
1. Introduction
Forest and vegetation fires, also referred to as open biomass burning, are a major source of particulate matter 
(PM) (Chen et al., 2017), ozone (Jaffe & Wigder, 2012), and other air pollutants to the atmosphere and can 
cause serious air quality issues in many parts of East Asia (Bruni Zani et al., 2020; Crippa et al., 2016; Kiely 
et al., 2020; Koplitz et al., 2016; Lee et al., 2018; Marlier et al., 2012; Reddington et al., 2014). Observations 
show that emissions from these fires, which include agricultural residue burning and deforestation fires, 
influence pollutant concentrations in both rural and urban regions (Janjai et al., 2009; Lasko et al., 2018; 
Nguyen et al., 2019; Pengchai et al., 2009; Tsai et al., 2013; Zhu et al., 2016). Exposure to smoke from fires is 
associated with adverse health outcomes including morbidity and mortality (de Oliveira Alves et al., 2017; 
Jacobson et al., 2014; Jayachandran, 2009; H. J. Johnston et al., 2019; Pienkowski et al., 2017; Pongpiachan & 
Paowa, 2015; Reid et al., 2016; Vajanapoom et al., 2020). Most previous work has focused on the air quality 
impacts of fires in Indonesia (Equatorial Asia) (Bruni Zani et al., 2020; Crippa et al., 2016; Kiely et al., 2020; 
Koplitz et al., 2016; Marlier et al., 2012; Reddington et al., 2014) and the Amazon (Butt et al., 2020; Nawaz & 
Henze, 2020; Reddington et al., 2015). In this study, we focus on the air quality impacts of fires in Mainland 
Southeast Asia (Myanmar, Thailand, Cambodia, Lao People's Democratic Republic (hereafter Laos), and 
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Plain Language Summary Forest and vegetation fires, used for forest clearance and 
agriculture in Southeast Asia, are a major source of air pollutants and can cause serious air quality issues. 
In this study, we used computer models and measurements of air pollution to examine the effect of forest 
and vegetation fires on air quality degradation and public health in Southeast Asia (including Mainland 
Southeast Asia and south-eastern China). We found that preventing these fires could substantially 
improve regional air quality and yield a considerable public health benefit across the region; avoiding 
around 59,000 premature deaths every year. Furthermore, our analysis of poverty data suggests that 
particulate pollution from fires disproportionately impacts poorer populations across Southeast Asia. Our 
results show that reducing forest and vegetation fires should be a public health priority for the Southeast 
Asia region.
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Vietnam; also referred to as the Indochina Peninsula or Peninsula Southeast Asia) and south-eastern China, 
which have been much less studied.

In Southeast Asia, fires are used as a tool for agricultural management, for example, to remove agricultural 
residues (mainly from rice and sugarcane cultivation) and weeds, and for forest clearance for agricultural 
purposes (Biswas et al., 2015; Chen et al., 2017; Phairuang et al., 2017). Fires in Mainland Southeast Asia 
mainly occur during the premonsoon season (roughly February to April), due to widespread forest fires 
and crop residue burning in preparation for planting at the Asian summer monsoon onset (W.-R. Huang 
et al., 2016; Phairuang et al., 2017). The increased fire activity coincides with a widespread stable tempera-
ture inversion layer over Thailand, Vietnam, Laos, and Southern China (Nodzu et al., 2006) with hot, dry, 
and stagnant air over northern Thailand (Kim Oanh & Leelasakultum, 2011) promoting haze conditions. 
During the burning season, long-range transport of smoke from fires in Mainland Southeast Asia has been 
observed in Southwest China (Zhu et al., 2016), south-eastern Tibetan Plateau (Sang et al., 2013), Southern 
China, Taiwan, and Hong Kong (K. Huang et al., 2013). Fires reduce substantially after the onset of the 
summer monsoon rainfall (in late April) and are minimal until around the start of the dry season (in No-
vember). Fires in this region display a degree of interannual variability linked to changes in atmospheric 
circulation features, such as the India-Burma Trough (W.-R. Huang et al., 2016).

Several studies have used a mix of models and observations to explore the impacts of fire on atmospheric 
aerosol properties, visibility, and/or air quality in Mainland Southeast Asia (Duc et  al.,  2016; K. Huang 
et  al.,  2013; Lee et  al.,  2017,  2018; Li et  al.,  2017; Lin et  al.,  2013; Vongruang & Pimonsree,  2020; Yin 
et al., 2019). However, studies quantifying the contribution of fire to particulate air pollution, population 
exposure and public health are lacking in this region (H. J. Johnston et al., 2019; Yadav et al., 2017), com-
pared in particular to the large number of studies focused on Equatorial Asia (e.g., Crippa et al., 2016; Kiely 
et al., 2020; Koplitz et al., 2016; Marlier et al., 2012). Recent studies show that fire is the dominant cause of 
the variation of local ambient air quality in Mainland Southeast Asia (Yin et al., 2019); contributing 49% of 
ambient PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) concentrations during peak open 
burning in March 2012 (Vongruang & Pimonsree, 2020) and 70%–80% to aerosol optical depth in source 
regions during March-April 2013 (Li et al., 2017). Preventing fire could yield substantial reductions in pop-
ulation-weighted PM2.5 (particulate matter with aerodynamic diameter ≤  2.5  μm) concentrations across 
Mainland Southeast Asia (Reddington, Conibear, et al., 2019). There are large uncertainties associated with 
quantifying and simulating particulate emissions from fire in tropical regions (Reddington et al., 2016). In 
Mainland Southeast Asia, there is a large range in emissions estimates (Kaiser et al., 2012; Lasko et al., 2017; 
Shi & Yamaguchi, 2014; Sornpoon et al., 2014; Phairuang et al., 2017; van der Werf et al., 2017; Wiedinmy-
er et al., 2011) and varying performance when tested in models against observations (Fu et al., 2012; Lee 
et al., 2017; Pimonsree et al., 2018; Reddington et al., 2014, 2016; Takami et al., 2020; Vongurang et al., 2017). 
Emissions from the Fire Inventory from NCAR (FINN; Wiedinmyer et al., 2011) have been used widely in 
models over this region; with simulated PM concentrations showing good agreement against observations 
in some studies (Reddington et al., 2014, 2016; Takami et al., 2020), but overestimation by a factor of ∼2 in 
others (Li et al., 2017; Pimonsree et al., 2018; Vongurang et al., 2017). Fires also impact ozone concentra-
tions, being a source of ozone precursors and altering photochemistry, impacting ozone production (Jaffe 
& Wigder,  2012). The efficacy of photochemical ozone production in fire plumes is highly variable and 
uncertain, and is affected by nonlinear ozone dependence on changes in precursor concentrations, and 
high particulate loadings, which affect photochemistry (Jaffe & Wigder, 2012). Fires have been shown to 
enhance regional ozone concentrations in Mainland Southeast Asia (Pochanart et al., 2001) and aloft over 
southern China (C. Y. Chan et al., 2003; L. Y. Chan et al., 2000; Kondo et al., 2004), although fires have also 
been implicated in suppressed ozone in some situations (Deng et al., 2008).

Links between socioeconomic factors, population exposure to ambient air pollution, and associated health 
effects have been well documented in parts of North America and Europe (e.g., Fairburn et al., 2019; Hajat 
et al., 2015). However, few studies have focused on countries in Southeast Asia, with some demonstrating 
strong connections between ambient air pollution and poverty, for example, in urban areas of Laos (S. 
Dasgupta et al., 2005), rural areas of Vietnam (Narloch & Bangalore, 2018) and Ho Chi Minh City (Mehta 
et al., 2014); and others finding only weak connections, for example, in Cambodia and Vietnam (S. Dasgup-
ta et al., 2005) or no connection, for example, in Laos (Pasanen et al., 2017). The majority of these studies 

REDDINGTON ET AL.

10.1029/2021GH000418

2 of 20

Validation: Carly L. Reddington, Luke 
Conibear
Visualization: Carly L. Reddington
Writing – original draft: Carly L. 
Reddington, Dominick V. Spracklen
Writing – review & editing: Carly L. 
Reddington, Luke Conibear, Stephen R. 
Arnold, Dominick V. Spracklen



GeoHealth

explored links between poverty and multiple environmental risks, including ambient air pollution from all 
sources. To our knowledge, no previous studies have examined the poverty levels of populations exposed to 
air pollution from fires in this region.

In this work, we use a combination of satellite-derived data sets of fire emissions, models and observations 
to quantify the contribution of forest and vegetation fires to air quality degradation and disease burden in 
Mainland Southeast Asia and south-eastern China. We also examine the poverty levels of the Southeast 
Asian population exposed to PM2.5 pollution derived specifically from fire emissions.

2. Materials and Methods
2.1. Description of the GLOMAP Global Aerosol Model

We used the Global Model of Aerosol Processes (GLOMAP; Mann et al., 2010; Spracklen et al., 2005) to 
simulate multiyear (2003–2015) PM concentrations and evaluate the performance of three fire emissions 
data sets against observations. Table 1 summarizes the model setup used for this study; see Section S1.1 and 
Reddington et al. (2016) and Reddington, Morgan, et al. (2019) for further details.

2.1.1. Fire Emissions in GLOMAP

Fire emissions of sulfur dioxide (SO2), black carbon (BC), and organic carbon (OC) were specified using 
three different data sets: the National Center for Atmospheric Research Fire Inventory version 1.5 (FIN-
Nv1.5) (Wiedinmyer et al., 2011), the Global Fire Emissions Data Set version 4.1 with small fires (GFED4s) 
(van der Werf et al., 2010, 2017) and the Global Fire Assimilation System versions 1.0 and 1.2 (GFASv1.0 and 
GFASv1.2) (Kaiser et al., 2012); hereafter referred to as FINN, GFED, and GFAS, respectively. The different 
fire emission estimation methodologies of these data sets are described in detail in their references given 
above and in our previous work (Reddington et al., 2016; Reddington, Morgan, et al., 2019). We use daily fire 
emissions from all three data sets (daily GFED emissions are available from 2003 onwards [Mu et al., 2011]). 
Fire emissions were distributed vertically over six ecosystem-dependent altitudes between the surface and 
6 km according to Dentener et al. (2006). Over Mainland Southeast Asia, all emissions were injected below 
3 km elevation, which is consistent with satellite observations of the vertical distribution of smoke in this 
region (Gautam et al., 2013).
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Model GLOMAP (v7) WRF-Chem (v3.7.1)

Domain Global Regional: East Asia

Horizontal resolution 2.8° × 2.8° 30 × 30 km (∼0.3° × 0.3°)

Vertical levels 30 (up to 10 hPa) 33 (up to 10 hPa)

Anthropogenic emissions MACCity (Granier et al., 2011) for 2003–2010 EDGAR-HTAP2 (Janssens-Maenhout et al., 2015) for 2010

Fire emissions FINN1.5, GFAS1.2, GFED4 FINN1.5

Meteorology Driven by ECMWF fields Nudged to NCEP GFS fields (NCEP, 2000, 2007)

Aerosol size distribution Modal scheme (7 log-normal modes) Sectional scheme (MOSAIC 4-bin; Zaveri et al., 2008)

Gas-phase chemistry TOMCAT (Chipperfield, 2006) MOZART-4 (Emmons et al., 2010)

Simulation year(s) 2003–2015 2014

Simulations (1) GLOMAP_nofire: fire emissions excluded (1) WRFChem_nofire: fire emissions excluded

(2) GLOMAP_FINN: with FINN fire emissions (2) WRFChem_FINN: FINN fire emissions

(3) GLOMAP_GFAS: with GFAS fire emissions (3) WRFChem_FINNx1.5: FINN fire emissions scaled 
upwards by a factor 1.5(4) GLOMAP_GFED: with GFED fire emissions

Abbreviations: GLOMAP, Global Model of Aerosol Processes; WRF-Chem, Weather Research and Forecasting model coupled with Chemistry.

Table 1 
Summary of the Model Setups for the GLOMAP Global Model and WRF-Chem Regional Model
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2.1.2. GLOMAP Model Simulations

We performed four model simulations with GLOMAP: one simulation excluding fire emissions (“GLOMAP_
nofire”); and three simulations each including a different fire emissions data set (“GLOMAP_FINN”, 
“GLOMAP_GFED,” and “GLOMAP_GFAS”). Simulations were run from January 1, 2003 to December 31, 
2015 (after a 92-day spin-up), driven by ECMWF ERA-Interim global reanalyzes (Dee et al., 2011) that cor-
respond to the simulation date/time.

2.2. Description of the WRF-Chem Regional Model

We used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem; Grell 
et al., 2005) version 3.7.1, a high-resolution regional model, to simulate air pollutant concentrations for 
1 year (2014) and quantify the public health impacts of long-term exposure to fire-derived PM2.5 and ozone 
(O3) concentrations. Table 1 summarizes the model setup used for this study; see Section S1.2 for further 
details.

2.2.1. Fire Emissions in WRF-Chem

Fire emissions were taken from FINN version 1.5 (Wiedinmyer et al., 2011), with a spatial resolution of 
1 × 1 km for the year 2014. Fire emissions were included for BC, OC, PM2.5, PM10, carbon monoxide, ammo-
nia, nitrogen oxides, SO2, and nonmethane volatile organic compounds (speciated according to the Model 
for Ozone and Related Chemical Tracers (MOZART); Emmons et al., 2010). We applied a diurnal factor 
(Western Regional Air Partnership, 2005) to the daily emissions, which assumes greater emissions during 
the day (between 10:00 and 19:00 local time, peaking at 15:00–16:00 local time) and minimal emissions 
during the night. The injection heights of the fire emissions were calculated online in the model using the 
Freitas et al. (2007) plume-rise parameterization. The plume-rise parameterization applies a 1-D cloud-par-
cel model to each grid-column within the WRF-Chem model domain that contains a fire.

2.2.2. WRF-Chem Model Simulations

The model domain is located over East Asia, using a Lambert conformal conical projection with a horizon-
tal resolution of 30 × 30 km (covering a 130 × 124 grid) and 33 vertical levels up to a minimum pressure 
of 10  hPa. We regridded the model output, using linear interpolation, onto a regular latitude-longitude 
grid at 0.25° × 0.25° resolution. We performed three model simulations with WRF-Chem: one simulation 
excluding fire emissions (“WRChem_nofire”); one simulation including FINN fire emissions (“WRFChem_
FINN”); and one simulation where FINN fire emissions of OC and BC were scaled upwards by a factor 1.5 
(“WRFChem_FINNx1.5”). The simulation period was for 1 year from January 9, 2014 to January 9, 2015, 
with the first 8 days of January 2014 run as spin-up. We selected 2014 for our simulation year since both PM 
and O3 measurements are available for this year (Section 2.5).

2.3. Description of the Public Health Impact Assessment

We estimated the disease burden attributable to ambient PM2.5 exposure (simulated by WRF-Chem) using 
population attributable fractions of relative risk. The relative risk of disease at a specific ambient PM2.5 
exposure was estimated through the Global Exposure Mortality Model (GEMM) (Burnett et al., 2018). We 
calculated the disease burden due to long-term exposure to ambient O3 (simulated by WRF-Chem) using 
the exposure-response function from Turner et al. (2016). Uncertainty intervals at the 95% confidence level 
(95UI) were estimated through using the derived uncertainty intervals from the exposure-outcome func-
tions, baseline mortality and morbidity rates, and population age fractions. See Section  S1.3 for further 
details.

The mortality due to fire emissions (MFIRE) was calculated using the “subtraction” method (Conibear 
et al., 2018); calculating the difference between the premature mortality from all sources (MALL) and the 
premature mortality when fire emissions have been removed (MFIRE_OFF) as in Equation 1:

FIRE ALL FIRE_OFF–M M M (1)
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2.4. Description of the Poverty Proxy Data

As a proxy for population poverty levels, we used gridded subnational Infant Mortality Rate (IMR) estimates 
from NASA Socioeconomic Data and Applications Center for 2015 (Center for International Earth Science 
Information Network (CIESIN), 2018b). For further details see Section S1.5 and Figure S8.

The IMR is defined as the number of children who die before their first birthday for every 1,000 live births 
in a given year. For context, previous studies have defined populations with IMR  <  15 to be not poor; 
15 ≤ IMR < 32 to be moderately poor; 32 ≤ IMR < 65 to be poor; and 65 ≤ IMR < 100 to be very poor (De 
Sherbinin, 2008); and populations with a high IMR as having > 32 deaths per 1,000 live births (Barbier & 
Hochard, 2019).

Subnational IMR estimates have been used as a proxy for poverty indicators in a range of previous studies 
(Barbier & Hochard, 2018, 2019; Barlow et al., 2016; De Sherbinin, 2008; Hauenstein et al., 2019). A strong 
correlation between IMR and other poverty-related metrics, including population income, education and 
health (De Sherbinin, 2008; Fritzell et al., 2015; O'Hare et al., 2013; Reidpath & Allotey, 2003; Sartorius & 
Sartorius, 2014), justifies the use of IMR as a proxy for overall poverty levels. In addition, it is difficult to 
obtain alternative poverty measures at sub-national levels for multiple countries (CIESIN, 2018a; P. Dasgup-
ta, 1993). Other advantages of this data set over alternative poverty measures include its highly standardized 
nature and availability for ≥90% of medium-income and low-income country populations (Balk et al., 2006; 
CIESIN, 2018a).

2.5. Description of the Particulate Matter and Ozone Measurements

We used 2003–2015 monthly mean PM10 concentrations measured at air quality monitoring stations located 
in fire-influenced regions of Thailand (Figure S1a) from the Pollution Control Department (PCD) of the 
Thailand Government Ministry of Natural Resources and Environment. The fire-influenced stations were 
selected using GLOMAP or WRF-Chem model data where fire emissions contributed 20% or greater to the 
simulated annual mean PM10. We used surface O3 concentration measurements from air quality monitoring 
stations located in China and surrounding countries (Figure S1b) from the Berkley Earth China Air Quality 
Data Set (Rohde & Muller, 2015). See Section S1.4 for further details on the measurements.

To evaluate model-simulated surface PM10 concentrations due only to the influence of fire, we calculat-
ed and compared simulated and measured fire-derived (smoke) PM10 concentrations. The simulated and 
measured fire-derived PM10 concentrations were estimated for each year separately, by subtracting the min-
imum monthly mean PM10 concentration from all monthly mean concentrations for that year. A similar 
approach has been used in previous modeling studies (e.g., Kiely et al., 2020) to isolate enhancements in 
surface PM concentrations due only to fires.

To quantify the agreement between model and observations, we used the Pearson correlation coefficient 
(r) and normalized mean bias factor (NMBF) as defined by Yu et al. (2006). A positive NMBF indicates the 
model overestimates the observations by a factor of NMBF + 1. A negative NMBF indicates the model un-
derestimates the observations by a factor of 1 – NMBF.

3. Results
3.1. Analysis of Fire Emissions Over Southeast Asia

Figure 1 shows the 2003–2015 average spatial distribution of OC emissions from fire over Southeast Asia 
from GFAS, FINN, and GFED. In all data sets, greatest emissions occur in the northern regions of Laos, 
Cambodia, and Thailand, eastern and western Myanmar and southern Bangladesh, and lower emissions 
in central regions of Myanmar and Thailand, northern Vietnam and south-eastern China. The regions of 
greatest OC emissions are dominated by deforestation and degradation fires (as classified by GFED4; van 
der Werf et al., 2017, Figure 1d). FINN generally estimates greatest OC emissions of the three emission data 
sets across the region, with lowest OC emissions estimated by GFED.

Figure 2 shows the 2003–2015 average annual OC emissions at the country scale with the greatest emis-
sions from Myanmar and lowest from Vietnam. Countrywide FINN OC emissions are a factor 2–7 greater 

REDDINGTON ET AL.

10.1029/2021GH000418

5 of 20



GeoHealth

than GFED and a factor 3–5 greater than GFAS. Annual OC emissions summed across the region vary by a 
factor of 4 (GFAS: 0.90 Tg a-1; FINN: 3.67 Tg a-1; GFED: 0.87 Tg a-1) and contribute between 5% (GFAS) and 
18% (FINN) of 2003–2015 average global fire OC emissions. The importance of particulate fire emissions in 
this region depends on the fire emissions data set used. In the FINN data set, domain-wide fire OC emis-
sions (3.7 Tg a-1) are comparable to long-term average annual fire OC emissions in northern South America 
(3.1 Tg a-1; Butt et al., 2020).

Differences in the magnitude of OC emissions estimated by the three data sets arise from multiple factors 
involved in the different fire detection and emission estimation methods used, for example, differences in 
the land use/land cover classifications used and the emissions factors assumed for various fire types and 
aerosol species (T. Liu et al., 2020); and possible biases in regions of agricultural residue burning and small 
savanna/grassland fires (Randerson et al., 2012; T. Zhang, Wooster, et al., 2018).
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Figure 1. (a–c) Annual total organic carbon (OC) emissions from fire across Southeast Asia, averaged over the period (2003–2015) from three fire emission 
data sets: (a) GFAS version 1.0 (and version 1.2 from 2012 onwards), (b) FINN version 1.5, and (c) GFED version 4.1s (GFED4). Fire emissions are all re-gridded 
to 0.5° × 0.5° resolution for comparison. (d) Spatial distribution of the dominant fire types for fire emissions of OC for 2003–2015. Data are from GFED4 (van 
der Werf et al., 2010) regridded to 0.5° × 0.5° resolution. Fires are characterized into six types: Deforestation and degradation fires (DEFO); Peatland fires 
(PEAT); Savanna, grassland, and shrubland fires (SAVA); Temperate forest fires (TEMF); Agricultural waste burning (AGRI); and Boreal forest fires (BORF). 
The dominant fire type was derived by calculating the maximum GFED4 OC emissions flux for each fire type in each 0.5° × 0.5° grid cell over the period 
2003–2015.
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Across Mainland Southeast Asia, fire emissions are predominantly from deforestation/degradation fires 
(accounting for 31%–57%) and savanna-type fires (accounting for 35%–55%) (Figure 2b). A detailed analysis 
of forest fires in Myanmar confirms that most are of anthropogenic origin (Biswas et al., 2015). Vadrevu 
et al.  (2019) found that most fires occurred in forests as opposed to cropland across much of Mainland 
Southeast Asia including Myanmar, Laos, Cambodia, and Vietnam. In regions with both deforestation and 
savanna fires, deforestation fires emit a greater amount of particulate emissions, due to a combination of 
larger fuel loads/biomass consumption and emission factors, and thus tend to dominate emissions (Fig-
ure 1d). However, savanna fires are more prevalent across the region and so the accumulated emissions 
from this fire type per country are generally comparable to or greater than deforestation fires. In south-east-
ern China, OC emissions arise predominantly from fires classified as temperate forest fires (67%). Agri-
cultural fires make up a relatively small fraction of fire OC emissions across the region (1%–14%), but the 
occurrence of these fires may be underestimated or misrepresented both in GFED (Reddington et al., 2016; 
T. Zhang, Wooster, et  al.,  2018), and more widely by satellite-based estimates (Lasko et  al.,  2017; Shen 
et al., 2019; Stavrakou et al., 2016; L. Zhang et al., 2016; T. Zhang et al., 2020).

3.2. Model Evaluation

3.2.1. Evaluation of Fire Emissions Data Sets

Figure 3 compares three fire emissions data sets in GLOMAP against long-term surface measurements of 
PM10 from 12 fire-influenced stations in Thailand. The measurements show a consistent peak in monthly 
mean fire-derived PM10 concentrations of ∼60–130 mg m−3 during the premonsoon season (roughly be-
tween January and May) across all years. Annual peak concentrations show a moderate degree of interan-
nual variability, with relatively low peaks measured during 2003, 2008 and 2011 (and relatively high in 2004, 
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Figure 2. (a) Annual total organic carbon (OC) emissions from fire for countries/regions in Southeast Asia. Bars 
show annual total emissions averaged over the period (2003–2015) with error bars showing the standard deviation; 
circles show annual total emissions for 2014. OC emissions are shown from three fire emission data sets: GFAS version 
1.0 (and version 1.2 from 2012 onwards), FINN version 1.5 and GFED version 4.1s (GFED4). “SE China” is defined 
as south of 30°N and east of 98°W. (b) Fire type fraction of GFED4 annual total OC emissions for four different fire 
types: Deforestation and degradation fires (DEFO); Savanna, grassland, and shrubland fires (SAVA); Agricultural waste 
burning (AGRI); and Temperate forest fires (TEMF) (van der Werf et al., 2010). Bars show fire type fractions averaged 
over the period (2003–2015) with error bars showing the standard deviation; circles show fire type fractions for 2014.
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2007, and 2012). The multiyear GLOMAP simulations demonstrate that fires consistently make a substan-
tial contribution to surface PM10 concentrations in northern Thailand over a 13-year period.

Figure 3a shows GLOMAP generally captures the measured interannual variability in fire-derived PM10 
when fire emissions are included in the model (r2 = 0.47–0.57, depending on the emission data set) but 
underestimates the magnitude of the measurements in all simulations (NMBF = −1.8 to −0.5), particu-
larly in 2005, 2014, and 2015. The smallest model bias in annual mean fire-derived PM10 across all years 
(NMBF = −0.5) is achieved with FINN emissions.

Figure 3b shows the strong seasonal variability in measured fire-derived PM10 concentrations, with average 
concentrations peaking in March and then decreasing to very low values between May and September. The 
measured seasonal variation is captured well in the simulations with fire emissions (r2 = 0.82–0.90, depend-
ing on the emission data set). However, the magnitude of fire-derived PM10 concentrations is best captured 
by the model with FINN emissions (Figure  3b; NMBF  =  −0.4; see further analysis in Section  S2.1 and 
Figure S2). This result is consistent with our previous work (Reddington et al., 2016) that used AERONET 
aerosol optical depth to evaluate the GLOMAP model over Southeast Asia. Therefore, we use the FINN 
emissions in our high-resolution regional model simulations in the following sections.

3.2.2. Evaluation of WRF-Chem Particulate Matter Concentrations

Figure 4 compares WRF-Chem simulated and measured regional-average seasonal cycles in fire-derived 
PM10 for 12 fire-influenced stations in Thailand during 2014. We note that annual fire emissions in FINN for 
2014 are comparable to or lower than the 2003–2015 average (Figure 2a). The model with FINN emissions 
well simulates the monthly mean variation in measured fire-derived PM10 concentrations (r2 = 0.89) but 
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Figure 3. Evaluation of GLOMAP-simulated PM10 over Thailand. (a) Left: time-series of simulated and measured monthly mean fire-derived PM10 
concentrations between 2003 and 2015, averaged over 12 fire-influenced stations (shown in Figure S1a); Right: simulated versus measured annual mean 
fire-derived PM10. (b) Left: time-series of simulated and measured multiannual average seasonal cycle of fire-derived PM10 concentrations, averaged over the 
same stations as the upper panel; Right: simulated versus measured multiannual monthly mean fire-derived PM10. The model bias (NMBF) and correlation 
(r2) between modeled and measured values are given at the top of the righthand figures. Simulated concentrations are shown for the model with FINN1.5 
(GLOMAP_FINN), GFAS1.2 (GLOMAP_GFAS), GFED4 (GLOMAP_GFED) emissions, and without fire emissions (GLOMAP_nofire).
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underestimates the magnitude of the observations (NMBF = −0.28) predominantly during January to July. 
This is consistent with total PM10 concentrations (Figure S3).

Increasing the particulate fire emissions by a factor 1.5 improves the overall agreement with measured 
fire-derived PM10 (Figure 4; r2 = 0.94, NMBF = −0.10). Specifically, the FINNx1.5 simulation better captures 
the measured seasonal variation and magnitude of fire-derived PM10 at 11 out of 12 stations (Figure S4; 
FINN: normalized standard deviation (NSD) = 0.55–1.21; FINNx1.5: NSD = 0.64–1.74), with little change 
in the strong temporal correlation (FINN: r = 0.83–0.97; FINNx1.5: r = 0.87–0.98). The FINNx1.5 simula-
tion also agrees well with PM2.5 measurements (see Section S2.2 and Figure S5). Previous studies have used 
similar or larger scaling factors to increase fire emissions in models to better match observations (see Red-
dington et al., 2016 and references therein). In the following sections, we show results from the FINNx1.5 
simulation as it gives the best match to PM observations.

3.2.3. Evaluation of WRF-Chem Surface Ozone Concentrations

Figure 5 compares simulated and measured daily mean surface O3 mixing ratios averaged over two regions 
in Southeast Asia during April–July 2014. Regional-average measured O3 mixing ratios range from ∼10 to 
∼60 ppbv. Variability in surface O3 concentrations over Southeast Asia is driven by a complex mix of factors, 
including varying precursor gas emissions and concentrations, photochemical production, and meteorolog-
ical effects (causing accumulation, transport and removal). We evaluate the model against total O3 rather 
than fire-derived O3, as for total PM2.5 in Section S2.2, because these quantities are used for the health im-
pact assessment in Section 3.4.

Measured surface O3 mixing ratios in Thailand show a peak during April (Figure 5a), which has been report-
ed to be due to regional scale O3 production triggered by fires (Chen et al., 2017; Pochanart et al., 2001). The 
FINNx1.5 simulation captures this peak and reproduces the general daily variability in measured O3 con-
centrations (r2 = 0.81), while slightly overestimating the magnitude of the measurements (NMBF = 0.19). 
In south-eastern China (Figure  5b), the model simulates the magnitude and temporal variability of the 
measured O3 mixing ratios reasonably well (r2 = 0.46, NMBF = 0.11). Model-measurement comparisons 
are shown for separate provinces/regions in south-eastern China in Figure S6. Previous studies have report-
ed increased ozone concentrations aloft (∼2–6 km altitude) over southern China due to fires in Mainland 
Southeast Asia but show little enhancement at the surface (C. Y. Chan et al., 2003; L. Y. Chan et al., 2000; 
Kondo et al., 2004), consistent with the model results. Reductions in photochemical ozone production as a 
result of PM from fires can also act to reduce ozone concentrations (Deng et al., 2008).

3.3. Impacts of Forest and Vegetation Fires on Air Quality

Figure 6a shows the relative change in simulated surface annual (2014) mean PM2.5 concentration when fire 
emissions are excluded in WRF-Chem (see Figure S7 for simulated annual mean surface concentrations). 
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Figure 4. Evaluation of Weather Research and Forecasting model coupled with Chemistry (WRF-Chem)-simulated 
PM10 over Thailand. Left: Time-series of simulated and measured monthly mean fire-derived PM10 concentrations 
during 2014 averaged over 12 fire-influenced stations (shown in Figure S1a). Right: simulated versus measured annual 
mean fire-derived PM10. The model bias (NMBF) and correlation (r2) between modeled and measured values are 
given at the top of the righthand figure. Simulated concentrations are shown for the model without fire emissions 
(WRFChem_nofire), and for the model with FINN emissions (WRFChem_FINN) and with FINN emissions scaled 
upwards by a factor 1.5 (WRFChem_FINNx1.5).
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Figure 5. Evaluation of Weather Research and Forecasting model coupled with Chemistry (WRF-Chem)-simulated 
ozone (O3) over Thailand and South-eastern (SE) China. Left: Time-series of simulated and measured daily mean 
surface O3 mixing ratios during 2014; Right: simulated versus measured daily mean O3. Regional averages are shown 
for: (a) Thailand (9 air quality monitoring stations); and (b) SE China (368 stations in south-eastern Mainland China, 72 
stations in Taiwan/Republic of China, and 12 stations in Hong Kong Special Administrative Region). O3 measurements 
are available from April–July 2014. The model bias (NMBF) and correlation (r2) between modeled and measured 
values are given at the top of the righthand figures. Simulated values are shown for three model simulations: without 
fire emissions (WRFChem_nofire); with FINN fire emissions (WRFChem_FINN); and with FINN emissions scaled 
upwards by a factor 1.5 (WRFChem_FINNx1.5).

Figure 6. The air quality effects of eliminating fire across Southeast Asia. Shown are the percentage changes in Weather Research and Forecasting model 
coupled with Chemistry (WRF-Chem)-simulated annual (2014) mean (a) PM2.5 and (b) ozone concentrations at ground level when fire emissions are excluded 
in the model. Results are shown for the high fire emissions scenario (WRFChem_FINNx1.5). Regions in gray are outside the model domain.
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Eliminating fire emissions reduces simulated annual mean surface PM2.5 concentrations by ∼40%–70% in 
northern Thailand, Myanmar, Cambodia, and Laos, with reductions in south-eastern China ranging from 
∼10%to 40% in the region of Mainland Southeast Asia and in Taiwan, to ≤10% in the provinces further east. 
Population-weighted annual mean PM2.5 concentrations across Southeast Asia are reduced by 7%, with re-
ductions of 20% in Cambodia, 41% in Laos, 31% in Myanmar, 23% in Thailand, and 7% in Vietnam.

Simulated PM2.5 concentrations suggest that for 2014, the World Health Organization (WHO) Air Quality 
Guideline for PM2.5 (an annual mean of 10 μg m−3; WHO, 2006) is exceeded in almost every location in 
Southeast Asia even when fires are excluded (see Figures S7a and S7b). However, excluding fires substan-
tially reduces the population exposed to levels of PM2.5 above the WHO Air Quality Interim Target 2 (annual 
mean of 25 μg m−3) in Thailand (by 64%), Myanmar (by 100%), Laos (by 92%), and Cambodia (by 44%), with 
smaller reductions in Vietnam (by 9%) and south-eastern China (by 3%).

Figure 6b shows the relative change in simulated surface annual mean O3 concentration when fire emis-
sions are excluded from the model (see Figures S7c and S7d for absolute concentrations). The spatial pattern 
of relative changes in surface O3 is fairly consistent with the peak and minimum relative changes in surface 
PM2.5 concentrations, with largest reductions over northern Thailand, Myanmar, Cambodia, and Laos (up 
to 20%) and smaller reductions over most of south-eastern China (<15%). When fires are excluded from the 
model, the annual average daily maximum 8-h (ADM8h) O3 concentration is reduced by 5% across South-
east Asia, with reductions of 10% in Cambodia, 12% in Myanmar and Laos, 8% in Thailand, 5% in Vietnam, 
and 2% in south-eastern China.

3.4. Impacts of Forest and Vegetation Fires on Public Health

Table 2 shows the averted disease burden due to changes in long-term exposure to ambient PM2.5 and O3 
from eliminating fire emissions. Eliminating fire emissions reduces the annual disease burden from ambi-
ent PM2.5 exposure by 12% in Mainland Southeast Asia (ranging from 5% in Vietnam to 28% in Laos), avert-
ing a total of 27,500 (95UI: 24,700–30,400) premature deaths. In south-eastern China, the disease burden 
is reduced by 3%, averting 31,400 (95UI: 30,500–32,400) premature deaths. Assuming a low fire scenario 
(FINN) decreases the averted annual PM2.5 disease burden from eliminating fire emissions by a factor of 
1.3 (Table S2).

Figure 7 shows the averted annual premature mortalities and mortality rate by country from eliminating fire 
emissions. While the number of avoided total premature mortalities is much higher in south-eastern China, 
due to the high population, the averted mortality rate in this region is smaller than the other countries, due 
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Country/region

Reduction 
in PM2.5 
exposure

Reduction 
in PM2.5 
MORT PM2.5 MORT (yr−1) PM2.5 DALYs (yr−1)

Reduction 
in O3 

exposure

Reduction 
in O3 

MORT O3 MORT (yr−1)

Cambodia 20% 13% 1,500 (1,300–1,700) 59,500 (49,100–71,700) 10% 15% 140 (130–160)

Laos 41% 28% 1,600 (1,300–1,800) 63,600 (49,400–77,400) 12% 16% 80 (70–80)

Myanmar 31% 21% 10,800 (9,500–12,000) 393,100 (326,200–467,300) 12% 20% 1,070 (940–1,190)

Thailand 23% 15% 8,500 (7,900–9,100) 344,500 (288,600–405,700) 8% 7% 600 (550–650)

Vietnam 7% 5% 5,100 (4,600–5,700) 186,800 (145,100–225,400) 5% 4% 360 (310–390)

SE China 5% 3% 31,400 (30,500–32,400) 1,042,900 (919,200–1,184,800) 2% 1% 1,530 (1,380–1,660)

Total Mainland SE Asia 16% 12% 27,500 (24,700–30,400) 1,047,500 (867,500–1,247,300) 9% 10% 2,250 (2,000–2,470)

Total SE Asia domain 7% 5% 59,000 (55,200–62,900 2,090,300 (1,786,700–2,432,200) 5% 3% 3,790 (3,380–4,130)

Note. Shown are the percentage reductions in population-weighted annual mean PM2.5 concentration (PM2.5 exposure), annual mean daily maximum 8-h 
(ADM8h) O3 concentration (O3 exposure), and annual disease burden; and the numbers of averted annual premature mortalities (MORT) and disability-
adjusted life years (DALYs) per country for the higher fire emissions scenario (FINNx1.5). Values in parentheses represent the 95% uncertainty intervals (95UI). 
PM2.5 mortality values are rounded to the nearest 100 and O3 mortality values are rounded to the nearest 10. “SE China” is defined as south of 30°N and east of 
98°W, and includes Hong Kong SAR, Macau SAR and Taiwan. “Mainland SE Asia” includes Cambodia, Laos, Myanmar, Thailand, and Vietnam

Table 2 
Averted Public Health Effects due to Changes in Long-Term Exposure to Ambient PM2.5 and Ozone (O3) From Eliminating Fire Emissions
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to the more moderate impact of fire on air quality (Section 3.3). The greatest impact per capita is in Laos and 
Myanmar where 25 (95UI: 21–29) and 26 (95UI: 23–29) premature deaths per 100,000 head of population 
are averted per year, respectively. In Cambodia, Thailand, Vietnam and south-eastern China, the averted 
mortality rate ranges from 10 to 17 (95UI: 9–18) premature deaths per 100,000 people per year.

Eliminating fire emissions reduces the annual disease burden due to 
long-term exposure to ambient O3 by 10% in Mainland Southeast Asia 
(ranging from 4% in Vietnam to 20% in Myanmar), averting a total of 
2,250 (95UI: 2,000–2,470) premature deaths (Table 2). In south-eastern 
China, the annual disease burden is reduced by 1%, averting 1,530 (95UI: 
1,380–1,660) premature deaths. In the FINNx1.5 scenario, the reduction 
in surface O3 by country is slightly smaller than for the FINN scenario 
due to nonlinear effects driving O3 concentrations, resulting in smaller 
averted disease burdens (Table S2).

3.5. Poverty and Smoke Exposure

In this section, we examine the poverty levels of the Southeast Asian 
population exposed to fire-derived PM2.5 pollution. Figure 8 shows WRF-
Chem simulated annual mean fire-derived (smoke) PM2.5 and nonfire 
PM2.5 concentrations plotted against gridded poverty proxy (IMR) data 
for the Southeast Asian domain. Populations in regions with relatively 
high IMRs (>60 deaths per 1,000 births) are generally exposed to higher 
annual mean PM2.5 concentrations from fire than populations with rela-
tively low IMRs (<40 deaths per 1,000 births). In areas with IMR ≥ 60, the 
mean fire-derived PM2.5 exposure (10.6 μg m−3) is significantly greater (at 
the 99% confidence level) than the mean fire-derived PM2.5 exposure in 
areas with IMR ≤ 20 (3.5 μg m−3). At the national scale, countries with 
higher IMRs (Laos, Cambodia, and Myanmar; Figure S8) also experience 
greater particulate emissions from fires (Figure 1b) and greater exposure 
to fire-derived PM2.5 (Figure 6a) than other countries in Southeast Asia. 
Also, this result may reflect that rural populations in Southeast Asia, 
which are generally located closer to forest and vegetation fires, often ex-
perience greater IMRs (e.g., Myanmar Ministry of Health, 2003).

When we consider PM2.5 from all sources other than fires (Figure  8b), 
we obtain the opposite result, where populations in regions with rela-
tively high IMRs (>60 deaths per 1,000 births) are generally exposed to 
lower annual mean nonfire PM2.5 concentrations than populations with 
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Figure 7. The number of averted annual premature mortalities across Southeast Asia due to changes in long-term 
exposure to ambient PM2.5 from eliminating fire emissions. The total annual premature mortality estimates are shown 
for each country by the red bars; the annual premature mortality rate estimates (mortalities per 100,000 head of 
population) are shown for each country by the blue bars. Error bars represent the 95% uncertainty intervals.
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Figure 8. Weather Research and Forecasting model coupled with 
Chemistry (WRF-Chem)-simulated annual mean (a) fire-derived PM2.5 and 
(b) nonfire-derived PM2.5 concentrations versus binned subnational infant 
mortality rate (IMR) values across the Southeast Asian domain. Shown 
are the simulated PM2.5 anomalies, that is, the difference of the PM2.5 
concentration in each IMR bin from the mean PM2.5 concentration across 
all IMR bins. Boxes enclose the interquartile range; filled circles show the 
mean; error bars extend to 1.5 times the 25th and 75th percentiles; gray 
open circles show outliers. Prior to analysis IMR values were regridded 
to the WRF-Chem grid by taking the mean gridded IMR value per 
0.25° × 0.25° grid cell.
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relatively low IMRs (<40 deaths per 1,000 births). In areas with IMR ≥ 60, 
the mean nonfire PM2.5 exposure (15.1 μg m−3) is significantly lower (at 
the 99% confidence level) than the mean nonfire PM2.5 exposure in areas 
with IMR ≤ 20 (35.3 μg m−3).

Considering PM2.5 from all sources (Figure  S9), we find that on aver-
age, “not poor” and “moderately poor” populations (with IMR < 32) are 
exposed to annual mean PM2.5 concentrations derived predominantly 
(88%) from nonfire sources. However, for “very poor” populations (with 
65 ≤ IMR < 100), fire-derived PM2.5 makes up a more substantial fraction 
(41%) of the total PM2.5 exposure, with 59% from nonfire sources.

Figure 9 shows the spatial distribution of relative poverty levels (IMR) 
and fire-derived PM2.5 exposure (WRF-Chem-simulated annual mean 
fire-derived PM2.5 concentrations) across Southeast Asia. This figure in-
dicates a large region in Southeast Asia (including northern Laos, north-
west Vietnam, northern Cambodia, northern and eastern Myanmar, and 
Yunnan province in China) where populations with medium or high lev-
els of poverty are exposed to medium or high levels of PM2.5 pollution 
from fires. In particular, two areas in northern Laos and western Myan-
mar show relatively high levels of both poverty and PM2.5 exposure, sug-
gesting populations in these regions may be particularly at risk to health 
impacts from fires.

Overall, these results suggest that populations with greater levels of pov-
erty are disproportionally exposed to PM2.5 from vegetation and forest 
fires in Southeast Asia. For very poor populations, fire-derived PM2.5 con-
centrations contribute over a third to the total PM2.5 exposure.

4. Discussion of Public Health Impacts and Policy
To put our estimated public health impacts into context, we compare disease burdens due to fire-derived 
PM2.5 exposure calculated for other fire-intensive regions. Previous studies have estimated that preventing 
forest and vegetation fires would avert ∼5,000–16,800 annual premature deaths across South America (Butt 
et al., 2020; F. H. Johnston et al., 2012; Nawaz & Henze, 2020; Reddington et al., 2015) and ∼6,000–100,300 
annual premature deaths across Equatorial Asia (Crippa et al., 2016; Kiely et al., 2020; Koplitz et al., 2016; 
Marlier et al., 2012). The wide range in estimates reflects differences in the experimental design/methods, 
for example, time periods (with strong interannual variability in fire emissions in these regions), atmos-
pheric models, and, in particular, exposure-outcome associations (as discussed by Butt et al., 2020; Conibear 
et al., 2018; Giani et al., 2020; Kiely et al., 2020; Reddington, Conibear, et al., 2019).

Using similar WRF-Chem setups and exposure-outcome association (the GEMM) as used in this study, pre-
vious studies found that eliminating fire would avert 16,800 (95UI: 16,300–17,400) premature deaths across 
South America in 2012 (Butt et al., 2020) and 44,000 (34,700–53,900) premature deaths across Equatorial 
Asia in 2015 (Kiely et al., 2020). The total averted disease burden for our Southeast Asian domain, 59,000 
(95UI: 55,200–62,900) premature deaths, is greater than estimated for the other two fire-influenced regions, 
despite there being a major drought-induced haze event across Equatorial Asia in 2015. Removing the pop-
ulation size dependence, the per capita averted disease burden estimates for countries in Southeast Asia 
(10–26 (95UI: 9–29) deaths per 100,000 people) are comparable to those estimated for Bolivia, Brazil and 
Peru (11–22 (95UI: 10–26) deaths per 100,000 people) in 2012 (Butt et al., 2020) and for Singapore, Brunei 
and Malaysia (20–33 (95UI: 16–41) deaths per 100,000 people) in 2015 (Kiely et al., 2020). These compari-
sons indicate that populations in Mainland Southeast Asia, suffer from substantial exposure to smoke from 
fires with adverse impacts on public health that are comparable to other major fire regions in the tropics.

We also compared the averted disease burden from eliminating fire to those that would be achieved by 
eliminating other emissions sectors, estimated in Reddington, Conibear, et al. (2019). Using the same health 
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Figure 9. Spatial distribution of poverty proxy data (infant mortality 
rate [IMR] estimates) and Weather Research and Forecasting model 
coupled with Chemistry-simulated annual mean fire-derived PM2.5 
concentrations across Southeast Asia. Poverty proxy (IMR) ranges are: 
low: 0–20; med = 20–60; high = 60–100 deaths per 1,000 live births. 
PM2.5 concentration ranges are: low = 0–5 μg m−3; med = 5–15 μg m−3; 
high = 15–30 μg m−3.
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impact calculation method as Reddington, Conibear, et al. (2019) (the Integrated Exposure-Response func-
tion [GBD 2015 Risk Factors Collaborators, 2016]), the avoided PM2.5 disease burdens in Mainland South-
east Asia due to eliminating fire emissions (12,200 [95UI: 6,500–19,000] premature deaths) are lower than 
calculated with the GEMM (Table 2). These values are comparable to eliminating all industrial emissions; 
a factor 6 greater than eliminating electricity generation emissions; and a factor 10 greater than eliminating 
land transport across Mainland Southeast Asia. We note that we do not account for toxicity variation with-
in PM2.5 exposure as it is currently unknown; with disagreement in the literature regarding the toxicity of 
fire-derived PM relative to ambient PM (Aguilera et al., 2021; H. J. Johnston et al., 2019; Pongpiachan, 2016; 
Wegesser et al., 2009). The health effects of different sources and components of PM exposure is an ongoing 
area of research (Adetona et al., 2016; J. C. Liu et al., 2015; Naeher et al., 2007; Reid et al., 2016).

There is considerable uncertainty associated with deriving fire emissions from satellite retrievals (e.g., Pan 
et al., 2020; Reddington et al., 2016), and previous studies have reported that these emissions, particularly 
from agricultural fires, may be underestimated in Mainland Southeast Asia (Lasko et al., 2017; Reddington 
et al., 2016; Sornpoon et al., 2014) and China (Shen et al., 2019; Stavrakou et al., 2016; L. Zhang et al., 2016; 
T. Zhang et al., 2020). The underestimation of emissions from these fires is likely due to multiple factors, 
but particularly their small size (difficult for burned area products to detect) and short duration of active 
burning (a high potential to be missed by polar-orbiting satellites with detection frequencies of only a few 
times per day) (e.g., T. Zhang, Wooster, et al., 2018). Applying a simple scaling factor to the fire emissions 
will partly compensate for emissions underestimation, but emissions estimates are still likely to be conserv-
ative in regions with a high number of missed detections.

Our analysis shows that a reduction of fire across southeast Asia would have substantial health benefits. 
Successful fire management requires information about the main types and causes of fire. Across Mainland 
Southeast Asia, emissions are dominated by forest fires (deforestation, savanna, and temperate forest classes 
in GFED) which account for 96% of particulate emissions across our domain, with greater contributions in 
Cambodia, Laos, and Myanmar. A detailed analysis of fires confirms that most fires in the region occur in 
forest land covers (Vadrevu et al., 2019). A close association between fire and deforestation has also been 
shown in other tropical regions including the Brazilian Amazon (Reddington et al., 2015) and Indonesia 
(Adrianto et al., 2019, 2020). In Southeast Asia, fires are lit in forests to clear the land for agriculture (slash 
and burn, deforestation fires), to induce growth of grass for grazing, and for collection of forest products 
(Vadrevu et al., 2019). The large contribution of forest fires to particulate emissions suggests that reducing 
deforestation and associated fires should be a public health priority for the region. In Cambodia, deforesta-
tion has been linked to increased incidence of acute respiratory infection in children, likely due to increased 
exposure to smoke from deforestation fires (Pienkowski et al., 2017). Future work exploring the relative 
contributions of different fire types to air pollution in Mainland Southeast Asia would be useful to inform 
policy options to improve air quality.

Several policies have already been implemented to reduce agricultural fires in Southeast Asia, for exam-
ple, an Alternative Energy Development Plan and a zero-burning policy for sugarcane in Thailand (Ku-
mar et al., 2020). However, challenges remain with regards to the enforcement of these policies and their 
practicality, particularly for farmers that rely on manual harvesting practices (Adeleke et al., 2017; Kumar 
et al., 2020). Recent research shows the most effective solutions for reducing agricultural residue burning 
and its associated air pollution, are to encourage residue use for other purposes, for example, bioenergy, 
livestock feed/bedding, composting, green harvesting and so on (Kumar et al., 2020) and to apply coherent 
policies across multiple provinces and countries in Southeast Asia (Moran et al., 2019).

Discussion of the implementation and benefits of policies addressing deforestation and/or savanna-type 
fires in Southeast Asia are lacking in the literature. However, a number of policies and projects have been 
developed and implemented to address forest loss and conversion, many of which are related to UNFCCC 
REDD+ (reducing emissions from deforestation and forest degradation and the role of conservation, sus-
tainable management of forest and enhancement of forest carbon stocks) (e.g., Kissinger, 2020). Key driv-
ers of deforestation are expansion of cropland and commercial agriculture (Lim et  al.,  2017; Y. Zhang, 
Prescott, et al., 2018), for example, conversion of forest to coffee and/or rubber plantations (Fox & Castel-
la, 2013; Kissinger, 2020). There is evidence that protected areas and community-protected forests can play 
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an important role in protecting forests from large-scale burning and deforestation fires (Biswas et al., 2015; 
Singh et al., 2018).

5. Conclusions
In this study, we explored the impact of forest and vegetation fires on air quality and public health across 
Southeast Asia. We used a combination of two air quality models: a global aerosol model, GLOMAP, to test 
three different satellite-derived fire emission data sets (FINN, GFED, GFAS); and a high-resolution, region-
al air quality model, WRF-Chem, to quantify the air quality and public health benefits of eliminating fire 
emissions. Simulating the elimination of all fires across the region, rather than fires specifically identified to 
be human-caused, illustrates the maximum possible public health benefit achievable (within uncertainties) 
and provides an upper bound for policy makers.

We found that GLOMAP was better able to reproduce measurements of fire-derived PM in Thailand across 
multiple years with the FINN data set compared to the GFAS or GFED data sets. This result is consistent 
with findings in our previous work (Reddington et al., 2016). PM emissions across Southeast Asia in FINN 
are a factor 4 greater than GFED or GFAS. WRF-Chem using FINN best simulated measured PM concen-
trations when particulate fire emissions were scaled upwards by a factor 1.5. Our analysis suggests fire 
emissions in this region are underestimated, particularly in the GFED and GFAS data sets.

Overall, we found that preventing fire could substantially improve regional air quality in Mainland South-
east Asia with a more limited benefit to air quality in south-eastern China. Population-weighted annual 
mean PM2.5 concentrations were reduced by 16% in Mainland Southeast Asia and by 2% in south-eastern 
China. ADM8h O3 concentrations were reduced by 9% in Mainland Southeast Asia and by 2% in south-east-
ern China. Eliminating fire emissions substantially reduced populations exposed to PM2.5 concentrations 
above WHO AQ Interim Target 2 in Thailand, Myanmar, Laos, and Cambodia (by 44%–100%).

We found a considerable public health benefit of eliminating fire emissions across the region, largely due 
to reductions in PM2.5 exposures. The annual disease burden due to PM2.5 exposure was reduced by 12% in 
Mainland Southeast Asia, averting 27,500 (95UI: 24,700–30,400) premature deaths, and by 3% in south-east-
ern China, averting 31,400 (95UI: 30,500–32,400) premature deaths. The annual disease burden due to O3 
exposure was reduced by 10% in Mainland Southeast Asia, averting 2,250 (95UI: 2,000–2,470) premature 
deaths, and by 1% in south-eastern China, averting 1,530 (95UI: 1,380–1,660) premature deaths.

Using subnational poverty proxy data, we found that poorer populations in Southeast Asia are dispropor-
tionally exposed to PM2.5 from vegetation and forest fires; with significantly higher average fire-derived 
PM2.5 exposure for populations with relatively high infant mortality rates.

Our analysis suggests that exposure to fire-derived PM2.5 is associated with a greater annual disease burden 
in Southeast Asia than in both the Amazon region in 2012 and Equatorial Asia in 2015, with similar per 
capita averted disease burdens to those estimated for heavily fire-impacted countries in South America. 
Furthermore, preventing fires across Mainland Southeast Asia would yield a public health benefit compa-
rable to that achieved by eliminating all industrial emissions across the region, and considerably larger than 
achieved by eliminating emissions from either the electricity generation or land transport sectors.

In summary, forest and vegetation fires are important to consider in addition to more traditional emission 
sectors (e.g., industry, transport, and residential solid-fuel combustion) when assessing causes of air quality 
degradation in Southeast Asia and for developing emission control policies to improve air quality across this 
region. These policies should focus on reducing deforestation and savanna-type fires in addition to agricul-
tural fires in order to effectively address the regional air quality issues. Previous work in Equatorial Asia 
(Reddington et al., 2014) demonstrates the need to understand the effectiveness of regional emission con-
trol strategies and how they will reduce population exposure. Future work is required to identify the regions 
where emission controls would most effectively reduce exposure, especially for the poorest populations.
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