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ABSTRACT

The Euler-Maclaurin summation formula is frequently used to efficiently estimate
sums of infinite series of the form ZJ"';I f(j). The purpose of this article is to describe a
modification of this numerical technique designed to simplify and reduce the computational
effort required to obtain an acceptable estimate of the sum. The modified formula is obtained
by replacing f (z) with an easily constructed polynomial like interpolating function a (z)
designed to simplify the calculation of the integral and derivatives associated with Euler-
Maclaurin. This approach provides a more tractable algorithm which can be written as
a matrix equation. Examples are provided to demonstrate that the accuracy of the new
algorithm compares favorably with that of the traditional formula. The paper concludes
with a brief discussion of a method for approximating the error incurred when replacing the
exact value of the sum of the original series with the estimate.

1 INTRODUCTION

Let f : [1,00) — R and k£ > 1. Under suitable conditions, the Euler-Maclaurin
summation formula

Z fG) = 2 fG)+ / f(z)dz + %f(k) - 1—12 f'(k) + ?;‘6 k) — - (1)
Jj=1 j=1 %

is used to approximate sums of infinite series ([Stoer and Bulirsch, 1995]). The coefficient of
fU=Y (k) in the above expression is given by (=1)"' B;/j!,j = 1,2,..., where B; denotes

*Part of the rescarch prescented in this paper was completed while this author was an undergraduate
student at the University of Akron. 1
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the j-th Bernoulli number. Recall that Byjiy = 0 for j = 1,2, .... Formula (1) was evidently
independently discovered by Leonhard Euler and Colin Maclaurin ([Goldstein, 1977]). In

practice, we let

Bualf) = [ f(aMda+ 316 = g5 (0)+ -+ 7ot fOk) ©

so that

Zf(a)~Zf ) + B a(f (EM)
serves as an estimate for the sum of the series.

Example 1 Using k = 10 and no derivative terms in the EM formula gives the estimate

oo 10
Zj_z = Zj—2 + Ell,g(l'_z) =1.6448
=1 j=1

which compares favorably with the true answer of 72/6 = 1.6449.

It would require summing almost 10,000 terms of Z‘J";l j~2 to obtain the same accu-
racy. The estimate using Ey; 1(z~2), which includes the first derivative term, is correct to six
decimal places. Such improvements are common thus encouraging the inclusion of derivative
information when computationally feasible.

The formula may produce incorrect results if used without care. For example, using
E13(z72) in EM yields the unacceptable estimate 1.633333. Including higher derivatives
terms eventually worsens the accuracy. In fact, the EM formula always produces the diver-
gent series

SF0) = R+ s ()

2 12 720
when f(z) = z72. This difficulty can not be avoided but its effect can frequently be nu-
merically eliminated by first summing a few terms of the series 21—1 f(j) before employing
EM. You are encouraged to examine the material in [Ralston and Rabinowitz, 1978] and
[Stoer and Bulirsch, 1995] to learn more about these issues related to the art of numerical
mathematics.

There are alternatives to using formula (1). For example, Longman ([Longman, 1987])
in an effort to accelerate the rate of convergence of 322, f(j), derived a new series which
normally converges much faster than the original. His algorithm enjoys the property that
no integrals or derivatives of f (z) are needed but it does require an approximation to f(z)
of the form

N
HOEDY fo a>1 (3)

v=1

Longman correctly observed that his technique is not a reformulation of formula (1) but it
can be shown that it is equivalent to applying this formula to the sum in (3).
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The calculation of the integral and derivatives can be prominent obstacles when using
the EM formula. Our goal is to develop an alternate algorithm that mimics the impressive
numerical advantages of this estimate while lowering these hurdles. Essentially, we approx-
imate f(z) with a polynomial like function a(z) and then replace E4(f) in (EM) with
E} 4 (a) to produce the Modified Euler-Maclaurin formula

> 56)~ Y FG)+ Bra o). (vEM)

=1

The advantage of this strategy is that the function a is easily derived and requires only
elementary calculus to determine its integral and derivatives.

2 THE ALGORITHM

The function a (z) must approximate f(z) on an interval of the form [k, c0) where
k € N. Our first step in defining a (z) is to set

g(z) = c 'z R f(1/x), = € (0,1/k]. (4)

The constant ¢ € R and exponent 8 € R, 3 > 1, are chosen so that g(0) = lim,_o+ g (z) = 1.
We assume that g is analytic at z = 0 in the complex variable sense. Fix k£ > 2. The approx-
imating function a (z) is constructed by replacing g (z) in formula (4) with its polynomial
interpolant p, (z) of degree p = k — n in the nodes 0,1/n,1/(n+1),...,1/(k — 1) where
1 < n < k— 1. Since formula (4) is equivalent to

f(z) = cx™P9(1/z), z € [k,00) (5)
and p,(1/z) ~ g(1/z) for z € [k, o0), the function
a(z) = c~p, (1/2) 6)

serves as an approximation to f (z). Determining p, (z) requires no additional functional
evaluations since f(n),..., f(k — 1) are needed in the sum Z':ll f(J). Since p, (z) inter-
polates to g (z) at z = 0 this strategy exploits the behavior of f at z = co. The function
a(z) is polynomial like (8 may not be an integer) in 1/z so its integral and derivatives are
reasonably simple to calculate. The following example illustrates the MEM formula.

1

Example 2 Let f(z) = WIATL Then

1 1 1
)= =g [ ———

soc=18=3, and g(z) = (1 +z/2+23/2)"". Using the nodes 0,1/8,1/9, and 1/10,
(n =8 and k = 11) produces the degree three polynomial interpolant

7270699 1692191 , 74488
- x4+ Tt — T

14 559930 7279 965 161777

D3 (.’L‘) =1
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to g(x). The coefficients of ps are solutions to the system

1 0 0 0 1 1
0 1/8 1/64 1/512 | | a | _ | g(1/8)—1 )
0 1/9 1/81 1/729 || a |~ | g1/9)—1 |-

0 1/10 1/100 1/1000 | | as g(1/10) — 1

Setting a (z) = 3273p3(1/z) we obtain the MEM estimate

ot 10
S £G) = Y () + Ena(a) = 0331491171
i=1 j=1

The estimate in Example 2 compares favorably with the value 0.331 491 163 produced
by (EM) using By 3 (f). The fourth degree interpolant in the nodes 0,1/7,1/8,1/9, and 1/10
yields about the same accuracy obtained by applying (EM). The true answer to nine decimal
places is Y .o, f(j) = 0.331491 164.

It is easy to reduce the 4 x 4 system in (7) to an equivalent 3 x 3 system. The
motivation for using the larger dimension will become apparent in the sequel. The value
k = 11 was chosen in Example 2 to be large enough to reduce the error but small enough
to limit the number of function evaluations of f. Two derivative terms were used in the
calculations above and including a third has virtually no effect on either of the EM or MEM
formulas.

3 COMPUTATIONAL MATTERS

At first glance it may seem reasonable to compute p, using, say, the Newton form of
the interpolating polynomial since this formulation uses the results of previous calculations
when additional nodes are added. (See, for example, [Mathews and Fink, 1999].) However, as
Example 2 illustrates, representing the interpolant as a Taylor section p,(z) = 1 +Z;‘=l a;z!
has the desirable advantage of further simplifying the calculation of integrals and derivatives.
In addition, as we shall see later in this section, we will explicitly solve the matrix equation
needed to compute the coefficients of p,.

3.1 A linear system

In general, the coefficients for p, are given by the linear equation

a-1 - -

[ 1 ] 1 0 0o - 0 1
o [0 4 & w || e
@ |=|0 @y @ 7 mEe 9 -1 . (8)
a 0o 1 1 (;) -1

[ % ] i E=1  (k-1)? k= | L I9\gT ]
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Let O, xn represent the m X n zero matrix, set M, = [(n +i— 1)_j] 43 =1,...,p, and
2V}
write (8) more succinctly as the block matrix equation

-1
1 leﬂ 1 OIX[J
] nk = ! ke 9
Ank { 0wt Mo ] Bnk [ Opa M1 Bn.k 9)
Setting x? (z)=[1 z! --- £77],j=0,1,..., we have
pu (z) =X, (x) O | g (10)
0ux1 Mnk ’

3.2 Computing M ,f,

To determine M, 'k we will need the fundamental Lagrange polynomials ([?]) in the
nodes {1 — ¢},_, given by

Qj(:c)—( (1)3(# J,H(z+£ 1),j=1,....n
l#J

For a fixed 7,1 < j < p, the polynomial g; (z) is of degree u, hasroots {£:1 < £ < pu, € # j},
and satisfies g; (1 — j) = 1.

Proposition 3 Let B, be the matriz with i, j-th entry

—1) (n4+37 - 1" o
(Bn,k),-,,-=( )((p—i])! ) )(n), Li=1,...,p.

Then Bny = Mn‘ k-

Proof. We prove this proposition by showing that M, x B, x = I,x, where I, denotes the
p X p identity matrix. The 4, j-th entry of this product is

(=D (4G - D) s
(Mn,an,k)i,j = Z (L —)S)E (7:-_“_7% — i)sq;' ) ('n/) .

s=1

Reindexing the above sum, factoring, and using the properties of powers of (—1) yield

(Mn’anJ‘)i,j = ((:’:‘Z : i'))# Z ((1 - ';)’ - n)3q§s) (n) .

The sum in the above expression is the Taylor representation for g; (z) centered at n and
evaluated at (1 — 7). Consequently,

(n+tj-1)"

(Mn,anJc)i,j = (n+i— 1) g; (1 —1).
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We have already observed that ¢; (1 —7) =0if ¢ # j and ¢; (1 — i) = 1 s0 M Bni = Luxp-
Hence, Bpy =M. ®

As an example we have

Bsi1 = | —4864 13122 8500
23040 -58320 36000

256  —729 500
. (11)

3.3 The MEM as a matrix equation

It follows from (6), (10), and Proposition 3 that a(z) can be computed using the

matrix formula
1 01 X n

Substituting this into (MEM) gives

] gn.k-

oo

k-1
S 1)~ L 16) + B @) | 5 g | e (12)

=1

where ET ; (z79x, ()) denotes the vector obtained by applying (MEM) to each component
of z7Px,, (z). For example,

T -2 _ 459 799 48097 5586 35007
Ell,S (ZE X3 ('T)) - [ 4831530 10629366 19487171 1714871048 I° (13)

T
Notice that E{d (z7Px, (z)) [ (1) By ] does not depend on f (although it does depend on

B) so this vector can be saved for future use.

Example 4 Let f(z) = (sinz™!) /z. Then

f(1/z) = zsinz = 2? (sinx)

x
soc=1,08=2, and

1 if =0 -
Using the nodes 0,1/8,1/9, and 1/10 with d = 3 and formula (18) produces

g(m)={ A

oo 10
. 1 0
~ - ET -2 1x3 ]
;f(J) s f() +Eq;3 (x X3 ("3)) [ 03,1 Bsn 89,11

= 1.472828 238.

This result compares favorably with the EM estimate using Eyy 3 (f) as well as with the true
value Y oo, f(j) = 1.472828 232.
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4 Using ¢ (0)

Formula (12) can be improved if the first derivative of the function g at 0 is known.
Here, we are interested in determining the polynomial interpolant

m
Pt (@) =1+ 02+ ) gz
j=1
that agrees with g at the nodes 0, ;15’ s ﬁ and with ¢’ at 0. Define the new approximating
function )
a(x) = ca:—ﬁﬁu_l_l(l/z) = cx—ﬁxZ_H (:L') [ 2x2 Ozx“

Dn An
O#x2 Bn,k ] kEnk
where D, ; = diag (1,1,n,--- ,k—1) and

. -
g (0)
ok = 9(%)_1—91(0)%
| 9(2) -1-9(0) & |
Hence,
-] k-1
> 10) % L 10) + B (s @) | 022 2 | Do 19
i=1 i=1 ’

The next example illustrates how formula (14) can be used to estimate Euler’s con-
stant

v = lim 1+l+l+'“+l—1nn = 0.577 215 665.
n—00 2 3 n
\
Example 5 Longman [Longman, 1987] notes that vy can be written as

. 1 1 1
7—nlirg(1+§+§+---+ﬁ—ln(n+1))

so that Euler’s constant can be expressed as the sum of the series

Set

1 z+1
f(m)—;—ln( . )
so that

~
—~
et
~
)
Il
8
I
—
=
N
8 |-
+
[a—ry



Since

it follows that c =3, B =2, and

1 if =0 ’

Moreover, ¢’ (0) = limg_o 2= = —2 5o

g7, =[1 -2 B _18In? 4 _162nl 2 _00mil ].

Since
T -2 _ 459799 48 097 5586 35007 54 806
E11,3 (ﬂ? X4 (.’L')) - [ 4831530 10629366 19487171 1714871048 35369215365 ]
we have
10 1 Iy O
~ )+ =ET . (27224 (z 22 23 | D 1811 = 0.577 215 662
v j;f(J) 5N (77724 (7)) | o Bay | DonBsut

which compares favorably with the approzimation v = 0.577 215 664 obtained by using F11 3 (f)
in (EM). The true answer to nine decimal places is v = 0.577215665.

This strategy can be extended to include additional derivative values of g at 0. For
example, if g”(0) is available we have the estimate

Q

oo k-1
3 £ = Y 1) + BLy (37 %y12 (2) [ s o ] D248

=1 =1 Oxa
where _ -
1
g (0)
g"(0) /2
s | sW-1-7O2-2Q
n, 1 1 "
9(F) -1-9O0) - 2(gn+1)
| 9(2) - 1-7 0 2 - 59 |

Numerical evidence suggests that using g” (0) does not significantly improve the accuracy
although it did produce a somewhat better approximation to v than did the EM estimate
with £k =11 and d = 3.
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5 ERROR ESTIMATES

The error introduced when using (EM) to estimate the sum of a series is no more than
twice the absolute value of the first omitted term ([Stoer and Bulirsch, 1995]). For example,
the error in the approximation given in Example 1 does not exceed 1% |22~ 2|__ o = 3555
Error bounds, however, are often too restrictive and can be difficult to compute. Perhaps
a more useful tool for determining the goodness of an approximation when a true value ¢ is

replaced by an estimate e is to approximate the relative error
t—e
ot

Notice that this error measures how well e/t estimates 1 and is used to determine the
number of significant digits in an approximation. An estimate is correct to s significant
digits if |r;] < 5 x 107%. (See [5] for more details.) Of course, the true value ¢ is not available
so it is often replaced by a second estimate 7 that is (hopefully!) more accurate than e. A
convenient option in our setting is to replace the true value ¢t = Eji1 f(§) with formula
(14). This gives the following estimate for the relative error when using (MEM),

Tt =

T—e
T, =

-
where e and 7 are given by formulas (MEM) and (14) respectively.

To demonstrate the effectiveness of this estimate for f (z) = (223 + 22+ 1)™" recall
that the value e = 0.331491 171 was given in Example 2. A quick calculation using formula
(14) with k£ =11 and d = 3 yields 7 = 0.331491 164 so the estimated relative error is

r,=—2.11x 1078,

This suggests that e is accurate to eight significant digits which is correct since r; = —2.
11 x 10~8. Although this strategy measures the relative error of e the approximation 7 is
used as the final estimate to ¢ thus providing a little extra insurance on the accuracy. It is
worth noting that for this function the value of 7 is a bit more accurate than the equivalent
EM estimate.

In Example 4 we computed e = 1.472828 238 for the function f(z) = %:i Using
formula (14) with ¥ = 11 and d = 3 we obtain 7 = 1.472828231. These values give
r, = —4.75 x 1072 suggesting that e is accurate to nine significant digits. This conclusion is
correct since the true relative error is r, = —4.07 x 1079,

The approximation represented by 7 for Euler’s constant was given in Example 5. A
simple calculation with k = 11 and d = 3 yields e = 0.577 215 769 which should be correct to
seven significant digits since r, = —1.85 % 10~7. The true relative error is r, = —1.80 x 10~7.
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