝑇

∫
0

[
𝐶1𝐻(𝑡) +

𝐶2
2

𝑢2(𝑡)
]
𝑑𝑡 → min . (4)

It is worth pointing out that the optimal control problem of minimizing the objective (4) subject to

dengue transmission dynamics (1) without budgetary constraint (3) has been previously analyzed and

solved numerically for two options of insecticides bearing either low or high lethality.13 However, the

presence of constraint (3) requires to make some essential adjustments in its solution that are further

provided in Subsection 3.2.

In the objective (4), we assume that there is no linear relationship between the coverage of control

action and its respective costs, while the total cost related to the treatment and temporary disability

coverage of infected people is additive. Therefore, the integrand function in (4) is linear with respect

to state variable 𝐻(𝑡) and is quadratic with respect to control variable 𝑢(𝑡). This approach is rather

conventional in epidemiological modeling where optimal control methods are applied. In particular, it

has been justified for models where control functions expressed optimal treatment and/or vaccination

policies, as well as their combinations with vector control efforts.13,15-18

Previous studies11,12 established that stability of the initial value system (1) without control inter-

vention (ie, with 𝑢(𝑡) ≡ 0 for all 𝑡 ∈ [0, 𝑇 ]) depends on the threshold value

ℛ0 =
𝛼2𝑝𝐻𝑝𝑉 𝜉

𝛾𝛿
(5)

(which is also called basic reproductive number) in the following sense:

• If ℛ0 < 1, then system (1) has a unique disease-free equilibrium (𝑉free, 𝐻free) = (0, 0), which is

globally asymptotically stable for all non-negative initial conditions (𝑉0, 𝐻0).
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• If ℛ0 > 1, then system (1) has an additional endemic equilibrium

(𝑉end, 𝐻end) =
⎛⎜⎜⎜⎝

ℛ0 − 1

ℛ0

(
1 + 𝛿

𝛼𝑝𝑉

) ,
ℛ0 − 1

ℛ0

(
1 + 𝛾

𝛼𝑝𝐻𝜉

)
⎞⎟⎟⎟⎠

(6)

with strictly positive components, which is globally asymptotically stable for all initial conditions

(𝑉0, 𝐻0) ≠ (0, 0), while (𝑉free, 𝐻free) = (0, 0) becomes unstable.

The first condition (ℛ0 < 1) guarantees the disease extinction as 𝑡 → ∞, while the second one

(ℛ0 > 1) characterizes the persistence of the disease and compels for external actions aimed at the

disease control. Because the optimal control problem (1)-(4) is considered appealing only in the con-

text of disease persistence, we will assume further on that

ℛ0 =
𝛼2𝑝𝐻𝑝𝑉 𝜉

𝛾𝛿
> 1

is held for all constant parameters of the system (1) given in Table 1.

It is worthwhile to note that ℛ0 is decreasing with respect to the mosquito mortality rate 𝛿 (cf.

formula (5)). Therefore, the value of ℛ0 is reduced when the mosquito’s natural mortality 𝛿 grows

to 𝛿 + 𝑢(𝑡), 𝑢(𝑡) ≥ 0 on the cause of insecticide spraying. However, an eventual suspension of coercive

control measures will bring the value of ℛ0 to its original level detected at 𝑡 = 0. Notwithstanding,

coercive control actions 𝑢(𝑡) are capable of reducing a considerable number of human infections during

the course of epidemics. This issue is addressed in Section 4.

3.2 Solution of the optimal control problem
In our setting, the control variable 𝑢(𝑡), 𝑡 ∈ [0, 𝑇 ] expressed the enhancement of the mosquito’s natural

mortality 𝛿 due to the insecticide spraying. This type of control intervention is viewed as a coercive

control measure of short-term action aimed at reducing the size of an ongoing epidemics. Therefore,

formal solutions to the optimal control problem of minimizing the objective (4) subject to (1) and

(3) will be sought for the periods of the disease outbreaks, thus leaving aside the periods of endemic

persistence of the disease that do not require this type of control intervention.

Using the property of quasimonotonicity of the system (1) and by applying the comparison
theorem,19 it was shown previously by Sepulveda and Vasilieva13 that the set of all possible solutions

to ODE system (1) is positively invariant with respect to initial conditions (𝑉0, 𝐻0) ∈ [0, 1] × [0, 1],
nonempty and bounded for all admissible controls (2), that is, piecewise continuous real functions with

domain [0, 𝑇 ] and range [0, 𝑢max]. Therefore, this set has the same properties for all admissible control

functions 𝑢(𝑡), which additionally satisfy the budget constraint (3).

Using the standard technique generally adopted in the optimal control theory,20 isoperimetric con-

straint (3) can be transformed into an additional state variable with endpoint conditions. Let 𝑍(𝑡) ≥
0, 𝑡 ∈ [0, 𝑇 ] be an increasing function defined by

𝑍(𝑡) =
𝑡

∫
0

𝐶2𝑢(𝑠)𝑑𝑠.
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Then

𝑑𝑍

𝑑𝑡
= 𝐶2𝑢(𝑡) with 𝑍(0) = 0, 𝑍(𝑇 ) = 𝐵

and the optimal control problem (1)-(4) can be formulated as:

min
0≤𝑢≤𝑢max

 (𝑢) = min
0≤𝑢≤𝑢max

𝑇

∫
0

[
𝐶1𝐻(𝑡) +

𝐶2
2

𝑢2(𝑡)
]
𝑑𝑡, (7)

subject to

dV
dt

= 𝛼 𝑝𝑉 𝐻(1 − 𝑉 ) − [𝛿 + 𝑢(𝑡)]𝑉 , 𝑉 (0) = 𝑉0 > 0, (8a)

dH
dt

= 𝛼 𝑝𝐻 𝜉 𝑉 (1 − 𝐻) − 𝛾 𝐻, 𝐻(0) = 𝐻0 > 0, (8b)

dZ
dt

= 𝐶2𝑢(𝑡), 𝑍(0) = 0, 𝑍(𝑇 ) = 𝐵. (8c)

In consonance with the arguments given above, the controlled system (1) has a unique and bounded

solution on [0, 𝑇 ] for each admissible control function (2) and the following proposition establishes

the existence of solution of the optimal control problem (7) subject to (8) and (2).

Proposition 1. Given that the set of all solutions to system (8) is nonempty and bounded for all admis-
sible control functions (2), there exists an optimal control 𝑢∗(𝑡) satisfying (2) and its corresponding
solution (𝑉 ∗(𝑡), 𝐻∗(𝑡), 𝑍∗(𝑡)) to the ODE system (8) that minimizes the objective (7).

Proof. The proof is based on the standard existence result21 (see Theorem 4.1 and Corollary 4.1 at pp.

68-69). In this context, it is worthwhile to note that:

1. The control set 𝑈 = [0, 𝑢max] is closed and convex in ℝ+.

2. The set of initial conditions (𝑉0, 𝐻0, 0) and the set of terminal states (𝑉 (𝑇 ), 𝐻(𝑇 ), 𝐵) are both

compact in ℝ3
+.

3. The state system (8) is linear with respect to control variable.

4. The integrand in (7) is convex (quadratic) with respect to 𝑢(𝑡).

Conditions 1-4 plainly indicate that hypotheses (a), (b), and (c) of Theorem 4.1 and hypotheses

(d’) and (e’) of Corollary 4.121 are satisfied and this is sufficient for existence of an optimal control

𝑢∗(𝑡). However, uniqueness of optimal control cannot be formally assured here due to the lack of strict

convexity of the objective functional 𝐽 (𝑢) with respect to state variable H.21 ■

Proposition 1 provides sufficient conditions under which there exists an optimal control. Further-

more, we can apply Theorem 2 borrowed from the book by Seierstad and Sydsaeter22 (see p. 85) and

enunciate the following statement.

Proposition 2. If 𝑢∗(𝑡) and (𝑉 ∗(𝑡), 𝐻∗(𝑡), 𝑍∗(𝑡)) are optimal for problem (7)-(8), then there exists a
piecewise differentiable adjoint vector-function 𝜆(𝑡) ∶ [0, 𝑇 ] → ℝ3 and a constant 𝜆0, equal to either
0 or 1, such that

(
𝑉 ∗, 𝐻∗, 𝑍∗, 𝑢∗, 𝜆1, 𝜆2, 𝜆3

) ≤ (
𝑉 ∗, 𝐻∗, 𝑍∗, 𝑢, 𝜆1, 𝜆2, 𝜆3

)
(9)



SEPULVEDA-SALCEDO ET AL. 11

for all admissible controls u at each time 𝑡 ∈ [0, 𝑇 ], where the Hamiltonian  is

(𝑉 , 𝐻, 𝑍, 𝑢, 𝜆1, 𝜆2, 𝜆3) = 𝜆0

[
𝐶1𝐻 +

𝐶2
2

𝑢2
]

(10)

+ 𝜆1[𝛼𝑝𝑉 𝐻(1 − 𝑉 ) − (𝑢 + 𝛿)𝑉 ]

+ 𝜆2[𝛼𝑝𝐻𝜉𝑉 (1 − 𝐻) − 𝛾𝐻] + 𝜆3[𝐶2𝑢]

and 𝜆(𝑡) = (𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡)) satisfies the adjoint ODE system

𝑑𝜆1
𝑑𝑡

= −𝜕
𝜕𝑉

=
[
𝛼𝑝𝑉 𝐻∗(𝑡) + 𝛿 + 𝑢∗(𝑡)

]
𝜆1(𝑡) − 𝛼𝑝𝐻𝜉(1 − 𝐻∗(𝑡))𝜆2(𝑡), (11a)

𝑑𝜆2
𝑑𝑡

= − 𝜕
𝜕𝐻

= −𝜆0𝐶1 − 𝛼𝑝𝑉 (1 − 𝑉 ∗(𝑡))𝜆1(𝑡) +
[
𝛼𝑝𝐻𝜉𝑉 ∗(𝑡) + 𝛾

]
𝜆2(𝑡), (11b)

𝑑𝜆3
𝑑𝑡

= −𝜕
𝜕𝑍

= 0. (11c)

with two transversality conditions

𝜆1(𝑇 ) = 0, 𝜆2(𝑇 ) = 0. (12)

There is no endpoint condition for 𝜆3(𝑡) because its corresponding state variable, 𝑍(𝑡), has two

endpoint conditions assigned (see Equation 8c). Generally speaking, the components of 𝜆(𝑡) stand

for so-called shadow prices associated with respective state variables and represent the change in the

objective value calculated on optimal solutions when the constraints are relaxed by one unit.20 From

Equation (11c), we have immediately that 𝜆3(𝑡) ≡ 𝐶 with 𝐶 ∈ ℝ; in other words, a constant gain is

expected in the value of the objective when (3) is relaxed by one unit.

Remark 1. The role of 𝜆0 ∈ {0, 1} in (10) is essential and can be explained in the following way. When

𝜆0 = 1, we have the standard form of Hamiltonian function, which is customary in the optimal control

theory. In this case, minimization of 𝐽 (𝑢) subject to (8) is replaced by minimization of  with respect

to u at (almost) each 𝑡 ∈ [0, 𝑇 ] along the optimal path. The latter is not always possible due to the

fact that ODE system (8) is overdetermined (effectively, there are four endpoint conditions assigned to

three differential equations). In other words, the optimization problem may become infeasible. In its

turn, 𝜆0 = 0 allows to cope with such “infeasibility” by putting the sole priority of decision making

on choosing an admissible control 𝑢∗(𝑡) that meets the constraint (3) (or satisfies Equation 8c) while

disregarding the value of the objective functional (7).

In the context of our problem, it is essential to find a feasible minimizer of the objective functional

(7). Therefore, we should suppose further on that 𝜆0 = 1 in (10) and try to find a feasible solution of the

optimal control problem (7)-(8). Otherwise and in consonance with Remark 1, 𝜆0 = 0 would simply

make the integrand of (7) vanish from the Hamiltonian and the resulting control trajectory 𝑢∗(𝑡) would

acquire a bang-bang structure in order to satisfy the minimum condition (9), because in that case the

Hamiltonian would become linear in u.

For 𝜆0 = 1, we have 𝜆3(𝑡) ≡ 𝐶 and the optimal control 𝑢∗(𝑡) can be characterized by

𝑢∗(𝑡) = min
{
max

{
1
𝐶2

𝜆1(𝑡)𝑉 ∗(𝑡) − 𝐶, 0
}

, 𝑢max

}
, (13)
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where 𝐶 ∈ ℝ is chosen to satisfy the endpoint condition 𝑍(𝑇 ) = 𝐵. The closed form (13) is obtained

by rewriting the necessary condition (9) as

𝜕
𝜕𝑢

= 𝐶2 𝑢 − 𝜆1 𝑉 + 𝐶 𝐶2 = 0 ⇔ 𝑢 = 1
𝐶2

𝜆1(𝑡)𝑉 ∗(𝑡) − 𝐶 (14)

and taking into account that 0 ≤ 𝑢(𝑡) ≤ 𝑢max for all 𝑡 ∈ [0, 𝑇 ], that is,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢∗(𝑡) = 0 if
𝜕
𝜕𝑢

> 0,

0 < 𝑢∗(𝑡) = 1
𝐶2

𝜆1(𝑡)𝑉 ∗(𝑡) − 𝐶 < 𝑢max if
𝜕
𝜕𝑢

= 0,

𝑢∗(𝑡) = 𝑢max if
𝜕
𝜕𝑢

< 0.

(15)

It is worthwhile to note that (13) is a minimizer because
𝜕2
𝜕𝑢2

= 𝐶2 > 0. Furthermore, to fulfill the

transversality conditions (12), it is necessary that 𝑢∗(𝑇 ) = 0; in other words, optimal control action

𝑢∗(𝑡) must be suspended by the end of observation period.

Remark 2. From the economics standpoint, the left-hand side condition in (14) implies that, under

optimal strategy 𝑢∗ and at each 𝑡 ∈ [0, 𝑇 ], the marginal cost of control action (expressed by the term

𝐶2 𝑢) should be equal to its marginal benefit (given by the term 𝜆1 𝑉 − 𝐶 𝐶2). Additionally, if the

marginal cost of 𝑢∗ is higher than its marginal benefit (ie,
𝜕
𝜕𝑢

< 0 in (15)), then it is optimal not to

employ this strategy at all, that is, 𝑢∗(𝑡) = 0. Alternatively, if the marginal cost of 𝑢∗ is lower than its

marginal benefit (ie,
𝜕
𝜕𝑢

> 0 in (15)), then it is optimal to use all available resources, that is, 𝑢∗(𝑡) =
𝑢max.

Remark 3. Application of Pontryagin maximum principle (Proposition 2) allows to reduce the opti-

mal control problem (7)-(8) to solution of two-point boundary value problem that is usually referred

to as optimality system. The latter is composed of six differential equations with six boundary con-

ditions specified at the endpoints 𝑡 = 0 and 𝑡 = 𝑇 . In our case, the optimality system is given by (8),

(11), and (12) where 𝑢(𝑡) is replaced by its characterization (13). Existence of optimal control 𝑢∗(𝑡)
(proved in Proposition 1) implies solvability of the optimality system, because 𝑢∗(𝑡) must satisfy the

necessary condition of optimality. Additionally, the uniqueness of solution of the optimality system

can be formally demonstrated for sufficiently small time intervals using conventional techniques.23,24

Similar techniques are applicable to our problem because the right-hand sides of optimality system

are Lipschitz-continuous in all state and adjoint variables. The formal proofs are omitted here because

we deal with (sufficiently) short periods of time where the optimally system should be well posed.

Therefore, it is safe to assume that the optimality system has a unique solution and the optimal control

characterized by (13) is unique (its existence is proved by Proposition 1).

Remark 4. Traditional modus operandi of the healthcare authorities disregards the minimization of

the objective criterion (7) and merely seeks a feasible control strategy 𝑢(𝑡) that allows to fulfill the

constraint (3), that is, to spend all available stock of the insecticide by spraying it at maximal capacity

𝑢𝑚𝑎𝑥. In mathematical terms, this situation can be modeled by the application of the so-called baseline
control strategy:

𝑢̄(𝑡) =
{

𝑢max, if 𝑡 ∈ [0, 𝑇 ∗]
0, if 𝑡 ∈ [𝑇 ∗, 𝑇 ] where 0 < 𝑇 ∗ = 𝐵

𝐶2𝑢max
< 𝑇 (16)
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T A B L E 2 Values of parameters of the Ross-Macdonald model (1), (8)

Parameter Description Estimated value
𝛼 The human blood feeding rate 0.3365

𝑝𝑉 Probability for a mosquito to become infected after biting an

infected human host

0.1532

𝑝𝐻 Probability for a human host to become infected when bitten by

an infected mosquito

0.2287

𝜉 Average number of female mosquitoes per one human host (or

average vectorial density)

1.0359

𝛿𝑉 Rate of mosquito natural mortality 0.0333

𝛾 Rate of human recovery from the disease 0.1

𝐻0 Fraction of infected human hosts at 𝑡 = 0 1.82 × 10−4

𝑉0 Fraction of infected mosquitoes at 𝑡 = 0 5.46 × 10−4

that ensures spending of all available insecticide stock exactly by the moment 𝑇 ∗ ∈ (0, 𝑇 ). This strategy

is feasible in the sense that it reduces the population of infectious mosquitoes (the right-hand side of

Equation 8a is decreasing in u) and causes a reduction in the number of infectious human hosts (due

to quasimonotonicity of the Ross-Macdonald model). Baseline strategy (16) has the so-called “bang-

bang” structure (all or nothing) and satisfies Equation (8c) with boundary conditions. This control

strategy can be accepted as a solution if the optimality system becomes unsolvable. In such a case,

optimization criterion is omitted by setting 𝜆0 = 0 in the Hamiltonian (10) (see Remark 1 above).

4 NUMERICAL RESULTS

Numerical solutions of all optimal control problems (with and without budget constraint (3))

presented in this section have been carried out using GPOPS-II Next-Generation Optimal Con-

trol Software25,26 (note that GPOPS-II Manual with basic descriptions can be downloaded from

http://www.gpops2.com/) and the underlying program codes are available from the authors. GPOPS-II

is a MATLAB-based software toolbox for solving different kinds of optimal control problems using

variable-order Gaussian quadrature collocation methods. The software employs the Legendre-Gauss-

Radau quadrature orthogonal collocation technique, where the continuous-time optimal control prob-

lem is transcribed to a large sparse nonlinear programming problem.

4.1 Parameter values and initial data
Our numerical simulations are done for the observation period of 60 days, that is, 𝑇 = 60 and 𝑡 ∈
[0, 𝑇 ] = [0, 60]. In fact, dengue outbreaks can be controlled by insecticide spraying within 1-2 months

because the epidemics becomes declared,13,14,27 and the standard length of manpower contracts for

performing the insecticide spraying is 2 months (information provided by the MSPH, Cali, Colombia).

For all numerical experiments, the values of parameters (𝛼, 𝑝𝑉 , 𝑝𝐻 , 𝜉, 𝛿𝑉 , 𝛾) as well as initial

conditions 𝑉 (0) = 𝑉0, 𝐻(0) = 𝐻0 have been borrowed from previous studies conducted in Cali,

Colombia,13 where they were fitted to the observation data reported to the MSPH (Cali, Colom-

bia) during the 2010 dengue outbreak—see Table 2. Although we suppose (for simplicity) that all

parameters(𝛼, 𝑝𝑉 , 𝑝𝐻, 𝜉, 𝛿𝑉 , 𝛾) remain constant during the observation period [0, 𝑇 ], in reality they

may exhibit slight variations. In particular, 𝛼 and 𝛿 are entomological parameters and their values are

http://www.gpops2.com/
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F I G U R E 4 Daily cases of dengue reported to the Municipal Secretariat of Public Health (Cali, Colombia)

during the 2010 dengue outbreak

affected by the temperature and humidity variations.28-30 Parameters 𝑝𝑉 and 𝑝𝐻 related to the disease

transmission may vary with the virulence of circulating DENV strains.31,32 Finally, the average vec-

torial density 𝜉 depends on the total size of the vector population (assuming that the total number of

human residents remain invariable), and its value is affected not only by the climatic changes,28-30 but

also by the efficiency of routinary control actions, such as periodical treatment of mosquito breeding

sites with larvicides, and by inflow and outflow of daily commuters.31,33

Furthermore, it is worthwhile to note that the values of parameters (𝛼, 𝑝𝑉 , 𝑝𝐻, 𝜉, 𝛿𝑉 , 𝛾) given in

Table 2 bear little difference with other estimations obtained from the incidence datasets collected

in Cali, Colombia during different years.28,31,34,35 Figure 4 displays the daily incidence (new dengue

cases registered on a daily basis) reported to the MSPH (Cali, Colombia) during the whole year 2010,

and our observation period corresponds to the epidemics peak.

It is essential to point out that during the period of observed data (January 30 and March 1 of 2010)

no coercive control measures (such as the insecticide spraying) were used by the public healthcare

authorities of Cali. However, the routinary control of mosquito breeding sites has never been suspended

in Cali during the last two decades. In particular, the rainwater catch basins located along the streets in

residential and commercial areas are being periodically treated with larvicides.

The objective functional (7) expresses a tradeoff between two major goals. On the one hand, the con-

trol intervention seeks to minimize the fraction of infected human hosts along the observation period

[0, 𝑇 ] (cf. first summand 𝐶1𝐻(𝑡) in the integrand of (7)). On the other hand, the decision makers wish

to avoid extra spendings on the policy implementation by minimizing the marginal cost of control inter-

vention (cf. second summand 𝐶2𝑢
2(𝑡) in the integrand of (7)). Thus, two positive weight coefficients,

𝐶1 and 𝐶2, determine the priorities of decision making.

To assign plausible values to these coefficients, it is worthwhile to revise some arguments from the

literature. Generally speaking, the value of 𝐶1 can be associated with an average daily cost of having

one infected human host, which consists of two basic elements: expenses related to medical treatment

and societal costs associated with temporary disability leave. In Colombia, an average cost of one

dengue case was estimated by 600 dollars in 2010,36 and another study37 conducted in eight Asian

and Latin-American countries displayed similar results. Because dengue infection lasts approximately

1∕𝛾 = 1∕0.1 = 10 days, the daily average cost of one infected human host can be set as 𝐶1 = 60 dollars.
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T A B L E 3 Description of control strategies based on different types of insecticide

Strategy No. Description Value of 𝒖max Weight 𝑪𝟐 Amount 𝑩𝟎 Total cost B
Strategy 1 Low-lethality cheap insecticide 0.2 3 10.1502 30.4506

Strategy 2 Medium-lethality insecticide 0.5 4.5 14.1392 63.6264

Strategy 3 High-lethality expensive insecticide 0.8 6 13.6072 81.6432

Another weight coefficient, 𝐶2, is associated with unit cost of the insecticide to be used for vector

control. Such unit cost usually depends on the insecticide efficiency in the sense that high-lethality

insecticides are more expensive than low-lethality insecticides. In the frameworks of our model, the

maximum efficiency of insecticide is defined by 𝑢max and the latter may vary between 12% and 98%.27

Therefore, it would be useful to consider three different types of control interventions based on spraying

of insecticides with different lethalities:

Strategy 1: 20%-lethality relatively cheap insecticide;

Strategy 2: 50%-lethality reasonably priced insecticide;

Strategy 3: 80%-lethality relatively expensive insecticide.

Because we do not possess any viable information regarding the unit costs of the mentioned insec-

ticides, it seems reasonable to assume13 the unit costs of insecticides with high, medium, and low

lethality be related to the total daily unit cost 𝐶1 of having one infected human host in the following

way:

– 𝐶2 = 𝐶1∕20 when cheap low-lethality insecticide with 𝑢max = 0.2 is used (Strategy 1);

– 𝐶2 = 𝐶1∕15 when moderately priced medium-lethality insecticide with 𝑢max = 0.5 is used

(Strategy 2);

– 𝐶2 = 𝐶1∕10 when expensive high-lethality insecticide with 𝑢max = 0.8 is used (Strategy 3).

These numbers look reasonable for the preliminary investigation, while the value of 𝐶2 for practical

application can be determined in accordance with real price of available insecticide. Table 3 (columns

1-4) systemizes the descriptions of three basic control intervention strategies corresponding to each

type of insecticide.

For better visibility and more expedient interpretations of our numerical results, it is convenient to

introduce an additional variable, 𝐶ℎ(𝑡), defined by

𝐶ℎ(𝑡) = 𝐻(0) +
𝑡

∫
0

𝛼 𝑝𝐻 𝜉 𝑉 (𝑠) (1 − 𝐻(𝑠)) 𝑑𝑠 (17)

that expresses the cumulative fraction of all human infections during the observation period [0, 𝑇 ]
while ignoring posterior recuperation of the infected human hosts. This variable is usually referred to

as cumulative incidence, meaning that 𝐶ℎ(𝑡) effectively accumulates, in form of proportion, all human

infections between 𝑡 = 0 and 𝑡 = 𝑇 .

4.2 Optimal solutions without budget constraints
Before proceeding to analyze the impact of resource limitation on overall performance of optimal

control strategies and their effect on the disease control, we should have reasonable estimations for
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F I G U R E 5 Geometric interpretation of 𝐵0 =
𝐵

𝐶2

the costs of optimal strategies in absence of resource limitation. To accomplish this task, we should

ignore for the moment the isoperimetric constraint (3) and solve numerically (using GPOPS-II software

package) the optimal control problem

min
0≤𝑢≤𝑢max

 (𝑢) = min
0≤𝑢≤𝑢max

𝑇

∫
0

[
𝐶1𝐻(𝑡) +

𝐶2
2

𝑢2(𝑡)
]
𝑑𝑡, (18)

subject to

dV
dt

= 𝛼 𝑝𝑉 𝐻(1 − 𝑉 ) − [𝛿 + 𝑢(𝑡)]𝑉 , 𝑉 (0) = 𝑉0, (19a)

dH
dt

= 𝛼 𝑝𝐻 𝜉 𝑉 (1 − 𝐻) − 𝛾 𝐻, 𝐻(0) = 𝐻0, (19b)

𝑑𝐶ℎ

dt
= 𝛼 𝑝𝐻 𝜉 𝑉 (1 − 𝐻), 𝐶ℎ(0) = 𝐻0, (19c)

where the variable 𝐶ℎ(𝑡) has been added to the dynamical system. Note that differential equation (19c)

is equivalent to (17). In general terms, numerical solutions of the optimal control problem (18)-(19)

can be viewed as special case of the problem already considered by Sepulveda and Vasilieva,13 where

numerical solutions were computed by the forward-backward method.20

After obtaining the optimal solutions, 𝑢∗(𝑡), of the optimal control problem (18)-(19) for three set-

tings corresponding to Strategies 1-3 (see columns 1-4 in Table 3), we can estimate their related

marginal costs, B, by the following formula:

Cost of 𝑢∗(𝑡) = 𝐵 = 𝐶2 𝐵0 = 𝐶2

𝑇

∫
0

𝑢∗(𝑡) 𝑑𝑡, (20)

where 𝐵0 expresses the amount of each type of the insecticide needed for implementation of the corre-

sponding strategy. The reference values of 𝐵0 and B are given in Table 3 (columns 5-6), while Figure 5

displays the geometric interpretation of 𝐵0.



SEPULVEDA-SALCEDO ET AL. 17

F I G U R E 6 Profiles of optimal controls 𝑢∗(𝑡) and their bang-bang alternatives 𝑢̄(𝑡) (upper row) with

corresponding cumulative incidence curves 𝐶∗
ℎ
(𝑡) = 𝐶ℎ(𝑡; 𝑢∗(𝑡)) and 𝐶̄ℎ(𝑡) = 𝐶ℎ(𝑡; 𝑢̄(𝑡)) versus observed incidence data

𝐶ℎ(𝑡𝑗 ) (lower row) for three strategies defined in Table 3

Note that the total cost B of the optimal strategy 𝑢∗(𝑡) estimated by formula (20) essentially depends

on the insecticide’s lethality (cf. last column in Table 3). Additionally, the quantities 𝐵0 =
𝐵

𝐶2
also

differ according to insecticide lethality. Although it was tempting to use a “uniformed” amount 𝐵0 for

all three types of insecticide, we decided to treat them separately in order to make more visible the

effect of budget cuts on the outcomes of 𝑢∗(𝑡) versus 𝑢̄(𝑡) for each particular type of the insecticide.

For further analysis, it is also helpful to have at hand the numerical solutions 𝐶̄ℎ(𝑡) of (19c), under

baseline options 𝑢̄(𝑡) for three control strategies described in Table 3 and defined by the corresponding

values of B in accordance with formula (16).

The upper row of Figure 6 presents the optimal solutions 𝑢∗(𝑡), 𝑡 ∈ [0, 60] and their corresponding

baseline options 𝑢̄(𝑡), 𝑡 ∈ [0, 60] (bang-bang controls), while the lower row of Figure 6 displays the

cumulative incidence curves 𝐶∗
ℎ
(𝑡) = 𝐶ℎ(𝑡; 𝑢∗(𝑡)), 𝑡 ∈ [0, 𝑇 ] (solid lines) under optimal control policies

𝑢∗(𝑡) and 𝐶ℎ(𝑡) = 𝐶ℎ(𝑡; 𝑢̄(𝑡)), 𝑡 ∈ [0, 60] (dashed lines) under the baseline alternatives of bang-bang

type 𝑢̄(𝑡) for three strategies defined in Table 3 versus cumulative incidences 𝐶ℎ(𝑡𝑗) obtained from

the observation data gathered in Cali during 2010 dengue outbreak (star isolated points) with 𝑡𝑗 , 𝑗 =
1, 2,… , 60 denoting the j-th day of the observation period.

It is worthwhile to recall that Figure 6 displays solutions of the optimal control problem (18)-(19)

where the budget constraint (3) is ignored and all resources (expressed by 𝐵0 or B) required for policy

implementation are supposed to be available.

Under such favorable conditions, the impact of all three optimal strategies 𝑢∗(𝑡), as well as their

corresponding baseline alternatives 𝑢̄(𝑡), can be clearly visualized through the forms of 𝐶∗
ℎ
(𝑡) and 𝐶ℎ(𝑡),

both of which become almost horizontal after 5, 10, or 20 days starting from the policy implementation

(𝑡 = 0) when low-lethality (𝑢max = 0.2), medium-lethality (𝑢max = 0.5), or high-lethality (𝑢max = 0.8)
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T A B L E 4 Comparison of the outcomes produced by optimal control policies 𝑢∗(𝑡) and their baseline alternatives

𝑢̄(𝑡), while considering three strategies based on different types of insecticides

Insecticide Total infections Total infections Difference
lethality averted by 𝒖

∗(𝒕) averted by 𝒖̄(𝒕) 𝑵
𝑯
[𝑪

𝒉
(𝑻 ) − 𝑪

∗
𝒉
(𝑻 )]

Strategy 1 20% 1576 1576 0

Strategy 2 50% 1828 1812 16

Strategy 3 80% 1876 1795 81

insecticides are employed. In other words, almost no new disease cases are produced afterward, and the

epidemics may eventually vanish. However, this expectation is somewhat deceptive and misleading.

Because the insecticide spraying is suspended by the end of observation period T, the basic reproductive

number ℛ0 becomes greater than unity after T, meaning that any human infection will produce again

more than one secondary infection, independently of the lethality of insecticide used for spraying.

Additionally, Figure 6 allows to contemplate the overall effect of control interventions performed

either by employing the optimal control policy 𝑢∗(𝑡) or its baseline variant 𝑢̄(𝑡), which becomes stronger

as the lethality insecticide increases from 20% to 50%, and further to 80%. Indeed, the bottom row of

Figure 6 shows that the span between the observed data (star isolated points) and curves of 𝐶ℎ(𝑡) and

𝐶ℎ(𝑡) (solid and dashed lines, respectively) becomes wider as 𝑢max grows from 20% (chart on the left

side) to 50% (chart in the middle), and further to 80% (chart on the right side).

It should be noted that the difference in actions of optimal and baseline control policies with regard

to the number of human infections averted by 𝑢∗(𝑡) and 𝑢̄(𝑡), respectively, is rather small and the gap

between solid and dashed curves in the three lower charts of Figure 6 is almost invisible under the cho-

sen scaling (except for the right-hand chart). On the other hand, the total number of human infections

avoided by application of 𝑢∗(𝑡) and 𝑢̄(𝑡) can be fairly assessed by the following formulas:

Total No. of infections averted by 𝑢∗(𝑡) = 𝑁𝐻 ⋅
[
𝐶ℎ(𝑇 ) − 𝐶∗

ℎ
(𝑇 )

]
, (21a)

Total No. of infections averted by 𝑢̄(𝑡) = 𝑁𝐻 ⋅
[
𝐶ℎ(𝑇 ) − 𝐶ℎ(𝑇 )

]
, (21b)

where 𝑁𝐻 stands for the total number of inhabitants residing in Cali, Colombia and 𝐶ℎ(𝑇 ) is the

cumulative incidence of dengue obtained from real data gathered in Cali, Colombia during 2010 dengue

outbreak. Here, we have assumed that 𝑁𝐻 = 2370 000 people in accordance with official statistics.4

Table 4 resumes calculations carried out by formulas (21) and helps us assess the outcomes of

optimal control policies 𝑢∗(𝑡) and their corresponding baseline alternative actions 𝑢̄(𝑡) of bang-bang

type, which are usually performed in practice by local healthcare authorities.

It is worthwhile to recall that, for each strategy defined by the type of insecticide, control policies

𝑢∗(𝑡) and 𝑢̄(𝑡) have the same total cost B (see the last column of Table 3), but their effects are not the

same (cf. columns 3 and 4 in Table 4). However, all three strategies have a common feature related

to the type if insecticide which remains valid for both control intervention policies employed (that is,

either 𝑢∗(𝑡) or 𝑢̄(𝑡)). Namely, the total number of human infections prevented by either control policy

grows as the lethality of insecticide increases (which seems reasonable and rather expected). The latter

stays in line with the variation of the basic reproductive number ℛ0 during the control intervention:

higher insecticide lethality induces smaller transitory value of ℛ0, that is, a lesser number of secondary

infections produced by one infective individual.
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T A B L E 5 Description of three resource limitation cases

Description Budget reduction
Case 1 Mild resource limitation 20%

Case 2 Moderate resource limitation 40%

Case 3 Severe resource limitation 60%

Additionally, direct comparison of the outcomes of control intervention policies 𝑢∗(𝑡) and 𝑢̄(𝑡) (cf.

columns 3 and 4 in Table 4) results in the following observations and recommendations:

1. When low-lethality insecticide is used (Strategy 1), both 𝑢∗(𝑡) and 𝑢̄(𝑡) perform equally well, and

both of them can be recommended for practical implementation. Yet, when Strategy 1 is employed,

the optimal control policy 𝑢∗(𝑡) performs “slightly better” than its corresponding baseline option

𝑢̄(𝑡) in the sense that the difference 𝑁𝐻 [𝐶ℎ(𝑇 ) − 𝐶∗
ℎ
(𝑇 )] is strictly positive. However, the integer

part of this difference (or its floor value) is equal to zero. This explains the presence of 0 in the last

column of Table 4.

2. When medium-lethality insecticide (Strategy 2) or high-lethality insecticide (Strategy 3) is used,

the optimal control policy 𝑢∗(𝑡) performs better than its baseline alternative 𝑢̄(𝑡) and renders addi-

tional averted infections (about 1% or 4.5% extra vs 𝑢̄(𝑡), respectively), while the costs of both

policies remain the same for each type of insecticide employed. Therefore, it is recommended for

local healthcare authorities to apply optimal control policies whenever medium- or high-lethality

insecticide is used and there are sufficient funds for their implementation.

The situation described in this subsection does not involve any budget constraint of the form (3)

meaning that public healthcare authorities must possess enough resources (available stock of insec-

ticide or monetary funds) for implementation of the optimal control policy 𝑢∗(𝑡). In practice, how-

ever, healthcare entities may not have sufficient supplies of insecticide (and of desired lethality) for

accomplishing the optimal control policy 𝑢∗(𝑡) and, therefore, they would face up a challenging task of

adjusting the policy to available resources. In other words, they would seek to solve the optimal control

problem with budget constraint (3) in the form (7)-(8).

On the other hand, a bang-bang type control policy 𝑢̄(𝑡) can be easily adjusted to available stock

of insecticide with determined lethality by reducing the overall time of insecticide spraying action

to 𝑇 ∗ ∈ (0, 𝑇 ) (see formula (16)). This may be the primary reason why public healthcare authorities

prefer to deal with bang-bang control policies in practice, even if they do realize that 𝑢̄(𝑡) are capable

of preventing less human infections than 𝑢∗(𝑡) while using the same amount of insecticide.

In the following subsection, we present a series of experiments based on different scenarios for

budget reductions, which provide solid arguments in favor of using optimal control policy 𝑢∗(𝑡) instead

of more common bang-bang one 𝑢̄(𝑡), especially when dealing with limited resources.

4.3 Optimal solutions under limited budget
We start by considering three particular cases with regard to budget reduction, which are defined in

Table 5 and correspond to mild (20%), moderate (40%), and severe (60%) limitation in supplies (if

we deal with insecticide stock 𝐵0) or in monetary funds (if we deal with monetary budget B). These

particular cases are then combined with three possible types of insecticides with low, medium, and

high lethality corresponding to Strategies 1, 2, and 3 defined in Subsection 4.2 (see details in Table 4).

As a result, we obtain nine scenarios summarized in Table 6. Each scenario is denoted as Scenario
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T A B L E 6 Description of nine scenarios

Maximum lethality 𝒖max Unit cost 𝑪𝟐 Budget reduction for 𝑩 = 𝑪𝟐 𝑩𝟎

Scenario 1-1 0.2 3 0.8 𝐵0 = 8.12
Scenario 2-1 0.5 4.5 0.8 𝐵0 = 11.31
Scenario 3-1 0.8 6 0.8 𝐵0 = 10.88
Scenario 1-2 0.2 3 0.6 𝐵0 = 6.09
Scenario 2-2 0.5 4.5 0.6 𝐵0 = 8.48
Scenario 3-2 0.8 6 0.6 𝐵0 = 8.16
Scenario 1-3 0.2 3 0.4 𝐵0 = 4.06
Scenario 2-3 0.5 4.5 0.4 𝐵0 = 5.65
Scenario 3-3 0.8 6 0.4 𝐵0 = 5.44

𝐢−𝐣, with 𝑖, 𝑗 = 1, 2, 3, where i stands for the Strategy 𝐢, 𝑖 = 1, 2, 3 (cf. Table 4) and j indicates the Case
𝐣, 𝑗 = 1, 2, 3 of resource limitation (cf. Table 5).

Each Scenario 𝐢−𝐣 (𝑖, 𝑗 = 1, 2, 3) requires to solve numerically (using GPOPS-II software package)

the following optimal control problem:

min
0≤𝑢≤𝑢max

 (𝑢) = min
0≤𝑢≤𝑢max

𝑇

∫
0

[
𝐶1𝐻(𝑡) +

𝐶2
2

𝑢2(𝑡)
]
𝑑𝑡, (22)

subject to

dV
dt

= 𝛼 𝑝𝑉 𝐻(1 − 𝑉 ) − [𝛿 + 𝑢(𝑡)]𝑉 , 𝑉 (0) = 𝑉0, (23a)

dH
dt

= 𝛼 𝑝𝐻 𝜉 𝑉 (1 − 𝐻) − 𝛾 𝐻, 𝐻(0) = 𝐻0, (23b)

𝑑𝐶ℎ

dt
= 𝛼 𝑝𝐻 𝜉 𝑉 (1 − 𝐻), 𝐶ℎ(0) = 𝐻0, (23c)

𝑑𝑍

𝑑𝑡
= 𝐶2𝑢(𝑡), 𝑍(0) = 0, 𝑍(𝑇 ) = 𝐵. (23d)

In what follows, we present numerical solutions of the optimal control problem (22)-(23) separately

for each case of budget reduction described in Table 5.

4.3.1 Mild resource limitation: 20% budget cut
Here, we start by considering an effect of 20% budget cut on the forms and underlying outcomes

(expressed by the cumulative incidence curves 𝐶∗
ℎ
(𝑡) and 𝐶̄ℎ(𝑡)) of the optimal control policy 𝑢∗(𝑡) and

its corresponding baseline alternative 𝑢̄(𝑡). To model this mild budget cut, we replace the total budget

B needed for implementation of the optimal control policy by 0.8 𝐵 and also adjust the form of bang-

bang control 𝑢̄(𝑡) to this updated value via formula (16). Further, we solve numerically the optimal

control problem (22)-(23) three times with values of parameters given in rows 1-3 of Table 6, which

correspond to Scenarios 1-1, 2-1, and 3-1, and thus obtain the profiles of 𝑢∗(𝑡) and 𝐶∗
ℎ
(𝑡), while the

profile 𝐶̄ℎ(𝑡) is generated by numerical solution of the system (23) with 𝑢̄(𝑡) instead 𝑢(𝑡).
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F I G U R E 7 Profiles of optimal controls 𝑢∗(𝑡) and their bang-bang alternatives 𝑢̄(𝑡) (upper row) with

corresponding cumulative incidence curves 𝐶∗
ℎ
(𝑡) and 𝐶̄ℎ(𝑡) (lower row) under mild resource limitation (20% budget

cut, solid and dotted lines, respectively) for three different types of insecticides employed

Figure 7 displays the profiles of optimal controls 𝑢∗(𝑡) and their bang-bang alternatives 𝑢̄(𝑡) (upper
row) with underlying cumulative incidence curves 𝐶∗

ℎ
(𝑡) and 𝐶̄ℎ(𝑡) (lower row) corresponding to Sce-

narios 1-1, 2-1, and 3-1 described in Table 6, that is, under mild resource limitation (20% budget

cut).

In this figure, as well as in following figures corresponding to subsequent scenarios (Figures 8 and

9), 𝑢∗(𝑡) and 𝐶∗
ℎ
(𝑡) are plotted by solid lines, while 𝑢̄(𝑡) and 𝐶̄ℎ(𝑡) are drawn by dotted lines.

The difference in outcomes of the optimal control policies 𝑢∗(𝑡) and their corresponding baseline

alternative actions 𝑢̄(𝑡) has become more visible now than in Figure 6 that provides illustrations to

the initial case with fully available resources presented in Subsection 4.2. However, it is still difficult

to visualize the difference between the final outcomes of control policies 𝑢∗(𝑡) and 𝑢̄(𝑡) when low-

lethality insecticide is employed (Scenario 1-1). In this context, formulas (21) could help us again by

comparing the total numbers of human infection avoided by applying either 𝑢∗(𝑡) or 𝑢̄(𝑡) with a case

where no control measures are implemented at all (ie, when 𝑢(𝑡) = 0 for 𝑡 ∈ [0, 𝑇 ] in the outcome of

the dynamical system (19)).

Table 7 summarizes calculations carried out by formulas (21) and clearly shows that optimal con-

trol policies 𝑢∗(𝑡) perform better than their corresponding baseline alternative actions 𝑢̄(𝑡) under mild

resource limitation. Moreover, it can be asserted that an additional number of human infections averted

by 𝑢∗(𝑡) versus 𝑢̄(𝑡) increases as the insecticide lethality increases (cf. last column of Table 7).

It is interesting to note that when optimal control policies are employed for different types of insec-

ticides, a budget reduction of 20% results in 1-1.2% reduction of avoided human infections (cf. first

columns of Tables 4 and 7). On the other hand, the same budget cut of 20% may increase the number

of human infections by 1-3.5% (depending on the insecticide type) when baseline control policies of
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F I G U R E 8 Profiles of optimal controls 𝑢∗(𝑡) and their bang-bang alternatives 𝑢̄(𝑡) (upper row) with

corresponding cumulative incidence curves 𝐶∗
ℎ
(𝑡) and 𝐶̄ℎ(𝑡) (lower row) under moderate resource limitation (40%

budget cut, solid and dotted lines, respectively) for three different types of insecticides employed

T A B L E 7 Estimates of total number of averted infections under mild resource limitation (20% budget cut)

Total infections Total infections Difference
averted by 𝒖

∗(𝒕) averted by 𝒖̄(𝒕) 𝑵
𝑯
[𝑪̄

𝒉
(𝑻 ) − 𝑪

∗
𝒉
(𝑻 )]

Scenario 1-1 1560 1558 2

Scenario 2-1 1809 1770 39

Scenario 3-1 1854 1732 122

bang-bang type are implemented (cf. second columns of Tables 4 and 7). In other words, 𝑢∗(𝑡) are

more resilient to mild budget cuts than 𝑢̄(𝑡), and their endurance to mild budget reductions become

more notable when the insecticide’s lethality increases.

Finally, if we compare the difference in the total number of human infections averted by 𝑢∗(𝑡) versus

𝑢̄(𝑡) with no resource limitation (see the last column of Table 4) and under mild budget cut of 20%

(last column of Table 7), we come to the following conclusion. For all types of insecticides employed,

a mild budget cut of 20% affects to lesser extent the overall performance of optimal control policies

𝑢∗(𝑡) than the performance of their baseline alternative actions 𝑢̄(𝑡) of the same total cost, which are

habitually performed in practice.

4.3.2 Moderate resource limitation: 40% budget cut
To consider an effect of 40% budget cut on the forms and underlying outcomes (expressed by 𝐶∗

ℎ
(𝑡) and

𝐶̄ℎ(𝑡)) of the optimal control policy 𝑢∗(𝑡) and its corresponding baseline alternative 𝑢̄(𝑡), we proceed

in a similar way as described in Subsection 4.3.1 while taking 0.6𝐵 instead of B (see rows 4-6 in
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F I G U R E 9 Profiles of optimal controls 𝑢∗(𝑡) and their bang-bang alternatives 𝑢̄(𝑡) (upper row) with

corresponding cumulative incidence curves 𝐶∗
ℎ
(𝑡) and 𝐶̄ℎ(𝑡) (lower row) under severe resource limitation (60% budget

cut, solid and dotted lines, respectively) for three different types of insecticides employed

T A B L E 8 Estimates of total number of averted infections under moderate resource limitation (40% budget cut)

Total infections Total infections Difference
averted by 𝒖

∗(𝒕) averted by 𝒖̄(𝒕) 𝑵
𝑯
[𝑪̄

𝒉
(𝑻 ) − 𝑪

∗
𝒉
(𝑻 )]

Scenario 1-2 1508 1505 3

Scenario 2-2 1766 1692 74

Scenario 3-2 1804 1642 162

Table 6—Scenarios 𝐢-𝟐, 𝑖 = 1, 2, 3) for numerical solution of the optimal control problem (22)-(23)

and for adjustment of 𝑢̄(𝑡) via formula (16).

Figure 8 displays the profiles of optimal controls 𝑢∗(𝑡) and their bang-bang alternatives 𝑢̄(𝑡) (upper
row) with underlying cumulative incidence curves 𝐶∗

ℎ
(𝑡) and 𝐶̄ℎ(𝑡) (lower row) corresponding to Sce-

narios 1-2, 2-2, and 3-2 described in Table 6, that is, under moderate resource limitation (40% budget

cut). As in the previous case (see Subsection 4.3.1), Table 8 provides the overall numbers of human

infections that can be avoided by applying either 𝑢∗(𝑡) or 𝑢̄(𝑡) under moderate resource limitation (40%

budget cut).

It is natural to expect that higher budget cuts be (negatively) reflected in the capabilities of both 𝑢∗(𝑡)
and 𝑢̄(𝑡) for prevention of human infections. In effect, when the necessary budget B is reduced by 40%,

the overall number of human infection avoided by 𝑢∗(𝑡) is reduced by 3.4-4.3% (cf. first columns of

Tables 4 and 8). On the other hand, under the same budget cut of 40%, the number of human infections

avoided by 𝑢̄(𝑡) is reduced by 4.5-8.5% (cf. second columns of Tables 4 and 8). In other words, 𝑢∗(𝑡)
still remain more resilient to budget cuts than 𝑢̄(𝑡).
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T A B L E 9 Estimates of total number of averted infections under severe resource limitation (60% budget cut)

Total infections Total infections Difference
averted by 𝒖

∗(𝒕) averted by 𝒖̄(𝒕) 𝑵
𝑯
[𝑪̄

𝒉
(𝑻 ) − 𝑪

∗
𝒉
(𝑻 )]

Scenario 1-3 1356 1342 14

Scenario 2-3 1658 1545 113

Scenario 3-3 1675 1506 169

Additionally, both control policies 𝑢∗(𝑡) and 𝑢̄(𝑡) have the same cost of implementation (expressed

by 0.6𝐵 = 0.6𝐶2𝐵0), but optimal control policies always perform better for all three types of insec-

ticides with different lethalities and, similar to the previous case described in Subsection 4.3.1, the

advantages of applying 𝑢∗(𝑡) versus 𝑢̄(𝑡) become more visible as the lethality of insecticide increases

(cf. last column in Table 8).

Let us explore whether this tendency remains in force when budget limitation becomes even tougher.

4.3.3 Severe resource limitation: 60% budget cut
In this ultimate case, we replace B by 0.4𝐵 for numerical solution of the optimal control problem (22)-

(23) and for adjustment of 𝑢̄(𝑡) via formula (16) in accordance with rows 7-9 in Table 6 (Scenarios
𝐢-𝟑, 𝑖 = 1, 2, 3).

The results are given in Figure 9 and Table 9 and they clearly illustrate that the resource scarcity

affects considerably the overall performance of both control policies. However, a drastic budget cut

of 60% affects to a lesser extent the capacity of 𝑢∗(𝑡) for prevention of human infections, which is

reduced by 9.3-13.9 % (cf. first columns of Tables 4 and 9). On the other hand, the same capacity

of 𝑢̄(𝑡) is reduced by 14.7-16.1 % (cf. second columns of Tables 4 and 9). Moreover, the difference

between the outcomes of 𝑢∗(𝑡) and 𝑢̄(𝑡) is more significant now than in previous two cases considered

in Subsections 4.3.1 and 4.3.2—it suffices to compare the last column of Table 9 with corresponding

columns in Tables 7 and 8.

From the above analysis of three cases described in Table 5, it can be now perceived that optimal

control policies are more resilient to resource limitations, while their efficiency becomes more notable

under stronger budget constraints and also with application of insecticides bearing higher lethality.

Furthermore, optimal control policies designed for each strategy (based on certain type of insecticide)

F I G U R E 1 0 Graphical interpretation of additional benefits rendered by implementing the optimal control

policy 𝑢∗(𝑡) versus its baseline alternative action 𝑢̄(𝑡) expressed as a function of possible budget cuts



SEPULVEDA-SALCEDO ET AL. 25

display structural robustness and capacity for adjustments to impose budget constraints, which makes

them appealing for practical implementation.

5 DISCUSSION AND CONCLUDING REMARKS

It is worth noting that at the beginning of the disease outbreak, local healthcare authorities may not

always acquire a desired quantity of insecticide for not having sufficient funds, while local providers

may not possess an existing stock of insecticide with desired lethality. Therefore, coercive measures

seeking to suppress the disease outbreak are usually carried out in practice by quickly spraying all

available insecticide stock (regardless of its lethality) at maximal rate of application. In mathematical

terms, this approach is modeled by the baseline control policy 𝑢̄(𝑡) of bang-bang type.

In this paper, we have shown that habitual control policies of bang-bang type are not the best for

practical implementation. More precisely, let us recall that, for all scenarios considered in Subsections

4.2 and 4.3, the optimal control policies 𝑢∗(𝑡) and their corresponding bang-bang alternative actions 𝑢̄(𝑡)
have the same implementation costs. Nonetheless, their respective benefits, expressed by the number

of averted human infections (see Tables 4 and 7-9), are different.

To compare the overall performance of the optimal control policies 𝑢∗(𝑡) and their baseline alterna-

tives 𝑢̄(𝑡), let us reorganize the data presented in Tables 4 and 7-9 and summarize all additional benefits

rendered by 𝑢∗(𝑡) in Figure 10 that graphically expresses the dynamics of additional benefits obtained

by employing 𝑢∗(𝑡) versus 𝑢̄(𝑡) as a function of budget cuts and for each type of insecticide.

From the analysis performed in Subsection 4.3 for three types of insecticides (with low, medium, or

high lethality), it is worth recalling that optimal control policies 𝑢∗(𝑡) demonstrate higher endurance and

resilience to possible budget reductions, so their benefits become more visible under stronger budget

constraints. The latter can be observed in all three charts of Figure 10 where the numbers of human

infections prevented by 𝑢∗(𝑡) increase for smaller available budgets and for all types of insecticides

used in vector control measures.

However, the benefits of employing 𝑢∗(𝑡) versus 𝑢̄(𝑡) are less remarkable when vector control mea-

sures are based on low-lethality insecticide than on an insecticide with medium or high lethality (see

Figure 10, left chart). In particular, additional benefits rendered by optimal control policy 𝑢∗(𝑡) are

insignificant when low-lethality insecticide is applied either without budget constraints or under 20-

40% budget cuts, while the operational structure of 𝑢∗(𝑡) is more sophisticated than that of 𝑢̄(𝑡) and

should require additional adjustments, which may possibly lead to additional operation costs. There-

fore, in situations described above, traditional operational approach relying on baseline control actions

𝑢̄(𝑡) is still acceptable.

On the other hand, as budget constraint becomes stronger (eg, 60% budget cut) while the lethality

of insecticide remains low, it looks reasonable to replace the habitual modus operandi of bang-bang

type, 𝑢̄(𝑡), by more sophisticated optimal control policy 𝑢∗(𝑡), which may additionally prevent 14 human

infections and save about 8.400 dollars to the healthcare system (here we have assumed the total societal

cost of one human infection equal to 600 dollars36,37).

When insecticides with medium or high lethality are used for coercive short-term measures aimed

at suppressing dengue outbreaks, the advantages of employing 𝑢∗(𝑡) become more apparent even

if accounting for possible additional costs that relate to the change of operational mode. Namely,

application of optimal control policies 𝑢∗(𝑡) instead of their habitual baseline alternative actions

𝑢̄(𝑡) may additionally avoid between 16 and 169 human infections during a single disease outbreak

(see Figure 10, central and right charts). The latter implies that local healthcare system may save

between 9.600 and 101.400 dollars by only changing its operational mode for insecticide spraying. In
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a low-income country, such as Colombia, where more than 20% of children below 5 years of age do

not have access to basic vaccination plans,38 this is an important consideration. In effect, a complete

vaccination scheme of hexavalent vaccine (three doses, protects against diphtheria, tetanus, pertussis,

poliomyelitis, Haemophilus meningitis, and hepatitis B) costs about 117 dollars per one child according

to information available online at http://www.finanzaspersonales.co/cuanto-cuesta/articulo/cuanto-

cuesta-un-esquema-de-vacunacion/36245 (accessed on April 25, 2019). This simple example shows

what kind of real benefits may provide the change in operational mode of insecticide spraying to

public welfare in low-income countries.

In conclusion, we hope that the outcomes of this study will be sufficiently appealing to superordi-

nate public health authorities in countries suffering from periodic or intermittent outbreaks of vector-

borne infections and motivate them to make the necessary adjustments in operational mode of insecti-

cide spraying.
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