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Abstract

Liquid crystals are materials that exhibit a number of fascinating properties,
many of which have a geometric and topological flavour. Our understanding of
liquid crystals often comes through the study of their topological defects, which
has inspired new concepts of structural organization in soft matter. Topological
and geometric methods have been fundamental to these developments. Today it
is impossible to imagine any direction of the science of liquid crystals that does
not actively use the concepts of topological defects: they play an essential role
in fundamental theory and descriptions of such materials, and also underpin the
promising new applications.

Varieties of liquid crystal with additional geometric structure are at the fore-
front of new applications. These materials include the chiral nematics, or cholester-
ics, and also the more recently discovered twist-bend nematics. It is known that chi-
rality especially brings enormous richness, allowing for a wealth of new metastable
states and textures. The defects in these classes of material have more structure
than those in standard nematics, and include not just defects in the director, but
defects in other directions associated to the director which nonetheless have a fun-
damental structural importance; these are the familiar lambda lines of cholesterics,
and the beta lines in twist-bend materials which I describe for the first time. Despite
their importance, defects in cholesteric materials are still poorly understood.

In this thesis I develop a theory of point and line defects in cholesterics using
the mathematics of contact topology. I classify the structure of point defects by
using singularity theory and contact topology; the classification shows a very good
correspondence with experimental observations. Hedgehog point defects, ubiquitous
in standard nematics, are energetically disfavoured in cholesterics due to being in-
compatibile with a single handedness. The same constraint applies to the boundary
of a droplet with normal anchoring, which results in topologically-protected regions
of reversed handedness in the boundary region. These ‘twist solitons’ are a novel
type of topological defect in cholesterics, identified and studied here for the first
time. This theory is applied to recent experiments to explain the stability of the
novel structures observed in spherical cholesteric droplets. Additional textures with
complex layered structures are examined from the perspective of contact topology.
Convex surface theory aids visualisation of layered structures as well as helping to
describe their properties. I give an overview of the structures that may occur based
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on their layer topology, achieving a good correspondence with experiment.
Disclinations in cholesterics are studied using contact topology, and a full

classification up to homotopy is obtained. The dichotomy between tight and over-
twisted structures manifests itself in an interesting way for disclinations: the tight
disclinations are exactly those not attached to positive strength lambda lines. While
the overtwisted lines admit no new invariants, for these tight lines I identify a
novel topological invariant, which has the form of a self-linking number. Ori-
entable singular lines can be removed in a standard nematic, but the classifica-
tion shows obstructions to doing this in a cholesteric which I use to explain certain
experimentally-observed textures. This observation also leads to an experimentally-
accessible method for generating metastable twist solitons in the bulk, as well as
suggesting a novel method for generating Hopf solitons.

The topological invariants of nematics can be related to the zeros of a vector
field orthogonal to the director. Using this approach, I study Hopf solitons in
cholesteric droplets using the lambda lines, a novel perspective. The bend distortion
of the director is a vector field that is always orthogonal to it; its zeros, the beta
lines, have fundamental importance in the twist-bend nematic phase. I produce the
first topological and geometric study of this phase, identifying various textures and
defects, including Skyrmions, screw dislocations, and focal conics, by the structure
of their beta lines. Hopf solitons in twist-bend materials appear not be stable;
fundamental results in contact topological give insight into their process of removal,
as well demonstrating that they are replaced with a twist soliton.

Finally, I develop a geometric theory of directors using Cartan’s method of
moving frames. As well as giving new insight into the director distortions and the
relationships between them, this allows us to study the problem of reconstructing
a director from its gradients, which has previously been solved in two dimensions
but not three dimensions. This approach demonstrates the connection between
directors and Lie theory, and suggests a description of directors in terms of their
local symmetry groups.

ix



Chapter 1

Liquid Crystals, Defects, and

Topology

The term ‘liquid crystals’ encompasses a range of soft materials comprised of disk-

like or rod-like molecules that exhibit a phase of matter with properties between

those of liquid and a crystalline solid. Liquid crystals are soft and flow like a fluid,

however they are not isotropic, but rather have a long range orientational order and

exhibit elastic distortions that are analogous to those of a crystal when examined

through under cross polarisers. There are several different mesophases of rod-like

materials: the nematic phase is the most basic, however there also exist layered

phases (smectics), chiral phases (cholesterics), and the twist-bend phases of banana-

shaped molecules, each with their own rich set of behaviours with a geometric and

topological flavour. The common feature of all these mesophases is the creation

of long-range orientational order due to the alignment of the molecules along their

long axes. A theoretical description of the material coarse-grains this picture by

introducing a unit magnitude line field, the director, defined by the average local

molecular alignment. This description places liquid crystals into a general class of

materials known as ordered media, which also includes ferromagnets and superfluids.

Many liquid crystalline materials are optically active, with the image of a tex-

ture under cross polarisers determined by the orientation of the molecules. Optical

microscopy reveals a wide array of colourful textures, fingerprint whorls, polarisa-

tions brushstrokes and confocal conics; all reflect the internal topological structure

of the material. Liquid crystals offer a versatile setting for studying topological

phenomena, often with relevance across multiple disciplines, including cosmological

strings [CDTY91], biological tissues and morphogenesis [S+91; Bou08], and mag-

netic Skyrmion textures [NFO+17; AS17; MA16b].
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The chiral phases of liquid crystals allow for the stabilisation of more inter-

esting structures than those that occur in simple nematics, such as Hopfions and

torons [AS16; AS17], and constellations of topological defects [PČM17; Pos18c]. The

topological description of specifically chiral phases is lacking. There is a branch of

mathematics, contact topology [Gei08], that deals with chiral structures. Using this

language, we can study cholesteric liquid crystals from a topological perspective. We

will see how structures in chiral liquid crystals also illustrate the beautiful math-

ematics of contact topology; this results in a back-and-forth between theory and

applications, where the mathematical tools allow us to broaden our knowledge of

the physics of these systems, and the physics in turn illustrates and enriches our

understanding of the mathematics.

1.1 Topological Description of Ordered Media

The mathematical description of ordered media was given by Toulouse & Kléman

in [TK76]; I will briefly review this theory and explain the problems that arise when

trying to apply it to cholesterics, which will be partially addressed in later chapters.

Many of the fundamental concepts explored in this thesis can be applied to other

types of ordered media besides liquid crystals, most notably ferromagnets.

The ordered medium lives inside a physical domain M , a manifold, and

there is also a manifold of internal states V , an abstract space that describes all

possible values that the ordering may take. For physical systems M a surface in

two dimensions, and a subset of Euclidean space (possibly with boundary) in three

dimensions. The manifold V may in principle have any dimension, may not be

connected, and may even fail to be orientable, depending on the order parameter.

The medium itself is then described by a map Φ : M → V that associates to each

point in physical space the value of the order parameter at that point. For most

systems we encounter in the real world it makes sense to demand something more

of this map, for instance that it be smooth. For discussing certain systems, like

cholesteric liquid crystals, it is also helpful to impose constraints on the gradients

of the map.

Some examples help to fix ideas. At each point the ordering of a superfluid is

given by a complex scalar, and it is therefore described by a smooth map ψ :M → C,

the wave function. In some cases one may regard the wavefunction as having a

fixed amplitude but arbitrary phase, so that the order parameter is really a map

ψ : M → S1. At each point of a ferromagnetic material the magnetic moment can

be described by a unit vector. Consequently, the magnetic ordering is described by

2



a map m : M → S2, the magnetisation. Using the Euclidean metric we identify

this with a section of the unit tangent bundle, a unit vector field. A liquid crystal

is comprised of rod-like molecules can be described by a line at each point in space

that gives the average orientation of the molecules, and thus is described by a map

n : M → RP2; if it is possible to orient the rods, then the description is the same

as a ferromagnet.

1.1.1 Topological Invariants

It is important to discuss situations where two different configurations of the order

parameter are equivalent, e.g. if they are related by a global translation or rota-

tion. For elastic materials like liquid crystals, it is natural to say that two different

configurations Φ0,Φ1 of the ordered medium are equivalent if there exists a family

Φt : M → V of maps depending continuously1 on a parameter t connecting them.

Such a family is called a homotopy, and if such a family exists, the maps Φ0,Φ1 are

called homotopic. When there is a fixed boundary condition, we call directors equiv-

alent if they are homotopic ‘rel. boundary’, i.e., there is a homotopy that leaves the

boundary fixed. The space of homotopy classes of maps M → V is denoted [M,V ].

Any quantities preserved by homotopy are called topological invariants, and they

represent global features of the texture. A full set of topological invariants for the

order parameter is equivalent to a complete specification of the set π0([M,V ]) of

connected components of [M,V ]2. It may also be interesting to determine if there

are essentially different paths the material can take between configurations, which

corresponds to a description of the fundamental group π1([M,V ]); I will not discuss

this in this thesis.

Describing the full set of topological invariants is an important problem, as is

identifying those invariants with physical structures and, if possible, energetics. For

simple nematic liquid crystals the set of topological invariants is known and admits

a description in terms of distortions of the director, see Chapter 2.

1.1.2 Defects

Classically a defect is a point where the order parameter map Φ : M → V is

undefined. The topology of M and the boundary conditions on Φ will often im-

pose topological restrictions that imply there must exist at least some defects, and

1Or smoothly, or analytically; we will not overly concern ourselves with degrees of differen-
tiability, and indeed for many of the questions we are concerned with it is reasonable to assume
everything is analytic.

2π0(M) will not always have a group structures, but it does in certain cases, for instance when
M is itself a group

3



changes in the topological invariants will also be mediated by the creation and anni-

hilation of defects. The defects in a material texture are hugely important: they con-

trol strength or fragility [Tay34], determine elastic interactions [PSLW97; ŠRŽ+07],

mediate self-assembly [MŠT+06; Muš17; WMB+16], and precipitate phase tran-

sitions [Abr57; Ber71; KT73; RL88; Kik07]. The widespread influence of defects

derives from their high energetic cost, strong elastic distortions, and topological

nature. This is especially true in liquid crystal materials, whose defects have often

offered key insights and motivated the naming of textures.

In order to study the structure of defects, one measures the winding of the

order parameter around an appropriately chosen contour that encloses the defect.

Generally defects occur at points or along lines. For a line defect in three dimensions,

we choose a closed curve surrounding the line and no other line defects; for a point

defect, we choose a sphere surrounding the point and no other defects. Restricting

the order parameter Φ to the given contour results in a map S1 → V in the case of a

line-like defect, and a map S2 → V in the case of a point-like defect. Such maps are

classified, up to a continuous deformation, by the homotopy groups π1(V ), π2(V )

of the manifold of internal states. For example, for a simple vector field in three

dimensions, where V ∼= S2, we have π1(V ) = 0, π2(V ) = Z. The interpretation is

that line defects will not occur, since they may be removed by ‘escaping’ along the

line, replacing it with a closed orbit, while point defects may occur and are classified

by an integer charge (although subtleties arise in chiral systems, see Chapter 8).

Arguably one should be more careful in the case of line defects, and use a

torus surrounding the line to measure the winding along the line as well as around

it. Using this method, the types of defects are given by homotopy classes of maps

T 2 → V . In particular we have [T 2, S2] ∼= Z, so that directors that are fully

orientable around the singularity line are classified by an integer, the winding around

the singular line. As mentioned in the previous paragraph, these do not occur as

stable defects. The class [T 2,RP2] is more difficult to describe. Suppose we are

given a map f : T 2 → RP2, and assume that the map is nonorientable along a

meridian, which is the relevant case for disclination. For this restricted class of

maps, [T 2,RP2] is isomorphic, as a set, to Z4 [Jän87]. I will review this work in

more detail in Chapter 8. Note that the torus does not detect the ability to ‘escape’

along the line in the way the circle does. If we have an orientable line singularity of

winding k and escape along it, we simply replace it with a closed orbit of ‘winding’ k,

so that the homotopy class of the vector field on the surrounding torus is still locally

determined by k. This is in fact detecting defects that are not in the director, but

in any vector field orthogonal to the director. I will return to this idea in Chapter
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2, and also Chapters 8 and 9 from the perspective of chiral liquid crystals.

The computation of the fundamental groups of V is easier when V is specified

in terms of groups of continuous deformations that can act on the ordered medium.

Suppose there is a Lie group G acting transitively on the order parameter space:

that is, for any pair of elements v1, v2, there exists g ∈ G such that g ·v1 = v2, where

· denotes the action. For any fixed value v0 of the order parameter, there is a Lie

subgroup H of G that fixes v0. Call v0 the reference parameter. We can then identify

V with the quotient G/H [Mer79]; note that H need not be a normal subgroup and

consequently V need not be a group, but it will be a manifold with the quotient

topology. Assuming we know the homotopy groups of G,H, we can compute the

homotopy groups of V using the exact sequence

· · · → πn(G) → πn(V ) → πn−1(H) → πn−1(G) → · · · . (1.1)

1.1.3 Broken Symmetry

This approach to studying the topology, and especially the defects, of an ordered

medium breaks down when considering ordered media with broken translational

symmetry in the ground state. For these materials the structure is not captured by

the value of the order parameter at a single point, we require information about the

order parameter in at least an open neighbourhood. This problem with the naive

generalisation of the theory to materials with broken symmetry has been understood

for some time [Mer79], but few attempts have been made to address it.

For example, classically the order parameter for a cholesteric liquid crystal

is taken to be an orthonormal frame, so that the symmetry group is SO(3) and the

subgroup H is the dihedral group D2, the group of symmetries of a brick [BDP+78a].

Consequently, the quotient V is a space with π1(V ) ∼= Q and π2(V ) ∼= 0, where Q is

the discrete quaternion group—this implies that there are no stable points defects

in cholesterics. This is technically the case, but also somewhat misleading: point

defects in the director are pinned to line defects in one other component of the frame.

Moreover, cholesteric liquid crystals admit topological invariants, which have the

flavour of a ‘layer number’ and exist purely as a consequence of their chirality and

do not exist for standard nematics. This is not captured by the homotopy theory.

For a second example, the requirement that the layers of two-dimensional smectic

system be equally spaced implies that defects of winding larger than +1 cannot

occur [Po1; CAK09], a fact that also cannot be determined through the standard

homotopy theory alone. Similar complexities exist in three-dimensions [MAHK19].

Furthermore, when the material is biaxial, admitting physically-meaningful
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directions different from the director but coupled to it, then the theory of homotopies

through the director does not take these additional axes into account. This occurs

in cholesterics, where the pitch axis defines an additional direction which we cannot

manipulate independently from the director. It is possible that two configurations

are related by a homotopy that does not create additional defects in the director,

but not a homotopy that does not create additional defects in the other axes. This

situation is of fundamental importance when trying to relate topology to energetics

and fundamental physics in liquid crystal systems: creating defects in the pitch axis

costs energy and also changes the texture in ways that are clearly observable in

experiment.

The majority of this thesis is devoted to a more advanced topological and

geometric description of such nematic materials, their invariants, and their defects.

1.2 The Physics of Liquid Crystals

In a continuum theory of a liquid crystal, we describe the material at each point in

space by a line, which physically represents the average orientation of the molecules

at that point. Consequently, the order parameter is a map M → RP2 to the projec-

tive plane. Whenever the texture is orientable, meaning we can consistently assign

an arrowhead to each line segment so that the resulting vector field is continuous,

then we can instead describe the material by a unit vector field, equivalently a map

M → S2. We call this vector field the director, and denote it by n. In this thesis

I will predominantly consider orientable textures, and thus adopt the description

that uses the director rather than the Q tensor approach, an alternative method for

describing general directors using a tensor Q = n ⊗ n − 1
3I. The topological tools

that I will be using work in both cases, and I will make comments along the way as

to the adaptions that must be made for nonorientable directors.

Defects in the director are places where the vector field n is undefined. It

will often be convenient to write n = m/ ‖m‖, for m a vector field (whose norm

we do not control) which has zeros at the defect points. This approach makes it far

easier to describe the local structure of the defects that can occur. The topology of

m is the same as that of n, however the gradients will of course be different.

The energy of a liquid crystal director is an elastic energy defined in terms

of distortions away from a uniform state. Geometric elastic distortions pervade

soft matter physics [Kam02], providing a common conceptual framework for under-

standing many different materials as well as numerous methods—including bound-

ary conditions, substrate topography and surface curvature—for designing or con-
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trolling properties and functionality [VI13; TLB+16; NV12; MVP+15; VAG+18;

ENM+18; WB15; MWM17; AXZ+18]. For liquid crystals, the Oseen–Frank free

energy is [Fra58]

E =
1

2

∫

M
K1(∇·n)2+K2(n ·∇×n+ q0)

2+K3 ‖∇nn‖2+K4∇· ((∇·n)n−∇nn)µ,

(1.2)

where M is the material domain, the Ki are elastic constants, q0 is a constant

that sets the handedness/chirality of the material, and µ is the volume form. The

distortions that appear in the energy are called the splay ∇ · n, the twist n · ∇× n,

the bend ∇nn, and the saddle-splay ∇·((∇·n)n−∇nn). See Fig. 1.1 for illustrations

of these distortions. By the divergence theorem, the latter contributes to the energy

only when M has a boundary. Typically the behaviour of the material at the

boundary is prescribed, meaning the contribution is constant. For this reason it is

often dropped from the energy functional, however there are valid reasons to keep it

in: one can relate it to an additional term that is a bulk contribution [MA16b; Sel18].

In the absence of chirality, q0 = 0, the ground state is given by a uniform director,

e.g. ez, or any constant linear combination of the coordinate directions.

One often considers an approximation where K1 = K2 = K3, the one-

constant approximation. In this case, with q0 = 0, the energy becomes

E =
K

2

∫

M
‖∇n‖2 µ, (1.3)

whose minimisers are harmonic vector fields. In the general case the energy land-

scape is not well understood.

A more geometric description of the liquid crystal director is presented by

Machon & Alexander [MA16b; Mac16]. Consider a decomposition of the gradient

tensor ∇n into its irreducible components. There are two parts: the gradients of the

director along itself, ∇nn, which we have already identified with the bend distortion,

and the perpendicular gradients ∇⊥n. If we choose a basis for the planes orthogonal

to n, this can be expressed as matrix,

∇⊥n =
∇ · n
2

[

1 0

0 1

]

+
n · ∇ × n

2

[

0 −1

1 0

]

+∆, (1.4)

where the umbilic tensor ∆ (Selinger calls it the biaxial splay [Sel18]) is the trace-

less, symmetric part, which is related to the saddle-splay. I will expand upon this

description in Chapter 4.

Besides the standard nematic phase, there are other types of liquid crystal
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Figure 1.1: Schematic images of the liquid crystal distortions. In each case, the
coloured rods represent the director. In (a,b) the red arrow indicates the direction
of the bend vector field. Reproduced from [Sel18].

phase where the symmetry of the nematic phase is broken in some fashion. In the

smectic phases, there is a broken translational symmetry as the molecules organise

themselves into equally-spaced layers, determined by the level sets of a phase field.

In a Smectic A material, the director is a small perturbation of the layer normal,

while in a Smectic C it makes a constant angle with the layer normal. One may

apply the naive generalisation of the defect classification, which suggests, among

other things, that point defects in two dimensional smectics are classified by their

winding number, a half integer. However, it is easily seen that the requirement that

the layers be at a constant separation—something not taken into account by the

naive homotopy theory—makes it impossible for defects of winding larger than +1

to occur [Po1]. Further complications arise in three dimensions, where the result of

combining pairs of defects is path-dependent [MAHK19]. The homotopy classifica-

tion of global textures fails as well, as two smectic directors that are homotopic as

nematic directors may fail to be homotopic once the requirement of equally-spaced

layers is imposed.

The two classes of material with broken symmetry that I will focus on in

this thesis are the cholesterics and the twist-bend nematics. The former have been

known for quite some time; indeed, the first example of a liquid crystal, discovered in

1888 by Friedrich Reinitzer, was the molecule cholesteryl benzoate, a chiral nematic

from which the alternate name derives. A cholesteric is characterised by a nonzero

q0, which then determines a lengthscale p = 2π/q0, the pitch. Physically q0 is

the ‘chirality’ of the material, and this manifests itself as an energetic preferrence
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for nonzero twist. This results in cholesterics exibiting very different topology and

geometry from standard nematics, leading to a variety of interesting new structures

that may form, with the potential for novel applications. Moreover, if one makes

the reasonable assumption that the twist is nowhere-zero throughout the material,

and would prefer to stay that way, then the cholesteric texture may have additional

homotopy invariants not present in a nematic.

We observe that the Frank energy for a cholesteric will be minimised, for any

choice of elastic constants, by a unit vector field that is a curl eigenfield, ∇× n =

−q0n, and divergence free, ∇ · n = 0. Such vector fields are called Beltrami fields.

The unit length Beltrami fields are exhaused by the family

n = cos(q0z)ex + sin(q0z)ey, (1.5)

where q0 can be any integer, and consequently this director is the ground state

of a cholesteric. In constrast to the uniform ground state of a nematic, this has

nonzero twist, however the splay and bend do vanish. A consequence of chirality

is the existence of an axis along which the twisting occurs, the pitch axis, and

an associated lengthscale, the distance over which the material undergoes a full

2π rotation. In the cholesteric ground state, the pitch axis is the z-axis. Line

defects can occur in this axis as well as the director. Because of the relationship

between the pitch and the optical properties of the material, it is possible to see

these lines in experiment. For a general texture, the pitch axis can be defined using

the decomposition (1.4); it is the direction corresponding to the largest magnitude

eigenvector of the tensor χ = J ◦ ∇⊥n, where J = n× is the tensor describing

rotations around the director [BMČ+14; EI14].

The standard homotopy classification of defects fails to fully describe the

situation for cholesterics, largely due to the coupling between the director n and

pitch axis p. Following the prescription outlined in §1.1.2, one arrives at the

quaternion group Q as the (non-abelian) fundamental group of the order parameter

space [Mer79]. This group is generated by eight elements, 1,−1, i,−i, j,−j, k,−k.
The element 1 corresponds to corresponds to a singular line that can be removed by

a small perturbation of the director, a χ line, which will replace with with a defect

of type −1, a λ line (a defect in the pitch axis where the director is nonsingular)

with integer winding. The elements i, j, k correspond to defects in a single one of

of the axes n, p, and n × p while the other two are nonsingular, with the singular

axis being such that it is nonorientable along a loop around the singularity. We

adopt the convention that i denotes a disclination line, a defect in the director,
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and j denotes a λ line with winding ±1
2 . I will sometimes label these lines with a

half-integer describing the strength of the singularity, e.g. χ+1 denotes a singularity

in the director with winding +1, while λ−1/2 denotes a singularity in the pitch axis

with winding −1
2 .

The second homotopy group of the order parameter space is trivial, suggest-

ing that there should be no stable point defects in a cholesteric. This is misleading:

point defects in the director can occur, however there will be line defects (λ lines) in

the pitch axis associated with them, so that overall there cannot be a point defect

in the frame we have used to describe the material. In this thesis I will focus on the

results of experiments by the Ljubjana group [PČM16; PČM17; Pos18c], which re-

veal a wealth of interesting defect structures in cholesteric droplets, including point

defects of charge (winding) −2 and −3 that we would not expect to find in a stan-

dard nematic for energetic reasons. Much of the theoretical work in this thesis arises

from an attempt to understand the various features of these droplets.

The cholesteric liquid crystal is similar in many ways to a chiral ferromag-

net subject to the Dzyaloshinskii-Moriya interaction [Dzy58; Mor60], a system also

described by the Hamiltonian (1.2) in the one-constant approximation with q0 6= 0,

except the order parameter really is a vector field and not a line field, so that line

defects do not occur. Consequently the topological and geometric theory developed

here carries over to these magnetic systems. Indeed, since most of the numerical sim-

ulations are carried out using a vector field for the director and in the one-constant

approximation, it’s reasonable to expect that all the metastable structures explored

in these thesis could be realised in the magnetic system as well. There are further

connections to Beltrami fields that will be explored a little more in Chapters 3, 6,

and 10.

Liquid crystals comprised of ‘bent-core’ molecules are a more recent discov-

ery, and have been the subject of a flurry of experimental and theoretical work, see

the review article [JLS18]. Informally speaking, these are materials with an energetic

preference for a nonzero bend deformation, which in turn results in either a nonzero

splay or nonzero twist deformation. Materials shaped like pizza wedges or peardrops

have a preference for the splay-bend mode, while materials shaped like bananas have

a preference for the twist-bend mode—the latter give rise to the twist-bend phase,

and we call them twist-bend nematics. The latter differ from cholesterics in that

they have no particular preference for either left-handed or right-handed twisting.

The Oseen–Frank energy can be used to give a continuum theory of twist-bend ma-

terials by taking the bend elastic constant K3 to be negative [Doz01]. An alternative

describe employs a second vector field, the polarisation, which prefers to align with
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the bend. I employ the latter, which I will discuss further in Chapter 5, as it is

closer in spirit to the topological methods.

1.3 A Note on Numerics and Visualisation

To illustrate the constructions and ideas presented in this thesis, I have provided

a large number of images from numerical simulations. I will briefly explain how

these computations are carried out. All simulations were performed using gradient

descent, and do not account for any hydrodynamics of the material. The material

domain is a rectangular grid with constant lattice spacing. The derivatives of n are

computed using a finite difference method, which is used to compute the molecular

field. All simulations use a one-constant approximation, so the molecular field is

δE

δn
=
K

2

(

∇2n− 2q0∇× n
)

, (1.6)

as is obtained by computing the first variation of (1.2). The update step is nt =

nt−1+(∂tn
⊥
t−1)dt, where dt is a constant timestep and the superscript ⊥ denotes the

removal of the component of the molecular field along the direction nt−1. Typically

the timestep is dt = 1.0. In the case of twist-bend nematics I use a different energy

functional—see Chapter 5—but the numerical approach is otherwise identical. Only

in Chapter 9 do I employ the Q tensor approach in order to simulate cholesteric

directors with disclination lines, impossible using a director field; the implementation

of the numerical method is largely the same.

For simulations in a domain with boundary, for example a spherical droplet,

normal anchoring on the boundary is imposed by applying mask to the molecular

field, setting it 0 in any cell that lies outside the desired domain. For planar anchor-

ing, we instead remove any component of the molcular field that points along the

normal to the boundary. Although crude, this method results in numerical simula-

tions that are sufficiently accurate for illustrating topological concepts, as evidenced

by the good correspondence between simulatons and experiment shown in Chapters

7 and 9.

The output from the code is the director, as well as various quantities like the

twist and bend that are derived from it. All visualisation of these quantities is done

in Paraview [AGL05]. Three-dimensional visualisation of liquid crystal directors is

not always easy, but various techniques have been developed for doing so, and I make

use of many of them here. One method is to plot a Pontryagin–Thom surface—see

Chapter 2—where one component of the director is fixed. The surface is coloured
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according to the angle between the remaining two components, resulting in brush

stroke patterns similar to those that can be imaged experimentally by exploiting

the optical anisotropy of the material. In Chapter 3 I introduce some additional

techniques for visualising the topological content of the director based on the theory

of characteristic foliations and convex surfaces from contact geometry, and I also

use these methods for visualisation in later chapters, as they give a good illustration

of the layer structure of a material.

The director can be plotted on 2D slices, along with other scalar quantities

such as the twist or the saddle-splay. For several applicayions we examine the zero

sets of the bend or ∆—see Chapter 2 and 5 for a discussion of why this is useful—

which is done by computing the norm and then plotting a surface where this is small,

equal to some 0 < ǫ ≪ 1. This often results in some strangely-shaped surfaces, so

I have often made use of Paraview’s line object to show the position of one of the

zero lines when the contour would otherwise be unsuitable.
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Chapter 2

Homotopy Invariants of

Nematic Materials

2.1 Introduction

One of the fundamental problems in ordered media is the classification of mappings

Φ : M → V from the physical domain M into the order parameter space V up

to an appropriate notion of equivalence. For a standard orientable liquid crystal

director, i.e. a director describing a texture without disclination lines, the ordering

is a mapping Φ :M → Sn−1, where n = 2, 3 is the dimension of space, and two liquid

crystal directors are considered equivalent if they can be brought into alignment by

means of a continuous deformation of the material, a homotopy of the director.

In three dimensions, unit vector fields, maps into S2, and fields of planes

can all be identified by using a Riemannian metric—a unit vector field picks out, at

each point of space, a point on S2, and also defines a smoothly varying collection

of orthogonal planes. I will use the description of the director as a plane field

extensively throughout this thesis.

In this section I will explain the homotopy classification of plane fields on

closed 3-manifolds and on 3-manifolds with boundary. Using the obvious duality

between plane fields and unit vector fields, we arrive at the homotopy invariants

of nematic liquid crystal directors without defects. This is standard theory. My

primary references are Geiges [Gei08] and Gompf and Stipsicz [GS99]. My aim

is to present the classification in a general way, and then specialise to a concrete

description that can be used in practice. A key observation is that these invariants

can be expressed in terms of the zero link of a vector field everywhere orthogonal

to the director, and consequently can be tied to physical objects which play a role
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in energetics and can, at least in the case of λ lines, be seen in an experiment. I

will also describe how this is extended to directors with some fixed defect set, and

review the description of homotopy classes of nematic directors with disclination

lines given by T. Machon [MA16a].

Breaking the symmetry of the nematic phase doesn’t just affect the possible

defects, but may also result in further homotopy invariants not accounted for by

the theory of this chapter. This is the case for cholesteric liquid crystals, where the

additional invariants take the form of a ‘layer number’ as explained in Chapter 3,

for smectics [Po1], and for twist-bend nematics, Chapter 5.

2.2 Plane Fields

A plane field ξ on a 3-manifold M is a codimension 1 subbundle of the tangent

bundle, that is, a choice of a plane ξp ⊂ TpM for each p ∈ M such that the

resulting field of planes varies smoothly. An orientable codimension 1 subbundle

of the tangent bundle can be defined by a single partial differential equation. This

equation is encoded by a differential 1-form η, a section of the cotangent bundle

T ∗
pM , and the plane field is its kernel ξ = {η = 0}. A Riemannian metric g on M

allows us to identify sections of the tangent bundle, vector fields, with sections of the

cotangent bundle, differential 1-forms. Given a vector field X, the corresponding

1-form is defined by the interior product ω = ιXg, so that for any other vector field

Y , ω(Y ) = g(X,Y ). Therefore, the sections of the plane field defined to be the

kernel of ω are exactly those vector fields orthogonal to X.

We can identify a liquid crystal director n with a unit 1-form η using the

Euclidean metric. The plane field ξ defined by η is the set of planes orthogonal to

the director; in particular, we can define the plane field when the director is not

orientable, but we will only be able to choose a defining 1-form locally, in the same

way that we would only be able to define a local director. The description in terms

of 1-forms and plane fields is then equivalent. We could even write the Frank energy

using a 1-form,

E =

∫

M

K1

2
(δη)2 +

K2

2
(⋆η ∧ dη + q0)

2 +
K3

2
‖ιndη‖2 µ, (2.1)

although we gain nothing new from doing this. In general, it is easier to use the

director field picture for visualisations and simulations while using the plane field

picture for proofs and constructions. I will use them interchangably throughout this

thesis.
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Figure 2.1: An illustration of the plane field ξ associated to a director n. (a) At
each point, ξ is defined to be the orthogonal plane (grey) to the director (blue). n

and ξ are shown for (b) the cholesteric ground state, and (c) a double-twist cylinder,
whose axis is indicated by the green line.

Locally we can choose a right-handed basis e1, e2 of unit vector fields for the

planes of ξ. The triple e1, e2, e3 = n is called a distortion frame for the director, as

we can express the gradients of n in terms of quantities derived from the frame—

this is described in more detail in Chapter 4. A distortion frame is evidently not

unique, as we can rotate the pair e1, e2 around the director by any (perhaps spatially

varying) angle θ to obtain another distortion frame. Generally we cannot choose a

global distortion frame, and indeed the failure for a local frame to extend globally

is related to a topological invariant of the plane field, discussed in the next section.

2.3 The Invariants Via Obstruction Theory

The earliest description of the homotopy classes of plane fields is via obstruction

theory. By fundamental results in differential topology, every 3-manifold M can be

viewed as a cell complex X. Given a pair of orientable plane fields ξ0, ξ1, we can

always arrange for them to be homotopic over the 1-skeleton of this complex. By

elementary obstruction theory, we have an obstruction d2(ξ0, ξ1) ∈ H2(M,π2(S
2)) ∼=

H2(M,Z) to extending this homotopy over the 2-skeleton. Should this obstruction

vanish, there is a further obstruction, d3(ξ0, ξ1) ∈ H3(M,π3(S
2)) ∼= H3(M,Z) ∼= Z,

to extending it over the 3-skeleton. The classification of nonorientable plane fields

is achieved by a similar approach, replacing S2 with RP2. There are two cases to

examine, although they are very similar. The first case is closed 3-manifolds, such

as T 3 and S3. For physical purposes the second case, where M is compact with

boundary, is probably more important.

In liquid crystal theory it is more common to view these invariants through

the lens of homotopy theory. I adopt the language of cohomology here for several

reasons. Firstly, it often helps our understanding to see slightly different takes
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on familiar problems, as it provides a new perspective. Secondly, the language

of cohomology extends naturally to discuss more subtle invariants of vector fields

and their closed orbits, for instance Morse–Novikov theory [Far03], Seiburg–Witten

theory, and the Floer theories that have been employed to great effect in the study

of 4-manifolds and plane fields with additional structure. Although I will not discuss

these ideas further in this thesis, they have evident application to physical problems

and can certainly be applied to the study of ordered media, and may be the subject

of future work.

2.3.1 Closed Manifolds

The simplest way to compute the invariants of a plane field on a closed 3-manifold

M is as follows. It is a classical result that the tangent bundle TM is trivial.

Fix some trivialisation, which may come from a choice of orthonormal frame if

a Riemannian metric is specified. Using a Riemannian metric, it is clear we can

identify homotopy classes of plane fields ξ with homotopy classes of unit vector fields

n, the normal to the plane field. A unit vector field picks out, for every point inM , a

point on the 2-sphere; consequently, we can identify homotopy classes of unit vector

fields with maps f : M → S2 such that ξ ∼= f∗(TS2). The standard homotopy-

theoretic approach of classifying these maps involves looking at the homotopy groups

πk(S
2), k > 0. I adopt an alternative approach here, and relate the homotopy classes

of maps into S2 to the cohomology of M (with coefficients in the homotopy groups

πk(S
2)) via the following classic construction.

Theorem 2.1. (Pontryagin–Thom Construction [Tho54; Pon55]) Homotopy classes

of maps f : M → S2 are in a one-to-one correspondence with cobordism classes of

framed links.

For a full proof see [Mil65]. To understand this result, it is worth explaining at least

part of the correspondence. Suppose we are given a map f . Choose a regular point

p and a positively oriented basis b of TpS
2. The preimage of p is a link L in M ,

and the pullback of b along f endows this link with a framing. Conversely, suppose

we are given a framed link L. We can use the framing to trivialise a neighbourhood

N(L) of L as N(L) ∼= D2 × S1. Pick a point p on the sphere and let p∗ denote the

antipodal point. We construct a map f as follows: project the disk bundle onto the

disk S2 − p∗, where 0 ∈ D2 is identified with p, and extend f over the rest of M by

mapping all of M −N(L) to p∗.

Throughout this thesis I will give visualisations of directors based on Pontryagin–

Thom (hereafter, PT) surfaces [CAA+13; Ale18]. This involves plotting the set,
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Figure 2.2: (a) Schematic director field of a radial point defect (yellow sphere).
(b) Visualisation using the Pontryagin–Thom construction. The surface is the set
of points where nz = 0, coloured by the horizontal orientation. There are two full
colour windings around the central point defect (yellow sphere) because of the apolar
symmetry of nematics.

generically a surface, where one component of the director vanishes. The surface

can then be coloured according to the angle between the remaining two components

of the director. For example, in Fig. 2.2 we have a visualisation of a radial direc-

tor n = er in the sphere. Defects in the director will appear as points where the

colouring is undefined. The brushes of colour wind around the defect point, whose

topological charge is given by the number of full 2π windings.

Let [Lξ] ∈ H1(M,Z) be the cobordism class of framed links corresponding

to a plane field ξ. Then d2(ξ0, ξ1) = PD[Lξ0 ] − PD[Lξ1 ], where PD denotes the

Poincaré duality PD : Hp(M,Z) → H3−p(M,Z) between homology and cohomology.

Moreover, we can write this as d2(ξ0, ξ1) = 1
2(e(ξ0) − e(ξ1)), where e ∈ H2(M,Z)

denotes the Euler class of the vector bundle. The standard technical definition of

the Euler class can be found in Bott & Tu [BT82], and I will give an equivalent

definition in the next section which is more helpful to us in practice.

The manifolds we will be concerned with in practice have H1(M,Z) ∼= Zn

for some n, and so the Euler class will be a tuple of integers representing how much

‘charge’ is carried by each of the generators of the first homology group. For example,

suppose we have a triply-periodic director structure, which we can consequently

assume lies in T 3. Let L be the preimage of some point on the sphere, with some

framing. Then L ∈ π1(T
3) ∼= Z3. Components of L that are nullhomotopic do not

count towards the Euler class. The remaining components are homotopic to either

the x, y, or z axes. The framing assigns an integer to each component. The sum

of these integers for, say, those components homotopic to the x axis gives the first
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component in the tuple that represents the Euler class.

Initially this appears to be the whole story, however there is a subtlety.

The description relies on the choice of trivialisation. It remains to understand this

dependence, which leads us to an essentially three-dimensional obstruction. Firstly,

recall the classical theorem that a homotopy class of maps f : S3 → S2 is entirely

determined by an element of π3(S
2) ∼= Z called the Hopf invariant [Hop31; Mil65].

We may define this as follows. Choose an area form Ω on the sphere. The pullback

f∗Ω is a closed 2-form, and since H2(S3,Z) = 0 there exists ω such that f∗Ω = dω.

Define

H(f) =

∫

S2

ω ∧ dω. (2.2)

This is independent of the choice of ω, for any other choice is of the form ω′ = ω+dφ

for some function φ, and the resulting integrand would differ from ω ∧ dω only

by the form dφ ∧ dω; Stokes’ thereom implies the intergal of this term is zero.

There is an alternative definition. Let p, q be two regular values of the map f , and

let K1 = f−1(p),K2 = f−1(q) be the preimages. The Hopf invariant is equal to

their linking number, H(f) = Lk(K1,K2). One can show (e.g., by the arguments

in §17 of Milnor [Mil65]) that these definitions are equivalent, and moreover that

H(f0) = H(f1) if and only if the maps f0, f1 are homotopic. Consequently, we can

make the identification d3(ξ0, ξ1) = H(f0)−H(f1) on S
3, where fi : S

3 → S2 is the

map associated to the plane field ξi.

To define the invariant in a more general setting, suppose that d2(ξ0, ξ1) = 0.

Then we may not just extend the homotopy between ξ0 and ξ1 over the 2-skeleton,

but in fact over the complement of a single 3-ball D3 in M . The equator of the

2-sphere S2 bounds a disk D2; similarly, the equator of S3 bounds a 3-ball D3. Let

π± be the orthogonal projections (in R4) from the upper and lower hemispheres of

S3 onto the boundary disk D3. We define d3(ξ0, ξ1) to be the Hopf invariant of the

map f : S3 → S2 defined as f0 ◦ π+ on the upper hemisphere and f1 ◦ π− on the

lower hemisphere.

2.3.2 Manifolds with Boundary

On a manifold with boundary the natural notion of a homotopy of plane fields is

a homotopy ‘rel. boundary’, i.e. the plane field is fixed along the boundary and

allowed to vary only in the interior. If the boundary is not fixed, we may as well

remove it and regard the manifold as open: the homotopy classification of plane

fields on open manifolds is due to Gromov [Gro69], and I will not explain it here

since it is not a physically-meaningful situation.
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We have the following relative variant of the Pontryagin–Thom construction

on 3-manifolds M with boundary ∂M , which is proved using the same arguments

as for closed manifolds. A modern proof can be found in Ref. [Etn13].

Theorem 2.2. (Relative Pontryagin–Thom Construction) Let ξ0 be a plane field

defined near ∂M that extends as a nonsingular plane field over the interior. There

is a one-to-one between homotopy classes of plane fields ξ on M that extend ξ0 and

the set of framed links in the interior of M up to framed cobordism.

The description is otherwise the same as for the closed case.

The Euler class rel. boundary is constructed in the following fashion. Sup-

pose we can trivialise ξ on the boundary. Then we can choose some nowhere van-

ishing section X, and extend this as a section X ′ over all of M . We can choose this

extension so that it vanishes generically on some link L, such that the homology

class [L] is Poincaré dual to the relative Euler class. If we cannot trivialise ξ over

the boundary, then any section X we choose on the boundary will vanish, generally

at some set of points. The extension X ′ can still be chosen so that it vanishes gener-

ically along a link L. We then consider the homology class [L] of this link, once

we identify each component of the boundary with a point. Thus loops that extend

from one boundary component back to itself are nullhomotopic.

2.3.3 Plane Fields with Singularities

Consider now a director that has a collection of defects, that may be both points

and lines. Dual to this is a ‘singular plane field’, where at each nonsingular point

of the director we have a codimension 1 plane in the tangent space, while at each

singular point this degenerates to a ‘codimension 0’ subset of the tangent space. I

will define singular plane fields more formally in Chapter 6.

By removing small disjoint open balls around each singular point and open

tubes around singular lines in M , we can regard our singular plane field as being a

plane field on a manifold with boundary M̂ . Then we can identify homotopies of

singular plane fields that leave the defect set fixed with homotopy classes of plane

fields on M̂ rel. boundary. When it comes to homotopies of the plane field that

may create, destroy, or decompose defects, it is better to discuss the situation locally

around the point where this ‘bad’ behaviour occurs, and see how this modifies the

possible sets of plane fields on the complement. This is a running theme through

later chapters of this thesis.
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2.4 Computation of the Invariants via Legendrian Vec-

tor Fields

2.4.1 Legendrian Vector Fields

I will now present a different method of calculating of the homotopy invariants that

uses a link L that does not arise as the preimage of a regular value, but instead

comes from the zero set of a vector field related to the director, a section of the

bundle ξ. This approach is extremely helpful in practice, as it helps us connect

topology to energetics. First we make a definition.

Definition 2.1. Fix a plane field ξ. A vector field X is called Legendrian if it is a

section of the bundle ξ →M .

Much of the discussion of the properties of Legendrian vector fields in the literature

centres around their singularities, as discussed by Arnold [AGLV88], as well as their

applications to the theory of waves and to general relativity [FS83]. Many proper-

ties of these vector fields remain unexplored: for instance, are their any dynamical

properties of a vector field that prevent it from being Legendrian? We can observe

that perturbing a Legendrian vector field by adding a small component along the

normal to ξ results in a nonsingular vector field that is transverse to ξ, and certain

properties of Legendrian vector fields can be deduced from properties of transverse

vector fields, which have been studied [Goo85; Goo86; Hon98]. A specific investiga-

tion into Legendrian vector fields was carried out by Etnyre & Ghrist [EG99]. We

will use a couple of results from this paper.

Proposition 2.1. (Lemma 2.1 [EG99]) Locally, any Legendrian vector fields is

‘quasi two-dimensional’, that is, in a neighbourhood of a point there exists a coordi-

nate system x, y, z and functions f1, f2, g such that any Legendrian vector field can

be written X = f1ex+f2ey−gf2ez. Moreover, any z-parameterised family of vector

fields on R2 gives rise to a Legendrian vector field.

Proof. Let U be a small open neighbourhood of a point. On U it is possible

to find coordinates such that the plane field can be defined by the 1-form η =

dz + g(x, y, z)dy, see [ET91] for a construction of these coordinates. We can then

parameterise U as R2 × z, z ∈ R. The condition for X = f1ex + f2ey + f3ez to be

a Legendrian vector field is then that f3 = −gf2, giving the desired construction.

Moveover, if Xz(x, y) = f1(x, y, z)ex + f2(x, y, z)ey is a z-parameterised family of

vector fields on R2, we simply define the z component to be −gf2 in order to obtain

a Legendrian vector field.
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Given that the zero set of a 2-dimensional vector field will generically consist of

points, it’s clear that a Legendrian vector field will generically have a zero set con-

sisting of lines. For a formal proof we invoke the transversality theorem.

Proposition 2.2. (Proposition 2.2 [EG99]) The zero set of a generic Legendrian

vector field X is smooth, finite, embedded link LX , which is transverse to ξ except

at finitely many points, which we call Legendrian points.

Let us examine the degenerate points where transversality of the link fails more

closely, following [EG99]. There are two kinds of bifurcation that may occur in a

linearised two-dimensional flow, and these may be characterised by the behaviour

of the eigenvalues λx, λy of the flow. In one case, both eigenvalues are real and

one of them changes sign as the bifurcation parameter is varied; this is a saddle-

node bifurcation. In a saddle-node bifurcation, a previously nonsingular vector field

nucleates a pair of singularities of opposite index. Otherwise, λx, λy are complex

conjugate and their mutual real part changes sign as the bifurcation parameter

varies; this is a Hopf bifurcation. In this type of bifurcation, a node switches its

stability by emitting a periodic orbit. The former describes a Legendrian vector

field close to a generic Legendrian point, while the latter describes a point where

the profile of the singular line changes stability.

Let K be a component of LX and p ∈ K a point where transversality fails. In

a neighbourhood U of p, choose the coordinates given by Proposition 2.1, such that

the origin of these coordinates corresponds to p. First we will look at the saddle-

node bifurcation. Choose the x, y coordinates so that the x-direction corresponds

to the eigenvector associated to λx. The saddle-node bifurcation is locally given by

the Legendrian vector field

X = λxxex + (z − ay2)ey − g(x, y, z)(z − ay2)ez, (2.3)

in these coordinates, where a 6= 0 is a parameter. The curve of fixed points is the

set x = 0, z = ay2, a parabola. Furthermore, this system has a family of hetroclinic

orbits that connect one branch of the parabola to the other. For a Legendrian vector

field, these hetroclinic orbits will always exist close to the Legendrian point.

Now we turn to the Hopf bifurcation. This is easier to describe in terms of

polar coordinates r, θ associated to x, y,

X = (zr + ar3)er + ωeθ − g(x, y, z)ωez, (2.4)

where ω is the angular velocity and a 6= 0 is a parameter. Solving for (zr + ar3)
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Figure 2.3: Diagrams illustrating the saddle-node (top) and Hopf (bottom) bifur-
cations in Legendrian vector fields. The solid black line is the zero link of the
Legendrian vector field, the black dot indicates the point where the bifurcation oc-
curs. In the case of a saddle-node bifurcation, there are flowlines of the Legendrian
vector field connecting the two branches of the zero line, and the black dot is a
Legendrian point, where the tangent vector to the zero link lies in the plane field
itself. In the Hopf bifurcation, there is a cone that attracts orbits of the Legendrian
vector field. Figure reproduced from Ref. [EG99].

gives a paraboloid r =
√

−z/a, which is either attracting or repelling for the orbits

of X according to the sign of a. The paraboloid in this example is fibred by orbits of

X, and although we may not have this fibration in general, the attracting/repelling

paraboloid will always exist and orbits will spiral around it.

The zero link LX of a Legendrian X is oriented in the following manner.

Fix a Riemannian metric and let ν denote the field of planes orthogonal to some

component Kj of LX . The gradients of a Legendrian vector field determine a map

∇X : ν → ξ, and generically this will be an isomorphism. Orient Kj so that

the isomorphism is orientation perserving. Associated to any Legendrian X is a

connection 1-form ω on the plane field ξ, defined as follows. Firstly, for a fixed

Riemannian metric we have an orthogonal frame defined on the complement of the

zero set of X, e1 = X/ ‖X‖ , e2 = n× e1, e3 = n. The connection 1-form is defined,

for any vector field Y , by ω(Y ) = g(∇Y e1, e2)
1. We can also use this connection

1As ω is a connection 1-form on a rank 2 bundle it reduces to a scalar for dimensional reasons,
much as it would if it were a connection on the tangent bundle to a surface.
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form to orient LX : we orient each component Kj so the vector field dual to the

connection form ω winds around it in an anti-clockwise fashion.

The curvature 2-form of the connection is Ω = dω. Let S be an oriented

surface with boundary ∂S, which may be empty, and such that S intersects LX

transversally in its interior. The Gauss–Bonnet–Chern theorem implies that

∫

∂S
ω −

∫

S
Ω = 2π

∑

j

sjInt(Kj , S). (2.5)

The quantity Int(Kj , S) is the signed number of intersections of Kj with S, where an

intersection contributes +1 if the tangent vector to Kj points out from the surface

there, and −1 if it points into the surface at the intersection point. This quantity

is the Euler class of ξ evaluated on [S],

∫

∂S
ω −

∫

S
Ω = 2πe(ξ)[S]. (2.6)

We remark that e(ξ)[S] may be computed from the director n in the following

manner. Firstly, suppose that the set of points where n is tangent to S is a collection

of closed curves—this is the generic situation, so we can assume this holds after a

small perturbation of S. Then we can divide S into two sets, S+ and S−, consisting

of the points where n points out of an in to the surface respectively. Then χ(S) =

χ(S+) + χ(S−), and e(ξ)[S] = χ(S+)− χ(S−).

This description also works for Legendrian line fields, such as the eigendirec-

tions of the tensor ∆, which need not be orientable. For a more detailed description

of this case and the (minor) modifications that must be made, see Ref. [MA16b].

Although I will make use of the tensor ∆ when discussing cholesterics, where its

relationship with the pitch axis makes it a logical choice, when Legendrian vector

fields are needed I will primarily use the bend vector field, especially in Chapter 5.

It is interesting that (2.6) leads to new expressions for the writhe of closed

integral curves of the director in terms of the Euler class. Let K be such a closed in-

tegral curve. Define the twisting number of K with respect to a frame f = {e1, e2,n}
to be Tw(K, f) =

∫

K ω(n). The writhe of the curve is defined by [C6̆1; Ful71],

Wr(K) := SL(K, f)− Tw(K, f). (2.7)

Then (2.6) implies that,

Wr(K) +

∫

S
Ω = SL(K), (2.8)
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Figure 2.4: Illustration of the transverse self-linking number associated to a closed
integral curve of the director field, here a planar circle (blue). (a) The Frenet-Serret
framing with the normal (direction of the bend) in orange and the binormal in cyan.
The self-linking number of the closed integral curve with this framing is zero but
the frame has a singularity at the centre of the disc. (b) A trivialisation of the
orthogonal plane field over the disc induces a framing of the closed integral curve
with self-linking −1 (illustrated using the red curve displaced from K along a basis
vector of the trivialisation); this is the transverse self-linking number of the curve.

where S is a Seifert surface for K and SL(K) is the transverse self-linking number

of K, the self-linking number with respect to a framing that extends over S without

singularities. This is illustrated in Fig. 2.4 for the simplest example of a planar circle

bounding a disc. It is independent of the choice of S, provided that H2(M,Z) = 0.

2.4.2 The Euler Class

The connection between generic Legendrian vector fields and the topological infor-

mation carried by ξ follows from a similar argument as the Poincaré–Hopf theorem.

The zero link LX of a Legendrian X is equal to the intersection between X and the

zero section of ξ, which is Poincaré dual to the Euler class. Consequently the Euler

class is determined by counting the zeros of X with multiplicity. Let Kj denote

the jth component of the zero link LX of X, and let sj denote the winding of X

around this component. Ignoring the multiplicity for a moment, we see that Kj is

an oriented submanifold and consequently carries a homology cycle γj . The count

of these cycles, adding back the multiplicity sj , gives the homology cycle γ carried
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by LX ,

γ =
∑

j

sjγj , (2.9)

where sj is the multiplicity of the line, equivalently the winding of X around the

line.

Proposition 2.3. Let γ ∈ H1(M,Z) be the homology cycle carried by the link LX .

Then e(ξ) =
∑

j sjPD[γj ].

This explains why the standard homotopy theory approach tells us that point

defects cannot exist in cholesterics. We have described our cholesteric using a local

frame e1, e2,n, where e1, e2 span the plane field orthogonal to n, i.e. are Legen-

drian vector fields, with e1 being the pitch axis. We can assume without loss of

generality that they are generic. Suppose we have a point defect in the director.

We can surround it by a sphere S. Then e(ξ)[S] is equal to twice the charge of

the defect. Whenever this is nonzero, γ must be a nontrivial cycle, i.e., generic

Legendrian vector fields must have zero lines whenever there are nontrivial defects

in the director. This implies that defects in cholesterics sit at the confluence of λ

lines, whose specific structure is related not just to the homotopy type of the defect,

but its diffeomorphism type, or local symmetry group, see Chapter 7.

2.4.3 Three-dimensional Invariant

Now we turn to the 3-dimensional invariant. Relating this to Legendrian vector

fields is not so easy, and requires a little set up. Firstly, it helps to give a completely

different description of the invariant, following Gompf & Stipsicz [GS99]. We will

assume that e(ξ) is a torsion class, although the constructions do work (with modi-

fication [GS99]) in the general case. In particular, this happens when e(ξ) vanishes,

for example when the material domain can be compactified to S3, a fundamental

example that we should bear in mind throughout the following discussion.

It is a classical result that any closed 3-manifold bounds a compact 4-manifold

W , e.g., S3 bounds the 4-ball. An almost complex structure (ACS) on a 4-manifold

W is a map J : TW → TW with J2 = −I. Given a plane field ξ we obtain an

ACS on ξ using rotations around the director, J = n×. We can trivialise a small

neighbourhood of the boundary of W as M × [0, 1]. We obtain an ACS, which I will

also call J , by making it equal to J on ξ ⊂ TW , and defining Jn = et, for t the

coordinate on [0, 1]. This makes ξ the set of complex tangencies to the boundary.

There is an obstruction to extending this ACS over W , which arises in the same
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fashion as the obstruction to a nonsingular extension of a vector field defined near

the boundary of a manifold: it is related to the Euler/Chern class.

Another classical result tells us we can relate the Chern class c1(J) ∈ H2(W,Z)

of an ACS J to properties of a closed 4-manifold W . Concretely,

θ(J) = c1(J)
2 − 2χ(W )− 3σ(W ) = 0. (2.10)

where χ(W ) is the Euler characteristic and σ(W ) is the signature of the 4-manifold

W . This is a consequence of the Hirzebruch signature theorem [HH58]. The

square of c1(J) means taking the intersection product ⌣ : H2(W,Z)×H2(W,Z) →
H4(W,Z) ∼= Z of c1(J) with itself, and then pairing with the fundamental class

[W,∂W ] to obtain an integer.

When W is compact with boundary, the intersection pairing is not defined

in general, and some technical considerations are required. I will not dwell on these

here, and we will assume that this intersection pairing can be defined; see Gompf

& Stipsicz [GS99] for details. On the 3-sphere, the most important case for our

application, many of the subtleties vanish and the definition of the intersection

pairing is simple, see the description given by Etnyre & Ghrist [EG02a]. When

M = S3, thenW is the 4-ball, whose Euler class is +1 and whose signature vanishes.

Assuming we have defined the intersection pairing, the quantity θ(ξ) :=

c1(J)
2 − 2χ(W ) − 3σ(W ) gives an obstruction to extending J over the interior of

W—if it does not vanish, we cannot extend. Then θ(ξ) is a homotopy invariant.

Theorem 2.3. (Theorem 11.3.4 [GS99]) The invariant θ(ξ) depends only on (M, ξ),

and reverses sign if the orientation of M is reversed.

Before moving on to the relationship with Legendrian vector fields, let’s first try to

get a better understanding of how θ fits into the picture we have of liquid crystal

textures. When we wish to measure the defect charge carried by some defects in

a nematic, we surround them with a 2-sphere. The director then gives us a map

S2 → S2. Up to homotopy, such maps are characterised by the degree, as we

have discussed. In order to extend the director from the boundary over the interior

so that it is nonsingular, the degree must vanish; otherwise the degree gives the

amount of charge that must be carried by any singularities in the interior. Globally,

a director on S3 determines a map S3 → S2, which we can imagine as a director in

a four dimensional physical space defined near the boundary of some 4-ball, which

we are trying to extend over the interior of the 4-ball. The role of the degree is now

played by the square of the Chern class of the almost complex structure J defined

by the director. The Hirzebruch signature theorem plays the role of the Poincaré–

26



Hopf theorem, which tells us that to extend J over the interior without ‘defects’, we

must have c1(J)
2 = 2; the difference then gives the ‘defect charge’ carried by that

particular director.

Now we wish to construct a variant of θ(ξ) in terms of the zero link of a

Legendrian vector field. Let Γ ∈ H2(W,∂W,Z) be a relative cycle whose boundary

cycle ∂Γ is carried by a link L ⊂M , and let f be a framing on L. We can define the

self-intersection number of Γ relative to f by glueing handles ontoW according to the

framing on the link on its boundary to obtain a 4-manifold Ŵ , and then extending Γ

to a cycle Γ′ in H2(Ŵ ,Z) whose intersection number makes sense. Loosely speaking,

this extension involves gluing surfaces onto the boundary components of Γ in a way

prescribed by the framing to obtain a closed surface. We denote the resulting self-

intersection number as Γ2. It depends on both Γ and f, however, when [∂Γ] is a

torsion class the invariant depends only on [Γ] [GS99].

Now we suppose that Γ is a relative cycle whose boundary [∂Γ] is Poincaré

dual to the Euler class e(ξ) of our plane field, i.e is equal to γ, for γ the homology

cycle carried by the zero link of some Legendrian vector field X. Gompf & Stipsicz

prefer to discuss this in terms of spin structures, which on a closed 3-manifold

are equivalent to trivialisations of the tangent bundle. A Legendrian vector field

determines a trivialisaton of ξ, and hence of M , on the complement of its zeros,

which can be extended over all of M when the Euler class of ξ vanishes2. Let s be

the spin structure determined by X. We define the invariant

Θ(ξ, s, f) = Γ2 − 2χ(W )− 3σ(W ), (2.11)

which a priori depends on both the particular choice of spin structure and the

framing. Again, when e(ξ) is not a torsion class one needs to be more careful with

this definition, but we are discounting this case. The intersection number Γ2 is

essentially the self-linking number of L with respect to the framing f. Concretely, if

Kj are the components of L, and X has winding sj—so that [γ] =
∑

j sj [γj ], for γj

the cycle carried by Kj—then we define

Γ2 :=
∑

j

s2jSL(Kj , f) +
∑

i 6=j
sisjLk(Ki,Kj). (2.12)

Therefore, Θ is essentially determined by the linking number of the zeros of a Legen-

drian vector field. Importantly, Θ is a homotopy invariant. The following theorem

arises from Theorem 11.3.16 of Gompf & Stipsicz [GS99], applied specifically to

2More generally, when the Euler class is nonzero but has torsion, then if each zero has even
multiplicty we can extend the spin structure over them uniquely using the belt-trick.
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the case M = S3, although I emphasise that it holds more generally for closed

3-manifolds with the additional complexities previous hinted at.

Theorem 2.4. Two plane fields ξ0, ξ1 on S3 are homotopic if and only if θ(ξ0) =

θ(ξ1), and also if and only if Θ(ξ0, s, f) = Θ(ξ1, s, f) for some (and hence every) spin

structure s and framing f.

The definition of Θ bears resemblance to the definition of the Hopf invariant in

terms of the linking of preimages. Theorem 2.4 implies that it must capture the

same π3(S
2) obstruction that the Hopf invariant does, however Θ(ξ, s, f) does not

need to be equal to the Hopf invariant of ξ even if we are careful about our choice of

spin structure. Since Theorem 2.4 holds for any spin structure (trivialisation), so we

may as well fix it to be the standard coordinate trivialisation, with Hopf invariant

0. It remains to determine the framing that this imposes on the zero link.

Consider the following example. Start with an example of a meron on a

cylinder D2 × [0, 1], as described by the vector field r(R − r)eθ + (R − 2r)ez, for

r, θ polar coordinates on the disk and z the coordinate on [0, 1]. Now embed this

into S3 as a solid torus, gluing the endpoints of the cylinder together with a map

that twists H > 0 times in a right-handed sense. The resulting configuration ex-

tends globally over the 3-sphere and has Hopf invariant H; such ‘axially-symmetric’

Skyrmion textures were used by Sutcliffe in numerical investigations of Hopfions in

the Skyrme–Faddeev model [Sut07]. It is clear that we can choose a Legendrian

vector field for this director with a single zero line of winding +23, whose profile

rotates H times between er and eθ. The trivialisation of S3 determined by this Leg-

endrian vector field is the trivialisation with Hopf invariant H, which corresponds

to the zero framing on the link. With respect to the coordinate trivialisation, the

framing is the one with self-linking number H.

More generally, and provided that the zero link of a Legendrian X is re-

ally generic—has transverse intersection with the zero section of ξ—we define the

self-linking number using the isomorphism ν → ξ determined by ∇X. The set of

such isomorphisms has the homotopy type of a circle, so that the variation of the

isomorphism as we move along the line defines a map K → S1. This map has a

degree, and we define the framing so that SL(K) is equal to this integer. Given a

metric g, we can compute this quantity directly. Consider the total rotation

rot =

∫

K′

g(e2,∇× e1), (2.13)

3If this is not clear, see the discussion of the Lutz twist in §3.8.1 of Geiges [Gei08].
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where e1 = X/ ‖X‖ , e2 = n × e1, and K ′ is the pushoff of K along the zero

framing. Part of this rotation is a Berry phase ψ equal to the area on the unit

sphere that is bounded by the curve swept out by n as we move along the line.

Then rot− ψ = 2πSL(K).

I emphasise that while this invariant captures the same obstruction as the

Hopf invariant, they need not be equal.

For further examples of Θ0 and also the related invariant θ, consider the

director in S3 given by the actual Hopf fibration4. The orthogonal plane field ξ+0
is the set of complex tangencies to S3 regarded as the unit sphere in C2 with its

usual complex multiplication. Consequently the Chern class of the induced almost

complex structure is the same as the Chern class of the complex structure on C2: it

vanishes [EG02a]. Thus θ(ξ−0 ) = −2, however ξ has Hopf invariant +1. We can also

consider the Hopf fibration with Hopf invariant −1, ξ−0 , which has θ(ξ−0 ) = +2—to

see this, we appeal to the fact that θ changes sign under an orientation reversing

diffeomorphism of S3, which would carry ξ+0 into ξ−0 . We can compute Θ0 using the

λ lines. In each texture there are two λ+1 lines, forming the Hopf link with linking

number +1 for ξ+0 and linking number −1 for ξ−0 . Therefore, we have Θ0(ξ
+
0 ) = +2

and Θ0(ξ
−
0 ) = −2, again distinguishing the textures. This example shows that even

for a single plane field the values of H(ξ), θ(ξ), and Θ0(ξ) can all differ, despite all

being homotopy invariants characterising the same obstruction π3(S
2) ∼= Z.

The Hopf invariant can also be computed from the zero link of a Legendrian

vector field X using the associated connection ω introduced earlier in this section.

I follow the description given previously by Machon & Alexander [MA16b; Mac16],

adapted to the case of a Legendrian vector field rather than a line field. We continue

to assume that our material domain is M = S3 and the director n is free of defects.

Let α be a globally-defined connection on the plane field ξ dual to n, which exists as

the Euler class vanishes. This computes the Hopf invariant via the Chern–Simons

integral

H(n) =
1

4π2

∫

M
α ∧ dα. (2.14)

We wish to understand what happens when we replace α with the connection ω

derived from a Legendrian vector field X, which vanishes along a link L. Given a

global trivialisation of ξ, we can write ω = dθ + α5, for θ the angle between X and

4Looking ahead slightly to Chapter 3, we can say that this is the Reeb field of the standard tight
contact form on S3.

5If we follow Machon & Alexander and use a Legendrian line field, such as that defined by an
eigendirection of the umbilic tensor ∆, then there is a factor of 2 in front of α which propagates
through the following formulas and has a major impact on the final expression.
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n×X. This allows us to write

1

4π2

∫

M−L
ω ∧ dω = H(n) +

1

4π2

∫

M−L
dθ ∧ dα, (2.15)

where we have used the fact that L has measure zero to identify the integral of α∧dα
over the complement of L with the Hopf invariant. Let Ni be a small neighbourhood

of the ith component Ki of L, and let N =
⋃

iNi. We can use Stokes’ theorem to

write,
∫

M−N
dθ ∧ dα =

∑

i

∫

∂Ni

α ∧ dθ. (2.16)

Each Ni is diffeomorphic to a torus—we can assume they all have radius r, for some

fixed small r > 0. We can choose a longitude for each torus that has zero linking

with Kj . Along each meridian ω will be approximately constant and equal to its

value on the umbilic line. Meanwhile, dθ is constant along the longitude. Its integral

around the meridian is equal to 2πsj , where sj is the strength of the zero. Using

these facts and taking the limit as r → 0 gives,

lim
r→0

∑

i

∫

∂Ni

α ∧ dθ = 2π
∑

i

si

∫

Ki

ω. (2.17)

We observe that,
∫

Ki

ω =

∫

Si

Ω+ 2π
∑

j

sjLk(Ki,Kj), (2.18)

where Sj is a Seifert surface for Kj . Then we can apply Gauss–Bonnet–Chern

theorem (2.6) to eliminate the integral over Ω, yielding,

1

4π2

∫

M−L
ω ∧ dω = H(n) +

1

2π

∑

i

∫

Ki

ω −
∑

i

e(ξ)[Si] +
∑

i,j

sjLk(Ki,Kj). (2.19)

The latter two terms cancel. Rearranging the formula then gives us an expression

for the Hopf invariant,

H =
1

4π2

∫

M−L
ω ∧ dω − 1

2π

∫

L
ω. (2.20)

Note that this is very different to the formula given by Machon & Alexander [MA16b;

Mac16] for the Hopf invariant in terms of a Legendrian line field, which contains

additional terms that cancel here.

When M is a manifold with boundary, the zero set of a Legendrian vector

field will not always lie in the interior, but will often connect to the boundary; in
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particular, if we are looking at a manifold with boundary obtained by removing an

open neighbourhood of a defect set, we will certainly have zero lines intersecting

the boundary. Both the Hopf and Gompf invariants may still be computed by

calculating the self-linking of the zero set of a Legendrian vector field rel. boundary.

For examples of this process in textures with nontrivial Hopf invariant in cholesteric

droplets, see Chapter 9. In this case, linking relative to the boundary implies we

are free to move the endpoints of any curve that lie in a boundary component

around on that boundary component. An arc whose endpoints both lie in the same

component is nullhomotopic—two arcs that each have an endpoint in the same

boundary component are never linked.

2.5 Homotopy Invariants of Nonorientable Textures

In the previous sections in this chapter we assumed that the director could be ori-

ented, so that it determined a mapM → S2. More generally, the director determines

a map M → RP2, the projective plane. When there are no defects, we may pull

back to a double cover and apply the standard homotopy theory there. This may

not preserve the more complicated topology that can occur in systems with broken

symmetry, but is sufficient to capture the standard nematic textures.

When there are defects, we must pullback to a branched cover as described

by Machon & Alexander [MA14; MA16a]. I review the classification here, focussing

on just the case M = S3, and will extend the discussion to cholesteric textures

in Chapter 8. Let n be a director with point defects at the points of P, and

nonorientable disclinations along a set L = {L1, . . . , Lm}. Here, each Lj is either a
single knot, or else it is a non-split link6. The homotopy classes of directors n with

this fixed defect set are given by elements of

⊕

p∈P
Z⊕

⊕

L∈L
(Z⊕H1(Σ(L))), (2.21)

modulo the equivalence n 7→ −n [MA16a]. The manifold Σ(L) is the double cover of

S3 branched over the link L. The factors of Z correspond to the integer charge asso-

ciated to either a point defect, or a non-split link, while the factor H1(Σ(L)) counts

topologically-distinct textures on the link complement. The number of such textures

is then determined by |H1(Σ(L))|, a quantity known as the link determinant—this

can also be computed from the Alexander polynomial A(t) of the knot [Ale28], with

|H1(Σ(L))| = |A(−1)|.
6That is, a link that contains no component that is unlinked from the rest of the components.
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If L = {K}, for a single knot K, then distinct nematic textures on the com-

plement of K correspond to entangling the knot with a Skyrmion tube [MA16a]. If

K is the unknot, the Alexander polynomial is constant and equal to 1, which implies

that, up to continuous deformation, there is a single texture on the complement of

the unknot. One cannot entangle this with a Skyrmion. To see this, consider the

texture on R3 that contains an unknotted disclination line in the xy plane and a

tube of skyrmions running along the z axis. Take a sphere surrounding the disclina-

tion line. The presence of the Skyrmion implies that the sphere carries ‘charge’ +1.

Once we compactify to get a texture on S3, the vanishing Euler class on S3 implies

that there must be an additional defect to balance out the +1 charge. In Chapter 8

I will show that there are many more topologically distinct textures once we bring

chirality into the picture, even when the defect set is simply the unknot. I give a

more in-depth discussion of the homotopy classes of nonorientable textures in that

chapter.
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Chapter 3

Contact Topology and

Geometry

3.1 Introduction

In this chapter I review material on contact topology, which I will apply to the study

of chiral liquid crystals in later chapters. The idea of chirality, or handedness, was

best expressed by Kelvin: “I call any geometrical figure, or group of points, ‘chiral’,

and say that it has chirality if its image in a plane mirror, ideally realized, cannot

be brought to coincide with itself.” Contact topology is the study of plane fields

that are always turning with a constant sense of handedness.

The first mention of contact geometry occurs in the work of Sophus Lie [Lie72],

who introduced the idea of a contact tranformation for studying solutions to systems

of differential equations. The Hamiltonian formalism of classical mechanics is based

around symplectic topology, the even-dimensional analogue of contact topology, but

admits a reformulation in terms of contact geometry once one takes an explicit

time-dependence into account [Arn89], in effect adding an additional dimension.

Russian mathematician V.I. Arnold was a vocal proponent of the importance of

contact topology and geometry in physics, even arguing that “Contact geometry is

all geometry” [Arn90b]. The appearance of contact topology in thermodynamics

goes back to the original formulation of Gibbs, who recognised, without stating it

explicitly, that each material corresponds to a Legendrian hypersurface in a certain

contact manifold, with curves on those hypersurfaces being the possible trajectories

of the system [Arn90a]. Important results in geometric optics, such as Hugyens’

principle on the propogation of wave fronts, have a contact geometric interpreta-

tion [Gei06; Gei08]. One of Arnold’s many contributions to the field was the classifi-
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cation of the generic singularities of Legendrian curves [AGLV88], which leads to an

understanding of the cusps and perestroikas that occur in wave fronts and optical

caustics. More recently, in the work of Etnyre & Ghrist [EG00a; EG00b; EG02b],

contact topology has been applied to fluid dynamics via the relation between the

Reeb fields of contact structures and Beltrami fields, which I will discuss further in

§3.11 below. For a more detailed historical review and list of applications see the

review article by Geiges [Gei06].

The goal is to describe in reasonable detail the three-dimensional theory of

contact structures, so that this theory may be extended and applied to the study of

chiral materials such as ferromagnets and cholesteric liquid crystals, a novel appli-

cation of these ideas. Many of the basic theorems are directly applicable to liquid

crystals, giving us methods of constructing directors with predefined properties, of

examining the topological structure of a system by means of projections onto fami-

lies of surfaces, and proofs of the existence or non-existence of additional topological

invariants associated to chiral materials. Even in cases where the theory may not

be applied directly, it provides fresh perspectives and insights that motivate future

study. In later chapters the basic results described in this chapter are extended to

‘singular’ contact structures, so that we may bring a discussion of defects under the

umbrella of contact geometry.

Throughout this chapter I present proofs or proof sketches of certain theorems—

usually taken from the literature, although I have tried to include my own insights

and understanding of the problems where possible—in cases where it is enlighten-

ing to see them. However, the primary focus is on understanding the connection

between the ideas of contact topology and what one might see in a numerical sim-

ulation or experimental image of a cholesteric material, in which case the rule that

a picture is worth a thousand equations certainly applies. With this in mind, I

have included numerous images of simulations of cholesteric liquid crystals to aid

the reader in understanding the theory. Since we will always be working with a unit

vector field in Euclidean space, it is also helpful to see some of the proofs presented

in geometric terms via the introduction of a distortion frame, e.g. when discussing

Gray Stability in §3.4.

3.2 Foliations and Contact Structures

Recall from §2.2 that an orientable plane field ξ on a 3-manifold M can be defined

by the kernel of a 1-form η. The 3-form η ∧ dη is a top form, and hence can be

identified with a scalar. If η∧dη = 0, the plane field is a foliation, while if η∧dη 6= 0,
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it is a contact structure. If we fix a Riemannian metric g these conditions can be

written in terms of the twist of the unit normal n to the planes of ξ, g(n,∇×n) = 0

and g(n,∇ × n) 6= 0 respectively. A contact structure is positive if the twist is

positive and negative if the twist is negative; equivalently, if the orientation induced

by the volume form η ∧ dη is the same as (positive) or opposite to (negative) the

orientation of the manifold. A pair (M, ξ) where M is a manifold and ξ a fixed

contact structure on M is commonly referred to as a contact manifold.

These conditions can be stated in terms of the space of sections Γξ of ξ, the

vector fields that lie everywhere tangent to the planes. Let X,Y be a local basis

of vector fields for Γξ. The Lie bracket [X,Y ] is also a section of ξ if and only if

g(n,∇× n) = 0. A plane field satisfying [X,Y ] ∈ Γξ for every X,Y ∈ Γξ is called

involutive. We say that ξ is integrable if we can find a family of embedded surfaces

such that ξ is everywhere the tangent space to these surfaces.

Theorem 3.1. (Frobenius Integrability Theorem [Dea40; Cle66]) A plane field is

integrable if and only if it is involutive.

Thus a foliation defines a partition of space into submanifolds, called leaves. Foli-

ations are the natural model for smectic liquid crytals [Po1; MAHK19], where the

director is normal to a family of layers.

A contact structure is a ‘maximally nonintegrable’ plane field, where the Lie

bracket of a pair of sections is never a section. The geometric consequence of this

condition is that the planes of a contact structure ξ must always be twisting away

from one another. This can be made more precise with a geometric intepretation.

Choose a Riemannian metric g. Let n be the unit normal to ξ, and let e1, e2 be a

local orthonormal basis for ξ. Denote by ψt the flow of e1, and let θ(t) be the angle

between (ψ−t)∗e2 and n, that is

cos θ(t) =
g((ψ−t)∗e2,n)
‖(ψ−t)∗e2‖

(3.1)

Then ξ is a positive contact structure if and only if θ̇(t) > 0, and a negative contact

structure if and only if θ̇(t) < 0, for all p ∈ M, t ∈ R. It can easily be checked—see

Chapter 4—that the twist is g(n,∇ × n) = θ̇(0). One can interpret this as the

instantaneous angular velocity of the planes induced by the flow along e1. The sign

of the twist correponds to the direction of rotation: positive twist corresponds to

a left-handed sense of rotation, while negative twist corresponds to a right-handed

sense of rotation. It follows that aplane field ξ is contact if and only if, for every

Legendrian vector field X, the flow φt of X acts to rotate the planes of ξ in a
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constant sense.

This sense of handedness means that contact structures are the natural math-

ematical structure for representing chiral materials with a line or vector order pa-

rameter, such as cholesteric liquid crystals.

Finally, we observe that contact structures have no local invariants, only

global ones.

Theorem 3.2. (Darboux Normal Form) Let ξ be a (positive) contact structure. At

each point there is open ball U around that point and coordinates (x, y, z) on that

open ball such that ξ|U is defined by η = dz + 1
2(xdy − ydx).

This is analagous to a similar theorem about local normal forms for symplectic

structures—too wit, that locally a sympletic form on a 2n-manifold can be written

as Ω =
∑

j dxj ∧ dyj , for coordinates (x1, . . . , xn, y1, . . . yn) on some open ball—and

proved in the same fashion. The Darboux normal form η = dz + xdy − ydx is also

sometimes written as dz + xdy or dz − ydx; these are completely equivalent.

3.3 Contact Vector Fields

When describing a mathematical structure it is important to understand the maps

between two instances of the structure, and in particular the automorphisms of a

given instance. A diffeomorphism φ of a manifold M which preserves a contact

structure ξ on M , φ∗ξ = ξ, is called a contactomorphism. Such maps do not

generally preserve contact forms, but they do always rescale them, φ∗η = λη for

some function λ > 0. A contactomorphism which preserves a fixed contact form η

for ξ is called strict for that form. As the composition of two contactomorphisms is

again a contactomorphism, we obtain a Lie subgroup of the diffeomorphism group of

the manifold called the contactomorphism group, C(M, ξ). The contactomorphism

group is a diffeomorphism invariant of the contact structure, but not a homotopy

invariant. Similarly, we obtain the strict contactomorphism group SC(M,η) of a

contact form.

Associated to any contact form η is a special vector field R, the Reeb field,

defined uniquely by the equations ιRη = 1, ιRdη = 0, whose flow then gives a

strict contactomorphism of η. The uniqueness follows from the fact that dη, being

nonzero when restricted to the kernel of η, must have a one-dimensional kernel; the

first condition then fixes a single vector spanning this kernel. The Reeb field satisfies

LRη = dιRη + ιRdη = 0, and consequently preserves the contact form.

The Lie algebra of the contactomorphism group is the space of all vector

fields X whose flows are contactomorphisms of ξ. For a given contact form η, these
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satisfy LXη = λη for some function λ. These are called contact vector fields—for

example, the Reeb field is a contact vector field with λ = 0. Fix a contact form η

defining ξ. Any contact vector field XH can be associated to a function H via the

following relationships,

η(XH) = H, ιXH
dη = dH(R)η − dH, (3.2)

where R is the Reeb vector field of η. Conversely, any function H gives rise to a con-

tact vector XH field by solving the above equations; H is the contact Hamiltonian

of XH . Conseqently, we can identify contact vector fields with smooth functions on

the manifold. Since contact vector fields are the infinitesmal generators of contac-

tomorphisms, we see the Lie algebra of the contactomorphism group is equivalent

to the algebra C∞(M) of smooth functions on M .

Since we are concerned with contact structures on subsets of Euclidean space

where the contact form, dual to the director, has unit length, it makes sense to ex-

press the above conditions in terms of the gradients of a unit 1-form η, or equivalently

the director n. Choose a local orthonormal basis e1, e2 of sections of ξ. Let b be

the bend vector field, β its dual 1-form, and κ its norm, and let q be the twist of

n. Using the formula dη = qe1 ∧ e2 + η ∧ β (see Chapter 4) and the above pair of

equations, we can express any contact vector field XH in terms of the director and

the bend. We start with the Reeb field,

R = n+
1

q
Jb, (3.3)

where J = n× is an almost complex structure on ξ that rotates a section ninety

degrees anticlockwise around the director. It is interesting to observe that this

has no component along the normal direction to the integral curves of n, and that

it agrees with n only when the bend vanishes—this essentially gives a topological

definition for the ‘β lines’ that are the primary subject of Chapter 5, as long as the

twist is nonzero.

For any nonzero function f , we can rescale η to obtain another contact form

η̄ = fη defining the same contact structure. The Reeb field of this rescaled form is

R̄ =
1

f
n+

1

f2q
J(b+∇f). (3.4)

Thus n directs the Reeb flow of some contact form defining the same contact struc-

ture if and only if there exists a function f > 0 such that b+∇f is colinear with n.

By Proposition 2.1, in a neighbourhood of any point we can find an adapted coordi-
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nate system x, y, z so that the bend is a 1-parameter family of 2-dimensional vector

fields. In order for n to be a Reeb field associated to the same contact structure,

these vector fields must be the gradients of a 1-parameter family of functions.

We can also extend this formula to contact vector fields. Write XH = X1e1+

X2e2 +X3n for a contact field. The coefficient of n must be H, as determined by

η(XH) = H. The remaining two terms are obtained from plugging our ansatz into

ιXH
dη = dH(R)η − dH,

X1 = −1

q
(∇2H +Hb · e2),

X2 =
1

q
(∇1H +Hb · e1).

(3.5)

Grouping terms, we find the formula for a general contact vector field,

XH = HR− 1

q
(J∇H). (3.6)

3.4 Gray Stability

In this section I describe an early result in contact topology, the Gray Stability

Theorem [Gra59]. Although this result is very simple, it has important applications

to cholesterics: it implies that homotopies of contact structure give rise to isotopies,

and hence that diffeomorphism invariants of contact structures are of no particular

relevance1. This is explained in the recent paper of Machon [Mac17]. I will review

it briefly for completeness, more details can be found in the cited reference. I follow

the proof in Geiges [Gei08], which uses the Moser trick to simplify the original proof

of Gray [Gra59], but give the statements a geometric flavour in order to arrive at

the form given by Machon [Mac17].

Theorem 3.3. (Gray Stability Theorem) Let ξt be a smooth family of contact struc-

tures on a closed 3-manifold M . There exists an isotopy ψt such that ξ0 = ψ∗
t ξt.

Proof. Let e3t = ηt be the unit 1-form defining ξt, and choose a local orthonormal

pair of 1-forms e1t , e
2
t whose dual vector fields span ξt. In general, the isotopy we

hope to construct cannot be chosen so that ψ∗
t ηt = η0, as there is no reason it should

preserve lengths. Instead, we hope to find an isotopy so that ψ∗
t ηt = λtη0, for some

family of strictly positive functions λt. Differentiating both sides with respect to t

1Although the strict contactomorphisms are tied to geometric quantities and connected to the
structure of layers in the cholesteric, see Chapter 10
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and rearranging terms, we need to solve

ψ∗
t (η̇t + d(ιXtηt) + ιXtdηt) = ψ∗

t (µtηt) (3.7)

for a time dependent vector field Xt whose flow defines the isotopy ψt, and we have

defined µt :=
d
dt(log λt) ◦ψ−1

t . If we can write down the vector field Xt, we then can

uniquely integrate to get the flow ψt, so it is enough to find Xt.

Suppose Xt ∈ ξt. Then (3.7) would be satisfied if η̇t + ιXtdηt = µtηt. If we

apply this to the Reeb field Rt of ηt, we see that this will be satisfied by µt = η̇t(Rt).

Write Xt = X1(t)e1(t) + X2(t)e2(t) and η̇t =
∑

i Yie
i. Then to solve (3.7)

Xt must satisfy

η̇ + q(X1e
2 −X2e

1)− β(X)η = µη, (3.8)

where every term is understood to depend on t. From this, we deduce that Y1−qX2 =

0 and Y2 + qX1 = 0. Consequently, the isotopy is generated by the time-dependent

vector field

Xt =
1

qt
J ṅt. (3.9)

One may also obtain (3.9) by taking an appropriate limit in the Ericksen–Leslie

equations for the hydrodynamics of liquid crystals [Mac17].

The proof applies to nonorientable contact structures as well. This can also

been seen by performing the calculations locally in charts where the director is

orientable, and noting the flow field Xt remains unchanged if we send n to −n

(since J will also change sign), so that the conclusion holds globally. The vector

field Xt we have chosen is not the unique solution of (3.7), as we can add any contact

vector field Yt to Xt, although this will result in a different function µt.

The actual flow field is easily determined once we precribe ṅt. Suppose the

system evolves under the Euler–Lagrange equations of the Frank free energy (1.2).

Assume a one elastic constant approximation, so that

ṅ = K(∇2n− 2q0∇× n)⊥, (3.10)

where ⊥ denotes projection into the planes orthogonal to n. Using the equation

n×∇× n = −∇nn, we deduce that the flow field is

Xt =
1

q
(n× ṅ) =

K

q
(J∇2n+ 2q0b), (3.11)
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where q is the twist of n. For another example, consider the following 1-parameter

family

nt = sin

(

πt

2

)

ez + cos

(

πt

2

)

(cos(z)ex − sin(z)ey) , (3.12)

with t ∈ [0, 1) that interpolates between the cholesteric ground state and the helicon-

ical state. We compute that qt = cos2
(

πt
2

)

and ṅt =
π
2 (cos

(

πt
2

)

ez−sin
(

πt
2

)

(cos(z)ex−
sin(z)ey)), so the flow field is

Xt = −π
2
sec2

(

πt

2

)

(sin(z)ex + cos(z)ey). (3.13)

The isotopy in question solves the equation ∂tφt = Xt(φt). Using the fact that

sec2(t) = ∂t tan(t), we conclude that

ψt(x, y, z) =
(

h1 − tan
(

πt
2

)

sin(h3), h2 − tan
(

πt
2

)

cos(h3), h3
)

, (3.14)

for some time-independent functions h1, h2, h3. Using the fact that ψ0 should be

the identity map, we find h1 = x, h2 = y, h3 = z.

An immediate consequence of Gray Stability is that there are no 1-parameter

families of non-isotopic contact structures, and hence any homotopy invariants of

contact structures must be discrete. This contrasts with the homotopy invari-

ants of foliations which may be continuous, and indeed a continuous invariant

(the ‘Godbillon–Vey number’ [GV71; RW73; Mac20a; Mac20b]) does exist. For

liquid crystals there is a further consequence, the preservation of the layer struc-

ture [Mac17]. Suppose that the cholesteric director at time 0 is tangent to some

foliation F0 defined by a 1-form α0. The leaves of this foliation are the ‘layers’.

Then α0(n0) = 0. This implies that, for all t, α0(ψt∗nt) = 0. Furthermore, if we

define αt(X) := α0(ψt∗X) = ψ∗
tα0, then clearly nt lies in the kernel of this 1-form,

and moreover the 1-form defines a foliation Ft isotopic to F0.

The preservation of the layer structure leads to an instability, the Helfrich–

Hurault instability, which involves the buckling of the cholesteric layers under an ap-

plied electromagnetic field [Hel71; Hur73] or mechanical strain [CM73]. We simulate

the effect of an applied field by applying a sinusiodal perturbation to a cholesteric

ground state on T 2× [0, 1] with one full 2π twist along the z direction, but q0 chosen

so that the equilibrium number of twists is three. The layers buckle, Fig. 3.1. The

colours shown in the figure indicate the dot product between the director and the

normal to the slice, with blue being negative and yellow positive. The black lines,

where the director is planar, give a good idea of the geometry of the layers.
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Figure 3.1: The Helfrich–Hurault instability. (a) A frustrated cholesteric ground
state with a sinusoidal perturbation, shown on a slice across the domain. (b-e)
Evolving this state over time under the gradient dynamics of the Frank energy
causes the layers, whose geometry is indicated by the black line where the director
lies in the plane of the slice, to buckle.

3.5 Confoliations, and the Perturbation of Foliations

into Contact Structures

In Chapter 2 I described the homotopy classes of plane fields in terms of the Euler

class and the Hopf invariant. When considering plane fields with additional struc-

ture, such as contact structures or foliations, it is natural to ask whether there are

additional homotopy invariants. There is a foliation in every homotopy class of plane

fields, and moreover foliations satisfy an h-principle: if two foliations are homotopic

as plane fields, they are homotopic as foliations [EB16]2.

For contact structures, one has various proofs of existence of at least one

contact structure on any closed 3-manifold, for instance one due to Martinet [Mar71],

and a later result due to Thurston & Winklenkemper [TW75]—see §4.1 and §4.4
of [Gei08]. In addition to these existence results, there is the Lutz–Martinet theorem.

Theorem 3.4. (Martinet [Mar71], Lutz [Lut71]) There is a contact structure in

every homotopy class of plane fields.

The proof is by first establishing the existence of a single contact structure, and then

applying a type of surgery called the Lutz twist (see §3.8.1) to modify its homotopy

class.

It is interesting to consider the question of how one may obtain a contact

structure from a foliation. There are two physical reasons to ask this question. The

first is to ask how one may interpolate between a region in which the twist is nonzero,

and a region where it vanishes, e.g. because of imposed boundary conditions. This

arises when discussing cholesteric droplets with normal anchoring, as in Chapter 7.

2This is one of many notions of homotopy for foliations; other notions, such as foliated concor-
dance, admit additional homotopy invariants, e.g. the Godbillon–Vey invariant.
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The other is when considering phase transitions. Consider a material that exhibits

both a smectic phase and a cholesteric phase, with some critical temperature Tc at

which the former transitions into the latter. For T < Tc the system may be described

by a foliation, while for T > Tc, the system is described by a contact structure.

Matters are complicated by the fact that for a real material both the foliation and

the contact structure will exhibit disclinations and dislocations, but let us ignore

this for now. As we pass through the phase transition, the material must undergo

a homotopy between a foliation and a contact structure. The question of how this

happens, and how (or if) invariants of foliations are converted into invariants of

contact structures, is then a relevant one. Materials in which this transition exists

exhibit a ‘twist-grain boundary’ (TGB) phase. This phase is characterised by a

series of smectic blocks that rotate as one moves along some helical axis that is

orthogonal to the layer normals. In between the ‘grains’, or blocks of smectic layers,

one has screw dislocations forming where the twist is localised. One can imagine

that, as the temperature increases, the twist diffuses out from the screw dislocations

until the entire material has nonzero twist distortion.

In a seminal work, Confoliations [ET91], Eliashberg & Thurston discuss the

question of perturbing foliations into contact structures. To this end, they introduce

the concept of a confoliation, a plane field defined by 1-form η with η∧ dη ≥ 0. The

part where η ∧ dη > 0 is the contact part, the part where η ∧ dη = 0 is the foliated

part.

The first use of confoliations, discussed in §1 of Confoliations [ET91], is to

examine whether or not it is possible for a plane field to be contact in the neigh-

bourhood of an integral leaf; said differently, we ask for a unit vector field that is

the normal to some surface S but has nonzero twist away from S. A fundamental

obstruction to doing this occurs when S is a sphere. This theorem is very important

and has numerous applications in cholesteric materials. To aid in understanding it I

will give two proofs of this fact, one that is taken directly from Confoliations [ET91],

and a proof of my own based on the divergence theorem.

Theorem 3.5. (Reeb Stability Theorem for Confoliations) Let ξ be a germ along

S2 × 0 of a confoliation on S2 × R+ that has S × 0 as an integral leaf. Then ξ is a

foliation diffeomorphic to the foliation whose leaves are S2 × z, z ∈ R+.

Proof. (Proof 1) The proof of Eliashberg & Thurston is based on the idea of holon-

omy maps. Suppose we have a plane field on S × R which is transversal to the

lines p × R for p ∈ S, where S is any surface. This plane field ξ can be viewed as

a G-connection on bundle bundle S × R, where G is the group of diffeomorphisms
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of the fibre R. The curvature Ω of this connection is a 2-form on S valued in dif-

feomorphisms of R that can be computed as follows: for any pair of vector fields

X1, X2, Ω(X1, X2) is the component of the Lie bracket [X1, X2] that points along

the fibre, see Fig. 3.2. Let D be a disk in S with boundary γ. We define
∫

D Ω to be

equal to the holonomy diffeomorphism along γ, see Fig. 3.2. We see that
∫

D Ω = id

for a foliation and
∫

D Ω < id for a positive contact structure, where id denotes the

identity diffeomorphism. The non-strict inequality holds for a positive confoliation.

Moreover, the integral can be reduced to an integral over the boundary via the

‘non-commutative Stokes theorem,’

∫

D
Ω =

∫

∂D
ξ, (3.15)

where we are regarding ξ as a connection form and Ω = dξ.

Now specialise to the case where S = S2 is a sphere, and ξ is a germ along

S of a confoliation with S as an integral leaf. Let D+, D− be the upper and lower

hemisphere, with shared boundary ∂D. This boundary is oriented one way if we

consider it as the boundary D+, and the opposite way if we consider it as the

boundary of D−. Computing the holonomy of the confoliation ξ over the disks

D+, D−, we obtain the inequalities
∫

D+ Ω ≤ id and
∫

D− Ω ≥ id; consequently, the

holonomy diffeomorphism around ∂D must be the identity, and hence ξ is a foliation.

Since it is assumed transverse to the lines p×R everywhere, it must be diffeomorphic

to the foliation by spheres.

Proof. (Proof 2) Suppose for a contradiction that ξ is contact in a region S2×(−δ, 0)
of a sphere S ∼= S2 × 0, but tangent to S itself. Let B be the ball bounded by S,

which we can assume without loss of generality is centred on the origin. We can

extend ξ over B − 0 so that it is contact everywhere in the interior. Pick a contact

form η for ξ, and let R be the Reeb field of η. We observe two things about R.

Firstly, since it is transverse to the contact planes, it is transverse to the sphere

S′ = S ×−ǫ for some δ > ǫ > 0. Secondly, on the ball B′ bounded by S′ minus the

origin ξ is contact and R preserves the volume form η ∧ dη, for we have

LRη ∧ dη = d(η(R)dη + η ∧ ιRdη) = 0. (3.16)

Pick any Riemannian metric g whose volume form is η ∧ dη (such metrics are easily

seen to exist, see §3.11.1). We can extend R over the origin so that it is zero there.
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Figure 3.2: Schematic illustration of the twist as a holonomy. (Top) When the twist
vanishes the director coincides with the normal to a surface and is perpendicular to
the boundary of any disc lying in the surface. (Bottom) When the twist is non-zero
and the director is no longer the surface normal, the disc boundary can be lifted
along the surface normal to give an open curve, again perpendicular to the director.
The distance between the end points gives a measure of the twist.

The divergence theorem implies that

∫

B′

div R =

∫

S′

g(R,N), (3.17)

where N is the unit normal to S′. Since R is transverse to S′, the right-hand side of

this equation is nonzero. As R is divergence free the left hand side vanishes. We have

found our contradiction. Since ξ is a confoliation, it cannot have regions of opposite

handedness and since we have just shown it cannot be contact in a neigbourhood of

S, it must be a foliation.

A corollary of Theorem 3.5 is that one cannot modify a foliation near a point to

make it contact in a neighbourhood of that point. This has consequences for the

textures produced by certain experimental techniques [CAA+13; AS16; AS17; TS19].

It also has consequences for cholesteric droplets with normal anchoring, implying the

existence of some boundary region where the director cannot be a contact structure,

which I will discuss further in Chapters 6, 7, and 9. Physical materials are not

constrained to satisfy the confoliation condition and can exhibit regions of reversed

(i.e., different from the energetically preferred) handedness rather than being a

foliation in a neighbourhood of the boundary, which is indeed what happens.

Using the idea of holonomy, one can prove that there is no obstruction to

producing confoliations that are contact in a neighbourhood of an integral leaf when-

ever that leaf is not a sphere, but a surface of positive genus. We can realise the
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genus g surface Σg as a cell complex with a single 0-cell and 2-cell, and 2g 1-cells

a1 . . . ag, b1 . . . , bg

Theorem 3.6. (Proposition 1.3.13 [ET91]) Let fj , hj be germs of diffeomorphisms

of R whose commutators satisfy [f1, h1] ◦ · · · ◦ [fg, hg] ≤ id. There exists a germ of a

confoliation on Σg×R+ that has Σg×0 as an intergal leaf, is otherwise contact, and

such that the holonomy diffeomorphisms along aj , bj are fj , hj for each j = 1, . . . , g.

The consequence of this theorem is that it is possible to expel regions of reversed

handedness in, for example, toroidal droplets with normal anchoring. I will discuss

this issue, along with the situation for planar anchoring on the boundary, in Chapter

6. An example of the bounary behaviour on T 2 × [0, 1], with coordinates x, y on T 2

and z on [0, 1], is given by η = sin
(

πz
2

)

dz+cos
(

πz
2

)

(cos(z)dx+sin(z)dy). This has

T 2 × 1 as an integral leaf, and is contact otherwise.

In §2 of [ET91] Eliashberg & Thurston prove their main result on the per-

turbation of foliations into contact structures.

Theorem 3.7. Let F be any C1 foliation that is not diffeomorphic to the foliation

of S2 × S1 by spheres. Then F can be perturbed into a contact structure.

Consequently there is no global obstruction to making a foliation into a contact

structure by an arbitrarilly small change, however Theorem 3.5 implies that this

cannot be done by modifications in a neighbourhood of a point, i.e. it must be

nonlocal.

3.6 Characteristic Foliations

A useful technique for studying properties of plane fields is to describe them in a

neighbourhood of a surface. This is already sufficient to pick up topological infor-

mation such as the Skyrmion charge, via Eq. (2.6). When dealing with contact

structures specifically one can say a little more about the structure near to a sur-

face, which is useful for many constructions, but in fact the ideas of this section can

be applied to general plane fields.

Let S be a surface embedded in a contact manifold (M, ξ). The contact

structure induces a singular foliation Sξ on S by setting Sξ = TS ∩ ξ. Singularities
occur at points where ξ is tangent to S, and hence the singular set is at least

codimension 1. It is evident that a small perturbation of S will result in the singular

set becoming codimension 2, so we will assume this is the case. The foliation Sξ is

called the characteristic foliation induced on S.
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Figure 3.3: A contact structure carves a set of lines into a family of surfaces, and the
contact condition implies that these lines rotate like a propeller. Figure reproduced
from [ET91].

Eliashberg & Thurston [ET91] offer an alternative interpretation of the con-

tact condition based on the characteristic foliation. We can identify a neighbourhood

of S with S × [−1, 1], where S itself is S × 0. The characteristic foliation on S is a

set of lines and the contact condition implies these lines must constantly rotate like

a propeller as we move along the [−1, 1] direction, Fig. 3.3.

Let x, y be local coordinates on S and denote by z the coordinate on [−1, 1].

We can choose a contact form η for ξ that is decomposed as η = βz + uzdz, where

βz is a family of 1-forms and uz a family of functions on S. In terms of the vector

field n orthogonal to ξ (in some metric), this decomposition is nothing more than

writing n = n⊥ + n||, where n⊥ is the projection of n onto S and n|| is the part

of n orthogonal to S. The characteristic foliation is directed by a vector field X

satisfying β0 = ιXΩ, where Ω is any area form on the surface; alternatively, it is

directed by the vector field orthogonal to n⊥ in the metric induced on the surface

by the ambient metric.

The contact structure can be reconstructed (in a neighbourhood of S) from

the characteristic foliation, and the resulting contact structure along the surface is

unique up to homotopy, as the following lemma shows.

Lemma 3.1. Let ξ0, ξ1 be two contact structures inducing the same characteristic

foliation on a surface S. Then ξ0, ξ1 are homotopic in a neighbourhood of S.

Proof. We may choose contact forms ηi = βi + uidz, i = 0, 1, defining ξi in a
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neighbourhood S × [−1, 1] of S, where β0 = β1 whenr estricted to z = 0. The

functions ui satisfy

uidβi + βi ∧ dui − βi ∧ β̇i > 0. (3.18)

This equations remains true when we restrict to z = 0, where β0 = β1 = β. The

lemma follows from observing that, for fixed β, the space of solutions to this equation

is convex, so that there exists a line ut of functions connecting u0 and u1, which

induces a line of contact forms ηt connecting η0 to η1.

Moreover, the condition that must be satisfied by a foliation on S in order that it

be the characteristic foliation of some contact structure is very mild. Let divΩX

denote the divergence of a vector field X with respect to the area form Ω.

Lemma 3.2. (Lemma 4.6.3 [Gei08]) Let F be a singular foliation on S. It is

the characteristic foliation induced on S by some contact structure defined on a

neighbourhood of S if and only if there exists an area form Ω and a vector field X

directing F such that divΩX is nonzero at every point where X = 0.

Proof. Set u = divΩX and suppose this does not vanish at the zeros of X. Let

β = ιXΩ be the 1-form defining the foliation F . As S is an orientable surface we

can choose a 1-form γ with singularities at the same points as β such that β∧γ ≥ 0,

with equality only at the singular points; for example, we may choose a metric on

the surface, let Y be the vector field orthogonal to X, and set γ = ιY Ω.

Now we define βz = β + z(du− γ), and set η = βz + udz. We compute that

η ∧ dη|z=0 = (u2Ω+ β ∧ γ) ∧ dz, (3.19)

and this is positive because β ∧ γ vanishes only at points where u does not, and

whenever u vanishes, we have β ∧ γ > 0.

Conversely, suppose that η = βz + uzdz defines a contact structure ξ in

a neighbourhood of S. The vector field directing the characteristic foliation can

be defined by ιXΩ = β0, for some area form Ω. At any point p where X = 0,

ξp = TpS. We must have dη|ξ > 0, so that dη|S is positive at the point p, and

therefore (dη|S)p = dβ0 = (divΩX)Ω 6= 0.

In terms of a director field, this construction is as follows. Let X be vector field

whose divergence is nonzero at each point where X vanishes, and let Y be the

orthogonal vector field to X for some choice of metric on S. Then the divergence u

of Y is nonzero at its singular points. The director is

n = Y + z(∇u−X) + uez. (3.20)
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These constructions can be generalised to situations where the director must be unit

length, Chapter 4, and where the director may have defects on the surface, Chapter

6.

When considering surfaces in a cholesteric material, one quantity of interest

is the value of the Euler class of the director evaluated on that surface, which

computes the Skyrmion charge. Suppose the characteristic foliation induced on

some surface S is generic, so that each singularity has winding ±1 and the Jacobian

is non-degenerate at every singular point—we can arrange this by a perturbation of

S. Since each singularity occurs at a point where the unit normal n to the contact

structure is orthogonal to the surface, we can associate to them a sign: positive if

n agrees with the normal to the surface there, and negative if it is opposite to the

normal to the surface. Let e± denote the number of positive/negative singularities

of winding +1 (elliptic singularities), and h± denote the number of positive/negative

singularities of index −1 (hyperbolic singularities). Set d± = e± − h±.

Proposition 3.1. (Proposition 3.1.1 [Eli92])

d± =
1

2
(χ(S)± e(ξ)[S]) (3.21)

Proof. Let n be unit normal to the contact structure. We can partition S into the

sets S+ (resp. S−) when n points out of (resp. into) the surface, and a set of closed

curves Γ where n is tangent to the surface. Assume that the characteristic foliation

is oriented by a vector field X that points transversally out of S+—that we can

arrange this is proved in §3.9 but it essentially follows from genericity of the desired

properties.

It is clear that χ(S) = χ(S+)+χ(S−), and that e(ξ)[S] = χ(S+)−χ(S−). We

may compute χ(S±) using the Poincaré–Hopf index theorem applied to the vector

field X|S± . As elliptic points have index +1 and hyperbolic points have index −1,

this calculation yields χ(S±) = e± − h± = d±. The result follows.

This result is essentially the Gauss–Bonnet–Chern theorem that was discussed in

Chapter 2. Using this equation we can deduce the Skyrmion charge from examining

the characteristic foliation induced on a surface in a cholesteric, and with care we can

use Theorem 3.2 to design cholesteric directors with the desired Skyrmion charge.

Characteristic foliations exist on a surface in any manifold with any plane field, not

just a contact structure, although they will obey different properties. Eq. (3.21)

always holds for a generic surface.
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3.7 Characteristic Foliations on Surfaces Dividing Re-

gions of Opposite Handedness

For applications to liquid crystals it is not enough to study just contact structures,

we must also understand the degeneracies that can occur in them. The most obvious

degeneracy is the presence of singularities, the subject of Chapters 6 and 8. Another

possible degeneracy is the existence of regions where the handedness of the contact

structure reverses. Although this comes with an energy penalty, real materials do

exhibit such regions, and indeed their existence can be forced by imposing certain

boundary conditions, as implied by Theorem 3.5, and they can also be generated in

the bulk, Chapter 8. The existence of these regions is of central importance for the

stability of the structures formed in cholesteric droplets, a discussed in Chapters 7

and 7.

Let us consider the characteristic foliation induced on a surface that separates

a region of left-handedness from a region of right-handedness in a material, in order

to get a better idea of the structure of the director near these regions. For a generic

surface of this type, the local structure of the characteristic foliation can be deduced

from known results on the normal forms of plane fields. Let ξ1, ξ2 be generic germs

of plane fields. Two such germs are called topologically equivalent if there is a

homeomorphism f of R3 that maps curves tangent to ξ1 into curves tangent to

ξ2—equivalently, f∗ξ2 = ξ1. This obviously defines an equivalence relation. The

equivalence classes are known:

Theorem 3.8. (Theorem F.1 [Zhi93]) The germ of a generic plane field is topolog-

ical stable and topologically equivalent to the kernel of one of the following germs of

1-forms,

1. η1 = dz + xdy,

2. η2 = dz + x2dy,

3. η3 = dz + (xz + x2y)dy,

4. η4 = dz + (xz + x3/3 + xy2)dy.

The first normal form is contact: it is the local model for a contact structure that

comes from the Darboux theorem. The remaining three cases all describe regions of

opposite handedness seperated by a surface along which the handedness vanishes.

These interfaces are the zero level sets of the functions x, z + 2xy, and z + x2 + y2,

respectively a flat plane, a saddle, and a parabola. Note that there is no particular

reason these should correspond to any kind of curvature of an interface.
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Let ξ be a plane field and S denote a surface across which the handedness

of ξ reverses. By the above theorem, for any generic point p ∈ S there exists some

open neighbourhood and a coordinate system on that neighbourhood for which ξ is

defined by one of the 1-forms (2-4). Case (2) is ‘more generic’ than cases (3) and

(4), and occurs when ξ is transversal to S in a neighbourhood of the point being

considered. In the latter cases transversality is violated only at the point p, see

§2.2 of the book by Zhitomirskĭı [Zhi93]. One may consider further degeneracies,

where transversality is violated along lines, but these will be even less likely to occur

and are ‘topologically unstable’, in the sense that small perturbations will destroy

this property. In cases (3) and (4), the characteristic foliation induced by ξ on the

surface Σ will have an isolated singular point at p, which is hyperbolic for (3) and

elliptic for (4).

Let us examine the characteristic foliations induced on the surface S where

twist vanishes for each model (2-4). In case (2), this surface is the set x = 0, and the

characteristic foliation consists of straight lines in the y direction. The other two

cases are more interesting. First consider case (4). Here S is the set z+x2+y2 = 0.

Let β = η4|S . We easily compute that β = −2xdx − (2y + 2x3/3)dy. The vector

field X directing the characteristic foliation on S is X = −(2y + 2x3/3)ex + 2xey.

Clearly a relabelling of the coordinate system in a neighbourhood of the zero reduces

this to −yex+xey, which is a vector field with everywhere vanishing divergence (in

the old coordinate system, the divergence still vanishes at the origin). A similar

computation shows the same behaviour for (3), where the vector field directing the

characteristic foliation on the set z+2xy = 0 is directed byX = −2(x+x2y)ex+2yey,

which again has vanishing divergence at the origin. This is in constrast to Theorem

3.2, which implies that such singularities are exactly those which cannot occur in

a contact structure. Interestingly, the same behaviour occurs in the characteristic

foliation on a surface intersecting a defect, see Chapter 6.

A simple example on T 2 × [−1, 1] is given by the 1-form

η = cos(z2)dx− sin(z2)dy. (3.22)

This is a positive contact structure when z > 0 and a negative contact structure

when z < 0. At each point on the surface z = 0 the plane field defined by ηrev

looks like the normal form (2). This example illustrates an important point: the set

where the twist vanishes need not be an integral leaf of the plane field. It is also

straightforward to construct examples where this is the case: by Theorem 3.6 we

can construct both a positive and a negative confoliation on T 2 × [0, 1] that have
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T 2 × 0 as an integral leaf but oriented opposite ways, and then glue these together

along said leaf to obtain our example.

We can ask what might force a region of reversed handedness to be metastable

in a cholesteric even when its presence is not forced by topological constraints. We

expect that if all that is required to remove the region is a local modification to

the director, then it will not be stable, so a possible route to stability is to force

the presence of regions of reversed handedness that require nonlocal modifications

to remove. Theorem 3.2 implies that a surface with characteristic foliation con-

taining a singularity with vanishing divergence must intersect a region of reversed

handedness. We can certainly perturb a characteristic foliation on a single surface

to remove such a singularity, but in a large domain this may only result in mov-

ing the ‘bad’ singularity somewhere else—said differently, the property of being the

kind of characteristic foliation that may occur in a contact manifold is generic for a

single foliation, but not generic in a one-parameter family. In Chapter 8 I give an

experimentally-accessible example where the removal of regions of reversed handed-

ness requires modifying the director along a closed curve, which provides a method

by which these regions of reversed handedness could be studied further.

3.8 Tight and Overtwisted Contact Structures, and the

Relationship With Skyrmions

In Chapter 2 we saw that there were two invariants that determined the homotopy

class of the plane field, and that these invariants could be related to physical proper-

ties of a liquid crystal material via the λ lines and β lines. Now I discuss topological

information that is of a purely contact-topological nature. The foundational paper

of Bennequin [Ben83] illustrates the existence of such contact invariants: he defines

two contact structures on R3 that belong to the same homotopy class of plane fields,

and then proves they are not homotopic as contact structures. The ideas of Ben-

nequin were greatly expanded on by Eliashberg [Eli89], who made precise the notion

of an overtwisted disk and separted contact structures into two classes: those that

possess an overtwisted disk, the overtwisted contact structures, and those that do

not, the tight contact structures.

Consider the following contact form on R3, given in cylindrical coordinates

r, θ, z,

ηot = cos(r)dz + r sin(r)dθ (3.23)

This defines the standard overtwisted contact structure ξot. The disk Dot = {z =
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0, r ≤ π} is the standard overtwisted disk. We see that the boundary of this disk is

a Legendrian curve (i.e., a curve tangent to the contact planes) of ξot, and that the

contact planes are tangent to the disk only at the origin. The characteristic foliation

is radial, with singularities at the origin and at every point along the boundary. A

small perturbation of the interior of the disk produces a characteristic foliation with

a spiral singularity whose integral curves asymptote on the boundary of the disk,

which is a limit cycle, Fig. 3.4. The leaves of the characteristic foliation on the

perturbed disk are given in polar coordinates by θ = −2 log sin r [Bla10].

Figure 3.4: The characteristic foliation on an overtwisted disk. Reproduced
from [Bla10].

An overtwisted disk in a contact structure ξ is a disk D whose boundary is

a Legendrian curve and such that there is a contact embedding of a neighbourhood

of D into the standard overtwisted contact structure. It is in fact enough for the

Legendrian boundary of the disk D to have Thurston–Bennequin number equal to

0. This follows from the so-called Bennequin inequalities, which I describe in the

next section.

3.8.1 Overtwisted Contact Structures

The importance of the tight-overtwisted dichotomy lies in the following theorem of

Eliashberg.

Theorem 3.9. (Eliashberg’s h-principle for overtwisted contact structures [Eli89]) If

two overtwisted contact structures are homotopic as plane fields, they are homotopic

as contact structures.

This theorem asserts that there are no additional homotopy invariants associated

to overtwisted contact structures. The technique used to prove the Lutz–Martinet

theorem always produces an overtwisted contact structure, and therefore that theo-

rem is more precisely stated as there being an overtwisted contact structure in every
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homotopy class of plane fields—Eliashberg’s result asserts that this object is unique

up to homotopy. As we will see, it is not the case that there is a tight contact struc-

ture in every homotopy class of plane fields. The theorem is also not constructive,

and does not tell us how the homotopy might be performed in a real material. This

is a running theme in the topological results throughout this thesis, and discussing

how these processes interact with energetics is an important open problem.

The value of the Euler class on D, equivalently the Skyrmion number, is

easily read off from Eq. (3.21), e(ξ)[D] = +1. This implies the disk is pierced

by a single generic λ+1 line. The standard overtwisted disk (3.23) is recognisably

a Skyrmion, a disk where the director moves from pointing out from the disk at

the centre to pointing into the disk at the boundary, corresponding to a radial

coordinate 0 ≤ r ≤ π, with the director tangent to the disk at r = π/2. The

inner part, 0 ≤ r ≤ π
2 , is a meron, and also defines an overtwisted texture (as the

boundary is a Legendrian curve of Thurston–Bennequin number 0, which makes

it overtwisted by the Bennequin Inequalities given below). Consequently, every

cholesteric texture that contains a meron or Skyrmion is overtwisted. One should be

careful about making the converse statement, as overtwisted disks may be embedded

in the material in a strange fashion and one would not generally identify the resulting

disk with a meron or Skyrmion.

One can ‘spoil’ a tight contact structure by inserting a tube of overtwisted

disks along a positively transverse curve. This is effected by a type of surgery called

the Lutz twist. A neighbourhood of a curve K that is positively transverse to a

contact structure is contactomorphic to the kernel of dz + r2dθ. We remove this

neighbourhood and replace it with the kernel of

η = h1(r)dθ + h2(r)dz (3.24)

where h1, h2 are functions that satisfy the following conditions:

1. h1(r) = −1 and h2(r) = −r2 near r = 0,

2. h1(r) = 1 and h2(r) = r2 near r = 1,

3. (h1, h2) is never parallel to (h′1, h
′
2) for r 6= 0.

This surgery is the half Lutz twist. The first two conditions determine the topological

properties of the surgery; the final condition ensures the resulting plane field is a

contact structure. In effect, one inserts a tube of merons along K. A Legendrian

vector field that is constant on the boundary of the torus extends over the interior

with a single zero of winding +2, oriented along −ez: consequently, the surgery
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doesn’t just make the contact structure overtwisted, but also modifies the Euler

class by −2PD[K]. One can instead insert a tube of Skyrmions, which makes the

contact structure overtwisted but does not change the Euler class. This surgery, the

full Lutz twist, uses (3.24), but with h1(r) = 1 and h2(r) = r2 near r = 0 as well

as r = 1, with a full rotation in between. To modify the Hopf invariant, we pick

a nullhomotopic link L and perform the Lutz twist along this link, whose linking

number will then represent the Hopf invariant.

In §6.4.3 I will define a singular variant of the half Lutz twist which describes

how this process might occur in a real material. This will be effected by a homotopy

rather than a surgery, but of course it must be a homotopy through ‘singular contact

structures’.

3.8.2 Tight Contact Structures

The homotopy classification of tight contact structures is far more subtle than that

of the overtwisted structures, and has a deeper relationship with the topology of

the underlying manifold. The first manifold whose tight contact structures were

understood was S3: up to homotopy, there is a single left-handed and a single right-

handed tight contact structure which can be defined by taking the planes orthogonal

to the left- and right-handed Hopf fibrations of S3. We can view S3 as the group

SU(2) with associated Lie algebra su(2) generated by a trio of vector fields e1, e2, e3

satisfying [ei, ej ] = ǫijkek [Mil76]; each of these vector fields is orthogonal to a ‘pure

double-twist’ contact structure, and in fact these three contact structures are all

homotopic to the one given by the Hopf fibration. Stereographic projection onto R3

produces the contact structure defined by

ηstd = dz + xdy. (3.25)

This is the standard tight contact structure. Of course, this contact structure cannot

be realised in flat space with only twist distortions, which is demonstrated in Chap-

ter 4. There is a sense in which S3 is the ‘natural’ geometry for the double-twist

distortions of the cholesteric phase due to the neatness of its Lie bracket identi-

ties [SWM83].

Also interesting from the point of view of liquid crystal physics is the classifi-

cation of tight contact structures on T3, performed independently by Giroux [Gir00]

and Kanda [Kan97]. There is a single 1-parameter family of tight contact structures,
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all in the zero homotopy class of plane fields, defined by the 1-forms

ηq = cos(qz)dx− sin(qz)dy. (3.26)

The handedness is given by the sign of the integer q ∈ Z − 0. Astute readers

will recognise the cholesteric ground state, where q is the layer number; these con-

tact structures are also evidently homotopic, and hence isotopic, to the heliconical

director discussed in Chapter 5, the ground state for twist-bend nematics. On

T 2× [0, 1] the classification of tight contact structures, completed by Giroux [Gir00]

and Honda [Hon00a], is far more complicated. The proofs of these classification the-

orems are instructive, and I will sketch them in a later section once the appropriate

machinery has been developed.

3.9 Convex Surfaces, Dividing Curves, and Tomogra-

phy

In the previous section I introduced the dichotomy between tight and overtwisted

contact structures. The latter features correspond to merons and Skyrmions, and

we have a good idea how to detect these in liquid crystal textures by studying either

the β lines or the λ lines, and the characteristic foliation. In this section I describe a

refinement of the theory of characteristic foliations from §3.6, the theory of convex

surfaces. These surfaces are used to simply the task of classifying tight contact

structures, and easily detect merons and Skyrmions.

3.9.1 Convex Surfaces

A surface S is called convex if there is a contact vector field transverse to it, al-

though in practice this is perhaps the least helpful criterion for determining con-

vexity. Suppose XH is a contact vector field transverse to S. We can define a set

CH = {XH ∈ ξ} = {H = 0}, the characteristic hypersurface of XH . For a generic

contact vector field, where H is transverse to the zero section, CH is a nonsingular

hypersurface, XH is tangent to CH and directs the characteristic foliation induced

on CH by ξ [Etn04a]. Any surface that intersects CH transversally is convex.

There are more useful criteria for determining whether a surface is convex.

A vector field X on a surface S is called Morse–Smale if the following conditions

hold:

1. X has finitely many singularities and closed orbits, all of which are non-

degenerate (i.e., the Hessian matrix at the singular point is non-degenerate),
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2. The flow of any point p underX converges to either a singular point or periodic

orbit in both forward and backward time,

3. There are no trajectories connecting saddle points.

We say a foliation F directed by a vector field X on S admits a dividing curve if

there exists a set Γ of embedded circles such that

1. Γ is transverse to F ,

2. There is an area form Ω on S such that divΩX 6= 0 on S − Γ,

3. X points out of S+ along Γ, where S± = {p ∈ S | ± divΩX > 0}.

These conditions are then equivalent to convexity.

Theorem 3.10. Let S be either a closed surface or a compact surface with Legen-

drian boundary inside a contact manifold. The following are equivalent:

1. S is convex,

2. The characteristic foliation on S is directed by a Morse–Smale vector field X,

3. The characteristic foliation on S admits a dividing curve.

For a proof see §4.8 of Geiges [Gei08]. In particular, since Morse–Smale vector fields

are generic, it is not hard to see that convex surfaces are also generic: if S is any

surface, then either S is convex or we can perturb it a small amount to make it

so. Given a fixed contact vector field XH with Hamiltonian H the dividing curve

induced on any surface S transverse to the flow of XH to is S ∩ CH .
Close to a convex surface, the contact structure has a nice form.

Proposition 3.2. Let S be a convex surface in a contact manifold (M, ξ). Then

there exists a neighbourhood of S diffeomorphic to S × [−1, 1] such that ξ is defined

by a vertically-invariant (i.e. independent of z) contact form η = β + udz on this

neigbourhood.

Proof. Use the contact vector field transverse to S to define the trivialisation of

S× [−1, 1], so that the contact vector field is ez in this trivialisation. Then the fact

that ξ is preserved by the flow of ez implies that it can be defined by a contact form

η which does not depend on z.
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The utility of convex surface theory rests in the fact that the topology of the con-

tact structure close to the surface can be deduced completely from the dividing

curve. I will describe this presently. Firstly, it is convenient to find a nice way of

constructing the dividing curve in practice. The following proposition, originally

due to Giroux [Gir91], provides such a method. Fix a metric and let n be the unit

normal to the contact planes. Let S be a convex surface with normal N , and F the

characteristic foliation on S.

Proposition 3.3. If the set of points Γ where n·N = 0 is a curve, which generically

it will be, then it divides F .

Given a numerical simulation of a director field, or a reconstructed director field from

an experiment, we can easily study the topology near a surface by simply plotting

the function n ·N over that surface. This gives a neat tool for visualising cholesteric

directors and their layer structure, as in Fig. 3.1. An alternative construction, as

implied by the definition of the dividing curve, is to take the divergence of the vector

field N × n and let Γ be the set where this vanishes, which will generically be a set

of curves.

Now I will explain how the structure of the dividing curve may be used to

study the topology of contact structure ξ. The key observation is that the con-

tact structure only depends on the dividing curve, not the particular characteristic

foliation.

Lemma 3.3. (Giroux Flexibility [Gir91]) Let S be a convex surface with transverse

contact vector field V , characteristic foliation F0, and dividing set Γ. Let F1 be

another singular foliation on S divided by Γ. Then there is an isotopy φt, t ∈ [0, 1],

of S such that

1. φ0 is the identity and φt|Γ is the identity for all t (i.e., the dividing curve is

fixed),

2. φt(S) is transverse to V for all t,

3. φ1(S) has characteristic foliation F1.

This lemma is related to classification results about Morse–Smale vector fields in

two dimensions [OS98]: the diffeomorphism type of the characteristic foliation is

determined by the dividing curve. The fact that the topology of a liquid crystal

director near to a surface can be reduced to a discussion about the set of lines where

the director is tangent has been recognised previously [ČŽ12].
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Any leaf of the characteristic foliation is a Legendrian arc. In light of Giroux

Flexibility, we might imagine that we can realise many more curves as Legendrian

curves, or leaves in the characteristic foliation after some isotopy. This is indeed the

case.

Lemma 3.4. (Legendrian Realisation Principle [Gir91]) Let S be a convex surface

and C a collection of curves on S. Suppose further that C is transverse to Γ and is

nonisolating, i.e. each connected component of S−C has nonempty intersection with

Γ. Then there is an isotopy, as in Giroux flexibility, such that φt(C) is Legendrian.

Moreover, we may compute the invariants of the Legedrian curve directly from the

dividing set. Suppose a Legendrian knot L lies on a surface S. We may define the

twisting number of L relative to S, tw(L, S), to be the twisting of the contact planes

of ξ along L measured with respect to the framing induced on L by S; if S is a

Seifert surface for L, then this is exactly the linking number of L with respect to

the contact framing, the Thurston–Bennequin number. More generally, the twisting

number describes the number of cholesteric layers which the curve L passes through,

as discussed below in §3.9.2.

Proposition 3.4. (Giroux [Gir91]) Let L be a Legendrian curve on a convex surface

S with dividing set Γ. Then tw(L, S) = −1
2 |L ∩ Γ|. In particular, if S is a Seifert

surface for L then this computes the Thurston–Bennequin number.

Note: one reverses the sign of the twisting number when ξ is a negative rather than

a positive contact structure, i.e. tw(L, S) = 1
2 |L ∩ Γ|.

In light of the relationship between curves C on the surface, the dividing

curve, and the twisting number, we have the following theorem that allows us to

deduce overtwistedness from the structure of the dividing curve alone.

Theorem 3.11. (Giroux’s Criterion [Gir91]) Let S be a closed convex surface in

a tight contact manifold. If the genus of S is positive, the dividing curve on S

has no nullhomotopic components; if the genus of S is zero, the dividing curve

is connected. If S is instead a compact surface with Legendrian boundary in a

tight contact manifold, then the dividing curve has no nullhomotopic components in

the interior of S; any components are either homotopically essential, or are arcs

connecting the boundary to itself.

Proof. (Sketch) The ‘only if’ follows from the Legendrian realisation principle, as

well as the computation of the twisting number of a Legendrian curve on a convex

surface. If Γ contains a nullhomotopic component, which consequently bounds a
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disk D, then one may choose a closed curve in the interior of D which intersects

no component of Γ and use the Legendrian realisation principle to realise it as a

Legendrian unknot, which has twisting number zero since it does not intersect the

dividing curve. As the Thurson–Bennequin number vanishes, D is an overtwisted

disk. The ‘if’ direction follows from constructing explicit models, see Ref. [Gir91]

for the details.

Now we see the connection between dividing curves and Skyrmions. Let S be a plane

orthogonal to a tube of merons. The tube of merons is defined by the property that

n points along the axis of the tube down the middle and rotates by π/2 as it moves

to the boundary. Consequently, the set n · N = 0, where N is the normal to S,

contains the boundary of the meron tube. Of course it is not necessary that S

intersect the tube orthogonally, it suffices for it to intersect transversally; we can

still use the Legendrian realisation principle to find the intersection between the

boundary of the tube and S. The same argument works for Skyrmions and other

structures that contain a tube of overtwisted disks: provided we choose a surface

intersecting the tube transversally, we pick up the existence of an overtwisted disk

by looking at the dividing curve.

Another important theorem, which essentially follows from Eq. (3.21) and

Giroux’s criterion, is the following set of bounds on the Euler class in a tight contact

manifold.

Theorem 3.12. (Bennequin Inequalities [Ben83; Eli92; ET91]) If S is either a

closed surface of positive genus in a tight contact manifold, or a compact surface

with Legendrian boundary, then

e(ξ)[S] ≤ −χ(S). (3.27)

Further, if S = S2, then

e(ξ)[S] = 0. (3.28)

When dealing with a negative contact structure one has e(ξ)[S] ≥ χ(S) instead.

There is also a version of the Bennequin inequalities that applies to nullho-

motopic Legendrian (tangent to the contact planes) and transverse knots, which is

easily proved by choosing a Seifert surface from the knot, expressing the invariants

of the knot in terms of quantities on the surface, and then applying the previous

theorem. These knot invariants are defined as follows. For a transverse K, the plane

field ξ|S , for S a Seifert surface, is trivial. We may push K in the direction of any

nonzero section X of ξ|S to produce a new knot K ′. We then define the transverse
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self-linking number SL(K) of K to be the linking number of K with K ′; this does

not depend on the Seifert surface as long as H2(M) = 0.

Pushing a Legendrian K (which we assume is closed but need not be nullho-

motopic) along the unit normal n to ξ, we obtain another knot K ′. The Thurston–

Bennequin number tb(K) is the linking number of K and K ′, and computes the

number of full rotations the director makes as we move around the curve K, to

which it is orthogonal. Again, the restriction of ξ to a Seifert surface S for K is

trivial, and we may choose a trivialisation X. The rotation number rot(K) is the

number of times the tangent vector to K rotates relative to X, and again this is

independent of S as long as H2(M) = 0.

Theorem 3.13. (Bennequin Inequalities for Knots) Let K be a knot bounding an

embedded surface S in a tight contact manifold (M, ξ). If K is transverse to ξ, then

SL(K) ≤ −χ(S), (3.29)

and if K is Legendrian, then

tb(K) + |rot(K)| ≤ −χ(S). (3.30)

One may combine these inequalities with expressions for the Euler class in terms

of various geometric quantities, e.g. Eq. (2.6) in Chapter 2, to produce bounds on

these quantities in a tight contact manifold. I will not make further use of this idea

here, and will focus on the applications of Giroux’s criterion for the visualisation of

cholesteric directors.

Later on in this thesis I will study cholesteric directors on manifolds with

boundary, with the director either tangent (planar anchoring) or orthogonal (normal

anchoring) to the boundary. In the case of planar anchoring, it is possible for such

directors to be contact over the entire manifold, see Chapter 6. Therefore, we would

like to know how to apply convex surface theory in this case, and in particular how

to think about the boundary itself using these tools.

Let M be a manifold with boundary, and let Tight(M,F) be the set of all

isotopy classes of tight contact structures that induce the characteristic foliation F
on the boundary. We would like to know how exactly this class depends on F . The

answer, unsurprisingly, it is that it hardly depends on F at all.

Proposition 3.5. Let F0,F1 be singular foliations on ∂M divided by the same curve

Γ. Then Tight(M,F0) ∼= Tight(M,F1)

See Ref. [Etn04a] for a proof. This result has consequences for cholesteric directors
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in domains with planar anchoring, where the director is not fixed on the boundary

but allowed to vary in the plane. Changes in the possible tight fillings for the interior

will only occur when the singular points in the foliation change. To make this result

fully general we will need to extend it to contact structures with defects, an exercise

that will be carried out in Chapters 6 and 8.

Tight contact structures on balls with a fixed boundary condition were clas-

sified by Eliashberg [Eli92]. A modern proof can be found in §4.10 of Geiges [Gei08].

Lemma 3.5. Let M be either the unit ball B, or the annulus S2 × [0, 1]. Any two

tight contact structures defining the same characteristic foliation on the boundary of

M are isotopic rel. boundary; that is, Tight(M,F) consists of a single point.

If one has a cholesteric droplet with anchoring that is not too strong, so that the

director need not be either tangent or orthogonal on the boundary, then this lemma

implies that the director is determined up to homotopy by the homotopy class of

the characteristic foliation on the boundary.

Now let us examine convex torii. This will allow us to study tight contact

structures on T 2 × [0, 1] and D2 × S1, both of which correspond to physically-

realisable domains. By Giroux’s criterion, the dividing curve on a convex torus

must consist of some number of homotopically essential curves; by orientability,

there are an even number of them. Via an isotopy, we can assume all curves are

linear of some fixed slope −s, s > 0; by which I mean their tangent vectors are

ex − sey.

A convex torus is said to be in standard form if the dividing curve consists

of 2k lines of fixed rational slope s ≤ 0, and the characteristic foliation is as shown

in the right panel of Fig. 3.5. Such a torus can be produced by perturbting a non-

convex surface where the characteristic foliation is by lines of slope s, for example a

torus T 2×z in T 3 with the contact structure defined by the cholesteric ground state.

The perturbation involves pushing ‘down’ along some of the leaves and ‘up’ along

others, more concretely, we take the surface of constant z′, where z′ = sin(y − zx).

It’s clear we can produce more than two dividing curves by pushing up/down in

more places.

3.9.2 The Dividing Curve and Cholesteric Layers

Let us briefly examine the relationship between characteristic foliations, dividing

curves, and the cholesteric layers. Typically the layers are thought of as surfaces

to which the director is tangent, with their normal direction being aligned with the

pitch axis; the surfaces of constant z coordinate are the layers in the ground state.
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Figure 3.5: Left: a characteristic foliation on the torus by straight lines of fixed slope
s ∈ Q. Right: after a small perturbation, we produce a convex torus in standard
form, where the dividing curves have slope s. Figure reproduced from [Etn04a].

This requires a geometric description. For the purposes of this discussion we will

adopt a topological approach and not consider directors, but rather the Reeb field R

of the contact form η dual to the director; recall the deviation between this direction

and the director is determined by the bend. The layers in this system are the leaves

of a singular foliation F to which R is tangent.

The following two propositions are very straightforward, but I was unable to

find a reference in the literature.

Proposition 3.6. Let S be a convex surface in a contact manifold (M, ξ). There

exists a singular foliation F , a collection of curves Γ, and a contact form η in a

neighbourhood S × [−1, 1] of S with the following properties

1. ξ = ker η,

2. The connected components of the set Γ× [−1, 1] are leaves of F ,

3. The Reeb field R of η is tangent to F .

Proof. As S is convex, in a neighbourhood of S ξ can be defined by a vertically-

invariant contact form η = β+udz, with Reeb field R, such that the set Γ = {u = 0}
divides the characteristic foliation induced on S. Then we have

dη = udβ + du ∧ dz. (3.31)

In particular, along the set where u = 0 we must have du(R) = 0 and dz(R) = 0,

i.e., R is tangent to the level set u = 0, and hence the surfaces Γ× [−1, 1]. Since dβ
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is a top form on the surface, then away from the set of points where either u = 0

or du = 0 we can find a 1-form ω such that udβ = du ∧ ω, so that away from the

points where u or du vanish, we have dη = du ∧ (ω + dz). Then we conclude that

du(R) also vanishes on the complement of the set du = 0—this implies R is tangent

to the level sets of u—and also ω(R) = −dz(R) on this set. At the isolated points

where du = 0, R = ±ez. Thus R is everywhere tangent to the sets {u = c}× [−1, 1],

which define a singular foliation with singularities pj× [−1, 1], for pj the non-regular

points of the function u.

Giroux’s Criterion also has an expression in terms of layers. Suppose the Reeb field

R of is tangent to some singular foliation F whose singular set consists of a link L,

which will necessarily be closed orbits of R.

Proposition 3.7. Let S be a closed convex surface of positive genus inside M . If

S ∩L is empty, then the contact structure ξ defined by η is tight in a neighbourhood

of S.

Proof. Let X0 direct the characteristic foliation induced by ξ on S, and let G = F∩S
be the characteristic foliation induced by F on S. After a small perturbation of S

which does not effect the conclusion of the proposition, we can assume that G has

only isolated singularities. The Reeb field R of η is tangent to S along a set of curves

Γ that divide the foliation directed by X0. As R is also tangent to F , it follows

that Γ consists of leaves of the foliation G = F ∩ S. Suppose that ξ is overtwisted

in a neighbourhood of S. Then, by Giroux’s criterion, Γ must have a nullhomotopic

component, and so F ∩ S has a closed nullhomotopic leaf. I claim that this implies

S ∩L is nonempty, which is contradiction, so ξ must be tight close to S. It remains

to prove this claim.

Firstly, as S is convex we can homotope ξ to a contact structure ξ′ defined

by a contact form η′ that is vertically-invariant, and the characteristic foliation of

this contact form is still divided by Γ. The vertically-invariant property means that

ξ′ descends to a contact structure on S×S1. We construct a singular foliation F ′ on

S × S1 as in Proposition 3.6, to which the Reeb field R′ of η′ is tangent. If Γ has a

closed nullhomotopic component, then there is a singular point of the characteristic

foliation of η′ in the interior of this component of Γ, which corresponds to a closed

orbit of R′ and a singular line of F ′.

Thus the disk D bounded by this component of Γ has e(ξ′)[D] 6= 0. As ξ is

homotopic to ξ′, we must also have e(ξ)[D] 6= 0. By the description of Legendrian

vector fields in Chapter 2, in particular the Gauss–Bonnet–Chern theorem, this
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implies that the singular link of F has nonempty intersection with D and hence

with S.

In particular, the link L must pierce any overtwisted disks. This supports our

intuition that meron and Skyrmion tubes should contain a λ line, or β line (see

Chapter 5 for the latter).

Note that we have not proved the converse, that ξ is tight in a neighbourhood

of S implies S∩L is nonempty. This is not true: to see this, take a Darboux ball for

the contact structure that is centred on a point of the singular link, and choose a

closed surface of positive genus contained in this ball that also intersects the singular

link transversally. By genericity, we may perturb this surface slightly to make it

convex. Since this surface lies entirely in a Darboux ball the contact structure will

be tight in a neighbourhood of the surface, and but it does intersect the singular

link by design.

The idea of contact forms whose Reeb fields are tangent to foliations is an

interesting one, and worth pursuing further for applications to liquid crystals, as well

as being an interesting subclass of contact forms in its own right. Some speculative

work in this direction is presented in Chapter 10.

3.9.3 Bypasses and Dislocations

Honda has introduced a helpful technqiue for manipulating the dividing curve on

convex surfaces inside tight contact manifolds.

Definition 3.1. Let S be a convex surface in a contact manifold with dividing curve

Γ. Let α be a Legendrian arc on S that intersects Γ in three points p1, p2, p3, where

p1, p3 are the endpoints of α. A bypass is a convex half-disk D such that D ∩S = α

and tb(∂D) = −1.

See Fig. 3.6(a,b) for a picture of the bypass attachment. If S is then isotoped over

D, the dividing set changes: the number of components is reduced by 2. A bypass

is, in a sense, the smallest unit of change that can occur when isotoping a convex

surface. Bypasses are a technical tool used in the proofs which I will not give in

detail. However, it is useful to introduce the concept because of how it relates to edge

dislocations in cholesterics, and the study of changes in the structure of cholesteric

layers.

There are two kinds of bypasses where all three points p1, p2, p3 lie on the

same component of the dividing curve. They are shown in Fig. 3.6(c). One is trivial,

and attaching a bypass does not change the structure of the dividing set. The second

64



Figure 3.6: (a) A schematic diagram of a bypass along the attachment arc α, with
the dividing curve being denoted by the thick black lines. (b) The characteristic
foliation (thin lines) and dividing curve (thick line) induced on the half disk. (c)
Top: trivial bypass attachment that has no effect on the dividing curve. Bottom:
The ‘bad’ bypass attachment which produces a nullhomotopic component of the
dividing set, and consequently reveals the presence of an overtwisted disk. All
panels reproduced from [Etn04a].

is forbidden in a tight contact structure, as it creates nullhomotopic components of

the dividing curve that indicate the presence of overtwisted disks. Both pictures

assume the normal to the surface is pointing out of the page; if this is not the case,

we reverse the meaning of the images.

A sudden change in the number of cholesteric layers is called an edge dis-

location. A dislocation is not a singularity in the cholesteric director—these are

called disclinations and are treated in Chapter 8—but rather in the pitch axis.

Consequently, they are associated to the presence of λ lines. By analogy with the

cholesteric ground state, we can define the layer number of a cholesteric texture to

be the twisting number of some Legendrian arc that is transverse to the planes orthg-

onal to the pitch axis. Via Proposition 3.4, this twisting number can be computed

by counting the intersection of the arc with the dividing curve on a suitably-chosen

convex surface. Thus, by sliding a surface through the material in such a way that it

is transverse to the layers, we pick up information about the number of layers, and

detect dislocations by changes in the number of components of the dividing curve.

Let us consider a simple texture where the cholesteric layer number changes,

as shown in Fig. 3.7(a). For y < 0, the texture undergoes three full rotations,

while for y > 0, it undergoes only two. Fig. 3.7(b,c) show the dividing curve

on two surfaces intersecting the layers transversally. As we move over the λ line

(blue tube), the number of components in the dividing curve changes by 2. By
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Figure 3.7: A change in the layer number of a cholesteric corresponds to a change
in the number of components of the dividing curve on appropriately chosen convex
surfaces. (a) A typical cholesteric texture on T 2 × [0, 1] where the layer number
changes as one passes through the surfaces y = 0, π. These changes are indicated
by the presence of λ lines (blue tubes). Panel (b) and (c) show the dividing curves
on surfaces that lie on either side of one of the λ lines. In panel (b) the dividing
curve has four components, indicating that there are two full twists, while in panel
(c) there are six components, indicating three full twists.

examining the characteristic foliation and the dividing curve we can explicitly see

there is a possibility of adding a bypass which lowers the layer number, Fig. 3.8. The

characteristic foliation on this half disk has the structure suggested by the schematic

in Fig. 3.6.

In this example it is rather easy to see the change in layer number without

resorting to an examination of bypasses. In later sections we will study textures in

cholesteric droplets, where analogues of the layer number can be computed. Here, it

is often not so quite so easy to read off the layer number by examining the director,

and so techniques involving convex surfaces become more useful.

3.9.4 Tomography

While the work of Honda is largely centred around a ‘cut-and-paste’ theory of con-

tact structures based on bypasses and manipulations of the dividing curve, Giroux

adopts a different approach, focussing on the characteristic foliations traced out on a

1-parameter family of surfaces that span the system [Gir00]. A second-hand account

of the ideas and results of Giroux, which has the advantage of being in English, is

given in §4.9 of Geiges [Gei08].

Tomography can be used to obtain a coarse view of topological structures

in chiral materials. Much of the topological information that is extracted from

examining the ‘film’ of characteristic foliations and dividing curves made by a family

of surfaces can be got at via other means, most notably looking at the zeros of a
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Figure 3.8: A half-disk attached to the surface shown in Fig. 3.7(c). The λ line is
shown as a blue tube. Compare the characteristic foliation and dividing curve on
the half-disk with the schematic in Fig. 3.6

Legendrian vector field, which also connects the information to energetics, however

it can still aid us in visualising the structure of complex textures. In this section I

will give a few simple examples to illustrate the concept, as well as the notion of a

bypass introduced in the previous section. Once a theory of singularities in contact

structures is developed, as will be done in Chapter 6, it becomes possible to apply

tomography to a broader variety of systems, and we will see further examples in

later chapters.

A central result underpinning tomography is the following uniqueness lemma.

Since I will be using the result and similar results in later chapters I give a proof,

taken from Geiges [Gei08].

Lemma 3.6. (Uniqueness Lemma [Gir00; Gei08]) Let S be a closed surface and let

ξ0, ξ1 be two contact structures on S × [0, 1] with the following properties:

1. The characteristic foliations induced by ξ0, ξ1 on the boundary coincide.

2. Each S × z is convex for both contact structures, and there is a smoothly

varying family of curves Γz that divides the characteristic foliations of both ξ0

and ξ1 on S × z.

Then ξ0, ξ1 are homotopic rel. boundary.
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Proof. We can choose contact forms ηi = βiz + uizdz defining ξi. Set Ai = uizdβ
i
z +

βiz ∧ (duiz − β̇iz). The contact condition implies these are positive functions. By

convexity, we can choose functions viz that vanish at first order on Γz and satisfy

Bi = vizdβ
i
z + βiz ∧ dviz > 0, which follows from Proposition 3.2. As viz vanish at the

same order on Γz, then for each z the function v0z/v
1
z extends to a function on all of

S × z, not just on (S × z)− Γz.

An easy computation shows that we can replace β1z with (v0z/v
1
z)β

1
z while

keeping η1 contact, which doesn’t change the characteristic foliation induced on any

S × z and is clearly homotopic to the original η1, and after doing this we can take

v0z = v1z =: vz.

Now define ηit = βiz + ((1 − t)uiz + tλvz)dz, for λ > 0 a positive constant.

This is contact for all t ∈ [0, 1] provided that λ is sufficiently large. The 1-form

ηs = (1− s)η01 + sη11 is also contact for all s ∈ [0, 1] provided λ is sufficiently large.

The desired homotopy between η0 and η1 is given by taking η03t for t ∈ [0, 1/3],

η3t−1 for t ∈ [1/3, 2/3], and η13−3t for t ∈ [2/3, 1]. This homotopy is stationary on

S×0 and S×1, and therefore gives a homotopy between ξ0 and ξ1 rel. boundary.

The key ingredient of this proof is the existence of a smoothly varying family of

curves that divides both characteristic foliations. Essentially, prescribing such a

family of curves completely determines a contact structure on a family of surfaces.

Discontinuous changes in the structure of the dividing curve are taken care of by

considering bypass attachments. It’s worth mentioning the following variant on this

lemma, which deals with existence rather than the uniqueness of a contact structure

inducing a particular set of characteristic foliations. I was unable to find a statement

and proof of this lemma in the literature, however it is very simple.

Lemma 3.7. (Existence Lemma) Let S be a compact surface, possibly with bound-

ary. Suppose we are given a family Fz, z ∈ [0, 1], of smooth singular foliations on S

and a smoothly varying family of curves Γz such that Γz divides Fz for each z. Then
there exists a contact structure ξ on S × [0, 1] inducing the characteristic foliation

Fz on each S × z.

Proof. Fix an area form Ω on S, choose a smoothly-varying set of vector fields Xz

directing Fz, and define βz = ιXzΩ. By Proposition 3.2 we can choose functions

vz, depending smoothly on z, that vanish at first order on Γz and satisfy Az :=

vzdβz + βz ∧ dvz > 0 for each z.

Let η = βz + vzdz. On S × [0, 1], we have

η ∧ dη = (Az − βz ∧ β̇z)dz. (3.32)
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As S × [0, 1] is compact, βz ∧ β̇z is bounded, |βz ∧ β̇z| < K1 say, where K1 > 0 is a

constant independent of z. We must also have Az > K2 > 0, where K2 is some other

positive constant. If K2 −K1 > 0, then η is certainly a contact form. Otherwise,

consider rescaling vz by a constant λ. Then Az 7→ λAz, and we may replace K2

with λK2. Thus for λ sufficiently large, we will have λK2 −K1 > 0, and η will be

contact.

Now we will look at examples of complex textures whose structure is illuminated by

tomography. Let K be a nullhomotopic knot or link in T 3, with solid angle function

ω; for an introduction to solid angle and its use in defining directors with specific

behaviour along knots, see Refs. [BA18; Bin19]. We define a director in a tube of

radius R around K

n = sin
( πr

2R

)

cos(q0z+ω/2)ex+sin
( πr

2R

)

sin(q0z+ω/2)ey +cos
( πr

2R

)

ez, (3.33)

where r(x, y, z) denotes distance from K. We extend this over the rest of the do-

main by letting it be equal to the cholesteric ground state there. This defines an

overtwisted contact structure with a tube of merons along the link K.

Fig. 3.9 shows a texture obtained by initialising a simulation with (3.33),

taking K to be a Hopf link, and allowing it to relax using gradient descent with the

cholesteric Frank energy. We cosider the torii x × T 2 and view the dividing curve

as we allow x to slide from 0 to 2π. At 0, the dividing curve has four components,

panel (a). Coming forward slightly, the surface touches the meron tube and the

structure of the dividing curve changes, panel (b), resulting in a nullhomotopic

component that indicates, via Giroux’s criterion, the presence of the overtwisted

disk. The change in the dividing curve indicates the presence of a bypass for the

convex surface shown in (a), transforming it into that shown in (b). There is a

second bypass, which results in the characteristic foliation of (c); here, there are

two nullhomotopic components of the dividing curve, indicating that we are now

intersecting the meron tube in two places. As we continue sliding the torus forwards,

the dividing curve undergoes the inverse transformations, finally returning to the

case where it has four homotopically-essential components.

A similar series of transformations occurs when we construct a texture using

the same initialisation but take K to be a trefoil knot, see Fig. 3.10. In Fig. 3.11,

we examine one convex surface (panel (e) in Fig. 3.10) in the trefoil texture for the

possibility of a bypass. We see (indicated in green) a region of the dividing curve as

shown in the bottom panel of Fig. 3.6(c). This allows for a ‘bad’ bypass attachment

that would be forbidden in a tight contact structure. There is a Legendrian arc
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Figure 3.9: A director in T 3 containing two tubes of merons that form a Hopf
link. The initialisation is given by Eq. (3.33). As we slide a convex torus through
the material, the structure of dividing curve changes, allowing us to see passage
across the meron as a series of edge dislocations, and also detecting the presence of
overtwisted disks.
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Figure 3.10: A director in T 3 containing a tube of merons that form a trefoil knot.
The initialisation is given by Eq. (3.33). In panel (a), the dividing curve has four
components; in panel (d), it has only two, showing that we have passed through an
edge dislocation. Panels (b,f) show a dividing curve with a nullhomotopic compo-
nents, indicating an overtwisted disk as per Giroux’s criterion.
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Figure 3.11: Closer view of panels (e) and (f) from Fig. 3.10. There is a ‘bad’
bypass that may be attached along a Legendrian arc transverse to the green curve
in panel (a). Isotoping along the bypass results in panel (b), and the creation of a
nullhomotopic component of the dividing curve, which indicates the presence of an
overtwisted disk.

intersecting the green section of curve in three places. Attaching a bypass along

this arc and isotoping along it results in a new dividing curve with a nullhomotopic

component.

3.10 On the Classication of Tight Contact Structures

3.10.1 Tight Contact Structures on the 3-Torus

Now let us turn to the classification of tight contact structures via convex surface

theory. First, I will sketch the classification on T3, and the formalisation of the idea

of ‘layer number’ that comes from our intuition about the cholesteric ground state.

We begin with the following lemma, which is due to Kanda [Kan97].

Lemma 3.8. There is a unique tight contact structure on D2 × S1 whose convex

boundary in standard form has a dividing curve with two components and slope 1
q ,

q > 0; this contact structure ξq is defined by ηk = cos(qz)dx− sin(qz)dy.

Proof. Evidently the given contact form ηq defines a contact structure with the

approprirate boundary condition, so it suffices to demonstrate uniqueness. Let S

be the boundary of the solid torus, and D a meridonal disk. Using the Legendrian

realisation principle, we may realise ∂D as a Legendrian curve with Thurston–

Bennequin number −1. Perturbing D slightly, we may assume it convex, and since

tb(∂D) = −1 the dividing curve must have a single component. Moreover this

component must connected the boundary to itself, otherwise we could apply the

Legendrian realisation principle again to find an overtwisted disk. Thus there is, up

to isotopy, a unique contact structure in a neighbourhood of D.
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The dividing curve uniquely determines the contact structure in a neighbour-

hood of S as well, and consequently we find that there is a unique contact structure

in a neighbourhood of S ∪ D determined by the dividing curve on the boundary.

What is left is a ball B ⊂ D2 × S1, so we can apply Lemma 3.5 to conclude that

there is a unique extension over the interior.

Note that this shows that any Legendrian curve with Thurston–Bennequin number

q has a neighbourhood diffeomorphic to ηq = cos(qz)dx− sin(qz)dy. My reason for

giving this argument here is that it will reappear in Chapter 8, where it will be

applied to the characterisation of disclination lines in cholesterics.

The layer number is a homotopy invariant, indeed the only homotopy invari-

ant. Let ξq be the contact structure on T 3 defined by ηq.

Theorem 3.14. (Classification Theorem [Kan97]) The contact structures ξq on T3

are not homotopic for distinct q. Every tight contact structure on T3 is homotopic

to one of the ξq.

The proof strategy is to look at nullhomotopic Legendrian curves, and demonstrate

that the Thurston–Bennequin number of such curve in ξq is at least q (at most −q
for right-handed contact structures), with the minimum being achieved by a curve

with tangent vector ez. The uniqueness lemma 3.8 implies the contact structure is

unique in a neighbourhood of such a curve, and convex surface theory methods are

used to extend this over the rest of the domain.

This theorem implies that the creation of an edge dislocation cannot occur in

the cholesteric ground state without the simultaneous creation of regions of reversed

handedness. To see this, observe that if we create an edge dislocation in the state

ηq, we can move the two λ lines shown in Fig. 3.7 opposite ways around along an

incompressible torus, and annihilate them again on the other side. The result of

this homotopy would be to carry ηq into ηq+1; however, Theorem 3.14 implies we

cannot do this through a homotopy through contact structures, and therefore the

creation of the edge dislocation must not be possible via a homotopy through contact

structures. We can also see this by noting that the edge dislocation state shown in

Fig. 3.7 is actually overtwisted, see also Fig. 5.14.

3.10.2 Tight Contact Structures on Toric Annuli

In [Hon00a; Hon00b], Honda classifies tight contact structures on a variety of man-

ifolds: T 2 × [0, 1], D2 ×S1, lens spaces L(p, q), twisted torus bundles T 2 ×φ S
1, and

products of a genus g surface and a circle Σg × S1. It is the first two spaces that
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really interest us, being physically-realisable domains. In particular, T 2× [0, 1] with

some fixed boundary condition represents the cell used in a typical experimental set

up (although the experimental cell will not generally have periodic boundary condi-

tions). I will not give full details of the classification theorem here, and most of the

technical results are far beyond the scope of this thesis, however it is instructive to

examine the basic definitions and to state the classification theorem.

First, introduce some notation. Denote by Tz the slice T 2 × z. We can

assume that the boundary torii T0 and T1 are convex, and the dividing curve and

characteristic foliation are placed in standard form. Via an action of the group

SL(2,Z), we may assume the boundary component T0 has a dividing curve with 2n0

components of slope −1, while the boundary torus T1 has a dividing curve with 2n1

components of slope −p
q , where p ≥ q > 0 have no common divisors. More generally,

given a convex torus Tz whose dividing curves are linear curves, we denote the slope

by sz.

Given a slope s of a line in T 2, we associate it with the standard angle

α(s) ∈ RP1. A slope is said to be between s1 and s0 if α(s1) ≤ α(s) ≤ α(s0); said

differently, if we view the slopes as being points on the projectivised unit circle, then

a slope is between s0 and s1 if it is clockwise of s0 and anti-clockwise of s1. A tight

contact structure ξ on T 2 × [0, 1] is called minimally twisting if the slope on every

convex torus Tz is between s1 and s0.

Recall we can associate to −p
q its continued fraction expansion

−p
q
= r0 −

1

r1 − 1
r2−··· 1

rk

(3.34)

where each integer ri ≤ 2, unless p = q = 1. Then, assuming a tight contact struc-

ture on T 2 × [0, 1] with convex boundary with 2 dividing curves on each boundary

component in the form discussed above, we have the following classification theorem.

Theorem 3.15. The classification of tight contact structures on T 2 × [0, 1] is as

follows:

1. There are exactly |(r0+1)(r1+1) . . . (rk−1+1)rk| tight contact structures with
minimal twisting.

2. For each integer n > 0 there are exactly two tight contact structures ξ with

nπ ≤ β(ξ) ≤ (n+ 1)π.

It is worth mentioning the classification of tight contact structures on solid torii as

well, which is also due to Honda [Hon00a].
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Theorem 3.16. There are exactly |(r0 + 1)(r1 + 1) · · · (rk−1 + 1)rk| tight contact

structures with minimal twisting on D2×S1 inducing a dividing slope on the convex

boundary with two components of slope −p
q .

3.11 Contact Geometry: Beltrami Fields, and the Etnyre–

Ghrist Correspondence

In this section I will discuss the more geometric aspects of contact structures. My

primary reference is the monologue by Blair [Bla10]. The essential idea is that the

2-form dη endows the contact planes ξ with a symplectic structure, which in turn

implies the existence of a Riemannian metric that is, in a sense, compatible with the

contact structure in the same way that one can construct metrics compatible with

symplectic structures. These compatible metrics can be seen as metrics for which

the gradient tensor of the director is reduced to only the essential parts.

First I will recall a few facts about Riemmanian metrics for readers who are

unfamiliar with the concept. The metric g determines a map ⋆ :
∧p → ∧3−p on the

exterior algebra that takes p-forms into (3− p)-forms, the Hodge star, and this map

satisfies ⋆2 = I. The Hodge star satisfies the relationship

g(α, β)µ = α ∧ ⋆β (3.35)

for any pair of p-forms α, β, where µ is the volume form of g. This relationship

uniquely determines the Hodge star, and may consequently be taken as a definition

of it. In particular, if one expresses g as a matrix g = [gij ] with respect to a

coordinate basis, the entries sij for the matrix form of ⋆ are gij
√

|g| = sij .

Using the Hodge star, we can define a codifferential δ = ⋆d⋆ that maps p-

forms to (p − 1) forms. When applied to a 1-form η dual to a vector field n, we

have δη = div n, so that δ generalises the divergence operator. Using the exterior

derivative and the codifferential, we define the Laplace–Beltrami operator of g3,

∆g = dδ + δd. (3.36)

The Hodge decomposition theorem generalises the Helmholtz decomposition. It

states that any p-form η can be written

η = α+ β + γ, (3.37)

3One should note this is different from the Böckner Laplacian ∇∗∇, although they are related.
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where α is closed, β is coclosed (δβ = 0), and γ is harmonic. On a compact manifold,

a 1-form is harmonic if and only if it is both closed and coclosed. When applied to

vector fields on R3 this simply says we can write the vector field as the sum of a

curl-free part and divergence-free part, the Helmoholtz Theorem.

3.11.1 Compatible Metrics

The relationship between the contact condition and Riemannian geometry is ex-

plained by the following lemma. Since I will use and generalise this lemma later

on in Chapter 6, I present two proofs of it here. The first is taken from §9.4
of Farber [Far03], the second is based on the proofs in §4.2 of the monologue by

Blair [Bla10] and more easily generalisable to the singular case.

Lemma 3.9. Let α be a nonzero 1-form and β a nonzero 2-form such that α∧β > 0.

There exists a Riemannian metric g such that ⋆gα = β.

Proof. (Proof 1) We can work in coordinate charts {U}. We can choose this system

of charts so that on each set U in the cover there is a coordinate basis of 1-forms

dx1, dx2, dx3 such that dx1 = α|U and dx1 ∧ dx2 ∧ dx3 > 0. We can write

β|U = a1dx2 ∧ dx3 + a2dx1 ∧ dx3 + a3dx1 ∧ dx2, (3.38)

and by assumption we have a1 6= 0. Define a set ηi of 1-forms by setting η1 = α and

ηi = dxi + (−1)i
ai
a1
dx1, (3.39)

for i = 2, 3. Then α|U = η1, β|U = a1η2 ∧ η3. Define a Riemannian metric gU by

taking η1, a1η2, η3 to be an orthonormal basis. Then ⋆gUα|U = β|U , and the volume

form is (α ∧ β)|U .
Now we have to glue these metrics together. Choose a partition of unity fU

subordinate to the open cover and fix some volume form µ, and then define a metric

by g(X,Y )µ =
∑

U fUgU (X,Y )(α∧β)|U for vector fields X,Y . The volume form of

this metric is µg = aµ for some function a > 0, and we have

⋆gα = aβ. (3.40)

It remains to rescale g by a factor a−2, which will rescale the star operator by a

factor of a−1, yielding the desired metric.

Proof. (Proof 2) Let ξ denote the kernel of α. Since β|ξ is nonzero by assumption,

its kernel must be one-dimensional. Let R be the vector field in this kernel such
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that α(R) = 1. Since R is transverse to ξ, we can choose a Riemannian metric h

such that R is the unit normal to ξ in this metric. Let e1, e2 be a local orthonormal

basis for ξ. Let A be the matrix with entries Aij = β(ei, ej), i = 1, 2. Then A is

a skew symmetric matrix with nonzero eigenvectors. A well-known fact about such

matrices is that they admit a polarisation: there is a positive-definite symmetric

matrix G and an orthogonal matrix F such that A = FG. Let g′(ei, ej) = Gij . This

defines an inner product on the planes of ξ. Extend g′ to a metric g that agrees

with h in the direction R. This g is the desired Riemannian metric.

An immediate corollary of this lemma is the existence of compatible metrics for

contact forms, by taking β = dα for α a contact form.

Theorem 3.17. Let η be a contact form with Reeb field R defining a contact struc-

ture ξ. Then there exists a Riemannian metric g and a (1, 1) tensor J : TM → TM

such that ⋆gdη = η, J = −I + η ⊗R, and g(X, JY ) = dη(X,Y ) for all vector fields

X,Y .

The second proof shows we can view the space of the compatible metrics as the image

of a projection operator on the space of Riemannian metrics, see Blair [Bla10]4.

Using the expression for the Reeb field of a contact form in terms of the director,

Eq. (3.3), we can construct the metric that results from applying this projection to

the Euclidean metric. Let h be the Euclidean metric. We define a new metric k by

k(X,Y ) = h(−X + η(X)R,−Y + η(Y )R) + η(X)η(Y ). (3.41)

In the orthonormal basis e1, e2,n, this is given by the matrix

k =







1 0 b2
q

0 1 − b1
q

b2
q − b1

q 1 + κ2

q2






(3.42)

where we have written the bend as b = b1e1 + b2e2, q is the twist of n and κ is

the norm of the bend in the Euclidean metric. Now we must polarise dη on ξ. The

matrix referred to as A in the proof of Lemma 3.9 is

A =

[

0 q

−q 0

]

, (3.43)

4I am using slightly different conventions to this reference. There, compatible metrics are referred
to as associated metrics, and they satisfy ⋆dη = 2η.
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in the basis e1, e2, which is a k-orthonormal basis for ξ. Polarisation gives

G =

[

q 0

0 q

]

, F =

[

0 1

−1 0

]

. (3.44)

Thus the compatible metric g that results from applying the projection onto the

space of compatible metrics to the Euclidean metric h is

g =







q 0 b2

0 q −b1
b2 −b1 1 + κ2

q






(3.45)

as a matrix with respect to the frame e1, e2,n. As a sanity check, note that if η

is the cholesteric ground state the Euclidean metric is already compatible with η

and indeed the projection has no effect in this case. The difference between this

metric and the Euclidean metric is a measure of the failure of a cholesteric director

to be a global minimum of the Frank energy. Further, suppose we have a homotopy

ηt of unit contact forms. Then we can find a moving frame e1(t), e2(t) that is an

orthonormal (with respect to the Euclidean metric) basis for the contact structure

ξt defined by ηt, and we can choose this pair of vector fields so that they also depend

smoothly on t. Since the bend and twist depend smoothly on t, the construction just

outlined produces a smooth family gt of metrics such that, for each t, gt is compatible

with nt – although this construction produces a matrix for gt that is expressed with

respect to a time-varying basis, the metric itself is obviously independent of the

choice of basis, so this family is well-defined.

With respect to a compatible metric, the twist is constant, the splay and

bend vanish, and all that is left is the deviatoric part of ∇n, the tensor ∆.

3.11.2 Beltrami Fields

Using compatible metrics, we can demonstrate the connection between contact ge-

ometry and fluid dynamics first explored in [EG00a]. Recall that Euler’s equations

for an incompressible flow u on a Riemannian 3-manifold (M, g) are

∂tu+∇uu = −∇p,
dιuµ = 0,

(3.46)

where µ is the volume form of the manifold and p is the pressure. Suppose u does

not depend on time t. Fundamental solutions to the Euler equations are given by

vector fields satisfying dιuµ = 0 and curl u = λu for some function λ. Such a
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vector field is called a Beltrami field on (M, g). By a slight abuse of notation, I will

call any vector field that is parallel to its curl for some Riemannian metric g and

some proportionality factor λ (a positive function) a Beltrami field, and this is the

convention I will use throughout—such a field always preserves some volume form,

but need not preserve the volume form of g. Some authors also use the terms ‘curl

eigenfield’ (generally when λ is a constant) or refer to such fields as ‘force-free’.

The following theorem connects Beltrami fields to contact geometry.

Theorem 3.18. (Etnyre–Ghrist Correspondence [EG00a]) There is a one to one

correspondence between nonsingular Beltrami fields on M , and the Reeb fields of

contact forms.

Proof. Given a contact form η with Reeb field R, we have already shown the ex-

istence of a metric which makes R Beltrami, so it remains to give the other half

of the correspondence. Let R be a Beltrami field with respect to some metric g,

curl R = λR for some function λ > 0. Define η = ιRg. The condition on R trans-

lates to ⋆gdη = λη, which implies that η ∧ dη = 1
λ ‖η‖

2
g, and consequently η is a

contact form. The Reeb field of η is ‖R‖−2R, so rescale η by ‖R‖−2 to obtain a

contact form whose Reeb field is R.

This theorem allows methods from contact topology to be brought to bear on prob-

lems in fluid dynamics, see the original papers of Etnyre & Ghrist [EG00a; EG02b;

EG00b] for a general survey. One major result that can be proved this way is that

every Beltrami field on a closed manifold must have a closed orbit, a consequence

of the proof of the Weinstein conjecture in dimension 3 by Taubes [Tau07]. In gen-

eral the closed orbits of a Beltrami field can be extremely complicated, supporting

knots and links of all possible types [EG00b], even when one insists that the field is

Beltrami with respect to the Euclidean metric [EPS15].

The difference between a vector field for which n · ∇ × n 6= 0 and a vector

field which is Beltrami (with some proportionality factor λ) with respect to some

metric is a subtle one. If we don’t worry about the divergence vanishing, then a

vector field being Beltrami with respect to some metric is equivalent to there being a

metric for which its bend vanishes, i.e. there is a metric for which its integral curves

are geodesics, and this in turn must be equivalent to it being the Reeb field of a

contact structure via the Etnyre–Ghrist correspondence. One can prove a variant

of the Etnyre–Ghrist correspondence for ‘contact structures with singularities’, and

we will see that the difference between singular vector fields where n · ∇ × n 6= 0

away from the singular point and Beltrami fields has an impact on the singularities

that can occur.
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One can also consider weakly compatible metrics [EKM12], where the Reeb

field R of η is orthogonal to ξ and has length ρ, and furthermore ⋆gdη = λη, for a

pair of positive functions ρ, λ. Then R is still a Beltrami field, with curl R = λR,

although R may not be divergence-free. As we argued at the beginning of this

chapter, in order for n to be the normalisation of some Reeb field of the orthogonal

contact structure ξ, the bend of n had to be gradient like. If n is the normalisation

of a Reeb field with respect to some weakly compatible metric of η, n = R/ρ, then

we see that

∇nn = −(∇ log ρ)ξ, (3.47)

where Xξ denotes the component of the vector field X that is tangent to ξ. This

allows us to find the following condition for when n is the normalisation of a Beltrami

field.

Proposition 3.8. Let n be a director in Euclidean space with non-vanishing twist,

with dual 1-form η and orthogonal plane field ξ. The following are equivalent

1. n is the normalisation of the Reeb field R̄ associated to some contact form η̄

defining ξ,

2. There exists a contact form η̄ defining ξ such that the Euclidean metric is

weakly compatible with η̄ defining ξ,

3. There exists a function f such that the bend of n is equal to −(∇f)ξ.

Proof. We have just seen that (2) implies both (1) and (3). That (3) implies (1)

was argued in §3.3. If (1) holds, then the Reeb field of η̄ is orthogonal to ξ, and

hence the Euclidean metric must be weakly compatible with η̄, showing (2).

Not all vector fields that are chiral, satisfying n · ∇ × n 6= 0 with respect to

some metric, are Beltrami, parallel to their curl for some metric. Taubes’ proof of

the Weinstein conjecture implies every Beltrami field on a 3-manifold has a closed

orbit [Tau07]. Therefore, we can produce an example of a vector field that is chiral

but not Beltrami by finding a vector field transverse to a contact structure without

closed orbits. Consider the contact structure defined by η = cos(z)dx− sin(z)dy on

T 3. The vector field5

X = cos(z)ex − sin(z)ey +
√
2 cos(z)ez, (3.48)

is evidently transervse to this contact structure, as η(X) = 1. The torii z = 0, π are

invariant under the flow ofX, and every orbit on these torii is dense and consequently

5This example is taken from an answer to a MathOverflow question.
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not closed. Every other integral curve limits on the torii z = 0, π in forward and

backward time, and hence these orbits are also not closed. Therefore, this vector

field is chiral but not Beltrami.
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Chapter 4

Geometric Description of Liquid

Crystals, and Reconstruction

Problems

4.1 Introduction

Several classical problems in differential geometry involve determining the necessary

and sufficient information to construct a geometric object. The Frenet–Serret theo-

rem proves that a space curve is determined by its curvature and torsion, while the

Gauss–Cadazzi equations show that an embedded surface can be reconstructed from

knowledge of its first and second fundamental forms. In this chapter we consider

a similar geometric reconstruction problem, that of constructing a liquid crystal

director n from knowledge of its gradient tensor ∇n. This problem was solved in

two dimensions by Niv & Efrati in a recent paper [NE18], which I recap in §4.2. In
this chapter I solve the problem in three dimensions, demonstrating that, in general,

the gradient tensor does not contain sufficient information and we need additional

information about the gradients of the bend vector field b in order to solve the

reconstruction problem. My approach uses classical differential geometry as well as

Cartan’s theory of moving frames, and helps connect the problem to Lie theory and

fundamental symmetries of liquid crystal directors.
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4.2 The Geometric Reconstruction Problem for Direc-

tors on Surfaces: A Review

4.2.1 The Reconstruction Method of Niv and Efrati

To motivate my construction, I first review the reconstruction formula for a director

in two dimensions [NE18]. Given any director n on a surface S with Riemannian

metric g of Gaussian curvature K there is a unique unit vector n⊥ orthogonal to it

such that the pair n,n⊥ form a right-handed basis. Let η, η⊥ denote the differential

1-forms dual to n,n⊥. The derivatives of n decompose as

∇n =
(

κη + sη⊥
)

⊗ n⊥, (4.1)

where κ is the curvature of the integral curves of n (and magnitude of the bend

b = ∇nn) and s = ∇·n is the splay. We read off the connection 1-form ω = κη+sη⊥.

The curvature 2-form is Ω = dω = dκ∧ η+ κdη+ ds∧ η⊥ + sdη⊥, and the Gaussian

curvature is K = −Ω(n,n⊥). Using the formula Ω(X,Y ) = X(ω(Y ))− Y (ω(X))−
ω([X,Y ]) for the curvature form, we write this as

K = ∇n⊥
κ−∇ns+ κη

(

[n,n⊥]
)

+ sη⊥
(

[n,n⊥]
)

. (4.2)

Since the connection is torsion free [n,n⊥] = ∇nn⊥ − ∇n⊥
n = −κn − sn⊥, which

leads to the geometric compatibility equation [NE18],

K = −s2 − κ2 −∇ns+∇n⊥
κ. (4.3)

The reconstruction problem in two dimensions is to find a director field given

(generic) splay and bend functions, s and κ. The geometric compatibility condi-

tion (4.3) is key to solving it. Let J denote the almost complex structure on the

tangent space which is compatible with the metric (for example, if g is the Eu-

clidean metric then Jex = ey in a local coordinate system x, y). Then, by noting

that n⊥·∇κ = (Jn)·∇κ = −n·J∇κ, we can rewrite the compatibility condition (4.3)

as

n ·
(

∇s+ J∇κ
)

= −K − s2 − κ2. (4.4)

Using the given splay and bend functions we can define the orthonormal frame,

e1 =
∇s+ J∇κ
|∇s+ J∇κ| , e2 = Je1, (4.5)

83



and the compatibility condition gives the component of the director along e1; the

component along e2 follows from normalisation, |n| = 1. Explicitly we have the

reconstruction formula

n = −s
2 + κ2 +K

|∇s+ J∇κ| e1 ±
√

1− (s2 + κ2 +K)2

|∇s+ J∇κ|2 e2. (4.6)

The sign choice is not arbitrary: only one of the branches yields the correct direc-

tor [NE18]. To resolve the ambiguity we compute the splay and bend of the director

and choose the sign so that they agree with s and κn⊥. It is interesting to note that

the reconstruction formula is purely algebraic, which contrasts with the reconstruc-

tion of space curves and surfaces in R3, both of which require solving a differential

equation.

The unresolved part of the reconstruction is the identification of the allowed

set of functions that can represent the splay and bend of a director field. The

geometric compatibility equation (4.4) implies that the functions s and κ must

satisfy the necessary condition

|∇s+ J∇κ| ≥ s2 + κ2 +K. (4.7)

On a flat surface (K = 0) both s and κ must vanish at any points where ∇s+J∇κ =

0, which is equivalent to the Cauchy–Riemann equations for s+ iκ; it follows that s

and κ cannot be the real and imaginary parts of a holomorphic function. However,

the constraint represented by the necessary condition (4.7) is stronger than this and

it is currently not known what the set of allowed splay and bend functions is.

4.2.2 Coframes and Structure Functions

As a precursor to considering the corresponding compatibility and reconstruction

problems in three dimensions, I now describe how the two-dimensional case fits into

a more general picture. Any frame {e1, e2} on the surface is completely determined

by its structure functions cijk, determed by the Lie bracket of the frame compo-

nents [Car37; Car45; Olv95]. In two dimensions we require only one Lie bracket,

[e1, e2], to compute the Lie bracket of any pair of vector fields, and there are two

structure functions, c121 and c122. The Lie bracket is itself a vector field and hence

can be expressed as a linear combination of the basis vectors

[e1, e2] = c121e1 + c122e2, (4.8)
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which defines the structure functions. When the frame is orthonormal the structure

functions determine the metric tensor though their relationship with the connection

1-form. We can write the components of the connection 1-form ωkj =
∑

i ω
k
ije

i as

ωkij = ek · ∇ei
ej =

1

2
(cijk + ckij + ckji). (4.9)

For the particular choice e1 = n and e2 = n⊥, the structure functions also determine

the gradient tensor ∇n, with κ = −c121 and s = −c122. Computing the curvature

2-form Ω in terms of the structure functions and making these identifications leads

to (4.3). The condition (4.7) translates to

|∇c122 + J∇c121| ≥ c2121 + c2122 +K. (4.10)

4.3 Distortion Frames and Structure Functions in Three-

Dimensions

Let n be a unit vector field in R3 with the Euclidean metric, J = n×, and let ξ be

the orthogonal plane field. Now that we have an extra dimension there is freedom

in the choice of basis for ξ. A distortion frame for n is a trio of orthogonal, unit

vector fields e1, e2, e3 where e3 = n is the director and e1, e2 are sections of ξ such

that e2 = Je1. The non-uniqueness of the distortion frame reflects an SO(2) gauge

freedom: we can rotate the pair e1, e2 by any position-dependent angle θ to obtain

a new frame. It will not always be possible to define the distortion frame globally

due to the topological obstructions discussed in Chapter 2, however we can always

cover the space with charts in which the frame can be locally defined.

For biaxial materials there is an obvious choice for the distortion frame, with

e1, e2, e3 corresponding to the three molecular axes. In cholesterics and twist-bend

materials, it is natural to align e1 with the pitch axis in the former case, and the

normal to the integral curves of n in the latter. The distortion frame is then defined

everywhere except at defects in n and a set of lines, the λ lines of cholesterics and

the β lines (see Chapter 5) of twist-bend nematics.

The structure functions cijk of a distortion frame are defined by the same

equations as in three dimensions,

[ei, ej ] =
∑

k

cijkek. (4.11)

We now have three brackets giving a set of nine structure functions, which satisfy
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cjjk = 0 and cijk = −cjik. It is often more convenient to work with the dual coframe

e1, e2, e3 = η rather than the frame. The structure functions can also be determined

from the derivatives of the coframe elements,

dek =
∑

i<j

−cijkei ∧ ej . (4.12)

To relate the structure functions to the gradients of the director we use the formula

(4.9) for the connection and compare with the decomposition of the gradient tensor

(1.4). This leads to

s = c131 + c232,

q = −c123,
b = c133e1 + c233e2,

∆1 =
1

2
(c131 − c232) ,

∆2 =
1

2
(c231 − c312) .

(4.13)

Note also that −c231 and −c312 are twists of the vector fields e1 and e2 respectively.

If we take e1 to be the normal to the integral curves of the director, then the

structure function c133 is equal to the curvature κ of the integral curves of n, while

their torsion is τ = 1
2(c231 + c312 − c123). We can express the torsion in terms of

gradient tensor of the director via the formula [RW73]

b · ∇ × b = −κ2
(

τ +
1

2
q +∆2

)

. (4.14)

To obtain this formula, we simply note that both sides of the equation evaluate to

−κ2c231.
The gradients of the director are evidently independent of the choice of distor-

tion frame, however the structure functions are not. The formulas for the structure
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functions c̄ijk of a new frame ē1 = cos θe1 + sin θe2, ē2 = J ē1 are

c̄121 = cos θ(c121 −∇1θ) + sin θ(c122 −∇2θ),

c̄122 = − sin θ(c121 −∇1θ) + cos θ(c122 −∇2θ),

c̄123 = c123,

c̄131 = cos2 θc131 + sin2 θc232 + sin θ cos θ(c231 − c312),

c̄132 = cos2 θc132 − sin2 θc231 − sin θ cos θ(c131 − c232)−∇3θ,

c̄133 = cos θc133 + sin θc233,

c̄231 = cos2 θc231 − sin2 θc132 − sin θ cos θ(c131 − c232) +∇3θ,

c̄232 = cos2 θc232 + sin2 θc131 − sin θ cos θ(c231 − c312),

c̄233 = − sin θc133 + cos θc233.

(4.15)

Or, in terms of director gradients,

c̄123 = q,

c̄131 =
s

2
+ cos 2θ∆1 + sin 2θ∆2,

c̄132 = −τ − q

2
+ cos 2θ∆2 − sin 2θ∆1 −∇nθ,

c̄133 = cos θc133 + sin θc233,

c̄231 = τ +
q

2
+ cos 2θ∆2 − sin 2θ∆1 +∇nθ,

c̄232 =
s

2
− cos 2θ∆1 − sin 2θ∆2,

c̄233 = − sin θc133 + cos θc233,

(4.16)

where ∆1,∆2 are the components of ∆ in the original frame. This gives the trans-

formation rule ∆̄1 = cos 2θ∆1 + sin 2θ∆2, ∆̄2 = cos 2θ∆2 − sin 2θ∆1 for these com-

ponents.

4.4 The Compatibility Conditions in Three-Dimensions

In two dimensions, there is a single compatibility condition that couples the struc-

ture functions to the curvature. In three dimensions, there are nine compatibility

conditions, six of which derive from the flatness of Euclidean space, and three of

which derive from the Leibniz identity for the Lie bracket, or in the dual picture

the property d2 = 0 of the exterior derivative—these do not arise in two dimensions

because a 2-form is already a top form, and hence we get d2α = 0 ‘for free’, for any
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1-form α. In three dimensions,

0 = d2ek =− ck12
(

c113 + c223
)

+ ck13
(

c112 − c323
)

+ ck23
(

c212 + c313
)

−∇e1
ck23 +∇e2

ck13 −∇e3
ck12,

(4.17)

for k = 1, 2, 3, and ek the components of the distortion coframe. I refer to (4.17)

as the algebraic compatibility conditions. Via (4.13), we can interpret the constraint

d2e3 = 0 in terms of the gradients of the director. Notice that

dη = qe1 ∧ e2 + η ∧ β, (4.18)

where β is the 1-form dual to the bend b of the director; in terms of the dual vector

fields, this expression is ∇×n = qn+n×b. The algebraic compatibility condition

expresses the formula,

Lnq + qs− dβ(e1, e2) = 0. (4.19)

To write this in terms of the dual vector fields we compute the divergence of ∇×n,

which must vanish. This gives us the equivalent vectorial expression,

n · ∇q + qs− n · ∇ × b = 0, (4.20)

which can also be expressed purely in terms of the director field,

∇ ·
[

n
(

n · ∇ × n
)]

= n · ∇ ×
[

(n · ∇)n
]

. (4.21)

The other algebraic compaitibility conditions express the same constraint on the

gradients of e1 and e2.

To obtain the other compatibility conditions, we generalise the approach used

for two dimensions. In three dimensions, the curvature 2-form has components

Ωkj = dωkj +
∑

i

ωki ∧ ωij =
1

2

∑

il

Rkilje
i ∧ el, (4.22)

where Rkilj are the components of the Riemann tensor. After applying the sym-

metries of this tensor, we are left with six independent components, each of which

vanishes in Euclidean space. providing six geometric compatibility conditions. In

terms of the structure functions and the connection, these are

Rlijk = ∇jω
l
ik −∇iω

l
jk +

∑

m

cijmω
l
mk − ωmjkω

l
im + ωmikω

l
jm. (4.23)
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If we take the distortion frame to be the Frenet–Serret frame, then we can write six

independent components of the Riemann tensor as

R1
122 = ∇e2

ω2
11 −∇e1

ω2
21 −

(

ω2
11

)2 −
(

ω2
21

)2 − s2

4
− q2

4
+

1

2
|∆|2 − qτ, (4.24)

R1
133 = ∇e1

κ−∇n

(

s

2
+ ∆1

)

−
(

s

2
+ ∆1

)2

−∆2
2 +

q2

4
− κ2 + 2τ∆2, (4.25)

R2
233 = ∇n

(

∆1 −
s

2

)

−
(

s

2
−∆1

)2

−∆2
2 +

q2

4
+ κω2

21 − 2τ∆2, (4.26)

R1
123 = ∇e1

(

∆2 −
q

2

)

−∇e2

(

s

2
+ ∆1

)

+ 2ω2
11∆1 + 2ω2

21∆2 + κq, (4.27)

R2
123 = ∇e1

(

s

2
−∆1

)

−∇e2

(

∆2 +
q

2

)

+ 2ω2
11∆2 − 2ω2

21∆1, (4.28)

R2
133 = −∇n

(

∆2 +
q

2

)

− s

(

∆2 +
q

2

)

− 2τ∆1 + κω2
11. (4.29)

In two-dimensions there is a single curvature, the Gaussian curvature, that encap-

sulates all information contained in the Riemann tensor. The generalisation of the

Gaussian curvature to higher-dimensions is the sectional curvature,

Kij = −Ωji (ei, ej) = −Rjiji = 0, (4.30)

with Kij = Kji and Kjj = 0. In flat space they each vanish. In terms of the

structure functions,

Kij = ∇ei
cijj +∇ej

cjii +
∑

k

1

2
cijk (−cijk + cjki + ckij)

− 1

4

(

c2ijk − (cjki − ckij)
2
)

− ckiickjj .

(4.31)

To fully capture the Riemann tensor, we also need to know the sectional curvatures

of plane sections spanned by, for example e3 and 1√
2
e1 + e2. These can be easily

computed via the change of basis formulae for the structure functions.

An equivalent expression of the sectional curvature constraints is Ricj = 0,

where Ricj =
1
2

∑

iKij are the diagonal elements of the Ricci tensor Ric. This form

of the geometric compatibility conditions is the simplest to interpret in terms of the

gradients of the director. The condition Ric3 = 0 yields a well-known relationship

between splay, twist, |∆|2 and the saddle-splay that is used in constructing the Frank

free energy [MA16b; Sel18]:

1

2
s2 +

1

2
q2 − Tr∆2 = ∇ · [sn− b] (4.32)
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The equations K12 + K13 = 0 and K12 + K23 = 0 express the same relationships

between the distortions of the vector fields e1 and e2 respectively.

We can also obtain the algebraic compatibility conditions from the metric

tensor: they are equivalent to the Bianchi identities, which is unsurprising, since the

Bianchi identities are themselves derived using the Leibniz formula.

There is one additional geometric quantity of interest. Consider the field of

planes ξ orthogonal to the director. As a subbundle of the tangent bundle, there is

an induced metric g obtained by restricting the Euclidean metric to ξ. When the

twist of n vanishes n is the normal to a family of surfaces, and in this case the metric

g is just the induced metric on these surfaces, the first fundamental form. Even when

the twist does not vanish we may still regard g as being the ‘first fundamental form’

of the director, in the same way that the symmetric part of ∇⊥n plays the role of

the second fundamental form.

The curvature Kξ of g may be computed via an orthonormal basis for ξ

in the same fashion as the curvature of a surface, using the formulae of §4.2. In

terms of the structure functions of an orthonormal frame e1, e2 for ξ, we have Kξ =

−(c112)
2 − (c212)

2 + ∇e1
c212 − ∇e2

c112. This quantity is independent of the choice of

distortion frame. Using the formula (4.31) for the sectional curvature K12, we can

express this in terms of the other structure functions,

Kξ = c131c232 +
1

4
c123 +

1

2
c123 (c123 − c231 − c312)−

1

4
(c231 − c312)

2 . (4.33)

If the director is normal to a family of surfaces, which occurs precisely when c123 = 0,

then Kξ = c131c232 − 1
4(c231 − c312)

2 is the intrinsic curvature of those surfaces. If

we choose e1, e2 to diagonalise the shape operator ∇⊥n = s
2I +∆, then the second

term vanishes. For this choice of frame, we may identify c131, c232 with the principal

curvatures of the surface, and hence their product Kξ is the Gaussian curvature of

the surfaces orthogonal to the director.

For a general director we can still choose e1, e2 so as to diagonalise s
2I +∆,

and regard these directions as ‘directions of principal curvature’. Let us define

κ1 = c131, κ2 = c232 to be the values of these structure functions in this particular

choice of basis, and call these the ‘principal curvatures’ of ξ. We have c231 = c312 in

this basis, so the twists of the principal directions are the same. Define q′ = −c231
to be equal to the twist of e1 and e2. Then we may write

Kξ = κ1κ2 +
3

4
q2 +−qq′. (4.34)
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4.5 Geometric Reconstruction in Three-Dimensions

The problem of reconstructing a director is not as simple in three dimensions as in

two, and there is no obvious ‘correct’ way to go about it. For completeness I describe

here four methods for reconstructing the director when one is provided with vector

quantities, and three methods for reconstruction when one is only provided with

scalar quantities. The latter all require us to know at least one of the structure

functions c121, c122, which can be computed via the divergence or curl of the bend.

It is interesting that while these distortions do not play a role in the energy they

are nonetheless required for reconstructing the director unless we are given a vector

quantity.

4.5.1 Reconstruction via the Helmholtz Theorem

A classical result, the Helmholtz Theorem, implies we can reconstruct the director

n on a compact region U with boundary ∂U provided we know the curl and splay

of n in U , as well as the director itself on the surface ∂U . Concretely, we have

n = −∇
∫

U

∇ · n
4π|r′ − r|dr

′ +∇×
∫

U

∇× n

4π|r′ − r|dr
′. (4.35)

4.5.2 Reconstruction Using the Bend Vector Field

Suppose we are given only the bend vector field b = bxex + byey + bzez. The

director satisfies the PDE ∇nn = b, which translates into a set of coupled PDEs

for the components of n. These can be solved directly by integration.

4.5.3 Reconstruction Using the Bend and Curl

We can combine the previous two reconstruction methods if we are given both

the curl c = ∇ × n = cxex + cyey + czez and bend b = bxex + byey + bzez. Then

∇×n = qn+n×b gives us a formula for the components of n = nxex+nyey+nzez,

cx = qnx + (nybz − nzby),

cy = qny + (nzbx − nxbz),

cz = qnz + (nxby − nybx).

(4.36)
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These are linear equations, and can be solved in the standard way, by inverting a

linear system:

c =







q bz −by
−bz q bx

by −bx q






n (4.37)

This gives us n in terms of q and the (known) components of the curl and bend, pro-

vided we can invert the matrix. For this to be possible it suffices that its determinant

is nonzero, which translates to the condition

q(q2 + b · b) 6= 0. (4.38)

Note that we cannot invert the matrix if q = 0, so this method does not work for

any smectic director. Provided this constraint holds, the director is

n =
1

q(q2 + b · b)







b2x + q2 bxby − qbz bxbz + qby

bxby + qbz b2y + q2 bybz − qbx

bxbz − qby bybz + qbx b2z + q2






∇× n. (4.39)

If the twist q is not specified then this gives us the director in terms of the unknown q.

However, we can determine q either from n ·n = 1, or by computing n ·∇×n. Unlike

the previous two reconstruction methods, this method does not require computing

any integrals or solving differenital equations.

4.5.4 Reconstruction Using an Arbitrary Section of ξ

Suppose we are given a unit vector field e1 with the assurance that e1 ∈ Γξ, i.e., n

lies in the planes orthogonal to e1. Suppose further we are given the splay s and

curvature κ of the director, and these are not constant.

Let E denote the subbundle of the tangent bundle consisting of the planes

orthogonal to e1. Is is equipped with a metric g, the restriction of the Euclidean

metric to this bundle. We can compute the curvature K of E by choosing any

orthonormal basis of sections and computing it directly from the structure functions

of this frame, as in the two-dimensional case—for the purposes of this computation

we regard E as a rank 2 bundle over R3 equipped with the restriction [·, ·]E of the

Lie bracket to E, so that the bracket [·, ·]E of any two sections has no component

along e1. Then, using the same reasoning as in the two-dimensional case, we must

have n · (∇s+ J∇κ) = −K − s2 − κ2, where J = e1 and ∇ denotes the connection

of the metric g on E, not the connection of the Euclidean metric. Much like the

curvature K, this connection can be computed using the structure functions of an
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orthonormal basis of sections of E.

With this formula, we may reconstruct n using the same method as outlined

in §4.2, so this gives us a purely algebraic formula for reconstructing the director.

We can regard this as a variant of the Helmholtz Theorem method: it sufficies to

specify the splay and the bend vector field, which will give us both the curvature κ

and the direction e1.

4.5.5 Reconstruction Using the Structure Functions and Compat-

ibility Conditions

For the first method that does not require specifying a vector field, we consider

the problem of reconstructing a director from a set cijk of structure functions. The

structure functions c121, c122 cannot easily be recovered from the gradients of a

director, and consequently this approach requires more information than is contained

in the usual gradients. However, for biaxial materials where the components e1, e2 of

the distortion frame have physical meaning, and also for cholesteric and twist-bend

materials where e1 may be aligned respectively with the pitch axis and the bend,

all the structure functions may be obtained provided that one knows the gradients

of each component of the frame.

Suppose then that the nine structure functions cijk are specified. The un-

known frame e1, e2, e3 = n with structure functions cijk can be expressed in terms of

the coordinate frame exj using a matrix R, so that ei =
∑

j Rijexj . To reconstruct

the director, it suffices to find the entries of R.

Define a tensor D by Dk
ijl = ∇lcijk, where the gradient is taken along the

coordinate direction exl . The algebraic and geometric compatibility conditions yield

linear equations for the entries Rij in terms of this tensor D. Firstly, we rewrite the

algebraic compatibility conditions as

∑

i<j,l

ǫijl (∇el
cijk − cijksl) = 0, (4.40)

for each k = 1, 2, 3, where ǫijl is the Levi-Civita tensor, and for compactness we

have written the divergence of the vector field ek as sk =
∑

i ciki. Expressing el

in terms of R we rewrite this as
∑

i<j,l,m ǫijlRlmD
k
ijm = Ak, where we have defined

Ak =
∑

i<j,l ǫijlc
k
ijsl. Then we expand out the sum over i, j, l to obtain the equations

∑

m

R3mD
k
12m +R2mD

k
31m +R1mD

k
23m = Ak. (4.41)

For the geometric compatibility conditions, we first define Bl
ijk = −2

∑

m cijmω
l
mk−
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ωmjkω
l
im + ωmikω

l
jm. Then the vanishing of the components of the Riemann tensor

implies, through Eq. (4.23)

∑

m

Rjm (Dm
ikl +Dm

lik +Dm
lki)−Rim

(

Dm
jkl +Dm

ljk +Dm
lkj

)

= Bl
ijk. (4.42)

Together, Eqs. (4.41) and (4.42) give a set of nine linear equations for the nine

functions Rij . We observe that every one of the 27 independent components of D

plays a role in these equations, and consequently we cannot eliminate the functions

c121, c122 from these equations alone. We can invert this system of linear equations

to get an expression for the Rij in terms of the known quantities Dl
ijk, Ak, and B

l
ijk.

4.5.6 Reconstruction Using the Compatibility Conditions and Pro-

jections

Suppose we know the scalar quantites s, q, |∆|, n ·∇×b and ∇·b. Suppose further
that ∇s and ∇q are not zero, and are nowhere colinear.

Then the geometric compatibility conditions, in the form of Eq. (4.32), give

the projection of the director onto the vector ∇s,

n · ∇s = ∇ · b+
q

2
− s

2
− |∆|2, (4.43)

while the algebraic compatibility condition Eq. (4.20) gives the projection onto the

vector ∇q,
n · ∇q = n · ∇ × b− qs. (4.44)

Define ē1 =
∇s
|∇s| and ē2 =

∇q
|∇q| . Since we know the projection of n on these two unit

vector fields, we can compute the component in the orthogonal direction ē1 × ē2,

and hence reconstruct the director.

Alternatively, if the structure functions are the structure functions of the

Frenet–Serret frame, the the sectional curvature K23 gives the projection of the

director on the vector ∇
(

s
2 −∆1

)

, while the component R2
133 of the Riemann cur-

vature tensor gives the projection on ∇
( q
2 +∆2

)

. Assuming these directions are

neither zero nor colinear, we can use them to reconstruct the director via the above

process.

4.5.7 Reconstruction via the Characteristic Foliation

Fix a surface S in R3. We know from Chapter 3 that the director n is determined, up

to continuous deformation, by the characteristic foliation it induces on the surface
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S in a neighbourhood of S. We will see here that if we specify just two structure

functions we can reconstruct both the characteristic foliation and the director. This

requires knowing these structure functions with respect to a carefully chosen frame,

however.

Choose a family of surfaces that foliate the domain on which the director

is to be reconstructed. It is simplest to take these surfaces to be surfaces of con-

stant z coordinate, which I denote Sz, however any family of surfaces can be used,

and other choices may be useful for particular problems. Let n⊥ denote the unit

vector that directs the projection of the director into the surfaces, which is de-

fined everywhere except at points where the director is normal to the surfaces.

Let e1 be the unit vector directing the characteristic foliation. Then the vector

fields e1,n⊥ are an orthonormal frame for the surface Sz, and hence can written

as n⊥ = cos(ψ)ex + sin(ψ)ey and e1 = − sin(ψ)ex + cos(ψ)ey, for some function ψ

which we must determine.

We compute that ∇× e1 = −ψ̇e1 , where the overdot denotes differentiation

with respect to z. Consequently e1 ·∇×e1 = −ψ̇. In terms of the structure functions

of the frame the twist of e1 is −c̄123, so we see that ψ solves the differential equation

ψ̇ = c̄123. Solving this differential equation only determines ψ up to a function

ψ0(x, y) of x and y alone, which we can compute if we have fixed the director along

S0.

Now we have determined the direction of the projection of the director into

each surface Sz, and it remains only to determine the z-component. Write n =

cos(φ)ez + sin(φ)n⊥ and e2 = n × e1 = cos(φ)n⊥ − sin(φ)ez for some function φ

that completely determines the director.

To relate φ to the structure functions, we must compute the Lie brackets

between elements of this frame. Write [n⊥, e1] = f1n⊥ + f2e1 for the Lie bracket

between these vector fields on the surface. Note that this bracket has no component

in the z-direction as n⊥, e1 span integral surfaces. We compute that [n⊥, e1] =

−∂xψex − ∂yψey, which leads to

f1 = − cos(ψ)∂xψ − sin(ψ)∂yψ,

f2 = sin(ψ)∂xψ − cos(ψ)∂yψ.
(4.45)

The interpretation of f1, f2 is the same as for structure functions in two dimensions,

as explained in §4.2: −f1 is the curvature of the integral curves of n⊥, while −f2 is

the divergence of n⊥. It is worth noting that if we wished to instead prescibe f1 and

f2, we could use this to reconstruct n⊥ without using the structure function c̄123 by
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applying the method of Niv & Efrati for two-dimensional reconstruction outlined in

§4.2.
Next we compute [e1, e3]. To do this we use [n⊥, e1] and two other brackets,

[n⊥, ez] = −ψ̇e1 and [e1, ez] = ψ̇n⊥. From this we determine that c̄113 = −f2 sin(φ).
Consequently, whenever f2 6= 0 we can write

n =

√

1−
(

c̄113
f2

)2

ez −
c̄113
f2

(cos(ψ)ex + sin(ψ)ey). (4.46)

There are two choices for the sign of the square root: only one sign will yield the

correct director. We then have a geometric reconstruction formula similar to that

derived by Niv & Efrati [NE18] for the two dimensional director.

4.6 Director Distortions and Lie Groups

In this section I will examine a few classes of directors—namely those with pure

distortions, uniform distortions, and quasi-uniform distortions—from the perspec-

tive of Lie algebras and groups. There is some overlap between this section and

a recent preprint of Sadoc et al. [SMS20], however I emphasise that the Lie group

perspective I adopt here is a novel approach to the problem.

4.6.1 Curvature of Pure Distortions

When the structure functions of a distortion frame e1, e2, e3 = n are constant, they

describe a Lie algebra. It is a well-known fact that every Lie algebra uniquely deter-

mines a homogeneous space, a Lie group [Car04]. Such groups are abstract spaces

where the given structure functions could be realised, even if they cannot not be

realised in Euclidean space. The curvature of these Lie groups—which, following

Milnor [Mil76], can be computed from the structure constants of the Lie algebra us-

ing Eq. (4.31)—gives insight into what curvature is required to realise the particular

choice of distortion modes, while the group itself describes the natural symmetries

associated to the distortion mode. We can use this to understand the curvature

associated to pure splay, twist, bend, or biaxial splay distortions. Moreover, certain

Lie groups admit a projection into flat Euclidean space, allowing us to realise the

idealised texture as a frustrated texture in Euclidean space.

Firstly, consider a director with constant nonzero twist q, but vanishing splay,

bend, and biaxial splay. This requires the structure functions c123 = −q, c231 = c312,

with c121, c122 left undetermined and all other structure functions vanishing. A
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minimal model for this has c121 = c122 = 0 and either c231 = −q or +q. The

former choice yields the Lie algebra of SU(2), the 3-sphere, and the set of vector

fields described previously by Sethna et al. [SWM83] which, when projected into

Euclidean space, give the familiar double-twist director. The latter choice gives the

Lie algebra of the group SL(2,R), which consists of real, traceless 2 × 2 matrices.

The group can be identified with the unit sphere in the (2, 2) anti-de Sitter space-

time, that is, R4 equipped with the pseudometric with signature (1, 1,−1,−1), as

opposed to SU(2) which is the unit sphere in the Euclidean metric. This texture

is an alternative realisation of ‘double-twist’ where the twisting in the orthogonal

directions has the opposite sense of handedness to the twisting in the director: see

Ref. [SMS20] for a further discussion of this example.

One may also take c231 = c312 = 0 for a ‘single twist’ director, which describes

the Lie algebra of the Heisenberg group. This group has a natural coordinate pa-

rameterisation x, y, z in which the director is given by

m = ez + xey − yex, (4.47)

which, after normalisation in the Euclidean metric, n = m/|m|, is the standard

example of local twist, see for example Selinger [Sel18]. This vector field is also

recognisable as the Darboux normal form in contact topology [Gei08].

Sadoc et al. conjucture that a positive Ricci curvature along one direction

is a necessary condition for a pure nonzero twist state [SMS20]. This conjecture is

correct and follows immediately from a computation of Ric3 = 1
2K13 +K23, which

in a pure twist case is simply equal to q2/4, so that the Ricci curvature along the

director is always positive as long as the twist is nonzero.

Next consider pure splay. This requires c1131 = c232 = s/2, and we may take

all other structure functions equal to zero for a minimal model. The resulting Lie

group is consequently a space of constant negative curvature [Mil76]. Even if we

allow ourselves maximum freedom, with c121, c122 free and c231 = c312 to ensure

the vanishing of ∆, then the compatibility equations (4.31) imply that all sectional

curvatures will still be negative. Pure bend requires c133, c233 nonzero. If we take

c121 = c233 and c122 = −c133, and similarly we find the curvature is negative. In two

dimensions it is also true that constant, nonzero pure bend and pure splay directors

can only occur on a negatively-curved space, as follows from (4.3).

Finally, we ask for the possibility of pure ∆ 6= 0. We can assume without loss

of generality that ∆ is diagonal, so this mode of distortion requires c231 = c312 and

c131 = −c232. Setting all other structure functions equal to zero gives a space where
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the curvature of planes orthogonal to the director is positive, whereas the curvature

of planes containing the director is negative, suggesting this is the natural form of

curvature associated to this distortion.

4.6.2 Uniform Directors

The next simplest question to ask is when it is possible to have a director with at

least uniform distortions, i.e., constant splay, twist, bend, and ∆. It is known that

all such directors are given by the heliconical director [Vir19],

n = cos(θ)ez + sin(θ)(cos(qz)ex ± sin(qz)ey), (4.48)

for some choice of θ, q constant. This encapsulates both the cholesteric ground state

(θ = π/2) and the nematic ground state (θ = 0) as limits.

I now provide an alternative argument for this classification based on the

framework described in this chapter. In the language used here, the condition

of being a uniform director is equivalent to having constant structure functions.

Using the compatibility conditions, we can examine which sets of constant ckij are

permissable. Any set of structure functions satisfying the algebraic compatibility

conditions defines a Lie algebra, and conversely every Lie algebra gives rise to a

frame satisfying the algebraic compatibility conditions. Satisfying the geometric

compatibility conditions as well is then equivalent to the Lie group associated to

the Lie algebra having a flat metric. This Lie group, taken along with rotations

and about the director n and the nematic symmetry n 7→ −n, can be seen as the

symmetry group of the texture described by n.

Three-dimensional Lie algebras have been classified up to isomorphism [PSWZ76].

Up to this equivalence, the only Lie algebras giving rise to flat Lie groups are the

trivial algebra with all Lie brackets being equal to zero, which corresponds to the

coordinate basis of R3, and the algebra defined by the brackets [e1, e2] = 0, [e3, e1] =

e2, [e2, e3] = e1, which is the Lie algebra of the Euclidean group E(2), the group of

rigid motions of the Euclidean plane. A concrete realisation of the latter as a set of

vector fields in Euclidean space is given by

e1 = cos(z)ex + sin(z)ey,

e2 = sin(z)ex − cos(z)ey,

e3 = ez.

(4.49)

Any combinations of these three vector fields with constant coefficients, e.g. the
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heliconical director, or those involving rescalings of the coordinate directions, e.g.

z 7→ qz for a nonzero integer q, will also give a distortion frame with constant

structure functions. The classification of Lie algebras then proves that, up to a

coordinate parameterisation, these are the only possible cases.

4.6.3 Quasi-Uniform Directors

Pedrini & Virga [PV20] define quasi-uniform directors to be those whose distor-

tions are in constant proportion to one another. This is equivalent to the structure

functions being of the form cijk = faijk, for f a function and aijk constant. One

can construct examples by assuming that aijk are the structure constants of a Lie

algebra. Let ei be the distortion frame, and suppose that cijk are the structure

functions of this frame. Denote by Kij(a) the sectional curvatures of the Lie group

whose Lie algebra has structure constants aijk. The compatibility conditions for ckij
then reduce to a set of differential equations that serve as compatibility conditions

for the function f ,

a23k∇e1
f + a31k∇e2

f + a12k∇e3
f = 0,

Kij(a) + aijj∇ei
f + ajii∇ej

f = 0,
(4.50)

for i, j, k running from 1 to 3. One may then determine those choices of Lie algebra

for which the above equation is possible to solve, which give necessary and sufficient

conditions for the existence of a frame with these structure functions. For example,

consider the Lie algebra with the only nonzero structure constants a123 = a231 = 1

defined by the vector fields (4.49). The compatibility conditions (4.50) for the

function f reduce to ∂xf = ∂yf = 0, and therefore we may choose f to be any

function of z alone. The frame giving rise to the structure functions cijk is:

e1 = cos g(z)ex + sin g(z)ey,

e2 = sin g(z)ex − cos g(z)ey,

e3 = ez,

(4.51)

where ∂zg = f . As before, any unit director which is a constant combination of these

three vector fields will be quasi-uniform, e.g. a quasi-uniform heliconical director

n = cos(θ)ez + sin(θ)(cos g(z)ex ± sin g(z)ey) with θ constant. These then give

examples of quasi-uniform directors with twist and bend distortions that vary in

the z direction according to f , but still have vanishing splay.

More generally, if the Lie algebra can be reduced to a form where the
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structure functions aijj vanish, then we see that it is impossible for there to be

a quasi-uniform corresponding to this Lie algebra unless the Lie algebra itself is

flat. These algebras are the unimodular Lie algebras [Mil76], and the two flat uni-

modular algebras are, as we have already noted, R3 and the Euclidean group E(2)

which determine the nematic and the cholesteric/heliconical states respectively. Any

quasi-uniform diretor corresponding to the latter is defined by a taking a constant

combination of the vectors in the frame (4.51).

When a Lie group is not unimodal, it has a basis ej such that

[e1, e3] = Ae1 +Be2,

[e2, e3] = Ce1 +De2,
(4.52)

for constants A,B,C,D such that A+D = 2 [Mil76]. The second set of conditions in

(4.50) then imply thatK12(a) = 0, which is satisfied when B = −C, and further that

A(∇3f − A) = D(∇3f − D) = 0, which implies that either one of A,D vanishes,

or that A = D = 1, and that ∇3f is constant and nonzero. Moreover, the first

set of conditions imply that f is constant along e1, e2. Since the curl of the e3

direction vanishes, we can assume that it is the gradient of a function h. The vector

fields e1, e2 must be a pair of orthogonal vector fields orthogonal to ∇h. As [e1, e2]
vanishes the level sets of h must be flat, so we may take e3 = ez, and consequently

these cases all reduce to the case of a uniform director.

Thus we have shown that, when the aijk are chosen to be the structure

constants of a Lie algebra, then the only possible quasi-unfiform directors are those

in the family (4.51).

More options are possible if we allow for singularities in the director, or for the

function f to have singular behaviour. For instance, the director n = cos(φ)ez +

sin(φ)er in cylindrical coordinates, which has n⊥ = er and e1 = reθ, is a quasi-

uniform pure-splay texture provided that 0 ≤ φ ≤ π/2 is constant, in which case we

have structure functions c121 = −1
r cos(φ), c131 =

1
r sin(φ), with the others vanishing.

The function f here is 1/r, which becomes undefined along the z axis. Quasi-

uniform pure-bend states can be defined similarly, by n = cos(φ)ez + sin(φ)eθ, for

0 ≤ φ ≤ π/2 constant.
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Chapter 5

The Topology and Geometry of

Twist-Bend Nematics

5.1 Introduction to Twist-Bend Nematics

Fresh perspectives invariably accompany the discovery of a new phase: The recent

discovery of the twist-bend nematic phase [C+11; B+13; C+13] invites fresh con-

sideration of nematic geometry and topology. The twist-bend nematic is a fluid

mesophase in which the nematic orientation exhibits a heliconical modulation with

nanoscale pitch and modest cone angle [JLS18]. It occurs in compounds with a

bent core architecture (banana molecules) and is characterised by a preferred state

of non-zero bend distortion [Doz01; SDS13]. Thus the geometry of bend is a natu-

ral vehicle for describing the structural degeneracies and defects of the twist-bend

nematic that equally applies quite generally to any material with orientational order.

A common feature of many materials are structural degeneracies along lines

or curves, with examples including flux lines in superconductors [Abr57], fluid vor-

tices [Irv18], nodal lines in optical beams [DKJ+10], C lines in electromagnetic

fields [Nye83], defect lines in liquid crystals [dGP95] and umbilic lines in gen-

eral [MA16b]. In many instances these lines are fundamental to the organisation

and properties of the entire material, simultaneously characterising it and offering

a mechanism for controlling and engineering specific responses. In this chapter I

consider a new line-like geometric degeneracy associated to zeros of the bend in a

unit vector field, called β lines. These lines occur in all materials with vector or

orientational order, such as liquid crystals and ferromagnets, but have added signifi-

cance when there is an energetic preference for non-zero bend, and in such materials

β lines are a new type of topological defect.
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This is joint work with J. Binysh, part of which appears in Refs. [Bin19;

BPA20].

Figure 5.1: (a) Liquid crystal materials with banana-shaped molecules can form
twist-bend nematic phases. The optimal way of packing banana-shaped molecules is
to stack them into helices, forming the heliconical ground state (5.1), with director
n and polarisation p. (b) Experimental image of stripe patterns forming in the
twist-bend phase of CB7CB. The director close to these stripes can be described
by heliconical ground state, where the stripes themselves are level sets of the z
coordinate. There are also focal conic domains. (c) A larger focal conic domain in
CB7CB. Panels reproduced from [JLS18].

The ground state of the twist-bend nematic is

nhel = cos(φ)ez + sin(φ)nchol, (5.1)

the heliconical director, so called because its integral curves are helices. Here, nchol

is the cholesteric ground state with some helical pitch 2π
q , and φ ∈ (0, π/2) is the

helical cone angle; observe that the limit φ→ 0 takes us to the uniform state, while

φ → π
2 recovers the cholestric ground state. It is easy to compute the splay, twist,

and bend b,

∇ · n = 0,

n · ∇ × n = −q sin2(φ),
b = q sin(φ) cos(φ)(− sin(qz)ex + cos(qz)ey).

(5.2)

It is a little premature to call (5.1) the heliconical director: in fact there are two

textures that might reasonably be referred to by that name, depending on the sign

of q. As well as nonzero bend, the heliconical director also has nonvanishing twist

everywhere, and consequently we see in twist-bend nematics the similar preference

for chirality in the ground state. However, the presence of multiple ground states
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with opposite handedness implies that there is no preference for the sign of the

chirality, and thus we might expect energetically stable textures with regions of

reversed handedness separated by domain walls, as described in §3.7.
The heliconical ground state of the twist-bend nematic has one-dimensional

periodic spatial modulation. On scales large compared to the heliconical pitch, its

elastic deformations and hydrodynamic modes are the same as those of a smec-

tic [Kam96; P+16; MD16], as is the case also for cholesterics [RL11]. The polari-

sation is a non-hydrodynamic mode [P+16]. As such, many calculations from the

literature on smectics can be applied directly to give a coarse description of the en-

ergetics of defects and textures in twist-bend nematics, when the latter are closely

similar to known smectic textures. Our focus will be on describing these states from

the twist-bend perspective where they may be visualised as disruptions to the family

of helices which make up the director integral curves.

The energetics of the twist-bend phase may be described by a Frank free

energy with negative bend elastic constant [Doz01], or alternatively via the following

energy functional [SDS13]

Ftb =

∫

M

K

2
‖∇n‖2 + C

2
‖∇p‖2 − λp · b+

U

2
(1− ‖p‖2)2µ. (5.3)

This is the approach originally suggested by Meyer for describing spontaneously

modulated splay and bend phases and adopted by the Kent State group [SDS13].

This description makes use of two vector fields, the director n which keeps track of

the orientation of the long axis of the banana, and the polarisation p which specifies

the orientation of the banana in the plane orthogonal to n. The coupling −p · b
between polarisation and bend results in an energetic preference for nonzero bend

distortion, and finally U , which imposes a preference for the polarisation to be unit

length; one may instead enforce the condition that p is unit length as is done for

the director, and one may also choose to enforce that n · p = 0, although the latter

makes it difficult to define the core of a defect, which would normally consist of the

region where n · p 6= 0. The condition for a pair p,n to be a minimiser of (5.3) is

obtained by taking the derivatives of the functional with respect to both n and p,

which yields

δFtb

δn
=
[

K∇2n+ λ (∇pn− (∇ · n)p−∇np)
]⊥

= 0,

δFtb

δp
= C∇2p+ λb+ U(1− ‖p‖2)p = 0,

(5.4)

where⊥ denotes projection into the planes orthogonal into n. There are four positive
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parameters in the energy: K, a single elastic constant for the director, C, an elastic

constant for the polarisation, λ, which sets the strength of the coupling between

polarisation and bend, and finally U , which provides a preference for the polarisation

to be unit length. The energy (5.3) does not have a unique ground state: rather,

either of the two heliconical directors minimises the energy, with polarisation set to

be the unit vector in the direction of bend in each case. Substituting (5.1) into (5.4)

tells us what values the parameters should take in terms of the elastic constants in

order for the energy to be minimised,

C

K
=

sin4(φ)

cos(2φ)
,

λ

K
=
q

2
tan(2φ). (5.5)

I emphasise that the focus here is on geometric and topological properties of the

director field, which are largely insensitive to the exact form of the free energy and

have general applicability for typical values of material constants.

5.2 Profiles of Bend Zeros

Let us first describe some properties of bend. The bend vector field and its rela-

tionship with the other gradients of the director is described in Chapter 4. Here we

are most interested in the fact that bend is a Legendrian vector field, orthogonal

to the director. In particular, the set of points where it vanishes is one-dimensional

and forms a collection of fundamental curves in the material that are characteristic

of the director field. They are points of inflection of the integral curves of n, where

the curvature vanishes; I call them β lines in an informal analogy with the λ lines

of cholesterics, to which they may be considered ‘cousins’. These β lines are the

locus of inflection points in the director integral curves; as a director integral curve

intersects a β line, the curvature of the director integral curve vanishes. In addition

to their geometric significance, β lines also carry topological data about the direc-

tor field and are themselves topological defects in any material where the bend is

naturally nonzero, for example the twist-bend nematics.

When discussing Legendrian vector fields in §2.4 I remarked that generically

the zero set would not be transverse to the plane field, but rather would be tangent

to it at isolated points—these are points where n ·j = 0, where j denotes the tangent

to the line. Generically these are associated with a change in the profile of the β line

from a +1 to a −1 winding, a saddle-node bifurcation. We can also have changes in

stability where a β line whose profile is that of a stable node switches to one whose

profile is an unstable node. Here, I will give a simple construction of two linearised
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directors and associated linearised bend vector fields that exhibit the saddle-node

and Hopf bifurcations.

The first step is to construct a linearised bend vector field from a director,

which allows us to relate the gradients of the director to the profile of a β line. I

will follow the constructions given in [Bin19]. Throughout this section, let s denote

the splay, q the twist, b the bend, and ∆ the deviatoric part of the gradients of a

director n with orthogonal plane field ξ. In order to study the Legendrian points,

it suffices (essentially by Proposition 2.1) to study the parts of the gradient of bend

that themselves lie in the plane ξ, which we will denote ∇ξb. We could also look at

the gradients in the plane orthogonal to the β line itself. Moreover, to get an idea of

the linear behaviour along a β line when can take a local coordinate system x, y, z

about a point on the β-line where x, y are orthogonal to the line at that point and

z is tangent to it, as in Proposition 2.1. Working sufficiently locally, we can can

assume that the coordinate directions ex, ey agree with the eigendirections of ∆, so

that ∆2 = 0. It then suffices to compute B = ∇ξb|β line, and the linearised bend

b̃(x, y) = B[x, y]T + O(z). From now on, all quantities are understood as being

resticted to the β line.

A direct calculation shows that ∇ξb = (∇ξn)2 +∇n∇ξn. This leads to

B =

[

s2/4 + s|∆|+ |∆|2 − q2/4 +∇n∆+∇ns −qs/2−∇nq/2 + |∆|θ′
qs/2 +∇nq/2 + |∆|θ′ s2/4− s|∆|+ |∆|2 − q2/4−∇n∆+∇ns

]

,

(5.6)

see [Bin19] for details of the calculation. The above equation contains a mysterious

quantity, θ′. In a local trivialisation, we can write

∆ =

(

∆1 ∆2

∆2 −∆1

)

=
√
−det∆

(

cos θ sin θ

sin θ − cos θ

)

. (5.7)

Then we define θ′ = dθ(n), which captures the change in the rotation of the eigen-

vectors as we move along the director.

For a selection of local profiles for bend based on setting all but one of the

gradients of n to zero along the bend line, see Fig. 5.2. When constructing linearised

bend vector fields with the desired gradients, we will not try to choose values for

the gradients so that they come from a realistic director field, i.e., we won’t worry

about the compatiblity conditions between the gradients (see Chapter 4). The idea

is to get an idea of what sort of changes in the deformations lead to a Legendrian

point, and a rough idea of the structure of bend around such points, rather than

give concrete constructions.

105



Figure 5.2: The profiles of a β line that are associated to each distortion of the
director that plays a role in the linearised bend vector field. In all by the final
panel, only the associated mode is nonzero; in the final panel, we require |∆| 6= 0 in
order for θ′ to be defined. Figure reproduced from [Bin19].

The eigenvectors of the linearised bend can be written as λ± = 1
2(T ±√

T 2 − 4D), where T is the trace and D the determinant of the matrix B. Re-

call that a saddle-node bifurcation involves a matrix with two real eigenvalues and

one eigenvalue changing sign as a parameter is varied, while the Hopf bifurcation

requires a complex conjugate pair of eigenvectors to pass transversally though zero.

We can construct a saddle-node bifurcation in bend by taking |∆|, θ′ > 0,

setting all other parameters to zero. Then T = 2|∆|2, D = |∆|2(|∆|2) − θ′2). Fix

|∆| and treat θ′ as the parameter. The eigenvalues are

λ± = |∆|2 ± θ′, (5.8)

and one will change sign as θ′ passes through |∆|2. In Fig. 5.3(a) the director and
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bend are shown on a slice for |∆|2 = 3 and several different values of θ′. This shows

a change in the profile from an unstable node to a saddle, crossing a Legendrian

point in the process. This bifurcation gives the local structure around a generic

Legendrian point, and generic Legendrian points generically occur in β lines, so we

expect to see such points in all situations where we have not programmed in a high

degree of symmetry by our choice of director.

The Hopf bifurcation occurs in the linear system given by the matrix

[

a −1

1 0

]

, (5.9)

where once again we have a parameter a ∈ R. This is the linearised Van der

Pol oscillator. Replicating this in bend is simple. Take ∇ns to be the parameter,

∇n∆ = −1
2∇ns, and ∇nq = 2. Set all other parameters to zero. Then the linearised

bend field is exactly the linearised Van der Pol oscillator with parameter a = ∇ns,

and the bifurcation occurs as this crosses 0. For a more realistic plot, one may also

take s = 2|∆| to be small but nonzero. This bifurcation is shown in Fig. 5.3(b). We

see it does not correspond to a Legendrian point, only a change of stability for the

zero of bend. Hopf bifurcations in the β-line profile arise quite naturally when one

creates a meron by trying to remove a +1-winding singular line in the director via

an escape into the third dimension. This process is discussed at length in Chapter

8.

5.3 Two-dimensional Vortex-Like Structures

Twist-bend materials capture the geometry of both cholesterics and smectics. In this

section and the following section, we will focus on the nematic geometry, studying

merons and Skyrmions and the twist-bend phase. These are vortex-like distortions

of the material. Merons and Skyrmions in twist-bend phases are similar to merons

and Skyrmions in the cholesteric phase, as discussed in Chapter 3. A surface S

intersecting a single Skyrmion in a plane field ξ has e(ξ)[S] = +2, and consequently

must be pierced by two generic β lines, or a single degenerate β line. A meron is

a fractionalisation of a Skyrmion, and therefore an example of a structure with a

single β line with charge +1. The local structure of such a cholesteric meron is given

in cylindrical coordinates r, θ, z by

η = cos(r)dz + r sin(r)dθ. (5.10)
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Figure 5.3: The two generic bifurcations occuring in families of two-dimensional
vector fields arise as changes in stability for bend zeros. (a) The saddle-node bifur-
cation controlled by the parameter θ′, as discussed in the text. The β line changes
from unstable to half-stable, passing through a Legendrian point in the process. (b)
The Hopf bifurcation, controlled by the change in the splay along the director, as
discussed in the text. The line switches from being stable to unstable, emitting a
closed orbit in the process as in the Van der Pol oscillator. There is no Legendrian
point here. In all cases the director and its integral curves are shown in blue, the
bend vector field in orange, the tangent to β line in green, and the values of the
control parameter are shown beneath the panels.

The bend of this director is b = − sin2(r)
r er, which vanishes along r = 0. A meron

constructed in this way is shown in Fig. 5.4(a). One can also produce a type of

meron where the director winds by −1 rather than +1 around the central axis of

the meron, Fig. 5.4(b); this is still represented by a single +1 β line. We can use the

meron to get a feel for the ‘footprint’ of a β line, the size of the region over which

the polarisation p deviates from being orthogonal to the director, as a function of

the parameter K
λ ; this is shown on slices in Fig. 5.4(c). In these panels, Kλ is equal

to 1 in the leftmost panel and doubles each panel as we move to the right, showing

a linear scaling in the footprint.

Skyrmions are constructed in the same fashion, but with r ∈ [0, π] instead.

One then matches on to the uniform heliconical background state, which results

in a director than can be used to initialise a simulation. As the Skyrmion charge

of a single Skyrmion is +2, a Skyrmion will contain two generic β lines, one with
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Figure 5.4: Merons in twist-bend nematics. (a) A meron with a winding +1 and (b)
a meron with winding −1. In each case the β line has winding +1, and the director
is orthogonal to an overtwisted contact structure. By comparison with the local
profiles in Fig. 5.2, we see that the profile of the +1 winding meron is associated
with splay and twist distortions in the director, while the −1 winding meron is
associated with the director distortion |∆|. In each case, the bend zeros are shown
in green, the director in blue, and the bend in orange. Bottom: a plot of n · p on a
slice through the meron of +1 winding indicates that each β line corresponds to a
region where the polarisation is not orthogonal to the director, resulting an energy
penalty. The size of the region grows as a function of K

λ—in the images shown, Kλ
is equal to 1 in the leftmost panel and doubles each panel as we move to the right.

winding +1 and the other with winding −1, Fig. 5.5(a). We have numerically

checked metastability of the Skyrmion for heliconical far-field angle θ ∈ [0.1, 0.5]

and elastic constants U/C ∈ [0.1, 0.5] in simulations performed in a box with height

chosen to match one pitch length and with periodic boundary conditions.

One can also form lattices of Skyrmions, Fig. 5.5(b,c).

5.4 Three-dimensional Vortex-Like Structures

The structures discussed in the previous section are all quasi two-dimensional, in

that they consist of straight tubes whose properties are essentially determined by a

transverse slice, and moreover the β lines are tangent to the director. This is a highly

nongeneric situation. We can also construct merons and Skyrmions which have

an essentially three-dimensional character, laying along curves in three-dimensional

space. Tying these curves into knots and links can produce textures with nontrivial
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Figure 5.5: (a) A single Skyrmion in a twist-bend phase is characterised by two
β lines, one with +1 winding (green) and one with −1 winding (red), for a total
Skyrmion charge (value of the Euler class on a surface transverse to the axis of
the Skyrmion) of 2. The red disk indicates the size of the Skyrmion region. (b) A
hexagonal lattice of Skyrmions, where the colours indicate the magnitude of the ez
component of the director. (c) The same Skyrmion lattice, but where the colours
now indicate the magnitude of the bend vector field. In each case the director is
shown as blue cylinders, and the bend vector field as orange arrows.

Hopf invariant, which too have an essentially three-dimensional character. Over

100 molecules are known to form twist-bend phases [JLS18], with typical pitches

on the nanometre scale. The short pitch means that the textures with fully three-

dimensional tubes of merons and Skyrmions, such as those produced in [TS19], are

currently experimentally inaccessible, as the techniques used to generate them in

cholesterics do not work at such small scales. Nonetheless, we can generate and

examine such textures numerically.

5.4.1 Meron Tubes

To produce knotted tubes of merons, we employ the same construction as in §3.9.4.
Given a knot K, one may locally construct a texture with K as a β line using the

director

n = cos
( πr

2R

)

ez + sin
( πr

2R

)

[cosφ ex + sinφ ey] , (5.11)

on a tube of radius R around K, where r is the radial distance from K and φ =

qz + ωK

2 , for ωK the solid angle function of the knot [BA18]. Close to the knot

the solid angle function agrees with the angular coordinate in a local cylindrical

coordinate system, so this construction generalises the meron director (5.10). The

director (5.11) is extended by taking it to be the heliconical ground state outside

this tube. An example, where K is the 41 knot, is shown in Fig. 5.6(a). It is

easy to extend this to a general link: we simply peform the construction along each

component of the link separately. Along the β line itself the director is oriented along

the z axis, and it rotates through an angle of π
2 as we move outwards; this implies

there were will be at least two Legendrian points. Such knotted tubes of merons,
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also called ‘heliknotons’, have recently been constructed in cholesterics [TS19]. In

Chapter 8 I give an alternative construction of linked meron tubes in cholesterics

which produces textures very similar to those in [TS19], where the β lines are without

Legendrian points, but also not along an arbitrary link. Of course this construction

can be adapted to twist-bend phases as well.

Figure 5.6: Knotted β line meron textures in twist-bend nematics. (a–d) shows
a β line tied into a figure-eight knot, embedded in heliconical background. The
local structure of the director (a, b) is an escape-up meron containing a single β
line (colour denotes helical phase φ). In (c) level sets (orange) show φ = 0, and in
(d) we show φ on a cross-sectional slice through the entire knot. This construction
generates any knot or link; in (e) we show β lines tied into Hopf Links with linking
numbers±1, and their distinct helical phase fields. Figure reproduced from [BPA20].

5.4.2 Hopfions

For the purposes of this section, a ‘Hopfion’ will be any liquid crystal texture with

nonzero Hopf invariant; for technical purposes, the ‘Hopf invariant’ is the quantity

obtained by computing either the self-linking number of the zero set of the (Legen-

drian) bend vector field as described in §2.4, or the linking number of two preimages,

which captures the same information as the usual Hopf invariant in S3; see Chapter

2 for the details.

Stable Hopfions are impossible in a nematic described by the Frank en-

ergy (1.2) with one elastic constant, a result known as the Derrick–Hobart theo-

rem [Hob63; Der64]. The energy E in this case is just the L2 norm of the gradient

tensor ∇n. A necessary condition for a particular director to be stable with respect

to the energy E is that the second variation of the energy is non-negative. Suppose

n has nonzero energy, and contains a spatially localised structure like a Hopfion.

We may rescaling the spatial coordinates by a factor of λ, which corresponds to a

shrinking of the spatially localized hopfion structure. A simple calculation given in

Ref. [Der64] shows that such a dilation always reduces the energy E, and that the
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second variation of the energy of n is negative. The conclusion is that any Hopfion

we may initialise will shrink in size until it is gone, a fact that can be reproduced

in numerical simulations.

There are two obvious ways to try and get around the Derrick–Hobart the-

orem. If there is an inherent length scale in the material, such as that provided by

the pitch length in a cholesteric, this acts to prevent expansion or contraction by

setting a preferred size for the Hopfion. When the material is confined in a domain

with fixed boundary conditions, anisotropy of the elastic constants also serves to

introduce a lengthscale which aids stability. The first experimental realisations of

Hopfions in cholesteric liquid crystals appear in Ref. [CAA+13], and in the further

work of Ackerman and Smalyukh [AS16; AS17], which I will briefly describe. The

domain for these experiments is a slab which we roughly identify with R2 × [0, 1],

where physically the boundary consists of glass slides. The experiments impose

normal anchoring on the boundary and a uniform far-field for the director, so we

may compactify and regard them as taking place in S3. A cholesteric liquid crys-

tal is first prepared in a twist-free state where the director is n = ez. Due to the

optical Fréedericksz transition, the liquid crystal director will align according to its

coupling with the optical-frequency electric field of the laser beam, a fact which is

exploited in the experiment by using optical tweezers moved in a circular pattern

to produce H = ±1 hopfions whose preimages form the Hopf link, where the sign is

determined by the direction of rotation. One can also produce examples of Hopfions

with more complicated linking of preimages and/or with Hopf invariants larger than

1 in magnitude, see [AS17].

If shrinking is not energetically favourable, the only mechanism by which

a Hopfion may be destroyed is via a homotopy producing and annihilating a pair

of defects, which in turn creates or destroys a λ line. This proceedure can be ef-

fected in a cholesteric without introducing regions of opposite handedness via the

‘singular Lutz twist’ that will be described in Chapter 6. The simplest case is when

this homotopy occurs along a closed integral curve of the director. In order for the

singular Lutz twist to work, this integral curve must be transversally hyperbolic;

it possesses both a nonempty stable and a nonempty unstable manifold. If one

attempts to create a pair of Morse defects along an orbit with +1 winding, one of

those defects will always be achiral, and the result of performing the singular Lutz

twist will be to replace the λ line with a region of reversed handedness, which is

energetically disfavourable in a cholesteric, suggesting that this mode of decomposi-

tion is inaccessible. One can of course convert between +1 and 1 winding orbits via

a homotopy, but this has its own energtic costs associated to it. By the fact that
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Figure 5.7: A Hopfion in a twist-bend nematic phase. (a) The β lines (green) are
show with orientation vector j. The surface shown is the set where the z component
of the director vanishes. This torus structure is indicative of the Hopf texture. There
are three β lines, but computing the linking number of these lines results in zero,
as the two ‘planar’ β lines have opposite linking with the fully three-dimensional
line. Instead, the Hopf invariant manifests through the self-linking number of the
three-dimensional β line, which is shown alongside its pushoff (orange) in panel (b).
(c) One may also compute the Hopf invariant by looking at preimages. Here we
show the set of points where n = ±ex as yellow and magenta lines. Clearly they
form the Hopf link. The director (white) is also shown on a slice.

Hopfion structure are stable in cholesterics, we can conclude that these energetic

costs must be greater than simply tolerating the distortions associated with the λ

lines.

Due to the stability of Hopfions in cholesterics and the similarities between

twist-bend nematics and cholesterics, it is natural to ask whether they can be sta-

bilised in twist-bend materials as well. Numerical explorations suggest that Hopfions

in twist-bend nematics are unstable, decaying not by shrinking, but by the collapse

mechanism just described; that said, we have not performed a complete parameter

sweep, so it is possible there exist regions of parameter space where stability can be

achieved.

Fig. 5.7(a) shows a realisation of a Hopfion in a twist-bend nematic before its

collapse. This is initialised using the Hopf fibration director field [CAA+13]. Notice

there is not a single β line, but rather three. Two of these lines are planar, and

they are topologically redundant, as the Hopf invariant is given purely by the self-

linking number of the fully three-dimensional β line, which is shown in Fig. 5.7(b)

(green) along with its pushoff (orange); the latter is constructed as described in §2.4.
One can also see the nontrivial Hopf invariant by looking at a pair of preimages,

Fig. 5.7(c).

The collapse of the structure in Fig. 5.7 is shown in Fig. 5.8, from left to

right. Initially, the torus that represents the Hopfion ‘pinches off’. In terms of the

preimages, this involves the two components of the link coming together. Their
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Figure 5.8: The observed decay of a Hopfion in a twist-bend phase is not through
shrinking as it would be in a nematic phase, but through the creation of point
defects, as is necessary to change topological invariants. The decay process is shown
from left to right. The preimages of n = ±ex are shown as yellow and magenta
lines; in the second panel, they meet at the point defects. The director is shown as
white cylinders of a cross-section, which illustrates that there is a periodic orbit of
the director, around which the winding is +1. The twist of the director is shown on
another cross section. Initially it is everywhere negative (blue), but after the decay
process there is a toriodial region of positive twist (red) left behind.

collision occurs at exactly the moment an index 0 point defect, with local structure

A2 (see Chapter 6), is created. This defect splits into a pair of ±1 charge defects

which move in opposite directions around the loop, removing the preimages as they

go. When they reach one another again they annihilate, and the result is a removal

of the Hopfion and the return to (what appears to be) a uniform state. This process

is described in greater detail in Chapter 6. A feature of the Hopf texture used

to initialise this simulation is that there is a closed periodic orbit of the director,

which sits at the centre of the torus structure shown in Fig. 5.7. The winding of the

director around this orbit is +1. When the point defects are created, it is in fact this

orbit they are erasing. Because the orbit has winding +1, one of the created defects

must be of hedgehog type. I show in Chapter 6 that such defects are fundamentally

achiral, sitting on an interface between regions of opposite handedness. A region

of ‘reversed handedness’ connects the two defects, grows as they move around the

periodic orbit, and is left behind when they annihilate again. Thus the result of the

decay process is to replace the Hopfion with a toroidal region of left-handedness in

an otherwise right-handed background, as seen in the final panel of Fig. 5.8.

This is our first example of an energetically stable ‘twist solition’. The theo-

rem of Lutz & Martinet (Theorem 3.4) implies there is a contact structure in every

homotopy class of plane fields, so this region is not topologically protected and can

be removed; however, removing it is a nonlocal process. More examples of twist

solitions in the cholesteric phase are given in Chapters 7 and 8.
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5.5 Smectic-Like Structures

In addition to the vortex-like structures examined in the previous two sections,

which are classically cholesteric structures, we can define twist-bend analogues of

smectic structures. In a smectic A (SmA) material the director is normal to a family

of surfaces, and hence defines a (singular) foliation. Moreover, such materials have

a constant layer spacing, so the foliation is a measured foliation [FLP79; Po1]: there

is a nonzero measure on the space of arcs transverse to the leaves which is invariant

under deformations of the arcs that leave the endpoints fixed; the idea being that

this measure gives the ’distance between leaves’ is independent of the choice of arc

used to measure the distance. Foliations by closed 1-forms are always measured,

and we will usually assume the smectic director is a = ∇φ/ ‖∇φ‖, for some function

φ called the smectic phase field1.

In the chiral smectic A phase (SmA∗) the director makes a constant angle

with the layer normal a, and the direction of deviation from the layer normal rotates

as one moves transverse to the layers, causing the integral curves of the director to

become helices transverse to the layers. The one-dimensional periodicity of the he-

liconical phase leads to a general correspondence with the elasticity of smectics and

so a description in terms of ‘smectic-like’ phase fields, and a coarse-grained theory

of twist-bend nematics that makes analogy with the smectic case. The heliconical

phase φ = qz in the heliconical ground state is the same as the phase in the mass-

density wave of the smectic ground state. Other smectic phase fields—corresponding

to screw dislocations, edge dislocations, TGB phases, focal conics, etc.—lend them-

selves to analogous twist-bend states with the same helical phase field and provide

examples of smectic-like defects in twist-bend nematics.

Let us describe a construction of a twist-bend director from a foliation defined

by the level sets of φ. Suppose we can find an orthonormal basis e1, e2 for the layers

which is parallel transported along the smectic director a, i.e., (∇ae1) ·e2 = 0. Then

the director

n = cos(θ)a+ sin(θ)(cos(φ)e1 + sin(φ)e2) (5.12)

defines a twist-bend texture templated on the smectic state with phase field φ. The

cone angle θ should be constant outside a small region around the singular lines

of the smectic, and should vanish along those lines. Away from singular lines, we

can find local coordinates x, y, z where the layer normal is ez, and therefore this

1Technically, the smectic director is actually assumed to be a perturbation of the layer normal,
as making it equal to the layer normal results in infinite enegry states, but we will not worry about
this here.
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Figure 5.9: A selection of smectic-like textures in twist-bend nematics. (a,b) Local
structure of β lines with winding +1 and −1 respectively, with the local director
structure that of a screw dislocation. The orange surfaces are level sets of the
smectic phase field φ for the screw dislocation. (c) Edge dislocation. (d) Twist-
grain boundary. (e) Focal conic. In each case the β lines are indicated by the green
tubes, the director by blue rods, and the bend vector field by orange arrows.

construction is locally equivalent to the heliconical ground state, while encoding the

global geometry of the smectic state it is modelled on.

There is an alternative description, which I describe informally here. Suppose

we are given a singular foliation F defined by a closed 1-form α = dφ, and a pair of

transverse sections e1, e2 with the following properties: (1) neither e1 nor e2 vanish

at any point, and (2) there exists a closed 2-form Ω, positive on each nonsingular leaf

L of F , such that both e1 and e2 preserves the area form Ω|L on every nonsingular

leaf L. Then cos(φ)e1+sin(φ)e2 is a contact form, and by Lemma 6.3 from Chapter

6, its Reeb field is tangent to F . Define a director as in (5.12). Then the Reeb

field of the dual 1-form is still tangent to F , however the director is transverse to

the foliation by construction; since the director and Reeb field are nowhere colinear,

Eq. (3.3) implies that the bend is nonzero away from the singularity in F . These

singularities are places where the Reeb field and the director are colinar, and hence

these are exactly the β lines.

Using this construction we can easily produce analogues of classical structures

from smectic physics in bent-core materials. The singularities in these textures are

of a different character than the vortex-like distortions described in §5.3 and §5.4.
See Fig. 5.9 for a selection of such structures. All the textures described in this

section belong to the zero homotopy class of plane fields, and are overtwisted contact

structures in that class. Despite this, they nonetheless have interesting geometry

and are energetically metastable, i.e., they don’t immediately collapse to a trivial

plane field.
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5.5.1 Screw Dislocations

Our first example of a smectic-like defect is the screw dislocation, for which we

consider the texture

n = cos θ(r) ez + sin θ(r)
[

cosφ ex + sinφ ey
]

, (5.13)

where φ = qz + s arctan(y/x), with s ∈ Z the defect strength, and θ(r) interpolates

smoothly from 0 at the origin to the heliconical far field angle as r :=
√

x2 + y2 →
∞. In Fig. 5.10 we show these textures for s = +1,−1 in panels (a,b) respectively.

The phase field φ contains a smectic screw disclocation along the z axis such that

around any positively oriented loop in the xy-plane encircling the axis φ winds by

2πs. This is shown by the winding colour map in Figs. 5.10(a,b)(i), which also

show the level set φ = 0 as an orange surface; this surface corresponds to the layers

of a smectic screw dislocation. Note the difference in the sense of rotation between

panels (a) and (b). Figs. 5.10(a,b)(ii) show the same level set φ = 0 but zoomed out,

emphasising that away from the screw dislocation we simply have equally spaced

layers, φ ≈ qz. In Fig. 5.10(a,b)(iii) we add integral curves of the director, with their

intersection with the φ = 0 surface indicated by black points; in the limit r → ∞
the integral curves are exactly helices and the marked points are locations along the

integral curves of the same ‘helical phase’. The screw dislocation corresponds to a

2πs ‘phase slip’, as can be seen in Fig. 5.10(a,b)(iv) in which we show a top down

view of the integral curves alongside the phase φ on the xy plane.

The bend of (5.13) is

b = (n·∇θ) [cos θ (cosφ ex + sinφ ey)− sin θ ez]+(n·∇φ) sin θ [− sinφ ex + cosφ ey] .

(5.14)

We first consider its far field behaviour. As r → ∞, ∇θ → 0 and (5.14) becomes

b = q cos θ0 sin θ0 [− sinφ ex + cosφ ey] , (5.15)

exactly the heliconical bend but with qz → φ = qz+arctan(y/x). We conclude that

the bend winds as φ, and so there is a 2πs winding of the bend vector about the

origin. This winding is shown in Fig. 5.10(a,b)(iv). The bend (5.15) also rotates

along the pitch axis z with pitch 2π
q , giving a periodic structure to these defects

along z, as shown in Figs. 5.10(a,b)(v). For s = +1, a radial profile rotates to

become azimuthal and then back to radial. For s = −1, the axes of the −1 profile

rotate along z.

As r decreases and we approach the axis the integral curves are no longer
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+1

-1

Figure 5.10: Screw dislocations in twist-bend nematics. Panels (a,b) show +1,−1
strength screw dislocations respectively. The β line along the z axis is shown in
green. (a,b)(i) Helical phase field on three z slices, with φ = 0 level set shown in
orange. (a,b)(ii) Zoomed out view of φ = 0 level set, showing equispaced layers
away from the screw dislocation. (a,b)(iii) Director integral curves (blue) with their
intersection with φ = 0 shown as black dots. (a,b)(iv) Top down view of integral
curves, with bend vector (orange) shown on a z = 0 slice. (a,b)(v) Perspective view
of integral curves and their bend vector, showing periodic variation of the bend along
the screw. (a,b)(vi) Degeneration of the integral curves to a straight line, which is
also the β line, as we approach the z axis.
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exactly helices, however the 2πs winding of the bend vector is preserved. We can

regard the integral curves as approximately helices but with curvature and torsion

that vary with r, which is a good approximation provided the tilt angle θ0 is small.

More precisely, consider the magnitudes of the two terms in (5.14),

n · ∇θ = sin θ θ′(ro) cos
(

qz + (s− 1) arctan
( y
x

))

, (5.16)

sin θ(n · ∇φ) = sin θ

(

q cos θ +
sin θ(r)

r
sin
(

qz + (s− 1) arctan
( y
x

))

)

. (5.17)

Note that (5.17) shows that we require θ(ρ) to vanish at least linearly at the origin.

The ratio of the two terms is then approximately θ′(0)/(q + θ′(0)) and taking θ′(0)

to be roughly θ0 divided by the pitch the ratio is of order θ0
2π and is small. We can

then neglect (5.16), and simplify (5.17) to |b| = q sin θ(r) cos θ(r), the curvature of

an integral helix. As r → 0 this curvature vanishes, and along the z axis itself the

helices degenerate to a straight line, which is also our β line. A schematic of this

degeneration is shown in Fig. 5.10(a,b)(vi) and can be compared against numerical

relaxation of a screw dislocation shown in Fig. 5.11. We identify the core region of

the β line by measuring how the cone angle θ deviates from the preferred value θ0

of the heliconical state and indicate it by blue shading. On the right, we show the

size of the core region for different values of K
λ , corresponding to the helical pitch,

increasing from top to bottom. The value of Kλ doubles with each panel, illustrating

a roughly linear scaling. The final panel is illustrated in more detail on the left of

Fig. 5.11; compare with Fig. 5.10(a)(vi).

5.5.2 Twist Grain Boundary Phases

Twist grain boundaries in smectics are formed by arrays of equally spaced screw

dislocations and mediate a rotation of the smectic layer normal. This same structure

can be encoded into a director field that locally corresponds to the heliconical state;

the grain boundary mediates a rotation of the helical (pitch) axis and each of the

screw dislocations becomes a β line. We first review briefly the construction of grain

boundaries in smectics.

A single grain boundary in a smectic can be described by the phase field [MKA17]

φ = Im ln
[

e−y/ℓeiφ− + ey/ℓeiφ+
]

, (5.18)

where φ± = qz cos(α/2) ± qx sin(α/2) and we choose ℓ = [q sin(α/2)]−1 to make

φ a harmonic function. The layer structure is the level set φ = 0 and is shown in

Fig. 5.12(a). For y . −ℓ we have φ ≈ φ− and for y & ℓ we have φ ≈ φ+. In the
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Figure 5.11: Illustration of the core structure of a screw dislocation. The core can
be identified with the region where the cone angle θ deviates from the preferred
cone angle θ0. (a,b) We plot the value of |θ− θ0| on a slice orthogonal to the β line
in a numerical simulation of a screw dislocation. The region where this is positive
is shown in blue. The integral curves deform from helices to a straight line, where
θ = 0, along the β line. (c) The size of the core region is shown for several values of
K/λ, which doubles with each panel, illustrating a roughly linear scaling.

plane y = 0 there are screw dislocations with axes parallel to z at x = π
2 + mπ,

m ∈ Z. The gradient of the phase field is

∇φ = q cos(α/2) ez + q sin(α/2)
sinh(2y/ℓ) ex + sin(2x/ℓ) ey

cosh(2y/ℓ) + cos(2x/ℓ)
, (5.19)

and its magnitude squared,

|∇φ|2 = q2
cosh(2y/ℓ) + cosα cos(2x/ℓ)

cosh(2y/ℓ) + cos(2x/ℓ)
, (5.20)

diverges as inverse distance squared along each of the screw dislocations. It is not

difficult to extend this construction to create phase fields containing multiple grains

and describing full twist-grain boundary phases. See Ref. [MKA17] for details.

We restrict our focus here to describing how the single grain boundary (5.18)

can be embedded into a heliconical director field with β lines along each of the screw

dislocations, i.e. the lines (π2 +mπ, 0, z), m ∈ Z. We write the director field in the
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Figure 5.12: (a) Smectic phase field for a single grain boundary. The surface shown
is φ = 0, where φ is given in (5.18). (b-c) Helical integral curves (blue) of a twist-
bend director containing a grain boundary, with β lines shown in green: (b) side
view; (c) top view.

form (5.12) and take the basis {a, e1, e2} to be

a = cosσ ez + sinσ ex, e1 = − sinσ ez + cosσ ex, e2 = ey, (5.21)

where σ is a function interpolating between −α/2 for y . −ℓ and +α/2 for y &

+ℓ, for instance σ = α
2 tanh(2y/ℓ). With this choice N differs from ∇φ/|∇φ| by

exponentially small terms away from the cores of the screw dislocations, along each of

which it is ez. To make the cone angle θ vanish linearly along each screw dislocation

and approach a preferred value θ0 outside of the core region we can choose θ =

qθ0/|∇φ|. A selection of helical integral curves of this director field are shown in

Fig. 5.12(b,c).

5.5.3 Edge Dislocations

Returning to (5.13) but taking instead φ = qz + s arctan(z/x) yields an edge dis-

location in the phase field parallel to the y axis. Tthe case s = +1 is shown in

Fig. 5.13. As we go from negative to positive x an extra 2π is inserted into φ,

corresponding to an additional full turn in the integral helices, as can be seen in

Fig. 5.13(a). On a positively oriented loop encircling the edge dislocation, the bend

therefore acquires a winding of 2πs as in the case of the screw dislocation. There

are, however, several distinct features of the edge dislocation worth emphasising.

The first is that the β line (shown in green in Fig. 5.13) is not itself an integral

curve of the director—this is the generic situation in an arbitrary director field, the

screw dislocation being an exceptional case. The second feature is the location of

the β line itself—it is not along the y axis, but slightly displaced from it, as shown

in Figs. 5.13(a,b). To understand this feature we recall some details of the phase

field φ, shown in Fig. 5.13(c) [KM16]. An edge dislocation is composed of two discli-
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(a) (b)

(c)

Director Phase

Bend Phase

H
D

H
D

Figure 5.13: Edge dislocations in twist-bend nematics. (a) xz slice through the edge
dislocation parallel to the y axis, coloured by the angle the bend vector makes with
the x axis, with director integral curves shown in blue, bend vector in orange and
the β line shown in green. Across the dislocation the bend acquires a 2π winding.
(b, c) The β line does not coincide with the phase singularity D along the y axis,
but is along the hyperbolic line H. We emphasise this difference by showing the
angle the bend vector makes with the x axis in (b), and the phase field φ in (c).
Note the discrepancy in the location of singularities.

nations in ∇φ/|∇φ|. The first is a +1 disclination along the y axis, denoted D in

Figs. 5.13(b, c), which is a singularity in φ. The second is a −1 disclination along

(−1
q , y, 0), called the hyperbolic line and denoted H in Figs. 5.13(b, c). This second

disclination is the unique location where ∇φ = 0, with φ itself nonsingular. We now

return to (5.14), derived for the screw dislocation but valid here too. Neglecting

(n · ∇θ) as before, we see b vanishes when ∇φ vanishes, and so we have a β line

along the hyperbolic line H. One might worry about the phase singularity at the

origin, but a direct expansion of (5.14) shows that the bend is in fact continuous

about the origin, taking value b = θ′(0) ey at the origin itself, and is not (as one

might initially suspect) singular—this is reflected in the smooth nature of the bend

at the origin shown in Figs. 5.13(a,b).

We briefly remark that the canonical local form of a family of curves which

pass through an inflectional configuration (where the bend vanishes) is given in [MR92],

where it is shown that on passing through the inflectional configuration the curve

normal (equivalently the bend b) picks up a 2π rotation. Locally, this is what

happens to our integral curves as we pass through the β line at H.

In §3.9, I discussed edge dislocations of cholesterics. One can initialise these

in T 3 quite easily, by taking the cholesteric ground state with different values of the
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layer number q on two halves of the torus. This can be done just as easily in the

twist-bend nematic phase, however the construction (5.12) provides an alternative

take that one can use to initialise circular edge dislocations, Fig. 5.14. This texture

on T 3 is constructed by taking a tube of radius R around the origin and filling it

with heliconical ground state with q = 2, and taking the heliconical ground state

with q = 1 outide the tube, however we can think of this as being constructed using

(5.12) starting from the fibration given by a toriodal coordinate system σ, τ, θ on

the complement of a flat circle of radius R. The coordinate θ = tan−1(y/x) is the

usual polar angle, while τ is a variant of the radial coordinate that is tangent to the

disks given by the level sets of σ, which define the fibration. One can define adapted

Cartesian coordinates by x̄ = τ cos(θ), ȳ = τ sin(θ), and these coordinate directions

given the unit vectors e1, e2 in (5.12). The bend zero has winding −1, however

the contact structure is overtwisted as can be deduced from looking at the dividing

curve on a convex torus. Again, this reiterates that while merons and Skyrmions

in chiral materials are always overtwisted disks, not all overtwisted disks are things

that would be called a meron or Skyrmion in the physics literature.

This example illustrates several important concepts discussed previously.

First, we observe that the profile of the bend around the circular β line changes

as we move along it, from a −1 winding to a +1 winding. This occurs through

a saddle-node bifurcation. Conequently, there are two Legendrian points on the β

line, where the tangent vector to the line is tangent to the planes orthogonal to the

director. The count of β lines allows us to compute the value of the Euler class

on the surface S shown in Fig. 5.14; at the point on the surface where the winding

around the β line is +1, the β line points out of the surface, and at the point where

it has winding −1, it points into the surface, and conequently e(ξ)[S] = +2, which

also witnesses the fact that this contact structure is overtwisted via the violation of

the Bennequin inequalities.

5.5.4 Parabolic Focal Conics

Focal conics are amongst the most celebrated geometric features of any ordered

phase. They are the hallmark of smectic order, corresponding to the fundamental

singularities of a material composed of equally spaced layers [FG10; Bou72; KL09].

They are also seen in twist-bend nematics [KK18], which serve to emphasise that it is

the one-dimensional periodicity that leads to focal conics, rather than a modulation

of the mass density.

A director field for a twist-bend phase containing a focal conic defect can

be constructed using the general form (5.12), where φ is the phase field of a focal
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Figure 5.14: Circular edge dislocation in a twist-bend nematic in T 3. The bend
zero (green line) has winding −1. The convex torus shown is the x = 0 plane, and
the colours indicate the dot product of the director with the normal to the surface,
with orange being positive and blue negative. The dividing set (black curve) has a
nullhomotopic component, showing this contact structure is overtwisted. The blue
tubes are integral curves of the director.

conic and a is the layer normal, away from the conic singularities themselves. The

construction and description of the Dupin cyclides and focal conic domains is classi-

cal [Max68; Cay73; ACMK10]; here, I simply quote the formulae with a convenient

parameterisation.

A focal conic domain consists of a space-filling family of surfaces—level sets

of a phase field φ—that are singular along a pair of confocal conics and uniformly

spaced everywhere else. In the case of a parabolic domain, the confocal parabolae

may be taken to be

p1(u) =

(

σ
cosu

1 + cosu
,
√
2σ

sinu

1 + cosu
, 0

)

, p2(v) =

(

−σ cos v

1 + cos v
, 0,

√
2σ

sin v

1 + cos v

)

,

(5.22)

where σ is a constant parameter corresponding to the distance between the two

foci/apices of the parabolae and −π < u, v < π. The domain itself then has the
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explicit parameterisation

x = cosu
σ − φ(1 + cos v)

2 + cosu+ cos v
− cos v

σ + φ(1 + cosu)

2 + cosu+ cos v
,

y =
√
2 sinu

σ − φ(1 + cos v)

2 + cosu+ cos v
,

z =
√
2 sin v

σ + φ(1 + cosu)

2 + cosu+ cos v
,

(5.23)

where each surface of constant φ is a parabolic Dupin cyclide. Depending on the

value of φ the range of u, v should be restricted so as to terminate the surface on

the singular parabolae. Specifically, if φ < −σ/2 then the range of u should be

restricted according to cosu < |σ/φ| − 1; if φ > σ/2 then the range of v should be

restricted by cos v < |σ/φ| − 1; and if −σ/2 < φ < σ/2 no restriction is needed. In

Fig. 5.15(a) we show the structure of a parabolic focal conic domain, with a selection

of individual layers shown in Fig. 5.15(b).

In terms of this parameterisation the frame {a, e1, e2} is given by

a =

(

− cosu+ cos v + 2 cosu cos v

2 + cosu+ cos v
,−

√
2 sinu(1 + cos v)

2 + cosu+ cos v
,

√
2 sin v(1 + cosu)

2 + cosu+ cos v

)

,

e1 =

(
√
2 sinu(1 + cos v)

2 + cosu+ cos v
,−1 + 2 cosu+ cosu cos v

2 + cosu+ cos v
,− sinu sin v

2 + cosu+ cos v

)

,

e2 =

(
√
2 sin v(1 + cosu)

2 + cosu+ cos v
,

sinu sin v

2 + cosu+ cos v
,
1 + 2 cos v + cosu cos v

2 + cosu+ cos v

)

.

(5.24)

Helical integral curves of the director field are then given by

h(u,v)(φ) = x0(u, v) +
φ

q
a+

tan θ

q

[

sinφ e1 +
(

1− cosφ
)

e2
]

, (5.25)

where x0(u, v) is a point on the cyclide φ = 0. The range of values of φ should be

limited to [ −σ
1+cosu ,

σ
1+cos v ] and the helices then extend from one conic to the other. A

selection of such helical integral curves are shown in Fig. 5.15(c-e). In this structure

the two focal parabolae are singularities and correspond to β lines. Although there

are several possibilities for how the director is resolved along these lines, one natural

arrangement places point defects at each focus/apex of the two parabolae; this local

structure is especially suggested by Fig. 5.15(e). The two point defects are both

chiral [PPČ+19].
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Figure 5.15: (a) Smectic phase field for a parabolic focal conic domain. We show
multiple different level sets φ = constant. The β lines, singularities in the phase
field φ, are shown in green. (b) Individual layers in the parabolic focal conic domain
are shown for increasing levels of φ. (c-e) Helical integral curves of a twist-bend
director containing a parabolic focal conic domain: (c) top view; (d) side view; (e)
the local structure around each focus / apex is (compatible with) that of a (chiral)
point defect. The integral curves connect one focus/ β line to the other. We show
two families of integral curves, one in red, one in blue, that converge on the same
point on one of the foci.
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Chapter 6

Singular Contact Structures:

The Local and Global Theory of

Point Defects

In this chapter I extend the ideas of contact geometry explained in Chapter 3 to

‘singular’ contact structures, which allows for a discussion of defects in chiral ma-

terials. One of the most interesting parts of this theory is the distinction between

defects that may occur in a chiral material, and those that may occur in a Beltrami

field. Although the focus is certainly on the former case, I will also comment on

Beltrami fields and applications to fluid dynamics. Singular contact structures on

so-called b-manifolds have recently been considered and applied to the study of Bel-

trami fields [MO18; CMPS19]. I was not aware of this previous work while working

on the results given in this chapter. The results of Refs. [MO18; CMPS19] overlap

slightly with this chapter, but the perspective I adopt is different and the study

of the specific types and forms of the singular points given in §6.3 and discussed

further in Chapter 7 is novel.

6.1 Singular Contact Structures

The main purpose is to introduce the idea of singular contact structure as a means

of applying the methods of contact topology outlined in Chapter 3 to cholesteric di-

rectors containing defects. Clearly, away from any defects the ideas of characteristic

foliations, convex surfaces, and the general machinery of contact topology can be

applied as usual, and consequently the primary questions concern the local struc-

ture around the singular points, and also the properties of characteristic foliations
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on surfaces that intersect singular points. Not so relevant from the point of view of

cholesterics, but very important when considering applications to fluid dynamics, is

the singular version of the Etnyre–Ghrist correspondence, which will be addressed

below in later sections.

To begin, we define the primary objects of study.

Definition 6.1. A singular plane field is a choice, for each p ∈ M , of a subspace

ξp ⊂ TpM , such that the choice depends smoothly on p ∈ M and such that the

codimension of ξp is 1, except at finitely many points Σ ⊂ M , the singularities,

where the codimension is 0.

This is a particular case of a Stefan–Sussmann distribution [Ste74; Sus73], where we

have restricted the set of singularities so that it only consists of finitely many points.

To deal with disclination lines in cholesterics we need to broaden this definition

slightly, but we will hold off on doing this for now and return to the line singularities

in Chapter 8.

Clearly, a singular plane field ξ with singularity set Σ corresponds to the

kernel of a 1-form η with the property that ηp = 0 if and only if p ∈ Σ.

Definition 6.2. A 1-form η is a singular contact form if and only if for all q /∈ Σ,

(η ∧ dη)q 6= 0. The singular plane field defined by a singular contact form is a

singular contact structure. The singular contact structure is positive (or left-handed)

if η ∧ dη ≥ 0 with respect to the orientation on M , and negative (right-handed) if

η ∧ dη ≤ 0. A singular plane field is a singular foliation if it is defined by η with

η ∧ dη = 0.

To avoid confusion, when I use the term ‘plane field’ I will always mean in the

familiar sense, and when I use the term ‘singular plane field’ I will always mean that

there is at least one singularity. The same applies to the terms ‘singular contact

structure,’ ‘singular foliation,’ and ‘singular Beltrami field.’

Although we do not have a unique Reeb field in the singular case, on the

complement of the singular points the kernel of dη is still 1-dimensional.

Definition 6.3. A vector fieldR is Reeb-like for a singular contact form η if ιRdη = 0

and η(R) ≥ 0, with equality only at the singular points of η.

Any pair of Reeb-like fields are colinear, and their singular points of Reeb-like fields

always agree with the singularities of the contact form.

The Etnyre–Ghrist correspondence follows from the existence of metrics com-

patible (or weakly compatible) with the contact form, see §3.11. In the singular case
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any version of this correspondence will follow from similar considerations. As in the

nonsingular case, the Etnyre–Ghrist correspondence for the singular case is essen-

tially equivalent to the existence of a ‘compatible metrics.’

Definition 6.4. A Riemannian metric g is compatible with a singular contact form

η if ⋆gη = dη.

Discussions of the properties and existence of these metrics are deferred to §6.2.
The tight/overtwisted dichotomy is central to the study of contact structures.

We adapt the definition to the singular case: call a singular contact structure on

M with singular set Σ overtwisted if the contact structure on M − Σ obtained by

removing all singular points is overtwisted. However, this dichotomy is not actually

relevant for singular contact structures with point singularities, as the following

proposition shows.

Proposition 6.1. A singular contact structure ξ with a singularity of nonzero index

is always overtwisted.

Proof. Let S be a sphere surrounding a singularity of index k 6= 0. Close to S, ξ is

contact, and we can consider the value of Euler class e(ξ) on S. Since S contains

a singularity we must have e(ξ)[S] = 2k. However, the Bennequin inequalities

(Theorem 3.12) for contact structures imply that ξ is tight in a neighbourhood of S

if and only if e(ξ)[S] = 0 [Gei08]. Therefore, ξ must be overtwisted.

Singularities of index 0 in a singular contact form have tight neighbourhoods. These

singularities are removable. A perturbation can remove the singular point and leave

a tight neighbourhood, or split the index 0 singular point into multiple singularities

of nonzero index, resulting in an overtwisted singular contact form. This suggests

an alternative perspective on the Lutz twist, where it occurs through a homotopy

through singular contact structures rather than by a surgery—I will come back to

this idea in §6.4.3 below.

The final tool we will need is a theory of characteristic foliations induced

by singular contact structures. Away from any singular points all the usual results

about characteristic foliations and convex surface theory apply: given a generic

surface S that does not intersect a singular point of a singular contact structure,

Theorem 3.2 provides the only constraint on the singular points of the characteristic

foliation induced on S. When S intersects a singular point of ξ we still have a

characteristic foliation, defined in the same manner, which will have singularities

both in places where ξ is tangent to S and also at places where ξ is singular; only

at the latter can novel behaviour occur. Fix a Morse–Smale vector field X on an
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orientable surface S with singularities at finitely many points Σ. We can partition

Σ = Σ0∪Σ1, where Σ1 consists of those singular points ofX for which the divergence

does not vanish (which is independent of the choice of area form) and Σ0 consists

of the points where the divergence vanishes for some area form. If X is to be the

characteristic foliation induced on S by a contact structure, then Σ0 must be empty.

In a singular contact structure this is not the case, as the following proposition shows.

Proposition 6.2. There is a singular contact form η on S × [−1, 1] inducing a

characteristic foliation directed by X on S × 0 and such that the singularities of η

occur exactly at the points of Σ0 on S × 0.

Proof. We adapt the proof of Theorem 3.2. Let z denote the coordinate on [−1, 1].

We can construct an area form Ω on X for which the divergence of X vanishes at

each point of Σ0. Define β = ιXΩ, so that dβ = divΩXΩ. As S is orientable there

is a 1-form γ such that β ∧ γ ≥ 0, with equality only when X = 0. Define Y by

γ = ιY Ω. As X is Morse–Smale we can choose Y so that its divergence is nonzero

on Σ0.

Define a family of vector fields by Xz = X − zY and a family of functions

by uz = divΩXz, and then set βz = β + z(duz − γ). We claim that η = βz + uzdz

is the desired singular contact form. To see this, first observe that the singularities

only occur on S0 × 0, as required. Then we compute that

(η ∧ dη)|z=0 = (u20Ω+ β ∧ γ) ∧ dz ≥ 0, (6.1)

with equality at the points where both β and u0 vanish. It follows that, in a

neighbourhood of S × 0, η ∧ dη = 0 only at the points Σ0. At such points η itself

vanishes, so these are the singularties of η. It follows that η is a positive singular

contact form.

Consequently it is possible to distinguish defect points from points where the singular

plane field is nonsingular but tangent to the surface. Going back to the classification

results of Zhitomirskĭı, described in §3.7, we see that the same behaviour (vanishing

of the divergence in the characteristic foliation) occurs at the points on the boundary

between regions of different handedness. It is therefore impossible to tell from the

characteristic foliation alone whether we are at a singular point of a singular contact

structure, or at a point where the handedness of a singular plane field reverses.

This suggests a connection between defects and regions of reversed handedness in

cholesterics.
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6.2 Generic Singularities

Now I turn to discussion of the types of singularity that can occur in a singular

contact form. We will only consider the local structure close to the singular point,

and hence reduce to the study of germs. A germ of a map at a point p in a manifold

M is an equivalence class of maps, where two maps f, h are considered equivalent if

there exists an open neighbourhood U of p such that f |U = h|U . This notion extends

to germs of functions, vector fields, differential forms, etc. Thus, when dealing with

germs we may assume we are working in a small neighbourhood of the origin in

R3 and that the singular point is at the origin. To simplify matters further, we

will assume all germs are analytic, that is, the Taylor series of the germ exists and

converges at the singular point.

For germs of analytic functions (vector fields, differenital forms) f we define

the k-jet jkf , the germ of a polynomial function (vector field, differential form) ob-

tained by truncating the Taylor series of f at the kth order terms. A generic germ of

a 1-form will have linear terms in its Taylor series, and hence a nonvanishing first jet.

Cholesteric liquid crystals exhibit singularities that cannot be described by a generic

singular point [PČM17; Pos18c], so in order to fully describe the experimentally-

realised textures we will have to study nongeneric singularities as well. We will

however defer a discussion of the general case to §6.3, and consider only the generic

case in this section, developing intuition that we may then apply to the general case.

Let η be a germ at the origin of a singular contact form. The linear part of

η can be described purely by a matrix A = [aij ]. Write ω =
∑

ij aijxjdxi for j
1η

in coordinates x1, x2, x3. By making a change of coordinates we can put A into its

Jordan normal form, which leaves us with three cases, depending on whether there

are one, two, or three Jordan blocks in the Jordan normal form:

ω1 = (ax1 + x2)dx1 + (ax2 + x3)dx2 + ax3dx3,

ω2 = (ax1 + x2)dx1 + ax2dx2 + bx3dx3,

ω3 = ax1dx1 + bx2dx2 + cx3dx3,

(6.2)

where a, b, c are nonzero real numbers. In the third case we can assume, by rescaling

the coordinates xj , that each constant is ±1. We compute that ω3 ∧ dω3 vanishes

identically, while ω1 ∧ dω1 and ω2 ∧ dω2 both change sign over a surface containing

the singularity.

We would like to know if the 1-jet j1η determines whether η can be singular

contact. We may consider the jets of η ∧ dη. Fixing a volume form µ = dx∧ dy ∧ dz
in some coordinate system, we can write η ∧ dη = fµ for a function f that must be
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nonnegative and vanish only at the origin for η to be singular contact. Since η itself

vanishes at the origin f does as well, and consequently it cannot have a constant

part. If f has nonvanishing 1-jet j1f , then it necessarily changes sign on some

surface that intersects the origin, and hence η would not be singular contact. Notice

we have (j1f)µ = (j1η)∧d(j1η). This observation then constrains the possible form

of the 1-jet of η. Let us make the following definition.

Definition 6.5. A germ of a linear 1-form ω with singularity at the origin is called

chiral if there exists a germ of a 1-form ν with j1ν = 0 and η = ω+ tν is a singular

contact structure for every t > 0.

The discussion above then proves the following proposition.

Proposition 6.3. In order for ω to be chiral, it is necessary that ω ∧ dω = 0, and

indeed there are coordinates so that ω = dφ for φ = ±x2±y2±z2 a Morse function.

Thus we conclude that the structure around a generic singular point in a singular

contact structure is determined entirely by a Morse function φ. Such a Morse

function φ is determined in turn by its Morse index. It is then straightforward to

obtain necessary and sufficient conditions on the Morse index for dφ to be chiral.

Proposition 6.4. A germ of a singular contact form at a Morse singularity may

have Morse index 1 or 2, but not 0 or 3.

Proof. To illustrate that the Morse index can be either 1 or 2, it suffices to supply

an example. The germ of a 1-form

η = (x+ tyz)dx+ (y − txz)dy − 2zdz, (6.3)

is a positive singular contact form with Morse index 1 for any constant t > 0, while

−η is an example with Morse index 2.

Suppose for a contradiction that η has a singularity of Morse index 0 or 3.

Then, close to the singular point, there is a sphere inside a contact structure to

which the Reeb field is transverse. But Theorem 3.5 implies this cannot occur.

The second part of this proposition also follows from a theorem of Eliashberg &

Thurston [ET91], which says that one cannot perturb a foliation into a contact

structure in the neighbourhood of a spherical leaf.

We can also construct singular contact structures with Morse singularities

that have a Beltrami Reeb-like field. For example, for Morse index 1,

α = (x cos y+z sin y)dx+(y cosx−z sinx)dy+(−z(cosx+cos y)+x sin y−y sinx)dz
(6.4)
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This is constructed using the approach in Theorem 6.4 below, which will be dis-

cussed in more detail in the next section. The vector field R dual to α in the

Euclidean metric on R3 is Reeb-like for α and satisfies ∇×R = R, and is therefore

Beltrami. More generally, singular contact forms with only Morse singularities obey

an analogue of the Etnyre–Ghrist correspondence theorem.

Theorem 6.1. (Etnyre–Ghrist Correspondence for Generic Singular Contact Forms)

Suppose that η is a singular contact form on a closed 3-manifold M with only Morse

singularities. Then there exists a Riemmanian metric g such that ⋆gη = dη, and fur-

thermore the vector field R defined by η = ιRg is Reeb-like and satisfies curl R = R

with respect to g.

Proof. Let pj , j = 1, . . . , n, be the singular points of η. Any two germs of 1-

forms α1, α2 with Morse singularities of the same index are related by a germ of a

diffeomorphism. Consequently, around each pj we can find an open ball Uj and a

diffeomorphism hj of Uj that maps pj to itself, such that the pullback of η|Uj
along

hj is either equal to the 1-form α of Eq. (6.4), or to −α. The Euclidean metric on

Uj has the desired properties for α, and its pullback gj along h−1
j has the desired

properties for η.

Let U ′
j be a smaller closed ball within Uj , and set M ′ = M − ⋃j U

′
j . We

can choose a set of smooth, nonnegative functions hj : M → R with h|U ′
j
= 1 and

h|M−Uj
= 0. Set g′j = hjgj . By Theorem 3.17 there exists a metric gn+1 on M ′ that

is compatible with η. Let hn+1 : M → R be a smooth nonnegative function equal

to 1 on M ′ and 0 on each U ′
j .

Choose a partition of unity fj subordinate to the open cover U1, . . . , Un, Un+1 :=

M ′ of M . Define a Riemannian metric by

g′ =
∑

j

fjg
′
j . (6.5)

Then by construction ⋆g′η = fdη, where f > 0 is some function. To obtain the

desired metric, we rescale g = f−2g′, which gives the desired ⋆gη = dη; this is easily

checked, see Lemma 9.21 of Ref. [Far03]. Passing to the dual vector field R defined

by η = ιRg yields the second claim.
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6.3 General Singularities

6.3.1 Singularity Theory

In this section I will recap some ideas from singularity theory, drawing primarily from

the work of Arnold [AGZV85; AGLV88]. Consider germs of mapsX : Rn → Rm that

have an isolated zero at the origin. Two such germs X,Y are considered equivalent,

X ∼ Y , if there exist germs of diffeomorphisms f : Rm → Rm, h : Rn → Rn that

map the origin to itself and are such that X = f ◦ Y ◦ h−1. A singularity is an

equivalence class of germs of maps X : Rn → Rm with isolated zero at the origin. If

X is a vector field on an n-manifold M with an isolated zero at a point p, we may

take a small open neighbourhood U of p and identify X|U with some singularity.

From now on, we restrict to the case of n = m = 3. We can identify these maps

X : R3 → R3 with vector fields, and then use the Euclidean metric to identify vector

fields with 1-forms.

We will only consider real analytic singularities. Each component of the

map X is then a formal power series in the ring R[[x, y, z]]. Let m be the maximum

ideal in this ring, generated by all power series without constant part. The com-

ponents X1, X2, X3 of the map X in some coordinate system generate an ideal

IX in this ring—the ideal is independent of the choice of coordinates. We set

QX := R[[x, y, z]]/IX , the local algebra of the singularity, which is an algebra over

R. Let µ be the dimension of Qf , i.e., the size of a basis for Qf . By Tougeron’s

Theorem [AGZV85] a map germ is finitely determined, equivalent to its k-jet for

some k, if µ < ∞. The jet jkX with the smallest k such that X is equivalent to

jkX is called the sufficient jet.

In the next theorem I summarise some results from §9 of Ref. [AGZV85].

Theorem 6.2. The equivalence class of a map germ X is determined by its ideal

IX . If Y ∈ If
1, then X + Y is equivalent to X, as they generate the same ideal. If

Q ⊂ R[[x1, . . . xn]] is a finitely-generated algebra, then it is the local algebra of some

map germ X.

Therefore, adding polynomial maps that belong to IX does not change the equiv-

alence class of the map germ X. Adding terms from the local algebra QX may

change the equivalence class of the map. Let fj be a basis for the local algebra.

The map germ X ′ = X +
∑

ij aijfjexj , for constants aij is called an unfolding of

the singularity, and may decompose the singular point into singularities of lower

multiplicity.

1By which I mean, that each component of the map Y is a polynomial that belongs to the ideal.
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We can also apply these ideas to functions φ : R3 → R. These generate

an ideal Iφ using the components of the map ∇φ, which completely classifies the

function germ [AGZV85; AGLV88]. There are three invariants of such germs: the

multiplicity µ, which is the dimension of the local algebra Qφ, and also determines

the maximum number of Morse singularities that the germ breaks apart into under

a generic deformation2; the modality m, the minimal number of parameters that

appear in a normal form for the germ; and the codimension c of the space of germs

equivalent to φ in the space of all singularity germs. These are related by the

formula [AGLV88]

µ = m+ c+ 1. (6.6)

A full tabulation of germs of modality at most 2 is given in Refs. [AGZV85; AGLV88].

6.3.2 Local Structure of Singularities

We wish to understand when a singularity can occur in a singular contact form.

We will only consider real analytic singularities of finite multiplicity, which can be

reduced via a coordinate transformation to a polynomial 1-form. To determine

when a particular germ can occur in a singular contact structure, we will consider

the possibily of perturbing a particular form for the germ into a germ of a singular

contact form.

Definition 6.6. A germ of a singular polynomial 1-form ω is chiral if there exists

a germ ν ∈ Iω such that η = ω + tν is a germ of a singular contact form for

all t sufficiently small. A chiral ω is additionally called Beltrami if there exists a

Riemannian metric g such that ⋆gη = dη.

The requirement that the perturbation ν belongs to ideal generated by ω ensures,

by Theorem 6.2, that η is equivalent to ω, and hence that the type of singularity is

preserved by the perturbation.

I have already demonstrated that when ω is linear it can be chiral if and

only if it is equivalent after a coordinate reparameterisation to dφ, where φ is a

Morse function or Morse index 1 or 2. These are additionally Beltrami, so that

the phenomenon of 1-forms that are chiral but not Beltrami can occur only for

degenerate singularities.

An important part of the classification of the linear chiral 1-forms was the

reduction to the case of a closed 1-form. More generally,

2µ is the exact number for a complex singularity, but for a real singularity it is possible to
perturb the germ in such a way as to produce fewer than µ, as a polynomial of degree d has exactly
d complex roots but may have fewer than d real roots.
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Proposition 6.5. If ω is chiral, then ω ∧ dω ≥ 0.

Proof. Since ω is chiral, there exists ν ∈ Iω such that η = ω+tν is a singular contact

form for t > 0. Then we must have

η ∧ dη = ω ∧ dω + t(ω ∧ dν + ν ∧ dω) + t2ν ∧ dν. (6.7)

Since this must hold for all t > 0 we can make the latter two terms as small as

we like. Consequently, we see that if ω ∧ dω were to change sign on the some

surface containing the origin, η would not be singular contact, and similarly if it

were everywhere negative. Therefore, we must have ω ∧ dω ≥ 0.

I conjecture that, for any singular contact form η, we must have η ∼ ω for ω∧dω = 0,

but have been unable to prove this. For holomorphic 1-forms ω ∈ Ω1(C3), ω∧dω = 0

implies that ω is equivalent (diffeomorphic) to a 1-form of the form ψdφ, for functions

φ, ψ 6= 0; this is Malgrange’s Singular Frobenius Theorem [Mal76]. I conjecture that

this is also the case for real analytic forms, but do not have a reference.

I will proceed as if these conjectures were true, and focus only on the case

where ω is equivalent to a closed, and therefore exact, germ dφ. I abuse notation

slightly and call a function φ chiral (resp. Beltrami) if dφ is. Our problem then is

to determine which germs of functions φ : R3 → R with an isolated singularity at

the origin are chiral.

The topology of the level sets of a singularity φ of index k is easily determined.

The leaves of the foliation of R3 defined by dφ are the level sets of φ. Call a leaf

singular if it contains the singular point. Take a small ǫ > 0 and consider a closed

ball B of radius ǫ centred at the origin in R3. Let 0 < δ ≪ ǫ be a regular value

of φ, and let L± = φ−1(±δ) be two nonsingular leaves of the foliation. Define

F± := L± ∩ B to be the parts of these leaves that lie in the ball B. The sets F±

are compact 2-manifolds, possibly with boundary. The index k of φ is related to the

Euler characteristic of F± by χ(F±) = 1± k [Arn78].

Lemma 6.1. If the level sets L± are compact, then |k| = 1, F sgn(k) is diffeomorphic

to a sphere, while F−sgn(k) is empty. If they are not compact, then F−sgn(k) is

diffeomorphic to the compact manifold obtained by removing |k| + 1 disks from S2,

while F sgn(k) consists of |k|+ 1 disks.

Proof. First suppose k > 0. Let L0 := φ−1(0) be the singular level set. It is a closed

and connected subset of R3. If it is compact then all nearby level sets are compact,

and vice-versa; thus it suffices to consider both L± compact or both noncompact.
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If L0 is not compact then it must be unbounded. It divides R3 into pieces.

The ‘outside’ of L0 consists of the level sets with φ < 0, while the ‘inside’ consists of

the level sets φ > 0. Each level set on the outside of L0 is also connected. Removing

the singular leaf disconnects the set φ ≤ 0, and therefore we conclude that the leaf

L+ is not connected. If the singular leaf is compact it must be a single point, so the

inside level sets are empty.

Suppose the level sets are compact and that δ is chosen small enough that

L+ does not intersect the boundary of B(ǫ). Then F+ = L+ is a compact 2-

manifold without boundary, and χ(F+) = 2− 2g, where g is the genus of F+. Since

χ(F+) = 1 + k, it follows that g = (1 − k)/2. The genus is always a non-negative

integer, so we conclude that k = 1 and g = 0, so that F+ is diffeomorphic to a

sphere.

Now suppose L± are not compact. No matter which values of δ and ǫ we

choose, the sets L± must intersect the sphere. This implies F− is a connected,

compact 2-manifold with boundary, diffeomorphic to a sphere with some number

of disks removed, while F+ is a disconnected, compact 2-manifold with boundary.

By the classification of 2-manifolds we conclude that χ(F−) = 2− b, where b is the

number of boundary components. It follows that b = k + 1. F+ is diffeomorphic to

the part of the sphere that remains after removing F−, consists of k+1 pieces, each

diffeomorphic to a closed disk.

For k < 0, the outside is φ > 0 and the inside φ < 0, and the signs in the

above argument change accordingly. We have χ(F±) = 1 ∓ |k|. The argument for

the compact sets is the same, and we find that we must have k = −1 and the level

sets are again spheres. When the level sets are not compact, F+ is a connected,

compact 2-manifold with boundary, diffeomorphic to a sphere with some number

of disks removed, while F− is a disconnected, compact 2-manifold with boundary.

Otherwise the same conclusions hold.

Informally, the level sets of a singularity of index k are either spheres, or the singular

level set is |k|+1 cones adjoined to the singular point, each filled with rounded cones

and surrounded by connected surfaces. See Fig. 6.1.

6.3.3 Beltrami Singularities

Chandrasekhar & Kendall proved what is now a classical result about Beltrami

fields: a solution to Helmholtz’s equation on R3 can be used to construct a Beltrami

field [CK57]. In particular, this applies to solutions to Laplace’s equation, so that

harmonic vector fields generate Beltrami fields. In this section we will see the
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Figure 6.1: Level sets of singularities. From left to right: singularity of Morse index
0 and index +1, singularity of Morse index 1 and index −1, the singularity D−

4 with
index −2, and the singularity T4,4,4 with index −3 (the names of the singularities
are those given in Arnold’s classification [AGLV88]). All four of these singularities
occur in experiments on cholesteric liquid crystal droplets [PČM17; PPČ+19], see
Chapter 7 for more details.

relationship between harmonic functions and Beltrami singularities.

A 1-form α is called intrinsically harmonic if there exists a Riemannian

metric g for which α is harmonic, (dδ + δd)α = 0. We will only consider the case

where α = dφ, for which more can be said. In this case the property of being

intrinsically harmonic is equivalent to a certain topological property of the leaves of

the foliation by the level sets of φ.

Theorem 6.3. (Calabi’s Theorem [Cal69; Far03]) Let ω be a closed 1-form with

isolated Morse singularities on a closed n-manifold. ω is intrinsically harmonic if

and only if for every nonsingular point p ∈M there is a closed loop that is transverse

to the foliation and passes through p.

It is clear that being intrinsically harmonic is a property of the foliation and not of

the choice of defining 1-form, and therefore is a property of a germ rather than any

particular representative of that germ.

Given the result of Chandrasekhar & Kendall, it is natural to expect that

intrinsically harmonic singularities are Beltrami—in fact these two statements are

equivalent.

Theorem 6.4. A singularity φ is Beltrami if and only if it is intrinsically harmonic.

Moreover, if g is a germ of Riemannian metric for which φ is harmonic, then there

exists a germ of singular contact form η with singularity described by φ such that

⋆gη = dη, i.e. g is compatible with η.

Proof. Firstly, suppose g is a germ of a Riemannian metric for which φ is harmonic.

We may invoke the Hodge decomposition and choose a coclosed ν1 such that ⋆gdφ =
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dν1. Since ν1 is coclosed, there exists ν2 such that ⋆gν1 = dν2. Iterating this process,

we obtain a family of 1-forms νj with ⋆gνj = dνj+1. Now define a 1-form via a formal

power series in a parameter t,

η = dφ+

∞
∑

j=1

tjνj . (6.8)

On our closed ball we can assume there is a constant bounding the components

of the 1-form νj for each j; that we can choose a single constant independent of j

follows from the relations between the νj . Then for t sufficiently small the sum must

converge absolutely, and hence it converges, so η is well-defined. Then

dη =

∞
∑

j=1

tjdνj = t ⋆ dφ+ t2 ⋆ dν1 + t3 ⋆ dν2 + · · · = t ⋆g η. (6.9)

Recall that rescaling a Riemannian metric g by a positive constant λ rescales the

norm by a factor of λ, the star operator by a factor of λ−1/2, and the volume form

by a factor of λ3/2. Thus, ⋆t2gη = dη, implying that η is singular contact and that

φ is Beltrami.

Conversely, suppose that φ is Beltrami, so that there exists ν such that

η = dφ + ν is a germ of a singular contact form, and furthermore there exists a

Riemannian metric g for which ⋆gη = dη, i.e., ⋆gdφ + t ⋆g ν = dν. We may write

η = dψ + δα + γ via the Hodge decomposition theorem applied to g, where ψ is a

function (possibly different from φ), α is a 2-form, and γ is a g-harmonic 1-form.

Then ν = d(ψ−φ)+ δα+ γ, from which we conclude that d ⋆g ν = d ⋆g dψ− d ⋆g dφ.

We also compute that ⋆gdφ = (dν − ⋆gν), from which we conclude that d ⋆g dψ = 0,

so ψ is harmonic with respect to the Riemannian metric g.

Further, ψ and φ are equivalent as germs of functions: we must have dψ =

dφ + dχ for dχ ∈ Idφ, and then we apply Theorem 6.2. Since being intrinsically

harmonic is a property of the germ and not its representatives, we conclude that φ

is intrinsically harmonic as well.

Corollary 6.4.1. Being Beltrami is a property of the equivalence class of germs φ,

not just a particular representative of that class.

Applying the construction in Theorem 6.4 to the Morse singularities φ = 1
2(x

2 +

y2)−z2 which are harmonic with respect to the Euclidean metric yields the singular

contact forms 6.4. Applying it to a constant 1-form Adx + Bdy + Cdz gives the
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Arnold–Beltrami–Childress (ABC) 1-forms

ηABC = (A sin z+C cos y)dx+ (B sinx+A cos z)dy+ (C sin y+B cosx)dz, (6.10)

The dual (with respect to the Euclidean metric) vector fields, the ABC fields, are

important examples of Beltrami fields. We can reparameterise, and assume A =

1, B, C ∈ [0, 1], and furthermore the vector field is nonsingular if and only if B2 +

C2 < 1 [DFG+86].

Proposition 6.6. The ABC 1-forms define tight (singular) contact structures when

B2 + C2 ≤ 1, and overtwisted singular contact structures when B2 + C2 > 1.

Proof. That nonsingular ABC 1-forms, with B2 + C2 < 1, are tight was shown by

Etynre & Ghrist [EG00a]. The argument is simple: every ABC 1-form is clearly

homotopic through contact forms to the ABC 1-form with B = C = 0, which is the

(tight) cholesteric ground state, and since tightness is a homotopy invariant they are

tight as well. Proposition 6.1 implies the singular contact forms with singularities of

nonzero index are overtwisted. These make up the B2 + C2 > 1 part of parameter

space. The curve B2+C2 = 1 consists of singular contact forms with only removable

singularities, which are also tight.

Finally, we note that the Etnyre–Ghrist correspondence holds for singular contact

structures with Beltrami singularities, almost by definition.

Theorem 6.5. (Etnyre–Ghrist Correspondence for General Singular Contact Forms)

Suppose that η is a singular contact form on a closed 3-manifold M with only Morse

singularities. The following are equivalent:

1. Every singularity of η is a Beltrami singularity.

2. Then there exists a Riemmanian metric g such that ⋆gη = dη, and furthermore

the vector field R defined by η = ιRg is Reeb-like and satisfies curl R = R with

respect to g.

Proof. That (2) implies (1) is immediate from the definition of a Beltrami singularity.

The prove that (1) implies (2) we can apply essentially the same argument used in

Theorem 6.1, using Theorem 6.4 to supply the compatible metrics on open balls

around the singular points.

6.3.4 Chiral Singularities

Finally, we turn to the degenerate types of singularity that are chiral, but are not

Beltrami. A simple example shows these exist.
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Proposition 6.7. The singularity D−
4 defined by the function φ = x2y−y3/3+z2/2

is chiral, but not Beltrami

Proof. Firstly we construct ν such that the germ η = dφ+ tν is a germ of a singular

contact form, demonstrating that φ is chiral. The perturbation is

ν = (z(x2 − y2)− yz3)dx+ (xz3 − 2xyz)dy. (6.11)

We can check η ∧ dη ≤ 0, so the singularity D−
4 is chiral.3

If φ were Beltrami, then there would be a Riemannian metric g for which

d ⋆g dφ = 0. Write g = g0 + g′, where g0 := j0g is the constant part and g′ the

higher order terms. Since g0 is flat it is equivalent to the Euclidean metric, and we

can find coordinates in which ⋆g0 is represented by the identity matrix. Then, by

linearity

d ⋆g dψ = d ⋆g0 dφ+ d ⋆g′ dφ. (6.12)

The first term on the right-hand side contains a nonzero constant term, as it is

equal to the trace of the Hessian matrix of φ. The Hessian matrix has corank 2

and therefore has nonzero trace. The second term, d ⋆g′ dφ, vanishes at the origin.

Therefore d ⋆g dψ does not vanish at the origin, a contradiction.

Note that it is enough to check just one form of the singularity, as being Beltrami

is property of an equivalence class and not a particular representative.

A singularity of index −2 in a Beltrami field can be produced using spheri-

cal harmonics; the simplest example using spherical harmonics yields a singularity

equivalent to the germ U12 (in Arnold’s notation [AGLV88]) which can be defined

by a function germ φ = x2y − y3 + z4 + axyz2, for a parameter a ∈ R. This implies

that the index −2 singularities of lowest multiplicity, a priori the most likely to

occur, in fact cannot occur in Beltrami fields, and one is forced to have singularities

of higher multiplicity and therefore more complicated structure. It also impacts on

the possible unfoldings of the singularity.

The classification of chiral singularities follows from similar arguments to

those used in Theorem 6.4. To prove this theorem, we need a singular version of

Lemma 3.9. Fix a Riemannian metric g on a manifold M with star operator ⋆g and

volume form µ. Given an orthonormal basis ej for the space of 1-forms Ω1M , we

have a basis ⋆ge
j for the space of 2-forms Ω2M . If we then have a smooth linear

map s : T ∗M → T ∗M , we can express this as a matrix S = [sij ] with respect to the

3It can in fact be realised experimentally in a cholesteric droplet, as we will see in the next
chapter.
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orthonormal basis ej , and it induces a linear map ŝ : Ω1M → Ω2M by defining the

action on basis covectors to be ŝei =
∑

j sij ⋆g e
j . If the matrix S is nonsingular,

symmetric, and positive definite then we can construct a Riemannian metric h such

that the ⋆ operator ⋆h agrees with ŝ when acting on 1-forms. Otherwise, ŝ is a

generalisation of the Hodge star operator that is, in a sense, ‘singular.’

Lemma 6.2. Let α be a 1-form and β a 2-form on a compact 3-manifold M ,

with mutual zero set Σ consisting of finitely many isolated points. Suppose that

(α∧ β)p ≥ 0 for each p ∈M , vanishing if and only if p ∈ Σ. There exists a smooth,

symmetric, linear map ŝ : Ω1M → Ω2M that may only vanish on Σ, is positive

definite otherwise, and is such that ŝα = β.

Proof. As β|ker α ≥ 0, vanishing only on Σ, the kernel of β is 1-dimensional, spanned

by some vector field Y vanishing on Σ and such that α(Y ) ≥ 0, with equality only

at the points of Σ. We can find a Riemannian metric h such that α is dual to Y

in this metric. Then β defines a skew-symmetric bilinear form on the kernel of α

which is positive definite on the complement of Σ. Let A be the matrix defining this

form with respect to some local coordinate system on M .

A nonvanishing skew-symmetric matrix can be uniquely polarised, A = GF ,

where G is positive-definite and symmetric and F is orthogonal. When the skew-

symmetric matrix is allowed to be singular, we may still define a (not necessarily

unique) polar decomposition by a limit. Let Ak be a sequence of nonsingular skew-

symmetric matrices tending to A. Their polar decompositions Ak = GkFk exist. As

O(2) is compact, there is an F ∈ O(2) and a subsequence Fkj such that Fkj → F

as j → ∞. Then A = F
√
ATA.

Take G =
√
ATA. This defines a smooth linear map on the kernel of α which

is symmetric and positive definite away from Σ, where it may vanish. Extend it to

all ofM by taking it to agree with these matrix for ⋆h in the direction Y . This gives

a smooth linear map defined by symmetric, positive semi-definite matrix S, which

we use to define the linear map ŝ. By design, ŝ is symmetric, positive definite away

from Σ, and ŝα = β.

Note that we do not know for certain that ŝ will fail to be positive definite at

the points of Σ, only that this may be the case. For example, if we take α =

cdx+ydy−zdz and β = xdy∧dz+ydz∧dx−zdx∧dy, then we can take ŝ to agree with

the star operator of the Euclidean metric. If we take β = xdy∧dz+y3dz∧dx−zdx∧dy
instead, then the desired map ŝ exists but cannot be positive definite.

Theorem 6.6. A singularity φ is chiral if and only if there is a germ of a symmetric
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map ŝ : Ω1R3 → Ω2R3 that is positive definite except at the origin, for which dŝdφ =

0.

Proof. Note that we can use ŝ to define a ‘norm’ on germs of 1-forms by |α|2dx ∧
dy ∧ dz = α ∧ ŝα, and that |α| is nonnegative, and positive away from the origin

and any points where α = 0.

Suppose first that dŝdφ = 0. Then ŝdφ = dν for some germ of a 1-form ν.

Take η = dφ+ tν. Then

∂(ηt ∧ dηt)
∂t

∣

∣

∣

∣

t=0

= dφ ∧ dν = |dφ|2dx ∧ dy ∧ dz ≥ 0, (6.13)

with equality at the origin. Then η is a singular contact form for t > 0 sufficiently

small, i.e., dφ is chiral.

For the other direction we note that chirality implies that there exists some

ν for which dφ ∧ dν ≥ 0, and then apply Lemma 6.2 to α = dφ, β = dν to obtain

the desired map ŝ.

In general, singularities of corank 2 may be chiral but not Beltrami. These include

the families D±
k and Ek of simple singularities. We might reasonably refer to germs

satisfying the condition dŝdφ = 0 as quasiharmonic and attempt to classify them

in the same way that harmonic germs are classified by Calabi’s theorem. However,

in this case a topological definition is impossible, as the topology of the leaves of

D−
4 is identical to that of the harmonic U12. More work is needed to understand

exactly the conditions that make a function germ quasiharmonic, and whether the

chiral corank 2 germs are an exhaustive list.

6.4 Global Properties of Singular Contact Structures

Now we turn to global features of singular contact structures, extending those global

results already proved in §6.1. The main results are a global existence theorem for

singular contact structures on closed manifolds, and also on manifolds with boundary

where the Reeb-like fields are constrained by a particular boundary condition. In

the latter case, when the boundary condition is tangential there is no obstruction

to existence, and when the boundary condition is transversal the only constraint

is the one I have highlighted previously, that the boundary cannot have spherical

components. Finally, I define a version of the Lutz twist procedure that is effected

by a homotopy through singular contact structures rather than a surgery. This

homotopy is something that can happen in a real material, and gives some idea how
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homotopy invariants of a cholesteric director might be changed during the relaxation

of the texture.

6.4.1 Existence Theorems

In this section we demonstrate that every singular plane field with chiral singularities

is homotopic to a singular contact structure, showing that singular contact struc-

tures exist on every 3-manifold and also that there are no global constraints on the

structure of the singular set other than the Poincaré–Hopf theorem. Before turning

to this more general result, notice that Theorem 6.4 gives us a global perturbation

result for foliations, at least when M has vanishing first homology.

Proposition 6.8. Let M be a 3-manifold (not assumed to be closed) with H1(M) =

0 and let φ : M → R be a smooth, intrinsically harmonic function such that dφ

has finitely many isolated zeros at the points of a set Σ. Then dφ can be linearly

perturbed into a singular contact form η = dφ+ tν.

More generally, we have the following.

Theorem 6.7. (Lutz–Martinet Theorem for Singular Contact Structures) A singu-

lar plane field ξ with chiral singularities is homotopic to a singular contact structure

via a homotopy that fixes the singular points.

Proof. Firstly, choose an open neighbourhood Uj of each each singular point pj . By

the fact that the singularities are chiral, we can perturb ξ to a new singular plane

field ξ1 that is contact on Uj . Let Vj ⊂ Uj be a smaller open neighbourhood and set

M ′ =M − ∪jVj . Then ξ1 is a plane field on M ′ that is contact near the boundary.

We need to show it can be homotoped rel. boundary to a contact structure. Let

W denote the interior of M ′. This is an open manifold with only S2, and hence

the classification of contact structures with some particular behaviour at infinity

(as specified by the characteristic foliation induced on ∂M ′ by ξ1) is the same as

for compact manifolds [Eli93; Tri04]—in particular, there exists at least one contact

structure that agrees with ξ1 at infinity, which gives us a contact structure on M ′

that agrees with the plane field ξ1 near the boundary. This may not lie in the same

homotopy class as ξ1, but we can modify the homotopy class using Lutz twists until

they agree. Thus ξ1 is homotopic rel. boundary to a contact structure, which implies

that ξ is homotopic to a singular contact structure.

For applications it would be useful to have a more constructive proof in line with

Proposition 6.8. The geometric heat flow method of proving the existence of contact
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structures on closed 3-manifolds developed by Altschuler [Alt95] may be useful in

this regard. In Altschuler’s approach, one begins with a confoliation and regards

the contact part as being ‘hot’. A heat diffusion equation is then used to diffuse

the heat along the leaves of the foliated part. As long as every point in space

can be connected to the hot region by a finite length path tangent to the leaves

of the foliated part, then the entire manifold will instantaneously become hot: the

confoliation will have become a contact structure.

Suppose we have a foliation defined by a closed intricially harmonic 1-form

with isolated singularities, which will necessarily be Beltrami singularities by Theo-

rem 6.4. Then, by Calabi’s theorem, there exists a finite link L that intersects every

leaf of the foliation. We can perturb the foliation into a confoliation in a neigh-

bourhood of L using the method developed in §5 of [Alt95]. As L passes through

every leaf of the foliation, this ‘hot region’ is connected to any ‘cold’ point by a path

tangent to some leaf of the foliated part. Then turning on the heat equation will

diffuse the heat and instantly make the plane field contact at every point except for

the singularities.

6.4.2 Boundary Conditions

Next we turn to the study of singular contact structures on manifolds with boundary

and an appropriate boundary condition. Given a singular contact structure ξ with

singular contact form η, there are two boundary conditions that are relevant for

experiments on liquid crystals:

1. Normal anchoring: the Reeb-like fields of η are transverse to ∂M ,

2. Planar anchoring: the Reeb-like fields of η are tangent to ∂M .

Normal anchoring is the constraint used in the experiments we will study in Chapter

7. Note further that both these conditions are independent of the choice of Reeb-like

field, but not of the choice of singular contact form: consequently, in this section

we again focus on the particular 1-forms defining the singular contact structure and

not the singular contact structure itself.

First we treat the case of normal anchoring, when the Reeb-like fields are

transverse to the boundary. Here, we may apply results of Eliashberg & Thurston [ET91].

Theorem 6.8. Let M be a compact 3-manifold with boundary ∂M . There is a

singular contact form η on M whose Reeb-fields are transverse to the boundary if

and only if ∂M does not contact a spherical component.
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Proof. Eliashberg & Thurston’s Reeb Stability Theorem for Confoliations (Theorem

3.5) establishes that a Reeb-like field cannot be transverse to a sphere, and hence

we can immediately deduce that the desired singular contact form cannot exist if

M has a spherical boundary component.

To show that the absence of a spherical boundary component is in fact suffi-

cient, we again apply results from Confoliations, this time Proposition 1.3.13 [ET91].

This proposition ensures that for a surface Sg of genus g > 0 we can find a plane

field on Sg × (−1, 0] that is tangent to the surface Sg × 0 and contact everywhere

else. Plainly a small perturbation of such a plane field results in a contact structure

with the property that the Reeb field of any contact form defining it is transverse

to Sg × 0.

We construct the desired singular contact structure on M in the following

manner. Firstly, we construct contact structures in a neighbourhood of each bound-

ary component using the results of Eliashberg & Thurston. We may extend this

contact structure as a singular plane field ξ over all of M , ensuring that each singu-

larity of this plane field is of Morse type with Morse index 1 or 2. Finally, we apply

Theorem 6.7 to homotope ξ into a singular contact structure, keeping it fixed near

to the boundary.

To understand planar anchoring, we first need to examine the additional properties

of the characteristic foliation induced on a surface S that arise when a singular

contact form has Reeb-like fields tangent to S.

Lemma 6.3. Let X0 be a vector field on an oriented surface S with finitely-many

singular points Σ, and suppose that X0 preserves some area form Ω on X. If a

singular contact form η on S× [−1, 1] induces the characteristic foliation directed by

X0, then its Reeb-like fields are tangent to S×0. Conversly, if η is a singular contact

form with Reeb field tangent to S×0, then the vector field directing its characteristic

foliation preserves an area form.

Proof. Fix an area form Ω for which divΩ(X0) = 0 and let η be a singular contact

form with Reeb-like field R that induces the characteristic foliation directed by X

on S. In a neighbourhood of S that is diffeomorphic to S × [−1, 1] we can write

η = βz + uzdz, where βz is a family of 1-forms on S with β0 = ιXΩ and uz : S → R

a family of functions. We can similarly write R = Yz + vz∂z, where Yz is a vector

field tangent to S × z for each z, and vz : S → R is a family of functions.

The condition that the Reeb-like fields be tangent to S × 0 is v0 = 0. To

prove the first claim, we must show that divΩ(X0) = 0 implies this condition holds.
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We compute that

dη = divΩ(Xz)Ω + (duz − β̇z) ∧ dz, (6.14)

where Xz directs the characteristic foliation on S × z. The Reeb-like field satisfies

ιRdη = 0, that is

0 = divΩ(Xz)ιYzΩ+ vz(β̇z − duz) + (du(R)− β̇z(R))dz. (6.15)

From this, we conclude that (du(R)− β̇z(R)) = 0 and also divΩ(Xz)ιYzΩ = vz(duz−
β̇z). Restrict to the surface z = 0. Then divΩ(X0) vanishes by assumption, and

hence

v0(du0 − β̇0) = 0. (6.16)

I claim that this implies v0 = 0. At any point where this is not the case, we must

have du0 − β̇0 = 0. The singular contact condition is

η ∧ dη|z=0 = β0 ∧ (du0 − β̇0) ≥ 0, (6.17)

with equality only when η = 0. This equation implies that we cannot possiblity

have du0 − β̇0 = 0 except at isolated points, and hence we conclude that v0 = 0 as

required.

For the converse statement, we note that v0 = 0 implies that divΩ(X0)ιY0Ω =

0. Since Y0, the Reeb field along the surface S×0, is nonvanishing except at isolated

points, we must have divΩ(X0), and hence the characteristic foliation induced on

S × 0 is directed by a vector field (namely X0) which preserves an area form.

It follows that there are no obstructions to having Reeb-like fields tangent to the

boundary.

Theorem 6.9. Let M be any compact 3-manifold with boundary. There exists a

singular contact form η whose Reeb-like fields are tangent to the boundary.

Proof. Fix an area form and choose a divergence-free vector field with isolated sin-

gularities on each boundary component. By Lemma 6.3, we can construct a singular

contact structure in a neighbourhood of each boundary component that has Reeb-

like fields tangent to the boundary. Then we can extend this as a singular plane

field over the interior of M , ensuring that there are only chiral Morse singularities

in the interior, and homotope it into a singular contact structure using Theorem

6.7, leaving a neighbourhood of the boundary fixed.

We conclude that topological obstructions to achieving nonvanishing twist in a
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cholesteric liquid crystal can arise only in the case when the material domain has a

spherical boundary component and sufficiently-strong normal anchoring.

6.4.3 The Singular Lutz Twist

Let Ξ denote the space of all contact structures on a 3-manifold M , and let Ξsing

denote the space of singular contact structures. Let us enlarge Ξ to also include

the singular contact structures, producing the space Ξ′ = Ξ∪Ξsing. By a homotopy

through singular contact structures, we mean a continuous path in the space Ξ′. In

this section we show that any two contact structures ξ0, ξ1 ∈ Ξ are connected by a

path in Ξ′. This means that homotopies through singular contact structures can be

used to change the usual homotopy invariants of a contact structure.

The consequence for cholesterics is that the usual homotopy invariants can be

changed by the creation and annihilation of pairs of defects. This is not altogether

surprising, but it is interesting to examine the mechanism by which this occurs.

Recall from §3.8.1 the surgery called the (half) Lutz twist. In a tubular

neighbourhood of a transverse curveK in a contact structure ξ, there are coordinates

(r, θ, φ) such that ξ is defined by ηstd = dφ + r2dθ. A Lutz twist excises this

neighbourhood and glues in the contact structure defined by the 1-form ηLutz =

h1(r)dφ+ h2(r)dθ, where h1, h2 are functions satisfying

1. h1(r) = −1 and h2(r) = −r2 near r = 0,

2. h1(r) = 1 and h2(r) = r2 near r = 1,

3. (h1, h2) is never parallel to (h′1, h
′
2) when r 6= 0.

The topological properties of this 1-form are determined by the first two conditions,

while the third ensures it is contact. The result of this surgery is to make the

contact structure overtwisted and to change the Euler class by −2PD[K]. Since the

Euler class can change it is clear that this surgery cannot be effected by a homotopy

through plane fields, however we will see that it can be effected via a homotopy in

the larger space Ξ′. For this, we simply need to exhibit a homotopy in Ξ′ between

ηstd and ηLutz on the solid torus D2 × S1 that fixes the boundary.

Our construction is based on the unfolding of the A2 singularity, also called

the fold catastrophe [AGLV88], given by the function germ φs = x2−y2+ z(z2+ s).
This defines a plane field dφ = 0 which has no singularities when s > 0 and has

two chiral Morse singularities when s < 0. To extend this plane field over the solid

torus, define fs = s− 1
2 cos z and consider the family of 1-forms

ηs = fsdz + xdx− ydy + t(fs(xdy − ydx) + 2xydz), (6.18)
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on the solid torus D2 × S1, for t 6= 0 a constant and s ∈ [−1, 1]. Depending on the

choice of s this 1-form is singular, with singular points at x = y = 0 and cos(z) = 2s.

There are no singularities when s = 1. As s decreases from s = 1 to s = −1, an

A2 singularity of index zero is born at z = 0 when s = 1/2, then splits apart into

singularities of Morse index 1 and Morse index 2 which move in opposite directions

around the circle x2 + y2 = 0 until they annihilate again at z = π when s = −1/2.

For s < −1/2, there are again no singularities. We compute that

ηs ∧ dηs = 2t

(

f2s +

(

1− 1

4
sin z

)

x2 +

(

1 +
1

4
sin z

)

y2
)

dx ∧ dy ∧ dz, (6.19)

so that ηs defines a (singular, depending on the value of s) contact structure on the

solid torus for any constant t 6= 0. The contact structure is positive or negative

depending on the sign of t; in keeping with convention, fix t > 0.

Next we wish to show that ηs can be extended to a singular contact form

on D2 × S1 that agrees with ηstd close to the boundary. We need Lemma 3.1: two

contact structures that define the same characteristic foliation on a surface S are

homotopic in a neighbourhood of S.

Take polar coordinates r, θ on D2 and z on S1. We can view D2 × S1 as a

smaller copy of D2 × S1 equipped with the singular contact form ηs, and a family

of tori T 2 × [0, 1] glued onto the outside which we need to extend ηs over to that it

agrees with ηstd near T 2 × 1. To construct our desired plane field, we will define a

tight contact structure on T 2 × [0, 1] such that the characteristic foliation induced

on the surface T 2 × 0 agrees with that induced on the boundary of the solid torus

D2×S1 by ηs, and that is also homotopic to ηstd near T 2×1. We can then glue using

Lemma 3.1 to produce a contact structure with the desired properties on D2 × S1.

Consider a torus of radiusR insideD2×S1. Since the parameter t is arbitrary,

we can choose t = 1/R. Then the characteristic foliation induced by ηs on this torus

is directed by the vector field (fs + sin 2θ)(∂θ + ∂z). Away from the line 0× S1 all

the contact structures ηs are homotopic, and therefore we may assume that on this

torus s is large enough so that fs + sin 2θ is never zero. Thus the characteristic

foliation is directed by the vector field ∂θ + ∂z. The characteristic foliation induced

by ηstd on a torus of radius R is ∂θ −R2∂z. Without loss of generality we can take

R = 1.

The tight contact structure defined by the 1-form dz +
√
2 sin

(

π
2 (r − 1

2)
)

dθ,

where θ, z denote the coordinates on T 2 and r the coordinate on [0, 1], interpolates

between the two characteristic foliations. By glueing these pieces together we obtain

a singular contact form on D2×S1 that agrees with the standard neighbourhood of
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a transverse curve close to the boundary of the solid torus and has the properties

of ηs close to the core. Denote this singular contact form by ζs.

Finally, we need to check that ζ1 is homotopic rel. boundary to ηstd. This

follows from the classification of tight contact structures on D2×S1: we can choose

a dividing curve on the boundary consisting of two lines of slope −1, and then

Theorem 3.16 implies there is a unique tight contact structure with this boundary

condition, and consequently ζ1, ηstd are homotopic.

With this procedure it is essentially trivial to prove the main result of this

section.

Theorem 6.10. Any two contact structures ξ0, ξ1 are homotopic through singular

contact structures.

Proof. If either of ξ0, ξ1 are tight, we first make them overtwisted using the singular

Lutz twist. If they now lie in the same homotopy class of plane fields, we are done.

Otherwise, we change the homotopy class of ξ0 to match that of ξ1 in the same way

as in the proof of the Lutz–Martinet theorem, only we use the singular Lutz twist

to ensure we are making changes via homotopies.

The singular Lutz twist can be used to create or remove a meron/Skyrmion tube.

However, it first requires us to homotope the centre of the tube so that the winding

around the central axis is −1, rather than +1. If we try to remove the Skyrmion

tube by creating a pair of defects without first doing this, then one of the defects

produced will necessarily be a hedgehog. Consequently, there would be a region of

reversed handedness between the pair of defects, which would replace the Skyrmion

tube. We expect that the conversion into a line with −1 winding will not occur

due to the energy cost of the distortions required, and removing a Skyrmion tube

requires replacing it with a region of reversed handedness, possibly accounting for

their stability in cholesterics. In twist-bend materials there is no energetic preference

for a single handedness, so this removal can occur, see §5.4.2.
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Chapter 7

Point Defects in Cholesteric

Droplets

7.1 Introduction

In this chapter I apply the results of Chapter 6 to the study of point defects in

cholesteric droplets, based on recent experimental work. The bulk of this chapter

was published as [PPČ+19].

The character of point defects in cholesteric liquid crystals (or magnetic

Skyrmion textures) appears not to have been considered previously, apart from re-

cent experimental work realising them [PČM16; PČM17; Pos18c]. This contrasts

with the situation in nematics where point defects, known colloquially as hedgehogs,

have been extensively studied over several decades [PSLW97; ŠRŽ+07; MŠT+06;

Nab72; KL82; VL83; PTY91; KL06; LK01]. They can be generated deliberately as

satellite defects to colloidal inclusions, or in droplets, with normal anchoring. For

spherical colloids, point defects form elastic dipoles and facilitate self-assembly of

colloidal chains and lattices [Muš17], while in droplets transitions between defect

states produced by changes in boundary conditions [VL83] can provide highly sensi-

tive sensors [LMB+11; LMP16]. Point defects in nematics are classified by an integer

known as the topological charge, or degree [ACMK12]. Normal anchoring bound-

ary conditions on a surface of genus g correspond to a topological charge 1− g and

induce compensating point defects of the same total topological charge in liquid crys-

tal surrounding colloidal inclusions [SLH+13] or inside toroidal droplets [PVK+13].

In addition to their own phenomenology the topological character of point defects

has also provided fundamental insight into disclination loops and their classifica-

tion [ACMK12; ČŽ11b; ČŽ11a]. The lack of a similar body of work for point defects
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in cholesterics represents a gap in our understanding of chiral materials; closing it

provides considerable insight into cholesterics and also Skyrmion textures of chiral

ferromagnets.

In recent experiments [PČM16; PČM17; Pos18c] point defects were created

in spherical droplets of cholesteric liquid crystal with normal surface anchoring and

shown to have markedly different properties from their nematic counterparts. These

included point defects of topological charge +1,−1,−2 and −3, the higher charge

defects observed for the first time, as well as arrangements of multiple defects into

‘topological molecules’. Defects were located both in the centre of the droplet and

in close proximity to its surface. The latter are not the surface defects associated to

planar anchoring [VL83] but a feature of the cholesteric order.

7.2 The Experiments

Before turning to the theory I will give a brief description of the experiments; for

more detail, consult the original sources [PČM16; PČM17; Pos18c]. The experiments

involve creating droplets of cholesteric liquid crystal. The experimental samples

were prepared by mixing small amounts of a chiral nematic liquid crystal mixture

(1 : 1 weight ratio of CCN-47 and CCN-55 with 1.7% S-811 chiral dopant) into

glycerol with 4% L-α-phospathidylcholine (egg yolk lecithin) to ensure homeotropic

(normal) anchoring on the droplets of liquid crystal. The samples were then heated

to isotropic phase above 65◦C and quickly cooled back to the chiral nematic phase.

This procedure enables the formation of a diverse range of stable and metastable

director structures [PČM17; Pos18c], some of which include the charge −2 and −3

defects.

The director structures were examined by Fluorescent Confocal Polarizing

Microscopy (FCPM) [SL01; Pos18a] where a small amount of a fluorescent dye N,N ′-

bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenedicarboximide (BTBP) which aligns with

the director was added to the LC mixture. The dye can be excited with linearly

polarized light (wavelength 488 nm, linear polarisations at 0◦, 45◦, 90◦ and 135◦ in

the plane of the image) and the resulting fluorescence is detected through a polarizer

with the same orientation as excitation light in the band 515 - 575 nm, so that the

fluorescence intensity depends on the orientation of the LC.

The director fields were reconstructed from the experimental data with the

help of a simulated annealing algorithm [PČM16; Pos18b]. In experimental images

the director is shown with streamlines which point along the in-plane projection

of the director, and are not shown where the director is mostly perpendicular to
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Figure 7.1: Typical experimental images of droplets. The upper row shows the
droplets through unpolarised light, while in the bottom row crossed polarisers have
been applied. The pitch length is indicated by the red bar. Reproduced from
Ref. [Pos18c].

the plane. Positions of point defects are identified from the experimental data and

marked with colour-coded spheres indicating their degree. Grey rods have been

added between the defects to aide the visualisation of their 3D arrangement.

7.3 Morse Defects

We can break down the description of point defects in directors into those that

possess a Morse singularity, and those that exhibit a degenerate singularity. In this

section I describe the former.

In a nematic, the ground state director in a droplet is realised by the hedgehog

director (Morse index 0) n = er, where r is the radial coordinate in a spherical

coordinate system. By Proposition 6.4, such defects cannot be chiral and must sit

on a surface dividing regions of opposite handedness, or else convert into a Morse

index 2 singularity. In the former case, the size of the region of ‘wrong’ handedness

will depend on the strength of the chirality.

A natural dimensionless measure of the strength of the chirality in the droplet
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Figure 7.2: Types of defects found as a function of the dimensionless chirality N .
Reproduced from Ref. [PČM17].

is the ratio of the droplet diameter 2R to the cholesteric half-pitch, N = 2R/p. In

the experiments of Refs. [PČM17; Pos18c], typical values were 2 . N . 6; in the

simulations shown in this chapter I use values between 2 and 4. The distribution

of structures found in the experiment is shown in Fig. 7.2. Numerical minimisation

of Eq. 1.2 is done using a finite difference relaxation algorithm on a cubic grid; for

simplicity I adopt a one elastic constant approximation (K1 = K2 = K3) and the

only relevant parameter is then the dimensionless ratio N . Typical simulations are

run on a spherical droplet inside a 1003 grid with Dirichlet boundary conditions and

initial conditions provided by the local forms that arise from Theorem 6.4. It is suf-

ficient to specifically initialise only the interior point defect(s), allowing those on the

‘surface’ to emerge naturally through matching to the radial boundary conditions.

The use of a vector field for the simulation of the liquid crystal ensures that only

point defects arise; in simulations using a Q-tensor such points typically expand

into small disclination loops [RŽ09]. This approach captures all the phenomenology

and major experimental observations; more quantitative comparison can come from

including defect core structure, elastic anisotropy and surface anchoring energy in

place of Dirichlet boundary conditions.

For N = 0, we have a radial hedgehog structure, as shown in Fig. 2.2.

For small N , the central defect is displaced towards the boundary, Fig. 7.3(a). In

simulations, increasing the value of N , but still keeping it small, continues this trend;

the defect moves further towards the surface to reduce the size of the region with

the wrong handedness and the axis it defines becomes increasingly recognisable as

a double twist cylinder. However, this behaviour does not continue for larger values
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of N and for values of N & 2 the defect starts to move away from the surface again

as the director field restructures continuously to the form shown in Fig. 7.3(c), (d);

the Morse index changes from 0 to 2. These simulation results may be compared

with the experimental images of Fig. 7.3(e) and (f), showing a cholesteric droplet

containing a single, off-centre located, point defect. By eye, the comparison is

excellent. From simulations we find that the twist is uniformly right-handed around

the point defect, meaning that it is chiral and fundamentally different from its initial

radial structure.

The transition observed here between the states shown in Fig. 7.3(a) and (c)

is reminiscent of a transition between radial and hyperbolic point defects observed in

nematic droplets with unequal elastic constants [LT86]. There the transition is pre-

cipitated by a change in the elastic constants with temperature that sees the radial

hedgehog become energetically unfavourable relative to the hyperbolic one when the

splay elastic constant is sufficiently large compared to twist and bend [RS99]. In

this case the ‘twist instability’ is driven by the explicit chiral coupling, even without

elastic anisotropy. This different energetic drive also leads to different phenomenol-

ogy where the achiral ‘radial’ defect is expelled from the droplet interior until it sits

near the surface.

We can use tomography to examine the Morse index 2 defect. A sphere

of radius r > 0 is convex provided that it lies in the contact part of the director.

The dividing curve contains two components, witnessing the fact that the singular

contact structure must be overtwisted, as described in §3.8.1. In fact, is the same

as the dividing curve induced on an appropriately-sized sphere around the standard

overtwisted disk.

7.4 Droplet Surface and Boundary Layer

The Reeb stability theorem for confoliations of Eliashberg & Thurston (Theorem

3.5) applies to a boundary layer at the droplet surface where the director becomes

radial to match the boundary conditions: the twist cannot be uniformly right-

handed and by necessity there is some region of reversed twist close to the surface.

Furthermore, it provides a topological demarcation of the surface boundary layer in

a chiral droplet; namely, the region near the surface in which the director remains

transverse to the family of concentric spheres extending in from the boundary itself.

The beginning of boundary layer can also be defined using tomography: it starts

at the radius r where the dot product between the director and the normal to the

sphere of radius r is nowhere zero.
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Figure 7.3: (a) Generic, achiral defect with topological charge +1, obtained for small
values of N . The surface is the locus nz = 0 (Pontryagin-Thom surface), with colour
indicating the angle between the x and y components of the director. (b) The twist
on a midplane xy-slice showing the reversal of twist at the location of the defect; the
left-handed region is shown in red and the right-handed region in blue. (c) nz = 0
and (d) nx = 0 surfaces for a chiral defect with Morse index 2. In (c) the director
has also been shown on a midplane xz-slice for added clarity. In (d) the viewing
direction is along x. Corresponding experimental observations of this defect are
shown in (e) and (f). (g) Chiral defect with Morse index 1 and topological charge
−1 (central defect); viewing direction along z. Two achiral charge +1 defects reside
close to the droplet surface. (h) An experimental observation of the same defect. In
all panels, defects have been highlighted and colour-coded according to their charge
(legend). Panels (e) and (f) reproduced from Ref. [Pos18c]. Panel (h) reproduced
from Ref. [PČM17].

These general considerations assert that there must be some region of re-

versed twist close to the spherical droplet surface, but do not say anything about

its actual form. We find from our numerical simulations that two situations arise,

exemplified by the chiral Morse index 1 and 2 defects. In the case of the Morse

index 2 defect (Fig. 7.3(c)) this takes the form of a non-singular ring, as shown in

Fig. 7.4(a). The twist is right-handed throughout the interior of the droplet but

becomes left-handed in a ring localised near the droplet surface. The ring lies in a

vertical yz-plane, at the x location of the defect (slightly displaced from the cen-

tre). This region of reversed twist is a novel, non-singular topological soliton. Its

existence is protected by topology and the energetic cost of having the wrong hand-

edness leads to it being strongly spatially localised. The structure of the director

field across the soliton is shown in Fig. 7.4(b) and (c).
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Figure 7.4: Boundary layer and reversal of twist. (a) Chiral structure of a droplet
containing a Morse index 2 defect showing the twist on a vertical yz-plane passing
through the defect. The twist is uniformly right-handed (blue) around the central
defect but there is a localised ring of twist reversal (red) near the surface. (b)
Structure of the director field on a vertical xz plane, with a inset showing the
director close to the ring of reversed twist. (c) Structure of the director close to
the ring of reversed twist, which is shown in red, (d) The twist on a midplane (z
slice) through a droplet containing a Morse index 1 chiral defect (Fig. 7.3(g)). The
blue region is right-handed; the red regions between the ‘surface’ point defects and
the surface itself are left-handed. This structure is common to all ‘surface’ point
defects. Note that the twist is uniformly right-handed around the central charge −1
defect. (e) Structure of the director in a region around an achiral defect anchored
to the surface of the droplet (white surface). The region of reversed handedness is
shown in red.

In all other cases, the chiral point defects in the droplet interior are encaged

by an arrangement of charge +1 defects localised close to the droplet surface. These

‘surface’ defects are achiral and demarcate a localised region between themselves

and the droplet surface in which the sense of twist reverses. An example, for the

Morse index 1 defect is shown in Fig. 7.4(d), with the structure of the director close

to the achiral defect given in Fig. 7.4(e). The topological argument for twist reversal

near the boundary provides an explanation for the presence of such defects localised

close to the surface, although we should emphasise that they are not topologically

bound to the surface and so only held there by an energetic barrier.

Regions of opposite twist localised near point defects close to surfaces with
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normal anchoring have recently been observed in experiments and numerical simu-

lations [AS16]. In those, the surface is the flat plane of a glass slide, as opposed to

being spherical. It is only spherical surfaces that have a topological requirement for

regions of reversed twist. The appearance of regions of opposite twist in situations

where it is not topologically required is then an energetic phenomenon.

The structure of the director in a neighbourhood of the surface over which

the handedness reverses is determined by the characteristic foliation induced on that

surface, as described in Chapter 3, and in particular §3.7.

7.5 Singularity Theory and Defects of Higher Charge

Morse critical points have topological charge ±1 and so cannot describe the defects

with higher charge (−2, −3) observed experimentally [PČM17]. The latter are still

described by a gradient field but with a degenerate critical point in the function

φ. The classification of degenerate critical points is significantly more involved

than that of Morse critical points; here, we follow Arnold’s classification [AK98].

Although it is natural to expect that the simplest degenerate critical points will

appear first, this is not the case, essentially because the topological charge of the

gradient field is not central to the classification of degenerate critical points. As we

will show, the experimentally observed higher charge defects are captured by the

elliptic umbilic, orD−
4 , singularity (charge−2) and the T4,4,4 singularity (charge−3).

Moreover, we shall show that the ‘topological molecules’ that have been observed

are consistent with the unfoldings of these, and higher charge, singularities.

I gave a description of the basics of singularity theory in §6.3.1, but I will give
an informal overview here as well. A systematic study of degenerate critical points

can be developed from their local algebra; loosely, the linearly independent polyno-

mials of lower order than anything appearing in the gradient field; more formally, the

quotient of the ring of Taylor series R[[x, y, z]] by the gradient ideal 〈∂xφ, ∂yφ, ∂zφ〉.
The dimension of this local algebra is called the multiplicity of the singularity—it

is the number of non-degenerate critical points that it splits into (as a complex

polynomial) under a generic perturbation. Said differently, the multiplicity is the

number of non-degenerate critical points that simultaneously coalesce in forming

the singularity. It is typical to represent a singularity by a standard polynomial,

called its normal form. The simplest degenerate critical points have unique normal

forms, however, the more degenerate ones have moduli, or free continuous parame-

ters. The number of moduli appearing in the normal form is called the modality of

the singularity. The singularities without moduli, known as the simple singularities,
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were completely listed by Arnold in his celebrated ADE classification [Arn72]; there

are two infinite families and three exceptional cases:

A±
k : ±xk+1 (k ≥ 1), D±

k : x2y ± yk−1 (k ≥ 4),

E6 : x
3 ± y4, E7 : x

3 + xy3, E8 : x
3 + y5.

(7.1)

In three dimensions, these minimal models should be supplemented by quadratic

terms in the remaining variables, i.e. y and z for the A±
k singularities, and only z

for the others. For instance, for the A2 singularity we might write ±x3 + y2 + z2.

The subscript indicates the multiplicity of the singularity.

The addition of less degenerate terms to the normal form of any singular-

ity results in a simplification of the singularity, known as an unfolding and usually

breaking it into multiple critical points of lower multiplicity. The number of inde-

pendent terms in a complete unfolding is called the codimension and can be thought

of as the number of parameters that need to be tuned in order to create the degener-

ate critical point. For example, for the Ak singularity, a complete unfolding consists

of the monomials xn for n = 1, . . . , k − 1 and the codimension is k − 1. In general,

the multiplicity µ, codimension c and modality m are related by µ = c+m+ 1.

Among the simple singularities (7.1), the only models for defects with topo-

logical charge −2 are furnished by the classes D−
2k; all the other simple singularities

have charge 0 or ±1. Therefore, the simplest model for a point defect of topological

charge −2 comes from the simple singularity D−
4 , which we write as

φ = κ

(

x2y − 1

3
y3
)

+
1

2
z2, (7.2)

where κ is a constant with dimensions of an inverse length. Its gradient vector field

can be made chiral in a neighbourhood of the origin by adding the higher order term

mc = q
[

−κz
(

x2 − y2
)

ex + 2κxyz ey
]

− q2z3
[

−y ex + x ey
]

. (7.3)

The correspondence between this local model and experimental observations [PČM17;

Pos18c] is striking (Fig. 7.5(a), (b)), although we find in our simplified director-based

simulations that the defect is unstable and breaks apart into two charge −1 defects,

each with the Morse-type local structure described above. This points to the impor-

tance of defect core structure, or elastic anisotropy, for stability in physical systems.

It is interesting that the D−
4 singularity is chiral but not Beltrami (Proposition 6.7).

I am not aware if this has any impact on the stability. There is a Beltrami singu-

larity of index −2, which is obtained by taking φ to be the appropriate spherical
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Figure 7.5: (a) Point defect with topological charge −2 associated to the D−
4 sin-

gularity. The surface is the locus nz = 0 (Pontryagin-Thom surface), with colour
indicating the angle between the x and y components of the director. (b) Experi-
mental realisation of the charge −2 defect with superimposed director field in the
z = 0 droplet midplane. (c) Point defect with topological charge −3 associated to
the T4,4,4 singularity (‘bonds’ between defects added for visual clarity). (d) Cor-
responding experimental image of a droplet containing a charge −3 defect. In all
panels, defects have been highlighted and colour-coded according to their degree.
Panel (b) reproduced from Ref. [PČM17].

harmonic; in Arnold’s classification it is U12, and it is also not stable numerically.

The experimentally observed defect with topological charge −3 [PČM17;

Pos18c] (Fig. 7.5(d)) is reproduced by the unimodal singularity T4,4,4, which we

write

φ = axyz +
1

4

(

x4 + y4 + z4
)

, (7.4)

where the modulus a has dimensions of length. T4,4,4 is a codimension 9 singularity

with multiplicity 11, characteristics which convey its high complexity. In addition

to the origin, where there is an isolated zero of topological charge −3, the gradient

vector field has isolated zeros of charge +1 (and Morse index 0) at the four points

a(1,−1, 1), a(−1, 1, 1), a(1, 1,−1), a(−1,−1,−1), corresponding to the vertices of a

tetrahedron. This suggests that the modulus a should take a value of R/
√
3, up

to an O(1) factor, so that these defects sit near the surface of the droplet, as ob-

served experimentally. The gradient field of (7.4) can be perturbed into a chiral

point defect via a generic method that we describe in the following section. Simu-

lations initialised with the T4,4,4 singularity produce a numerically stable charge −3

point defect surrounded by four tetrahedrally-arranged surface defects in excellent

agreement with the experiment (Fig. 7.5(c)).
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The appearance of D−
4 and T4,4,4 is not due to topological effects, but a

combination of geometric and energetic considerations that influence the positioning

of the boundary defects, which in turn impose a particular symmetry of the droplet.

For instance, T4,4,4 is topologically equivalent to X9, another charge −3 singularity.

X9 would naturally arise if the four boundary defects were to sit in a square on an

equator of the droplet, rather than arrange themselves into a tetrahedron, which

imposes the T4,4,4 symmetry—this configuration of boundary defects does not arise

in the experiments and appears to be energetically disfavoured. However, changes

in the boundary anchoring conditions and in the elastic constants will change the

preferred configuration of the boundary defects. A similar effect occurs for a two-

dimensional nematic confined on a sphere: generally there are four +1/2 defects

that sit at the points of a tetrahedron, but changes in the elastic constants can

result in the defects forming the points of a square instead.

7.6 Unfoldings and Topological Molecules

In addition to droplets containing individual chiral point defects, experiments also

reveal a variety of multiple-defect structures [PČM17]. Unlike nematic droplets,

these multi-defect cholesteric textures are metastable and the defects do not anni-

hilate pairwise to obtain a minimal number. Moreover, the arrangements appear

far from random, exhibiting definite structure and symmetry, leading to them be-

ing dubbed as ‘constellations’ and ‘topological molecules’. As we will show in this

section, the unfoldings of singularities provide a natural framework for these topo-

logical molecules, with excellent agreement with experiment. Subsequently, in § 7.7

we will show that the geometric structure of cholesterics, and in particular their

degeneracies, known as λ lines or umbilics, serve to furnish the ‘chemical bonds’ of

these topological molecules.

The unfoldings of singularities provide systematic descriptions of how de-

generate critical points can break apart into simpler pieces, or how generic critical

points coalesce to form degenerate ones. In the present context, these unfoldings

provide models for the combination and splitting of chiral point defects.

For instance, the simplest description of the annihilation of two chiral defects

with opposite topological charge is given by the unfolding of the A2 singularity

φ =
κ

3
x3 +

1

2
y2 − 1

2
z2 + c1x, (7.5)

where κ is a constant with dimensions of an inverse length and c1 is a parameter
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Figure 7.6: Unfoldings of the D−
4 singularity. (a) A splitting of the charge −2 defect

into two Morse index 1 defects producing a ‘V’-shaped constellation closely simi-
lar to textures observed experimentally. (b) An example of such an experimental
configuration with the director field in the z = 0 droplet midplane superimposed.
(c) By tuning the unfolding the splitting can also produce a ‘T’-shaped constella-
tion, which remains stable numerically but has not been observed in experiments.
(d) The isotropic term in the unfolding splits the D−

4 singularity into four Morse
critical points without breaking the symmetry of the droplet. Again, this is stable
numerically but has not been observed in experiments. Panel (b) reproduced from
Ref. [PČM17].

of the unfolding with dimensions of length. When c1/κ is positive there are no

critical points, while when it is negative there are isolated Morse critical points at

(±|c1/κ|1/2, 0, 0) with Morse indices 1 (+) and 2 (−). Note that in the way that we

have written the A2 singularity (7.5) the Morse terms appear with opposite signs,

i.e. y2 − z2. This ensures that after unfolding the two Morse-type defects are both

chiral; if these Morse terms had both been given the same sign—±(y2 + z2)—then

one of the two critical points the singularity splits into would have had Morse index

0 (+) or 3 (−) and hence would not be chiral.

The unfolding of the D−
4 singularity provides a description of the splitting

of a charge −2 chiral defect, or merging of two point defects with the same charge
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(−1)

φ = κ

(

x2y − 1

3
y3
)

+
1

2
z2 + c1x+ c2y +

c3
2

(

x2 + y2
)

. (7.6)

The c3 term is isotropic and does not alter the symmetry of the defect; it is therefore

natural to consider it separately and we start with the case c3 = 0. Critical points

of φ are given by z = 0 and (using a compact complex notation)

∂yφ+ i∂xφ = κ
(

x+ iy
)2

+ c2 + ic1 = 0. (7.7)

There are two Morse critical points (both of Morse index 1) with locations (assuming

κ > 0)

x+ iy = ±(c21 + c22)
1/4

√
κ

ei(α+π)/2, (7.8)

where α = arctan c1/c2. The splitting is along the x-axis when c1 = 0 and c2 is

negative. This produces a ‘V-shaped’ arrangement of defects within the cholesteric

droplet and is strongly reminiscent of the ‘constellations’ observed experimentally

(Fig. 7.6(a), (b)) [PČM17; Pos18c]. The ‘T’ splitting produced when c2 is positive (c1

still zero) has not been observed in experiments, but is readily produced numerically

(Fig. 7.6(c)).

Returning to the c3 term, consider now the case where only it is non-zero.

Then the D−
4 singularity splits into four critical points, again all lying in the z = 0

plane: one at the origin of Morse index 2 and three of Morse index 1 at the points

(x, y) =

(

0,
c3
κ

)

,

(

±
√
3 c3
2κ

,
c3
2κ

)

. (7.9)

This is shown in Fig. 7.6(d).

The unfoldings of the T4,4,4 singularity, and the resultant topological molecules,

are significantly more involved mathematically, due to the high codimension and

multiplicity. For this reason we restrict our presentation to consideration of particu-

lar unfoldings most directly pertinent to the observed topological molecules. A basis

for the local algebra of the T4,4,4 singularity can be taken to be the 11 monomials

1, x, y, z, x2, y2, z2, x3, y3, z3, xyz. (7.10)

Note that, e.g., x3 ∼ −ayz as elements of the local algebra so that we could replace

x3, y3 and z3 by yz, zx and xy if desired. The constant obviously does not change

the nature of the critical point, while the term xyz acts only to change the value of

the modulus. The remaining nine terms are associated to the unfoldings, of which
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Figure 7.7: Unfoldings of the T4,4,4 singularity and topological molecules. (a)
Schematic of the vertex-face unfolding, splitting T4,4,4 into a Morse index 1 and
a D−

4 singularities. (b) Numerical simulation of the unfolding: the charge −2 defect
remains stable for long times. (c) Topological molecule observed experimentally cor-
responding to the vertex-face unfolding. (d) Schematic of the edge-edge unfolding,
with splittings of T4,4,4 into two Morse index 1 critical points and a X9 singularity,
with topological charge −1, or into a single Morse critical point and a T3,4,4 singu-
larity, with topological charge −2. (e) Numerical simulation of the unfolding: the
charge −2 defect is unstable numerically and is shown here artificially stabilised.
(f) Topological molecule observed experimentally corresponding to the edge-edge
unfolding. Panel (c) reproduced from [Pos18c]

we consider two particular cases pointed to by symmetry. We describe these in terms

of the tetrahedral environment of the T4,4,4 singularity. In the first, the three-fold

symmetry about an axis connecting a vertex and face-centre of the tetrahedron is

preserved: we refer to this as the vertex-face unfolding. In the second, we preserve

the two-fold rotational symmetry about the z-axis: as this connects two edges of the

tetrahedron we refer to it as the edge-edge unfolding. These are shown schematically

in Fig. 7.7(a) and (d).

The analysis of the vertex-face unfolding is naturally given in terms of the
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adapted coordinates

u =
1√
2

(

x− y
)

,

v =
1√
6

(

x+ y − 2z
)

,

w =
1√
3

(

x+ y + z
)

,

(7.11)

in which the T4,4,4 singularity takes the form

φ =
a√
6

(

u2v − 1

3
v3
)

− a

2
√
3

(

u2 + v2
)

w +
a

3
√
3
w3

+
1

8

(

u2 + v2
)2

+
1

12
w4 +

1

2

(

u2 + v2
)

w2

+
1√
2

(

u2v − 1

3
v3
)

w.

(7.12)

We consider an unfolding that preserves the three-fold symmetry about the w-axis,

given by the addition of the terms (terms in w2 and w3 are omitted for simplicity)

c1w +
c2
2

(

u2 + v2
)

. (7.13)

There are critical points with u = v = 0 and w given by the roots of the cubic

c1 +
a√
3
w2 +

1

3
w3. (7.14)

When c1 = 0 these reduce to w = 0 (double root) and w = −
√
3 a; when c1 > 0

the former disappear and only the latter remains; and when c1 < 0 the double root

resolves to two simple roots at w ≈ ±(−
√
3 c1/a)

1/2. We consider only this last

case. Expanding about one of the new critical points, which we denote w = r, gives

φ ∼ c2 − ar/
√
3

2

(

u2 + v2
)

+
ar√
3

(

w − r
)2

+
a√
6

(

u2v − 1

3
v3
)

,

(7.15)

corresponding to a Morse critical point. Neglecting c2, the Morse index is 1 if r is

negative and 2 if r is positive. The latter we may view as an unfolding of the D−
4

singularity that we recover by setting c2 = ar/
√
3. In this case, the initial T4,4,4

singularity splits into a Morse index 1 critical point in the direction of the vertex
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and a D−
4 singularity in the direction of the face-centre of the tetrahedron formed

by the accompanying charge +1 surface defects.

This picture is confirmed by simulations of the unfolding, which produce a

charge −2 chiral defect corresponding to the D−
4 singularity that is numerically sta-

ble for orders of magnitude longer than the directly initialised defect. An example

of such a simulation, showing the Pontryagin-Thom surface nw = 0, is shown in

Fig. 7.7(b). This can be compared with the topological molecule observed experi-

mentally and shown in Fig. 7.7(c); the agreement is striking.

Turning now to the edge-edge unfolding, we consider the function

φ = axyz +
1

4

(

x4 + y4 + z4
)

+ c1z +
c2
2
z2 +

c3
3
z3 + dxy, (7.16)

where the parameters ck have dimensions of (length)4−k and d has dimension (length)2.

There are critical points with x = y = 0 and z given by the roots of the cubic

z3+ c3z
2+ c2z+ c1. The number of roots depends on the value of the discriminant

27c21 − 18c1c2c3 + 4c1c
3
3 + 4c32 − c22c

2
3. (7.17)

When this is positive there is only one root; when it is negative there are three; and

when it vanishes there are two. Expanding about one of the roots (at z = r) gives

the form ∼ (ar + d)xy ± (z − r)2, which is of Morse type and Morse index 1 (+)

or 2 (−), the latter occuring only for the ‘middle’ root when there are three roots.

There are additional critical points off-axis (x, y 6= 0) unless the parameter d takes

the value d = −ar, with r corresponding to the ‘middle’ critical point. It is then of

type X9 = T2,4,4 and has topological charge −1. We emphasise that this unfolding

produces a linear string of three chiral point defects each with topological charge

−1 but which are not all equivalent; the two outer defects have a local structure

corresponding to the gradient field of a Morse critical point with Morse index 1,

whereas the middle defect has the local structure of the gradient field of an X9

singularity. A numerical simulation of this unfolding is shown in Fig. 7.7(e).

When there is a double root (at z = r) the function has the form (ar +

d)xy+r(z−r)3 corresponding to an A2 singularity with topological charge 0, unless

d = −ar when it is instead a T3,4,4 singularity with charge −2. Thus, the function

φ = axy(z − r) +
1

4

(

x4 + y4 + z4
)

− 3r2

2
z2 + 2r3z, (7.18)

describes, for r 6= 0, a splitting of the T4,4,4 singularity into a Morse index 1 critical

point at z = −2r and a T3,4,4 singularity at z = r. A numerical simulation of this

166



unfolding is shown in Fig. 7.7(e), however, in this case the charge −2 defect is not

stable numerically and splits (transverse to the edge-edge axis) into two Morse index

1 defects. Nonetheless, this configuration of point defects is observed experimentally

(Fig. 7.7(f)), with a stable charge −2 defect, and its structual similarity to the

edge-edge unfolding is strongly suggestive. The main implication of this is that the

two charge −2 defects in the observed topological molecules—Fig. 7.7(c) and (f)—

correspond to topologically distinct chiral defects, one having the structure of the

D−
4 singularity and the other the structure of the T3,4,4 singularity.

7.7 λ Lines and Umbilics: Defects in the Cholesteric

Pitch

Point defects in the director are associated with a confluence of λ lines, whose num-

ber and type are related on topological grounds to the type of point defect; for a

defect of topological charge k there are a total of 4|k| lines, counted with multiplic-

ity [MA16b]. For chiral point defects, however, a much more detailed description

can be given. As the structure of chiral point defects is determined by the gradi-

ent field of an isolated singularity, the location and type of the defects in the pitch

axis coincides with the structure of umbilic lines of the local level manifolds of the

function describing the critical point. Passing through the critical value the level

sets change between 1 + |k| disconnected discs and a connected surface of Euler

characteristic 1− |k| (see Lemma 6.1). Each disc is pierced by the axis of a double

twist cylinder (λ/umbilic line of multiplicity 2), while a further 2|k| − 2 elementary

lines pierce the connected surface along directions of high symmetry. The pattern of

lines for the Morse index 2, D−
4 and T4,4,4 singularities is shown in Fig. 7.8, with the

umbilic lines indicated by white tubes, obtained numerically as isosurfaces where

the norm of ∆ drops below some threshold value.

Taking D−
4 as an example, the topological charge is −2 so that the topology

requires there to be 8 umbilic lines, counted with multiplicity. There are three

degenerate umbilic lines (double twist cylinders—Fig. 7.8(d)), connecting the central

defect to the +1 surface defects, which should be counted with multiplicty 2 [MA16b]

for a total of 6 umbilic lines. Symmetry considerations tell us that the remaining

two umbilic lines (with λ−1/2 profile—Fig. 7.8(e)) extend along the z-axis. The

structure is shown in Fig. 7.9(a). A similar description can be given in all cases.

It is interesting to consider the behaviour of umbilic lines under an unfolding

of the singularity. Consider the unfoldings of D−
4 into a pair of charge −1 defects.

Each defect produced must have 4 umbilic lines, counted with multiplicity. With
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Figure 7.8: Umbilic lines for the (a) Morse index 2, (b) D−
4 and (c) T4,4,4 sin-

gularities, indicated by white isosurfaces. Each defect has double twist cylinders
connecting it to the charge +1 ‘surface defects’. The remaining umbilics are λ−1/2-
lines that terminate on the droplet surface. Typical cross-sectional profiles for the
umbilics are shown in (d) double twist cylinders and (e) λ−1/2-lines. In all panels,
defects have been highlighted and colour-coded according to topological charge.

this constraint, there are two possible configurations. In one case, Fig. 7.9(b), one

of the degenerate umbilic lines splits into a pair of λ1/2-lines. The pair of defects

produced by the unfolding each take charge of one of these λ1/2-lines, along with

one each of the two λ−1/2 lines and two remaining degenerate umbilic lines that

were connected to the original charge −2 defect, so that each defect has a total of 4

umbilic lines when counted with multiplicity. The other case, shown in Fig. 7.9(c),

has one defect connected to a pair of degenerate umbilic lines, while the other defect

has a single degenerate umbilic line and both of the λ−1/2 lines.

Both cases can be realised in numerical simulations by initialising the simu-

lation with the model given by Eq. (7.6) with unfolding parameters c1, c3 = 0, and

c2 6= 0. When c2 > 0 this gives a V unfolding, and the configuration of umbilic lines

is as in Fig. 7.9(b). When c2 < 0 this gives a T unfolding, and the configuration

of umbilic lines produced is Fig. 7.9(c). A similar description can be given for the

unfoldings of T4,4,4.
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Figure 7.9: (a) Position of the umbilic lines for the D−
4 singularity. (b), (c) Possible

configurations of umbilic lines after an unfolding into a pair of charge −1 defects. In
each case the white tubes indicate degenerate umbilic lines with multiplicty 2 (the
axes of double twist cylinders), while the red tubes indicate generic umbilic lines
(λ−1/2-lines).
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Chapter 8

Singular Contact Structures:

The Local and Global Theory of

Line Defects

8.1 Disclination Lines in Cholesterics

Liquid crystal materials do not only exhibit point defects, but also line defects known

as disclination lines. The fundamental group of the nematic order parameter space

is Z2, meaning that, to a first approximation, a line singularity is determined by

whether or not the director is orientable on a closed curve encircling it. Orientable

singular lines are unstable in a nematic material, and can be removed by a pertur-

bation. Nonorientable disclination lines are stable as they cannot be removed by a

local perturbation. They also carry a topological charge: if a link L of disclination

lines can be surrounded by a sphere S such that the director n is nonsingular and

orientable in a region of S, then we may define the absolute value of the charge

carried by L to be |e(ξ)[S]|, where ξ is the plane field orthogonal to n.

I now give a brief overview of previous work on disclination lines, the topolo-

gial arguments present in early work [PT77; VM77; BDP+78b; Jän87] as well as the

more recent geometric descriptions of disclinations [ČŽ11b; ČŽ13; ČDKŽ13].

To completely understand the homotopy classes of disclination loops, it is

not sufficient to consider just the maps S1 → RP2 obtained from looking at the

director around a meridian, but the maps T 2 → RP2 that are obtained by looking

at the director on a torus around the singular line. Jänich [Jän87] studied the

homotopy classes of maps T 2 → RP2 which are not orientable around the meridian

and hence correspond to disclination lines in the director, and obtained a complete
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classification. Broadly speaking, there are two invariants of such maps. Firstly, one

can ask whether the map is orientable or not along a longitude. If such a disclination

line is nonorientable along a longitude, then it must link with with an odd number

of other lines, although we cannot determine the exact count just from the structure

around this one line. Thus there is a Z2 invariant associated to a disclination that

counts, mod 2, the number of other disclination lines linking it. Further, one can

surround the disclination line with a sphere and look at the map S2 → S2 that

is induced on this sphere (note that the codomain of the map is S2 because this

map can always be orientated). This map has a degree q ∈ Z that counts the

defect charge inside this sphere. Now, one can homotope the map T 2 → RP2 in a

nonsingular way that changes the charge on the surface of this measuring sphere by

±2; essentially, this involves moving a point defect once around a loop that links the

disclination line in question. Thus there is an additional Z2 invariant that counts

the charge mod 2.

Thus this space of maps has at least a Z4 invariant, and each disclination

line can be associated with an integer νj ∈ {0, 1, 2, 3}, the Jänich index. Jänich then

demonstrates that this Z4 invariant characters the space of maps T 2 → RP2 that a

nonorientable around a meridian [Jän87]. These four homotopy classes correspond

to the vector fields

nν = cos

(

θ + νz

2

)

er − sin

(

θ + νz

2

)

eθ, (8.1)

on D2 × S1. That nν is homotopic to nν+4 can be proved using the belt trick, the

Pontryagin–Thom construction, or equivariant homotopies in the double cover [Mac16].

The Jänich index also contains global information. Because one part of the

index corresponds to the linking number of disclination with other disclination lines,

we have,

νj mod 2 =
∑

i 6=j
Lk(Ki,Kj) mod 2, (8.2)

where the sum is over all other disclination lines in the system. The parity of

disclination Kj is

sj :=
1

2



νj −
∑

i 6=j
Lk(Ki,Kj)



 mod 2 ∈ Z2. (8.3)

The sum
∑

j sj of all parities is invariant under crossings and reconnections of

disclination lines.
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When a disclination line has additional geometric structure we can say more.

Associated to each line Kj with winding (or profile) −1
2 is a self-linking number qj ,

which counts the number of times the director profile rotates as we move along the

disclination line. This self-linking number is not an integer, rather it is of the form
m
3 for m ∈ Z, where m is odd if Kj is linked by an odd number of other disclination

lines, and even otherwise—the fact that it is quantised into thirds follows from the

symmetry of the −1
2 singularity. In an ordinary nematic, this number is evidently

not preserved by an arbitrary homotopy, and thus cannot be said to be a topological

invariant of the line. Given a link L comprised of disclination lines Kj , the linking

numbers Lk(Ki,Kj) and self linking numbers qj obey the relation [ČŽ13; ČDKŽ13],

3

2





∑

j

qj +
∑

i 6=j
Lk(Ki,Kj)



+ n = Q mod 2, (8.4)

where n is the number of disclination lines and Q denotes the topological charge

carried by the link L.

The above describes the theory of line defects in nematics. The existence and

basic homotopy classification of disclinations in cholesterics comes from the theory

described in §1.1. In a cholesteric, the fundamental group of the order parameter

space is the quaternion group, the group Q with generators 1,−1, i,−i, j,−j, k,−k
and the relations (−1)2 = 1, i2 = j2 = k2 = ijk = −1, ij = −ji = k, such that

1 is the identity [PT77; BDP+78b]. These four group elements label the types of

line defects that can occur in a cholesteric. The identity element corresponds to no

singularity or to a removable singular line (a χs line with s an integer), in the same

way that 0 ∈ Z corresponds to either no defect or a removable defect when discussing

point defects in nematics and cholesterics. A λ line with integer winding has type

−1, and a disclination line around which the director is nonorientable has type i,

and a λ line around which the pitch is nonorientable has type j. An important

consequence of the noncommutativity of this group is that passing one defect line

through another may result in a ‘tether’ connecting the two. The type of the tether

is identified by computing the product of the group elements corresponding to the

two lines; in particular, obstructions to passing defect lines through one another can

be identified with elements of the commutator subgroup [Q,Q]. For example, if one

crosses a pair of disclination lines, the resulting tether is of type i2 = −1, a λ line.

This observation is of central importance, and admits an interpretation in terms of

contact topology that will be discussed below.

In this chapter I will discuss the local and global classification of both re-

movable and nonremovable disclination lines in cholesterics, and hence complete the
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description of director defects in a cholesteric that was begun in Chapter 6. The

primary object of study is as follows.

Definition 8.1. A germ along 0 × S1 of a singular plane field ξ on D2 × S1, not

assumed orientable, which is singular only along 0×S1 is called a line singularity. A

line singularity ξ is called a chiral line singularity if it is (locally, if ξ is nonorientable)

defined by a 1-form η with η ∧ dη ≥ 0, with equality only on 0 × S1. A chiral line

singularity ξ is overtwisted if there exists some ǫ > 0 such that, for every 0 < R < ǫ,

the contact structure in a neighbourhood of the torus of radius R is overtwisted ;

otherwise, ξ is called tight.

When dealing with orientable chiral line singularities ξ, I abuse notation and also

refer to a 1-form η defining ξ as a chiral line singularity.

An unknotted disclination line threaded by a single λ+1 line results in a

overtwisted texture, however we shall see that the director can be tight in a neigh-

bourhood of the disclination even though it is globally overtwisted, in contrast to

point singularities. The essential overtwistedness of a neighbourhood of a discli-

nation line is associated with λ line tethers being attached to the disclination line

itself.

Here is a brief outline of the classification results given below. For overtwisted

chiral line singularities there is an h-principle, §8.6, and therefore the homotopy

classes of overtwisted chiral line singularities correspond to homotopy classes of

germs of singular plane fields with line singularities, which are classified by the

Jänich index. We show that there is an overtwisted chiral line singularity in each

homotopy class. For tight chiral line singularites structures, there are multiple

different homotopy classes for each Jänich index, and their classification proceeds

using very similar ideas to those used for studying tight contact structures explained

in Chapter 3. Breifly, the approach is as follows:

1. I first examine the characteristic foliations on disks transverse to the singular

line, and prove convex surface theory type results about extending profiles to

singular contact structures on D2 × [−1, 1].

2. I exhibit a family of tight chiral line singularities ηk,q and prove, using the

same ideas used in the classification of tight contact structures on T 3, that

they each represent different homotopy classes.

3. I prove a uniqueness result for tight singular contact structures on D2× [−1, 1]

with a line singularity along 0× [−1, 1] and a fixed boundary, analagous to the

unqiueness result for tight contact structures on the 3-ball.
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4. Using these results, I show that every tight chiral line singularity is homotopic

to one of the models, completing the homotopy classification.

I explain the classification of the orientable chiral line singularities in detail in §8.4
after some setup in §8.2 and §8.3. The arguments carry through to the nonori-

entable case, for which the classification is explained in §8.5. Although removing an

orientable line singularity is trivial in a nematic, in a cholesteric the process of re-

moving defects of type 1 and replacing them with defects of type −1 is more subtle.

I discuss this in §8.7. The global classification of singular contact structures with

both point and line singularities is completed in §8.8.

8.2 Profiles of Singular Lines

As the first part of the classification, we examine which characteristic foliations can

be induced on disks transverse to the singular line. We focus on the orientable case,

as the nonorientable case is completely analagous. Let z denote the coordinate on

the S1 factor of D2 × S1. On this neighbourhood we write the singular contact

form as η = βz + uzdz, for βz a family of 1-forms on the disk and uz a family of

functions on the disk depending on the coordinate z ∈ S1, such that η vanishes only

at the origin of the disk, i.e we have βz = uz = 0 exactly along the line 0 × S1.

The characteristic foliation induced on Dz := D2× z is directed by a vector field Xz

defined by ιXzΩ = βz, for some fixed area form Ω. We will use the Euclidean area

form Ω = dx ∧ dy = rdr ∧ dθ, but the choice is not important.

Definition 8.2. We call either βz or Xz the profile of the singularity.

The condition that η be (positive) singular contact is

η ∧ dη = (βz ∧ duz + uzdβz − βz ∧ β̇z) ∧ dz ≥ 0, (8.5)

where the overdot denotes differentiation with respect to z, and equality holds only

along the line 0× S1 where η vanishes.

Definition 8.3. A chiral line singularity η = βz + uz has a uniform profile if there

exists an integer k such that, for each z, the 1-form βz has a singularity of winding

k.

Note that this is not the same as requiring each βz is the same. This condition can

also be defined for nonorientable lines, and precludes the phenomenon of changing

from a −1
2 to a +1

2 winding around the line, which is common in nematics. For ex-

ample, the disclination lines in the experiments described in Refs. [ČŽ13; ČDKŽ13],
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which have a constant −1
2 profile, would be said to have a uniform profile in the

language we employ here.

Simple examples can be generated by following the approach used in Chapter

6. Suppose we are given a smooth 1-parameter family of germs of 1-forms βz,

z ∈ S1, on the disk. When does there exist a smooth family of germs of functions

uz : D2 → R such that η = βz + uzdz is a chiral line singularity? First we will

treat the case where βz is closed. Since the disk is simply connected, there exists a

smooth family of functions φz such that βz = dφz. We say such a family is chiral if

there exist functions uz such that η = dφz + uzdz. Then we have an analogy with

Theorem 6.4 of Chapter 6.

Proposition 8.1. A smooth family of germs of closed 1-forms βz = dφz, z ∈ S1,

is chiral if there exists a smooth family of Riemannian metrics gz such that φz is

harmonic with respect to gz for each z.

Proof. Suppose there exists a smooth family of Riemannian metrics gz such that φz

is harmonic with respect to gz for each z. Then d ⋆z dφz = 0, where ⋆z is the Hodge

star of gz. Since the disk is simply connected, ⋆zdφz = duz, for some functions

uz : D2 → R. We can choose the family uz so that it depends smoothly on z and

such that uz + φ̇z = 0 at the origin of the disk. Let η = dφz + (u+ φ̇z)dz. Then

η ∧ dη = −dφz ∧ dφ̇z + dφz ∧ (du+ dφ̇z),

= dφz ∧ ⋆zdφz,
= ‖dφz‖2gz ≥ 0,

(8.6)

with equality only on 0× S1.

For example, consider φ = x2 − y2. This is evidently harmonic with respect to the

Euclidean metric on this disk, and we obtain chiral forms η± = xdx − ydy ± xydz

for both positive and negative singular contact structures.

Note that in general Proposition 8.1 does not ‘perturb’ the family of 1-forms

dφz into a singular contact form as with point singularities, since there is no free

parameter t that allows us to connect the chiral form to the achiral form via a

homotopy. It is possible to realise the construction as a perturbation when the

family of functions φz = φ does not depend on z, i.e., the profile does not change

along the line. In this case we may set η = dφ+ tudz for a parameter t.

Observe that the chiral line singularities constructed in Proposition 8.1 are

tight. The existence of tight chiral line singularities suggests the existence of a local

invariant that does not exist for point singularities or achiral line singularities, by
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analogy with layer numbers and the Thurston–Bennequin number. At first this

may seem a little artificial, as the removable point singularities can also have tight

neighbourhoods, but we will see that this still holds for actual disclinations.

Proposition 8.1 also implies the following, which does not follow the local

description we are using in this section but is nonetheless worth mentioning.

Corollary 8.0.1. Let dφ be an exact intrinsically harmonic 1-form on a contractible

space, such that dφ that vanishes along a link L and at some points Σ. Then there

exists a 1-form ν such that for t > 0 sufficiently small η = dφ+tν is singular contact

with singularity set L ∪ Σ.

The winding around the singularities in this proposition can be any negative integer,

but not a positive integer as then the function could not be harmonic.

For general 1-forms on the disk we have the following simple result, showing

that any 1-form β on D2 with a point singularity at the origin can be included into

a chiral family βz such that β0 = β.

Proposition 8.2. Let β be any 1-form on the disk with an isolated singularity at

the origin. There exists a family of 1-forms βz on the disk, z ∈ S1, such that β0 = β

and βz, when regarded as a 1-form on D2×S1, defines a singular contact structure.

This singular contact structure can be either positive or negative.

Proof. Let γ be any 1-form such that β ∧ γ ≥ 0, with equality only at the origin;

to obtain γ, we may fix a metric g on the disk with area form Ω and let γ = ιY Ω,

for Y the vector field orthogonal to the vector field X defined by β = ιXΩ. Then

for any integer q > 0 the family of 1-forms βz = cos(qz)β − sin(qz)γ is a positive

singular contact form with the desired properties, while β′z = cos(qz)β + sin(qz)γ is

a negative singular contact form.

In the above proof, the integer q keeps track of how many times the profile rotates as

we move along the line. For example, let βz = cos(qz)(xdx+ydy)−sin(qz)(xdy−ydx)
for any integer q > 0. Then −βz∧β̇z = q(x2+y2)dx∧dy∧dz ≥ 0, and hence η = βz is

a chiral line singularity. The profile has winding +1, and rotates q times as we track

along the singular line. We can also have 1-forms ηt = β + tudz that are singular

contact and independent of z without β being closed; for example, β = xdy − ydx

and u = x2 + y2 gives a chiral line singularity of winding +1 with a fixed profile

along the line.

Proposition 8.3. We can realise any integer k as the winding around a singular

line in a tight chiral line singularity.
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Proof. For k 6= 0, let β = r cos(kθ)dx + r sin(kθ)dy and γ = −r sin(kθ)dx +

r cos(kθ)dy, where x, y are Cartesian coordinates on the disk and r, θ are the as-

sociated polar coordinates. For k = 0, one may take β = x2dx − ydy and γ =

−x2dy − ydx. All chiral line singularities constructed this way are tight, as can be

seen by, for example, looking at the dividing curve induced on any convex torus

surrounding the line (see §8.3 below).

Using the results of Chapter 6 we can also conclude that

Corollary 8.0.2. If β is a closed 1-form on the disk and there exists a closed γ such

that β ∧ γ ≥ 0, vanishing only at the singular point, then βz = cos(qz)β − sin(qz)γ

is a singular contact form whose Reeb field is tangent to the disks D2 × z.

8.3 Convex Surfaces and Tight Chiral Line Singularities

To classify tight chiral line singularities, we need to understand the local structure

on a torus T 2 surrounding the line, and also the local structure along a meridional

disk. In the tight case, this information will be sufficient to completely determine the

contact structure. The enclosing torus is embedded in a genuine contact structure,

since we can obviously arrange for it not to intersect any singularities. Thus the usual

convex surface theory for contact structures, §3.9, is sufficient to understand the

behaviour of the singular contact structure near this surface. The actual structure

of the characteristic foliations on the meridional disks was discussed in the previous

section. We shall see however that the geometry of the characteristic foliation is

irrelevent, an unsurprising assertion given the ideas of convex surface theory, and

that one can introduce an analogue of convex surface theory for these disks.

Firstly, let us make an important observation that connects tightness to con-

crete physical properties of the director field. This also holds for the nonorientable

case.

Proposition 8.4. A chiral line singularity is tight if and only if it has uniform

profile.

Proof. Let ξ be a chiral line singularity defined by η = βz + uzdz, and suppose it

is tight. Then, by Giroux’s criterion, there exists a torus T surrounding the line

singularity on which the dividing curve consists of some number of homotopically

essential components. Via the relationship between the dividing curve and lines of

singularities in the characteristic foliation described in §3.9, we may homotope the

contact structure close to this boundary torus so that the dividing curve becomes
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a curve of singular points. These are points where ξ is tangent to the boundary

torus. Moreover, we can assume these lines are straight lines of some fixed slope.

Now consider a meridional disk Dz = D2 × z. The boundary of this disk lies in T ,

and thus intersects the dividing curve some finite number, say kz, times. Since the

components of the dividing curve are straight lines of fixed slope, then the number

kz is actually independent of z. But this number determines the winding around

the (unique, by the assumption we have close to the singular line) singular point of

the 1-form βz, and consequently each of these 1-forms has a singularity of the same

winding, the definition of a uniform profile.

Conversely, suppose that ξ has a uniform profile. We can cut D2 × S1 along

a disk, say D2 × 0, to obtain a singular contact structure on D2 × [0, 1], which

we also call ξ. Let η = βz + uzdz define ξ. The condition that ξ has a uniform

profile implies that there exists a constant k, such that on each disk Dz there are

exactly k points where ξ is tangent to the boundary. Thus the lines of points on

the boundary torus where ξ is tangent form some number of closed, homotopically

essential, curves. Perturbing the surface, we make it convex with a dividing curve

without nullhomotopic components, implying ξ is tight in a neighbourhood of that

surface. Since this observation holds for any sufficiently small neighbourhood, we

conclude that ξ is indeed tight.

Let us move away from the setting of chiral line singularities for a moment,

and turn to study the germs of singular contact structures with line singularities in

the neighbourhood of a surface that intersects these singularities transversally, and

establish some results analagous to those from convex surface theory. These results

can of course be applied to the disks D2 × z in our local trivialisation for chiral

line singularities. The following lemma gives a singular version of a well-known fact

about contact structures near surfaces.

Lemma 8.1. Let S be a surface and X0, X1 a pair of vector fields on the disk with

singularities at the points of a finite set Σ.

1. Let η0, η1 be two germs along S of singular contact structures with line singu-

larities passing through all points of Σ, which induce the same characteristic

foliation directed by X0. Then η0, η1 are homotopic via a homotopy that fixes

the singular lines.

2. If there is a homotopy Xt between X0, X1 through vector fields that vanish

exactly at the points of Σ, and η0, η1 are germs along S of singular contact

structures with line singularites that induce characteristic foliations directed by
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X0, X1 on S, then η0 and η1 are homotopic through singular contact structures

via a homotopy that fixes Σ.

Proof. Statement (1) is proved the same way as for contact structures. Let η be a

singular contact form on S × [−1, 1] and write η = βz + uzdz. The singular contact

condition is

βz ∧ duz + uzdβz − βz ∧ β̇z ≥ 0. (8.7)

This equation is linear in β̇z and uz. Therefore, convex combinations of solutions

βz, uz that have the same β0 are also solutions for sufficiently small z. Moreover, if

the pair of solutions both vanish at Σ, then convex combinations of them will also.

Consequently any pair of singular contact forms inducing the same characteristic

foliation on S × 0, i.e., the same β0, will be homotopic through singular contact

forms.

To prove statement (2), fix an area form Ω on the disk. We can write

ηj = βj+ujdz, where βj = ιXj
Ω, j = 1, 2. We can find γi such that βj∧γj ≥ 0 except

at the singular points, and by statement (1), we can homotope ηj into the singular

contact form η′j = cos(z)βj + sin(z)γj , since these contact forms induce the same

characteristic foliation on S × 0. Let βt = ιXtΩ, where Xt is the homotopy between

X0 andX1. We can find a path γt such that βt∧γt ≥ 0. Then η′t = cos(z)βt+sin(z)γt

is the desired homotopy.

As all singularities of winding k are homotopic to one another via homotopies that

leave the singular point fixed—Arnold’s classification [AGLV88] shows that they

need not be diffeomorphic, but they are ‘topologically equivalent’ in the sense that

the integral curves of one can be carried into the integral curves of another via a

continuous map—it follows that there are no local (i.e., in a neighbourhood of a

point) invariants of chiral line singularities except for the winding. Any further

invariants must be defined in a neighbourhood of the entire line.

Now consider vertically-invariant chiral line singularities, those that can be

defined by contact forms that are independent of the coordinate on S1. These mimic

the vertically-invariant contact forms that exist in a neighbourhood of a convex

surface, Proposition 3.2.

Proposition 8.5. For each integer k, there exists a germ of vertically-invariant

singular contact form η = β + udz on the disk with line singularity passing through

the origin, and such that β is a 1-form with a singularity of winding k.

Proof. For k < 0, there exists a harmonic function φk, independent of z, such that

β = dφk has a singularity of winding k, and the desired function u is obtained as in
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Proposition 8.1.

For k = 1, we use η = xdy − ydx − (x2 + y2)dz. For k > 1, let β =

r cos(kθ)dx + r sin(kθ)dy, where r, θ are polar coordinates on the disk. Define u

by dβ = udx ∧ dy; that is, u is the divergence of the vector field X directing the

characteristic foliation with respect to the area form Ω = dx∧dy. We compute that

u = (kr + 1) sin((k − 1)θ) and

(ru)dβ+β ∧d(ru) = r((1−kr) sin2((k− 1)θ)+ (k− 1)(kr+1) cos2((k− 1)θ))Ω ≥ 0,

(8.8)

for r sufficiently small, with equality only at the origin. Then η = β + rudz is the

desired singular contact form.

This proposition generalises somewhat, giving us an analogue of results from convex

surface theory.

Theorem 8.1. Let β be a germ of a 1-form on the disk with singularity of winding

k 6= 1 such that the set Γ = {dβ = 0} consists of finitely many lines that meet at

the origin and are transverse to the foliation defined by β. There exists a function

u such that η = β + udz is a germ of a vertically-invariant singular contact form,

and u vanishes only on Γ.

Proof. Fix an area form Ω, define X by ιXΩ = β, and let u be defined by dβ = uΩ.

By orientability we can choose γ such that β ∧ γ ≥ 0, with equality only at the

origin. Now consider η = β + udz. This is the desired singular contact form if

η ∧ dη = (u2 − Y (u))Ω ∧ dz ≥ 0, (8.9)

where Y is the vector field defined by ιY Ω = γ. By rescaling γ, we can assume this

is positive everywhere except in a small neighbourhood of the collection of curves

Γ where u = 0. Here, we need that Y (u) ≤ 0, with equality only at the origin.

These lines are the points where the divergence of X vanises, and Γ is transversal

to the flow of X by assumption. Consequently, by modifying the vector field Y

slightly in a neighbourhood of Γ if necessary, we may assume it points transversally

through Γ as well, and is such that u is decreasing along the flow of Y , i.e. Y (u) is

non-positive.

Note that all vertically-invariant singular contact structures can be realised as per-

turbations of an underlying foliation, simply by replacing the function u with tu,

where t ≥ 0 is a small parameter. For example, take β = 2xydx+ (y2 − x2)dy and

u = −x. Then udβ + β ∧ du = 4x2dxdy − (x2 − y2)dxdy = (3x2 + y2)dxdy ≥ 0,

180



Figure 8.1: Examples of a dividing curve (red) for certain singularities on the disk.
From left to right we have k = −1

2 , k = 1
2 , k = −1. In each case, we see the dividing

curve has 2|k − 1| components.

so η ∧ dη is a vertically invariant singular contact structure on D2 × [−1, 1] with a

line singularity of winding +2 along 0 × [−1, 1]. Since it does not depend on z, it

evidently descends to a 1-form on the solid torus D2 × S1, which is independent of

the coordinate z ∈ S1

We can use the ideas in the proof of Theorem 8.1 to adapt the notion of a

dividing curve from convex surface theory to the singular case. Let F be a char-

acteristic foliation on the closed disk with a singularity of winding k 6= +1 at the

origin. A dividing curve for F is a collection of arcs Γ such that

1. Each curve in Γ begins on the boundary of the disk and terminates at the

origin, and is transverse to F everywhere except at the origin.

2. There exists a vector field X directing F and a volume form Ω such that the

function u defined by uΩ = dιXΩ vanishes only on Γ and changes sign as we

cross Γ, and X flows from regions where u > 0 into regions where u < 0.

See Fig. 8.1 for examples of the dividing curve in the case of both orientable and

nonorientable singularities.

Every foliation with a singularity of index k 6= +1 admits a dividing curve.

Lemma 8.2. Let F be a germ of a foliation on the disk with a singularity of winding

k 6= +1 at the origin. Let Γ be any set of curves on D2 with the following properties:

1. Γ is transverse to F ,

2. Γ intersects every leaf except for 2|k − 1| leaves L1, . . . L2|k−1| which connect

the origin to the boundary of the disk and divide the disk up into regions

S1, . . . S2|k−1|,
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3. There is exactly one component of Γ in each region Si.

Then Γ divides F .

Proof. Condition (1) in the definition of the dividing curve is clearly satisfied by such

a set of curves, so we only need to show we can choose a vector field X directing F
so that it satisfies condition (2). Fix an area form Ω. For a generic choice of vector

field directing F , u′ = div(X ′) vanishes on a set of curves Γ′ that also satisfy the

three conditions given in the statement of the lemma, for the same set of regions

Si. Consequently Γ′ is isotopic to Γ via an isotopy φt that fixes the foliation F –

we are just pushing Γ′ along directions tangent to the leaves, and there is a single

component of both Γ and Γ′ in each Sj . Pushing X ′ along this isotopy results in

another vector field X directing F such that u = div(X) vanishes on Γ.

According to Theorem 8.1 we can use the dividing curve to define a vertically-

invariant singular contact structure inducing F . Continuing the strategy of general-

ising standard results about convex surface theory we have following result, similar

in spirit to a result of Eliashberg: a tight contact structure on the 3-ball B is deter-

mined completely by the characteristic foliation on the boundary of the ball [Eli92].

Lemma 8.3. Let ξ0, ξ1 be two tight singular contact structures on D2× [−1, 1] with

the following properties:

1. Both ξ0 and ξ1 have a single line singularity of winding k 6= +1 along 0 ×
[−1, 1],

2. The characteristic foliations induced by ξ0, ξ1 on each Dz have no singularities

except at the origin,

3. ξ0 and ξ1 induce the same characteristic foliation on D−1 and D1 and on

∂D2 × [−1, 1].

Then ξ0 and ξ1 are homotopic relative to the boundary ∂D2 × [−1, 1].

Proof. Let us find a family of curves Γz that divide the characteristic foliations in-

duced on Dz by both ξ0 and ξ1. By Lemma 8.2, it suffices for the family Γz to be

transverse to both characteristic foliations and intersect all but 2|k − 1| leaves.

Clearly we can arrange for this to be the case while also ensuring Γz depends

smoothly on z. Once we have this family of curves, the proof works the same as

Lemma 3.6, using Theorem 8.1 to provide the necessary vertically-invariant singular

contact forms.
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8.4 Tight Chiral Line Singularities that are Orientable

In this section and the next section I describe the classification of tight chiral line

singularities up to a homotopy through chiral line singularities. Here we will only

treat the singularities that are orientable around a meridian, those that correspond

to the element 1 ∈ Q in the fundamental group of the order parameter space.

Tight contact structures have invariants beyond the homotopy invariants, so it is

reasonable to expect that the same is true for tight singular contact structures. It is

sufficient to fix a dividing curve on the boundary rather than the exact characteristic

foliation, Proposition 3.5. The dividing curve will consist of an even number of

homotopically essential components, which we can regard as parallel lines of some

fixed slope. The slope depends on a trivialisation of the torus, but as with the

classification of tight contact structures on T 2× [0, 1] and D2×S1, the classification

itself is independent of the trivialisation.

In order to see what slopes are possible I introduce a two-parameter fam-

ily of tight chiral line singularities. Let βk = r cos(kθ)dx + r sin(kθ)dy and γk =

r sin(kθ)dx− r cos(kθ)dy. These are 1-forms with a singularity of index k 6= 0. For

each pair of integers k 6= 0, q > 0, define

ηk,q = cos(qz)βk + sin(qz)γk, (8.10)

For each k, define a singular contact form ηk,0 as in Proposition 8.5. Let ξk,q be the

singular contact structure on D2 × S1 defined by ηk,q. The integer k is the winding

and q the twisting number of ξk,q. The winding number is not a homotopy invariant

of singular plane fields, as it can e possible to homotope between a winding of k and

a winding of −k depending on the value of q, as we shall demonstrate below. The

twisting number is also not a homotopy invariant of singular plane fields, however

we will show that it is a homotopy invariant of tight chiral line singularities. First

note that we can rewrite ηk,q in polar coordinates as

ηk,q = r cos((k − 1)θ − qz)dr + r sin((k − 1)θ − qz)dθ, (8.11)

when q > 0. This form makes it clear that ηk,q∧dηk,q = qr2drθdz. The characteristic

foliation on the boundary of the tube is determined by the kernel of the 1-form

α = sin((k − 1)θ − qz)dθ. (8.12)

Consequently, the characteristic foliation has some number of lines of singularities

that we call Legendrian divides. We refer to the nonsingular leaves as Legendrian
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rulings. The Legendrian divides have a slope s that comes from them being isotopic

to a linear curve x + sy = 0. The boundary is convex, and the dividing curve will

be isotopic to the Legendrian divides, and therefore also consist of curves of slope

s. After acting on the boundary by an element of SL(2,Z), we can assume that the

Legendrian divides and the dividing curve have slope 0, i.e. are meridians, while the

Legendrian rulings have slope −s. A foliation of the torus that has been put into

this normal form is said to be in standard form. All these terms are in analogy with

the terms used in classification of tight contact structures on the toric annulus and

the solid torus, see §3.10.2—after a perturbation, the Legendrian divides become

the dividing curve.

It remains to determine the number of divides and the slope. When q 6= 0,

the slope of the divides will always be s = 1−k
q . When k = +1, there are 2q.

Otherwise, for k 6= 1, q > 0, we may consider the number of components of the zero

set that appear in a fundamental square [0, 2π]2. There are 2q endpoints of zero

lines on the line E1 = [0, 2π] × 2π and 2|k − 1| on E2 = 2π × [0, 2π]. A single line

of slope 0 < p
r < 1 beginning at (0, 0) will pass through the line E1 exactly r times

as it wraps around the torus, while a line of slope p
r > 1 will pass through E2 p

times as it wraps around the torus. Therefore, when the slope is s 6= 1, the set of

Legendrian divides has 2 components. Only when the slope is equal to 1, when we

must have |1− k| = q, do we have more than two components; in fact, we will have

2q components. See Fig. 8.2 for an example with k = +2, q = 3. When q = 0, there

are 2|k − 1| Legendrian divides with infinite slope, i.e. longitudes on the torus.

Notice that when k = 0 the divides have slope 1/q. The k = 0 line case

really corresponds, after a small perturbation, to a Legendrian curve with Thurston–

Bennequin number q, and hence has the same slope as the local model for such a

curve, see Ref. [Gei08].

Now that we have understood the slopes for our local models, we will show

that, close to the boundary torus, these are the only possible models. Consider

a general singular contact structure ξ, and a line singularity K in that contact

structure. Suppose there is a neighbourhood of K in which ξ is tight. This implies

there is a uniform profile along K, with some winding k.

Lemma 8.4. In this situation, there is a torus T 2 surrounding K and an integer q

such that the dividing curve such that the dividng curve induced on T 2 is the same

as ξk,q.

Proof. Begin by putting the boundary in standard form. Then we may choose a

meridional disk D0 whose boundary is a Legendrian ruling, which without loss of
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Figure 8.2: The dividing curve induced on a boundary torus by the contact structure
ξ+2,3. In the image the left and right sides should be identified, as should the top
and bottom. The dividing curve has two components, shown in red and blue, and
they have slope 1/3.

generality we will take to be the diskD2×0. The Legendrian divides on the boundary

of the torus intersect ∂D0 exactly at the places where the characteristic foliation on

D0 is tangent to ∂D0. We can assume without loss of generality that the characterisic

foliation has a single singularity of winding k at the origin where the disk intersects

the singular line, and hence there are 2|k − 1| such points, unless k = +1 and we

have been unlucky enough to choose a disk on which the characteristic foliation

contains a centre; this situation is non-generic, and hence we may replace D with

a nearby disk. If we cannot find any disk where the singularity is not a centre,

then we must be in the degenerate case where the characteristic foliation on the

boundary torus is the same as for ξ1,0. Otherwise, label the angles of these points

θj , j = 1, . . . , 2|k − 1|. We may assume, via a homotopy near the boundary, that

these are equally spaced.

Consider the family of disks Dz = D2 × z. Provided that k 6= +1, there are

2|k − 1| points on the boundary where the characteristic foliation is tangent to the

boundary, which we may label θj(z) in such a way that θj(0) = θj for each j. There

must be some number of points zl, with z1 = 0, such that θj(zl) = θj(0) for each

l. If there are finitely many, say there are q such points. Otherwise, it must be

the case that, for each j, θj(z) = θj(0) for every z, and the slope of the Legendrian

divides is infinite; we may take q = 0, and the lemma is true in this case.

Suppose we are not in this situation, so that the slope s of the dividing curves

is rational, s = p
r for some integers p, r. Then we claim that the Legendrian divides

must have slope 1−k
q . The follows from the observation that the spacing between the

θj on a particular z level is (after a homotopy near the boundary) 2π/|1 − k|, and
the fact that they make q full rotations. The number of components of the dividing

curve follows from the argument we used for ξk,q.
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Finally, we return to the case where k = +1. Generically there are no points

θj(z) on the disk Dz where the characteristic foliation is tangent to the boundary, so

that this can be assumed to hold on all but finitely many levels z1, . . . , z2q, for some

q > 0; it is clear that there are an even number of levels where this happens, as the

direction of the characteristic foliation induced on the boundary torus reverses as

we cross them. Then there will be 2q Legendrian divides of slope 0 on the boundary

torus, the same as for ξ1,q.

Now we are in good shape to prove that the ξk,q are an exhaustive list of the tight

chiral line singularities. Suppose we fix an integer k to give the winding around a

tight chiral line singularity. We also see that when q > 0, it serves as a genuine

homotopy invariant of a tight chiral line singularity.

Theorem 8.2. Let ξ be a singular contact structure containing a line singularity K

with a tight neighbourhood, which has a winding k. Then there exists a neighbourhood

N ∼= D2 × S1 of K and a nonnegative integer q such that ξ is homotopic to ξk,q

on N . Furthermore for any nonzero integers k, k′ and nonnegative integers q 6= q′,

the tight chiral line singularities ξk,q, ξk′,q′ are not homotopic through any homotopy

that leaves the singular line fixed, even if we do not require the boundary dividing

curve to be fixed.

Proof. First assume k 6= +1. By Lemma 8.4, there exists an integer q such that ξ

induces a dividing curve of the same slope and number of components as ξk,q on the

boundary of a neighbourhood N ∼= D2 × S1. Since ξ, ξk,q are both nonsingular in

a neighbourhood of the boundary, by standard results of convex surface theory for

contact structures we can make ξ and ξk,q agree in a neighbourhood of the boundary.

Let D be a meridional disk. By Lemma 8.1(2) and the fact that all singularities of

winding k are homotoptic, we can arrange for ξ and ξk,q to agree in a neighbourhood

of this disk.

The part of the tube over which we have not yet constructed a homotopy

between ξ and ξk,q is a manifold diffeomorphic to D2 × [−1, 1], and ξ, ξk,q can be

made to induce the same characteristic foliation on both D−1, D1, and ∂D
2×[−1, 1].

If k 6= +1, then we can apply Lemma 8.3.

Now we turn to the remaining case k = +1. From our observations so far, we

know we can find at most finitely many z levels z1, . . . zq for which the characteristic

foliation is purely radial, while on the other levels the characteristic foliation is either

a centre, or a spiral. By reparameterising z if necessary, we can assume z1 = 0 and

the distance between zj and zj+1 is 2π/q. On each cylinder Cj = D2 × [zj , zj + 1],
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we can use Lemma 8.3 to deduce that ξ|Cj
is homotopic to ξ+1,1|Cj

relative to the

boundary. Consequently, ξ is homotopic to ξ+1,q.

Now we turn to the second claim. A curve γ : S1 → D2 × S1, γ(t) =

(0, 0, nt) for a positive integer n is Legendrian for the singular contact structure

ξk,q and has Thurston–Bennequin number nq (or −nq, depending on the sign of

the singular contact structure). Moreover, if we are close enough to the line we

can assume all closed, homotopically-essential Legendrian curves in these structures

are homotopic through Legendrian curves to one of this type. Consequently, the

smallest Thurston–Bennequin number a homotopically-essential Legendrian curve

close to the line can attain is q. If ξk,q, ξk′,q′ were homotopic, we would have a

homotopy of the curve γ(t) = (0, 0, 1) through Legendrian curves, where at one of

the homotopy the Thurston–Bennequin number of the Legendrian curve would be

q, and at the other end q′, a contradiction.

The statement that q is a homotopy invariant implies that one cannot identify

distinct ξk,q that induce the same dividing curve on the boundary, for instance ξ−1,1

and ξ−3,2 are not homotopic even though these two chiral line singularities induce

the same dividing curve on a boundary torus and hence can be made to agree in

the neighbourhood of that torus.

Generally k is not a homotopy invariant of the chiral line singularity, as the

following proposition illustrates.

Proposition 8.6. The negative chiral line singularities η+1,0 = xdy − ydx− (x2 −
y2)dz and η−1,0 = xdx−ydy−4xydz are homotopic. This also holds for the positive

twist case.

Proof. Let ηt = cos(t)η+1,0 + sin(t)η−1,0, for t ∈ [0, π/2]. We easily compute that

ηt ∧ dηt = −(4x2 + 4y2 + 2xy sin(2t))dxdydz (8.13)

I claim that the expression in brackets is strictly nonnegative. To see this, regard it

as a quadratic equation in x. The zeros are readily computed using the quadratic

formula, and occur at points for which

x =
y

4
(− sin(2t)±

√

sin(2t)− 16). (8.14)

However, the expression under the square root is always negative, meaning the only

roots of the quadratic are complex unless x = y = 0. It follows that ηt is a negative

chiral line singularity for every t, and gives a homotopy between η+1,0 and η−1,0.
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This takes care of the situation where the singular line is orientable about both

the meridian and the longitude. To complete the classification of defect lines of

type 1 ∈ Q, it remains to consider the case when the chiral line singularity is not

orientable along a longitude. Any nonorientable plane field on D2 × S1 that falls

into this class can be defined by taking a 1-form η on the cylinder D2×[0, 1] such the

kernels of η|D2×0 and η|D2×1 agree as nonoriented plane fields, and then identifying

D2 × 0 with D2 × 1. In fact, it obviously suffices that the characteristic foliations

on D2× 0 and D2× 1 agree as nonoriented line fields. We can again use the models

ηk,q for k an integer and q a fraction. The allowed fractions are dependent on the

winding k.

Firstly, assume k < 0. Without loss of generality, we consider the maximally

symmetric form of an index k singularity, so the characteristic foliation has 2|k|
‘spokes’ coming out of the singularity, as discussed previous. Thus it is invariant

under a rotation by 2π
2|k| . It follows that we can take q ∈ 1

2|k|N. When k > +1, the

situation is similar: we can take q ∈ 1
2(k−1)N. For k = 1, we need q ∈ 1

2N. To prove

Theorem 8.2 for these singularities, it suffices to pull back the nonorientable contact

structure to an appropriate cover so that it becomes nonorientable, e.g. when k < 0

we can pullback to a 2|k| cover with covering map (x, y, 2|k|z) 7→ (x, y, z).

8.5 The Homotopy Classification of Tight Disclination

Lines

Now we consider the homotopy classification of tight chiral line singularities that

are not orientable around the meridian, corresponding to disclination lines of type

i ∈ Q in a cholesteric. The ideas of §8.3 are still true for nonorientable singularities,

and Proposition 8.4 also holds. As with the orientable case, we can have any kind

of profile.

Lemma 8.5. Let F be a germ of a nonorientable singular foliation on the disk

divided by a curve Γ. Then there exists a germ of a singular contact structure in

a neighbourhood of the disk with a line singularity through the origin inducing that

characteristic foliation.

Proof. We can cover the disk with open sets Ui and choose local vector fields Xi

directing F , with transition functions given by a sign flip. We can choose this cover

so that each component of Γ lies in exactly one Ui. Fix an area form Ω and let

ui = div Xi. Applying Theorem 8.1 to each Ui yields a contact form ηi = βi+uidz,

where βi = ιXi
Ω. The vector field uiXi agrees with ujXj on the intersection Uij up
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to a sign flip, and hence we can glue the singular contact structures defined by the

ηi to form a singular contact structure in the neighbourhood of the disk.

First consider the case where the disclination is orientable along the lon-

gitude. We have models defined locally by 1-forms1 ηk,q = cos(qz)βk + sin(qz)γk

with k ∈ Z + 1
2 and a nonzero integer q. Convex surfaces are defined for nonori-

entable contact structures as well, except the number of components of the dividing

curve does not have to be even, because it no longer separates regions where the

divergence of the (nonorientable) characteristic foliation takes opposite signs. The

pattern of slopes and number of dividing curves induced by ηk,q are computed as in

the orientable case. In particular, the situation for ξ1/2,q and ξ−1/2,q is as follows.

1. For k = +1
2 , there is a single Legendrian divide with slope 1

2q , which we regard

as infinite slope when q = 0.

2. For k = −1
2 , the Legendrian divides have slope 3

2q , which is again infinite when

q = 0. There is a single Legendrian divide, except when q = 3 when there are

3 Legendrian divides.

The existence of a dividing curve for the nonorientable characteristic foliation on

disks Dz is evident, see Fig. 8.1. To prove Theorem 8.2 in the nonorientable case

we follow the same arguments as in the orientable case, as it only requires the

existence and uniqueness of vertically-invariant contact forms in a neighbourhood

of the surface.

There is one final remark to make concerning the q = 0 case for k = ±1
2 .

Here, the Legendrian divides are the same. Consequently, η+1/2,0 and η−1/2,0 are

homotopic in a neighoburhood of the boundary torus. In fact, we can check that

ηt = cos(t)η+1/2,0 + sin(t)η−1/2,0, t ∈
[

0, π2
]

is a homotopy through singular contact

forms that leaves the dividing curve on the boundary fixed. To see this, note that

by Proposition 8.5 we may take ηk,0 = cos(kθ)dx+sin(kθ)dy−k sin((k−1)θ)dz, for

k = ±1
2 . Then we compute that

ηt ∧ dηt =
1

2

(

sin2(θ/2) + r(r + 1) cos2(θ/2)
)

+
3

2

(

sin2(3θ/2) + r(r + 1) cos2(3θ/2)
)

+
1

4
sin(2t) sin(θ/2) sin(3θ/2),

(8.15)

which is nonnegative. Thus ηt defines a homotopy between ξ+1/2,0 and ξ−1/2,0 such

that, one any boundary torus, the characteristic foliation is divided by the same

1Of course these are not 1-forms in the usual sense, however we can regard them as sections of
the projectivised cotangent bundle PT ∗D2 × S1.
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curve for each t. We can regard this is a local homotopy that may be used to change

the winding around a disclination line from +1
2 to −1

2 via purely local modifications,

whislt keeping the neighbourhood of the line chiral. Such transitions

Now we treat the case where the disclination is not orientable along a lon-

gitude. Any nonorientable plane field on D2 × S1 that falls into this class can be

defined by taking a 1-form (again, a section of the projectiveised cotangent bundle) η

on the cylinder D2×[0, 1] such the kernels of η|D2×0 and η|D2×1 agree as nonoriented

plane fields, and then identifying D2 × 0 with D2 × 1. In fact, it obviously suffices

that the characteristic foliations on D2 × 0 and D2 × 1 agree as line fields. We can

again use the models ηk,q with q a fraction. The allowed fractions are dependent on

the winding k: for k = −2m+1
2 and m non-negative, there are 2m+ 3 ‘spokes’, and

hence we can take q ∈ 1
2m+3Z. When k > 0, then the structure of the singularities

means that only integer rotations bring the profile back to itself, and hence there

are no additional examples.

It is worth making a few remarks on the actual geometry of disclination

lines. The invariant q can readily be interpreted as a self-linking number, and

we can choose a framing of the line that corresponds to this self-linking number,

turning it into a ribbon which has both writhe and twist, related by the Călugăreanu

theorem [C6̆1; ČŽ11a; ČŽ11b],

q = Tw(K) +Wr(K). (8.16)

The geometric twist of the ribbon is coupled to the twist elastic distortion, and

consequently we expect it to be be largely determined by q0. Since the twisting

number q of the line is essentially fixed, requiring the director to overcome a large

energy barrier (of order K2q
2
0) to change, this means that any disparity will have to

be met by introducing writhe.

This restriction leads to an instability of +1
2 disclinations that is similar in

spirit to the buckling of an elastic column. Consider a cell of cholesteric material

whose height h is equal to the cholesteric pitch, and suppose that there is a straight

disclination line of self-linking number q > 1 stretching between the top and bottom

surfaces of the cell, where the director is fixed. The self-linking number sets a

preferred length qh for the disclination. Since the self-linking number is fixed, the

director can only alleviate this geometric frustration while preserving the condition

n · ∇ × n 6= 0 is for the line to convert twist into writhe by coiling up into a

helix, thereby extending its length, which is shown for an n+1/2,2 disclination in

Fig. 8.3(b). Interestingly, we do not observe this for the n−1/2,2 disclination, which
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Figure 8.3: Examples of disclinations in cholesterics. (a) Overtwisted disclination
line (dark blue) attached to four λ lines (light blue tubes) The director is shown
on several transverse slices. (b) Tight disclination line n1/2,2 in a cell with fixed
boundary conditions. The cell height is chosen to be equal to one cholesteric pitch
p, while the self-linking number of 2 for the line gives an energetic preference for a
length of 2p. This geometric frustration is relieved by converting twist into writhe,
and the line coils up into a helix, increasing its length. (c) Disclinations and λ lines
in the O8− blue phase. We show the director on a cross section of a disclination.
(d) Each disclination is tight and of type n−1/2,2/3, as seen from the the dividing
curve (black) on a convex torus around the line. (e) Blue phase O2 with broken
symmetry. There are four λ−1/2 lines attached to the dislinations. The dividing
curve is shown on a neighbourhood of a disclination, which illustrates that it is
tight. It is equivalent to the model n−1/2,2/3.

remains straight.

The classification scheme can be applied to the disclination lines in the blue

phases. Examination of the O8− blue phase, Fig. 8.3(c), shows that none of the

disclination lines are tethered to λ lines, and are therefore tight. This is also seen

by an examination of the dividing curve on a convex torus around the disclina-

tion, Fig. 8.3(d). By inspection, we find that both disclinations are of the type

n−1/2,2/3. The O8+ and BPX structures also contain only tight disclination lines of

type n−1/2,2/3. Most interesting is the O2 blue phase, which has cubic symmetry.

There are four segments of disclination line meeting at centre of the box, each with a

profile −1
2 , and additionally four λ lines also meeting at the centre of the structure.

This highly-degenerate situation falls outside of our classification results, which as-

sume that a disclination has a tubular neighbourhood free of defects. By breaking

the symmetry of the phase, for instance by applying an electric field, we split the

structure into a pair of disclinations. The director is then chiral throughout, the

disclination lines are tight and of type n−1/2,2/3, Fig. 8.3(e). Note that the λ lines

do terminate on the disclination lines, but they are λ−1/2 lines and therefore do not

violate the tightness constraint, as seen from an examination of the dividing curve.
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8.5.1 Summary of the Classification of Tight Chiral Line Singular-

ities

To summarise, we have a collection of models ηk,q for chiral line singularities with

k, q as below:

1. k ∈ Z and q ∈ Z, q ≥ 0.

2. k = 2m+1
2 ,m ∈ Z and q ∈ Z, q ≥ 0.

3. k ∈ Z and q /∈ Z, q ∈ 1
2(k−1)N for k > +1, q ∈ 1

2|k|N for k < 0, q ∈ 1
2Z for

k = 0, 1.

4. k = −2m+1
2 ,m ∈ N and q /∈ Z, q ∈ 1

2m+3Z.

The general classification theorem is as follows.

Theorem 8.3. Every chiral line singularity is homotopic to ξk,q, with k, q, with the

permissable values of k, q as given above. In each case, the value of q is a homotopy

invariant.

Finally, let us note which Jänich index ν each nonorientable chiral line singularity

corresponds to. To do this, we write

ηk,q = cos

((

m− 1

2

)

θ − qz

)

dr + sin

((

m− 1

2

)

θ − qz

)

dθ, (8.17)

to see the correspondence with Jänich’s model, wherem is defined by k = (2m+1)/2.

Let us take m = 0, for a +1
2 disclination. Then

ηk,q = cos

(

θ

2
+

2qz

2

)

dr − sin

(

θ

2
+

2qz

2

)

dθ, (8.18)

If q is an even multiple of its smallest nonzero value then the line is orientable

along a longitude, and if it is an odd multiple then it is not. For example, for a

k = −1
2 disclination, odd multiples of 1

3 give lines that are not orienatable along a

longitude, while even multiples of 1
3 , including q = 0, give lines orientable around a

longitude. This gives one Z2 part of the Jänich index. The other Z2 part, whether

or not the line carries a charge, is determined by 2 ⌊q⌋ mod 4, which is the same

as ⌊q⌋ mod 2. Thus it is possible to have tight disclinations in each of the different

homotopy classes of disclinations, in contrast to the situation for nonsingular contact

structures, where tight structures only appear in the zero homotopy class of plane

fields on S3 and T 3.
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8.6 Edge Disclocations, λ Lines, and Overtwistedness

8.6.1 The Classification of Overtwisted Chiral Line Singularities

So far, I have only given examples of tight chiral line singularities. Proposition 8.4

implies that any overtwisted chiral line singularity η = βz + uz must have changes

in the profile. Let us take a look at a simple example of a change in profile from +1

to −1. Consider the following pair of 1-forms,

β = xdy − ydx− (x2 − y2)dz,

γ = xdx− ydy − 4xydz.
(8.19)

These are, up to homotopy, just η+1,0 and η−1,0 from the classification of (negative)

tight chiral line singularities. Define ω = cos(z)β + sin(z)γ. We compute that

ω∧dω = cos2(z)β∧dβ+sin2(z)γ∧dγ+cos(z) sin(z)(β∧dγ+γ∧dβ)+β∧γ∧dz. (8.20)

The terms are easily computed. Firstly, β∧dβ+γ∧dγ = −4(x2+y2)dxdydz. Then,

we compute that

β ∧ dγ + γ ∧ dβ = −4xydxdydz,

β ∧ γ ∧ dz = (y2 − x2)dxdydz.
(8.21)

Then we conclude that

ω ∧ dω = (−5x2 − 3y2 − 2 sin(2z)xy)dxdydz. (8.22)

To see that ω is a chiral line singularity, argue as in Proposition 8.6 and regard the

expression in brackets as a quadratic equation in x. The zeros occur at points for

which

x =
y

5
(− sin(2z)±

√

sin2(2z)− 15). (8.23)

As before, the expression under the square root is always negative, meaning the only

roots of the quadratic are complex unless x = y = 0. It follows that ω is a chiral

line singularity.

The characteristic foliation induced on a torus of radius R around the line is

directed by the vector field

X = R(cos(z) + 2 sin(z) sin(2θ))eθ + (cos(z)− sin(z) sin(2θ))ez (8.24)

There are multiple singularities, implying that the contact structure in a neighbour-

hood of this torus is overtwisted, exactly as we expect from Proposition 8.4. These
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Figure 8.4: Dividing curve (red on a convex torus surrounding an overtwisted chiral
line singularity (blue). The projection of the director into the surface changes from
a 1

2 singularity to a −1
2 singularity and back again, leading to a closed component

of the dividing curve. In between these two different windings there must be a disk
where the projection of the director into the disk has a singularity of winding 0.

singularities occur on z-levels where cos(z) = 0,at the points θ = 0, π. One can send

z 7→ qz to get an examples with additional λ lines.

We can do the same thing with η±1/2,q to produce overtwisted disclination

lines, see Fig. 8.3(a) for a simulation and Fig. 8.4 for a schematic of the dividing

curve.

There is an h-principle for the overtwisted singular contact structures, i.e.

that the homotopy classification of overtwisted chiral line singularities reduces to the

homotopy classification of germs of singular plane fields. I prove this for both point

and line singularities. A germ at a point (resp. a line) of an overtwisted singular

contact structure ξ is a plane field on the 3-ball B (resp. the solid torus D2 × S1).

Theorem 8.4. (Local h-principle for overtwisted singular contact structures) A

germ of an overtwisted chiral point (resp. line) singularity ξ is determined up to

homotopy through germs of chiral point (resp. line) singularities by its homotopy

class as a germ of a singular plane field. In the line singularity case, there is a

unique up to homotopy overtwisted chiral line singularity for each Jänich index.

Proof. Removing the singularity itself, we can view ξ as a nonsingular plane field on

S × [ǫ, 1], where S is the 2-sphere for a point singularity and the 2-torus for a line

singularity, and ǫ > 0. The contact structure is determined by the dividing curves

Γz induced on the levels S × z, where z is the coordinate on [ǫ, 1], which we can

assume to be convex. Moreover, since we dealing with germs, we can also assume

that the dividing curves Γz form a smooth 1-parameter family, as is described in the

uniqueness result, Lemma 3.6. For S the sphere, the homotopy class of the plane

field is determined by the index of the singularity, equivalently the number of com-

ponents of the dividing curve and the assigment of signs to the different regions (to
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distinguish index +1 from −1, etc). We can apply the usual h-principle of Eliashberg

to conclude that for any ǫ, ξ is homotopic through overtwisted contact structures to

some model overtwisted contact stucture ξk that would have a singularity of index k

at the origin, say the one produced by taking the appropriate harmonic function as

the local structure. Moreover, we still have this homotopy when we take the limit

ǫ → 0, as there is a unique way to extend the homotopy over the origin, by having

it be fixed there.

For line singularities, the homotopy class of a line singularity is determined

by the Jänich index ν. To produce an example in each class, observe that we can

produce a ν = 0 examples by taking ω0 = cos(z)η+1/2,0 + sin(z)η−1/2,0. Then we

produce examples ων for each ν by cutting the line somewhere in the segement where

the profile is −1/2 and inserting a segment of the form η−1/2,q for some q ∈ 1
3Z.

Taking q so that it is not an integer will lead us to the class ν = 1, and taking

1 < q ≤ 2 will allow us to reach the classes ν = 2 and ν = 3 depending on whether

we take it to be an integer or not. This illustrates that there is an overtwisted chiral

line singularity in each class. To show it is unique, we run the same argument just

given for the point defect case.

8.6.2 Creating Edge Dislocations

Let us briefly examine how to about changing the invariants k, q in either an ori-

entable or nonorientable tight chiral line singularity ηk,q. Proposition 8.4 implies

that this must involve changing the profile on some meridional disk. In the case of

nonorientable singularities, we rotate the director out of the plane of a disk to change

the winding of the singularity in the characteristic foliation from +1
2 to −1

2 , or vice-

versa. Consider the impact on a neighbourhood of a meridional disk Dz := D2 × z

on which we make this change. A +1
2 singularity has a dividing curve with one

component. Rotating the director out of plane so that the singularity has −1/2

produces two new components of the dividing curve. This also impacts the dividing

curve on a convex boundary torus T 2. In a neighbourhood of the disk where we

have modified the director, the dividing curve has picked up two new components.

Since we only modifed the director near a disk, these must close up into a circle.

This implies (via Giroux’s criterion) that the resulting singular plane field, if

it were contact, would be overtwisted. Consequently, we see that this modifcation

must introduce regions of reversed handedness, else we would have produced a ho-

motopy between a tight and an overtwisted contact structure. Moreover, the fact

that the value of the Euler class of the plane field on T 2 is now nonzero implies that

there must be λ lines. Generically, this homotopy will produce a pair of λ lines, one
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with winding +1
2 and another with winding −1

2 . The structure of this pair is exactly

the structure of an edge dislocation, as described previously in §3.9 and §5.5.3.
In the cholesteric ground state in T 3, the creation of edge dislocations allows

us to change the layer number at the cost of introducing regions of reversed handed-

ness. This is done by creating the pair of λ lines, moving them in opposite directions

around a homotopically essential cycle, and finally annihilating them again on the

other side. For the contact structures ξk,q, we can condier the effect of creating an

edge dislocation and moving the resulting pair of λ lines around either the merid-

ional or longitudinal cycles on a boundary torus. In the latter case, creating the

edge dislocation changing the winding number around the line to be −k in a neigh-

bourhood of some disk, and the effect of moving the λ lines around the longitudinal

cycle is to increase the size of this neighbourhood. Once they annihilate again, the

winding will have changed along the entire line. The result of moving these lines

around a meridional cycle is to change the twisting number q by 1.

I emphasise that it is not a priori clear if the singular plane fields that result

from these processes are actually singular contact, or if there are regions of reversed

handedness, nor is it clear whether, in the latter situation, the regions of reversed

handedness can be removed via some local operation. Moreover, the process of

creating the edge dislocation is evidently not local, so something must happen away

from the disclination line. The homotopy theory suggests one possible way in which

this operation can be performed is to pass a second disclination line through the one

we are considering, which must result in at least one λ line of positive winding and

hence a change of profile, and then we would not worry about global constraints:

the new λ line simply terminates on the second disclination.

These fundamental questions are part of a larger problem, the problem of

understanding how topological invariants change in liquid crystal materials and the

interaction this has with geometry and with chirality. Answering this question in

totallity is beyond the scope of this thesis and will be addressed in future work.

8.7 Removing Orientable Chiral Line Singularities

In a nematic, an orientable singular line with ν = 0 is removed by ‘escape into the

third dimension’; we homotope the local structure of the line in a neighbourhood

diffeomorphic to D2 × S1 so the the director is tangent to the surfaces D2 × z, and

then add a small component along the S1 factor, which removes the singulaity. In

this section I investigate the possiblity of doing this to a tight chiral line singularity

when one also requires that the resulting plane field be contact. In some cases
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tightness will be preserved, in other cases, notably if the winding around the line is

+1, chirality can be preserved but tightness will not be.

Let ηk,q be the germ of a singular contact form along an orientable line

singularity, according to the classification result of Theorem 8.2. Conveniently this

director is already 2-dimensional, at least when q > 0. We capture the notion of

escape into the third dimension in the following definition.

Definition 8.4. An escape of ηk,q is a 1-form η̄k,q = η̃k,q + tω on D2×S1 such that

1. η̃k,q is homotopic to ηk,q through chiral line singularities,

2. η̄k,q is a nonsingular contact form for all t > 0 sufficiently small,

3. ω|∂D2×S1 = 0,

4. The singular line 0× S1 is a transverse curve of the contact structure defined

by η̄k,q for t > 0 sufficiently small.

Observe that, for t sufficiently large, we could take any contact form ω = α + udz

with u(0, z) 6= 0 and this would satisfy the above conditions; the challenge is to find

a 1-form so that η̄k,q becomes nonsingular and contact for all t > 0.

Firstly, consider the case where k = +1. The simplest situation is where the

twisting number q vanishes, and along the singular line the singular contact form is

homotopic to the 1-form η1,0 = rdθ − r2dz in cylindrical coordinates on D2 × S1.

We can escape this by taking ω = (1 − r2)dz. Furthermore, escape is possible for

k = −1, q = 0 as well: η−1,0 is homotopic to η̃−1,0 = xdx+ (x− y)dy + r2

4 dz, which

we can also escape by taking ω = (1 − r2)dz, and the resulting Reeb field also has

the line r = 0 as a periodic orbit.

Now, we see that escape is impossible for k = +1, q > 0.

Proposition 8.7. There is no escape of η+1,q, for any q > 0.

Proof. Since an escape of η1,q does not change the characteristic foliation on D2× z
near the boundary, we cannot remove the singularity from the characteristic foliation

on any disk D2 × z by this process. For q > 0, the characteristic foliation on some

of these disks D2 × z contains a radial singularity such that the divergence of the

vector field directing the characteristic foliation vanishes there. After any small

perturbation of η1,q there will still be some nearby disks with this property. Theorem

3.2 implies this cannot happen in a contact structure.

Consequently, we cannot escape a singular line with +1 winding without introduc-

ing regions of reversed handedness that prevent the resulting plane field from being
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contact; the consequences of this will be discussed further in Chapter 9. This gives

a contact topological interpretation of a well-known fact: one cannot convert a χ

line into a λ line [BMČ+14]. Alternatively, instead of escaping in a fixed direction

one can alternately escape up and down, replacing the singular line with a series of

chiral point singularities of alternating index on the surfaces where the characteris-

tic foliation has a centre singular point, creating a singular contact structure with

singularities of a higher codimension.

The proof of Proposition 8.7 extends to the general case of winding k. The-

orem 3.2 implies that no characteristic foliation on a surface in a contact manifold

ever has a singularity at which the divergence vanishes. Except in certain cases, the

1-forms ηk,q induce such ‘bad’ singularities on transverse disks, and this property

cannot be destroyed by a small perturbation because, while it the nonvanishing of

the divergence at critical points is generic for a single vector field, it is not generic

in one parameter families.

Theorem 8.5. The is no escape of ηk,q except in the cases k = +1, q = 0, k = −1,

and k = 0.

The natural question then is to ask whether it is possible to break apart the de-

generate line singularities and escape at the same time, in such a way that we end

up removing the singular line, a process that yields a contact structure with some

number of transverse curves, of winding equal to ±1.

Proposition 8.8. For each k 6= 1, q ≥ 0 there exists a perturbation of ηk,q such that

the resulting 1-form is nonsingular and induces a characteristic foliation on each

D2 × z where the divergence is nonzero at the singularities.

Proof. This follows from the fact that singularities can be decomposed into a set

of Morse singularities. We can do this splitting for each z. Since the characteristic

foliation depends smoothly and periodically on z, we can obviously arrange for the

splitting to depend smoothly and periodically on z as well.

Note that we have not asked that the perturbed 1-form be contact in this proposition,

only that it induce the same kinds of characteristic foliations that a contact structure

would. To show we can do this splitting so that the resuling structure is contact,

we modify the argument in Lemma 3.6. Fix a surface S.

Proposition 8.9. Let ξ be a (possibly singular) plane field on S × [0, 1] or S × S1

such that there is a smooth family of curves Γz that divide the characteristic foliation

induced by ξ on each S × z. Moreover, suppose that ξ is defined by a 1-form ω =
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βz+vzdz with βz∧ β̇z ≤ 0. Then ξ is homotopic to a (nonsingular) contact structure

that induces the same characteristic foliation on each S × z.

Proof. Let βz be a smooth family of 1-forms defining the characteristic foliations

induced by ξ on S× z. By Proposition 8.5, there is a smooth family of functions uz

such that

Az := uzdβz + βz ∧ duz > 0. (8.25)

Let η = βz + tuzdz. Then, by the assumption βz ∧ β̇z < 0, we have η ∧ dη =

(tAz − βz ∧ β̇z)∧ dz > 0. That ξ is homotopic to the contact structure defined by η

follows from the same argument used in Lemma 3.6.

Therefore, to remove the degenerate singular lines we need only unfold them

so that the resulting family of characteristic foliations are z-periodic and otherwise

satisfy the conditions of Proposition 8.9. Before turning to the general discussion,

consider the +2 disclination line η2,q, q > 0, as an example. The desired unfolding

of the +2 singularity is given by β̄ = β+R2 sin(2qz)dx+R2 cos(2qz)dy and γ̄ = ⋆β̄

for R ≥ 0 small and ⋆ the Hodge star operator of the Euclidean metric on D2 × S1.

Then set

αz = cos(qz)β̄ − sin(qz)γ̄. (8.26)

Note that αz ∧ α̇z = −qβ̄ ∧ γ̄ = −q
∥

∥β̄
∥

∥

2 ≤ 0. The singularities of α are at

(R cos(qz),−R sin(qz), 0) and (−R cos(qz), R sin(qz), 0), and the characteristic foli-

ation has a singularity there of radial type. There exists a dividing curve for such

as foliation, and since the characteristic foliation depends smoothly on z we can

take the dividing curve so that it too depends smoothly on z. Thus we can apply

Proposition 8.9 in this case.

Concretely, we take uz = 4(− cos(qz)x + sin(qz)y). This function is defined

by dαz = uzdx ∧ dy, where αz is regarded as a 1-form on the disk D2 × z, and it

is positive at one singularity of αz and negative at the other, and it vanishes along

the straight line x = tan(qz)y, which divides the characteristic foliation on each z

level. Let η = αz + tuzdz, for t ≥ 0. This is a non-vanishing 1-form. We see that

uzdαz + αz ∧ du = u2z(β̄
2
x + β̄2y) + β̄y, (8.27)

where β̄x, β̄y are the dx, dy components of β̄. This is strictly positive close to the

zeros of αz, and consequently for t small enough η is a contact form. Treating η as

being parameterised by R, t, we have a homotopy that unfolds and escapes the +2

disclination line, keeping it chiral all the time.
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Figure 8.5: Trying to remove the η+1,q, q > 0, singular line results in either (a)
a string of chiral point defects of alternating charge, or (b) a string of regions of
reversed handedness (red).

The impossiblity of escaping η+1,q for q > 0 leads to a novel type of structure

in a cholesteric, which we are justified in regarding as a type of defect. Define a

twist soliton in a right-handed material to be a region U of space, diffeomorphic to

a ball, where the twist of the director has the wrong sign. We will call the twist

soliton unstable if there exists a ball B containing U and a homotopy of the director

nt that is fixed outside B and such that n1 is right-handed throughout all of B. We

call the twist soliton locally stable otherwise.

The plane field η+1,q + ǫez, q, ǫ > 0, contains locally stable twist solitons,

Fig 8.5. These appear close to each surface where the characteristic foliation induced

by η+1,q violates the condition of Theorem 3.2, i.e., where the director is purely

radial. As we have observed, these twist solitons are locally stable because this

property, of the director being purely radial, cannot be removed from the family of

characteristic foliations by modifications near a point.

These locally stable twist solitons behave in a similar fashion to point defects.

They cannot be removed by local modifications, only modifications along a line. One

can create a field of them, and then they self organise into a lattice, Fig. 8.6. They

could be created in an experiment by first constructing a lattice of singular lines

of winding ±1, and then using an applied field to encourage the director to escape

up everywhere. The −1 winding lines will be chiral after the escape, while the +1

winding lines will be converted into strings of twist solitons. This lattice of twist

solitons gives an idea of what such objects might look like in a bulk sample.

We can try to estimate the size of a twist-soliton. Changes in the handedness

occur as one crosses a surface where the director is purely radial. Thus a spherical
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Figure 8.6: A lattice of locally stable twist solitons. The red surfaces indicate
the boundary of the twist solitons; the solitons themselves are the interior of the
surfaces. The director is shwon on two slices. The lower slice touches the boundary
of one of the solitions at a point. Here, the director itself is purely radial, and the
characteristic foliation has a centre. The upper slice intersects a twist soliton in the
interior, where the director field has a more ‘spiral-like’ quality to it.

twist solition should be ‘pinned’ to such a surface at both ends, i.e. the director is

er at one pole of the twist soliton, and −er at the other pole. The lengthscale ℓ

over which this happens is of the order of half the cholesteric pitch. To describe a

single locally stable twist soliton, one can take the plane field defined by

η = η+1,1 + (1 + ℓr sin(z)/2)dz (8.28)

On R2 × [−π/2, π/2], where the length of the interval has beeen rescaled so that

ℓ ∼ π. Normalising gives a unit director. This argument suggests that the radius of

the twist soliton scales like 1/4 of the cholesteric pitch.

Twist solitons are an interesting type of defect that can occur in a cholesteric.

I have already described some properties of twist solitons in Chapter 7, where they
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occur close to the droplet boundary, and further examples appear below in Chapter

9. The examples given in this section are of a different character, in that they lie in

the interior of the droplet and can be removed via a homotopy, although not a local

one. Further investigation of the properties of these defects will be the subject of

future work.

8.8 Global Homotopy Classification of Singular Contact

Structures

Let Ξ(Σ, L) denote the space of orientable singular plane fields on M that have

singularities (of nonzero charge) at the points of Σ = {p1, . . . , pm} and line singu-

larities (of nonzero winding) along the components of the finite link L. Let Ξc(Σ, L)

denote the subspace of these that are singular contact and ΞO(Σ, L),ΞT (Σ, L) the

subspaces which are respectively overtwisted and tight singular contact; the latter

is empty whenever Σ is nonempty, according to Proposition 6.1. When Σ is empty,

we denote these spaces Ξ(L), etc, and when L is empty we denote the spaces Ξ(Σ),

etc.

Our aim is to compute π0 of these various spaces. This was described in §2.5
for standard singular plane fields, following the description in [MA16a]. We wish to

do the same for the contact structures. Firstly, we observe the following simple

Proposition 8.10. Let Σ,Σ′ be sets with the same finite number of points, and let

L,L′ be isotopic links. Then π0(Ξc(Σ, L)) ∼= π0(Ξc(Σ
′, L′))

When there only point defects, we have an extension of Eliashberg’s h-principle for

overtwisted contact structures.

Theorem 8.6. π0(Ξc(Σ)) ∼= π0(Ξ(Σ)), for any nonemtpy set Σ.

Proof. Any contact structure belonging to Ξc(Σ) is overtwisted by Proposition 6.1.

Let ξ0, ξ1 be two such structures, and suppose that they are homotopic through

singular plane fields leaving the singularities fixed; in particular, they have singular-

ities of the same charges. Let N be a set consising of small open balls around each

singular point. Suppose we know that ξ0, ξ1 are homotopic through singular con-

tact structures on N , by Theorem 8.4. Then, by choosing a smaller open N ′ ⊂ N ,

we can extend this homotopy through contact structures as a homotopy through

contact structures on M − N ′; the h-principle of Eliashberg implies there is a ho-

motopy ξ′t through contact structures with ξ′0 = ξ0|M−N ′ and ξ′1 = ξ1|M−N leaving

the boundary ∂M −N ′ fixed [Eli89; Eli92].
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That ξ0, ξ1 must be homotopic rel. boundary through contact structures on

N follows from the description of the local structure of chiral singularities given in

Chapter 6.

In contrast to nonsingular contact structures, Theorem 8.2 implies that the

h-principle now fails to hold whenever there are any line singularities with tight

neighbourhoods, even if the contact structure is overtwisted on the complement of

the line singularities. However, we can show that the invariants associated to the

tight neighbourhoods of the line singularities are the only additional topological

invariants in this case.

Let L be a fixed link in M with components K1, . . .Kl. A marking of a link

L′ is an assigment of a pair of integers k, q to each component of the link, so that

the local structure is given by ηk,q.

Theorem 8.7. Fix ξ ∈ ΞC(Σ, L) or ξ ∈ ΞO(L). Let L′ ⊂ L consist of the compo-

nents of the singular link L that have tight neighbourhoods, and let N be a small open

neighbourhood of L′. Suppose a marking is specified on L′. The homotopy classes

of overtwisted singular contact structures on M with this assignment are in a 1-1

correspondence with homotopy classes of singular plane fields on M −N relative to

the boundary condition implied by the choice of assignment.

Proof. Once an assignment is specified, the homotopy classification of singular con-

tacts structures on the complement of N follows from the classification of singular

plane fields by Theorem 8.4 and Eliashberg’s h-principle. It remains to show that

contact structures with different assignments cannot be homotopic through singular

contact structures; this follows from Theorem 8.2.

This theorem takes of the cases ΞC(Σ, L) and ΞO(L)—we again have an h-principle,

up to the specification of the local structure of the tight line singularities. The only

really interesting space is ΞT (L).

Finally, the tight case.

Theorem 8.8. Let L be a link, and N a small open neighbourhood of L. For each

boundary component ∂Nj, specify a slope (kj − 1)/qj. The tight singular contact

structures ΞT (L) on M with this set of slopes are in a 1-1 correspondence with tight

contact structures on the manifold M −N with the appropriate boundary condition

on ∂M = ∪j∂Nj.

Theorems 8.6, 8.7, and 8.8 complete the homotopy classification of singular contact

structures in the overtwisted case and reduce the tight case to understanding tight
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contact structures on knot and link complements. The classification of tight contact

structures on the complement of an arbitrary link L in S3 is difficult, and to my

knowledge there are only two known cases. The manifold that is the complement of

an m-component link L in S3 will always be a compact manifold whose boundary

consists ofm torii. Whenm = 1, the complement is always diffeomorphic to D2×S1

and we may apply the classification theorem of Honda, described in §3.10. When

m = 2 and L is the Hopf link,the complement is T 2× [0, 1] and we may again apply

the results of Honda.
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Chapter 9

Layered Stuctures, Hopfions,

and Disclination Lines in

Cholesteric Droplets

9.1 Introduction

In Chapter 7 I studied defect strutures in cholesteric droplets using the tools of

singular contact topology. Primarily this is a local theory that happens to extend

globally: by prescribing a symmetry group for the droplet, which is done by, for ex-

ample, placing a set of achiral defects near to the boundary, the entire structure is

determined, with ‘degenerate’ variants of the structures being produced by unfold-

ings of the central singularity. In this chapter I focus on other kinds of structures in

cholesteric droplets found in the experiments of Ref. [Pos18c] which are not deter-

mined by the placement of singularities, but rather the geometry of the cholesteric

layers. These include textures with linked λ lines and nonzero Hopf invariant. Many

of these textures also occur in droplets with planar anchoring, both in experiment

and simulation, to which they can be compared [SPRŽ12]. I demonstrate that struc-

tures in droplets with planar and normal anchoring are the same up to the addition

of a boundary layer that interpolates between the two kinds of anchoring.

9.2 The Boundary Layer of a Droplet with Normal An-

choring

A droplet with normal anchoring can be see as a droplet with planar anchoring

plus an additional ‘boundary layer’ that interpolates between planar and normal
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anchoring. This perspective is useful in adapting the textures constructed by Seč

et. al. [SPRŽ12] to textures in droplets with normal anchoring. In this section we

will construct this boundary layer.

Let B be a droplet of radius R0 with planar anchoring, equipped with a

singular contact structure that agrees with the standard planar boundary. We will

add a boundary layer S2 × [0, 1] to the outside of B, along with a singular plane

field that is tangent to S2× 1. We will assume (1) that the interior of the boundary

layer contains no defects, (2) any defects sit on the inner boundary (S2 × 0, glued

to ∂B) of the boundary layer, and (3) that the region of reversed handedness whose

presence is implied by Theorem 3.5 begins at the inner boundary of the boundary

layer; recall that this third condition was essentially the definition of the boundary

layer given in Chapter 6.

I assume the characteristic foliation on the inner surface of the boundary

layer is as simple as possible, with the leaves being great circles. Note however

that the construction below works no matter the choice of characteristic foliation.

Further, assume that the interior of the droplet contains no defect. Then there are

two possibilities for the structure of the single defect in the boundary layer: either

it is chiral, with Morse index 2, and there is a region of reversed handedness at the

opposite pole, or it is achiral, with Morse index 0, and pinned to a region of reversed

handedness.

Denote by r the coordinate on [0, 1]. The coordinate system on the sphere

S2 × 0 is θ = arccos(z/r), and φ = arctan(y/x), with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π,

with area form sin(θ)dθdφ. The characteristic foliation on S2 × 0 must therefore be

directed by X0 = eφ. Consider the family of foliations directed by Xr = (1− r)eφ+

r(1− r)eθ. If we set η = βr + rdr, where βr = ιXrΩ, then

η ∧ dη = r2((1− r) cot(θ)− (2− 3r + 2r2) sin(θ))dr ∧ Ω. (9.1)

This is negative everywhere except for a region around θ = 0, and evidently η|r=1

is defines a plane field tangent to the boundary sphere. Thus we have interpolated

between planar and normal anchoring. One can tweak the size and shape of the

region of positive twist by adding parameters to Xr and putting a function in front

of the dr term in η, but I refrain from doing so, as the primary aspect of interest

here is understanding the topology of the boundary region rather than getting the

exact director; this is best left to the numerical simulations. It is however helpful

to have a version of the boundary director that is parametered by h, the thickness

of the boundary region, which is set to 1 in the discussion above. Concretely, we
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Figure 9.1: Examples of how the orientation of a director close to a spherical surface
with planar anchoring influences the presence of chiral/achiral defects when a radial
boundary layer is added. (a) The director is oriented from the south pole to the
north pole. When the boundary layer is added, this produces an achiral Morse defect
(Hedgehog) at the south pole. (b) When the director is oriented from the north to
the south pole, the defect appears at the north pole and is chiral, while a region
of reversed handedness appears near the south pole. In each case the red surface
is where the twist vanishes, and the green sphere indicates the interior part of the
droplet where the twist has a single sign—the director is approximately tangent to
the boundary of this sphere. The white arrows indicate the oriented director.

obtain this director by normalising

m = sin θ(R+ h− r)eθ − sin θ(R− r)(R+ h− r)eφ + (r −R)er. (9.2)

While the twist soliton always appears at the south pole, where θ = 0, the

positioning of the point defect depends on the director in the interior. Let Sin be

a surface inside but close to ∂B, i.e. a sphere with radius slightly smaller than R0.

Where the defect appears will depend on the sign of the er component of the director

on the inside of the sphere, as shown in Fig. 9.1. If the director is pointing into Sin

at the south pole and out at the north pole, then the result of glueing the boundary

director onto the droplet with planar anchoring is to produce an achiral defect at

the south pole, and a corresponding bubble of wrong handedness. However, if the

orientation of the director is reversed, so that it points out of south pole and into

the north pole, then glueing on the boundary director produces a chiral Morse index

2 defect at the north pole, and a corresponding twist soliton at the south pole that

is not attached to any defect.

The boundary condition given here is appropriate for almost all of the struc-

tures in planar droplets that are described in Ref. [SPRŽ12]. To interpolate be-
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tween a more complex boundary director on S2 × 0 and normal anchoring, then

it is relatively straightforward to adapt the construction given above. For exam-

ple, to model the boundary conditions of the droplets with high-charge defects and

multiple achiral boundary singularities examined in Chapter 7, one would choose a

characteristic foliation with k centres equally spaced on the sphere, which become

the defect points, and fill in the remainder of the foliation with maximum symme-

try. Of course there will be other singularities in this characteristic foliation, some

of which will demarcate the positions where λ lines pierce the boundary layer—the

position and structure of these is especially evident for the tetrahedral T444 defect.

Let X be a vector field directing this foliation, and Y the orthogonal vector field.

Then Xr = (1 − r)X + r(1 − r)Y defines a series of characteristic foliations on

S2 × [0, 1], and taking η = ιXrΩ + rdr gives an appropriate model for boundary of

these droplets.

9.3 Droplets With Layered Structures

In this section I describe various layered structures that arise in cholesteric droplets.

I define a ‘layer’ only loosely, to be a surface to which the director is ‘approximately’

tangent. By Proposition 3.6, the dividing curve on a convex surface will give us

a good idea of the layer structure. In each of the figures in this section I show

n · N on a slice S through the droplet, where N is the unit normal to S, the

zero set of which is the dividing curve by Proposition 3.3. This visualisation also

allows for easy comparison with experimental images, which show streamlines of

the director. The places where the director is visible in these images are the places

where is roughly in the plane of the slice, which corresponds to neighbourhoods of

the dividing curve in the numerical images. The places where the director is not

visible in the experimental images are the places where it is highly out of the plane

of slice, the bright regions in the numerical images.

9.3.1 Flat Layers

The simplest way to realise a structure with flat layers is initialise a simulation

with the director given by the usual cholesteric ground state in a flat geometry, n =

cos(πqz/R)ex+sin(πqz/R)ey. In a droplet with normal anchoring, this initialisation

will produce aan achiral boundary defect. A simulation of this texture with q/R = 3

is shown in Fig. 9.2(a-b), to be compared with experimental realisations of flat layers,

Fig. 9.2(c). There are two λ+1 lines which emanate from the point defect and move in

a spiral around the boundary layer of the droplet, terminating at the north and south
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poles. These are indicated by an isosurface of ∆ in Fig. 9.2(b). Similar structures

have been observed previously in cholesteric droplets, but with a disclination line

instead of the λ lines [SPRŽ12]. The twist soliton attached to the achiral boundary

defect extends over a large part of the boundary region, following the λ lines. The

surface over which the twist changes sign is shown in red in Fig. 9.2(b). In planar

droplets this texture is called the planar bipolar structure (PBS) [SPRŽ12].

Figure 9.2: (a) A droplet with flat layers. The colours indicate the dot product
between the normal to the slice and the director, with blue being negative and
orange positive. The black lines are the places where the director is tangent to the
slice. There is a single achiral boundary defect (yellow sphere). (b) Two λ lines
(light blue) emanate from the point defect and spiral towards opposite poles of the
droplet The twist soliton (red) pinned to the point defect extends over a large part
of the boundary region, tracking the λ lines. In both panels, the director is shown
as white sticks. (c) Experimental image, repoduced from Ref. [Pos18a]. The bright
blue/yellow regions shown in panel (a) correspond to points where the director is
strongly out of the plane of the slice, the white regions in panel (c).

One can construct alternative textures with flat layers from a χ+1 line using

the director n+1,q from Chapter 8. We may either escape in one direction along

the singular line, which produces no defects but must produce twist solitons, or we

can escape in alternating directions and have a string of point defects that is struc-

turally distinct from the strings described in Chapter 7. The former is shown in

Fig. 9.3(a,b). There are no defects in the interior, only an achiral boundary defect.

The regions of reversed handedness in this simulated texture are shown in Fig. 9.3(b),

and illustrate all types of twist solition we have observed in chiral droplets: there

is an achiral boundary defect with associated region of reversed handedness at the

south pole; at this north pole, there is an additional spherical region of reversed

handedness pinned to the boundary but without a defect; two toroidal twist so-

litions appear in between them; and finally, there are two roughly spherical twist

solitons in the interior of the droplet, whose poles corresponds to surfaces where the

characteristic foliation has vanishing divergence at the singularities.
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For sufficiently strong chirality this escaped director is not the energetically-

favoured way of removing the χ+1 line. Instead the director escapes alternately

up and down, producing chiral point defects on the surfaces where the director is

purely radial instead of regions of reversed handedness, Fig. 9.3(c,d). This structure

is similar to the diametric spherical structure (DSS) observed in chiral droplets with

planar anchoring [SPRŽ12], except with the spherical layers unfolded into flat layers

and with an additional point defect of degree +1 that sits on the boundary layer

in a droplet with normal anchoring. In Fig. 9.3 the boundary defect is chiral, and

there is a twist soliton at the opposite pole of the droplet. I suggest referring to the

texture shown in Fig. 9.3(c,d) as the chiral escape structure (CES), and the texture

shown in Fig. 9.3(a,b) as the achiral escape structure (AES), in keeping with the

naming scheme used in Ref. [SPRŽ12].

In both the CES and AES, the director is largely tangent to the level sets

of z, but deviates from these layers close to the z-axis, which becomes a single λ+1

line in the achiral string, and a series of λ+1 lines connecting the point defects in

the CES. On the level of defects and λ lines, the difference between the AES and

PBS directors—neither of which have defects in the interior part of the droplet—is

that the λ line is orthogonal to the layers in the former and tangent to them in the

latter; the price of changing the relative orientation of the λ line and the layers is to

produce regions of reversed handedness, or else nucleate a series of point defects to

produce the CES. Although I am focussing on structures in spherical droplets here, I

remark that these two escape structures can also occur in cholesteric cells, cholesteric

material in cylindrical capillaries with normal anchoring, and in toroidal droplets

of cholesteric material. The reasoning we have given to conclude the existence of

twist solitons in the achiral string is completely general, and implies that bulk twist

solitons can be stablised in these geometries as well. Numerical experiments in

cylindrical capillaries suggest it is also possible to stablise twist solitons in the form

of rings pinned to the capillary boundary in this geometry, analagous to the rings

shown in Fig. 9.3(b).

Neither the CES or the AES were observed in the experiments of Ref. [Pos18c]

or the numerical simulations of Ref. [SPRŽ12]. Both textures are numerically

(meta)stable, so the failure to observe them experimentally is likely due to them

requiring very specific initial conditions that do not arise naturally in the experi-

ment. Instead we observe the DSS structure, where the flat layers of the CES are

folded up into spheres, which I will describe in §9.3.3 below.
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Figure 9.3: Layered structures produced from the escape of χ+1 line. (a) Escaping
up everywhere along the line produces a texture without defects in the interior,
the AES structure. (b) Instead of point defects there are stable regions of reversed
handedness, twist solitons, in the interior of the droplet, which are shown in red.
There are also twist solitons close to the boundary, in the form of both rings and
spheres. There is a λ+1 line running between poles of the droplet. (c) Escaping
alternately up and down produces a texture with a string of chiral point defects of
alternating charge, connected by λ lines, the CES structure. (d) A view of the CES
structure on a slice transverse to the λ line (light blue). In each panel the director
is shown as white sticks.

9.3.2 Cylindrical Layers

The simplest structure with cylindrical layers is defined by the director,

n = cos(2πqr/R)ez − sin(2πqr/R)eφ, (9.3)

for some q > 0 that sets the number of layers. This particular initialisation will

produce an achiral boundary defect. In [SPRŽ12] this is called the bipolar structure

(BS). This is shown for q/R = 2 in Fig. 9.4(a,c), to be compared with experimental

images, Fig. 9.4(b,d). The BS director also has similarities with the CES and AES

textures: the central λ+1 line is the axis of a double-twist cylinder in all three cases,

as can be seen by looking at the director on slices orthogonal to the λ line, Fig. 9.3(c)

and Fig. 9.4(c); the change in colours from blue to orange on the orthogonal slices

indicates that the director undergoes a rotation by π as we move out from the λ

line.

Simulations show that there are two additional λ+1/2 lines where the central

structure matches on to the boundary layer. There are twist solitons at both the

south pole, where there is an achiral defect, and the north pole. There are also

two ring-shaped twist solitons shadowing the boundary λ lines, as in the flat layers,

Fig. 9.2. The structure of this ring is the same as that shown in Fig. 9.3(b), and

also that which occurs in the droplet with a single Morse index 2 defect, Fig. 7.4
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Figure 9.4: Cylinderical layers in a droplet with normal anchoring, with q = 2. The
numerically simulated director (9.3) and dividing curve is shown on (a) the xz-plane,
and (c) the xy-plane. In the latter the λ line is indicated by a blue tube. Panels (b,d)
show an experimental realisation of the same director; reproduced from [Pos18c]. In
the simulation, the boundary defect is achiral.

9.3.3 Spherical Layers

We can produce a director with a series of spherical layers using the χ+1 director,

but wrapping up the z planes into spheres. The χ+1 line is removed as before,

by escaping alternately up and down to produce a string of chiral point defects.

Concretely, this director is given in spherical coodinates by taking

m = − cos(2πqr/R)eφ + z cos(2πqr/R)er + sin(2πqr/R)eθ, (9.4)

and then normalising, n = m/|m|. This produces a director tangent to a series of

concentric spheres at values of r where cos(2πqr/R) = 0, with point defects at the

poles of those spheres. The ball interior to each values of r with cos(2πqr/R) = 0

can be thought of as a droplet with planar anchoring. The interior of the innermost

spherical layer is a toron [PČM16].

As with the CES of Fig 9.3(b), a structure with multiple spherical layers can

be seen as a χ+1 running through an axis of the droplet that escaped in alternating

directions to produce a string of chiral point defects. When the CES has spher-

ical layers in this manner, the texture is called the diametric spherical structure

(DSS) [SPRŽ12]. Each interior defect is chiral, and the boundary defect that arises

from normal anchoring can be either chiral or achiral as we have previously argued.

This is not the only possibility for a director with spherical layers. A

cholesteric director reproducing a single spherical layer (toron) can also be con-

structed from an intrinsically harmonic function φ as described in §6.3.3. The re-

quired singularity is called P8 in Arnold’s notation [AGZV85], and is given by the

function germ

φ =
1

2
x(y2 + z2)− 1

3
x3 + r2x, (9.5)
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Figure 9.5: Spherical layers in a droplet. (a) Numerical simulation of a DSS structure
with two spherical layers, and five point defects. The boundary defect is achiral here,
but one can also have a chiral boundary defect. (b) A slice orthogonal to the λ line
running through the point defects reveals a similar pattern observed with cylindrical
layers, illustrating the need for multiple perspectives when determining the layer
structure from slices. (c) An experimental realisation of a structure containing a
spherical layer that is different from the DSS. Instead, this structure is obtained by
inserting a spherical layer (toron) into a texture with a string of three point defects
described by an A3 singularity. Both boundary defects are achiral, while the three
defects in the interior are chiral. (d) Numerical realisation of the same structure.

where r > 0 is a parameter that sets the radius of the spherical layer. This function

is harmonic with respect to the Euclidean metric, so that the chiral terms can be

obtained by the formula∇×mc = ∇φ, and we could perturb into a genuine Beltrami

field using the construction in Theorem 6.4 if we wished.

Structures similar to the DSS and containing a toron arise in experiments,

Fig. 9.5(c), but there is an important distinction between these structures and the

model (9.4): in the experimental structures there are two boundary defects rather

than one, and both are achiral hedgehogs. Such a string of three point defects is

described by an unfolding of the A3 singularity, see §7.3. The structure shown in

Fig. 9.5(c) arises by displacing the central defect of the A3 string towards the pole,

and then inserting an additional pair of point defects that lie on a spherical layer (a

toron) into this structure. The structure of the director inside this spherical layer is

given by Eq. (9.4). A numerical realisation built out of this initialisation is shown

in Fig. 9.5(d).

Another structure with spherical layers arises from the removal of a χ+2

line. This structure is called the radial spherical structure (RSS) [SPRŽ12]. This

director results from placing a singular line of winding +2 inside the droplet, and

then attempting to remove this line via escape along the radial direction. The way

this is achieved is described in detail in §8.7. The model given there is equivalent to

the model in Eq. (6) of Ref. [SPRŽ12], where it is suggested to take R = 0.9 for the

separation between the two λ lines. The structure of the director and the helical λ
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lines are also reminiscent of the ‘heliknotons,’ or linked meron tubes, observed in

recent experiments [TS19]; we suggest these may instances of the same phenomenon.

To realise this structure in a droplet we replace the Cartesian coordinates

x, y, z in the model in §8.7 with spherical coordinates θ, φ, r, and set the parameter

q = q0/R. The resulting structure, with q0/R = 2, is shown in Fig. 9.6(a). Although

this is the lowest energy structure for a wide range of relative chiralities in planar

droplets [SPRŽ12], this structure is not observed in the experiments of Ref. [Pos18c].

Instead there are similar structures, with a double helix of λ lines corresponding to

the removal of a χ+2 line but without the spherical layer structure. An example of

such as texture is shown in panel Fig. 9.6(b). In these experiments, one can detect

the λ lines by showing an isosurface of the aFCPM intensity I—I have cropped this

surface in Fig. 9.6(b) to expose only the relevant parts of the structure. There are

three λ lines. One is short line which connects the point defect to the boundary,

which is too small to be picked up by the level set of I but must be present for

topological reasons. One is attached at both ends to the boundary, moving from

the boundary on the left side of the panel to the right side. The other begins on the

left side, moves towards the right, but bends back on itself as it moves towards the

point defect (yellow sphere). In Fig. 9.6(c) the director is shown on a slice across the

helix structure, coloured according to intensity I, with white corresponding to I = 0

and black to I = 1. We see the characteristic image of an unfolded +2 singularity,

showing that this structure corresponds to the escaped χ+2 line.

9.4 Hopfions in Droplets

9.4.1 Review of the Hopf and Gompf Invariants

In this section we will look at Hopfion-like structures in droplets. First let us briefly

remind ourselves the three-dimensional invariants of plane fields, described in Chap-

ter 2. Homotopy classes of plane fields, equivalently unit vector fields, in R3 or S3

correspond to elements of π3(RP
2) ∼= Z. A concrete way of describing this element

is the Hopf invariant [Hop31; CAA+13], which is computed in the following manner.

A director n determines a map into the sphere. If we look at the set of points that

are mapped to a particular point p on the sphere, this will generically be a line K,

which is oriented by pulling back the orientation on the sphere via the map. The

Hopf invariant is the linking number Lk(K,K ′) of a pair of preimages [Mil65]. For

an unoriented nematic it suffices to look at the preimage of a single point in RP2,

and compute its linking number.

It is helpful to think of the Hopf invariant as a four-dimensional version of
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Figure 9.6: (a) RSS structure with q/R = 2 in a droplet with normal anchoring.
There is a one λ line connecting the defect to the boundary, and then a second λ
lines that wraps itself up into a helix. (b) An experimental realisation of a texture
containing a double helix of λ lines. The surface shown is an isosurface of the
aFCPM intensity I, corresponding to a value I = 0.5, which allows us to visualise
the λ lines (pale blue). The helix structure is clear. (c) The reconstructed director
field shown on a slice across the helix, and coloured according to intensity, with
white correspond to I = 0 and black to I = 1. We see the +2 winding where the
slice intersects the double helix of λ lines. We also see that the other half of the
droplet is filled with flat layers. The experimental data was kindly provided by G.
Posnjak.

the defect charge. Consider a director in Euclidean space that is free of defects

and uniform at large distances so that we may ‘compactify’ by adding a point at

infinity and regard the director as a unit vector field on the 3-sphere S3. This is

naturally identified with the unit sphere in R4. We can ask whether it is possible to

extend the director over the interior of the 3-sphere without introducing a defect.

This extension is possible if and only if the Hopf invariant, an element of π3(RP
2),

vanishes. Conceptually, this is the same problem as specifying a director on the

surface of a 2-sphere and asking whether it extends over the interior without defects;

the obstruction in this case is the defect charge, an element of π2(RP
2).

The Hopf invariant is the familiar and classical way of characterising the

homotopy group π3(RP
2) ∼= Z. For our purposes it is preferable to describe it in

terms of the zero set of a line or vector field everywhere orthogonal to the director,

as a cholesteric material has a natural choice for such a direction, the pitch axis. We

may compute a homotopy invariant of the director analgous to the Hopf invariant

from the defects in the pitch axis, the λ lines. This was described back in §2.4.3
and Eq. (2.12). Let Kj be the set of λ lines in the material, each with strength

(winding number) sj , which is generically a half-integer. Each λ line is endowed

with an orientation [MA16b; Mac16], and hence is an oriented knot. Then the total
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linking number gives a homotopy invariant, which I will refer to in this section as

the Gompf invariant.

Γ2 =
∑

i

s2i SL(Ki) +
∑

i 6=j
sisjLk(Ki,Kj). (9.6)

This type of formula is familiar from helicity and abelian Chern-Simons theory [AK98].

The first term is a self-linking number. Informally, this is defined to be the number

of times the ‘profile’ of the λ line Ki rotates as we move along the line. More con-

cretely, we compute it in the following fashion. Away from the λ lines, the director

and the pitch axis define a (possibly unoriented) frame e1, e2,n. Consider the total

rotation
∫

K′ e2 · de1 of this frame about the director along any push-off K ′ giving

a zero-framing for the λ line. Part of this rotation is an intrinsic Berry phase γ,

equal to the area on the unit sphere bound by the curve traced out by n along

K ′. The difference γ −
∫

K′ e2 · de1 = 2π SL(Ki) defines the self-linking. In all the

concrete examples of textures in spherical droplets that we consider in this article

the self-linking number vanishes.

As with the Hopf invariant, Γ2 has an interpetation as an obstruction to ex-

tending a director on the 3-sphere over the interior. We can regard the 4-dimensional

Euclidean space as a 2-dimensional complex space C2 by introducing the obvious

complex coordinates. Then S3 is the unit sphere in this space, comprised of those

complex points of magnitude 1. Associated to the director on S3 is a family of

planes, defined by taking the plane orthogonal to the director at each point. These

two-dimensional planes become a complex line field on the unit sphere in C2. The

obstruction to extending this complex line field over the interior of S3 with defects

is given by Γ2.

As an example, consider the χ+2 line texture on a solid torus D2 × S1 such

that the z coordinate is the coordinate on the S1 factor. We can embed this solid

torus in S3, and match on to a uniform far-field without additional defects. Ignoring

constraints on the twist for a moment, we can escape along the singular line to

produce a single λ+2 line. The framing endows this line with a linking number of

q, where q is the number of full rotations of the profile along the χ+2 line, and thus

for this texture the invariant is Γ2 = 4q, as strength of the λ line is +2. The Hopf

invariant is 2q. Splitting the χ+2 line apart into a pair of helical χ+1 lines before

escaping as described in §8.7 gives a homotopic texture which is chiral. Each of

two λ+1 lines has vanishing self-linking number, however, they are linked 2q times,

and once more we compute Γ2 = 4q. In this case it is easier to see that the Hopf

invariant is 2q, because the λ lines themselves are the preimages of appropriately
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chosen antipodal points on S2; I emphasise that the fact that Γ2 is twice the Hopf

invariant here is a happy accident that arises in this particular example, not a general

relation.

Both of these descriptions apply to defect-free directors in S3, however the

invariants also amke sense for directors with defects and in domains with boundary,

such as a cholesteric droplets, provided we compute the linking numbers ‘relative

to the boundary.’ In this framework, we regard each defect as being a boundary

component, along with the droplet boundary itself.

The BS texture with cylindrical layers shown in Fig. 9.4 has linked λ lines,

but vanishing Γ2. Each of the circular λ lines has winding +1
2 , however the lines are

oriented in opposite directions—to see this, observe that the λ lines are oriented out

of the orange regions and into the blue regions—and consequently their contributions

to the sum cancel each other out.

9.4.2 The Lyre and Yeti Structures

The simplest texture with nonzero Hopf invariant has a pair of λ+1 lines that are

linked (relative to the boundary) with one another so that they form the Hopf link.

In a planar droplet, this occurs when there is a single λ+1 line running between

the boojums at the poles, which is surrounded by a second circular λ+1 line in the

interior of the droplet. Textures with this configuration of λ lines occur naturally in

cholesteric droplets: they are the so-called Yeti and Lyre textures [SPRŽ12]. In a

droplet with normal anchoring, the addition of a boundary layer implies that there

is an extra defect of degree +1 near the boundary, and now there are two λ+1 lines

connecting it to the boundary. As the charge of the boundary defect is +1 these λ

lines must both be oriented from the defect to the boundary, and consequently the

λ+1 in the interior of the droplet has linking number +1 with each of them. Using

(9.6), we compute that Γ2 = +4. The Hopf invariant is +1, which is computed by

looking at the linking of preimages in the usual manner.

The Yeti and Lyre textures have a similar structure to the Hopf fibra-

tion [Hop31; CAA+13]. They consist of a solid torus D2 × S1 linked with a solid

cylinder D2×[0, 1], where the director is tangent to the level sets θ×S1 and θ×[0, 1],

so it has a mix of cylindrical layers and toroidal layers. Concretely, let ρ, φ, z be

cylindrical coordinates. Choose some ρ0 < R to be the core, where R is the radius

of the droplet. Set τ =
√

(ρ0 − ρ)2 + z2 and let ψ be the polar coordinate on the

disks where τ ≤ τ0 and φ constant, for some fixed τ0. For τ ≤ τ0, we define the
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director to be

n = − sin

(

q1πτ

2τ0

)

eψ + cos

(

q1πτ

2τ0

)

eφ. (9.7)

For q1 = 1, 2 this describes a tube of merons – a fractionalisation of a Skyrmion

represented by a single λ+1 line – along the line τ = 0. For larger q1 we instead have

a tube of Skyrmions. Otherwise, for τ > τ0, we take the director to be cylindrical

layers aligned along z, as described in §9.3.2,

n = − sin

(

q2πρ

2ρ0

)

eφ + cos

(

q2πρ

2ρ0

)

ez. (9.8)

Here, q1, q2 are positive integers that set the layer number in each separate piece.

For the Yeti, we take q1 to be even, while for the Lyre we take q1 odd. For director-

based simulations we should take q2 = q1 mod 4, so that the directors approximately

match up on the boundary between the two regions. Notably, the only difference

between the Yeti and Lyre is the whether the director undergoes several full π

rotations in the toroidal region encircling the central λ line (Yeti), or whether there

is an addional π2 rotation (Lyre).

The Yeti texture in a droplet with normal anchoring is shown in Fig. 9.7(a,b)

for q1 = q2 = 2, and the Lyre structure in a droplet with normal anchoring is shown

in Fig. 9.7(c,d) for q1 = q2 = 1. Topologically these variants are the same as Yeti

and Lyre structures observed in planar droplets, with the addition of a boundary

layer. As with all of these structures, situations where the boundary defect is chiral

and achiral are both possible. In each case we see a pair of linked λ+1 lines, e.g.

Fig. 9.7(a), which witnesses the fact that Γ2 = +4. The Hopf invariant is seen by

the linking of preimages, e.g. Fig. 9.7(b), where the preimages form the Hopf link

in the interior of the droplet. The Lyre structure can be produced by taking q1 = 1

in 9.7. We have also found that in producing numerical simulations that give good

agreement with the Lyre structures produced in experiments it helps to explicitly

break the symmetry in the droplet, replacing z with z − z0 in the definition of the

coordinate τ for some small z0, and also to choose ρ0, τ0 to ensure that the torus

filled by (9.7) is very close to the droplet boundary. The resulting structure has a

Lyre shape; see Fig. 9.7(c,d). Otherwise, the structure has the same topology as the

Yeti structure, with Γ2 = +4 and a Hopf invariant of +1.

To obtain a texture with Hopf invariant −1 instead of +1, we can reverse

the sign of the director (9.7). This will also flip the sign of Γ2, as this will change

the orientation of the circular λ line and hence flip the sign of the linking number.
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Figure 9.7: (a) The Yeti structure in a droplet with normal anchoring. The director
(white rods) is shown on a slice coloured according to the dot product between the
director and the layer normal, with λ lines shown in blue. (b) The same texture, this
time with the twist, with blue being negative and red being positive. We see that the
boundary defect at the south pole, which we have not marked with a yellow sphere
so as not to obscure the region of reversed handedness, is achiral. The preimages
of ex (yellow) and −ex also show that the Hopf invariant is nonzero. (c) The Lyre
structure, with chiral boundary defect. The texture is visually very similar to the
Yeti. (d) An experimental realisation of the Lyre structure, with a chiral boundary
defect.

9.4.3 Composite Structures

The textures with strings and high-charge defects described in Chapter 7 can be

regarded as ‘topological atoms’. The layered structures identified in this chapter

also serve as atomic units. Combining multiple atomic structures in a single droplet

leads to a composite structure, a ‘topological molecule’. I now describe several such

structures which combine Hopfions with constellations of defects.

The simplest string of point defects in a cholesteric droplet is described by

an unfolding of the A3 singularity, Fig. 7.3(g,h). The three point defects describe

an axis which is a λ+1 line, the axis of a double twist cylinder. One can insert a

tube of cylindrical layers so that it loops around the λ line. This adds an additional

λ+1 that links with the first, so that the resting director has Hopf invariant +1.

See Fig. 9.8 for a comparison between numerics, panel (a), and with experiment,

panel The λ lines (pale blue), illustrate nonzero Γ2. In panel (c) we show the twist

solitons that occur in this droplet. In addition to the regions of reversed handedness

pinned to the achiral boundary defects, there is a ring-shaped twist soliton around

the equator of the droplet, as well as a stable twist soliton in the interior of the

droplet. The latter has similar local structure to those present in the AES texture.

Fig. 9.8(d) shows another composite structure containing a toron and a Hop-

fion, the latter being witnessed by the linked preimages. The interior of the spherical

layer has the same structure as the Yeti texture in a droplet with planar anchoring,

as described in Ref. [SPRŽ12]. This differs from the texture shown in panels (a-c)
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Figure 9.8: (a) A texture combining both the features of a basic string of point
defects, and the Lyre structure. The string of three point defects of alternating
charge is described by the A3 singularity. The λ lines (blue tubes) are linked,
illustrating the topological nontriviality of the texture. The preimages (not shown)
allow us to compute that the Hopf invariant is +1. (b) Experimental realisation of
this texture, reproduced from [Pos18a; Pos18b]. (c) This texture has several distinct
types of twist soliton. There are two bubbles of reversed handedness pinned to the
achiral boundary defects, a ring around the equator, and a stable bubble in the
interior of the droplet. (d) An alternative structure with three defects is produced
by inserting an extra λ line into a structure with a spherical layer. This differs from
the texture shown in panels (a-c) by the fact that one of the +1 defects is chiral.
The preimages shown are the lines where n = ±ex

by the fact that one of the +1 defects is chiral. Unlike in the texture shown in panels

(a-c), there are no twist solitions besides the one pinned to the achiral boundary

defect at the south pole.
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Chapter 10

On the Layer Structure of

Cholesterics

10.1 Introduction

The homotopy invariants discussed in Chapter 2 and the invariants of tight contact

structures introduced in Chapter 3 are quantities invariant under changes that do

not produce new defects in the director, but say very little about defects in, for

example, the bend vector field or the pitch axis. For obvious reasons one may

not create a single defect of nonzero winding in either the bend or the pitch axis

with moving through a state in which the director has defects, but of course they

can be created in pairs without introducing any defects in the director via some

homotopy. There is an energy barrier to realising such a change, however, this

process does not change the either the nematic homotopy invariants or the contact

topological invariants, and consequently this energy barrier is not detected by any

of the invariants discussed so far in this thesis.

Conceptually, in a cholesteric the λ lines are singularities in the foliation

whose leaves are ‘cholesteric layers’, surfaces to which the director is tangent. The

construction of smectic-like textures at the end of Chapter 5 suggests a similar

interpretation for the β lines of twist-bend nematics, except here the director makes

a constant (away from the β lines) angle with the layers rather than being tangent

to them. The layers don’t just play a role in topological considerations, but also

energetic ones.

A result of Radzihovsky & Lubensky [RL11], building on foundational work

of de Gennes [dGP95], shows that at large scales cholesteric free energy is equivalent

to a smectic free energy, with the smectic phase field φ chosen so that ∇φ is the layer
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normal. The argument of Radzihovsky & Lubensky applies both to the cholesteric

ground state, where φ = z, but also perturbations φ = z − u for some function

u whose gradients are assumed to be small. The argument goes as follows. On

short scales, a cholesteric is characterised by three degrees of freedom: the pitch

axis, along which the director breaks translation symmetry, and a pair of nowhere

colinear directions orthogonal to pitch axis, which the cholesteric director rotates

between as we move along the layers. Consider now a small perturbation around

the ground state, so that the layers are defined by the level sets of a slowly varying

function u. Taking symmetry constraints into account and neglecting terms that

are negligable, the most general coarse-grained form of the energy density of the

cholesteric is [dGP95]

f =
B

2

(

∂u

∂z

)2

+
K

2

(

∂2u

∂x2
+
∂2u

∂y2

)

, (10.1)

where B and K are elastic constants. Thus the three degrees of freedom have been

reduced to one, the function u. It follows that the low-energy deformations (Gold-

stone modes) of the helical state are characterized by a fully rotationally invariant,

nonlinear smectic elastic theory [RL11].

In trying to extend this result to arbitrary functions u, and to study cholesteric

layers in general, we encounter several difficulties. In chiral materials the pitch axis

is defined by the eigendirection of the tensor −qI + Π (where q is the twist and

Π = J∆) that corresponds to the largest magnitude eigenvalue [EI14]. We do not

know what conditions are necessary to ensure that the pitch axis does define a fo-

liation, or what homotopies of the director result in the production of singularities

in the foliation. We do not even know what constraints on a singular foliation are

necessary to ensure there is a cholesteric director tangent to it.

In this chapter I will address a topological problem which offers some insight

into questions of cholesteric layers: when can we construct a contact form η whose

Reeb field is tangent to a singular foliation? I will prove that every contact structure

is homotopic to one defined by such a contact form; thus, up to homotopy layers exist

for every cholesteric director, a global version of the local results proved in §3.9.2.
Invariants of layered structures come from the strict contactomorphism group, whose

nontrivial elements correspond to functions which play the role of the smectic phase

field in the Radzihovsky & Lubensky picture. More work is needed to apply these

results to actual physical questions.
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10.2 Basic Definitions

Definition 10.1. We will call a contact form η foliated if there exists a link L and

a singular foliation F with singular set L such that the Reeb field of η is tangent to

F on the complement of L and also tangent to L itself. If F satisfies this condition

then the pair (η,F), is a foliated contact form (FCF), and they define an underlying

contact structure ξ = ker η. A FCF (η,F) is called minimal if there is no nontrivial

sublink L′ ⊂ L (including L′ empty) of the singular set of F and foliation F ′ with

singular set L′ such that (η,F ′) is a FCF. A FCF (η,F) is called closed if F can be

defined by a closed 1-form.

Notice that the singular link L is the zero set of a Legendrian vector (or line, if

it is not orientable) field for ξ (the normal to F for some appropriate metric) and

therefore represents the Euler class, e(ξ) = 2PD[L].

Examples are easy to find. The standard overtwisted contact form η =

cos(r)dz + r sin(r)dθ is foliated, with F = ker dr. Even though the standard over-

twisted contact form has vanishing Euler class, its Reeb field is not tangent to any

foliation without a singular line. In this way, the singular link L of the foliation is

capturing something about the topology of the field that is not captured by the Eu-

ler class alone, although this property is detected by the dividing curve on a convex

surface intersecting L.

The minimality condition asks that we choose the optimal foliation defining

the layers, introducing no unnecessary singularties. For example, the standard tight

contact form ηstd = dz − r2dθ has Reeb field R = ez, and consequently there are

many foliations it is tangent to: the level sets of r, θ in a polar coordiate system,

which are singular, and the level sets of x, y in a Cartesian coordinate system, which

are not. The pair (ηstd, ker er) is a FCF by the definition above, but not a minimal

FCF as there exist other foliations without singularities that R is tangent to. For

any constants a, b, the pair (ηstd, ker (aex + bey)) is also a minimal FCF.

No definition of a mathematical structure is complete without stating what

it means for two such structures to be equivalent.

Definition 10.2. We say two FCFs (ηi,Fi), i = 0, 1 are equivalent if there exists

an isotopy φt with φ
∗
1η0 = η1 and φ∗1F0 = F1.

In particular, for two FCFs to be equivalent it is necessary, but not sufficient, for the

foliations to have the same singular link L, up to isotopy. This definition captures the

idea that the layers deform along with the director. ‘Tearing’ of layers corresponds

to the creation of new singularities (defects in the ‘pitch axis’), and we would like
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to understand what new topological invariants exist when we forbid this possibility,

extending the ideas of Chapter 2 where we were trying to understand the invariants

that arise when we forbid the creation of defects in the director.

Note that if two contact forms η0, η1 are isotopic, as is required by the equiva-

lence of foliated contact forms, then their strict contactomorphism groups are equiv-

alent as infinite-dimensional Lie groups. These groups are the novel invariants that

appear when we consider the layer structure in addition to the director. One may

produce characteristic classes associated with the strict contactomorphism group by

way of Chern–Weil theory and an analogy with the symplectomorphism group stud-

ied in symplectic geometry [CS16], and it is likely that these characteristic classes

will capture information about any layer structure that exists.

The Lie algebra of this group has a simple description for FCFs.

Proposition 10.1. Suppose (η,F) is a FCF on a closed manifold and not every

orbit of the Reeb field R of η is closed. Then the Lie algebra of SC(M,η) consists

exactly of those functions constant on the leaves of F , and is equivalent to the space

of metrics weakly compatible with η for which R is divergence free.

Proof. Certainly, every function that is constant on the leaves of F must be pre-

served by R and hence belongs to the Lie algebra of the strict contactomorphism

group. Since by assumption there are orbits of R that are not closed, the only func-

tions that can be preserved by R are those that are constant on the leaves. Any

such function can be used to generate a weakly compatible metric for which R is

volume-preserving, see §3.11.

Finally, note that the question of determining whether a contact structure can be

defined by a FCF is easily reduced to homotopy data.

Lemma 10.1. Suppose ξ0, ξ1 are homotopic contact structures and ξ0 is defined by

a FCF. Then so is ξ1. Moreover, these FCFs are equivalent.

Proof. If ξ0, ξ1 are homotopic contact structures defined by contact forms η0, η1,

then by Gray Stability there exists an isotopy φt and a positive function λ such that

φ∗1η0 = λη1 . If η0 is foliated then so is λη1, as we can choose a foliation F which the

Reeb field of η0 is tangent to, and pull it back along the isotopy. Thus (λη1, ψ
∗
1F)

is a FCF defining ξ1, which is evidently equivalent to (η0,F).

10.3 Examples of FCFs

Before turning to the general theory I will give several constructions of FCFs to

build some intuition about their properties.

224



10.3.1 Torus Bundles over the Circle

Firstly we will examine when it is possible for the singular link L of a FCF to be

empty. The simplest case is when the Reeb field of a contact structure is tangent to

a nonsingular foliation defined by a closed 1-form α. This is the most immediate and

natural generalisation of the cholesteric ground state. This is studied in Refs. [DR00;

DR05], where the following two theorems are proved.

Theorem 10.1. ( [DR00]) Let α be a closed nonsingular 1-form on a 2n + 1 di-

mensional manifold M , and η another 1-form. The following are equivalent:

1. The family of 1-forms αt = α+ tη is a contact form for every t > 0,

2. The 1-form η is contact with Reeb field R such that α(R) = 0.

If α is a closed, but singular, 1-form defining a singular foliation F , and (η,F) is a

FCF, then part of the proof of this theorem given in Ref. [DR00] still applies, and

α can still be perturbed into a (nonsingular) contact form αt = α + tη as in the

theorem. The contact structure defined by this contact form obviously agrees with

that defined by η along the singular link of F , so this singular link still consists

of closed orbits of the Reeb field. It follows that all closed FCFs (η,F) determine

perturbations of the (possibly singular) foliation F into a (nonsingular) contact

structure.

Theorem 10.2. ( [DR05]) A closed 3-manifold M has a closed 1-form α satisfying

the conditions of Theorem 10.1 if and only if M is a T 2-bundle over S1.

This completely classifies the situation where L = ∅ and the leaves of the foliation

are all closed.

10.3.2 Projectively Anosov Reeb Fields

More generally, it is possible for the foliation to be nonsingular but have leaves that

are not closed.

A nonsingular vector field X with flow φt is called Anosov if there is a

Riemannian metric and a continuous decomposition of the tangent bundle TM =

{X}⊕E+⊕E− into a direct sum of line bundles, such that the splitting is invariant

under the flow of X and the differential dφt acts by dilations on E+ and contractions

on E−. This implies that there exists a constant C > 0 such that for all t we have

‖dφtv+‖ ≥ eCt ‖v+‖ , (10.2)
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and

‖dφtv−‖ ≤ e−Ct ‖v−‖ , (10.3)

for all t > 0 and any vector field v± ∈ E±. If the plane fields F± = {X} ⊕ E±

are smooth, then they are integrable; F+ and F− are called the unstable and stable

foliations of the Anosov flow. In particular, if X happens to be the Reeb field of a

contact form, it defines a FCF.

Mitsumatsu introduced the notion of a projectively Anosov flow in Ref. [Mit95];

it was also introduced independently by Eliashberg & Thurston, who call such flows

conformally Anosov [ET91]. A vector field X is projectively Anosov if there is a

Riemannian metric and a splitting TM = {X}⊕E+⊕E− of the tangent bundle as

for the Anosov flow, except we now we require the weaker condition

‖dφtv+‖
‖dφtv−‖

≥ eCt
‖v+‖
‖v−‖

, (10.4)

for all t > 0 and any vector fields v± ∈ E±. This is in fact the same as asking

that X is Anosov when regarded as a section of the projectivised tangent bundle

PTM . As before, if the planes fields F± = {X} ⊕ E± are smooth, then they are

integrable, and again F+ and F− are called the unstable and stable foliations of the

projectively Anosov flow. The condition is fairly technical, however there is a nicer

condition that shows the relationship with contact structures. Call a pair (ξ+, ξ−) of

transverse, oppositely-oriented contact structures a bicontact structure. Since these

contact structures are transverse, we can choose a nonsingular vector field directing

their intersection.

Proposition 10.2. (Misumatsu [Mit95]) A nonsingular vector field X is projec-

tively Anosov if and only if there is a bicontact structure (ξ+, ξ−) such that X

directs the intersection ξ+ ∩ ξ−.

If X is projectively Anosov and is also the Reeb field of a contact form, then the

contact structure ξ defined by that form is transverse to both the contact structures

ξ+ and ξ− in the bicontact structure whose existence is implied by Proposition

10.2. The resulting trio of transverse contact structures determine a trivialisation

of the tangent bundle, such that two of them have the same handedness and the

other has the opposite handedness. Bicontact structures and projectively Anosov

flows appear naturally when considering the perturbation of foliations into contact

structures, and indeed this is the context in which Eliashberg & Thurston introduce

them.

There is an important relationship between Anosov flows, projectively Anosov
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flows, and the tightness of the underlying bicontact structure.

Theorem 10.3. (Mitsumasu [Mit95]) An Anosov vector field on a compact manifold

lies in the intersection of a pair of oppositely-oriented tight (in fact, symplectically-

fillable) contact structures.

Little is known about projectively Anosov flows, however there has been some in-

vestigation of the topology of the invariant foliations [Nod00]. The most important

structural result is the theorem of Noda [Nod00].

Proposition 10.3. If the invariant foliations are differentiable, then they do not

possess Reeb components1 and are therefore taut. Consequently, a projectively Anosov

flow with differentiable invariant foliations cannot exist on a manifold whose uni-

versal cover is S3 or S2 × R. The invariant foliations have at most finitely many

closed integral leaves.

The invariant foliations of an Anosov flow do not have closed leaves; it is easy to

construct projectively Anosov flows that do, see Ref. [Nod00]. Moreover, projec-

tively Anosov flows are far more plentiful than Anosov flows, e.g. T 3 has many

projectively Anosov flows but no Anosov flows [ET91]. As Mitsmatsu points out,

the contact structures associated to an projectively Anosov flow need not be tight—

the construction of the sympletic form on M × [−1, 1] that allows us to conclude

this in the Anosov case fails on closed leaves.

The existence of compatible metrics for contact forms discussed in Chapter

3 allows us to establish the existence of projectively Anosov Reeb fields. Let η be a

contact form with Reeb field R and g a compatible metric, and let J = R× be the

almost complex structure on the planes of the contact structure ξ determined by η.

Introduce a tensor

h =
1

2
LRJ. (10.5)

When the bend vanishes, which of course it does in a compatible metric, this tensor

is equal to J ◦ ∆, and as the twist is constant and equal to +1 with respect to a

compatible metric, −I + h is exactly the ‘chirality pseudotensor’ used to define the

pitch axis in Ref. [EI14].

Theorem 10.4. (Theorem 11.5 [Bla10]) Suppose h is nowhere-vanishing, and let

e1, e2 = Je1 be a local orthonormal eigenbasis of h such that he1 = λe1, where λ is

the positive eigenvalue of h. If the sectional curvatures satisfy K(R, e1) < (1 + λ)2

1A Reeb component is a solid torus with a foliation that has the boundary as a leaf, and foliates
the interior with folded-up copies of R2.
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and K(R, e2) < (1 − λ)2, then R is a projectively Anosov flow. In particular, if

these sectional curvatures are negative, then R is projectively Anosov.

The standard tight contact structure on R3 has a projectively Anosov Reeb field.

Let us consider a slightly more general situation, where h is allowed to have

zeros. Since its eigendirections are Legendrian line fields of ξ, their zero sets (and

consequently the zero set of h) will generically consist of a link L that represents the

Euler class [MA16b]. Satisfying the curvature constraints of Theorem 10.4 implies

that R is projectively Anosov on the complement of L, and therefore the existence

of a compatible metric with those curvature properties implies that R is tangent to

a pair of foliations F± on M −L, defined by 1-forms α±. We can extend these over

L so they become singular there, by taking 1-forms ᾱ± = |λ|α±, for λ an eigenvalue

of h. This gives a FCF, where the foliation may not be orientable. Note these FCFs

never have singularities of double-twist type: for this to be the case a neighbourhood

of the singular line would have to be foliated by closed torus leaves, and this is not

possible in a projectively Anosov flow.

10.3.3 Round Handle Decompositions

Weakly compatible metrics for contact forms η give metrics for which the Reeb

field R is Beltrami, HR = curl R with arbitrary proportionality factor H. If the

proportionality factor is not constant, and additionally R is volume preserving, then

it must be the case that R is tangent to the level sets of H, and hence the domain

is fibered into torii invariant under the flow of R, along with a few ‘singular fibers,’

which are closed orbits of R. This observation is originally due to Arnold [AK98].

Evidently, if a contact form has a weakly compatible metric with these properties

then it is a FCF, with the foliation being defined by the exact singular 1-form dH.

These are perhaps the most natural examples for extending the ideas of

Radzihovsky & Lubensky: they fit neatly in the physical picture, with H playing

the role of the smectic phase field.

We can easily construct examples of FCFs of this type. Firstly, consider the

1-form

ηs = rdθ +
(

1− s

2
r2
)

dz, (10.6)

s ∈ (0,∞) fixed, on D2 × S1. ηs is contact and has Reeb field R = ez + sreθ. This

is a vector field tangent to the level sets of the radial coordinate r and defining a

linear flow with slope s on the boundary where r = 1. Using these 1-forms, we can

construct additional examples of FCFs on 3-manifolds using the idea of a round

handle decomposition (RHD).
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A round handle is a solid torus D2 × S1 together with an index, either 0, 1,

or 2, and an exit set E ⊂ ∂D2 × S1 such that

• If the index is 0, E = ∅,

• If the index is 1, then either E is a pair of disjoint annuli that each wrap once

longitudinally around the torus, or else E is a single annulus wrapping twice

longitudinally around the torus,

• If the index is 2, then E = T 2.

A round handle decomposition (RHD) is a finite sequence of submanifolds ∅ =M0 ⊂
M1 ⊂ · · · ⊂ Mn = M , where each Mj+1 is formed by adjoining a round handle to

∂Mi along the exit set, in such a way that the handles are adjoined in order of

increasing index. For example, the 3-sphere is obtained by taking first an index 0

handle, and then adjoining an index 2 handle. Not all manifolds have an RHD,

however any graph-manifold (e.g., a Seifert-fibered space) has one [Mor78]. The

cores of an RHD, the curves 0× S1 in each handle, define a finite link L.

Proposition 10.4. Suppose M has a round handle decomposition ∅ =M0 ⊂M1 ⊂
· · · ⊂Mn =M . Then there is a FCF (η,F) on M such that the link L consisting of

cores of the RHD is the singular link of F , and otherwise the leaves of F are torii.

Proof. We construct the FCF via induction. The jth 0-handle may be equipped

with the contact form (10.6) for some slope sj . When Mi consists entirely of 0-

handles, this evidently gives the desired FCF. Suppose now we have constructed the

desired contact form on Mj , and we now add a round handle hj+1 to ∂Mj to obtain

Mj+1. There is a diffeomorphism φ : hj+1 → ∂Mj that affects this attachment.

Pulling back the characteristic foliation on ∂Mj induced by the contact form we

have constructed so far, we obtain a characteristic foliation on the boundary of

hj+1. By a diffeomorphism of the handle, we may assume this has constant slope

sj+1; we fill hj+1 with the contact form ηj+1, and then this yields a contact form on

Mj+1 which is evidently still foliated. Continuing this process gives a FCF.

The Reeb field of the standard tight contact structure on S3 is of this form, where

the RHD is given by the Heergard decomposition of the sphere into a pair of solid

torii. In this case, we may take any slope s on the torus T that divides the two

handles, and glue ηs into each handle. It is clear when this construction on S3 yields

the tight contact structure: we need to make certain that the ‘total twisting’ of the

slope is such that we never have a Legendrian curve bounding a disk, which would

be overtwisted. For this, it is enough to ensure that the Reeb field completes less

than a π/2 rotation.
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Proposition 10.5. a FCF obtained by from a RHD as described in Proposition

10.4 is never equivalent to a FCF determined by a projectively Anosov flow.

Proof. Close to the singular set of the foliation determined by the RHD, all leaves

are closed torii: all singularities are of double-twist type. But no singularities of

the invariant foliations of a projectively Anosov flow are of double-twist type, and

consequently they cannot be equivalent.

Physically, these contact forms resemble a collection of double-twist cylinders. Real

cholesteric textures that have this form, such as Skyrmion lattices and blue phases,

tend not to give a decomposition of space into a RHD; rather, the double-twist

cylinders do not quite fill the space, and the director on this space has to match

onto the boundaries of the cylinders, which requires disclination lines. It would

be interesting to develop a theory of ‘almost round handle decompositions’ that

involve gluing solid torii together to almost fill space but with some space left over,

and characterise the structures that can be formed this way, perhaps via the possible

symmetry groups. This could be achieved by modifying the ideas of Chapter 4 to

bring geometry into the picture, as well as discussing singular foliated contact forms.

In [EG99], Etnyre & Ghrist study vector fields tangent to plane fields. In

particular, they study the case where said vector field is the gradient of a function

H. The preimage of any regular value of the function must be a disjoint union of

torii, while the preimage of the nonregular values gives a link L. Thus such vector

fields determine a RHD of M .

Proposition 10.6. Suppose M has a plane field with a tangent gradient flow X =

∇H. Then there exists a contact form η on M whose Reeb field R preserves H, and

a Riemannian metric g such that R is unit length, divergence free, and Beltrami,

with proportionality factor H, i.e., R satisfies Euler’s equations on (M, g).

Proof. The first claim is Lemma 3.1 of [EG99]: the foliation by level sets of H agrees

with the foliation constructed in Proposition 10.4. Since the Reeb field is tangent

to this foliation, it must preserve H. The second claim follows from the existence

of weak compatible metrics with arbitrary proportionality factor, §3.11.

Etnyre & Ghrist study the case where a tight contact structure contains a gradient

vector field, and show that there is also an overtwisted contact structure containing

that gradient field. One can make a similar argument from the constructions of

FCFs in this section: we can modify the contact form on any 0-handle to make it

overtwisted there, simply by putting an extra ‘turn’ into (10.6) while keeping the
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boundary slope the same. Etnyre & Ghrist express this in terms of a surgery that

mimics the Lutz twist, which is essentially the same idea.

10.4 Constructing FCFs from Open Book Decomposi-

tions

In this section, I show that every contact structure is defined by a FCF.

An open book decomposition of M is a pair (L, π), where L is a link in M

called the binding of the open book, and π :M−L→ S1 is a fibration such that each

fiber π−1(z), z ∈ S1, is the interior of a compact surface with boundary S whose

boundary is L. The fibers are called pages of the book. By a theorem of Alexan-

der [Ale23], every closed 3-manifold admits an open book decomposition. Examples

of practical interest arise by considering the solid angle function ω of a fibered knot

L in S3 [BA18; Bin19]. Whether the solid angle function has singularities depends

on the particular embedding of L, but it is not too hard to come up with examples

where the level sets of ω fiber the complement of L, e.g by considering a circle of

radius R in the z = 0 plane in R3 and compactifying. Two open books are equivalent

if they are related by a positive stabilisation. This involves glueing a handle onto

the pages of the open book, and changing the monodromy by composing with the

right-handed Dehn twist.

A contact structure ξ is supported by an open book (L, π) if ξ is isotopic to

a contact structure ξ′ defined by a contact form η such that (1) the restriction of

dη to each page is a positive area form, and (2) η|L > 0. This property can also be

stated in terms of Reeb fields.

Lemma 10.2. (Lemma 3.5 [Etn04b]) Let ξ be a contact structure and (L, π) an

open book. The following are equivalent:

1. ξ is supported by (L, π),

2. ξ can be isotoped to be close to the tangent space to the pages of the open book

on compact subsets of those pages, and such that the planes of ξ are transverse

to L and to the pages in a neighbourhood of L,

3. There is a Reeb field R for a contact structure isotopic to ξ such that R is

tangent to L and transverse to the pages of the open book.

Notice that condition (2) bears a close resemblance to the ideas discussed in §10.3.1.
Let C ⊂ S be the compact subset of the pages implied by this condition. The open

231



book gives a foliation of C × [0, 1] by the surfaces C × z that descends to a foliation

on C×S1 by glueing the ends together with the monodromy map. Then, by results

of §10.3.1, we can perturb this foliation (which is defined by the closed 1-form dz)

into a contact structure by an arbitrarily small perturbation.

The following theorem establishes the converse of the result of Thurston &

Winkelnkemper [TW75]: an open book always gives rise to a contact structure.

Theorem 10.5. (Giroux’s Correspondence [Gir02]) There is a bijective correspon-

dence between open book decompositions of M up to positive stabilisation, and ho-

motopy classes of contact structures on M .

I will not give a full proof of this theorem here. In addition to [Gir02] there are several

other references where one can see aspects of the proof, for example Refs. [Gei08;

Etn04b]. However, I will make use of the Thurston–Winkelnkemper direction of the

proof.

Theorem 10.6. (Thurston–Winkelnkemper [TW75]) Every open book decomposi-

tion supports a contact structure.

Proof. Let S be a page of the open book and φ the monodromy of the fibration. We

can write

M ∼= Sφ ∪ψ
∏

|∂S|
D2 × S1, (10.7)

where Sφ is the mapping torus obtained by taking S × [0, 1] and identifying S × 0

and S × 1 using φ, and ψ denotes the map that glues the solid torii around the

binding to the pages. Now consider the set of 1-forms α that that α = (1 + x)dz

and dα is an area form on S, where (z, x) ∈ S1 × [0, 1] are the coordinates on the

pages near the binding L. The set of such 1-forms is nonempty and convex.

Given α in this set φ∗α is also in this set. Since the set is convex, tα+ (1−
t)φ∗α is also in the set. The 1-form αK = Kdt + tα + (1 − t)φ∗α is contact on

S × [0, 1] for K sufficiently large, where t is the coordinate on [0, 1]. Clearly this

gives rise to a contact form on the mapping torus Sφ.

Now we extend over the solid torii in the neighbourhood of the binding.

On D2 × S1 with coordinates z on S1 and polar coordinates r, θ the map ψ is

given by ψ(r, θ, z) = (−z, θ, r − 1 + ǫ). Pulling back αK along this map gives

αψ = Kdθ − (r + ǫ)dz. We can extend this across the solid torus, for example by

taking it to be f(r)dz + g(r)dθ with fg′ − f ′g > 0 and f(r) = 1, g(r) = r2 near

the core. The construction of a 1-form with these properties is similar to the Lutz

twist.
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Now I am going to use Theorem 10.5 to prove that every contact structure can be

defined by a FCF.

Theorem 10.7. Let (L, π) be an open book. There exists a foliated contact form η

such that the Reeb field of η is tangent to some singular foliation F with singularity

set L, and such that F agrees with the foliation by pages of the open book outside

some neighbourhood N of L. Inside N , the leaves of F are torii.

Proof. Let Kj denote the components of L and let Nj
∼= D2 × S1 be an open

neighbourhood of Kj . Set N =
⋃

j Nj . In each component of N , F agrees with

the foliation by level sets of θ, where r, θ, z are the coordinates on D2 × S1. Away

from L, F is a taut foliation and consequently there exists a closed 2-form Ω with

Ω|F > 0, such that on each Nj we have Ω = rdzdr.

Using standard facts about open books, we can viewM−N as S×[0, 1], where

S is a page of the book, with the endpoints glued together with some monodromy

map ψ. Then Ω|S×t is a sympletic form on S× t, where t is the coordinate on [0, 1].

For any function H we can define a vector field XH by ιXH
Ω = dH, which obviously

preserves Ω. Since S is compact with boundary we can choose some H so that dH

is nonvanishing on S; to see this, take a genus g surface Σg such that S is Σg with

b disks removed, take a Morse function H on Σg, and then remove the disks so that

the singularities of dH are removed with them.

Since Ω = rdzdr near the boundary, we can further assume that XH is

independent of t near the boundary of S, XH = f(r, z)er+g(r, z)ez. By our method

of constructing XH we can assume that the winding of XH around each boundary

component is some integer k ≤ +1, and hence that H is (close to the boundary)

a harmonic function with the following structure: for coordinates x, y defined by

x = r cos(z), y = r sin(z), we have dH = r sin(kz)dx + r cos(kz)dy. Define u by

⋆β = du, for ⋆ the Hodge star of a Riemannian metric on the disk whose volume

form is Ω. It must be that u is also independent of t.

For a fixed H, this gives a t-parameterised family of vector fields on S, which

yields a vector field X on S × [0, 1] that is tangent to every S × t, preserves Ω, and

is also nonsingular. We can choose a smooth family of multicurves Γt that divide

the foliations on S × t defined by X, and such that Γ0 = φ∗Γ1, where φ is the

monodromy of the fibration. Consequently, using the existence result of Lemma

3.7 we can define a contact form η = βt + utdt where βt = ιX|S×t
Ω and we have

β0 = φ∗β1, u0 = φ∗u1. The characteristic foliation is directed by X, which preserves

an area form, so by Lemma 6.3 the Reeb field of η is tangent to each S × t. By

glueing the ends together, this yields a contact form, which we also call η, onM−N .
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We wish to extend η over each Nj . We can pull back η along the map ψ used

to glue the mapping torus S ×φ [0, 1] onto the neighbourhood of the binding. This

map is given by ψ(r, θ, z) = (−z, θ, r − 1 + ǫ) [Etn04b]. Pulling back η gives

ηψ = (ψ∗u)dθ + ψ∗dz. (10.8)

We can extend this over Nj as a 1-form vanishing on 0×S1 but contact everywhere

else, and with Reeb field tangent to the level sets of θ. Now consider the following

contact form on D2 × S1:

α = cos(θ)dr + (ǫ+ sin(θ))dz (10.9)

where ǫ < 1 is a small constant. The Reeb field is

R =
cos(θ)

(1 + ǫ sin(θ))
er +

sin(θ)

(1 + ǫ sin(θ))
ez, (10.10)

which is tangent to the level sets of θ and also to the line r = 0. Take

ω = (1− r)α+Arηψ. (10.11)

For A sufficiently large this is contact, and it clearly agrees with ηψ near to the

boundary of Nj . Close to r = 0, η ≈ α, and therefore the Reeb field is tangent

to Kj . This gives our extension of η as a contact form on M with the desired

properties.

We see this is very similar to the construction of a 1-form whose contact structure

is supported by the open book. Indeed, it is essentially the same construction, only

we take a little more care in choosing the contact form on the mapping torus to

ensure the Reeb field is tangent rather than transverse to the pages. By design, all

singularities are screw-like.

Theorem 10.8. Every contact structure ξ on a closed 3-manifold can be defined by a

foliated contact form. In particular, there is a FCF with only screw-like singularities

in every homotopy class of contact structures.

Proof. By Lemma 10.1 it suffices to demonstrate the existence of a contact structure

defined by a foliated contact form in each homotopy class of contact structures. Let

ξ be any contact structure. By Theorem 10.5, there is some open book (L, π)

supporting ξ. Let η be the foliated contact form for (L, π) constructed in Theorem

10.7, and let Ω be the closed 2-form, positive on the pages, that is used in the
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construction. If we can homotope η into a contact form η′ whose Reeb field is

tangent to the binding and transverse to the pages, i.e. supported by the open

book, then we are done.

We use the fact that a small perturbation of a contact form is again a contact

form. Close to the binding, we can write η = adr + bdθ + cdz for some functions

a, b, c. AS the Reeb field is tangent to the level sets of θ, ∂za = ∂rc. Adding a small

r-dependent perturbation to c will destroy this property away from the binding and

make the Reeb field of the perturbed contact form transverse to the pages.

The rest of the manifold is diffeomorphic to S × [0, 1] with the endpoints

joined by the monodromy φ. Write η = βt + utdt, where βt is closed. We must

perturb βt so that dβt > 0 for each t. Take the function H from the proof of

Theorem 10.7. Let J be an almost complex structure associated with Ω. Since dH

is nonvanishing by assumption, dH∧JdH > 0. Let αt = tHJdH+(1−t)φ∗(HJdH),

and β′t = βt+ǫαt. Then dβ
′
t > 0. Define a contact form η′ such that η′|S×t = β′t, and

also such that η′t is homotopic to η. The Reeb field of η′ is transverse to each S × t.

Clearly η′ descends to a contact form on the mapping torus which is homotopic to

η.

Thus we have found a contact form η′ which is homotopic to η and is sup-

ported by the open book (L, π), as required.
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[Gir91] E. Giroux. Convexité en topologie de contact. Comm. Math. Helv.,

66:637–677, 1991.

[Gir00] E. Giroux. Structures de contact en dimension trois and bifurcations

des feuilletages de surfaces. Invent. Math., 141:615–689, 2000.

242
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