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Abstract—In this paper, the authors present an algorithm for

determining the location of wireless network small cells in

a dense urban environment. This algorithm uses machine

learning, such as k-means clustering and spectral clustering,

as well as a very accurate propagation channel created us-

ing the ray tracing method. The authors compared two ap-

proaches to the small cell location selection process – one

based on the assumption that end terminals may be arbitrarily

assigned to stations, and the other assuming that the assign-

ment is based on the received signal power. The mean bitrate

values are derived for comparing different scenarios. The re-

sults show an improvement compared with the baseline results.

This paper concludes that machine learning algorithms may

be useful in terms of small cell location selection and also for

allocating users to small cell base stations.

Keywords—base station selection, k-means clustering, spectral

clustering, user equipment allocation.

1. Introduction

With the advent of 5G networks, one may notice increasing

interest in the concept of small cells. Additional small cells

positioned at locations where services are already avail-

able may significantly improve network performance and

may boost the quality of service, depending on user needs.

For example, deterioration in the quality of network access

may often be observed in large gatherings, as most of peo-

ple present in such scenarios use wireless devices. Such

a group of devices connects to the base station and, conse-

quently, neither this group nor other users of this particular

base station are capable of obtaining satisfactory bitrates

or service quality levels. An additional base station with

a small coverage area (known as a small cell or a pico cell)

positioned at the location where such a large group of de-

vices is present may significantly improve the quality of

service enjoyed by all users. While the use of small cells

is justified in the aforementioned scenario, it is not quite

obvious where exactly such cells should be located.

Sometimes, it is quite easy to determine where and for how

long increased traffic rates may be expected. For example,

a group of people actively using their mobile devices may

be presented at a given location only for random periods

of time only, or may be expected there periodically (bus

stations, airports, etc). The above-mentioned scenarios are

directly related to the location at which the increase in traf-

fic takes place. For instance, if increased network traffic

is observed at a bus stop – we know the location of the

potential small cell base station. However, increased net-

work traffic is not always closely related to a fixed location.

Therefore, the authors have designed an algorithm that de-

termines small cell installation locations with a given period

of time, to match the highest demand levels. The results

obtained with the use of this algorithm may be relied upon

in many ways. It is possible to average the results (or to

select critical, worst case scenarios), thus selecting a lo-

cation for a stationary small cell. Such an approach may

be used in network coverage planning or improvement pro-

cesses. Another approach consists in using drones (UAVs)

with a small cell base station hovering overhead. In this

scenario, the position of such stations may be changed dy-

namically. The algorithm presented in this paper works

regardless of the way the results are used.

In other publications concerning the application of machine

learning techniques for handling small cell traffic two main

aspects seem to prevail, namely assignment of user equip-

ment (UE) to a given set of base stations (BSs) and posi-

tioning of BSs for best coverage. The articles dealing with

the former of those aspects include [1]–[4]. Balapuwaduge

et al. [1] focus on smarter assignment of UE to BS by

employing an ML algorithm based on the hidden Markov

model. The algorithm focuses on reliability and availabil-

ity of network resources in order to select the best BS for

a given piece of UE.

Yang et al. [2] employ reinforcement deep learning (DL)

to position small cells in indoor scenarios, with a particular

emphasis placed on company small cells. The problem pre-

sented may be generalized to the allocation of users whose

behavior is predictable and those who behave in a more

dynamic manner. The ML algorithm works based on data

consisting only of allocation information for each piece of

UE. Qi et al. [3] and Xu et al. [4] focus on the k-means

clustering and the reinforcement k-means clustering algo-

rithm, respectively. Both of those papers use ML for clus-

tering UEs in order to achieve good load balance.

In the second group of papers which focus on BS position-

ing in order to achieve the best coverage, the use of drones

is a popular solution [5], [6]. In [5], drones are to replace

BSs in the event of an emergency. The main problem is
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how to ensure the best possible coverage. The reinforce-

ment learning approach, namely the Q-learning algorithm,

is employed to determine the drones’ positions based on

whether a connection has been established between UE

and the drone or not. Wang et al. [6] focus on prob-

lems that drones face while ensuring connectivity, namely

co-channel interference, limited battery capacity and fast

topology changes. In this case, ML is supposed to control

not only the placement of drones, but also their transmis-

sion power, as it affects the level of interference and battery

lifetime.

To recapitulate, this paper offers the following contribu-

tions:

• it combines the problem of allocating UE to BSs with

the problem of choosing the stations’ locations,

• it uses two simple unsupervised ML algorithms,

namely k-means clustering and spectral clustering,

in order to group UE on the basis of path loss data,

• it chooses the best BS location for each of the groups,

in order to improve QoS and mean bitrate of the

connections.

In the chapters below, the following are described: the

proposed ML-based small cell deployment algorithm (Sec-

tion 2), the system in which the simulations were performed

(Section 3), detailed simulation results with conclusions

(Section 4), and summary of the work performed.

2. ML-based Small Cell Deployment

The first thing one needs to do in order to successfully

deploy small (pico) cells is to choose their optimized loca-

tions. In this paper, we propose the use of machine learning

algorithms for this purpose. Such an algorithm will decide

which small cells to use and which pieces of UE to as-

sign to them. The main problem is what algorithm to use,

considering the limitations of training data. In this section,

different approaches to artificial learning are discussed and

the best solutions are presented. We also describe how we

employ the chosen ML algorithms for selecting BSs and

assigning UE. Additionally, a detailed description of the

input data that the presented algorithms rely on is given as

well.

When it comes to selecting the right ML algorithm, one

has to consider what types of data are available. In most

cases, it is hard to obtain a labeled set of training data.

Labeled data is a term used to describe data that consists

of input features (usually referred as X labels), but also of

their corresponding categories, or desired outputs, known

as y labels. In order to obtain such a data set, it is usually

necessary to manually label each input feature set. In the

case of a computer simulation, it is much easier to generate

training data along with their corresponding labels, but this

is not always true.

In the system considered in this paper, labeled data would

be generated for a set of many different combinations of

user positions within the considered space. The input fea-

ture data could consist of the users’ coordinates and other

additional features, while output labels would indicate to

which BS they are connected. It would be necessary to

calculate, for all of the user locations considered, all bi-

trates to all of the possible BSs, while taking into ac-

count interference from all other BSs in order to determine

how to allocate users to BSs. It is easy to imagine how

computationally-intensive and time-consuming it would be

to generate such a dataset. In order to address these issues,

the authors propose to use ML algorithms that are not su-

pervised and are able to learn based on data without any

specified output labels. The algorithms that are explored in

this paper are: k-means clustering and spectral clustering.

2.1. K-means Clustering

As the system under consideration consists of scattered

users in who are in need of being allocated to a BS, clus-

tering algorithms come to mind first. Clustering algorithms

groups similar feature data points together. The resulting

groups are called clusters. In this paper, the k-means al-

gorithm has been proposed as a grouping method, as it is

simple, yet effective.

The grouping process is performed in the following man-

ner: initially, a random placement of centroids is picked

(points around which clusters are centered). Then, all in-

put instances are assigned to the closest centroid [7]. Then,

the centroids are updated by minimizing the inertia crite-

rion IC, given by:

IC =
N

∑
n=0

min
ci∈C

(||xn − ci||) , (1)

where xn is an instance from input dataset X , and cn is the

n-th centroid from the chosen centroid set C consisting of

N centroids. The process of categorizing input data and

assigning such data to clusters is repeated until the cen-

troids stop moving. In the k-means algorithm, it is initially

necessary to specify the number of clusters.

2.2. Spectral Clustering

Spectral clustering is another unsupervised grouping ML

algorithm used in the experiments. Compared to the k-

means algorithm, spectral clustering is capable of perform-

ing better on non-convex data, which is quite helpful in

solving the problem presented in the paper. Spectral clus-

tering creates a similarity matrix between the input data and

then reduces the dimensionality of this matrix. After that,

another clustering algorithm is used on the obtained ma-

trix [8]. In the algorithm implemented for the experiments,

spectral clustering performs k-means after dimensionality

reduction. As it is the case with the k-means algorithm,

spectral clustering requires that the number of clusters be

specified before data grouping.
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2.3. Clustering Algorithm Input Data

The algorithms outlined above require correctly defined

input data. The input dataset consists of the pathloss

values between each user and each of the potential BSs.

In the analyzed simulation scenario, the authors had

to limit the list of small cell locations to 28 potential

sites. For the sake of simplicity, path attenuation was

analyzed, calculated as the average attenuation for all

resource blocks. Hence, there are 28 potential locations

of pico-type BSs, and one feature instance representing

a features dataset for one user has 29 values – 1 pathloss

between the user and the macro BS, and 28 pathlosses

between the user and each of the pico BSs. To sum up,

the i-th input instance may be presented as the following

vector: [PLmacroBSi,PLpicoBS1i,PLpicoBS2i, . . . ,PLpicoBS28i],
where PLmacroBSi is a pathloss value between i-th user and

the macro BS, PLpicoBSni is a pathloss value between i-th
user and the n-th pico BS. The data has been pre-processed

before being used as input data. All of the pathloss values

have been normalized and scaled to the 0–1 range, except

for PLmacroBSi that has been scaled to the 0–2 range in

order to place a greater emphasis on this particular feature.

Thanks to such alterations, algorithm should prefer to

connect users to the macro BS, connecting them to pico

BSs only in those cases in which such a step is required.

2.4. ML-based Algorithm

As explained in the previous section, both clustering algo-

rithms group the input data into k groups based on their

pathloss values concerning all BSs. The next step is to

determine which BSs should be assigned to the created

groups. The performance of the small cell location se-

lection algorithm is considered in two scenarios, namely

Scenario 1 and Scenario 2.

In Scenario 1, pieces of UE are directly associated with BSs

indicated by the ML-based algorithm. After the piece of

UE have been grouped, a comparative algorithm is imple-

mented that searches for the best BS for a given UE group

by checking which BS has the best (lowest) mean pathloss

for the assigned users. One BS is assigned to each of the

created clusters. The chosen BSs are dedicated to one clus-

ter only, so if the number of clusters is k, the number of

BSs used in the network is k as well.

In Scenario 2, ML algorithms perform clustering on the

pieces of UE as well. Then, just as it was the case in

Scenario 1, BSs are picked for each of the groups in the

same manner. The main difference is that after the BSs

have been chosen, the pieces of UE are associated with

BSs based on the best received signal strength, just as in

a typical LTE network.

3. System Description

In the model of their system, the authors analyzed a typical

fragment of an urban environment in Madrid. It consists

of several buildings of different heights, a grid of streets,

a wide pavement typical of shopping districts, and a park.

The method that was used for generating the radio envi-

ronment relied on the ray tracing method which enabled to

obtain a very precise fragment of the channel coefficients.

This allowed for a good representation of the actual wave

propagation conditions observed in a typical radio environ-

ment (in a dense urban area). At the same time, due to the

high computational complexity of this method, the authors

were forced to significantly reduce the potential locations

of pico base stations to 28 points. In Fig. 1, the area of

the analyzed network, with individual buildings marked, is

presented. The macro BS covering a large part of this area,

and the potential locations for pico BSs for which the chan-

nel was generated, are marked as well. Additionally, the

locations of UE have been marked in the same figure.

Fig. 1. Network topology subjected to analysis.

The user position generation method assumes that 30% of

the pieces of UE are located in a park (close to the macro

BS), 60% of them are on the pavement, and the remain-

ing 10% of the pieces of UE are positioned elsewhere.

UE positions are constant for all analyzed situations due

to the complicated channel and the long lead time required

for generating channel coefficients. The results presented

in this paper should be understood as aiming to identify

the best method for selecting the locations of small cells

for a specific UE arrangement. The analyzed system is

an LTE solution, with UE being assigned to the BS, by

default, based on signal strength. During the simulations,

this method assigning UE to BSs may be replaced with the

ML-based algorithm that directly indicated UEs to BSs as-

sociation. The scheduler used in the system is of the round

robin variety. The system bandwidth is 20 MHz, which

translates into 108 resource blocks. Downlink transmission

was considered only. Since the entire system operates in

exactly the same band, the authors did not take into account

turning off the resource edge blocks. The macro BS has

16 antennas, and the pico BSs have 4 antennas. The TX
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power of the macro BS is 46 dBm, and the transmit power

of each of the pico BSs is 30 dBm.

Algorithm 1 Network simulation scheme

Input: small cell location set

Result: KPI set for all devices

Generate channel coefficient between all (BS, UE) pair

Associate each UE with BS

for time slot ti to simulation duration do

if mod (ti, tassoc) = 0 then
Associate each UE with BS

end

Allocate RBs to UEs

Calculate interference

Calculate SINR

Calculate throughput

Save KPIs
end

A detailed description of the simulator’s operation is pre-

sented as Algorithm 1. The positions of small cells derived

from the ML-based position selection algorithm from Sce-

nario 2 are fed to the simulator as input data. In Scenario 1,

information about the pattern of direct association of UE

to BSs is an additional source of input data. At the initial

phase of the simulator’s operation, channel coefficients are

generated between each piece of UE and a BS, separately

for each RB. Then, depending on the scenario, pieces of

UE are connected to their respective BSs on the basis of

the received signal power or based on a direct indication

from the proposed algorithm. Within the main simulation

loop, where the simulation duration is set to 100 ms, the

following operations are performed in sequence. Every ti
(in the simulation ti equals 20 ms), the procedure of as-

signing pieces of UE to BSs is commenced. For each BS

separately, the RBs are allocated, using the round robin al-

gorithm, to all pieces of UE attached to a given BS. Then,

interference is calculated separately for each UE and RB,

and SINR for the allocated RBs is determined. Using the

Shannon formula, throughput is calculated separately for

each UE and RB and is then added up for all allocated

RBs. The relevant metrics – key performance indicators

(KPIs) – are saved for each time slot.

Once the simulation has been completed, the average

throughput, as well as the first and the third quartiles of

throughput are compared to evaluate the performance of

the proposed solutions. The last two values allow to evalu-

ate transmission performance for worst case and best case

scenarios, respectively.

4. Experiment Setup and Results

Here, the results obtained for each of the proposed algo-

rithms are presented. Transmission bitrate is the key value

that is compared.

For both ML algorithms and for a number of k clusters,

two results are compared for Scenario 1 and Scenario 2.

Bitrates related to Scenario 1 are marked blue, while Sce-

nario 2 results are presented with the use of yellow bars.

The results of both scenarios are compared with the bitrate

for k = 1, where there is only macro BS in use. All pieces

of UE are assigned to this macro BS and the UE assignment

method does not have any impact on the resulting bitrate.

The dashed line presented in the graphs shows the bitrate

level for k = 1 and is considered to be a benchmark value.

In the following sections, the results for both ML algorithms

and both scenarios are presented. First, results pertaining

to the k-means algorithm are presented.

4.1. K-means Clustering Algorithm

First, IC values were calculated for each of the k values

in order to see when the best value of k may be expected.

Figure 2 shows the inertia values for different numbers of

clusters k. One may observe that the best results should

be obtained for k = 2, since for that value of parameter k,

a peculiar, sudden change in the course of the inertia line

is visible.

Fig. 2. Inertia of the k-means algorithm for different numbers of

clusters. The graph the number of clusters for which the clustering

results should be the best.

Figure 3 shows the mean bitrate for different numbers of

clusters and for both Scenarios. For k > 1, there is a sig-

nificant improvement in the mean bitrate. The best results

of the k-means clustering algorithm (Scenario 1 results)

have been obtained for k = 5. For that number of clus-

ters, the macro BS and four pico BSs have been assigned

to five clusters, and the mean bitrate improved 4.2 times

compared to the mean bitrate benchmark value (results

for k = 1 are presented). The best results in terms of

the assignment of users to the same BSs without the k-

means-based user grouping algorithm (Scenario 2) have

been achieved also for k = 5, and the mean bitrate has

improved 4.7 times. One can see, that the mean bitrate

is better for Scenario 1-based allocations for k = 2 only.

This means that only for a network with one macro BS

and one pico BS the bitrate with k-means is better than

the bitrate for Scenario 2 with the assignment to the same

two stations.
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Fig. 3. Mean bitrate for station assignment based on k-means

and without k-means (the same BSs are selected in both cases).

From Fig. 4, presenting results for the worst 25% of the

connections, it is quite clear that Scenario 2 performs better

for all BS numbers (all k values). The best results for

Scenario 1 have been achieved for 2 BSs (k = 2), with

bitrate improving 52.7 times. With the growing number of

clusters, the results tend to get worse, although bitrate still

remains better than for one cluster only. The assignment

to the same BSs in Scenario 2 renders much better results,

and the best outcomes have been achieved for k = 3 groups,

with the bitrate improving 111.9 times.

Fig. 4. First quartile (25th percentile) of user bitrate for station

assignment based on k-means and without k-means (the same BSs

are selected in both cases).

Although Scenario 2 performs, in most cases, in terms of

bitrate for all users and in terms of transmission param-

eters for the weakest 25% of connections, Fig. 5 shows

greater improvement for Scenario 1. For the best 25% of

connections, the advantage caused by using more BSs is the

greatest, and bitrate may be improved by up to 54.3 times

for the best case of k-means-based grouping for k = 4. The

best results for Scenario 2 have been achieved for k = 5,

and bitrate has been improved 35.6 times.

Fig. 5. Third quartile (75th percentile) of user bitrate for station

assignment based on k-means and without k-means (the same BSs

are selected in both cases).

4.2. Spectral Clustering Algorithm

The second set of results has been obtained using the spec-

tral clustering algorithm. Similarly to the k-means algo-

rithm, for the mean bit rate of connections (Fig. 6) only

for two groups or two BSs (k = 2) the Scenario 1 grouping

is better than the Scenario 2, where Scenario 1 achieved

2.6 times better bitrate and Scenario 2 achieved 2.3 better

bitrate comparing with reference bit rate for k = 1.

Fig. 6. Mean bitrate for station assignment based on spec-

trum clustering and without spectrum clustering (the same BSs

are used).

In terms of the remaining results, those for Scenario 2-

based grouping show a noticeable improvement compared
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to the results from Scenario 1. For k = 6 and k = 7, Sce-

nario 2 results for spectral clustering achieve a bitrate that

is over 5 times better, while in Scenario 1, results achieved

with the k-means method peak at k = 6 and reach a bitrate

that is 4.5 times better.

Fig. 7. First quartile of user bitrate for station assignment based

on spectral clustering and without spectral clustering (the same

BSs are used in both cases).

The results for the worst 25% of connections are presented

in Fig. 7. In this case, spectral clustering based on Sce-

nario 1 performs better than the k-means solution, espe-

cially for k = 3, and k = 4 for which bitrate improved

49 times and 47 times, respectively. Meanwhile, bitrate

results achieved in the k-means Scenario 1 are only 20 and

30 times better, respectively. The grouping method used in

Scenario 2 is also better than in each instance of Scenario 1.

Fig. 8. Third quartile of user bitrate for station assignment based

on spectral clustering and without spectral clustering (the same

BSs are selected in both cases).

The last set of results concerns the best 75% of connections

– see Fig. 8. Here, the results are also better when com-

pared to those obtained using the k-means method. Sce-

nario 1-based grouping achieved better results than Sce-

nario 2 for each k value, and there are four k values for

which Scenario 1 improved the bitrate 31 times (for k = 4,

6 and 7 – even 35 times).

5. Conclusion

The paper presents an algorithm for selecting the location

of small cells using the ML technique. The presented sim-

ulation results showed that the choice of BS locations is

performed with best users (75th percentile of throughput)

preferred. However, average and the weakest (25th per-

centile of throughput) network users achieve lower bitrates

in such a scenario. The presented algorithm is not uni-

versal and is effective in specific cases only, but it offers

a promising point of departure for further studies. As an

extension of the algorithm, the usage of the CRE parameter

related to small cells may be considered. The application

of other ML methods, such as reinforcement ML, could be

taken into consideration as well.
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