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Abstract—This paper presents an analysis of a discrete-time

multi-queue system handling a number of packet streams. The

analysis focuses on calculating system state distribution and

packet sojourn time distribution. The method relied upon

for determining system state distribution is based on creat-

ing a number of equations that are solved numerically. Next,

based on the distribution calculated in such a manner, we de-

rive relations for packet sojourn time distribution. The mod-

els studied may be useful for instance in a system supporting

a number of virtual links (each of a constant bitrate) that

share a common physical link. Isolation of performance of

those virtual links needs to be assured. Finally, we present

some exemplary numerical results showing the usefulness of

the proposed analysis for supporting the system dimensioning

process.

Keywords—discrete-time queueing system with vacations, system

state distribution, packet sojourn time distribution, virtualized

system.

1. Introduction

The paper presents an analysis of a FIFO-type discrete-

time queueing system handling a number of packet streams

in which service access of specific streams is governed

by a cycle that has been assumed a priori. The cycle

is repeated periodically and consists of a number of time

slots, dedicated to handling packets assigned to a prede-

fined stream. Therefore, from the point of view of a given

stream, it is the system with vacations in which the so-called

active state and vacation periods may be distinguished.

Packets belonging to a given stream may only be serviced

in the active periods (time spent serving packets from this

stream), while in the vacation periods, these packets can-

not be serviced. The important feature here is that such

an approach guarantees performance isolation between the

packet streams handled. It means that performance-related

parameters, i.e. delays and loss of packets belonging to

a given stream, are not disturbed by servicing other streams.

The idea behind a system with vacations fed by one packet

stream is illustrated in Fig. 1. The system may operate

in one of two potential states, i.e.: active period A, when

packet service is available, and vacation period V, when

packet service is not available.

Fig. 1. Block diagram of a system with vacations fed by one

packet stream: (a) in state A (active period), (b) in state V (vaca-

tion period), (c) states A and V alternate accordingly to a cycle

assumed on an a priori basis.

The system under analysis is a model of a solution sup-

porting a number of virtual links that share one physical

link. Hence, performance isolation between packet streams

within the specific virtual links is required.

Figure 2 shows an example of two virtual links established

between virtualized servers, each with two virtual machines

(VM). One virtual link is dedicated to transferring packets

from VM1 to VM3, while the other is dedicated to trans-

ferring packets from VM2 to VM4. Such an approach

to a virtualized system was successfully implemented and

tested, for instance, in the IIP System [1] that was designed

for creating a number of parallel Internets (with different

protocol stacks) sharing the same physical resources, i.e.

physical links and virtualization-enabling devices.

The system analyzed in this paper is of the FIFO discrete-

time type, with a constant time of servicing packets from

a given stream. These packets are serviced only in specific

time slots within the active periods, as new packets from

the considered stream may arrive into the system at the

beginning of each slot only. For the vacation periods, we

assume that they consist of a number of time slots (named
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Fig. 2. Scenario with two virtual links established between two virtualized machines: virtual link 1 for data transfer between VM1 and

VM3, and virtual link 2 for data transfer between VM2 and VM4.

Fig. 3. The proposed discrete-time multi-queue system fed by M independent packet streams.

dummy slots) of the same length as the active periods.

Again, new packets arriving during the vacation periods

may arrive only at the beginning of dummy slots as well.

For such a system with an infinite buffer size, we propose

methods allowing to calculate state distribution by numer-

ically solving a number of equations. Then, calculation

of sojourn time distribution is proposed as well, using ana-

lytical formulas being an extension of the method described

in [2], concerning a system without vacations.

Systems with vacations have been studied by many authors

making different assumptions. A decent survey of these

methods may be found e.g. in [3]–[8]. Unexpectedly, ac-

cording to our best knowledge, no analysis is available of

the system that is discussed in this paper.

Let us mention the papers that directly correspond to the

research problem discussed in this paper. In [9], the authors

consider a system with vacations but with continuous time

and present formulas for mean waiting times. In [10], the

authors extend the analysis for the system with general ser-

vice times of packets and derive relations for system state

distribution and packet loss ratio (with a finite buffer).

An approximated method for calculating mean waiting

times in the considered system fed by a Poissonian stream

was proposed in [11]. Finally, an extension of the cycle-

based scheduler, capable of providing service with a lower

priority for tasks during periods that were not dedicated to

them was described in [12].

2. Details of the Studied System

The system under consideration belongs to the family

of discrete-time queueing systems with vacations that

are fed by M independent packet streams (as shown in

Fig. 3), with their buffer being of the infinite size. Access

that packets belonging to specific streams have to a com-

monly shared link of capacity C is governed by a cycle-

based scheduler. For this purpose, the system allocates

a buffer to each packet stream and assigns a period of time

in consecutive cycles. More precisely, cycle time dura-

tion T is divided into M periods of Tm (m = 1, . . . , M),
where T = ∑M

m=1 Tm. During the Tm period, only packets

belonging to stream m may be transmitted.

The system studied may be analyzed from the point of view

of each separate packet stream. This is possible thanks to

the use of the cycle-based scheduler which ensures perfor-

mance isolation between the packet streams serviced. The

above means that packet transfer characteristics (defined,

for instance, by delay and loss rate) concerning a given

packet stream are not disturbed by servicing packets be-

longing to the remaining streams.

Figure 4 shows the discussed system from the point of view

of packet stream m (m = 1, . . . , M). This packet stream

identifies its packet queue and those periods during the

consecutive cycles in which the packets from this stream

may be served. So, stream m identifies its own cycle in

which active period TmA and vacation period TmV may be

observed. It needs to be noted that the cycle visible to

each packet stream is of the same length as the length of

the cycle in the scheduler. The further analysis assumes

that the duration of the cycle, as well as the duration of

the periods dedicated to serving packets from particular

streams, are constant.

Moreover, we assume that packets belonging to the same

stream have a constant length. For the sake of simplicity,
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Fig. 4. System from the point of view of handling packets belonging to stream m.

Fig. 5. Time slots within the cycle: (a) real system, K time slots in the active period, (b) model proposed for the analysis, with a cycle

consisting of N slots, K slots in the active period, and N–K dummy slots in the vacation period.

Fig. 6. Packet arrival and service processes.
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the numbering of packet streams is omitted here, since the

system under consideration is the same from the point of

view of each stream. Thus, packets belonging to a given

stream are transmitted within a time slot belonging to ac-

tive periods only, as shown in Fig. 5a. On the other hand,

new packets may arrive into the system any time. In order

to unify the considerations, we introduce dummy time slots

into the vacation periods. The lengths of these time slots

are the same as the lengths of time slots in the active peri-

ods, as shown in Fig. 5b. However, no packet transmission

is allowed in the dummy time slots. Such an assumption is

made to count packet sojourn times in a number of slots.

Finally, the system under consideration may be classified

as a discrete-time system with vacations, where the cycle

consists of K time slots in an active period and N time slots

in total.

New packets arrive into the system in batches, at the be-

ginning of each slots ti (i = 1, . . . , ,N) only. These mo-

ments occur just after the previous slot has finished, and

just before the first waiting packet is taken for transmis-

sion (for slots from 1 to K only). Therefore, at these mo-

ments, all packets in the system wait in a queue (for ser-

vice). The arrival process of new packets and the service

process is illustrated in Fig. 6, where nArr
i is the num-

ber of new packets arriving into the system at time ti.

We analyze the system assuming that the packet arrival

process at specific ti moments may differ for different i,
i = (1, . . . , N).

3. Analysis

In our analysis, we will consider a system with an infinite

buffer size. The first observation is that the system main-

tains constant properties with respect to time slots that have

the same position within the cycle. The following relation

takes place:

Pr{k packets in the system at time ti} =

Pr{k packets in the system at time ti + τ},

where τ = j(TA +TV ), j = 1, 2, . . . . (1)

3.1. System State Distribution

The system state is described by the number of packets

available in the system at a given time. Let us define the

system state ni (ni = 0, 1, 2, . . . ,) when the i-th time slot

(i = 1, . . . , N) in the cycle starts. As only one packet may

be served during one time slot belonging to the active pe-

riod, and due to the fact that no packet service occurs dur-

ing the vacation period, we can write the following relations

for those periods (see Fig. 6):

{

ni = max
(
n(i−1)−1,0

)
+nArr

i , for i = 2, . . . ,K +1
ni = n(i−1) +nArr

i , for i = K +2, . . . ,N,1
,

(2)

where nArr
i denotes the number of new packets arriving into

the system at ti (i = 1, . . . , N) and n(i−1) is the number of

packets being in the system at the time slot that is located

before the i-th time slot (e.g. time slot N is before the time

slot 1).

For the sake of simplicity, let us continue our analysis under

the assumption that the number of packets arriving into the

system at moments ti (i = 1, . . . ,N) is described by the same

probability distribution function. Therefore, probabilities

Pr{nArr
i = j}, j = 0,1,2, . . . , do not depend on the position

of the slot in the cycle. The above assumption is not critical

in our approach. In fact, the presented method can be easily

adapted to a scenario in which packet arrival processes are

not the same for different ti. However, for a given i these

distributions need to be identical. Thanks to Eq. (2), we

can write the following set of equations for i = 2, . . . ,K +1:

[
Pr{ni = 0} Pr{ni = 1} Pr{ni = 2} . . .

]
=

[
Pr{n(i−1) = 0} Pr{n(i−1) = 1} Pr{n(i−1) = 2 . . .}

]
·A, (3)

for i = 2, . . . ,K +1,

where:

A =







Pr{ni = 0|n(i−1) = 0} Pr{ni = 1|n(i−1) = 0} . . .

Pr{ni = 0|n(i−1) = 1} Pr{ni = 1|n(i−1) = 1} . . .

Pr{ni = 0|n(i−1) = 2} Pr{ni = 1|n(i−1) = 2} . . .

. . . . . . . . .







.

Assuming that the arrival process does not depend on the

system state, we count the items of matrix A as:

Pr{ni = m|n(i−1) = k} =






Pr{nArr = m}, for n = 0

Pr{nArr = m− k +1}, for k > 0 and m ≥ k−1

0, otherwise

. (4)

Taking into account Eqs. (3) and (4), matrix A is:

A =










Pr{nArr = 0} Pr{nArr = 1} Pr{nArr = 2} . . .

Pr{nArr = 0} Pr{nArr = 1} Pr{nArr = 2} . . .

0 Pr{nArr = 0} Pr{nArr = 1} . . .

0 0 Pr{nArr = 0} . . .

. . . . . . . . . . . .










.

Similarly to Eq. (3), using Eq. (2), we can write the fol-

lowing equations for i = K +2 . . . ,N,1:

[
Pr{ni = 0} Pr{ni = 1} Pr{ni = 2} . . .

]
=

[
Pr{n(i−1) = 0} Pr{n(i−1) = 1} Pr{n(i−1) = 2 . . .}

]
·B,

for i = K +2, . . . ,N,1, (5)

where:

B =







Pr{ni = 0|n(i−1) = 0} Pr{ni = 1|n(i−1) = 0} . . .

Pr{ni = 0|n(i−1) = 1} Pr{ni = 1|n(i−1) = 1} . . .

Pr{ni = 0|n(i−1) = 2} Pr{ni = 1|n(i−1) = 2} . . .

. . . . . . . . .







.
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Still, assuming that the arrival process does not depend on

the system state, we count the items of matrix B in the

following manner:

Pr{ni = m|n(i−1) = k} =
{

Pr{nArr = m− k}, for m ≥ k

0, otherwise
. (6)

Matrix B is:

B =







Pr{nArr = 0} Pr{nArr = 1} Pr{nArr = 2} . . .

0 Pr{nArr = 0} Pr{nArr = 1} . . .

0 0 Pr{nArr = 0} . . .

. . . . . . . . . . . .







.

By combining Eqs. (3) and (5), we can write the formulas

for the distribution of the number of packets in the system

at time t1:

[
Pr{n1 = 0} Pr{n1 = 1} Pr{n1 = 2} . . .

]
=

[
Pr{n1 = 0} Pr{n1 = 1} Pr{n1 = 2} . . .

]
·AK ·B(N−K)

.

(7)

Finally, on the basis of Eq. (7) together with:

∞

∑
k=0

Pr{nN = k} = 1, (8)

we get the number of equations that can be used to nu-

merically calculate system state distribution at time t1 –

see Eq. (2). On the basis of these values, we can cal-

culate system state distributions for the remaining times

ti (i = 2, . . . ,N), using Eqs. (3) and (5).

Matrices A and B are of an infinite size, due to the unlimited

buffer size. However, in practice, we can limit the size of

these matrices assuming that we consider the probabilities

of packet number arrivals that are greater than the assumed

threshold ε , e.g. ε ≥ 0.0001. The formula describing the

probability that k packets are present in the system is:

Pr{n = k} =
1
N

N

∑
i=1

Pr{ni = k} , (9)

where Pr{ni = k} is the probability that in the i-th slot

(i = 1, . . . ,N) k packets are present in the system.

3.2. Packet Sojourn Time Distribution

The packet sojourn time is defined as the period between

the arrival of a packet into the system and the completion of

its service. Here, it is counted for a number of time slots.

Packet sojourn time distribution is computed as a func-

tion of system state distribution and packet arrival distri-

bution. The analysis begins by recalling the formula that

was derived for the packet sojourn time in the case of the

discrete-time queueing system without vacations and FIFO

discipline fed by packets arriving to the system in each slot

accordingly to the same probability distribution [2]:

Pr{D = k} =







0, for n = 0
Pr{X = k}

ρ
, for k > 0

, (10)

where: Pr{D = k} denotes the probability that packet so-

journ time is equal to k (k = 1,2, . . .) time slots and

Pr{X = k} denotes the probability that at a time imme-

diately following the end of a slot (and just before a packet

is taken into service in the next slot), there are k packets in

the system, and ρ is the load of each slot.

Unfortunately, Eq. (10) cannot be adapted to the presented

system comprising both active and vacation periods, as the

load varies between slots and depends also on the slot’s

position in the cycle. In particular, when packets arrive

into the system in each slot based on the same probability

distribution, then the first active slot after a vacation period

has a greater load than other active slots remaining in the

cycle. Equation (10) is nevertheless useful for checking the

correctness of a more general formula in which we assume

that no vacation periods are present in the system under

consideration.

Our approach focuses on those packets that finish their ser-

vices within given time slots that are a part of the active

period. The sojourn time of such packets is equal to the

number of time slots. We need to know the time slot dur-

ing which this packet arrived into the system and how many

packets had to be served earlier, i.e. between the moment

it arrived into the system and the moment it is taken for

service. When the FIFO queuing approach is relied upon,

those packets that arrive into the system after the arrival

of the packet in question exert no impact on its sojourn

time. Thus, a strict dependency exists between the number

of packets waiting in the queue at the arrival of the new

packet into the system and its sojourn time. Notice that at

the period between the arrival moment of a packet and the

moment of ending its service the system is in the busy pe-

riod, meaning that packets are served in all time slots within

the active periods in the interval under consideration.

Let us now focus on a packet that is taken into the service

in the i-th time slot (i = 1,2 . . . ,K) and its sojourn time in

the system is k time slots. For such a packet, we define two

parameters (Fig. 7): position dn(i) of the time slot in the

cycle at the time of arrival of the packet and the number

of time slots in the active periods dnA(i) located between

the packet’s arrival and the beginning of its service. Notice

that the value dnA(i) denotes the number of waiting packets

being present in the system at the arrival of the packet in

question. These packets are served before the packet under

consideration, due to the fact that the FIFO order of prece-

dence has been adopted. The values of parameters dn(i)
and dnA(i) are calculated in the following manner:

dn(i) = N −mod [k− i−1,N], for i = 1, . . . ,K , (11)

where mod [x,y] is the modulo function, and:

dnA (i) =







k, for i ≥ k

i+
⌊

k−i
N

⌋

K+

max(mod (k−i,N)−(N−K),0), for i < k

, (12)

where bxc is an integer part of x.
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Fig. 7. Illustration of parameters dn(i) and dnA (i).

To calculate the probability that the sojourn time of the

packet which has finished its service in the i-th time slot

(i = 1, . . . ,K) and has spent k time slots in the system we

use the formula:

For k = 0
Pr{Di = k} = 0 . (13)

For k ≥ 1 and dn(i) = 2, . . . ,K +1

Pr{Di = k} =



[Pr{Xdn(i)−1=0}+Pr{Xdn(i)−1=1}]Pr{nArr

i ≥dnA (i)}+
dn(i)−1

∑
m=1

Pr{Xdn(i)−1=m+1}Pr{nArr
i ≥dnA (i)−m}





ρi
. (14)

For k ≥ 1 and dn(i) = K +2, . . . ,N,1

Pr{Di = k} =



Pr{Xdn(i)−1=0}Pr{nArr

i ≥dnA (i)}+
dn(i)−1

∑
m=1

[

Pr{Xdn(i)−1=m}Pr{nArr
i ≥dnA (i)−m}

]





ρi
, (15)

where:

• dn(i) is calculated by Eq. (11),

• dnA(i) comes from Eq. (12),

• Pr{Xi = m} (m = 1, . . . ,N) denotes the probability

that the number of packets in the i-th time slot

(i = 1, . . . ,N) equals m,

• Pr{nArr
i ≥ l} (l = 0,1, . . . ; i = 1, . . . ,N) denotes the

probability that in the i-th time slot at least l new

packets arrive,

• ρi is the load of the i-th time slot (i = 1, . . . ,K) such

as:

ρi = 1−Pr{Xi = 0} . (16)

The index dn(i)−1 from Eqs. (13)–(15) refers to the time

slot that precedes the time slot indexed by dn(i):

dn(i)−1 :=

{

N, if dn(i) = 1

dn(i)−1, otherwise .
(17)

Finally, the probability that packet sojourn time in the sys-

tem lasts k time slots is:

Pr{D = k} =







0, for k = 0,

K
∑

i=1

ρi
K
∑

j=1
ρ jPr

{Di = k}, for k > 0 .
(18)

Equations (13)–(15) should transform to Eq. (10) when

there are no vacation periods in the analyzed system. In

this case, we do not distinguish the positions of particular

time slots. Moreover, the following relation takes place:

dn = dnA = k . (19)
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From Eqs. (13)–(15) we get:

Pr{D = k} =






0, for k = 0,
(

[Pr{X=0}+Pr{X=1}]Pr{nArr≥k}+
k−1
∑

m=1
Pr{X=m+1}Pr{nArr≥k−m}

)

ρ
, for k > 0

. (20)

For this system, we can write the following system state

distribution equations:

Pr{X = k} = (Pr{X = 0}+Pr{X = 1})Pr{nArr = k}+
k

∑
m=1

[

Pr{X = m+1}Pr{nArr = k−m}
]

,

for k = 0,1,2, . . . (21)

By applying Eq. (21) to:

Pr{nArr ≥ k} = Pr{nArr ≥ k−1}−Pr{nArr = k−1},

for k = 1,2, . . . (22)

the identity of Eqs. (20) and (10) for the system without

vacations can be proved (see Appendix A).

3.3. Numerical Examples

Here, results corresponding to the system are presented

with 15 time slots per cycle, with the first 5 slots con-

stituting the active period (TA = 5) and the remaining 10

slots belonging to the vacation period (TV = 10). We will

compare system state distributions and packet sojourn time

distributions under the assumption that the utilization factor

of the active periods equals 0.9 and that the packet arrival

distribution is the same in each slot. Two following scenar-

ios are verified:

• 1 – the packets arrive into the system according to bi-

nomial distribution with p = 0.3, i.e. Pr{nArr = 1}=
0.3 and Pr{nArr = 0} = 0.7.

• 2 – the packets arrive into the system according to

geometric distribution with p = 0.23, Pr{nArr = k}=
(1− p)pk for k = 0,1,2, . . . .

For scenario 2, the variance of the arrival process distri-

bution is greater than in scenario 1. The characteristics

describing system state distributions for the two scenarios

under consideration are presented in Figs. 8 and 9.

Figure 8 shows the mean E[ni] and the variance var[ni] of

the random variable holding the number of packets being in

the system at ti (i = 1,2, . . . ,N). These values are greater in

scenario 2 than in scenario 1. As expected, the lowest mean

values of the number of packets in the system are observed

at the beginning of vacation periods (slot 6), while their

maximum values occur at the beginning of active periods

(slot 1).

Figures 9 and 10 show the system state distribution calcu-

lated from Eq. (9) and the packet sojourn time distribution

calculated from Eq. (18), respectively. These distributions

may be characterized by long tails, since some packets

may be kept waiting for their service even for a number of

cycles.

The numerical results were confirmed by a discrete event

simulation software written by the authors. The simulator

validates both system state distribution at ti (i = 1, . . . ,N)
and packet sojourn time distribution. Results of the simu-

lations are not presented, as they are indistinguishable from

analytical results.

Fig. 8. Mean E[ni] and variance var[ni] of packets in the system

at times ti (i = 1,2, . . . ,N).

Fig. 9. System state distribution for TA = 5 and TV = 10) based

on Eq. (9).

Fig. 10. Packet sojourn time distribution for TA = 5 and TV = 10
derived from Eq. (18).
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4. Summary

In this paper, we have presented an analysis of a discrete–

time multi-queue system with a cycle-based scheduler, in

which the packet arrival process may be different for time

slots with various positions within the cycle. The analysis

of the system focused on calculating system state distribu-

tion and, based thereon, packet sojourn time distribution.

The formulas presented provide exact solutions. The queue-

ing system refers well to e.g. a system supporting a number

of virtual links requiring performance isolation when they

share a common physical link as it was implemented in

the mentioned IIP System supporting a number of parallel

internets.

Appendix A

Proof of Eqs. (10) and (20) identity for the system

without vacations

We want to prove that for n ≥ 1:

Pr{D = n} =
Pr{X = n}

ρ
=

[Pr{X = 0}+Pr{X = 1}]
Pr{nArr ≥ n}

ρ
+

n−1

∑
m=1

Pr{X = m+1}
Pr{nArr ≥ n−m}

ρ
.

So, actually we need to prove that for n ≥ 1:

Pr{X = n}= [Pr{X = 0}+Pr{X = 1}]Pr{nArr ≥ n}+
n−1

∑
m=1

Pr{X = m+1}Pr{nArr ≥ n−m} ,

using a mathematical induction.

Base case

For n = 1:

Pr{X = 1} = (Pr{X = 0}+Pr{X = 1})Pr{nArr ≥ 1} =

(Pr{X = 0}+Pr{X = 1})(Pr{nArr ≥ 0}−Pr{nArr = 0}) =

Pr{X = 0}+Pr{X = 1}−(Pr{X = 0}+Pr{X = 1})Pr{nArr = 0}=

Pr{X = 1},

since (Pr{X = 0}+Pr{X = 1})Pr{nArr = 0}= Pr{X = 0} –

see Eq. (21).

Inductive step

Let us assume that for an arbitrary n = k, k ≥ 1:

Pr{X = k} =

(Pr{X = 0}+Pr{X = 1})Pr{nArr ≥ k}+
k−1

∑
m=1

[Pr{X = m+1}Pr{nArr ≥ k−m}]. (23)

For n = k +1:

Pr{X = k +1}=

(Pr{X = 0}+Pr{X = 1})Pr{nArr ≥ k +1}
︸ ︷︷ ︸

C1

+

k

∑
m=1

[Pr{X = m+1}Pr{nArr ≥ k−m+1}]

︸ ︷︷ ︸

C2

Let us rewrite particular components. The first one (C1):

C1 = (Pr{X = 0}+Pr{X = 1})Pr{nArr ≥ k +1} =

(Pr{X = 0}+Pr{X = 1})(Pr{nArr ≥ k}−Pr{nArr = k}) =

(Pr{X = 0}+Pr{X = 1})Pr{nArr ≥ k}
︸ ︷︷ ︸

C11

−

(Pr{X = 0}+Pr{X = 1})Pr{nArr = k}
︸ ︷︷ ︸

C12

The C2:

C2 =
k

∑
m=1

[Pr{X = m+1}Pr{nArr ≥ k−m+1}] =

k

∑
m=1

[Pr{X = m+1}Pr{nArr ≥ k−m}]−

k

∑
m=1

[Pr{X = m+1}Pr{nArr = k−m}]

︸ ︷︷ ︸

C22

=

k−1

∑
m=1

[Pr{X = m+1}Pr{nArr ≥ k−m}]

︸ ︷︷ ︸

C21

+

Pr{X = k +1}−C22

Finally:

Pr{X = k +1}= C1+C2 =

C11−C12+C21+Pr{X = k +1}−C22 =

(C11+C21)− (C12+C22)+Pr{X = k +1}=

Pr{X = k +1},

since, from Eq. (23): C11 +C21 = Pr{X = k} and also

from Eq. (21): C12+C22 = Pr{X = k}.

Since both the base case and the inductive step have been

proved as true, by mathematical induction the statement

holds for all n ≥ 1, Q.E.D.
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