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In discussing our teaching, we may focus on content, what we want our students to
learn, or on pedagogy, what we do to help them learn. These two topics are of course
related. In particular, changes in pedagogy are often driven in part by changing priorities
for what kinds of things we want students to learn. It is nonetheless convenient to address
content and pedagogy separately. Pedagogy, certainly the less specific of the two, is the
topic of my second paper. This paper concerns content, and in particular contains one
side of a conversation between a statistician and mathematicians who may find themselves
teaching statistics.

How does statistics differ from mathematics? How does this affect the teaching of
statistics to beginners? Statisticians are convinced that statistics, while a mathematical
science, is not a subfield of mathematics. Like economics and physics, statistics makes
heavy and essential use of mathematics, yet has its own territory to explore and its own
core concepts to guide the exploration. I will not rehearse the evidence that statistics is
not mathematics, which appears in a somewhat polemical form in [17].

Given those convictions, we would naturally prefer that beginning statistics be taught
as statistics. The American Statistical Association and the MAA have formed a joint
committee to discuss the curriculum in elementary statistics. The recommendations of
that group reflect the view that statistics instruction should focus on statistical ideas.
Here are some excerpts (Cobb [8]; a longer discussion appears in [9]):

Almost any course in statistics can be improved by more emphasis on data and
concepts, at the expense of less theory and fewer recipes. To the maximum
extent feasible, calculations and graphics should be automated.-

Any introductory course should take as its main goal helping students to learn
the basics of statistical thinking. [These include] the need for data, the impor-
tance of data production, the omnipresence of variability, the quantification
and explanation of variability.

The recommendations of the ASA/MAA committee reflect changes in the field of
statistics over the past generation. Academic statistics, unlike mathematics, is linked to a
larger body of non-academic professional practice. Computing technology has completely
changed the practice of statistics. Academic researchers, driven in part by the demands
of practice and in part by the capability of new technology, have changed their taste in
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research. Bootstrap methods, nonparametric data smoothing, regression diagnostics, and
more general classes of models that require iterative fitting are among the recent fruits
of renewed attention to analysis of data and scientific inference. Efron and Tibshirani
[10] describe some of this work for non-specialists.

Many mathematicians recognize that statistics (unlike probability theory) is a distinct
discipline. I am fond of the statement by the eminent probabilist David Aldous [1] that
he “is interested in the applications of probability to all scientific fields except statistics.”
I should add at once that although mathematics can prosper without statistics, the
converse fails. Bullock’s [3] claim that “Many statisticians now insist that their subject
is something quite apart from mathematics, so that statistics courses do not require any
preparation in mathematics.” draws a clearly false implication. All statistics courses
require some preparation in mathematics, and some require a great deal. Elaborate
mathematical theories undergird some parts of statistics, and the study of these theories
is part of the standard training of statisticians.

Our topic of conversation here is rather the nature of beginning instruction in statis-
tics at any level. Even mathematically sophisticated students would do well not to begin
their study of physics with a course in analytical mechanics that revels in the mathemat-
ical formalism and assumes some prior acquaintance with the physical phenomena that
the mathematics describes. So it is with statistics. The subject matter of statistics is
data, and any responsible introduction to statistics should begin by giving students expe-
rience with data and a working knowledge of the concepts that organize the statistician’s
approach to data.

Neither Mathematics Nor Magic

It is helpful to rehearse the reasons why instruction in beginning statistics that is driven
by theory (even when that theory is not explicitly taught) is a bad idea. More detail on
this appears in [19]. Here is an example of a simple statistical problem. (From [20]; the
full study is described by Lyle et al. [16]).

Does increasing the amount of calcium in our diet reduce blood pressure?
Examination of a large sample of people revealed a relationship between cal-
cium intake and blood pressure. The relationship was strongest for black
men. Researchers therefore conducted an experiment.

The subjects in part of the experiment were 21 healthy black men. A ran-
domly chosen group of 10 of the men received a calcium supplement for 12
weeks. The control group of 11 men received a placebo pill that looked identi-
cal. The experiment was double-blind. The response variable is the decrease
in systolic blood pressure for a subject after 12 weeks, in millimeters of mer-
cury.



Take Group 1 to be the calcium group and Group 2 the placebo group. Here
are the data for the 10 men in Group 1 (calcium),

7 —41817 -3 —-511011 -2
and for the 11 men in Group 2 (placebo),
-112 -1 -33 -552 —-11 -1 -3

From the data, calculate the summary statistics:

Group Treatment Samplesize Mean Standard deviation
1 Calcium 10 5.000 8.743
2 Placebo 11 —.273 5.901

The calcium group shows a drop in blood pressure, T = 5.000, while the
placebo group had almost no change, ¥ = —.273. Is this outcome good
evidence that calcium decreases blood pressure in the entire population of
healthy black men more than a placebo does?

Standard procedures for analyzing this example assume that the data fit this mathe-

matical model:
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A routine significance test derived from this model answers the “Is this outcome good
evidence?” question. But is the model adequate?

This model is in fact incomplete in a most serious way: it does not distinguish between
observational data (e.g., from a sample survey) and data from a randomized compara-
tive experiment such as the calcium study. The distinction between observation and
experiment is one of the most important in statistics. The researchers want to reach
causal conclusions: calcium causes a reduction in blood pressure. Experiments often al-
low causal conclusions, while observational studies almost always leave issues of causation
unsettled and subject to debate. Yet the mathematical models of statistical theory are
identical for observational and experimental data.

The model, like most idealized mathematical models for real phenomena, is also un-
realistic. In the words attributed to the statistician George Box, “All models are wrong,
but some are useful.” The user of inference methods based on this model must carefully
explore its adequacy to her setting and her data. Were there flaws in the data production
(whether sample or experiment) that render inference meaningless? Are the data, which
are certainly not independent observations on a perfectly normal distribution, sufficiently
normal to allow use of standard procedures? This question is answered by exploratory ex-
amination of the data themselves, combined with knowledge of how “robust” the planned
analysis is under deviations from normality.



Theory-based instruction tends to emphasize how methods follow from models, often
with only the most general warnings about the realities of practice. Statistics in practice
is close to a dialog between models and data. Models for the process that produced our
data do indeed play a central role in statistical inference. The mathematical exploration
of properties and consequences of models is therefore important (as it is in economics
and physics). But the data are also allowed to criticize and even falsify proposed models.
We can modify Box’s dictum into a practical version of the statement that statistics is
not just mathematics: Mathematical theorems are true; statistical methods are sometimes
effective when used with skill.

The mathematical model provides a basis for formal statistical inference, the confi-
dence intervals and significance tests familiar to all students of statistics. Our brief dis-
cussion has pointed to the importance of the design of data production and of exploratory
analysis of data. These aspects of statistics are not founded on a mathematical theory
and will be neglected in a mathematically-structured treatment. Yet they are fundamen-
tally important in both statistical practice and statistical research. An over-emphasis
on probability-based inference is one mark of an overly mathematical introduction to
statistics.

The reluctance of mathematically trained teachers to abandon a theory-driven presen-
tation of basic statistics has a respectable basis: to avoid presenting statistics as magic.
It is certainly common to teach beginning statistics as magic. The user of statistics is
in many ways very like the sorcerer’s apprentice. The incantation has an automatic ef-
fectiveness, rendering theses acceptable and studies publishable. We are not meant to
understand how the incantation works—that is the domain of the sorcerer himself. The
incantation must follow the recipe exactly, lest disaster ensue—exploration and flexibil-
ity, like understanding, are forbidden to the apprentice. Fortunately, the sorcerer has
provided software that automates the exact following of approved incantations.

The danger of statistics-as-magic is real. But the proper defense is not a retreat to
a mathematical presentation that is inadequate to the subject and often incomprehen-
sible to students. Mathematical understanding is not the only kind of understanding. It
is not even the most helpful kind in most disciplines that employ mathematics, where
understanding of the target phenomena and core concepts of the discipline take prece-
dence. We should attempt to present an intellectual framework that makes sense of
the collection of tools that statisticians use and encourages their flexible application to
solve problems. A student understands mathematics when she appreciates the power of
abstraction, deduction, and symbolic expression, and can use mathematical tools and
strategies flexibly in dealing with varied problems. Reasoning from uncertain empirical
data is a similarly powerful and pervasive intellectual method. What follows is an inad-
equate attempt to describe the intellectual framework of statistics and to comment on
implications for teaching.



What is Statistics?

Statistics is a methodological discipline. It exists not for itself but rather to offer to
other fields of study a coherent set of ideas and tools for dealing with data. The need for
such a discipline arises from the omnipresence of variability. Individuals vary. Repeated
measurements on the same individual vary. In some circumstances, we want to find
unusual individuals in an overwhelming mass of data. In others, the focus is on the
variation of measurements. In yet others, we want to detect systematic effects against
the background noise of individual variation. Statistics provides means for dealing with
data that take into account the omnipresence of variability. It is helpful to organize the
subject matter of statistics under three heads:

1. Analyzing and describing data.
2. Producing data.

3. Inference frqm data.

Data analysis

Data analysis is the contemporary form of “descriptive statistics,” powered by more
numerous and more elaborate descriptive tools, but especially by a philosophy due in
large measure to John Tukey of Bell Labs and Princeton. The philosophy is captured in
the now-common name, exploratory data analysis, or EDA. The goal of EDA is to see
what the data in hand say, on the analogy of an explorer entering unknown lands. We
put aside (but not forever) the issue of whether these data represent any larger universe.
Here is an elementary summary (from [20]) of the distinctions between EDA and standard
inference:

EXPLORATORY DATA ANALYSIS | STATISTICAL INFERENCE

Purpose is unrestricted exploration | Purpose is to answer specific

of the data, searching for questions, posed before the

interesting patterns. data were produced.

Conclusions apply only to the Conclusions apply to a larger group
individuals and circumstances for of individuals or a broader class

which we have data in hand. of circumstances.

Conclusions are informal, based on Conclusions are formal, backed by
what we see in the data. a statement of our confidence in them.

In practice, exploratory analysis is a prerequisite to formal inference. Most real data
contain surprises, some of which can invalidate or force modification of the inference that
was planned. Running data through a sophisticated (and therefore automated) inference
procedure before exploring them carefully is the mark of a statistical novice. The dialog



between data and models continues with more advanced diagnostic tools that allow data
to criticize specific models. These tools combine the EDA spirit with the results of
mathematical analysis of the consequences of the models.

Wide availability of cheap computing, especially graphics, has combined with the
desire to “let the data speak” to generate an abundance of new tools: stemplots, boxplots,
model-free scatterplot smoothers, resistant regression algorithms, clever ideas for display
of high-dimensional data on two-dimensional screens, and many more advanced diagnostic
tools for specific situations. Standard statistical software implements much of this. The
books [5] and [7], by Bell Labs scientists influenced by Tukey, present much of the basic
graphical material. The software packages S and S-PLUS, which originated at Bell Labs,
implement more of the new graphics and also implement several new classes of models.
See [6] for detailed discussion of the latter.

At the level of beginning instruction, it is easy to view data analysis as a collection
of clever tools (stemplots, five-number summaries, ... ). We should attempt to also offer
our students an overview, to help them grasp the strategies that organize the examining
of data:

1. Proceed from simple to complex: first examine each variable individually, then look
at relationships among them.

2. Use a hierarchy of tools: first plot the data, then choose appropriate numerical
descriptions of specific aspects of the data, then if warranted select a compact
mathematical model for the overall pattern of the data.

3. Look at both the overall pattern and at any striking deviations from that pattern.

We reinforce these principles by filling in the specifics in each of several settings.
Given data on a single quantitative variable, we may expect students to display the
distribution by a stemplot, note that it reasonably symmetric, calculate the mean and
standard deviation as numerical summaries, and use a normal quantile plot to see whether
a normal distribution is a suitable compact model for the overall pattern. Given two
quantitative variables, we draw a scatterplot, measure the direction and strength of
linear association by the correlation, and, if warranted, use a fitted straight line as a
model for the overall pattern.

I expect students to write coherent descriptions of data. To help them, I provide
outlines for implementing the second and third points above in various settings. Figure 1,
for example, is the outline for describing a single quantitative variable. Following this
outline requires both knowledge of the tools mentioned and judgment to choose among
them and interpret the results. Judgment is formed by experience with data. Students
cannot at first “read” graphs any more than they can read words or equations. Here
is an example of a basic one-variable data analysis. Describing relations among several
variables requires more elaborate tools and finer judgment.



Figure 1: Outline for describing data on a single quantitative variable

A. Describe the data

number of observations
nature of the variable
how it was measured

units of measurement
B. Plot the data; choose from

dotplot
stemplot

histogram
C. Describe the overall pattern

shape
no clear shape?
skew or symmetric?
single or multiple peaks?

center and spread; choose from

five-number summary
mean and standard deviation

is normality an adequate model (normal quantile plot)?
D. Look for striking deviations from the overall pattern

outliers

gaps or clusters

E. Interpret your findings in C and D in the language of the problem setting.
Suggest plausible explanations for your findings.



Figure 2: Histogram of guinea pig survival times
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In a study of resistance to infection [2], researchers injected 72 guinea pigs
with tubercle bacilli and measured their survival time in days after infection.
Both a histogram (Figure 2) and a normal quantile plot (Figure 3) show that
the distribution of survival times is strongly skewed to the right. There are no
outliers—although some individuals survived far longer than the average, this
appears to be a characteristic of the overall distribution rather than pointing
to, for example, errors in measuring or recording these individuals.

The strong skewness suggests that the five number summary (min = 43 days,
first quartile = 82.5 days, median = 102.5 days, third quartile = 151.5 days,
max = 598 days) is a better numerical summary than the mean and standard
deviation (Z = 141.8 days, s = 109.2 days). There is very large variation
in survival times among the individuals—for example, the third quartile is
almost 150% of the median and the largest 6 observations are more than
double the median. Without more information, we cannot accurately predict
the survival time of an infected individual. Moreover, standard ¢ procedures
should not be used for inference about survival time. Inference could employ
a non-normal distribution as a model or seek a transformation to a scale that
is more nearly normal.

I have tried to suggest that there is a coherent (though not mathematical) set of
ideas and associated tools for exploring data. This material is core statistics. Moreover,
students like it and find that they can do it, a substantial bonus when teaching a subject
feared by many. Finally, exploration of data raises issues that prepare the way for



Figure 3: Normal quantile plot for guinea pig survival times
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inference. A week of “descriptive statistics” at the beginning of a course isn’t an adequate
introduction to data analysis.

Data production

Statistical ideas for producing data to answer specific questions are the most influential
contributions of statistics to human knowledge. Badly designed data production is the
most common serious flaw in statistical studies. Well designed data production allows us
to apply standard methods of analysis and reach clear conclusions. Professional statisti-
cians are paid for their expertise in designing studies; if the study is well designed (and
no unanticipated disaster occurred), you don’t need a professional to do the analysis. In
other words, the design of data production is really important. If you just say “Suppose
X, to X, are iid observations,” you aren’t teaching statistics.

The clinical trial on the effect of calcium on blood pressure was a randomized com-
parative ezperiment. Figure 4 presents the design in outline form.

Randomized comparative experiments are intended to produce good evidence that the
experimental treatments actually cause changes in the response. The random assignment
of subjects eliminates bias in forming the treatment groups and produces groups that
differ only through chance variation before we apply the treatments. The comparative
design reminds us that all subjects are treated exactly alike except for the contents of the
pills they take. Thus if we observe differences in the mean reduction in blood pressure
greater than could be expected to arise by chance, we can be confident that the calcium
brought about the effect we see.
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Figure 4: The simplest randomized comparative experiment
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Students should understand why randomized comparative experiments are the gold
standard for evidence of causation. Only then can they understand, for example, the
arguments against making available to patients with AIDS or other fatal disease any
treatment that has any promise of helping: we would then never learn which of these
treatments actually help, which have no effect, and which are on balance harmful. The
book [4] edited by the physicians Bunker and Barnes and the statistician Mosteller con-
tains striking examples of medical treatments that became standard in the days before
medicine adopted randomized comparative experiments, and were found to be worthless
when subjected to proper testing. Some AIDS activists come close to demanding a return
to the time when unproved and perhaps harmful treatments could avoid the scrutiny of
statistically designed trials.

The other major means of producing data are sample surveys that choose and ex-
amine a sample in order to produce information about a larger population. Interesting
examples abound—opinion polls sound and unsound, government collection of economic
and social data, academic data sources such as the National Opinion Research Center
at the University of Chicago. Statistical designs for sampling begin by insisting that
impersonal chance should choose the sample. The central idea of statistical designs for
producing data, through either sampling or experimentation, is the deliberate use of
chance. Explicit use of chance mechanisms eliminates some major sources of bias. It also
ensures that quite simple probability models describe our data production processes, and
therefore that standard inference methods apply. Designs for data production offer the
most secure basis for statistical inference in practice, and also provide a natural transition
to inference in teaching.

There is of course more to the statistical side of designing experiments and sample
surveys than “randomize.” The designs used in practice are often quite complex, and
must balance efficiency with the need for information of varying precision about many
factors and their interactions. Simple designs—randomized experiments comparing two
or several treatments, simple random samples from one or several populations—illustrate
the most important ideas and support the inference taught in a first statistics course. You
must talk about these designs, but need not go farther. Some other important material,
for example, procedures for developing and testing survey questions and for training and



supervising interviewers, is not usually presented in statistics courses. Statistics students
should be aware that these practical skills do matter, and that data production can go
awry even when we start with a sound statistical design. How much time to spend here
is a matter of a teacher’s judgment of the needs of her audience.

Inference

Statistical inference provides methods for drawing conclusions from data about the pop-
ulation or process from which the data were drawn. It now becomes essential (as it was
not in data analysis) to distinguish sample statistics from population parameters. The
true values of the parameters are unknown to us. We have the statistics in hand, but
they would take different values if we repeated our data production. Inference must take
this sample variability into account.

Probability describes one kind of variability, the chance variability in random phenom-
ena. When a chance mechanism is explicitly used to produce data, probability therefore
describes the variation we expect to see in repeated samples from the same population
or repeated experiments in the same setting. That is, probability answers the question,
“What would happen if we did this many times?” Standard statistical inference is based
on probability. It-offers conclusions from data along with an indication of how confident
we are in the conclusions. The statement of confidence is based on asking “What would
happen if I used this inference method many times?” That is exactly the kind of question
probability can answer (which is why we ask it). The indication of our confidence in our
methods, expressed in the language of probability, is what distinguishes formal inference
from informal conclusions based on e.g., an exploratory analysis of data.

Any particular inference procedure starts with a statistic (perhaps several statistics)
calculated from the sample data. The sampling distribution is the probability distribution
that describes how this statistic would vary if we drew many samples from the same pop-
ulation. In elementary statistics we present two types of inference procedures, confidence
intervals and significance tests. A confidence interval estimates an unknown parameter.
A significance test assesses the evidence that some sought-after effect is present in the
population.

A confidence interval consists of a recipe for estimating an unknown parameter from
sample data, usually of the form

estimate + margin of error

and a confidence level, which is the probability that the recipe actually produces an
interval that contains the true value of the parameter. That is, the confidence level
answers the question, “If I used this method many times, how often would it give a
correct answer?”

A significance test starts by supposing that the sought-after effect is not present
in the population. It asks “In that case, is the sample result surprising or not?” A
probability (the P-value) says how surprising the sample result is. A result that would

11



12

Figure 5: Is this observation surprising?

\

rarely occur if the effect we seek were absent is good evidence that the effect is in fact
present. Figure 5 illustrates this reasoning in our medical example. The normal curves in
that figure represent the sampling distribution of the difference Z — 3§ between the mean
blood pressure decreases in the calcium and placebo groups, for the case of no difference
between the two population means. This distribution, which shows the variability due
to chance alone, has mean 0. Outcomes greater than 0 come from experiments in which
calcium reduces blood pressure more than the placebo. If we observe result A, we are
not surprised; an outcome this far above 0 would often occur by chance. It provides no
credible evidence that calcium beats the placebo. If we observe result B, on the other
hand, the experiment has produced an effect so strong that it would almost never occur
simply by chance. We then have strong evidence that the calcium mean does exceed the
placebo mean. The P-value (the right tail probability) is 0.24 for point A and 0.0005 for
point B. These probabilities quantify just how surprising an observation this large is when
there is no effect in the population. What about the actual data? Point C shows the
observed value T — 7 = 5.273. The corresponding P-value is 0.055. Calcium would beat
the placebo by at least this much in 5.5% of many experiments just by chance variation.
The experiment gives some evidence that calcium is effective, but not extremely strong
evidence. (A note for those who worry about details: These P-value calculations took
the variability of the sample means to be known. In practice, we must estimate standard
deviations from the data. The resulting test has a larger P-value, P = 0.072.)

Those five paragraphs describe briefly how inference works. Because the details are
in practice automated, we would like students to grasp these ideas. They are not easy to
grasp. The first barrier is the notion of a sampling distribution. Choose a simple setting,
such as using the proportion p of a sample of workers who are unemployed to estimate the
proportion p of unemployed workers in an entire population. Physical examples (sampling
beads from a box), computer simulations, and encouraging thought experiments all help



convey the idea of many samples with many values of p. Keep asking, “What would
happen if I did this many times?” That question is the key to the logic of standard
statistical inference.

Once the idea of a sampling distribution begins to settle, the tools of data analysis
help us take the next steps. Faced with any distribution, we ask about shape, center,
and spread. The shape of the sampling distribution of p is approximately normal. The
mean is equal to the unknown population proportion p. This says that p as an estimator
of p has no bias, or systematic error. The precision of the estimator is described by
the spread of the sampling distribution, which (thanks to normality) we measure by its
standard deviation. We are now only details away from confidence intervals.

The second major barrier is the reasoning of significance tests. Although the basic
idea (“Is this outcome surprising?”) is not recondite, the details are daunting. There’s
no escape from null and alternative hypotheses and one- versus two-sided tests. The logic
of testing, which starts out “Suppose for the sake of argument that the effect we seek is
not present ...” isn’t straightforward. I’d like most of my students to understand the
idea of a sampling distribution; I know that quite a few won’t understand the reasoning
of significance tests. My fallback position is to insist that they be able to verbalize
the meaning of P-values produced by software or reported in a journal. This is part
of insisting that students write succinct summaries of statistical findings. “The study
compared two methods of teaching reading to third-grade students. A two-sample ¢ test
comparing the mean scores of the two treatment groups on a standard reading test had
P-value P = 0.019. That is, the study observed an effect so large that it would occur
just by chance only about 2% of the time. This is quite strong evidence that the new
method does result in a higher mean score than the standard method.”

Two concluding remarks about inference. First, a conceptual grasp of the ideas is
almost pictorial, based on picturing the sampling distribution and following the tactics
learned in data analysis. No amount of formal mathematics can replace this pictorial
vision, and no amount of mathematical derivation will help most of our students see the
vision. The mathematics is essential to our knowing the facts, but this does not imply
that we should impose the mathematics on our students.

Second, we want our students to know a good deal more than the big picture and
several recipes that implement it in specific settings. Here are some further points, both
practical and conceptual, roughly in order of importance. How far down the list you
should go depends on your audience.

e Study of specific inference procedures reveals behaviors that are common and that
all students should understand. To get higher confidence from the same data, you
must pay with a larger margin of error. Even effects so small as to be practically
unimportant will be highly significant in the statistical sense if we base a significance
test on a very large sample.

e Lots of things can go wrong that make inference of dubious value. Comparing
subjects who choose to take calcium against others who don’t tells little about the
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effects of calcium, because those who choose to take calcium may be very health-
conscious in general. One extreme outlier could pull the conclusion of our medical
experiment in either direction, again invalidating making the results of inference.
Examine the data production. Plot the data. Then, perhaps, go on to inference.

Inference procedures themselves don’t tell us that something went wrong. The mar-
gin of error in a confidence interval, for example, includes only the chance variation
in random sampling. As the New York Times says in the box that accompanies
its opinion poll results, “In addition to sampling error, the practical difficulties of
conducting any survey of public opinion may introduce other sources of error into
the poll.”

Common inference procedures really are based on mathematical models like the
one that appears in our medical example,

X],Xz,...,Xn lld N(/Iq,O’l)
Y:,Ys,...,Yy iid N(pa,02)

This model isn’t exactly true; is it useful? In fact, the two-sample ¢ procedures
that follow from this model when we want to compare p; and p, are quite robust
against non-normality. So the model does lead to practically useful procedures.
But the variance ratio F statistic for comparing o; and o3 is extremely sensitive to
non-normality, so much so that it is of little practical value. Even beginners need
to be aware of such issues.

We often want to do inference when our data do not come from a random sample
or randomized comparative experiment. Think, for example, of measurements on
successive parts flowing from an assembly line. Inference is justified by a probability
model for the process that produced our data, and the correctness of the model can
to some extent be assessed from the data themselves. Randomized data production
is the paradigm and the most secure setting for inference, but it is not the only
allowable setting.

Inductive inference from data is conceptually complex. It’s not surprising that
there are alternative ways of thinking about it. Standard statistical theory tends
to think of inference as if its purpose were to make decisions. A test must decide
between the null and alternative hypotheses, for example. This leads at once to
Type I and Type II errors and so on. The decision-making approach fits uneasily
with the “Is this outcome surprising?” logic expressed by P-values. I think that
assessing the strength of evidence is a much more common goal than making a
decision, but not everyone agrees. The Bayesian school of thought goes farther,
by introducing an explicit description of the available prior information into any
statistical setting and combining prior information with data to reach a decision.
Almost all statisticians think this is sometimes a good idea. Bayesians think all



statistical problems can be made to fit their paradigm. This is a (strongly held)
minority position. Deep water ahead.

What About Probability?

Probability is an essential part of any mathematical education. It is an elegant and
powerful field of mathematics that enriches the subject as a whole by its interactions
with other fields of mathematics. Probability is also essential to serious study of applied
mathematics and mathematical modeling. The domain of determinism in natural and
social phenomena is limited, so that the mathematical description of random behavior
must play a large role in describing the world. Whether our mathematical tastes run to
purity or modeling, probability helps to satisfy them.

We are, however, discussing introductory statistics rather than mathematics. Prob-
ability is the branch of mathematics most heavily applied in statistics. In particular,
probability provides the theoretical structure of standard statistical inference, which is
based on asking “What would happen if we used this method very many times?” What
should be the place of probability in beginning instruction in statistics? My position is
not standard, though it is gaining adherents: first courses in statistics should contain
essentially no formal probability theory.

Why? First, because informal probability is sufficient for a conceptual grasp of infer-
ence. The “what would happen” question of standard inference is answered by referring
to the sampling distribution of a statistic, which records the pattern of variation of the
outcomes of, for example, many random samples from the same population. If we agree
that actually deriving these distributions is better left to more advanced study, they can
be understood as distributions using the tools of data analysis, without the apparatus of
formal probability. Rules for P(A|J B) add very little to a statistics course.

The second reason to avoid formal probability is that probability is conceptually the
hardest subject in elementary mathematics. The history of probabilistic ideas (see for
example [12] and [21]) is fascinating but a bit frightening. Better minds than ours long
found the subject confusing in the extreme. Psychologists, beginning with Tversky and
his collaborators, have demonstrated that confusion persists, even among those who can
recite the axioms of formal probability and who can do textbook exercises. Our intu-
ition of random behavior is gravely and systematically defective. See e.g. Tversky and
Kahneman [22] and the collection by Kapadia and Borovcnik [15]. What is worse, math-
ematics educators have found no effective way to correct our defective intuition. Garfield
and Ahlgren [11] conclude a review of research by stating that “teaching a conceptual
grasp of probability still appears to be a very difficult task, fraught with ambiguity and
illusion.” They suggest study of “how useful ideas of statistical inference can be taught
independently of technically correct probability.” I believe that concentrating on the idea
of a sampling distribution allows this, at least at the depth appropriate for beginners.

The concepts of statistical inference, starting with sampling distributions, are of
course also quite tough. We ought to concentrate our attention, and our students’ limited
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patience with hard ideas, on the essential ideas of statistics. We faculty imagine that
formal probability illumines those ideas. That’s simply not true for almost all of our
students.

What About Mathematics Majors?

Mathematics majors traditionally meet statistics as the second course in a year-long
sequence devoted to probability and statistical theory. I hope it is clear that I don’t
regard a tour of sufficient statistics, unbiasedness, maximum likelihood estimators, and
the Neyman-Pearson theorem as a promising way to help students understand the core
ideas of statistics. On the other hand, mathematics majors should certainly see some of
the mathematical structure of statistical inference. What ought we to do?

My preference is to precede the study of theory by a thorough data-oriented intro-
duction to statistical ideas and methods and their applications. That is, mathematics
students are not necessarily an exception to the principle that a first introduction to
statistics should not be based on formal probability. If the students have strong quanti-
tative backgrounds, a data-oriented course can move quickly enough to present genuinely
useful statistics and serious applications. The need for theory can be made clear as we
face issues of practice, and the theory makes much more sense when its setting in practice
is clear. In many institutions, however, constraints or faculty hesitation make this path
difficult. In others, there is little coordination between the “applied” and theoretical
courses, so that the latter does not in fact build on the former.

We ought therefore to reconsider what a one-semester introduction to statistics for
mathematics majors and other quantitatively strong students should look like. This
course will naturally follow a course in probability. Here we encounter another barrier:
we can’t in good conscience retool both semesters of the standard probability-statistics
sequence to optimize the introduction to statistics. Probability is important in its own
right, not just as preparation for statistical theory. The more emphasis a department
places on applications and modeling in its major curriculum, the more the probability
course must play an essential role in this emphasis. An introduction to probability that
emphasizes modeling and includes simulation and numerical calculation certainly sets
the stage for statistics, but I am hesitant to move any strictly statistical ideas into the
probability semester. The reform of probability and the reform of statistics are distinct
issues.

Our goal, I think should be an integrated statistics course that moves through data
analysis, data production, and inference in turn, emphasizing the organizing principles
of each. We should certainly take advantage of and strengthen the student’s mathemat-
ical capacities. Although data analysis and data production have no unifying theory,
mathematical analysis can illumine even data analysis. Here are a few examples.

A. Consider the optimality properties of measures of center for n observa-
tions. The mean minimizes the mean squared error; the median minimizes



the mean absolute error (and need not be unique); the midrange minimizes
the maximum absolute (or squared) error; try minimizing the median abso-
lute error for n = 3 and examine the unpleasant behavior of the resulting
measure.

B. Students met the Chebychev inequality while studying probability. Now
they may meet the interesting inequality |# — m| < o linking the mean, me-
dian, and standard deviation of any distribution (see Watson [23]). Describe
one-sample data by the empirical distribution (probability 1/n on each ob-
served point) to draw conclusions about how far apart the sample mean and
median may be.

C. The least-squares regression line is the analog of the mean 7 for predicting
y from z. Derive it. Then explore, perhaps using software, analogs of the
other measures in A above.

Data production lends itself to probability calculations that illustrate how likely it
is that random assignments will be unbalanced in specific ways; the advantages of large
samples soon become clear.

Very nice. We can give our students a balanced introduction to statistics that makes
use of their knowledge of mathematics. The inevitable consequence is that we spend less
time on inference. We must decide what to preserve and what to cut. There is as yet no
consensus, because despite much grumbling, the reform of the math major sequence has
not yet begun. Imagining such a reform is a good place to end a discussion of statistics,
mathematics, and teaching. This is your take-home exam: design a better one-semester
statistics course for mathematics majors.
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