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ARTICLE OPEN

Quality by design modelling to support rapid RNA vaccine

production against emerging infectious diseases
Damien van de Berg1, Zoltán Kis 1, Carl Fredrik Behmer1, Karnyart Samnuan2, Anna K. Blakney 2,3, Cleo Kontoravdi1,

Robin Shattock 2 and Nilay Shah1✉

Rapid-response vaccine production platform technologies, including RNA vaccines, are being developed to combat viral

epidemics and pandemics. A key enabler of rapid response is having quality-oriented disease-agnostic manufacturing protocols

ready ahead of outbreaks. We are the first to apply the Quality by Design (QbD) framework to enhance rapid-response RNA

vaccine manufacturing against known and future viral pathogens. This QbD framework aims to support the development and

consistent production of safe and efficacious RNA vaccines, integrating a novel qualitative methodology and a quantitative

bioprocess model. The qualitative methodology identifies and assesses the direction, magnitude and shape of the impact of

critical process parameters (CPPs) on critical quality attributes (CQAs). The mechanistic bioprocess model quantifies and maps

the effect of four CPPs on the CQA of effective yield of RNA drug substance. Consequently, the first design space of an RNA

vaccine synthesis bioreactor is obtained. The cost-yield optimization together with the probabilistic design space contribute

towards automation of rapid-response, high-quality RNA vaccine production.

npj Vaccines            (2021) 6:65 ; https://doi.org/10.1038/s41541-021-00322-7

INTRODUCTION

The outbreak and spread of viral diseases, such as the COVID-19
pandemic caused by the SARS-CoV-2 virus, the 2015–2016 Zika
virus epidemic in Brazil and American continents, the re-emerging
Nipah outbreaks in South and Southeast Asia, and the 2013–2016
Ebola virus epidemic in West Africa, pose tremendous healthcare
and economic challenges1–3. Vaccines are highly effective for
stopping epidemics and pandemics. However, the development
of vaccines using conventional production methods is becoming
too slow to effectively respond to new viral outbreaks in the 21st
century4, the frequency of which is predicted to increase3.
To address this pressing need, rapid-response vaccine produc-

tion platform technologies are being deployed, such as the
messenger RNA (mRNA) and self-amplifying RNA (saRNA) plat-
forms, herein collectively referred to as RNA vaccine platforms.
The mRNA and saRNA vaccine production process involves cell-
free DNA-templated RNA synthesis based on the in vitro
transcription (IVT) reaction catalysed by the T7 RNA polymerase
enzyme (T7RNAP)5,6. The RNA (both mRNA and saRNA) drug
substance is purified using tangential flow filtration (TFF) and
chromatography techniques, such as ion-exchange or multimodal
chromatography4,7. Then the RNA drug substance is formulated
into lipid nanoparticles and filled into vials or other containers4,7. A
process diagram showing RNA vaccine drug substance and drug
product manufacturing are shown in Supplementary Fig. 1.
RNA vaccines involve rapid development and production time-

lines because the production platform is agnostic to the disease
target as RNA sequences translating into any vaccine protein
antigen can be produced using the same production process8. The
only component in this production process that needs to be
changed is the template DNA based on which the RNA is
enzymatically synthesised. The rest of the materials, equipment,
consumables, unit operations, formulation components, fill-to-finish

processes as well as quality control and quality assurance methods
remain unchanged when switching to the production of a new RNA
sequence encoding for a new vaccine antigen. This is possible
because the RNA vaccine manufacturing process produces only the
genetic instructions for expressing an antigen in human cells, and
not the actual antigen. Using this technology, candidate vaccines
can be produced against any known or currently unknown future
pathogens. For example, mRNA and saRNA vaccine candidates
against COVID-19 have been recently produced with an unprece-
dented speed: in 2 weeks after obtaining the genetic sequence
information of the antigen9,10. The mRNA vaccines developed by
BioNTech and Moderna gained emergency use authorisation
against Covid-19 at record speed, despite the RNA vaccine platform
being a new technology that had not been approved by regulatory
authorities in the past.
The development of process monitoring and quality assurance

approaches remains a key challenge for quickly and cost-
effectively ensuring that the drug substance is produced with
consistently high quality. This should be explored and developed
prior to the production of a particular product, ideally in a disease-
and product-agnostic manner to complement the flexible
manufacturing platform of vaccine candidates against a wide
range of pathogens. The quality by design (QbD) framework has
been used to aid the regulatory approval and production of small
molecule pharmaceuticals11,12 and monoclonal antibodies13,14 by
establishing a design space (DS) in which the production process
can be operated to consistently obtain the required quality target
product profile. Regarding vaccines, some are currently in
development based on QbD frameworks15,16. However, to the
knowledge of the authors, there are currently no vaccines
approved by regulatory authorities based on a full QbD filing.
The QbD framework consists of two key steps: (1) a risk
assessment based on the identification of product critical quality
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attributes (CQAs) and critical process parameters (CPPs) and (2)
definition of the DS in the CPPs space which is obtained by
defining mathematical relationships between CPPs and CQAs. For
the first step, quality attributes are commonly ranked based on
their impact and uncertainty scores for both product safety and
efficacy, obtaining this way a severity score based on which the
CQAs are identified15. Next, the CPPs are identified by assessing
the impact of PP ranges on the identified CQAs, predominantly by
using a binary, yes or no, approach based on expert knowledge
and product-process understanding15. Alternatively, CQAs and
CPPs can also be identified and ranked using fishbone diagrams,
cause–effect matrices and failure mode effect analyses17–19.
However, none of these existing methods is able to capture the
direction, magnitude and shape of the impact of the CPPs on the
CQAs. Therefore, more advanced approaches are needed to better
describe the relationship between CPPs and CQAs in a data-poor
environment, which is typical to the early phases of production
process development.
To address this need, we developed and implemented a new

qualitative QbD methodology that assesses the criticality of PPs
considering the direction, magnitude and shape of the CPP–CQA
relation. Furthermore, we developed a bioprocess model to map
the multi-dimensional DS of RNA synthesis substantially faster and
with fewer resources compared to the experimental design of
experiments (DoE) protocols. This bioprocess model was built on
previously published RNA synthesis kinetics20. Such mechanistic
models tend to outperform statistical or data-driven (e.g. machine
learning) models in data-poor environments, such as during the
early stages of process development. This is the first bioprocess
model of an RNA vaccine synthesis bioreactor in support of DS
identification and optimisation. The proposed qualitative QbD
methodology which maps the direction, magnitude and shape of
the impact CPP–CQA relation together with the bioprocess model
forms the QbD framework. Overall, the framework is to become
universally applicable to mRNA and saRNA vaccine manufacturing
using wild-type nucleotide triphosphate NTPs and is independent
of the viral infectious disease indication, because both the RNA
vaccine manufacturing process and the QbD framework can be
applied to produce any antigen-encoding RNA sequence4,5. The
QbD framework applied to the RNA platform further supports
upstream process optimisation during both development and
manufacturing and is anticipated to expedite the regulatory
approval process by providing a form of “pre-qualification” by
re-using and processing disease agnostic-prior knowledge4.

RESULTS

QbD framework

The mRNA and saRNA and their intrinsic quality features are
created during the in vitro transcription (IVT) reaction, therefore
the QbD framework, consisting of a qualitative methodology and
a quantitative bioprocess model, has been applied to this unit
operation. As shown in Fig. 1, the QbD framework development
cycle starts with patient need identification and quality target
product profile definition. This is followed by CQA and CPP
definition, CQA–CPP relation, DS and normal operating range
(NOR) definition and, finally, production process automation and
control using model predictive control (digital twins).

CQAs and CPP identification

In the third step, the qualitative methodology is used to identify
and rank the CQAs of the mRNA and saRNA vaccine, as shown in
Fig. 1. The listing and ranking of CQAs are shown in Supplementary
Table 1. The four CQAs identified were: RNA yield, sequence
integrity, sequence identity and 5′ capping efficiency. CPP
identification and CPP–CQA relation were then established using a
novel qualitative ranking methodology, as shown in Table 1.

This considers the direction, magnitude and shape of the impact of
the CPPs on the CQAs, as described in the “Methods” section.

Bioprocess model development

The four CQAs from Supplementary Table 1 were grouped into
one output, termed effective RNA yield. The 5′ capping efficiency
CQA was not modelled individually because the commercially
available 5′ cap analogue, CleanCap (TriLink Biotechnologies, San
Diego, CA, USA) yields 5′ capping efficiencies of ≈95% which is
sufficient for the expression of the vaccine antigen from the RNA
transcript in human cells21–25. The bioprocess model involves bi-
substrate kinetic formulae for the transcription reaction, adapted
from a previously published multiphysics kinetic model20, to
compute the RNA transcription yield. Given the prior knowledge
that RNA degrades in alkaline as well as acidic environments26,
and that high Mg2+ concentration favours RNA degradation27,
RNA degradation rate was modelled as a series of three power
laws, each first order in RNA and first-order in either proton,
hydroxy or Mg2+ concentration. Four CPPs identified in Table 1
were included in the model: initial total solution wild-type
nucleotide triphosphate (NTP) and Mg concentrations, T7RNAP
concentration, and reaction time. There is a clear distinction in
notation between the use of Mg2+ and Mg. Mg2+ is used to refer
to free solution magnesium, while Mg is used when referring
to total magnesium concentration in free solution together
with magnesium in complexes, often in the context of initial
experiment conditions. The remaining nine CPPs were not
considered in this RNA synthesis bioreactor model because these
CPPs can be well controlled in commercially available bioreactor
setups implemented in facilities following cGMP guidelines.
The model parameters were then fitted to a subset of 51

experimental samples from a statistical DoE dataset obtained from
lab-scale saRNA synthesis experiments using wild-type NTPs28.
This dataset includes NTP and T7RNAP screening experiments,
and more thorough analysis of RNA yield surface response on Mg
concentration. 33 samples correspond to the RNA yield at 0.04 M
NTP and 1 × 10−8M of T7RNAP vs. 11 concentrations of Mg
ranging from 0.025 to 0.125 M after 2, 4 and 6 h (circles in Fig. 2).
Twelve samples correspond to the RNA yield at 0.04 M NTP and
0.075 M Mg for 1.250 × 10−9, 2.5 × 10−9, 5 × 10−9 and 1 × 10−8M
of T7RNAP after 2, 4 and 6 h (crosses in Fig. 2) and 6 samples
correspond to the RNA yield after 2 h at 0.02, 0.04 and 0.08 M NTP
at 0.075 and 0.14 M Mg (squares in Fig. 2). For additional
information about the experimental data see28. The kinetic
equations describing the RNA yield response correspond to
Eqs. (1)–(10). The parameter estimation found kapp to be 4.34

L2

mol Uh
, K1 5.55 × 105 L

mol
, K2 1.94 × 105 L

mol
and kac 1.20 × 106 L

mol h
,

while the effect of kba and kMg was found to be negligible. It has to
be noted that multiple parameters such as kapp, K1 and K2 were
highly correlated, meaning multiple combinations thereof gave
the same dynamic response.
To mitigate this co-correlation, insignificant parameters could

be fixed. To this effect, a variance-based global sensitivity analysis
was performed around the optimal parameter values as deter-
mined by the parameter estimation29–33. This analysis helps to
evaluate how uncertainty propagates from the kinetic model
parameters to the RNA yield and to quantify how much of the
variation in the RNA yield can be attributed to the individual
kinetic model parameters29–33. As expected, kba and kMg were
found to be negligible, with Sobol indices below 0.001, thus
contributing less than 0.1% to the variation in RNA yield
computed by the model after 6 h of IVT reaction time, cf.
Supplementary Table 3 in the SI document. On the other hand,
kapp was found to be most significant as the only parameter
driving the reaction forward, explaining over 60% of the model-
predicted RNA yield variation after 6 h of IVT reaction time, cf.
Supplementary Table 3 in the SI document. Higher values of these
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Sobol indices, which are ANOVA-decomposed variance contribu-
tions, indicate stronger dependence of the variation in the RNA
yield on the respective kinetic model parameters29–33. Thus, the
significance of parameters can be ranked in this decreasing order
kapp, K1, K2, kac with Sobol indices of 0.61, 0.30, 0.06 and 0.03,
respectively. kapp and K1 together explain over 91% variation in
the RNA yield after 6 h of IVT reaction time. The Sobol index table
as well as the scatter plots of RNA yield after 6 h plotted in
function of kinetic model parameters can be found in Supple-
mentary Table 3 and Supplementary Fig. 2.
Model fit to experimental data were generally good, capturing

most of the non-linearities and overall trends with no consistent
over- or underestimation bias, as seen in the prediction error plot
in Fig. 2. The modelling mean absolute error (MAE) of 0.28 g/L is
acceptable given that the standard deviation in experimental data
samples can be as high as 0.95 g/L. The average prediction error is
expected to decrease in future QbD framework iterations as more
data and knowledge become available. However, there is one

striking outlier predicting RNA yield to be high at both high Mg
and NTP concentrations, while it should be close to zero.
This outlier sample, as shown in Fig. 2, gives the RNA yield to
be 0.01 g/L after 2 h at starting conditions of 0.14 M Mg, 0.08 M
NTP and 1 × 10−8M T7RNAP, corresponding to the encased dark
blue square in Fig. 2. With the Mg concentration fixed at a high
0.14 M, in its current iteration, the model captures the increase in
RNA yield from 0.02 to 0.04 M NTP but not the subsequent
decrease thereof from 0.04 to 0.08 M NTP, after which the rate of
RNA production should be almost zero. The failure of the model to
predict this sample point can be explained by model overfitting to
the many samples describing Mg dependence compared to the
few samples at different NTP concentrations. The addition of other
model terms could support a more accurate prediction at high Mg
and NTP concentrations but would lead to even worse testing
performance through over-parameterisation.
On top of the dataset being skewed towards the dependence

on Mg and T7RNAP rather than NTP, many of the RNA yield values

Fig. 1 Quality‐by‐design (QbD) framework development cycle. The QbD development cycle starts with identifying the needs of the patients
and from there the Quality Target Product Profile (QTPP) is determined. Based on the QTPP, the critical quality attributes (CQAs) of the product
and their ranges are determined using a risk assessment scoring15, taking into account clinical and non‐clinical data, for both product safety
and efficacy. Next, based on understanding how the production process unit operations impact the product CQAs, the critical process
parameter (CPP) ranges are defined. From this product-process understanding, mathematical relations between CPPs and CQAs are
established, thus obtaining a mathematical model of the vaccine production process at the unit operation level. This model is then used to
identify the ranges of CPPs which yield the desired CQAs. From these CPP ranges, the design space can be created and therein a sub-space
termed the normal operating range (NOR) is defined. The production process can be operated in NOR also by adapting the QbD bioprocess
model for advanced process control, using model predictive control which takes in real‐time measurement data from the production process.
The “digital twin” based automation in the NOR allows for real-time optimisation of the production process which follows current good
manufacturing practices (cGMP)49,50; manufacturing products for the patients’ needs at consistently high quality. Thus, the QbD framework
supports both the development and operation of production processes and it follows an iterative development cycle to ensure continuous
improvement through the product‐process life cycle4,15.
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Table 1. Proposed qualitative framework for the assessment of the criticality of process parameters (PPs) based on the qualitative assigned impact of

PPs on the CQAsa.

Process parameter RNA sequence integrity RNA sequence identity RNA yield Sourceb Classification

Temperature −2 −1 ±3 Data, Expert51 CPP

Pressure ±1 ±1 ±1 Expert PP

Mixing ±1 ±1 ±1 Expert PP

Reactor dimensions 0 0 0 Expert PP

Reaction time ±2 0 3 Data, Expert CPP

pH in transcription reactor ±2 ±2 ±3 Data, Expert52,53 CPP

DNA template sequence −2 −3 0 Expert CPP

DNA template concentration 0 0 +2 Data, Expert CPP

T7RNAP concentration ±1 ±1 +3 Data, Expert CPP

5’ cap analogue concentration 0 ±3 0 Data, Expert CPP

Total Mg concentration 0 ±2 ±3 Data, Expert44 CPP

DTT concentration ±2 ±2 ±1 Data, Expert45 CPP

Spermidine concentration ±2 ±2 ±3 Data, Expert46 CPP

GTP concentration +1 ±3 ±3 Data, Expert CPP

Total NTP concentration +2 ±2 ±3 Data, Expert CPP

Ratio of NTPs +1 ±3 ±3 Expert CPP

The PP-CQA relationship is characterised by an impact magnitude rating, a sign indicating directionality and shape of the CQA = f (PP) plot. The magnitude of

the impact was rated from 0 (low) to 3 (high), and PPs rated with 2 or 3 were considered critical, thus critical process parameters (CPPs). The direction and type

of CPP-CQA relationship were characterised either by a positive slope labelled with plus “+”, a negative slope labelled with a minus “−”, or a peak behaviour

whereby the CQA increases with increasing the PP reaches a peak and then decreases, labelled with plus-minus “±”.
aThe CQAs of “Bacterial endotoxins”, “Bioburden”, 5’ capping efficiency and “Post-filtration pH” from Supplementary Table 1 were not included in this table

because these can be assumed to be well-controlled in a GMP bioproduction process.
bThe ratings provided in the “RNA sequence integrity”, “RNA sequence identity” and “RNAYield” columns were based on experimental data (Data), information

from the literature (where applicable reference is included and are listed in the main article bibliography) and expert knowledge (Expert).

Fig. 2 Experimental data distribution and modelling error plots. A Three-dimensional plot showing the experimental data generated using
a statistical Design of Experiments approach. Data points of different colour overlap. This data was used for model calibration and validation.
B Modelling error plot. The x-axis represents the true experimental RNA yield, and the y-axis marks the corresponding prediction from the
model. Each point (circle, square or x) is a prediction generated using the model. The black line represents the identity line, where modelling
results perfectly match the experimental outcome. The brown square encases the outlier for NTP dependence at high Mg concentration. The
meaning of the colours is indicated in the legend below the plots.

D. van de Berg et al.

4

npj Vaccines (2021)    65 Published in partnership with the Sealy Institute for Vaccine Sciences



are clustered close to zero, c.f. Supplementary Table 4 for the
descriptive statistics on the RNA yield dataset. Before performing a
quantitative model-based DoE, qualitative suggestions for further
experiments can be proposed to increase the statistical signifi-
cance of the model and to more accurately account for the peak in
RNA yield at increasing NTP concentrations. The following
experiments would lead to a smoother regression around the
experimentally optimal region: measure the RNA yield at each Mg
concentration of 0.06, 0.075 and 0.090 M for NTP concentrations of
0.02, 0.03, 0.05 and 0.06 M after 2, 4 and 6 h of IVT reaction time.
More useful still might be the inclusion of physical variable
measurements other than RNA yield. These could include free
solution NTP4− concentration (if analytically distinguishable from
NTP in the transcribed RNA chain), solution turbidity due to
Mg2PPi precipitating after the formation of PPi as a byproduct and
pH. Through such measurements, one can more easily discrimi-
nate the relative importance of the physical phenomena
contributing to the degradation of RNA. Ultimately, these
measurements would also help in determining tighter bounds
on kapp as the most significant parameter.
Despite these current limitations, the mechanistic model

performs well in comparison to conventional statistical modelling
techniques. Multiple linear regression (MLR) using four linear
explanatory variables (four coefficients plus a constant) gave an R2

value of 0.398 and an MAE of 0.570 g/L due to its inability to
capture non-linearities. Only after including squared terms in both
Mg and NTP and their interaction term in the regression (seven
coefficients plus a constant), did the fit of the statistical model
increase to an R2 value of 0.766 and an MAE of 0.167 g/L, which
are comparable to that of the mechanistic model (0.773 and
0.162 g/L, respectively). The summary of the models’ prediction
plots and descriptive statistics can be found in Supplementary Fig.
3 and Supplementary Table 4 to Supplementary Table 6.

Model implementation and DS definition

The current model performed well in the region of interest at
medium-to-low Mg and NTP concentrations and hence this model
was used to create the first DSs. In conjunction with cost and
safety considerations, this leads to first recommendations about
the desired operating region and subsequent experimental

design. The limitations of the model at high Mg and NTP
concentrations will be resolved in future iterations with the use of
additional experimental data that will be obtained from optimal
experiment designs.
The deterministic DS and concentration-cost-yield plots pro-

duced by the model are shown in Fig. 3. Figure 3A produces the
deterministic DS after 6 h defined by the remaining three CPPs,
with the optimum corresponding to high RNA effective yield
shown by the green region. At fixed T7RNAP, the DS also shows
that at fixed initial Mg or NTP, the concentration of the other
component passes through an optimum. The optimum in Mg at
fixed NTP can be seen more clearly at low NTP.
In addition to obtaining high values for the RNA effective yield,

the product should also be produced at low cost. For this, Fig. 3B
shows the yield-cost-concentration plot, whereby the costs of the
T7RNAP and NTPs were optimised per g of RNA and the other
production costs components were assumed fixed and were not
part of the cost optimisation objective. Figure 3B indicates a
positive, linear correlation between the T7RNAP concentration and
RNA yield. The T7RNAP concentration appears as a first-order
reactant in the modelled transcription reaction and does not
contribute to the degradation of transcribed RNA. However,
increasing T7RNAP concentration incurs higher cost. Thus, costs of
T7RNAP and NTPs expressed per g of RNA are shown on the z-axis
of Fig. 3B and the yield is indicated by the colour map. Initial Mg
concentration is fixed as its cost contributes only a negligible
amount compared to T7RNAP and NTPs. A fixed initial concentra-
tion of 85 mM for Mg was chosen as this corresponded to the
experimental optimum. The minimum of 2740 $ costs of T7RNAP
and NTPs expressed per g of RNA is shown by the black sphere at
1.5 × 10−8M T7RNAP concentration, at 40.8 mM NTP concentra-
tion and at an RNA yield of 4.34 g/L, as shown below in Table 2.
The results indicate that the relatively high NTP concentration

contributes more to the RNA cost per gram compared to the lower
concentration of T7RNAP and that cost optimality is reached at the
highest T7RNAP concentration. This holds true as long as RNA
yield continues to grow linearly with T7RNAP, or as long as the
solution is rich in NTP. The range of T7RNAP and NTP
concentrations for which this is valid needs to be investigated
through further experiments.

Fig. 3 Deterministic design space (DS) and cost per yield surface. A Three-dimensional deterministic DS mapping the relationship between
CPPs initial total solution Mg, NTP and T7RNAP concentration with the effective RNA yield CQA. Every point within the DS meets the 1.5 g/L
RNA production target and the greener the region, the higher the yield. B Yield-cost-concentration plot showing RNA production yield and
T7RNAP and NTP cost per g of RNA in the function of T7RNAP and NTP concentrations at 85mM constant Mg concentration. The black sphere
marks the cost optimum.
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However, given that at the experimental optimums NTPs are
relatively more expensive than the other two components, the
operating point should be chosen at the minimum NTP
concentration that ensures reaching the desired CQA with a
certain probability. The cost values reported above correspond to
the cost of the T7RNAP and NTPs expressed per g of RNA, but this
is not the total production cost of the RNA drug substance. In fact,
the major cost driver in RNA vaccine production is the 5′ cap
analogue purchase price. The concentration of the 5′ cap
analogue remains unchanged when RNA vaccines of different
length are used due to the very high molar excess of the 5′ cap

analogue used relative to the final molar RNA concentration; the
calculations are available in Supplementary Table 2.
Production cost components other than the cost of the T7RNAP

and NTPs were not included in this model as they were considered
fixed. For a detailed analysis of the RNA vaccine drug substance
production cost see7.
To address uncertainties and ascertain process operational

flexibility, a probabilistic DS was created by adding 20% standard
deviation to the fitted model parameters from Eq. (3). Monte Carlo
simulation results are shown at constant 1 × 10−8M T7RNAP
concentration in Fig. 4. The cost-optimal operating point is
marked with a black cross and reaches the desired CQAs with a
probability of 75–80%. Note that a high standard deviation of 20%
was chosen to represent both model and process uncertainties. As
more knowledge becomes available about the system, the
uncertainty is reduced. In later iterations, the DS should not
spread as far out to high Mg and NTP concentrations as the model
prediction in this region was already shown to be poor due to the
limited training dataset.

DISCUSSION

The emergency use authorisation granted to the BioNTech/Pfizer
and Moderna mRNA vaccines underlines the crucial importance of
this new vaccine platform technology, which succeeded in
developing and producing vaccines against a new coronavirus
at record speeds even though it was a new technology that had
never gained regulatory approval in the past. The mRNA platform
is also well-positioned to rapidly deploy vaccines against new

Fig. 4 Two-dimensional probabilistic design space. The probability of achieving the 1.5 g/L RNA effective yield CQA under 20% standard
deviation in the kinetic rate constant model parameters at a fixed 10−8M T7RNAP concentration. The probability is illustrated by the colour
code. The black cross represents the cost-optimal point.

Table 2. Key modelling input and output results.

I/O Parameter Unit Value

Input NTP concentration mM 40.8

T7RNAP concentrationa M 1.5 × 10−8

Mg concentrationb mM 85

Output Yield in bioreactor g × L−1 4.34

Cost of T7RNAP and NTPs
per g of RNA

USD × g−1 2740

aThe T7RNAP concentration range for optimisation was 0.5 × 10−8−1.5 ×

10−8.
bThe Mg concentration was the experimental optimum and it was not

subject to cost-yield optimisation due to the low purchase cost of this

material.
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SARS-CoV-2 variants. saRNA vaccines are also being developed34,35

offering additional benefits through increased production
volumes and speeds and reduced production costs4,7. The QbD
framework presented herein aids the acceleration of the devel-
opment and manufacturing of both mRNA and saRNA vaccines,
here collectively referred to as RNA vaccines.
The QbD framework is anticipated to expedite the regulatory

approval process by providing a form of “pre-qualification”4. This
“pre-qualification” is facilitated by the platform nature of both the
RNA vaccine manufacturing process and of the QbD framework.
The mRNA and saRNA vaccine production platforms facilitate this
“pre-qualification” provision by re-using disease-agnostic prior
knowledge, production process understanding, expert knowledge,
experimental and clinical data from old RNA vaccines to produce
new RNA vaccines and vaccine candidates. The QbD framework
aids this “pre-qualification” by processing all the information from
the mRNA and saRNA vaccine development and manufacturing
processes to obtain the optimal outcomes in terms of product
safety, efficacy and cost.
The QbD framework incorporates disease-agnostic prior knowl-

edge, production process understanding, expert knowledge,
current experimental and clinical data. This framework can serve
as a “pre-qualification” for speeding up pre-clinical and clinical
development and regulatory approval processes for future
outbreaks. Such a framework is especially beneficial when
combined with a vaccine production platform technology because
both the RNA platform and the QbD framework are disease-
agnostic. The implementation of the QbD framework follows an
iterative development cycle, as shown in Fig. 1 4. Within this, the
criticality of product quality attributes and PPs is evaluated. Next,
the impact of CPPs on CQAs is assessed using the qualitative
methodology shown in Table 1. This streamlines the development
of QbD models and the establishment of a DS. The DS presented
here is the first published for an RNA vaccine production process.
The next step in the QbD framework would include defining the

NOR within the DS as a safety margin against the process and
material fluctuations, model uncertainties and other uncertainties.
This allows for operational flexibility in a production process
following current Good Manufacturing Practices (cGMP), offering
substantial advantages compared to a conventional “frozen”
cGMP process in which the operating parameters are fixed. The
NOR can be defined from the probabilistic DS, shown in Fig. 4, and
based on financial cost considerations, shown in Fig. 3B.
Generating a surrogate model of the QbD model and adapting
it for model-predictive control then enables advanced automa-
tion. To achieve this, for example, the model can predict undesired
changes in product quality in the near future (e.g. in the next
5 min) and these predicted alterations in product quality will be
linked to production PPs. Model-based control will be able to
rapidly (e.g. within seconds) determine the corrective control
actions that will lead to the optimal set of PPs which will
counteract the predicted undesired changes in product quality.
Thus, the model predictive controller will be able to correct the
predicted faults in product quality before these would occur in the
first place. This approach will ensure consistent product quality
even under inherent process fluctuations while maximising
effective RNA yield at the lowest possible cost.
The RNA platform combined with the QbD framework is

suitable for producing vaccines rapidly against new diseases or
against new variants of the same pathogen in case the virus
mutates. When switching to develop and mass-produce a new
vaccine, the genetic sequence of the antigen or candidate antigen
of the viral pathogen is a product-specific prerequisite. This
genetic information is then transferred into the template DNA and
once the template DNA is produced, the other components of the
RNA vaccine production platform technology and the QbD
framework can be re-used from the previous RNA vaccine or
vaccine candidate production process, thus these are agnostic to

the vaccine product. Therefore, raw materials—with the exception
of the template DNA—consumables, equipment, upstream and
downstream unit operations, formulation components, fill-to-
finish processes and quality control and quality assurance
approaches can all remain unchanged when starting the
production of a new vaccine or vaccine candidate. The CQAs
identified in Supplementary Table 1 and the CPPs defined in Table
1 are also independent of the viral infectious disease target. The
reason for this is that these CQAs and CPPs define the RNA
molecule and its production process, respectively, and these CQAs
and CPPs do not describe the antigen and antigen production
process, as the antigen is produced in the cells of the human body
based on instructions provided by the RNA molecule. Moreover,
the QbD framework can be used to aid the development and
manufacturing of both mRNA and saRNA vaccines, collectively
referred to here as RNA vaccines.
As part of iterative model development, the QbD bioprocess

model can be improved in several ways, including (1) incorporat-
ing additional CQAs and linking these to CPPs using mathematical
equations, (2) adding first-principle QbD models for downstream
unit operations, i.e. tangential flow filtration and chromatography
purification, and (3) adapting the model for larger-scale produc-
tion and purification, for example by fitting the kinetic model
parameters to the RNA synthesis at larger scales or, if needed, by
changing the model architecture to more accurately describe
larger scale RNA synthesis. All these three model improvements
are currently hindered by the lack of publicly available data since
this is a new type of product and production process. An example
of product CQA that can be added to the model in the future is
the 5′ capping efficiency. Inclusion of the 5′ capping efficiency
CQA in the current version of the model has not been prioritised
because the commercially available 5′ cap analogue, CleanCap
(supplied by TriLink Biotechnologies, San Diego, CA, USA) yields 5′

capping efficiencies of ≈95% which is considered high enough for
the effective translation of the RNA into vaccine antigen in human
cells21–25. In this study saRNA synthesis based on wild-type, NTPs
was modelled but in future iterations, the model can also be
adapted to described RNA synthesis using modified NTPs, such as
N1-methylpseudouridine-5′-triphosphate36–41. Wild type NTPs are
used for the production of Covid-19 vaccines at CureVac and at
Imperial College London, whereas BioNTech/Pfizer and Moderna
use modified uridine triphosphate (UTPs)36–41.
The mechanistic model is advantageous over statistical and

data-driven models in data-scarce environments, strengthens
process understanding and showcases cause–effect relationships.
However, uncertainty quantification may be less robust when
using mechanistic models compared to multivariate statistical
modelling when sufficient experimental data is available.
A key pillar of QbD is product and process understanding. As

more data becomes available, model discrimination and model-
based DoE (MB-DoE)42,43 can be used to establish causality
between CQAs and CPPs using mechanistic modelling terms. For
instance, statistical DoE has established that there is an optimum
in Mg concentration to maximise RNA yield. This could be the
effect of a complex interplay of enzyme saturation, Mg-facilitated
RNA degradation, and precipitation out of solution through
magnesium PPi. All of these have different impacts on the safety
and efficacy CQAs downstream. MB-DoE and stochastic Global
Sensitivity Analysis could then be used to pinpoint the most
probable reason. Thereafter, including additional measurements
such as NTP concentration and solution turbidity measurements
throughout the course of the reaction could be used to infer the
most likely physical cause. With the current model, one cannot
dismiss model parameters without jeopardising predictive power,
nor include additional terms without overfitting. As more
biochemical and bioprocess knowledge become available, insig-
nificant parameters can be fixed or constrained in parameter
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estimation so that more physical parameters can be investigated
without overfitting the data.
Yet, due to the high cost of experiments, simultaneous

mechanistic and statistical model building might not be feasible.
To this end, it might be beneficial to start out with screening
experiments to build a first mechanistic DS, which is able to map
larger PP spaces with fewer data. As more data becomes available,
it can be combined with data-driven techniques into a hybrid
model to minimise plant-model mismatch. As the mechanistic
model should capture most non-linearities, the data-driven
technique could even be linear and relatively inexpensive.
In conclusion, a QbD qualitative methodology and quantitative

mechanistic model has been developed and applied for facilitat-
ing the rapid and high-quality production of RNA vaccines against
emerging infectious diseases. The new qualitative methodology
identified critical PPs (CPPs) and related these to critical quality
attributes (CQAs) of the RNA vaccine transcript. The mechanistic
bioprocess model mapped the value of the RNA drug substance
effective yield over a four-dimensional CPPs space. This way, the
first DS of an RNA vaccine synthesis bioreactor was obtained
facilitating the optimal control of the production process.
This QbD framework incorporates disease-agnostic prior knowl-

edge, experimental data, production process understanding,
bioprocess modelling and can serve as a “pre-qualification” for
accelerating the pre-clinical and clinical development and the
regulatory approval process. By combining such a QbD framework
with the RNA vaccine production platform, vaccines and vaccine
candidates can be produced for future outbreaks faster and at
consistent high-quality. The QbD framework follows an iterative
development cycle and this QbD model can be improved and
implemented to enable vaccine production against pandemics
substantially faster. This can be catalysed by cross-disciplinary
collaboration between academia, industry and regulatory
authorities.

METHODS

CQA identification

See Supplementary Table 1.

CPP identification and CPP–CQA interaction

To quantitatively assess the impact of PPs on CQAs, a new methodology
was developed which accounts for the magnitude, direction and type of
the CPP-CQA relationship. The magnitude of the impact was rated from
zero (low) to three (high), and PPs rated with two or three were considered
CPPs. The direction and type of CPP-CQA relationship were characterised
either by a positive slope, a negative slope, or a peak behaviour, labelled
with plus, minus, or plus–minus, respectively. The ratings provided in
Supplementary Table 1 and Table 1 are based on experimental data,
production process understanding, information from literature27,44–48 and
expert knowledge.

Mechanistic model

The model aims to link the grouped effective RNA yield CQA to 4 CPPs. To
relate RNA concentration to total initial NTP and Mg concentration, all
buffer component concentrations need to be tracked. It is assumed that
the main free species present in solution affecting transcription and
degradation kinetics are: Mg2+, NTP4−, H+, HEPES− (buffer) and PPi4−.
These five free solution components can form the following ten
complexes: HNTP3−, MgNTP2−, Mg2NTP, MgHNTP−, MgPPi2+, Mg2PPi,
HPPi3−, H2PPi2−, MgHPPi− and HEPES. This system naturally gives rise to
differential-algebraic equations (DAE) (Eqs. (1) to (7)). The differential
equations describe the variation of the total solution component
concentrations using: (a) transcription term (Eq. (8)) modified from20, (b)
a degradation term48 (Eq. (9)) and (c) a precipitation term (Eq. (10)).
Algebraic equations then give the solution and complex concentrations
through mass balance and equilibrium considerations20 (Equations (M1)–
(M5) and (E1)–(E10) under Model equations in Supplementary Informa-
tion). It is assumed that: (1) temperature is constant, (2) the DNA template

has the correct sequence, (3) 5′ RNA cap analogue does not change the
mechanisms of the synthesis hence its concentration is neglected, (4) the
four NTP4− concentrations are equimolar and (5) DTT and spermidine
concentrations remain at optimal values throughout the reaction.

d RNA½ �tot
dt

¼ Vtr � Vdeg (1)

d PPi½ �tot
dt

¼ Nall � 1ð Þ � Vtr � Vprecip (2)

d NTP½ �tot
dt

¼ �Nall � Vtr (3)

d H½ �tot
dt

¼ Nall � 1ð Þ � Vtr (4)

d½T7RNAP�tot
dt

¼ �kd � T7RNAP½ �tot (5)

d½Mg�tot
dt

¼ �2 � Vprecip (6)

d½HEPES�tot
dt

¼ 0 (7)

Vtr ¼ kapp � T7RNAP½ �tot
Mg½ � MgNTP½ �

1þ K1 Mg½ � þ K2 MgNTP½ �
(8)

Vdeg ¼ ðkAc H½ �nac þ kba OH½ �nba þ kMg Mg½ �nMg Þ RNA½ �nRNA (9)

Vprecip ¼ maxð0; kprecip Mg2PPi½ � � Mg2PPi½ �eq

� �

Þ (10)

Model implementation

The system of DAEs was solved explicitly by breaking up the problem into
two: (1) The differential equations expressing the total solution compo-
nents were solved as initial value problems using an in-house fourth-order
Runge–Kutta solver. The initial conditions of the ODE system are set to 0 M
for RNA, 0.04 M for HEPES, the equivalent of 7.5 pH for total protonated
components and 1 × 10−18M PPi (nonzero for numerical stability), for
further details see the SI document. The initial concentrations of total Mg,
NTP and T7RNAP depend on the model input. (2) The solution
concentrations that appeared in the kinetic terms were solved for at each
time step using scipy.optimise.fsolve().

Parameter estimation

The model was fitted and validated with a set of 51 experimental data
samples with three replicates each obtained from saRNA synthesis
experiments using wild-type, non-modified UTPs28. Biological knowledge
was used to set Nall, the length of the RNA chain, to 10,000 bases. Similarly,
[Mg2PPi]eq was found to be 1.4 × 10−5mol/L and the values of dissociation
equilibrium constants were taken to be 10�6:95

; 10�4:42
; 10�1:69

;

10�1:49
; 10�5:42

; 10�2:33
; 10�8:94

; 10�6:13
; 10�3:05

; 10�7:5 mol/L for Keq,0 to
Keq,9 respectively. To reduce overfitting, nac, nba, nMg and nRNA were set to 1.
The phenomena of enzyme degradation and Mg2PPi precipitation were
ignored for now, and hence kd and kprecip set to 0, as they did not improve
model performance. The residual six parameters kapp, K1, K2, kac, kba and kMg

were then estimated using the scipy.optimise.curve_fit() local solver function
in Python 3 through least-squares error minimisation, with initial guesses kapp
1.3 × 10−3 L2

mol Uh
, K1 20

L
mol

, K2 100
L

mol
, kac 1 × 106 L

mol h
, kba 1 × 106 L

mol h
and kMg

2 L
mol h

.

Sensitivity analysis

The described model was implemented in gPROMS (Process Systems
Enterprise, London, UK), in which the Global Systems Analysis entity was
used to perform variance-based sensitivity analysis. Therein, 80,000 simu-
lations were run at 0.075 M Mg, 0.04 M NTP and 1 × 10−8M T7RNAP
where the kinetic parameters were quasi-randomly generated, using
Sobol sequences, in a uniformly distributed range at ±10% around the
optimal kinetic parameter values which were generated using parameter
estimation.
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Statistical models

The 51 averaged data samples from the parameter estimation were
uploaded to the MODDE® statistical Design of Experiments software. Time,
initial Mg, initial NTP and initial T7RNAP concentrations were included as
factors and scaled to unit variance. Then, two separate models were fitted
using MLR, one using the four factors as linear predictors and one that also
included square terms in the Mg and NTP concentrations as well as an
interaction term consisting of the product of Mg and NTP concentrations.

Probabilistic DS

For determining the probabilistic 2D DS, each Mg/NTP point was Monte-
Carlo simulated 50 times using a random normal uncertainty, with a
standard deviation of 20% around the optimal kinetic rate constant model
parameters.

Cost analysis

GMP grade T7RNAP and wild-type, unmodified NTP costs were obtained
from Roche Diagnostics International Ltd. as 1.35 × 108 $/mol and 2.5 × 105

$/mol, respectively. These cost values are representative of these products
and over time it is expected that these raw material purchase prices will
decrease due to technology maturation and economies of scale, as the
RNA vaccine platform technology will be used to produce other vaccine
product leading to an increased demand for these raw materials.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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