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Abstract 

Electrification of road transportation is widely recognised as a necessary solution to 
reduce global warming. However, the mass market adoption of electric vehicles (EVs) 
has been hindered by reduced battery performance in cold weather conditions leading 
to warranty limitations coupled with inaccurate range estimation that exacerbates 
customer range anxiety. Today’s market leading EVs driven on typical UK motorways 
have a range estimation error up to 27% at an ambient temperature of 10 °C, and due 
to slower battery kinetics it worsens to 45% at −15 ℃. The range estimation accuracy 
depends upon the performance of models embedded in the Battery Management 
System (BMS) which estimates battery states (viz. State-of-Charge (SOC) and State-
of-Energy (SOE)). The performance of the models fundamentally depends upon 
experimentally obtained parameters at different operating temperatures and currents, 
and validation exercises against legislative drive cycles. The experiments are usually 
performed in isothermal conditions by using state-of-the-art climatic chambers that 
maintain a pre-set temperature by forced air convection. Unfortunately, isothermal 
conditions are not adhered to as the battery operating temperature deviates 
significantly from the predefined chamber temperature, especially when battery 
characterisation is undertaken at low ambient temperatures (≤10 ℃). The aim of this 
thesis is to propose a novel experimental methodology and alternative modelling 
approaches to improve the range estimation accuracy of EVs at low ambient 
temperatures by addressing these shortcomings in existing characterisation 
methodology.  

A novel experimental methodology is developed to ensure isothermal conditions using 
immersed oil baths that provides more accurate usable capacity and energy 
characteristics of lithium-ion cells, especially at low temperatures, by eliminating the 
effect of rapid heat generation during battery operation. For the first time, it is shown 
that model parameterisation using oil-based rather than air-based experiments leads to 
more accurate estimation of battery states (SOC and SOE). The findings in this thesis 
suggest that the absolute SOC error is reduced from 13.5% to 5.1% and the absolute 
SOE error is reduced from 20.6% to 4.3% at −15 °C ambient temperature.  

A detailed study of heat generation using a battery model utilising the polarisation 
currents demonstrated improved modelled surface temperature and terminal voltage 
estimates. These results along with accurate parameterisation data, estimated the 
battery states and terminal voltage better at low ambient temperatures. A power control 
approach to battery characterisation ensures that the operating current responds 
dynamically to the changing cell voltage. A comparison based on energy throughput 
and peak power demand at low temperatures showed that power control is more 
representative of real-world applications as compared to current control. Therefore, it 
is recommended that power control be employed as the primary approach to obtain 
validation data for cell models.  

The work demonstrates and provides insight on new aspects for improving the range 
estimation accuracy of EVs operating under cold weather conditions. Advances from 
this work enable increased adherence to the rigid environmental conditions necessary 
for global lithium-ion battery testing standards and battery modelling, leading to the 
increased uptake of EVs.   
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1. Introduction 

Vehicle electrification is at the forefront of technological discussions globally in the 

automotive industry. This is primarily due to socio-economic, environmental and geo-

political factors showing that reducing fossil fuel consumption is a key solution 

towards reducing carbon emissions and thus, reducing global warming [1]. Towards 

this, electric vehicles (EVs) show promising potential for both reduction in fossil fuel 

consumption and to satisfy customer demands [2]. However, these promises have not 

translated into reality as higher cost and range anxiety of EVs (concern that the battery 

capacity will be insufficient to complete the journey [3]) have proven to be critical 

barriers to mass market uptake [4]. Key deterrents to market uptake include issues 

such as limited low temperature performance [5] and lack of fast charging 

technology/infrastructure [6]. Low temperatures also lead to inaccuracies in real time 

range/performance estimation of BEVs [7]. These factors, exacerbated by increased 

range anxiety, have forced users to consider alternatives, limiting the customer 

acceptance of EVs [3]. The aim of this thesis is to propose a novel experimental 

methodology and alternative modelling approaches to improve the range estimation 

accuracy of EVs at low ambient temperatures (defined as ≤ 10 ℃ in this thesis). 

This chapter embodies an introduction to recent trends in transportation electrification, 

EV operation and low temperature issues and consequent research problems, followed 

by the aims and objectives of the current work, along with the outline of the thesis. 

1.1 Recent Trends in Transportation Electrification 

Recently, the UK government announced their intention to become the world’s first 

major economy to end their contribution to global warming by 2050 [8]. In 2018, a 

third of the total carbon dioxide (CO2) emissions in the UK was contributed by the 

transportation sector, with similar statistics worldwide. Globally, it was reported that 

the transportation sector was one of the biggest contributors to green-house gas (GHG) 

emissions with 29% share in the US and 27% share in the European Union (EU-28) 

in 2017 [9,10]. Moreover, it is predicted that by 2050, emissions would need to fall by 

around two thirds, in order to meet the long term 60% GHG emission reduction target 
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as set by the Paris Agreement in 2015 [10,11]. Thus, to achieve climate neutrality 

within the next few decades, transportation electrification is going to be a key player. 

Reduction in fossil fuel consumption is a key avenue towards reducing rising 

worldwide carbon emissions [12]. Electric vehicles (EVs) can potentially not only help 

in reduction of fossil fuel consumption, but also satisfy customer demands [2]. The 

percentage of EVs in global light vehicle production is expected to rise from <2% in 

2016 to about 6% by end of 2020, and to at least 22% by 2030 [13]. Building on the 

success of land based EVs, aerospace electrification is also fast emerging. Norway and 

Sweden have already announced plans to use electric airplanes for all short-haul flights 

in their airspace by 2030 [14–16].  

Despite technological advancements and increased customer acceptance, electric 

vehicle ownership only sees an incremental rise globally [17]. A large factor behind 

this is the cost, as the EV battery pack cost needs to decrease from $ 250-300 per kWh 

to less than $ 100 per kWh to become comparable with ICE based vehicles [12,18]. 

Similarly, slow rollout of charging infrastructure, complicated by customer range 

anxiety, limits mass market uptake of electric vehicles [17]. Lastly, the environmental 

impact of producing electric vehicle battery packs with regards to use of rare-earth 

materials throws up challenges such as second life use and recycling [19,20].  

1.2 Introduction to Electric Vehicles 

A conventional vehicle has an internal combustion engine (ICE) as the only power 

source. Unlike conventional vehicles, an electric vehicle (EV), along with an ICE, uses 

an additional power source [21]. This secondary power source can be a battery, 

flywheel, or supercapacitor, which provides traction using an electric motor 

powertrain. As shown in Figure 1, while EVs that use both ICE and a secondary power 

source are called hybrid electric vehicles (HEVs), EVs that only use a battery as the 

primary power source are termed battery electric vehicles (BEVs). EVs show better 

fuel economy compared to conventional vehicles because of the optimal operation and 

downsizing of the ICE, and recovery of kinetic energy from regenerative braking [22]. 
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Figure 1. Layout: (a) Hybrid Electric Vehicle and (b) Battery Electric Vehicle 

In an EV, the functions of the secondary power source, typically a battery, can range 

from mild regenerative braking to all-electric drive with grid charging capability [23]. 

Based on the functions of the second power source, the types of HEVs can be classified 

(Table 1).  

Table 1. Classification of EVs based on Electric Power Source Function(s) [23,24] 

Type of EV/ 

Function 
Micro Mild Full Plug-in BEV 

Regenerative 

Braking 
     

Power Assistance      
All-electric Drive      

Grid Charging      
No ICE      

Most conventional vehicles now come equipped with the ability to stop the ICE when 

the vehicle is at rest, known as the engine stop/start system. A micro hybrid is an HEV 

that shows limited regenerative braking capability when the vehicle is braking in 

addition to having the stop/start system [25]. An HEV is termed as a mild hybrid when 

the electric power source can supplement the energy from the ICE to meet driving 

demands. A mild hybrid also has a higher degree of regenerative braking capability 
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compared to a micro hybrid. Full hybrids can propel the vehicle entirely from the 

electric power source albeit for a limited range. This is in addition to the functions of 

the electric power source seen in the other types of HEVs.  

Due to the ability to charge its on-board battery pack using electrical power from the 

grid, a Plug-in HEV (PHEV) has the option to use that electrical power preferentially. 

This additional flexibility allows the PHEV to function either as a full-hybrid when 

the electrical energy available is low, or in all-electric mode when sufficient electric 

energy is available. Another advantage of PHEVs is that most of the energy comes 

from the grid and not from fossil fuels, like in the case of other classes of HEVs. The 

electricity produced in the grid may be from renewable sources such as from solar or 

wind sources [26]. This reduces the environmental impact of a PHEV compared to 

other classes of HEVs. The environmental impact is reduced even further by using a 

battery electric vehicle (BEV), which is an EV that uses an on-board battery pack as 

its sole power source [27].  

There are two basic architectures of HEV powertrains: series and parallel. As shown 

in Figure 2, in a series HEV, the ICE traction is first converted to electricity using a 

generator. This electrical energy is either used to charge the battery or used to provide 

traction at wheels via a motor. The motor is also used to charge the battery during 

braking events. In this case, the ICE cannot directly provide traction at the wheels. In 

this setup, the ICE can operate in its maximum efficiency region, since it is not directly 

linked to the traction demand at the wheels. But, due to inefficiencies related to 

multiple energy conversions and requirement of two electric machines, series hybrids 

can be expensive, for example, the Jaguar C-X75 [21]. Hence, series hybrids may be 

more suitable for urban drive cycles such as the BMW i3 Rex or the London EV 

Company’s TX which is a purpose built hackney carriage employed for public 

transport [28].  

In a parallel HEV, both the ICE powertrain and the electric powertrain can provide 

power at the wheels separately (Figure 3). Thus, a parallel HEV can deliver power 

using just the ICE, a combination of the ICE and the battery, or using the all-electric 

mode. This allows a high degree of operational flexibility as the electric drive can be 

the primary mode at lower speeds and the ICE at higher speeds. However, the use of 
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a smaller motor/inverter in a parallel HEV may limit regen-braking capability [29]. 

Examples of parallel HEVs are the Honda Insight, the Chevy Malibu and the Toyota 

Prius [28]. 

 

Figure 2. Basic Operation of Series Hybrid Electric Vehicle Powertrain [30] 

 

Figure 3. Basic Operation of Parallel Hybrid Electric Vehicle Powertrain [30] 

1.2.1 Typical Energy and Power Requirements of Electric Vehicles 

Increasing electrification of the power source in a vehicle improves its fuel economy. 

While a micro hybrid such as the Citroen C3 can save up to 15% of fuel, a full hybrid 

such as Toyota Prius can save almost 40% of fuel compared to a conventional ICE 

based vehicle, depending on the drive cycle [6]. However, with increasing 

electrification of the power source in a vehicle (from an ICE based vehicle to BEV), 

the energy and power demanded from the electrical source also increases (Table 2). 

For example, the conventional starting lighting ignition (SLI) lead-acid battery is 

sufficient for usage in a micro hybrid where typical power level is 3 kW and typical 

energy required is 0.7-1.0 kWh. However, for PHEVs and BEVs, the typical power 
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levels can cross 100 kW and energy levels required are 4-10 kWh and above 15 kWh, 

respectively. In these cases, an energy storage system (ESS) with higher energy and 

power density than the conventional lead-acid battery is necessary (Table 2). 

Furthermore, as shown in Table 2, to meet the higher power demands in PHEVs and 

BEVs, the typical voltage range of the energy storage system also needs to increase. 

This helps to mitigate thermal losses and to account for physical limits imposed by 

current collectors (primarily copper and aluminium) as well as safety regulations [31].   

Table 2. Typical Power and Energy Requirements of the ESS [18,25] 

Vehicle 

Type 

Typical Requirements 

ESS Function 

Power [kW] Energy [kWh] Voltage [V] 

ICE/Micro  3 1 12 
Engine starting, 

hotel loads 

Mild  5-15 1 12-48 
Regenerative 

braking 

Full 20-40 2 100-300 Power Assist 

Plug-in 40-100 5-30 300-600 
Main power and 

energy 

BEV >100 >15 300-600 
Sole source of 

power and energy 

The ESS, typically the battery, in various vehicle types, is sized to meet the peak power 

and energy demands of the vehicle. Batteries are chosen due to their high energy 

density, compact size, reliability and lifetime [32]. An automotive battery pack 

consists of various modules connected via bus bars [33]. For example, a 24 kWh 

lithium-ion battery used in the MY 2011-2015 models of the Nissan Leaf (a typical 

passenger BEV) consists of 48 modules [34]. Each module consists of four cells. 

Depending upon the requirements, the cells within a module can be connected in 

series, parallel or a combination of series and parallel. For example, the module in a 

Nissan Leaf connects two cells in parallel before connecting two such sets in series. 

This is commonly known as the ‘2S2P’ configuration (Figure 4). The configuration of 

a module and the battery pack as a whole depends on the power and energy demands 

of the vehicle [21]. While adding cells/modules in series means increasing the energy 
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capability of the battery pack (driving range), adding cell/modules in parallel means 

increasing the power capability (acceleration/regenerative-braking) of the battery pack 

[35]. However, if the pack voltage increases, the operating currents are lower for the 

same duty cycle power demand, and vice versa. The performance of the individual 

cells within a module in a PHEV/BEV battery pack are indicative of actual vehicular 

performance. The capacity and voltage of a single cell, its chemistry and construction, 

and performance under various operating conditions will translate, depending upon 

the pack arrangement, into driving range and performance at the vehicular level [36].  

 

Figure 4. Block Representation of Typical Build Levels within an Automotive Battery 

[Individual images’ source: Internet] 

1.2.2 Introduction to Current Challenges with Electric Vehicles 

For electric vehicles, the biggest challenge in terms of mass market acceptance is cost 

[12]. In an EV, the cost of the battery pack can be as much as 25% of the total cost 

[18]. To become cost comparable with internal combustion engines, the battery pack 

cost will need to decrease from around $ 200–300 per kWh presently, to around $ 100–

150 per kWh by 2025, which is predicted to happen [12,37]. In the meantime, lithium-

ion batteries have become the most popular energy storage technology used in EVs, 

due to their high gravimetric and volumetric energy densities, excellent cycling 
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performance and long calendar life [25]. However, most of the current EV 

technological challenges are related to its (lithium-ion chemistry based) battery 

system. As such, lithium-ion batteries, being electrochemical systems, are strongly 

dependent on operating temperature. Thus, studying the effect of temperature is the 

key to understanding battery performance, its lifetime and safety.  

1.2.2.1 Issues with Low Temperature Operation 

At high temperatures (≥ 35 ℃), battery degradation and safety are issues owing to the 

presence of side reactions and volatility of its active chemicals, respectively [38,39]. 

However, many developed countries, viz. Norway and Sweden, and large parts of 

continental Europe and North America, are characterised by seasonally extreme cold 

weather down to −20 °C [5,34]. In these conditions, a lithium-ion battery’s capacity, 

maximum output power and charge acceptance capability are substantially reduced. 

At lower temperatures (≤ 10 °C), due to slower chemical kinetics, charge transfer at 

the electrode-electrolyte interphase slows down, leading to higher overpotentials [40]. 

Furthermore, lower ionic conductivity in the electrolyte and slower diffusion, 

particularly in the electrodes’ active material, contribute to higher voltage loss at lower 

temperatures [41]. These manifest as reductions in driving range and performance of 

EVs at low temperatures [42]. For example, the real-world range of the latest Chevy 

Bolt was found to be about 184 miles at −2 ℃ [42,43]. This is a substantial reduction 

of almost 30% compared to the 263 mile range advertised as per the WLTC (at 18 ℃). 

This performance reduction is worsened by increased energy/power demands due to 

higher cabin heating requirements in cold weather conditions [44,45]. Various 

literature provide insight into energy management of BEVs and how innovative cabin 

heating techniques can increase passenger comfort while not increasing battery 

requirements substantially [44,46,47]. At low temperatures, charging current is 

impaired as it may damage the battery due to the potential for lithium plating; this in 

turn increases charging time [48]. These conditions also limit regenerative braking that 

further diminish the benefits of a BEV over a conventional vehicle [49]. Conversely, 

various lifetime studies of lithium-ion cells provide insight into charging protocol 

management to avoid lithium plating [50,51]. These include battery pre-heating [50], 

control algorithms based on limiting anode potential and avoiding regenerative 

braking [51].  
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Low temperatures also lead to large reductions in real time range/performance 

estimation of EVs [7,52,53]. Today’s market leading EVs, driven on typical UK 

motorways, have real-world range estimation inaccuracy of up to 27%, at around 10 

°C ambient temperature [52]. This inaccuracy worsens for lower ambient 

temperatures, rising up to 45% at −15 ℃ [54]. These factors exacerbate predisposed 

range anxiety and have forced users to consider alternatives, limiting the customer 

acceptance of EVs [3]. 

1.3 Research Problem 

As discussed above, cold weather poses multiple challenges for battery electric 

vehicles. Most of these issues are related to how reliably and accurately the key 

performance characteristics of underlying lithium-ion cells are quantified and, in turn, 

modelled for low temperatures applications. Accurate modelling of lithium-ion cells 

is critical for reliable estimation of battery states such as State-of-Charge (SOC) and 

State-of-Health (SOH). Battery state estimators found in literature have adopted 

sophisticated algorithms and complex battery models [7,55,56]. New parameters such 

as State-of-Energy (SOE) have also been proposed to capture in operando battery 

behaviour more accurately [56,57]. These battery models have further expanded to 

include diverse operating conditions under which they are parameterised, such as at 

low temperatures [58,59].  

Despite this, very little attention has been given to the validity of the environmental 

conditions under which these battery model parameterisation experiments are 

conducted. This is because battery testing is conducted for multiple purposes, such as, 

to quantify performance under different operating scenarios, to validate functional 

safety, and to parameterise and validate algorithms/models. These purposes come with 

their own requirements. In particular, the dependence of temperature on battery 

performance is accounted for differently. For instance, during performance testing, it 

is crucial that the experimental conditions replicate real-world operating conditions, 

such as allowing for cells to warm up, as they would in operation, to obtain the real-

world performance characteristics. On the other hand, for model parameterisation, 

fundamental electrical parameters need to be quantified accurately whilst keeping 

other parameters constant; then the variation coming from a secondary (such as 
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thermal) effect should be included. This requires more attention especially at low 

temperatures, where, due to higher internal resistances, there exists a greater coupling 

between battery electrical and thermal phenomena. Similarly, the majority of battery 

testing is conducted at room temperature where certain testing and modelling 

assumptions are made, such as ignoring polarisation currents for heat generation 

estimates or using current control to obtain model validation data for legislative drive 

cycles. These can lead to misleading conclusions when low ambient temperatures are 

considered.  

Thus, further insight is required into the validity of battery evaluation methods for 

parameterising and validating lithium-ion cell models employed for automotive 

applications at low operating temperatures. It is crucial to investigate any issues with 

existing experimental procedures, and how they can be improved. 

1.4 Aim, Research Question and Objectives 

The aim of this thesis is to propose a novel experimental methodology and alternative 

modelling approaches to improve the range estimation accuracy of EVs at low ambient 

temperatures (≤ 10 ℃). Therefore, the research question of this thesis is defined as 

“how to improve experimental evaluation methods and examine alternative 

approaches for parameterising and validating battery models for low 

temperature automotive applications?” This will improve model performance and 

consequently lead to better EV range estimation at low temperatures.  

Thus, to achieve the aim defined above, the following objectives have been proposed 

(also illustrated in Figure 5 along with relevant publications): 

1. Generate a novel experimental methodology to improve the accuracy of 

parameterisation experiments at low temperatures. 

2. Using an equivalent circuit model (ECM), compare modelling performance of 

existing and improved low temperature parameterisation methods. 

3. Improve surface temperature and voltage error predictions through use of 

alternative modelling methods. 

4. Quantify improvements to model performance and battery state estimation 

based on experimentally obtained model parameterisation data. 
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Figure 5. Graphical Representation of Research Objectives and Contributions 

1.4.1 Research Novelty and Contributions to Knowledge 

The novelty of this thesis is a new methodology to obtain battery model 

parameterisation data from experiments conducted under isothermal testing 

conditions. 

The related contribution to knowledge is that usable capacity values obtained from 

experiments conducted in traditional air-based thermal chambers are inaccurate and 

representative of higher temperatures than the predefined temperature. Conversely, an 
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immersed oil-based thermal control system allows for close-to-isothermal tracking of 

battery usable capacity, by eliminating the effect of rapid internal heat generation, 

especially at low temperatures. The usable capacity of a lithium-ion cell is defined as 

the capacity obtained under application specific operating scenarios, such as at 

different operating temperatures and C-rates [60].  

At the modelling stage, the contribution to knowledge is that the battery states based 

on close-to-isothermal capacities, particularly at low temperatures, are closer to the 

experimentally obtained values and lead to improved model performance when 

validated against legislative drive cycles. The improvements are quantified in terms 

of battery SOC, SOE and terminal voltage estimation.  

A further contribution to knowledge is that using separate currents (allowing for 

inclusion of polarisation currents) rather than simply the common Ohmic current as 

part of the thermal feedback subsystem leads to improved estimation of modelled 

surface temperature and output voltage. This was validated against legislative drive 

cycles.  

Another contribution is that power control rather than current control is a more realistic 

approach for characterising batteries against legislative drive cycles as it accounts for 

equivalence in energy throughput rather than capacity throughput across all operating 

conditions, especially at low temperature and lower operating voltages. 

1.5 Thesis Outline 

The thesis comprises of three broad sections: In Chapter 2, the state-of-the-art related 

to low temperature issues with automotive lithium-ion batteries are discussed and the 

gaps in knowledge are identified, with particular focus on battery characterisation for 

model parameterisation and validation. In Chapters 3-6, a novel experimental and 

modelling based research methodology is proposed; furthermore, the experimental and 

modelling evidence to achieve the aim and objectives of this thesis are presented and 

discussed. In Chapters 7-8, overall significance of the work is highlighted where the 

contributions to knowledge are presented and the future prospective of the work are 

suggested. 
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Following on from the issues with low temperature EV operation introduced earlier in 

this chapter, Chapter 2 presents the operating principles and background related to 

lithium-ion batteries and components. The effect of low temperature on lithium-ion 

cell internal processes are also highlighted. This leads to a discussion of existing 

battery testing methods followed for automotive applications and the issues with them 

at low temperatures. Here, it is highlighted that most battery testing takes place in air 

based thermal chambers which mostly fail to maintain isothermal test conditions, 

despite claiming to do so. To understand the effect of experimental data on model 

parameterisation, background information on battery modelling techniques is 

provided, with emphasis on equivalent circuit models. Here, the effect of 

parameterisation and validation data on modelling performance is highlighted. The 

chapter ends by summarising the gaps in research related to evaluating lithium-ion 

cells for modelling purposes for low temperature automotive applications. 

In Chapter 3, the aims and objectives of the work are defined along with the 

justification for the research approach taken. This is followed by details about the 

research scope related to the experimental test matrix and the modelling choices made.  

In Chapter 4, the shortcomings with existing testing methods in air-based thermal 

chambers are highlighted and confirmed based on experimental evidence. The novel 

experimental setup to conduct close-to-isothermal battery testing is proposed. It is 

shown that far-from-isothermal testing using air-based setup substantially 

overestimates the battery performance, particularly at low temperatures and high C-

rates. Conversely, oil-based isothermal setup allows a more accurate assessment of 

usable battery capacity/energy, especially at low temperature and high C-rates.  

In Chapter 5, a state-of-the-art equivalent circuit model (ECM), parameterised at low 

temperatures is developed to aid the modelling validation of the experimental findings 

in Chapter 4. This ECM includes alternate methods for consideration of separate 

(Ohmic and polarisation) currents for calculating the heat generation within a cell. The 

methodology adopted to obtain validation data for the ECM (based on backward 

facing model for legislative drive cycles) is also shown to be different. This is because 

power control instead of current control is used to obtain experimental validation data 
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for legislative drive cycles. The models developed in this chapter enables subsequent 

analysis in Chapter 6. 

In Chapter 6, first the improvements to battery state estimation (SOC and SOE) by 

using oil-based parameters over air-based parameters are discussed by comparing with 

experimental data based on power control, for a legislative drive cycle. Then, the 

positive effect on output voltage accuracy for both 1st and 2nd order ECMs is 

evidenced. Following which, the improvements to modelling performance (in terms 

of modelling surface temperature and output voltage) by inclusion of polarisation 

current for calculating the heat generation from the RC branches of the ECM is 

presented.  

In Chapter 7, the overall discussion of this research work is presented along with 

contributions to knowledge and potential research impact. Then, the future direction 

of research is also suggested. In Chapter 8, the overall conclusions related to the 

contributions of this research work are summarised. 

1.6 Chapter Summary 

Brief introductions to electric vehicle operation and issues at low temperature have 

been given. An introduction to the research problem was provided and the aim and 

objectives of this research work and associated novel contributions were highlighted. 

An outline for the remainder of this thesis was provided where conclusive findings 

will demonstrate how accuracy of battery model parameters can be improved by 

intervention at an experimental stage and through implementation of alternative 

modelling approaches, to enhance range estimation accuracy for EVs operating at low 

temperatures.  
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2. Review of Low Temperature Issues with 

Automotive Lithium-ion Batteries 

Performance of BEVs diminishes at low temperatures (≤ 10 ℃). This is primarily due 

to two reasons, increased cabin heating demand on the battery and diminished battery 

performance. While battery performance depends intrinsically on the cell chemistry, 

it is also affected by external factors such as battery management system (BMS) 

performance. The key task of the BMS is to maximise the power and energy available 

from the pack while ensuring battery safety. Accurate estimation of remaining driving 

range is also one of the key tasks within this framework and is critical to the end user.  

To estimate the remaining driving range accurately, battery states such as SOC and 

SOE have to be inferred accurately. The accuracy of these battery states depends on 

the accuracy of the underlying models. The battery models rely on the quality of the 

experimental datasets employed in their parameterisation and validation. Hence, 

quality of experimental data could have a consequential effect on range estimation.  

This chapter contains a review of the literature on lithium-ion battery characterisation 

and modelling at low temperatures and identifies the relevant knowledge gaps. This 

forms the basis of the research aim and objectives of this work.  

The background and operating principles of lithium-ion batteries are discussed in 

Section 2.1, focussing on the effects of low temperature; Section 2.2 covers the review 

of experimental methods used in characterising battery performance at low 

temperatures. Particularly, in Section 2.2.6, the literature critical to the research 

problem is reviewed and the gaps in existing knowledge are identified. Section 2.3 

presents a review of the methods to model lithium-ion batteries at low temperatures 

contextualising the effect of testing data. Specifically, in Section 2.3.4, the literature 

relevant to battery testing for model parameterisation and validation is critically 

examined to identify the relevant gaps in knowledge. Finally, in Section 2.4, the gaps 

in the literature are summarised to refine the research question for this work. The 

objectives originating from the research question will be detailed in Chapter 3. 
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2.1 Background and Operating Principles of Lithium-ion 

Batteries 

Over the past decade, lithium-ion batteries have successfully transitioned from the 

consumer electronics market to the EV market. This is due to their high specific energy 

(or gravimetric energy density) and high specific power (gravimetric power density) 

[61], excellent cycling performance and long calendar life which make them ideal for 

automotive applications [25]. As shown in Figure 6, the latest lead-acid batteries have 

specific energy between 40-60 Wh/kg, and nickel metal hydride (NiMH) chemistries 

have around 40-110 Wh/kg, while this value increases to around 250 Wh/kg for state-

of-the-art lithium-ion chemistries [62,63]. Future energy storage technologies such as 

lithium-sulphur, lithium-air and solid-state batteries are promising in terms of their 

energy densities (lithium-sulphur and lithium-air) or safety (solid-state) but are limited 

by low power density and cycle life [62]. The volumetric power density of lithium-ion 

chemistries is around 320 W/ ℓ whereas that for lithium-sulphur chemistry is about 

100-200 W/ ℓ [64]. Typical lithium-ion batteries can reach up to 2000 cycles compared 

to ~50 cycles for latest lithium-sulphur batteries [64]. Thus, batteries based on lithium-

ion chemistries are a common choice for original equipment manufacturers (OEMs) 

to integrate into electric vehicles (EVs). Despite these advantages, the market 

penetration of lithium-ion battery operated EVs is slow [65,66]. This is due to a range 

of technical barriers such as high cost, recycling issues, charging infrastructure, safety 

risks and reduced low temperature performance [67].  

 

Figure 6. Ragone Plot for Contemporary Battery Chemistries [68] 
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To investigate the effect of low temperature on lithium-ion battery performance, the 

components of a lithium-ion cell (Section 2.1.1) and the underlying electrochemical 

principles (Section 2.1.2) are discussed in this section.  

2.1.1 Lithium-ion Cell Components 

A standard lithium-ion cell consists of two electrodes, two current collectors, an 

electrolyte and a separator. The basic constitution of a lithium-ion cell is illustrated in 

Figure 7. During discharge, the anode is the negative electrode and cathode is the 

positive electrode. The lithium ions (Li+) diffuse and migrate through the electrolyte 

solution to the positive electrode active material, where they are reduced and 

transferred to the solid phase. The solid phase lithium (Li) then diffuses from the 

surface of the cathode (usually metal oxide) particles to the bulk. This process is 

known as intercalation.  

 

Figure 7. Schematic of the Basic Operating Principle of Secondary Lithium-ion Cell 

at Room Temperature (25 ℃) 
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The reverse process (known as de-intercalation) happens at the anode, where the Li 

particles diffuse out of the bulk onto the surface and are oxidised into Li+ particles. 

The porous separator (while ionically conducting) serves as an electronic insulator 

between the positive and negative electrodes to avoid internal short circuits. The 

separator forces the electrons to follow the opposite path to the ions, through the 

current collectors, to the external load. 

2.1.1.1 Electrode Materials 

The electrodes in a lithium-ion cell are key components that decide its capacity and 

energy density [69]. This is because cell voltage can be calculated from the following 

equation: 

 ����� = ��������
� − ������

�       (1) 

Thus, higher the operating voltage of the cathode and lower the operating voltage of 

the anode, higher is the cell voltage. Higher, the cell voltage, greater is the energy 

delivered for a lower operating current. For example, nickel manganese cobalt (NMC) 

chemistry has a 3.7 V average operating voltage, whereas for lithium iron phosphate 

(LFP) chemistry it is 3.2 V (Figure 8). Similarly, graphite has a low operating voltage 

of ~0.005 V, whereas it is ~1.5 V for a lithium titanate (LTO) anode. Amongst the 

popular chemistries, a lithium-ion cell with NMC cathode and graphite anode has the 

highest specific energy.  

 

 

 

 

 

 

Figure 8. Stable working voltage for different cell material vs. Li/Li+ [70] 
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Other factors to be considered are high electronic and ionic conductivities required to 

achieve high power capability, and battery safety. In this regard, cathode material 

based on LFP chemistry is very safe (thermal runaway onset >270 °C) and has longer 

cycle life and higher power capability than Nickel (Ni) based chemistries. LTO based 

anodes have excellent cycle life and high power capability due to a ‘zero strain’ 

intercalation mechanism in combination with a high potential of lithiation. ‘Zero 

strain’ implies that the phase change due to lithiation/de-lithiation of the electrode 

causes negligible change in its volume (~0.2%). The higher electrode potential of the 

LTO anode (1.5 V) also negates the need for a solid electrolyte interphase (SEI) layer, 

otherwise seen in graphite based anodes. However, a higher negative electrode 

potential leads to lower cell voltage reducing energy density compared to a cell with 

a graphite anode. This is the reason that lithium-ion cells with LTO anodes are good 

for high power applications. Lastly, although silicon anodes offer more than ten times 

the capacity than graphite, they exhibit a 270% volume change during 

charge/discharge leading to poor cycle life. Amongst the three anode materials 

considered, graphite has the highest Li diffusivity (up to 10-7 cm2/s). This diffusivity 

(in the solid phase) is a direct function of temperature and affects the performance at 

low ambient temperatures [71].  

2.1.1.2 Electrolyte 

Ideally, in battery cells, the electrolyte is a chemically inert material with high ionic 

conductivity (typically 4 mS/cm [72]) and with good insulating properties for 

electrical charges. This forces the electrons to go through an external circuit when the 

cell is charged/discharged. For lithium-ion cells, the electrolytes are generally non-

aqueous solutions of lithium-ion containing salts such as lithium hexafluorophosphate 

(LiPF6) dissolved in solvent of organic liquid mixtures, such as ethylmethyl carbonate 

(EMC) [69,73].  

The key requirement of the electrolyte is its stability (chemical inertness) within the 

normal operating window of the electrode reactions [72]. It should also allow the 

formation of a stable SEI layer to protect the electrode, prevent further decomposition 

of the electrolyte and only allow ionic conduction. Furthermore, the viscosity and ionic 

conductivity of the electrolyte decide the rate at which the ions travel from one 
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electrode to the other. This dictates the power capability of the cell. As temperature 

decreases, the viscosity of the electrolyte increases and the ionic conductivity 

decreases [72,74]. This will have an effect on lithium-ion cell performance. For 

example, the freezing point of dimethyl carbonate (DMC) is 0.5 ℃.  

Generally, suitable co-solvents are added to the primary electrolyte to improve low 

temperature performance [41], however,  the composition of battery cell electrolyte is 

a trade secret. Generally, the electrolytes include 1.0–1.2 mol LiPF6 combined with a 

blend of 2–3 organic solvents, such as ethylene carbonate (EC), DMC and diethyl 

carbonate (DEC). Despite this, the discharge capacity of lithium-ion cells using an 

electrolyte mixture of LiPF6  and the above organic solvents combined in a 1:1:1 ratio 

led to discharge capacity reduction by 15% at −20 ℃, even for very low C-rates such 

as 0.05C [41]. Since decreased ionic conductivity of the electrolyte is a major factor 

for poor battery performance at low temperatures, improving electrolyte properties is 

an open research question. 

2.1.1.3 Separator and Current Collectors 

The separator is a microporous layer which acts as a physical barrier between the 

electrodes while allowing ions to pass through from one electrode to another. Key 

requirements of the separator for automotive lithium-ion cells are its high mechanical 

stability and thickness. The thinner the separator, the lower the ionic resistance. But a 

thin separator can lead to cell damage in case of penetration. Most commercially 

available cells use polyolefin based materials as separator due to their mechanical 

stability, chemically inertness and low cost [70].  

Current collectors transfer the current between the electrodes and the external circuit 

or load. Current collectors should have excellent electrical conductivity and should be 

chemically inactive at least with other chemicals inside the cell. In lithium-ion cells, 

copper and aluminium are usually the current collectors. However, aluminium cannot 

be used as the anodic current collector as it alloys with lithium below 0.1 V vs. Li/Li+ 

[31]. Thus, copper is used as the anodic current collector and aluminium is used as the 

cathode current collector. While aluminium is cheap, copper is 2-3 times more 

expensive and increases the overall cost of a lithium-ion cell [18]. 
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2.1.1.4 Cell Formats 

Lithium-ion cells for automotive applications are manufactured in three primary 

formats: cylindrical, prismatic and pouch (Figure 9). Cylindrical cells housed in 

metallic (aluminium /steel) cans are the most common cell format and are also used in 

consumer electronics. For example, ‘21700’ format cylindrical lithium-ion cells are 

used in the Tesla Model S battery pack. In this case, the number ‘21700’ refers to 21 

mm diameter and 70 mm length of the cylinder. Instead of cylindrical cans, if box 

shaped cans are utilised then these cells are called prismatic cells. If instead of a can, 

a layer of plastic is used, it is called a pouch cell. Due to the soft packaging, pouch 

cells have inherently higher energy and power densities, manufacturing flexibility and 

higher packing efficiency amongst all the cell formats [75]. Hence, lithium-ion pouch 

cells are popular amongst OEMs to be used in EVs [12]. 

  

 

Figure 9. Battery Cell Configurations [75] 
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2.1.2 Operating Principles and Electrochemical Equations 

Essentially, a lithium-ion cell converts stored chemical energy to electrical energy and 

vice versa. For example, the representative chemical reactions for a Lithium-ion cell 

with NMC-111 cathode (LiNi0.33Mn0.33Co0.33O2) and graphite anode would be: 

At cathode:  

�����(���.�����.�����.��)�� + ���� + ���
∆��

�� ��(���.�����.�����.��)��      (2) 

At anode: 

�����

∆��

�� ���� + ��� + ���             (3) 

During discharge/charge, these redox reactions cause chemical energy to be converted 

to/from electrical energy as explained below: 

Overall: 

�����(���.�����.�����.��)�� + �����

∆��

�� ��(���.�����.�����.��)�� + ���     (4) 

At each electrode, when a reaction occurs, there is a release or absorption of energy 

which is commonly known as the Gibbs free energy (∆��) [76]: 

∆�� = −����
�               (5)  

Here, ‘n’ is the number of moles transferred in the reaction. ��
� is the standard 

electrode potential for the reaction and ‘F’ is Faraday constant (96485 C/mol). The 

difference in the Gibbs free energy in the two electrode reactions is the energy supplied 

to/from the external circuit. 

In the absence of any current flow, at a particular electrode, the electrode potential (Li 

in this case) with respect to the ions in the solution (Li+ in this case) can be calculated 

from the Nernst equation:  

�� = ��
� +

�.���

��
log (

��

��
)                          (6) 
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Here, R is the universal gas constant (8.3145 J/K/mol), T is the absolute temperature 

in Kelvin, and co and cr are respectively the concentrations of the oxidant and reductant 

involved. As mentioned in Equation 1, based on the cathode and anode employed, the 

cell voltage can then be calculated from the following equation: 

 ����� = ��������
� − ������

�             (7) 

2.1.2.1 OCV and Overpotential 

At rest, with all electrolyte and solid phase concentration gradients fully relaxed, cell 

terminal voltage is equal to its open-circuit voltage (OCV) [77]. As illustrated in 

Figure 10, any deviation in terminal cell voltage from the OCV due to current passing 

through the cell (either charge or discharge), causes an overpotential (η) linked to the 

internal resistance (����): 

� = � × ����                       (8) 

� = ��� − �               (9) 

 

Figure 10. Cell Overpotentials 

The cell overpotential consists of the following: 

(a) The instantaneous voltage drop (������) is due to the pure Ohmic resistance 

(RO) which consists of all electronic resistances (electrodes, current collectors, 

and electrical contacts) and the ionic resistance of the electrolyte bulk.  
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The following overpotentials due to charge transfer and diffusion limitations are time 

dependent and tend to increase with time: 

(b) The voltage drop within the first few seconds is due to resistance developing 

from charge transfer related potential gradients (���) at the 

electrode/electrolyte interface. 

(c) Any further voltage drop is due to concentration gradients developing from 

mass transport or diffusion limitations (�����), particularly in the solid phase. 

Charge transfer related overpotential (���) at a particular electrode is related to the 

potential difference between the active lithium and the lithium-ions at the solid 

electrode-electrolyte interphase. This is defined by: 

��� = �� − �� − ��        (10) 

where, �� and �� are the potentials of the solid electrode and the electrolyte, 

respectively.  

The ��� is related to the current density (���) through the Butler-Volmer Equation: 

��� = �� ���� �
���

��
���� − ��� �−

���

��
�����     (11)   

where, �� is the exchange current density at equilibrium, and �� and �� are the 

exchange coefficients at the anode and the cathode. Note, �� +  �� = �. To reiterate, 

‘n’ is the number of moles transferred in the reaction.  

In the low overpotential region, current density can be equated to overpotential as: 

��� = �� �
���

��
����        (12) 

In the high overpotential region, Equation 11 simplifies to the Tafel equation: 

��� = �� × ��� �
��×�

��
����       (13) 

At low temperatures, high overpotentials would be dominant due to increased cell 

resistance and sluggish dynamics.  



25 

 

Higher electrode current density equates to a larger overpotential based on the Butler-

Volmer equation. Thus, as load currents increase, the electrode overpotentials increase 

causing cell voltage to decrease faster. Since cells have a manufacturer’s 

recommended minimum voltage cut-off, for the same OCV, the terminal voltage is 

lower for a higher load current. Theoretically, this causes cells to prematurely reach 

end-of-discharge. Furthermore, higher load currents also result in higher thermal 

losses due to Joule heating (����): 

���� = � × �          (14) 

The change in potential at the electrode results in the electrode surface becoming 

charged. Since, the electrode surface becomes charged, oppositely charged particle are 

attracted towards it leading to the formation of an electrical double layer. This layer 

can be assumed as providing a capacitance (���) in parallel with the charge transfer 

resistance at the electrode electrolyte interface producing a current (���):  

��� = ���
����

��
         (15) 

During sustained discharge, concentration gradients develop across the cell, 

particularly in the active material of the electrodes. This is principally a concentration 

gradient between the bulk of the active species and the surface, giving rise to an 

overpotential-induced due to mass transport limitations (�����):  

����� =
�.���

��
log (

�����

��������
)       (16) 

Here ����� is the concentration of active species in the bulk, and �������� is the 

concentration of species at the electrode surface.  

To improve the power capability of lithium-ion batteries, the active materials are built 

into porous electrodes, allowing for a larger surface area for chemical reactions to take 

place. Furthermore, both effective conductivity and diffusivity increase as the porosity 

of the electrodes increases and the tortuosity decreases [78]; leading to reduction in 

charge transfer and concentration polarisation. The area of the interface between 
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electrolyte and electrodes’ active material depends on the particle size, electrode 

porosity, and available surface area.  

2.1.2.2 Electrochemical Equations 

Lithium/lithium-ion charge transfer and mass transport phenomena in both solid and 

electrolyte phases can be expressed through the following equations [65,76,77]:  

Charge conservation in solid phase: 

�

��
���

�

��
��� − ��� = 0       (17) 

Boundary condition: 

−���
���

��
�

���
= −���

���

��
�

���
=

�

�
 ,

���

��
�

����

=
���

��
�

������

= 0   (18) 

Lithium conservation in solid phase (Fick’s second law in polar form): 

���

��
=

���

����
��� ���

��
�        (19) 

Boundary condition: 

���

��
�

���
= 0, −��

���

��
�

����

=
���

���
      (20) 

Lithium conservation in electrolyte phase: 

��
�(��)

��
=

�

��
���

�

��
��� +

����
�

�
���                 (21) 

Boundary condition: 

���

��
�

���
=

���

��
�

���
= 0        (22) 

Charge conservation in electrolyte phase: 

�

��
��

�

��
�� + ��

�

��
����� + ��� = 0                             (23) 

Boundary condition: 
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���

��
�

���
=

���

��
�

���
= 0       (24) 

Here, �� and �� are solid-phase and electrolyte-phase potentials; �� is solid-phase 

conductivity; ��� is  the reaction current density; �� and �� are solid-phase and 

electrolyte-phase Lithium concentrations; �� and ��  are solid-phase and electrolyte-

phase diffusion coefficients; �� is electrolyte volume fraction; ��
�  is transference 

number of lithium-ion; � is ionic conductivity; � is universal gas constant; � is 

absolute temperature in K; and � is Faraday’s constant.  

The equations 17-24 detailed in this section can also be used to discuss the effect of 

low temperatures on internal cell processes and thus, on the operation of lithium-ion 

cells. But before that, it is imperative to associate the effect of temperature on internal 

cell physiochemical parameters such as conductivity, diffusivity, etc. The Arrhenius 

equation can be used to explain the general dependence of physiochemical cell 

parameters on temperature [77]:  

� = ������� �
����

�

�
�

�

����
−

�

�
��      (25) 

Here, ���� is property value defined at reference temperature ���� = 298.16 K (25 °C). 

The activation energy (‘����’) controls the temperature sensitivity of the individual 

physiochemical property, �. 

Automotive lithium-ion batteries need to operate in diverse operating conditions, such 

as, extreme environmental conditions and aggressive power demands. Despite these 

challenging conditions, batteries have to supply the required power at the wheels and 

meet warranty conditions. Thus, rate capability, operating temperature range and 

lifetime considerations are critical to mass market uptake of a particular battery type. 

For example, at low ambient temperatures, charging current is reduced to avoid battery 

damage. Similarly, during driving, the power available from the battery decreases with 

decrease in its SOC. Quantifying the effects of different operating conditions such as 

for varying load currents and ambient temperatures is critical for accurately assessing 

performance of lithium-ion cells for automotive applications. Lithium-ion batteries, 

being electrochemical devices, are affected by operating temperature. Low ambient 
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temperatures adversely affect cell physiochemical characteristics such as a diffusivity 

and ionic conductivity (Figure 11). For example, as the ambient temperature decreases 

from 25 °C to say, 0 °C, diffusivity decreases within active material of the electrodes 

(Equation 25). This is seen as slower diffusion in the solid phase (Ds ↓). This is 

illustrated as lower number of red dots in the electrodes in Figure 11. Slower diffusion 

rates manifest as greater concentration gradients (∂cs/∂r ↑) which contribute to 

increasing the overpotential of the cell for a particular current. The chemical kinetics 

of the redox reactions slow down at lower ambient temperatures (fewer green arrows). 

This manifests as an increase in the charge transfer resistance on the 

electrolyte/electrode interface leading to an increase in the overpotential at low 

temperatures. As such, cell internal resistances increase due to decreased electrolyte 

ionic conductivity (κ ↓) at lower ambient temperatures due to slower rate of ionic 

transfer and a higher viscosity (darker electrolyte colour). 

 

Figure 11. Schematic of the Basic Operating Principle of Secondary Lithium-ion Cell: 

Contrasting Effect of Low Temperature (≤ 10 ℃) with Room Temperature (25 ℃) 
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Conversely, based on Equation 25, assuming Arrhenius behaviour, high ambient 

temperatures (≥35 °C) lead to improved rate of internal chemical reactions along with 

improved physiochemical characteristics such as higher diffusivity and ionic 

conductivity. This leads to reduced cell internal resistances causing a suppression in 

cell overpotential, improving battery performance. However, higher reaction rates will 

cause side reactions to manifest (such as transition metal dissolution from the cathode) 

leading to battery degradation and potential safety risks (due to gas evolution). Contact 

resistances (such as those arising from copper/steel tabs and bus bars) increase as 

ambient temperature increases, causing cell overpotential to increase further without 

actually effecting any energy delivery to an external load. This is made prominent due 

to lower cell internal resistances at high ambient temperatures. 

2.2 Review of Battery Characterisation Methods: Issues at 

Low Temperature 

Lithium-ion batteries are characterised for primarily three purposes, (a) to benchmark 

against real-world operating scenarios, (b) to test operational safety, and (c) to 

parameterise and validate application specific models/algorithms. There exist two 

approaches: invasive and non-invasive. Although invasive methods (such as those 

employing microscopy, tomography, etc.) can draw out physical characteristics, they 

are complex and require battery disassembly. In particular, it is difficult to conduct 

them for application specific operating scenarios such as for low ambient temperature 

and aggressive duty cycles. Conversely, non-invasive characterisation, such as DC 

testing, is mainly electrical in nature and is useful to track battery performance. 

Essentially, the techniques employed in these tests are to measure the voltage and 

thermal response for various DC/AC current inputs; this is discussed in the following 

section. In Section 2.2.1, galvanostatic capacity tests that help capture cumulative 

electrical charge/energy stored will be discussed. In Section 2.2.2, dynamic capacity 

tests which help examine the battery’s suitability for real-world automotive 

applications will be discussed. In Section 2.2.3, pulse power tests that help map battery 

instantaneous power capability at different SOCs and temperatures will be discussed. 

In Section 2.2.4, electrochemical impedance spectroscopy (EIS) that helps capture AC 

impedance response of the cells to elicit internal electrochemical phenomena will be 
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discussed. In Section 2.2.5, experimental techniques related to capturing cell 

behaviour under open circuit conditions will be discussed briefly. In Section 2.2.6, the 

immediate issues with these battery testing methods, particularly for low temperature 

applications are identified. 

2.2.1 Galvanostatic Capacity Tests: Issue with Overpotential and 

Heat Generation at Low Temperatures 

Galvanostatic (or constant current) tests are popular characterisation techniques to 

quantify battery performance. These tests are common in literature as well as in 

legislative standards. In a galvanostatic capacity test, the cells are fully charged and 

then discharged at different ambient temperatures and load currents until the minimum 

voltage cut-off is met (Figure 12). The capacity is the total electrical charge (in Ah) 

discharged at the end of this test. Essentially, capacity (in Ah) is a measure of the total 

electric charge stored in a cell and depends on the active lithium concentration in the 

electrodes. However, energy (in Wh) depends not just on the lithium concentration but 

also on the electrode potential. As such, the power delivered at the wheels of a BEV 

is dependent on both the current drawn from the cells as well as the operating voltage 

at which the current is drawn. This implies that capacity (in Ah) may not be the most 

appropriate method for estimating driving range of BEVs, particularly at low 

temperatures where voltage can decrease significantly. This will be discussed further 

in Section 2.2.2.  

 

Figure 12. Typical Discharge Profile for a 1C discharge at 25 °C Ambient Temperature 

for a 40Ah Lithium-ion Pouch Cell 



31 

 

In a manufacturer’s datasheet, galvanostatic (discharge) capacity is generally 

presented at various ambient temperatures and discharge currents for constant current 

continuous discharge duty cycles. It is generally seen that discharge capacity decreases 

with increasing discharge current and decreasing ambient temperature [79]. For 

example, in Figure 13 it can be seen that for 1C discharge current, the capacity 

decreases from ~14.6 Ah at 25 °C ambient temperature to ~12.3 Ah at −20 °C ambient 

temperature. Similarly, for 3C discharge current, the discharge capacity drops by 

almost 90% whereas for 5C discharge current, the cell fails to meet the demand. This 

is because of higher current demands at lower ambient temperatures. In this case, the 

cell internal resistances and in turn, the cell overpotentials are so high that the cut-off 

voltage is met without any capacity being discharged.  

 

Figure 13. Effect of Low Ambient Temperature on Discharge Capacity for 14.6 Ah 

Lithium-ion Pouch Cell (redrawn from [79]) 

For the same discharge current, due to higher cell overpotential, the heat generated 

within the cell increases with decrease in ambient temperature [32,65,80]. This heat 

generated by the cell (sometimes termed as self-heating) may cause the cell internal 

resistances to be suppressed and in turn may cause a higher capacity being discharged 

from the cell than possible in isothermal conditions [80]. For example, Grandjean et 

al. recently argued that this rapid internal heat generation is a potential performance 

enhancement feature for lithium-ion cells operating at low ambient temperatures [81]. 

From −10 °C ambient temperature, towards the end of discharge at 5C, the cell surface 
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temperature was approximately 30 °C, a nearly 40 °C temperature rise due to rapid 

heat generation (Figure 14b). The thermal effect is evident in the cell voltage rise seen 

in the middle section of the discharge curve in Figure 14a. This is due to cell 

overpotentials being suppressed as the cell surface temperature increased. If the cells 

were not allowed to heat up, the cell voltage would have probably decreased at a faster 

rate and resulted in a diminished discharge capacity performance. This issue leads to 

a major disconnect between battery characterisation and battery operation and how the 

lack of distinction between them leads to issues with model parameterisation. This 

will be discussed further in Section 2.2.6.  

 

Figure 14. Effect of Different C-rates on Discharge Capacity and Surface Temperature 

Rise for 20 Ah Lithium-ion Pouch Cells at −10 °C Ambient Temperature: (a) 

Discharge Capacity and (b) Surface Temperature Evolution [82] 

2.2.2 Inaccuracy of Dynamic Capacity Tests: Use of Current Control 

at Low Temperatures 

As per International Electrical Commission (IEC) 62660-1, the dynamic capacity is 

defined as the capacity discharged when a fully charged cell is subjected to a dynamic 

power load profile (Figure 15). The capacity is usually measured until the cell reaches 

its minimum cut-off voltage.  
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Figure 15. Typical Current Profile for Pulse Power Characterisation (IEC 62660-1) 

In recent literature, Barai et al. argued that energy (in Wh) instead of capacity (in Ah) 

be adopted as an indicator of remaining driving range in electric vehicles [57]. They 

showed that energy (in Wh) is a more reliable indicator as it considers thermal losses 

as well as immediate cycling history (essentially operating voltage). They validated 

the hypothesis for real-world driving scenarios using the Artemis Urban/Motorway 

drive cycles. As ambient temperature decreases, due to higher cell overpotentials, it is 

expected that operating voltages will be lower and will reach cut-off voltage faster. 

This was also evidenced by Keil et al. employing the scaled-down version of the US06 

legislative drive cycle to show that their cells failed to deliver the power required at 

ambient temperatures less than 0 °C [83]. However, they did not investigate whether 

the cells were able to sustain the same drive cycle when scaled using current control. 

Realistic drive cycles (such as UDDS, NEDC, etc.) are also employed to capture 

ageing of lithium-ion cells, in which capacity fade (in Ah) is widely used as a key 

metric [49,84,85]. It is reasoned that capacity fade is directly related to the driving 

range of a BEV [35,38]. However, based on growing literature in the recent past that 

energy (Wh) instead of capacity (Ah) may be more representative of real-world 

driving range of BEVs [56,86,87], it may be prudent to consider energy throughput 

instead of capacity throughput as a means of quantifying lithium-ion cell ageing. In 

recent literature, energy fade rather than capacity has only been adopted by Zhang et 
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al. [88]. However, this methodology has not been widely adopted by other researchers 

[49,89].   

To capture the thermal behaviour of lithium-ion cells, a similar conflict is seen in 

employing current control or power control as the primary metric for scaling-down 

vehicle level drive cycles to cell-level duty cycles. The difference between current 

control (calculated assuming fixed nominal voltage) and power control is illustrated 

in Figure 16. For example, Tourani et al. used Artemis legislative drive cycles (scaled-

down to cell level using power control) to investigate the thermal behaviour of lithium-

ion pouch cells in the −10 to 35 °C ambient temperature range [90]. On the other hand, 

Hosseinzadeh et al. employed the WLTC (Class 3) legislative drive cycle (scaled-

down to cell level using current control) to validate their electrochemical-thermal 

model based on capacity throughput for a large format lithium-ion pouch cell between 

5 and 45 °C ambient temperature range [91].  

 

Figure 16. Backward Facing Model to obtain Cell-level Profile from Vehicle-level 

Speed Profile: Contrast between Power Control and Current Control (Images for EV, 

battery pack and cell obtained from Internet) 

Over the course of the duty cycle, to compensate for the lower operating voltage, the 

operating current should respond to maintain consistent power delivery. So, 

2�2� × 48 
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employing current control instead of power control (as used by Hosseinzadeh et al.)  

will intuitively lead to lower (and inaccurate) estimation of heat generation within the 

cells [92]. Thus, using current control (with fixed nominal voltage) for thermal 

characterisation of lithium-ion cells may not fully capture real-world thermal 

behaviour. Any thermal model thus developed may not be applicable in the real-world.  

The significance of the choice between power control and current control is not an 

issue at higher operating temperatures (≥25 ℃) where the cell resistances are lower 

compared to lower operating temperatures (≤10 ℃) [93]. Furthermore, at higher 

temperatures, resistance does not increase as much with increase in current magnitude 

and decrease in SOC [94]. Thus, at higher temperatures, applying current control or 

power control for a particular duty cycle, probably will not make a substantial 

difference on the amount of capacity (Ah) or energy (Wh) delivered. However, at 

lower temperatures, particularly due to higher cell resistances at low SOC (<50%) and 

for high current magnitudes, the choice between current control and power control 

becomes more critical. In Section 2.3.4.1, the modelling implications are discussed.  

2.2.3 Pulse Power Characterisation: Impact of Internal Cell Heating 

and Relaxation Period at Low Temperatures 

The primary objective of pulse power characterisation (PPC) is to quantify the DC 

resistance (DCR) of a lithium-ion cell under different operating conditions. Through 

this, it can be estimated whether the cell will be able to meet the instantaneous duty 

cycle power demand. The lower the DCR at a particular operating condition, the higher 

the pulse power capability. The DCR (mΩ) is defined for a particular current pulse as: 

��� =
∆�

∆�
          (26) 

Here, ∆V (V) is the change in voltage after the pulse is applied; ∆I (A) is the amplitude 

of the current pulse. Other factors to be considered while defining a current pulse are 

initial voltage (or SOC), pulse duration (usually 10 s) and current direction (charge or 

discharge). Although voltage response (∆V) is assumed to be linear, as shown in 

Figure 17, it consists of two parts: instantaneous voltage drop (∆V0) assumed to be the 

pure Ohmic resistance of the cell and the dynamic (non-linear) voltage drop (∆V1) 
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which is based on resistances due to charge transfer resistance at the electrode 

electrolyte interphase and concentration polarisation due to ionic diffusion, 

particularly in the electrodes’ active material.  

 

 

Figure 17. Schematic of (a) Current Pulse and corresponding (b) Voltage Response  

The effect of temperature, SOC and charge/discharge current on DCR has been widely 

explored in literature [58,93,95,96]. At lower ambient temperatures (≤10 °C), due to 

slower chemical kinetics, charge transfer at the electrode-electrolyte interphase slows 

down, leading to higher overpotentials [40]. Furthermore, lower ionic conductivity in 

the electrolyte and slower diffusion, particularly in the electrodes’ active material 

contribute to higher voltage loss at lower temperatures [41]. These manifest as an 

increase in DCR value and reduction in power capability at low ambient temperatures.  

(a) 

(b) 
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As shown in Figure 18, as ambient temperature decreases from 25 °C to 0 °C, for a 

1C discharge current, the resistance increases from 1 mΩ to over 5 mΩ; a five-fold 

increase [93]. Furthermore, it is shown in Figure 18 that current dependency of DCR 

becomes more prominent as ambient temperature decreases. In particular, it is shown 

that DCR decreases as operating current increases at 0 ℃. This is likely due to 

suppression of cell internal resistance due to rapid heat generation in the internal layers 

of the pouch cell [97].  

 

Figure 18. The Effect of Ambient Temperature and Current Magnitude on DC Internal 

Resistance of Lithium-ion Pouch Cells (Discharge current is positive) [93] 

Recent work by Troxler et al. and Klein et. al. argued that based on the operating 

temperatures of the various layers within a pouch cell, there would be internal 

temperature and SOC gradients whose individual behaviours would affect the overall 

cell behaviour [97,98]. That is, within the parallel layers of the pouch cell, the layers 

closer to the centre would experience higher operating currents and heat up faster. This 

could lead to a decrease in cell resistances due to the cell operating at higher operating 

temperature compared to the temperature measured at the cell surface. However, most 

researchers assume that for a particular pulse, there is negligible change in cell 

temperature and SOC [99].  
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As such, the background electrochemical processes, and thus the internal resistances, 

are time dependent [100]. As illustrated in Figure 19, for an 18 s discharge pulse, while 

�� (phase (i)) is time independent and is the inherent electrical resistance of the cell, 

���  (phase (ii)) and ����� (phase (iii)) increase with time. However, using just the 

voltage response, it is difficult to separate the contributions of ���  and ����� to the 

overall resistance. Mathematical fitting can be employed to discern the contributions 

and modelled using an equivalent circuit model; this will be discussed in Section 2.3. 

 

Figure 19. Voltage Response (bottom) to 18 s Discharge Pulse (top): (i) Ohmic 

resistance due to inherent electrical circuit, (ii) Charge transfer resistance and (iii) 

Diffusion resistance due to mass transport limitations [100] 

The duration of the pulse should be such, so as to not change the SOC for that 

particular pulse response. Usually a pulse power testing regime consists of a series of 

predefined charge and discharge pulses (usually 10 s long) of increasing current 

magnitude at a particular SOC and ambient temperature [101]. As shown in Figure 20, 

there is a rest period between each pulse. This rest period is important to ensure that 

the cells are at electrochemical equilibrium before being subjected to a further current 
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pulse. Barai et al. in their investigation into relaxation times for EIS argued that at 

least a 4 hour period is required before any current is applied to the cells to ensure 

electrochemical equilibrium [102].  

 

Figure 20. Typical Current Profile for Pulse Power Characterisation (IEC 62660-1) 

Relaxation time is a particularly important consideration given that cell internal 

electrochemical processes slow down as ambient temperature decreases. The IEC 

62660-1 specifies a 10 minute rest period, which is unlikely to be enough at low 

ambient temperatures, particularly for large pulse amplitudes [103]. Provision is given 

for extending relaxation times on the basis of temperature rise, which is a 

thermodynamic rationale but not an electrochemical one. For example, entropy 

profiles of lithium-ion cells at different temperatures require long relaxation periods 

to ensure that the cells are in thermodynamic equilibrium [104]. Investigation of faster 

methods to measure entropy coefficients for lithium-ion cells is an ongoing research 

avenue [104,105]. 
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2.2.4 Electrochemical Impedance Spectroscopy (EIS): Localised 

Measurements at Low Temperatures   

There are other techniques employed to obtain the cell characteristics such as 

impedance through AC based electrochemical impedance spectroscopy (EIS). EIS 

consists of sinusoidal AC current (� (�)), which is applied to the cells at different 

frequencies between 10 mHz to 10 kHz. The AC voltage response (� (�)) and the 

consequent phase shift (∅ = �� − ��) is measured to obtain the impedance response 

of the cell. The impedance (� (�)) is calculated as follows: 

� (�) = |��|sin (�� + ��)       (27) 

� (�) = |��|sin (�� + ��)       (28) 

� = 2��         (29) 

� (�) =
|��|��� (�����)

|��|��� (�����)
         

Or,  

� (�) = |��|sin (�� + �� − ��)       

Or, 

� (�) = |��|sin (�� + ∅)       (30) 

As shown in Figure 21, the cell’s complex impedance can be interpreted to infer 

internal electrochemical processes. Note, impedance response obtained from EIS is 

usually represented using a Nyquist plot. Section 1 represents the high frequency 

inductive component of the impedance due to the metallic connections in the cell and 

wires. Section 2 represents the Ohmic resistance of the cell associated with current 

collectors, electrolyte and separator. Section 3 depicts the formation of SEI layer on 

the surface of the anode over the course of the cycle life of the cell. Section 4 depicts 

the double layer capacitance and charge-transfer resistance at the electrode/electrolyte 

interface. Section 5 represents diffusion processes within the electrodes’ active 

material and within the electrolyte at low frequencies.  
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EIS has been widely used as a technique to investigate the effect of temperature on 

lithium-ion cells starting with Zhang et al. [106,107]. They found that charge transfer 

resistance (RCT) was most sensitive to change in temperature. That is, as temperature 

decreased by 10 ℃, the 2nd semi-circle (representing RCT) in Figure 21 (Section 4) 

became larger (by 2-3 times) and occurred at a lower frequency than at room 

temperature [93,108,109]. In particular, at lower ambient temperature, slower charge 

transfer kinetics becomes the rate determining step for charge/discharge operation of 

lithium-ion cells [41]. Furthermore, Raijmakers et al. used the frequency at which the 

imaginary part of the impedance was zero, to successfully estimate the internal 

temperature of lithium-ion cells in equilibrium conditions and stated that this 

‘intercept’ frequency increased as ambient temperature decreased [110,111].   

However, this technique is largely unverified for in operando usage as errors arising 

from high operating currents and interference from other electrical components make 

on-board vehicular implementation challenging [112]. 

 

Figure 21. Schematic representation of an ideal EIS spectrum on a Nyquist plot for 

Lithium-ion Cells 

EIS represents electrochemical phenomena more accurately than PPC as it involves 

negligible charge/discharge processes (low magnitude AC perturbation of about C/20 
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peak), but each experiment requires significant time [93]. A single EIS measurement 

takes more than 8 minutes when measuring down to 10 mHz frequency [100]. The cell 

SOC and operating temperature may change significantly during EIS measurements; 

these changes influence the measurement accuracy and make the method impractical 

at moderate and high current-rates, particularly in operando [113].  

As introduced in Section 2.2.3, a single lithium-ion cell is made up of multiple layers 

which cause non-uniform temperature and SOC distribution internally [65,114]. In 

particular, cell characteristics deviate from lumped behaviour due to non-

homogeneities as demonstrated by Troxler et al. [114]. Recently, Osswald et al. 

showed that for a particular AC signal applied on modified cylindrical cells, the 

resultant voltage perturbation decreases as distance from the current carrying tabs 

increases [115]. As shown in Figure 22, this gradient in voltage response became more 

prominent at 10 ℃ compared to at 25 ℃ due to slower chemical kinetics. Thus, for 

EIS measurements at even lower temperatures (for example, −20 ℃), internal non-

uniformities within a cell could lead to localised measurement and obscure critical 

information regarding its electrochemical behaviour.  

 

Figure 22. Amplitude of Voltage Response (at 167 mHz) at Different Temperatures 

for 50 mA AC Current Excitation (adapted from [115]) 

2.2.5 Open Circuit Voltage (OCV) and pseudo-OCV Measurements 

at Low Temperatures 

Battery testing such as OCV versus SOC characterisation is also conducted to help 

parameterise battery models. The OCV versus SOC relationship is either obtained 
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from very low C-rate (≤0.2C) charge/discharge curves (known as pseudo-OCV), or, 

from rest voltage methods (known as galvanometric intermittent titration technique 

(GITT) by charging/discharge the cells at small SOC increments (≤10%) 

[86,116,117].  

In the limited literature related to OCV characterisation experiments at low ambient 

temperatures, it has been argued that the dependence of OCV on ambient temperature 

and current rates is minimal compared to dependence of OCV on SOC and can thus 

be ignored in terms of ECM parameterisation [58]. However, pseudo-OCV tests which 

are used in place of GITT tests to reduce experimentation time, could be affected by 

increased cell overpotentials at low temperatures. This is because, as temperature 

decreases, for a particular C-rate employed for the pseudo-OCV test, the induced 

overpotential will increase, particularly due to kinetic contributions [117]. This will 

cause deviation from open circuit behaviour due to addition of polarisation related 

overpotentials [118,119]. Thus, for a particular SOC, the corresponding pseudo-OCV 

would be lower as temperature reduces [120]. This is shown in Figure 23, where the 

pseudo-OCV (0.04C discharge) measurements for 1.1 Ah lithium-ion cells are 

presented at different temperatures. In this case, it is likely that at low temperatures, 

the pseudo-OCV curve would diverge from the OCV value obtained using GITT. This 

issue could be compounded if higher C-rates are utilised, possibly leading to localised 

measurements and subsequently, affecting model accuracy [121].  

 

Figure 23. Pseudo-OCV Measurements at Different Temperatures shown between 30 

to 80% SOC (Other SOC data unavailable) [120] 
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2.2.6 Gaps in Knowledge: Identified Concerns with Battery 

Characterisation at Low Temperatures 

Results from galvanostatic battery experiments, at different ambient temperatures and 

C-rates, are employed to directly model the usable charge/discharge capacity of 

lithium-ion cells under different operating scenarios [60]. In these model 

parameterisation experiments, it is assumed that the test conditions are isothermal. 

However, at low ambient temperatures, due to higher cell internal resistances (����), 

(���� = �� × ����), cells heat up more [80]. This effect is compounded if the 

operating current is high.  

Grandjean et al. recently argued that cell heat generation is a performance 

enhancement feature for lithium-ion cells operating at low ambient temperatures [81]. 

As shown in Figure 14, they conducted galvanostatic discharge cycle experiments at 

−10 °C ambient temperature. Towards the end of discharge at 5C, the cell surface 

temperature was approximately 30 °C; a nearly 40 °C temperature rise due to internal 

heat generation. On the other hand, if the cells were not allowed to heat up, the cell 

voltage would have decreased at a faster rate and likely resulted in a lower capacity 

discharged. This implies that while the starting cell temperature may be close to the 

ambient temperature; at the end of a discharge cycle, the cell temperature can be 

considerably higher than the ambient temperature, particularly for high load currents. 

This is advantageous for operation in real-world applications but should be avoided 

for parameterisation experiments. 

There is substantial literature on lithium-ion cells models, where researchers have 

claimed that model parameters have been obtained from battery experiments 

conducted under isothermal conditions [7,33,58,122,123]. On closer examination of 

the literature, claimed isothermal conditions are often found to be non-isothermal. For 

experiments conducted in air-based thermal chambers, under load, as a lithium-ion 

cell self-heats, its operating temperature increases and is widely reported in literature 

as such [58,81]. For example, Jaguemont et al. obtained discharge capacities for their 

cells at −20, −10, 0 and 25 °C ambient temperatures [58]. For 1C discharge at −20 °C, 

the final cell temperature was −5.6 °C and for 1C discharge at −10 ℃, the final cell 

temperature was 0.9 ℃. This means that the discharge characteristics were 
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representative of a test temperature much higher than either the −20 or −10 °C starting 

ambient temperature. In fact, the final cell temperature for the test at −20 ℃ is 4.4 ℃ 

higher than the starting ambient temperature of the next set point, −10 ℃.  

Conventionally, battery cycling is conducted in commercially available climatic test 

chambers. A climatic chamber allows control of operating temperature and humidity 

conditions during the test. Particularly, temperature control is achieved by forced 

convection of air within the chamber (Figure 24). Recently, Ardani et al. have argued 

that using thermal chambers that employ forced air convection may not be sufficient 

to maintain isothermal test conditions to conduct model parameterisation experiments 

[99]. Using an electrochemical model, they showed that non-isothermal test conditions 

could lead to inaccuracies in parameterising cell physiochemical parameters such as 

cathode diffusion coefficient. In particular, they showed that the model parameters 

estimated were more in line with a higher ambient temperature if only forced air 

convection was employed. For example, while the ambient temperature was 15 °C, 

the battery parameters estimated were more like those for 19 °C ambient temperature. 

In their study, Ardani et al. employed Peltier elements to control cell surface 

temperature during pulse discharge. However, their investigation did not consider the 

more extreme case of a continuous discharge at an ambient temperature (for example, 

1C discharge). 

 

Figure 24. Schematic Representation of Climatic Test Chamber with Cooling Fan 

[124] 
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To reiterate, while beneficial for real-world usage, drive cycle testing, and model 

validation, heat generation during charge/discharge is an issue for a parameterisation 

experiment where repeatability is key. There is a clear disconnect between the 

requirement for parameterisation of cells at a fixed temperature, and the current 

experimental practise, which is deficient. This has not been extensively investigated 

and therefore there is a current gap in knowledge regarding the effect of this non-

isothermal parameterisation and its significance.  

In literature, active thermal management of lithium-ion cells (such as those employing 

oil baths) has largely been investigated from the perspective of the performance 

characteristics of the heating/cooling system [125,126]. Bolsinger et al. investigated 

the effect of different cooling configurations for cylindrical cells and argued that tab 

(or terminal) cooling is better than surface cooling. Similarly, other researchers 

compared the pros and cons of choosing between air cooling and liquid cooling 

[69,125,127]. They found that while air cooling is cheaper than liquid cooling, it 

demonstrates poor thermal performance of the battery pack being cooled. The 

comparisons were made on the basis of cost, complexity, efficiency, and direct versus 

indirect cooling. 

Air has poor thermal properties compared to other materials (such as mineral/silicone 

oils) (Table 3), and so the cooling capability may be insufficient to counter the rapid 

internal heat generation seen for high load currents and/or low ambient temperatures. 

The thermal conductivity of air is 0.0242 W/mK, whereas that of commercially 

available mineral/silicone oils are in the range of 0.13-0.15 W/mK [125,127].  

Similarly, the specific heat capacity also compares poorly, 1006 J/kgK for air 

compared to 1300-1900 J/kgK for cooling liquids [127]. This means that for a similar 

cooling area and coolant mass, the cooling capability of air is substantially lower than 

that of a direct liquid cooling system [128]. This may not allow for isothermal test 

conditions essential to obtaining accurate cell performance characteristics [128]. 

Compared to conductive cooling with Peltier elements [99], an immersed oil bath 

allows simultaneous cooling of all cell surfaces (including the tabs) and is independent 

of cell format or size. This will allow expansion of isothermal testing independent of 

cell format or size.  
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Table 3. Comparison of Typical Physical Properties of Different Coolants [127] 

Physical Property Air Mineral Oil Silicon Oil Water/Glycol 

Specific Heat Capacity 

(J/kgK) 
1006 1900 1370 1069 

Thermal Conductivity 

(W/mK) 
0.0242 0.13 0.15 0.3892 

2.2.6.1 Key Identified Concern:  Isothermal Test Conditions during Battery 

Characterisation for Model Parameterisation 

Isothermal test conditions are particularly important for low temperature 

parameterisation where the effects of rapid internal heat generation are much larger 

than at room temperature. This is an important limitation because by allowing the 

cells’ operating temperature to diverge from the ambient (or test) temperature, the 

effect of temperature and current on the usable capacity can become convoluted. If the 

capacity performance is being assessed at a particular temperature, the cell itself 

should be anchored to that temperature for the duration of the parameterisation test. 

This is because cell internal resistances and in turn, overpotentials are a function of 

both operating current and operating temperature [89]. To draw out the effect of one, 

the other should be fixed for a particular experiment.  

Furthermore, the implications of erroneous parameterisation and validation data on 

battery models will be discussed in Section 2.3.4. Before that, the state-of-the-art 

modelling techniques for battery models are reviewed in Sections 2.3.1-2.3.3. 

2.3 Battery Modelling: Issues at Low Temperature 

A battery management system (BMS) supervises the on-board battery pack in an 

electric vehicle [129]. The BMS ensures that the pack is within a safe operating area 

and controls its electrical and thermal performances [57,130]. It also informs the driver 

regarding the remaining driving range of the vehicle [57]. A BMS utilises both 

measured parameters (such as voltage and temperature) and inferred parameters (such 

as SOC and SOE) to maintain optimal battery pack performance and estimate other 

parameters, such as remaining driving range. These inferred parameters, also known 
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as battery states, are estimated by underlying battery models. The reliability of these 

battery states depends on the accuracy of the model.  

2.3.1 Definition of State of Charge 

The success of range estimation largely depends on the accuracy of the underlying 

battery state estimators such as SOC (state-of-charge) and SOH (state-of-health) [89]. 

SOC is used analogous to the fuel gauge in a conventional vehicle [57]. From a 

thermodynamic perspective, it is defined as [60]: 

��� =
��������� ����������� ���

����� ������������ ���
=

�������� �������� �� ��� ������

������� �������� �� ��� ������
= �(���)     (31) 

From a thermodynamic perspective alone, SOC is related to the lithium concentration 

in the electrodes under open circuit conditions [116,131]. However, in terms of 

estimating the remaining driving range from SOC, the above definition can be 

misleading as the SOC relationship with open circuit voltage (OCV) is defined at 

equilibrium and does not account for the effect of operating conditions such as 

temperature, C-rate or for operation-induced overpotentials. The terminal voltage not 

only depends on the OCV of the cell but also on the operating current and the cell 

internal resistance. This means that if either the operating current or the cell internal 

resistance, or both, are high enough, the cell can reach its minimum cut off voltage. 

This could cause the discharge cycle to prematurely stop, leading to diminished 

capacity/energy being discharged and hence, lower actual driving range. 

In contrast to Equation 31, under dynamic operating conditions, what is of more 

interest to the BMS is the accessible or usable battery capacity for a particular load 

profile and operating temperature [40]. As defined in the USABC test manual, SOC is 

based on the ratio of the remaining capacity and the usable capacity at a particular 

operating condition (in terms of operating current and temperature) [60,132]. In 

essence, as introduced in Figure 13, for a particular load current and operating 

temperature, SOC should be an indicator of remaining driving range if demand from 

the vehicle is maintained and minimum cut-off voltage is fixed [131,132]. At lower 

ambient temperatures (≤10 °C), Singer et al. explain the diminished battery 

performance as reversible capacity fading due to higher activation energies at the 



49 

 

electrodes and additional overpotentials induced due to slower chemical kinetics [40]. 

Nikolian et al. defined this method of inferring the SOC as the extended coulomb 

counting (ECC) method [59]. They defined SOC to account for the capacity usable for 

a particular ambient temperature and load current as:  

���(�) = ���(0) −
∫ ���

�
�

����
×

���

����
       (32) 

Here, CDYN is a lookup table outputting capacity values obtained from galvanostatic 

discharge experiments at different ambient temperatures and C-rates.  

This algorithm is the least complex and closest to the conventional definition of SOC. 

It has some disadvantages as it is an open-loop approach and hence, is inherently 

inaccurate without the initial SOC [118]. Also, being entirely dependent on the current 

measurements, signal noise will adversely impact the accuracy of the algorithm [133].  

A model-based approach allows a closed-loop approach to SOC estimation [134]. Any 

errors through the Coulomb Counting method can be minimised by comparing the 

measured terminal voltage to the output voltage estimated from the model [86]. Hence, 

accuracy in output voltage estimation becomes critical for ensuring accuracy in SOC 

estimation. To ensure accuracy in output voltage estimation, two aspects are very 

important: (a) collating a robust dataset for parameterising model parameters and, (b) 

validating the model for real-world applications.  

The two most common approaches to model cells are electrochemical models and 

electrical equivalent cell models (ECMs). Electrochemical models, pioneered by 

Newman et al. solve a set of partial differential equations to solve the underlying 

electrochemical reactions happening within a cell [89,135]. These equations were 

detailed in Section 2.1.2.2. However, they require significant computational power 

and time, and a large parameterisation data set [77]. This is due to the large number of 

unknown parameters within the partial differential equations, particularly because 

these equations have to be separately solved for the positive electrode, separator and 

the negative electrode [136]. Being complex, with limited practical application, 

electrochemical models are not suited to online vehicle applications [137]. 
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ECMs on the other hand, can be deployed online due to their simpler lumped 

parameter approach that is computationally inexpensive [123,136,138]. Hence, ECMs 

can be used as part of a battery management system (BMS) in automotive vehicles 

such as in a PHEV/BEV. These ECMs approximate the electrochemical processes 

inside the cell in the form of resistors and capacitors to estimate the voltage response 

under varying load conditions (current, temperature, SOC).  

2.3.2 Parameterisation Methods for Equivalent Circuit Models 

To parameterise an ECM, the three most important characteristics are open-circuit 

voltage, capacity characteristics to obtain SOC and impedance behaviour [110]. In an 

ECM, the OCV is represented as an ideal voltage source, generally variable with SOC, 

to which overpotential (� = � × ����) is added to obtain the terminal cell voltage: 

��������� = ��� − � × ����               (33) 

The nominal capacity of the cell is obtained from the manufacturers’ data sheet, or 

through galvanostatic charge/discharge experiments that capture the effect of 

operating conditions such as temperature or C-rate. These capacity values are used to 

parameterise CDYN in Equation 32 to obtain SOC. Depending on the model structure, 

cell internal resistances are conventionally represented as a resistor connected in series 

to a resistor-capacitor pair connected in parallel. This resistor-capacitor pair connected 

in parallel is termed as an RC network. This ECM itself is termed as a 1st order ECM. 

If further ‘n’ RC networks are connected in series, then the ECM is termed as an nth 

order ECM. Typical 1st and 2nd order ECMs are illustrated in Figure 25.  

RO 

OCV Load 

RP1 

CP1 

VP1 

Voutput 

(a) 
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Figure 25. ‘Thevenin’ ECM Structures for a Lithium-ion Cell: (a) 1st and (b) 2nd Order 

For a 2nd order ECM (i.e. having 2 RC networks), the voltage response for a particular 

current input is given below: 

 ������� = ��� − ������� × ���  − ��� − ���                                            (34) 

����

��
=

������

���
−

���

���×���
                            (35) 

The time constant, τ�� for the first RC network is defined as follows: 

τ�� = ��� × ���                          (36) 

����

��
=

������

���
−

���

���×���
                            (37) 

τ�� = ��� × ���                                     (38) 

Since Equations 34 and 37 are linear differential equations,  

��� = ������ × ��� �1 − ���
���

� �                      (39)  

��� = ������ × ��� �1 − ���
���

� �                          (40) 

Thus, Equation 33 becomes, 

RO 

OCV Load 

RP1 RP2 

CP1 CP2 

VP1 VP2 

Voutput 

(b) 
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������� = ��� − ������ ��� + ��� �1 − ���
���

� � +��� �1 − ���
���

� ��          (41) 

For an nth order ECM, the voltage response can generally be mathematically 

represented as: 

�������(�) = ��� − ������(�) ∗ ��� + ��� �1 − ���
���� � +��� �1 − ���

���� � +

⋯ +��� �1 − ���
���� ��                             (42) 

As briefly discussed in Section 2.2.3, the voltage response to current pulses obtained 

from pulse power characterisation experiments can be utilised to obtain model 

parameters [93]. As shown in Figure 17, the overpotential (from the voltage response) 

can be utilised for the particular current magnitude to estimate the cell internal 

resistances. However, without using fitting algorithms, the possible capacitive 

behaviour seen for the non-linear overpotential (∆V1) cannot be calculated [101]. 

These model parameters of an ECM (based on the estimation data set) can then be 

estimated via a non-linear least squares algorithm (for example, Matlab® lsqcurvefit). 

The fitting is conducted by comparing the modelled voltage calculated from Equation 

41 and the experimental voltage. The model parameters (��, ��� and ���) can then 

be iteratively changed based on tolerances set in the algorithm so as to minimise the 

error between the modelled voltage and the experimental voltage [81]. Depending on 

the test matrix employed for the pulse power characterisation experiments, model 

parameters can be obtained for different SOCs, temperatures and currents. Further 

functions can be utilised to reduce the number of iterations required for the non-linear 

least squares algorithm. This is generally the Jacobian matrix for the voltage response 

(or output) that allows linearisation of Equation 41. A Jacobian matrix (�) is comprised 

of all 1st-order partial derivatives of ������� with respect to ��, ��� and ���: 

� = 

�

−������ (0) ⋯ 0 0

⋮ ⋯ ⋮ ⋮

−������ (�) ⋯ −������ (�) �1 − ���
���� �

������� (�)∗���∗∆�∗�
��

����

���
�

�

          (43)  
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In terms of parameter implementation techniques, either polynomial functions, 

correction factors or lookup tables can be used to represent the model parameters as 

part of an ECM [55]. To improve ECM accuracy and real-world applicability further, 

there are dedicated subsystems that can represent other cell characteristics such as 

hysteresis [139] and dynamic effect of cell heat generation (via thermal models) [58].  

2.3.2.1 Thermal Feedback Model 

Low ambient temperatures lead to greater coupling of electrochemical and thermal 

processes within a cell [66]. In this case, the accuracy in output voltage estimation will 

also depend more on the accuracy of the cell temperature measurements or heat 

generation estimations [74]. Also, depending upon the load profile, there will be a 

discrepancy between the cell surface temperature (measured using thermocouples 

attached to a few discrete points on the cell surface) and actual cell electrical 

performance characteristics [140]. For example, for a cylindrical cell, even at 25 °C 

ambient temperature, the temperature difference between the jelly-roll and the surface 

at the end of constant current continuous discharge duty cycles can be up to 18 °C for 

5C discharge current, and at least 3 °C for 1C discharge current [15]. This difference 

is expected to be higher for lower ambient temperatures [141]. Thus, depending on 

how the temperature of the cell is considered to parameterise the ECM, the accuracy 

in output voltage estimation will be affected [58].  

The general equation for local heat generation rate proposed by Bernardi et al. [142]: 

���� = ������ × ���� − � − �����
��

��
�               (44) 

Li et al. suggested that reversible heating from entropic contributions can be ignored 

at low temperatures (such as at −20 ℃) as contributions from Ohmic and polarisation 

resistances increase much more rapidly as temperature decreases from room 

temperature [65]. Thus, if reversible heat generation is ignored, the cell heat generation 

rate is presented as follows [74]:  

���� = ������ × (��� − �)                (45a) 

Or, 
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���� = ������
� × (�� + ���)        (45b) 

In literature, various thermal models have been considered, which take into account 

conductive and convective heat losses to estimate the internal temperature of the cell 

[74]. This ‘true’ cell temperature is then used to dynamically update the ECM 

parameters. Based on Equation 45, it can be inferred that heat generation within a 

lithium-ion cell is estimated based on the cumulative overpotential as well as the 

overall current. But, this is in contrast to Equations 39 and 40, where it is emphasised 

that depending on the time elapsed and the capacitance of a particular RC pair within 

an ECM, the currents would be different. This in turn implies that estimating the heat 

generated from different impedance elements separately might be prudent. However, 

this method (in Equation 46) has not been widely adopted in literature apart from [58]. 

���� = ������
� × �� + ���

� × ���       (46) 

Given that accurate estimation of heat generation within a lithium-ion cell is critical 

to accurate model estimation and a robust vehicular thermal management system 

[112,143]; the discrepancy between Equations 45b and 46 has not been explored in 

literature before and is identified as an existing gap in knowledge. The effect of an 

alternate method to capture battery heat generation and its effect on temperature 

estimation and model performance requires further investigation. This investigation is 

especially important at low temperatures, where the response of cells is substantially 

different to that at 25 ℃ [93]. 

2.3.3 Validation Methods for Equivalent Circuit Models 

Equivalent circuit models (ECMs) are conventionally validated by comparing, for a 

duty cycle, the accuracy of the output voltage estimated by the model with cell voltage 

response obtained from the actual experiments [144]. This accuracy is generally 

reported on the basis of the ‘Goodness-of-Fit’ between the voltage estimated from the 

model and the voltage obtained experimentally. The Goodness-of-Fit usually 

describes how well the output voltage from the ECM fits the experimental voltage 

measured for a particular duty cycle, at specific operating conditions. Conventionally, 

the normalised root mean square error (RMSE) is employed as the metric for 
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comparing model accuracy. This value is either reported in millivolts (by battery 

modellers) or r-squared value (by statistical modellers) [101]. The lower the RMSE in 

millivolts or the higher the r-squared value, the more accurate the ECM. An illustrative 

example for ECM validation is given in Figure 26 [7].  

 

Figure 26. Illustrative Example of Validation for a 2nd order ECM with One-state 

Hysteresis for LFP cell against 1 New European Drive Cycle (NEDC) at 25 °C 

Ambient Temperature [7] 

In early development of ECMs for lithium-ion cells, Liaw et al. used voltage data 

obtained from 0.04C and 1C continuous discharge duty cycles to validate their ECM 

[145]. This has been used by subsequent researchers to test the accuracy of the ECM 

developed. It is also used to decide the structure of the ECM in terms of number of 

RC networks via an iterative process [123]. Similarly, hybrid pulse tests that were used 

to obtain the parameterisation dataset for the ECMs were also employed to check the 

model accuracy. However, since these datasets were implicit in the ECM, validating 

the model against these datasets would render the validation process incomplete [123]. 

Hence, it was necessary to validate ECMs against new or unseen datasets.  

When developing ECMs to be deployed in automotive systems, it is imperative that 

an ECM is validated against unseen duty cycles that depict real world drive cycles [7]. 

Thus, the research community utilised real-world drive cycles such as the Urban 

Dynamometer Driving Schedule (UDDS) and the New European Drive Cycle (NEDC) 

to dynamically excite the cells under investigation with variable current amplitudes 

and durations [7,123]. These drive cycles are widely used in the evaluation of ECM 

accuracy and SOC estimation of battery management systems. The NEDC was 
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developed in the 1970s from a theoretical driving profile and consists of four portions 

of urban driving style characterised by low speeds followed by a higher speed section 

[6,146].  

In literature, either 1st or 2nd order ECM with hysteresis corrections have been 

considered as the best compromise between model accuracy and model complexity 

for the majority of lithium-ion cells [147,148]. Conclusions were made on the basis 

that beyond a certain accuracy, there were diminishingly small improvements for 

increasing model complexity. For example, He et al. and Hu et al. compared the model 

accuracy for various types of ECMs, including 0th, 1st and 2nd order models 

with/without hysteresis, for lithium-ion cells with NMC and LFP cathodes [123,147]. 

They compared the model accuracy on the basis of results obtained for the UDDS at 

different ambient temperatures between 45 and 10 °C, but no lower. The root mean 

squared error in voltage estimation was 5-15 mV. Similarly, Nejad et al. employed 

self-designed pulse tests and the NEDC legislative drive cycle, but extended the 

ambient temperature range down to 5 °C [7]. The self-designed pulse test was a 

sequence of charge/discharge pulses of varying magnitudes and durations and was 

used to parameterise the models.  

It is widely accepted that the accuracy in output voltage estimation for ECMs for 

lithium-ion cells generally decreases with ambient temperature [7,58,144]. For 

example, in their modelling of cylindrical lithium-ion cells, Nejad et al. found that the 

RMSE in output voltage estimation for validation against the parameterisation data 

increased from 2 mV at 25 °C ambient temperature to about 8 mV at 5 °C ambient 

temperature. They ascribed the reduced accuracy of ECMs at low ambient 

temperatures to the inherent electrochemical processes within a lithium-ion cell being 

significantly slower. Thus, it becomes more difficult to model the underlying cell 

dynamics due to more distinct non-linear behaviour, leading to a larger modelling and 

SOC error [149].  

In literature there is limited evidence of comparing ECM validation accuracy at 

ambient temperatures less than 5 °C, particularly in terms of optimal number of RC 

networks [59]. In [59], Nikolian  et al. generated ECMs for lithium-ion cells between 

−5 and 45 ℃ for NMC, LFP and LTO chemistries. In all three chemistries, the 
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simulations performed at the lowest temperature (−5 ℃) had higher modelling error 

compared to at 25 ℃ when validated against the ‘Worldwide harmonised Light duty 

Test Cycle’ (WLTC). For example, for the 20 Ah lithium-ion cells with NMC 

cathode/graphite anode, the total root-mean-squared-error (RMSE) in voltage 

estimation increased from ~2% at 25 ℃ to ~4.5% at −5 ℃ (Figure 27). Nikolian et al. 

reasoned that this is related to the voltage behaviour of the cells at these temperatures 

being affected by the lower capacity value of the cell, and a greater degree of non-

linearity combined with slow dynamics inside the cell. However, there remains much 

work to be done to understand the effect of temperature on model accuracy.  

 

Figure 27. Effect of Ambient Temperature on Total RMSE in Voltage estimated from 

2nd Order ‘Thevenin’ ECM for WLTC Drive Cycle (Adapted from [59]) 

2.3.4. Gaps in Knowledge: Identified Concerns with Characterisation 

for Battery Modelling at Low Temperatures 

2.3.4.1 Issue with ECM Validation 

As discussed in Section 2.2.2, scaled-down current profiles, derived from legislative 

drive cycles (NEDC, FTP75, etc.) have been used to obtain validation data for ECMs 

[7]. These profiles employ an arbitrary reference voltage (usually the nominal cell 

voltage presented in the manufacturers’ datasheet) to ensure consistency in capacity 

throughput across varying operating conditions for a particular duty cycle [32,49]. As 
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shown in Figure 16, this method of scaling down vehicle level speed versus time 

profile to cell level current versus time profile (assuming a reference voltage) is known 

as testing via current control (IC). On the other hand, scaling down to a cell level 

power profile (considering dynamically changing cell voltage) is termed as power 

control (PC). The use of current control is prevalent in literature for a number of 

different types of investigations, such as validation of SOC/SOE algorithms or thermal 

models [56,91,150]. The use of power control (PC) to validate ECMs is important at 

lower temperatures where a combination of low operating voltages and higher 

operating currents are prevalent. This will ensure consistency in energy throughput 

across operating conditions which is comparable with real-world applications. 

Furthermore, based on the operating currents in PC, the heat generation rates will also 

be different from those calculated from IC. Furthermore, different operating currents, 

SOCs and temperatures will lead to different output voltage estimates. Although, in 

limited literature, power control is chosen over current control, either to investigate 

low temperature performance of the energy storage system (ESS) [83] or to quantify 

battery degradation [88], comparison between current control and power control 

approaches to obtaining data for ECM validation has not been explored in literature.  

2.3.4.2 Issue with ECM Parameterisation 

In operation, cells naturally heat up due to internal resistances. However, if battery 

testing for model parameterisation is conducted in a far-from-isothermal setup, the 

effect of current and temperature on discharge capacity can become convoluted, 

particularly at low temperatures. This is illustrated in Figure 28 for a typical SOC 

estimation algorithm based on extended coulomb counting. 

 

Figure 28. Typical Literature SOC Estimation Algorithm based on Coulomb Counting 
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It is possible that traditional (air) thermal control methods potentially lead to 

overestimation of battery SOC and thus, remaining driving range by inaccurately 

tracking usable capacity/energy characteristics. Research is required to develop a 

methodology to conduct close-to-isothermal experiments to prove whether this is the 

case. This will potentially improve tracking of usable capacity as a function of 

temperature and current (Figure 29). This would allow better correlation of usable 

battery capacity/energy with remaining driving range. A similar assessment can be 

conducted for SOE evolution as well.  

 

Figure 29. Proposed SOC Estimation Algorithm based on Coulomb Counting 

Furthermore, if reversible heat generation is ignored, the total cell heat generation rate 

is presented as in Equation 45. As discussed in Chapter 2, at lower ambient 

temperatures, potential gradients occur due to slower charge transfer whereas, 

concentration gradients occur due to slower mass transport. This has physical basis in 

the characteristic times of the different internal cell processes. Thus, depending on the 

time elapsed and the current flowing through these resistors (Rp, Rp1 and Rp2), the heat 

generated from each impedance element in the ECM would be different. The above 

suggests that ‘separation of currents’ should be considered as part of the thermal 

feedback subsystem of an ECM to ensure practical implementation. 

2.4 Summary of Gaps in Knowledge and Research Question  

In this chapter, literature related to lithium-ion battery characterisation and modelling 

for low operating temperatures was reviewed. A literature review on lithium-ion 

battery fundamentals, battery testing techniques and battery modelling (ECM) 

techniques contextualising low temperatures was undertaken. Based on existing 
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literature, the following knowledge gaps were identified in the methodology of 

experimental data generation for parameterising and validating ECMs operating at low 

temperatures:  

1. Experiments to parameterise ECM for low temperature automotive 

applications (Section 2.2.6.1): 

Battery characterisation is assumed to be isothermal for the duration of a particular 

experiment. Due to high cell internal resistances, the battery operating temperature 

changes substantially over the course of a duty cycle, particularly for large load 

currents. There is limited literature investigating how thermal boundary conditions 

during testing is an issue affecting battery testing for model development and how 

discrepancies due to far-from-isothermal testing can be resolved. This knowledge gap 

can be addressed by designing a novel experimental methodology aimed at providing 

close-to-isothermal control (by using immersed oil-based experimental setup) to better 

separate electrical and thermal phenomena while testing lithium-ion batteries at low 

ambient temperatures.  

2. Experiments to validate ECM for applications operating at low temperatures 

(Section 2.3.4.1): 

Current control is traditionally employed to obtain validation data from legislative 

drive cycles. This potentially leads to under-testing of lithium-ion cells at lower 

temperatures by underestimating the energy throughput and heat generation rates. 

There exists no literature contrasting the limitations of current control approach with 

the more realistic power control approach. This knowledge gap should be addressed 

by comparing both current control and power control and investigating their impact 

on battery performance characteristics. This will offer a standardised way forward in 

terms of model validation suitable for low temperature applications. 

3. Improvements to parameterisation/validation methods on battery states 

evolution and model accuracy (Section 2.3.4.2): 

Battery states and model accuracy are often compared on the basis of the modelling 

methods chosen or the algorithms employed. However, there is limited literature 
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comparing the effects of experimental parameterisation and validation methods and 

their origin on the model. For example, battery capacities at different temperatures and 

C-rates are used for SOC estimation algorithms, but the data itself is not evaluated to 

inspect for suitability. This knowledge gap should be addressed by quantifying the 

effect of choosing different parameterisation and validation methods on battery states’ 

evolution and model accuracy.  

In particular, the effect of close-to-isothermal parameterisation on battery states and 

model accuracy, and the effect of choosing separate currents (by inclusion of 

polarisation currents) for each impedance element to estimate heat generation rates on 

model accuracy and battery operating temperature should be investigated. This will 

evaluate the impact of choosing the dataset and overall, the benefits of a new 

experimental design and its propagation to the modelling stage.  

To restate, the aim of this research is to propose a novel experimental methodology 

and alternative modelling approaches to improve the range estimation accuracy of EVs 

operating at low temperatures. Therefore, based on the gaps in research identified in 

this chapter, the research question is defined as, ‘how to improve experimental 

evaluation methods and examine alternative approaches for parameterising and 

validating battery models for low temperature automotive applications?’  

The research methodology adopted to answer the above research question is detailed 

in Chapter 3. 
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3. Research Methodology 

In Chapter 2, the state-of-the-art related to low temperature performance evaluation 

and modelling methods for lithium-ion batteries was discussed. It was identified that 

gaps in knowledge exist related to how lithium-ion batteries are evaluated to 

parameterise and validate models at low temperatures. Based on these knowledge 

gaps, the research question for this thesis was identified, ‘how to improve 

experimental evaluation methods and examine alternative approaches for 

parameterising and validating battery models for low temperature automotive 

applications?’ 

This chapter outlines the methodology that has been adopted to logically answer this 

research question. Chapters 4-6 contain details of corresponding experimental setup, 

modelling methods, results and discussion. 

3.1 Aim, Research Question and Objectives 

The aim of this research is to propose a novel experimental methodology and 

alternative modelling approaches to improve the range estimation accuracy of EVs 

operating at low temperatures. Based on the gaps in knowledge, the research question 

identified was, ‘how to improve experimental evaluation methods and examine 

alternative approaches for parameterising and validating battery models for low 

temperature automotive applications?’ This will improve model performance and lead 

to better range estimation at low temperatures. To achieve this aim and to address the 

research question, the following research objectives were identified: 

3.1.1 Objective I: Propose novel experimental methodology for 

improving the accuracy of parameterisation experiments at low 

temperatures 

Capacity values at different temperatures and load currents are adopted by academic 

researchers and industry professionals to assess, or track, the usable performance of 

the battery. However, it was identified in Section 2.2.4 that these experiments are 

mostly performed within thermal chambers which maintain pre-set temperatures using 
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forced air convection. Although these setups claim to maintain isothermal test 

conditions, they rarely do so, as cell temperature deviates from the pre-set ambient 

temperature. In operation, cells naturally heat up. However, for model 

parameterisation, separation of electrical and thermal effects for a discharge cycle are 

imperative. Therefore, in this research, the following research tasks are proposed to 

improve the experimental method to correctly assess battery discharge 

capacity/energy: 

1. Show that traditional (air-based) thermal control method leads to 

overestimation of capacity and energy performance at low temperatures 

and high discharge C-rates. 

2. Design a novel experimental methodology to conduct close-to-isothermal 

experiments to track usable capacity.  

3. Contrast performance characteristics obtained from traditional and the 

proposed thermal control methods to quantify benefits from close-to-

isothermal experiments.   

The outcomes of the above research tasks are discussed in Chapter 4.  

3.1.2 Objective II: Using an equivalent circuit model, investigate the 

modelling performance of existing and improved low temperature 

parameterisation methods  

Electrical equivalent circuit models (ECMs) are employed by researchers to model 

lithium-ion cell characteristics for current loads under different operating scenarios. 

An OCV versus SOC relationship is implemented to represent the lithium-ion cell in 

equilibrium conditions. The internal electrochemical processes are represented as ‘n’ 

number of resistors and capacitors, where ‘n’ depends on the complexity of the model 

chosen. Based on the time elapsed and the operating current, the current passing 

through these resistors and capacitors translates to an overpotential that is subtracted 

from the OCV to obtain the terminal voltage. This modelled voltage is then compared 

with the experimental voltage obtained for that operating current profile to evaluate 

the accuracy of the model.  
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To ensure accuracy in output voltage estimation, two aspects are very important: (a) 

collecting a robust dataset for parameterising model parameters and, (b) validating the 

model for real-world applications. To develop this model, the following research tasks 

are identified: 

1. Assemble data obtained from galvanostatic discharge experiments, OCV 

versus SOC characterisation, and pulse power characterisation to 

parameterise the equivalent circuit models.  

2. Use look-up tables and mathematical fitting to implement parameterisation 

data into an ECM developed in a commonly used battery modelling 

software, MATLAB/Simulink (Version: R2017b).  

The justification regarding the experimental test matrix is given in Section 3.2. The 

modelling methods, including datasets to populate look-up tables and underlying 

mathematical equations are discussed in Chapter 5.  

3.1.3 Objective III: Improve surface temperature and voltage error 

predictions through use of alternative modelling methods 

It was identified in Section 2.3.4.1 that, using current control for drive cycle testing at 

cell level can be misleading particularly at low temperatures where the average 

operating voltage is lower than the nominal voltage. This results in variation in energy 

throughput for a particular drive cycle as operating conditions change. For example, 

if temperature and thus, operating voltages, are lower, the energy throughput is lower 

compared to that observed at a higher temperature.  

It was highlighted in Section 2.3.4.2 that, using separate currents instead of a common 

Ohmic current for the various impedance elements considered as part of a thermal 

feedback could affect model performance, particularly at low temperatures, where 

there exists greater electro-thermal coupling of battery phenomena.  

Therefore, the following research tasks are proposed to determine the best approaches 

to validating lithium-ion cells’ performance against legislative drive cycles and to 

estimating model heat generation:  
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1. Using experimental data, contrast power control against current control on the 

basis of capacity and energy throughputs, and cell voltage evolution to 

investigate whether power control is the more realistic approach for testing 

lithium-ion cells for scaled-down realistic drive cycles.  

2. Implement thermal feedback model to dynamically update ECM parameters 

(Compare between choosing common (Ohmic) current or separate polarisation 

currents for each impedance element). 

The outcomes of the above research tasks are discussed in Chapter 5. The justification 

regarding the validation dataset and drive cycle choice is given in Section 3.2. 

3.1.4 Objective IV: Quantify improvements to model performance 

and battery state estimation based on novel experimentally 

obtained model parameterisation data 

The reliability of range estimation largely depends on the accuracy of the battery’s 

underlying state estimators: state-of-charge and state-of-energy. This is affected by 

accuracy of the models embedded in the battery management system. The 

performance of these models fundamentally depends on experimentally obtained 

parameterisation and validation data (Section 2.3.4). To investigate the effect of 

improvements (Objectives I-III) undertaken, it is imperative that the effect on battery 

state evolution and model accuracy is quantified. This will allow direct correlation of 

quality of test data and model performance. The following research tasks are proposed 

to examine the effect of changes to battery evaluation methods for modelling 

parameterisation and validation for lithium-ion cells operating at low temperatures: 

1. Quantify and contrast the effect of choosing between air-based 

parameterisation data and new isothermal parameterisation data on battery 

state (SOC and SOE) evolution.  

2. Quantify the effect of choosing isothermal parameterisation data over air-

based parameterisation data in terms of model accuracy and model order. 

3. Quantify and contrast the effect of choosing separate current rather than 

common current for each ECM impedance element on model performance 

in terms of accuracy in surface temperature and terminal voltage estimates. 
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The outcomes of the above research tasks are discussed in Chapter 6. 

3.2 Research Decisions 

In this section, the justifications regarding the experimental test matrix chosen for 

developing both parameterisation and validation datasets are given. Furthermore, the 

justification regarding choosing the reference validation drive cycle is also given. 

3.2.1 Experimental Test Matrix 

In this thesis, low ambient temperature is defined as any temperature less than 10 °C. 

Thus, for parameterisation, the ambient temperatures chosen were −20, −10, 0 and 25 

℃ similar to other literature [40,58]. The upper limit of 25 ℃ was chosen as it is a 

reference ambient temperature widely used by researchers. The lower limit of −20 ℃ 

was chosen as it is representative of harsh winter conditions and is generally the lower 

operating limit for typical commercially available lithium-ion batteries.  

For validation, the ambient temperatures were chosen as −15, −5, 5 and 25 ℃. The 

validation temperatures were chosen as such as they are between the parameterisation 

temperatures above [151]. Here, the validation temperature points lie within the 

extremes of the parameterisation temperature points. Finally, 25 ℃ was chosen as a 

reference validation temperature. 

The parameterisation SOC points chosen were 20%, 50% and 80% to represent real-

world operating conditions for contemporary battery electric vehicles. The validation 

SOC set point chosen was 65% SOC to ensure that the SOC during the entire drive 

cycle lay above the 20% SOC cut-off. This is also based on the SOC set-points 

recommended in the latest IEC 62660-1 [103]. 

Correspondingly, C-rates higher than the nominal C-rate for the cell (which is C-rates 

higher than 0.5C) are considered as high currents, and C-rates lower than 0.3C are 

considered as low currents [60] for that particular cell. In this study, three 

parameterisation C-rates are considered, 0.25C, 1C and 3C. While 0.25C is 

representative of a low C-rate, 1C is the reference C-rate for the cell. 3C is considered 
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representative of a high C-rate as that is the highest current at which the cells were 

able to discharge at −20 ℃ ambient temperature.  

To obtain pulse power data, more pulse currents, such as 0.5C, 2C, etc. were 

considered as they added to the fidelity of the model and did not require 

disproportionate experimental efforts. The full list of pulses at different temperatures 

and SOCs is given in Table 6 in Section 4.1.2.3. Note, for the continuous discharge 

capacity experiments, other C-rates (apart from 0.25C, 1C and 3C) were not 

considered due to the additional time required to charge the cell every time at 25 ℃. 

The pulse length chosen was 10 s in accordance with the latest IEC 62660-1 test 

standard [103]. Note, further details for the experimental methods chosen are given in 

Section 4.1.  

3.2.2 Drive Cycle Choice 

The New European Driving Cycle (NEDC), commonly chosen to validate ECMs, is a 

modal drive cycle part of the EU standards [7,34]. However, the NEDC has been 

criticised for being unrealistic as it lacks acceleration/deceleration dynamics as 

compared to transient drive cycles [152,153]. The US06, a supplemental drive cycle, 

was designed to address the lack of aggressive high-speed driving in the other drive 

cycles in US Environmental Protection Agency standards, mainly the FTP75. The 

US06 is one of the more aggressive drive-cycles with a top speed of 35.7 m/s and an 

average speed of 25.3 m/s (Figure 30). 

 

Figure 30. Vehicle Level Speed Time Profile for US06 Legislative Drive Cycle 
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The US06 features frequent load changes with considerable acceleration and 

deceleration rates. The maximum acceleration is 3.7 m/s2 and the maximum 

deceleration is 3.1 m/s2. Hence, it is an ideal candidate to analyse the impact of high 

current at lower ambient temperatures for real-world driving conditions [32,49,83]. 

The total duration was 600 s. Further, the amount of acceleration and braking events 

in the US06 is the highest amongst all highway driving cycles [49]. The NEDC, has 

maximum acceleration and deceleration rates of 1.1 m/s2 and 1.4 m/s2, respectively. 

However, the US06 has maximum acceleration and deceleration rates of 3.7 m/s2 and 

3.1 m/s2, respectively. Hence, if the cells can provide sufficient power for the US06, 

they would be able to deliver over other urban/rural driving conditions as well [83].  

To obtain validation data for the models developed as part of this research the US06 

drive cycle was employed. To ensure that the drive cycle caused the cells to discharge 

below 50%, to prevent discharge below 20% and to cover both SOC parameterisation 

spaces (80 to 50% and 50 to 20%), two back-to-back US06 drive cycles (2xUS06) 

were considered for model validation. 

3.2.3 Modelling Framework 

For all the ECMs developed in this thesis, the inputs are experimental current, 

experimental power and experimental surface temperature. The outputs are modelled 

terminal voltage and surface temperature. The details of the ECMs developed are 

presented in Chapter 5 and the validation methodology is given in Chapter 6. In this 

thesis, 1st and 2nd order ECMs were chosen for investigation at a modelling stage. 

These two model structures were chosen as their accuracy was the best found in 

literature and they were commonly employed in literature to investigate model 

performance [7,123,154]. Experimental parameterisation and validation data is 

obtained for 3 cell samples. Three cells were used to ensure statistical significance, as 

well as to account for cell-to-cell variations [155]. Before feeding into the different 

equivalent circuit models, the experimental values are averaged.  
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3.3 Chapter Summary 

The aim of this thesis is to propose a novel experimental methodology and alternative 

modelling approaches to improve the range estimation accuracy of EVs at low ambient 

temperatures. In particular, the following research question is defined, ‘how to 

improve experimental evaluation methods and examine alternative approaches for 

parameterising and validating battery models for low temperature automotive 

applications?’  

In this chapter, the research objectives to achieve this were defined, the flow of 

research undertaken was presented, and the various research decisions taken were 

detailed. 
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4. Development of An Experimental Method to 

Investigate Differences between Air and Oil 

Characterisation for Lithium-ion Cells at Low 

Temperatures 

This chapter offers a novel methodology to conduct experiments under isothermal 

conditions that accurately quantifies usable capacity/energy performance as a function 

of temperature and current (Objective I). This is achieved by conducting experiments 

within an immersed oil bath with direct liquid cooling to allow isothermal control. 

Results will be compared with that obtained from traditional air-based thermal control 

methods. A key contribution of this chapter is to show that traditional air-based 

thermal control methods inaccurately assess usable capacity/energy characteristics, 

potentially leading to overestimation of remaining driving range. Using an oil-based 

method is expected to allow better correlation of usable battery capacity/energy with 

remaining driving range. The modelling validation will follow in Chapters 5 and 6. 

The chapter is structured as follows. In Section 4.1, the experimental methods 

employed for this study are detailed including the experimental setup and test matrix 

chosen. In Section 4.2, the results are presented and discussed to support the 

hypothesis that close-to-isothermal parameterisation is important for accurate 

assessment of lithium-ion battery characteristics, particularly at low ambient 

temperatures. Finally, in Section 4.3, the key findings of this chapter are summarised. 

4.1 Experimental Test Design 

For this study, three 40 Ah lithium-ion pouch cells were procured from Xalt Energy. 

The cells contained a Nickel-Manganese-Cobalt (NMC) cathode and graphite anode 

(Table 4). The cells were chosen based on properties such as capacity, form factor and 

chemistry, making them comparable to cells used in popular passenger battery electric 

vehicles (BEVs) such as the Nissan Leaf [156]. The cells had a 3.7 V nominal voltage 

and a discharge temperature range between −20 to 60 ℃. The composition of the 

electrolyte was not made available on request to the manufacturer. However, 
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generally, the electrolyte is expected to include 1.0–1.2 mol LiPF6 combined with a 

blend of 2–3 organic solvents, such as ethylene carbonate (EC), dimethyl carbonate 

(DMC) and diethyl carbonate (DEC).  

Table 4. Performance characteristics of 40 Ah lithium-ion pouch cell. 

Characteristic Range/Value 

Supplier XALT Energy 

Chemistry NMC/Graphite 

Capacity, Ah (Nominally Rated at 0.5C) 40 

Nominal Voltage, V 3.7 

Energy, Wh (Nominally Rated at 0.5C) 148 

Weight, kg 0.97 

Specific Energy, Wh/kg 153 

Volumetric Energy Density, Wh/L 350 

Direct Current Resistance (10 s at 50% SOC), mΩ 1.35 

Max C-rate Continuous at 25 ℃ (Charge) 3C 

Max C-rate Continuous at 25 ℃ (Discharge) 8C 

Max C-rate Pulse at 25 ℃ (Discharge) (10 s) 10C 

Peak Power, kW 2.6 

Specific Power, W/kg 2600 

Volumetric Power Density, W/L 5900 

Upper Voltage Limit, V 4.2 

Lower Voltage Limit, V 2.7 

Charge Temperature Range, °C 0 to 45 

Discharge Temperature Range, °C −20 to 60 

As part of the oil-based active thermal management system (immersed oil bath with 

direct liquid cooling), a low-viscosity silicone oil (Kryo 95) with excellent dielectric 

properties was employed (Table 5).  

Table 5. Properties of Kryo-95 silicone oil for low temperature applications. 

Characteristic Range/Value 

Operating Temperature Range, °C −95 to 60 

Chemical Characterisation Polydimethylsiloxane 

Colour Colourless 

Kinematic Viscosity, mm2/s (at 20 °C) 1.6 

Density, kg/m3 (at 20 °C) 855 

Specific Heat Capacity, J/kgK ~1800 

Pour Point, °C ≤ −111 

Boiling Point, °C ≥ 190 
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The oil is insoluble in water and fluid properties such as specific heat capacity, 

kinematic viscosity and density were advertised to be consistent across operating 

temperature range (−20 to 60 °C) of the experiments. An oil-based thermal control 

setup was employed rather than water/glycol based because the specific heat capacity 

of Kryo-95 was higher compared to that of water (Table 3 and Table 5). Further, by 

using dielectric oil rather than a water/glycol mixture, any potential of an external 

short-circuit and related safety hazards were eliminated.   

4.1.1 Experimental Setup 

All experiments were conducted in an Espec Platinous J Series thermal chamber with 

spatial temperature accuracy of ±0.3 °C. The cells were cycled using a Maccor Series 

4000 cell cycler and relevant cycling control software was employed. To ensure that 

there was no free air flow from outside the chamber into the chamber, any gaps (due 

to current carrying cables, etc.) were sealed using thermally-insulating putty. To 

measure the surface temperature of the cells, hermetically sealed T-type 

thermocouples were used with ±0.5 °C accuracy. At each experimental condition, 

measurements from three cells were used to ensure statistical significance, as well as 

to account for cell-to-cell variations [155].  

A schematic of the immersed oil bath with a cooling system is given in Figure 31. A 

Lauda Pro unit (model number: RP 245 E) was employed as the chilling system, which 

uses a Pt-100 thermocouple placed inside the oil bath (close to the cells) to control the 

inlet coolant temperature (Figure 31e). The Lauda unit had a working temperature 

range of −45 to 200 °C and a maximum cooling capability of 2.5 kW across the 

temperature range. The cells were placed within the box (with an open lid) and the 

entire arrangement was placed inside the thermal chamber (Figure 31a–h). A cell 

cycler channel was connected to each cell using a standard 10mm diameter cable, and 

a T-type thermocouple was placed on the geometric centre of the cell surface 

(according to latest IEC 62660-1 standard) using a perspex block and cable tie. This 

setup was tested for thermal mass distribution and temperature homogeneity within 

the box. For direct liquid cooling with an immersed oil rig, the thermal gradients across 

the cell surface are expected to be miminal, given that the cells and oil bath (~20 ℓ) 

were controlled at the ambient temperature for 4 h before any charge/discharge 
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operation, and the cooling capability of the Lauda unit is 2.5 kW. Note that, for ‘air 

cooling’ experiments, the Lauda unit was switched-off and the oil bath was emptied 

and the box removed to allow free flow of air around the cells (Figure 32 a & b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Oil-based Experimental Setup: (a) Schematic representation of oil based 

thermal control system, (b) Cooling configuration for oil based immersion bath with 

cells connected, (c & d) Coolant inlet and outlet for connections from thermal control 

unit, respectively, (e) Lauda Pro RP 245E used for this study and Pt-100 unit, (f) Cells 

connected in box using brass blocks and Perspex bars, (g) Pipework for box (left: inlet 

& right: outlet) and (h) Cells connected inside box within thermal chamber. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 

(h) 
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Figure 32. Air-based Experimental Setup: (a) Schematic representation of air based 

thermal control system, and (b) Traditional flat-bed test setup in forced air based 

thermal chamber. 

4.1.2 Experimental Methods 

4.1.2.1 Galvanostatic Cycling Performance 

Galvanostatic discharge cycles were performed at different ambient temperatures for 

various discharge C-rates. As part of these galvanostatic tests, the ambient 

temperatures considered were −20, −10, 0 and 25 °C. The discharge C-rates 

considered were 0.25C, 1C and 3C. This suite of tests was performed for both ‘air-

based’ and ‘oil-based’ cooling cases. Between each discharge test, the cells were 

charged at 25 °C ambient temperature using the Constant Current Constant Voltage 

(CCCV) protocol (0.5C charge current to 4.2 V, where the cells were held until current 

reduced to 0.05C). This was done to ensure that the cells were fully charged at the 

same level at the same temperature, 25 °C, before conducting low temperature 

discharge. This is important because the cells are not being tested for real-world usage, 

but are characterised in close-to-isothermal lab conditions to improve applicability of 

the subsequent models in the real world.  

4.1.2.2 Open Circuit Voltage (OCV) vs State-of-Charge (SOC) Characterisation  

To obtain the OCV-SOC relationship of the cells, the cells were charged using the 

CCCV protocol with a C-rate of 0.5C, to a maximum voltage of 4.2 V and a 0.05C 

cut-off. Then, the cells were discharged using 1C until 4% of the rated cell capacity 

(40 Ah) was discharged. Then, the cells were at rest for 4 h and the voltage recorded. 
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After this, the 4% discharge step and 4 h rest period regime was repeated until the cells 

reached the 2.7 V cut-off. A similar process was used to obtain the charge OCV-SOC 

relationship of the cells. The above technique (GITT) was employed to obtain OCV-

SOC relationship at 25 ℃ only as this relationship has negligible dependence on 

temperature [157]. However, pseudo-OCV measurements were avoided as they can 

change particularly at low temperatures due to increased cell overpotentials making 

any direct comparison difficult (Section 2.2.5). 

4.1.2.3 Pulse Power Characterisation 

To map the power capability of the cells with respect to SOC, ambient temperature 

and current magnitude, the cells were subjected to 10 s charge/discharge current pulses 

of varying amplitudes (Table 6). The charge and discharge pulse amplitudes were 

chosen to ensure that at least 3 pulses were met at a particular SOC and ambient 

temperature.  

Table 6. Test Matrix for Pulse Power Characterisation of Lithium-ion Pouch Cell 

Ambient 

Temperature [°C] 
SOC [%] 

Charge Pulse C-rates 

(−) 

Discharge Pulse C-

rates (+) 

−20, −10, 0 & 25 
20, 50 & 

80 

0.25C, 0.5C, 0.75C, 

1C, 1.5C & 2C 

0.25C, 0.5C, 0.75C, 

1C, 1.5C, 2.0C & 

3C 

Following on from Section 3.2.1, discharge pulses higher than 3C were avoided as the 

cells were unable to deliver higher currents for 10 s at any of the SOCs at the lower 

ambient temperatures. Charge pulses higher than 2C were avoided for the same reason. 

This is discussed further in Section 4.2.3 and then Section 5.1.3. The SOCs chosen for 

these tests were 20%, 50% and 80% as this is the usual SOC operating window for 

conventional BEVs and PHEVs [60]. Note, discharge current is positive. 

The experimental flow followed in this research is detailed in Figure 33. 
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Figure 33. Flow chart for Pulse Power Characterisation at Different SOCs and 

Ambient Temperatures for Various 10 s Charge/Discharge Pulses 

4.2 Results and Discussion 

Table 7 presents the capacity test results for the air-based parameterisation condition. 

Capacity measured at a particular discharge rate decreased with temperature, and cell 
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surface temperature was higher at lower temperature, as expected [58,65,71]. At 25 

°C both capacity and total energy discharged decreased with discharge rate. In 

contrast, capacity increased at lower temperatures, e.g. at −20 °C capacity increased 

by 0.9 % and 8.8 % at 1C and 3C, compared to 0.25C. This is directly linked to the 

temperature rise of the cell. For example, at −20 °C as discharge current increased 

from 0.25C to 3C, the temperature rise changed from 4.7 °C to 30.7 °C with respect 

to the ambient temperature. This implies that the capacity/energy performance cannot 

just be ascribed to the starting ambient temperature.  

Although cell capacity takes into account the change in lithium concentration in the 

electrode’s active material, it does not consider the energy used to change the 

concentration. The energy delivered is the energy that is transferred to an external load 

when the cell is being discharged. Thus, depending upon the cell voltage, the energy 

delivered can be different for a particular capacity (Ah) discharged. As shown in Table 

5, this is the case at 0 °C ambient temperature, where discharge capacity increased as 

discharge current increased from 1C to 3C, but the discharge energy decreased. This 

implies that the effect of internal heat generation is not enough to affect the voltage as 

much as it affects the cell overpotential. That is, while the discharge duration is 

increased, the voltage at which this increase takes place is lower for 3C compared to 

1C. 

Table 7. Discharge characteristics for different C-rates at different ambient 

temperatures for ‘air cooling’ test cases 

Ambient Temperature −20 °C −10 °C 0 °C 25 °C 

Capacity [Ah] 

0.25C 31.9±0.7 33.2±0.9 38.4±0.7 42.3±0.2 

1C 32.2±0.9 34.2±0.9 36.4±0.8 40.6±0.2 

3C 34.7±0.9 36.3±0.8 37.3±0.7 39.5±0.4 

Energy [Wh] 

0.25C 108.9±2.0 113.2±2.6 138.7±2.1 156.4±0.5 

1C 105.4±2.7 115.8±2.7 126.9±2.4 148.0±0.5 

3C 109.9±2.8 118.0±2.4 124.5±2.1 140.2±1.1 

Surface Temperature 

Rise [°C] 

0.25C 4.7±0.1 2.3±0.8 2.4±0.3 1.4±0.0 

1C 15.1±1.8 11.4±2.0 9.1±1.3 4.4±0.1 

3C 30.7±4.1 26.8±3.4 22.9±3.2 12.0±0.7 
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4.2.1 Comparison between Air and Oil based Thermal Control 

System for Low Temperatures and High Load Currents 

Table 8 presents the capacity test results for the oil cooling method. Conducting 

experiments using an oil based thermal control system makes a substantial difference 

to the discharge capacity of the cell compared to air control in a thermal chamber.  

Table 8. Discharge characteristics for different C-rates at different ambient 

temperatures for ‘oil cooling’ test cases 

Oil Bath Temperature [°C] −20 °C −10 °C 0 °C 25 °C 

Capacity [Ah] 

0.25C 30.7 ± 0.9 31.9±0.9 38.2±0.6 41.7±0.3 

1C 24.6±0.8 31.4±0.9 34.1±0.8 40.3±0.5 

3C 13.3±0.4 24.8±0.9 30.5±0.9 39.2±0.2 

Energy [Wh] 

0.25C 102.6 ± 2.7 109.4±2.5 138.1±2.0 153.7±1.0 

1C 75.7±2.5 103.8±2.5 117.0±2.3 145.9±1.6 

3C 38.0±1.2 75.7±2.8 101.6±2.6 136.7±1.8 

Surface Temperature 

Rise [°C] 

0.25C 1.2 ± 0.5 1.6±0.4 1.8±0.3 0.8±0.1 

1C 5.7±0.1 4.4±0.4 2.8±0.3 1.7±0.5 

3C 10.1±0.4 8.0±0.4 3.3±0.9 2.4±0.1 

Figure 34 shows 1C discharge curves at −20 °C for both air and oil cooled methods. 

The air cooling method produced 31.7% higher capacity (39.2% higher energy) than 

when employing active thermal management (oil cooled). This implies that battery 

heat generation is substantially affecting cell discharge behaviour at −20 °C ambient 

temperature. This is reflected in the voltage profiles as well, which is the cause for 

higher percentage of total energy. For the same discharge current, the voltage for the 

oil-based case decreased much faster than for the air-based cooling case. The 

counterintuitive increase in cell voltage observed for the air cooling case, which was 

also reported in previous research [82] is not seen for the oil cooling case, as it is likely 

related to the temperature increase of the cell.   
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Figure 34. At −20 °C Ambient Temperature:  Capacity vs Voltage for 1C constant 

current discharge (left) and cell surface temperature for the same test (right) (Note: 

results are reported in Figure for 1 cell, results for 3 cells with standard deviation 

reported in Table 7 and Table 8 above)   

As also shown in Figure 34 for the same test, the final surface temperature for the ‘air 

cooling’ case is −3.9 °C, considerably higher than the −14.4 °C measured for the ‘oil 

cooling’ case. Similarly, the average surface temperature for the air-based case was 

−7.7 ℃ compared to −16 ℃ for the oil-based case. Note that, even for the oil cooling 

case, there is a temperature rise seen during the discharge cycle, indicating it is also 

not completely adiabatic. This is likely due to the limited cooling capability of the oil-

based immersion rig; this is further restricted by the performance of the Lauda unit at 

−20 ℃ and below. This is possibly complicated by the decreased heat capacity, 

increased viscosity and decreased viscosity of Kryo-95 in such conditions; although 

the oil is rated for use till −95 ℃. Therefore, the difference in capacity seen will be 

higher when the surface temperature is controlled exactly at the ambient temperature. 

The shape of temperature change, i.e., a sharp increase at the beginning and slower 

increase for remaining discharge duration is likely due to the change of resistance with 

temperature and SOC.  
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4.2.2 Implications of Open Circuit Voltage Behaviour 

Based on Section 4.1.2.3, to investigate the effect of low ambient temperature induced 

cell overpotential, the OCV-SOC discharge relationship of the cells was included in 

the comparison. This experiment was conducted only at 25 ℃ as there is expected to 

be a minimal effect of ambient temperature on OCV-SOC relationship [58]. As shown 

in Figure 35, at a particular SOC, there is a distinction between the OCVs for charge 

and discharge. This difference is presented as the OCV hysteresis in Figure 35: inset.  

Similar to [116], voltage hysteresis is defined as the difference between charge OCV 

and discharge OCV at a particular SOC. The hysteresis in a cell is due to the possibility 

of different thermodynamic equilibria at the same stoichiometric lithium content 

[116,158]. This means that depending upon whether the cell is charging or 

discharging, the electrodes could be at different potentials even though lithium content 

is identical and thus, the cell voltage will be different. For example, at 30% SOC, the 

charge OCV was 3.639 V, the discharge OCV was 3.614 V and the voltage hysteresis 

was approximately 25 mV. The OCV hysteresis evolution with SOC at 25 °C ambient 

temperature was comparable to other literature employing lithium-ion cells of similar 

chemistry and capacity [116,159]. 

 

Figure 35. Experimental OCV versus SOC relationship at 25 °C Ambient Temperature 

at 4% SOC Step Change (Inset: Evolution of OCV Hysteresis versus SOC) 
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To validate the effect of overpotential for both cases (‘air cooling’ and ‘oil cooling’ 

parameterisation), after discharge at the low ambient temperature was terminated, the 

cells were brought up to 25 °C ambient temperature and then discharged with a 

nominal 0.10C constant discharge current. This is shown in Figure 36 and is termed 

as the ‘residual capacity’ [131]. To investigate the effect of low ambient temperature 

induced cell overpotential, the OCV-SOC discharge relationship of the cells was also 

included in the comparison. While the residual capacity for the air-based cooling case 

was 9.8 Ah, the corresponding value for the oil-based cooling case was 18.0 Ah. This 

aggregates to a total capacity discharged of 41.7 Ah and 41.8 Ah, respectively. 

Furthermore, the total capacity discharged for the OCV case was similar (41.7 Ah). 

This further shows that the air-based method includes more contributions from higher 

temperatures compared to the oil-based method. 

 

Figure 36. Comparison of Discharge Characteristics for 1C at −20 °C Ambient 

Temperature 

4.2.3 Implications of Pulse Power Characterisation  

DC resistance was measured using 1C discharge pulses of 10 sec at 20%, 50% and 

80% SOC, at −20, −10, 0 and 25 °C. The 10 s DC resistances (DCR) are illustrated in 

Figure 37. From an average of 1.8 mΩ at 25 °C to 21.7 mΩ at −20 °C, DCR increased 

with decreasing ambient temperature because of higher overpotentials induced due to 
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charge transfer, lower ionic conductivity and sluggish diffusion in the electrode active 

material [58,93].  

 

Figure 37. Effect of Temperature and SOC on DC Resistance for 1C Discharge Pulse 

The DCR is also not expected to remain constant over the SOC range tested. In Figure 

38, for 1C discharge pulse, it is shown that DCR remains largely independent of SOC 

at 25 °C. The mean SOC is around 1.8 mΩ and the standard deviation across SOCs as 

a percentage of the mean is 5.7%. However, at −20 ℃, the mean SOC is 21.7 mΩ and 

the standard deviation across SOCs as a percentage of the mean increases to 45.6%.  

Furthermore, as ambient temperature decreases, the DCR tends to increase as SOC 

decreases. This is because when SOC decreases, the cathode is becoming lithiated and 

the anode is becoming de-lithiated. This causes more pronounced potential and 

concentration gradients to be induced as active material in the anode is depleting 

whereas the cathode is becoming congested. As SOC decreases, electrode limitations 

become pronounced earlier, in particular as temperature decreases. This is 

demonstrated by DCR for discharge pulses at −20 ℃ for 20% SOC, where the 1C 

pulse is not met by the cells as they reach the 2.7 V minimum cut-off voltage (denoted 

by red circles in Figure 37 and Figure 38). 
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Figure 38. Effect of Decreasing SOC and Ambient Temperature on DCR for 1C 

Discharge Pulse 

For a −20 °C ambient temperature, the DCR is 21.7 mΩ. For results discussed in 

Section 4.2.1, for both oil and air cases, the electrical characteristics for the constant 

current discharges are similar until internal heat generation takes effect and becomes 

dominant. At the end of discharge, when the load current was removed, it was seen 

that for the air test, the corresponding DCR was 7.8 mΩ (this is assuming cubic fit for 

resistance from Figure 39 at −3.9 °C). However, for the oil test, the corresponding 

value was 15.6 mΩ (fit at −14.4 °C). If the voltage rise is considered 0.1 s after the 40 

A current load is removed, the instantaneous resistance was 1.1 mΩ for the air case. 

However, for the oil case it was higher (1.5 mΩ). In fact, the difference between the 

two thermal control methods and thus, the impact of battery internal heat generation 

is reflected in the rising cell voltage seen for discharge using air cooling (red circle in 

Figure 34). As temperature increases, DCR decreases, producing less heat, and 

slowing the temperature rise rate.  
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Figure 39. Effect of Temperature on DC Resistance for 1C Discharge Pulse 

As introduced in Section 2.2.3, for a current pulse, cell internal resistance can be 

categorised into Ohmic resistance (based on voltage drop after 0.01 s) and polarisation 

resistance (based on voltage drop in the remainder of the 10 s pulse duration). For ease 

of understanding, this is illustrated in Figure 40. The voltage before the pulse is applied 

was 3703.5 mV, after 0.01 s it was 3576.5 mV and after 10 s it was 3317.1 mV. For 

this particular 1C discharge pulse, the Ohmic resistance or RO is 3.2 mΩ. 

Correspondingly, the polarisation resistance or RP is 6.1 mΩ after 5.00 s and 6.5 mΩ 

after 10.00 s. It is clear the RP is time dependent; this is also reflected in the way the 

cell relaxes after the current load is removed. In literature, such voltage evolution is 

assumed to be exponential in nature, and the RC parameters are obtained through 

mathematical fitting; this will be discussed further in Chapter 5.  
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Figure 40. Voltage Response for 10 s 1C Discharge Pulse at −10 ℃ and 50% SOC 

As illustrated in Figure 41, as ambient temperature decreases, the RO, which represents 

the electrical aspect of the cell internal resistance, increases by 7.4 times between 25 

and −20 ℃. Electronic conductivity improves at lower temperature and ionic 

conductivity decreases at the same time. The temperature coefficient of resistance for 

the current collectors (assuming for copper/aluminium) is approximately, 0.0039 K-1 

[115]. Thus, as temperature decreases from 25 to −20 ℃, resistance decreases by 

~18%. On the other hand, ionic conductivity decreases by up to 50% [41,72,74]. 

Therefore, RO is affected by both of these phenomena. Also, RO should be calculated 

from instantaneous drop; 0.01 sec might be too long and could include a portion of 

charge transfer resistance. In combination of these, RO increases at lower temperature.  

In contrast RP (�� = ��� − ��) will only see an increase with lower temperature as 

charge transfer, ionic and solid state diffusion is limited at lower temperature [72]. As 

shown in Figure 41, RP increased by more than 23 times as temperature decreased 

from 25 to −20 ℃. From Figure 41, it is clear that, compared to the Ohmic resistance, 

the polarisation resistance (RP) increases at a faster rate as ambient temperature 

decreases. This is probably due to cell physiochemical parameters, based on the 

Arrhenius equation (Equation 25), having an exponential relationship with 

temperature. The effect of polarisation resistances can also be understood from how 

the cell voltage relaxes after the current pulse is removed. As ambient temperature 
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decreases, it takes longer for the cells to reach their OCV after the current load is 

removed (Figure 41). This will be discussed further in Chapter 5. 

 

 

Figure 41. Effect of Ambient Temperature for 10s 1C Discharge Pulse: (top) Effect of 

Temperature on DCR and RO and (bottom) Voltage Response at SOCs: (a) 20%, (b) 

50% and (c) 80% 
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4.2.4 Discussion 

In Figure 42 it is shown that the discrepancy between choosing air based and oil based 

thermal control system for parameterisation tends to become more prominent as 

ambient temperature decreases and/or discharge C-rate increases. For the air-based 

cooling case, higher discharge C-rate and lower ambient temperature means greater 

internal heat generation and higher cell temperatures. However, for the oil-based 

cooling cases, the surface temperature rise seen was suppressed to a considerably 

smaller value. This was reflected in the capacity characteristics for the oil cooling 

cases compared to the air cooling cases. For example, for 3C discharge at −10 °C, the 

capacity discharged for the air-based cooling case was higher by 9.5% than that 

discharged for 0.25C. However, for the oil-based cooling case, the capacity discharged 

for 3C was lower than that for 0.25C by 22.3%.  

 

Figure 42. Discharge Characteristics at Different Ambient Temperatures for Various 

C-rates: (left) Capacity and (right) Surface Temperature Rise 

Forced air convection (air-based thermal control) is employed as part of traditional 

parameterisation methods. However, this method overestimates usable capacity at low 

ambient temperatures, due to rapid degree of internal heating making corresponding 

models unreliable. This means that depending on the thermal control system, any 

conclusions regarding the effect of battery heat generation can be different. Therefore, 
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when reviewing models, the temperature rise for the capacity test used in 

parametrisation is important because the lower the temperature rise, the more reliable 

the data. Thus, it is recommended that active thermal management or ‘oil cooling’ is 

employed as part of standardised parameterisation methods. In contrast to Peltier 

element based thermo-electric cooling, isothermal testing with immersed oil setup is 

independent of cell format or size, allowing other researchers to replicate the work 

more easily.  

In literature, it is argued that battery internal heat generation helps improve discharge 

performance of cells at low ambient temperatures. While internal heat generation is 

beneficial in terms of real-world performance, it adversely affects the cell 

characterisation data for battery modelling, where the performance of the cell is 

required to be maintained at the desired parameterisation temperature. For example, 

to obtain capacity values for different C-rates at an ambient temperature (for example 

− 20 ℃), it is imperative that the cell operating temperature remains close to the 

ambient temperature throughout the experiment i.e. isothermal test conditions.  

For the air-based cooling cases, for example at −20°C for 1C discharge, the final cell 

temperature was −4.9 °C. This means that the capacity value obtained would be for an 

effective temperature between −20 and −4.9 °C (average −7.7 ℃) rather than at the 

chosen ambient temperature. In this section, it has been shown that by keeping the test 

conditions more isothermal (using oil cooling), the capacity values obtained are 

considerably lower than those seen in the air cooling cases. This issue has been shown 

to become more prominent as ambient temperature decreased and/or discharge C-rate 

increased. For example, at 25 °C ambient temperature and 0.25C discharge current, 

the air-based capacity was only higher by 0.5% than the oil-based capacity (Figure 

43). This could be the reason isothermal test conditions have received relatively little 

attention. However, at −20 °C and for 3C discharge, the air-based capacity was 61.7% 

higher than the corresponding oil-based capacity. Finally, due to convolution of 

electrical and thermal phenomena, for 3C discharge, as ambient temperature decreases 

from 25 to −20 °C, the capacity reduction should be about 66% (oil-based cooling 

case), rather than just 12.1% (air-based cooling case). The modelling implications are 

demonstrated in Chapter 6. 
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Figure 43. Percentage Reduction in Capacity for Oil Cooling Relative to 

Corresponding Capacity for Air Cooling at Different Ambient Temperatures and 

Discharge C-rates 

4.3 Chapter Summary 

In this chapter, Objective I of this thesis is addressed. The primary objective of this 

chapter was to investigate experimental methods for improving the accuracy of 

parameterisation experiments at low temperatures. 

First, it was shown that conventional discharge capacity measurement methodology 

(using air-based thermal chambers) overestimates battery capacity at low ambient 

temperatures. This is mainly due to the coupling of electrical and thermal phenomena 

owing to rapid heat generation, particularly for large discharge C-rates. In the real-

world, prompt temperature rise due to internal heat generation is beneficial for battery 

performance. However, this can be detrimental to battery model parameterisation 

where isothermal boundary conditions are critical for separating battery electrical and 

thermal behaviours. Therefore, battery state estimation models parameterised under 

far-from-isothermal conditions will likely lead to overestimation of remaining driving 

range for a battery electric vehicle operating in cold weather conditions.  

This chapter presents a novel methodology to capture battery capacity at close-to 

isothermal conditions for battery model parameterisation. This is achieved by using 
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an immersed dielectric oil bath which is thermally controlled by a chilling unit 

allowing for close-to-isothermal test conditions. It is shown that capacity values 

obtained for oil-based cooling are substantially lower than that obtained for air-based 

cooling. This discrepancy is more pronounced as ambient temperature decreases 

and/or discharge C-rate increases. Similar results are observed for discharge energy 

measurements. 

The difference between the two approaches is largely due to the difference in the cell 

temperature over the course of a duty cycle. By allowing for cell temperatures to rise 

in the air-based cooling test cases, cell internal resistances become suppressed 

(reducing cell overpotential), leading to benefits to discharge performance. However, 

this means that the capacity value obtained is based on a temperature that is 

substantially different to the starting ambient temperature. This is verified using 

resistance data at different temperatures and residual capacity experiments. 

Battery models are reliant on the accuracy of their parameters and the experiments 

conducted to obtain them. In previous literature, the significance of ensuring 

isothermal operating conditions may have been overlooked as most battery testing is 

conducted at higher operating temperatures where the degree of internal heat 

generation and their impact on capacity are lower. Therefore, it is recommended that 

future model parameterisation experimental programmes should attempt to separate 

battery electrical and thermal behaviour by conducting model parameterisation in 

isothermal test conditions, especially for models applied at low temperatures.   

In Chapter 6, the modelling implications of these findings are investigated.  
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5. Approaches to Determine the State-of-the-Art 

Lithium-ion Cell ECM for Low Temperature 

Applications 

This chapter describes the development of a state-of-the-art equivalent circuit model 

for a lithium-ion cell which is parameterised at low ambient temperatures (Objective 

II of this thesis). The parameterisation experiments were discussed in Chapter 4. In 

this chapter, a state-of-the-art ECM is developed that utilises (a) impedance 

parameters updated based on input SOC, current and operating temperature, (b) SOC 

estimator based on oil/air parameterisation data and (c) operating/surface temperature 

estimates from heat generation rates calculated separately for each impedance 

element. The results of this chapter enable discussion of model validation results in 

Chapter 6. 

The second objective of this chapter (Objective III of this thesis) is to demonstrate that 

the power control approach should be chosen over current control as the primary 

means to obtain data from scaled-down realistic drive cycles for model validation. 

This is particularly relevant at low temperatures where lower operating voltages are 

expected. A key contribution of this chapter is to validate that the use of a power 

control approach ensures equivalence in energy throughput and peak powers for a 

particular drive cycle, irrespective of the operating condition.  

This chapter is structured as follows. In Section 5.1, the parameterisation methodology 

for the ECM including the various subsystems are discussed. In Section 5.2, the case 

for choosing power control for obtaining validation data for ECMs is made. It is shown 

that power control is more realistic. In Section 5.3, the key findings of the chapter are 

summarised. 

5.1 Parameterisation of Equivalent Circuit Models at Low 

Temperatures 

A schematic of the features of the ECM developed as part of this study is illustrated 

in Figure 44. Apart from the parameters in the SOC/SOE subsystems where both air 
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and oil-based experimental data are implemented, the other subsystems are 

parameterised using air-based experimental data. This was because negligible surface 

temperature rise was expected in these experiments. The inputs to the ECM are 

experimental current and surface temperature. The outputs are modelled terminal 

voltage, operating temperature, surface temperature, capacity, and energy 

throughputs, SOC and SOE. In the following sections, each of the subsystems along 

with their inputs and outputs, are described: 

 Capacity, Energy, SOC and SOE (Section 5.1.1) 

 OCV and OCV Hysteresis (Section 5.1.2) 

 Overpotential and Output Voltage (Section 5.1.3) 

 Thermal Feedback: Operating and Surface Temperatures (Section 5.1.4) 

o The alternate method considering polarisation currents for heat 

generation estimation is presented in Section 5.1.4 (Figure 44). 

Note, the relevant MATLAB/Simulink models are illustrated in Appendix A. The 

corresponding scripts, functions, etc. are given in Appendix B.  

 

Figure 44. ECM Subsystems 
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5.1.1 Capacity, Energy, State-of-Charge and State-of-Energy 

The capacity throughput is calculated on the basis of the input current as follows: 

�������� �ℎ����ℎ���, �ℎ =
∫ �

�
� ��

����
       (47) 

Here, I is the input current in Amperes and t is the time elapsed in the simulation in 

seconds.  

The energy throughput is calculated based on the input power as follows: 

������ �ℎ����ℎ���, �ℎ =
∫ �

�
�

��

����
       (48) 

Here, P is the power in Watts and t is the time elapsed in the simulation in seconds. 

The power is calculated using the input current and the experimental voltage obtained.  

Essentially, the capacity and energy throughputs described above rely on experimental 

data and are a characteristic of the duty cycle rather than the model itself. 

5.1.1.1 SOC Estimation 

As discussed in Section 2.3.1, there can be multiple definitions of SOC depending on 

the application field, i.e. electrochemistry, modelling, systems engineering, etc. Based 

on recent literature [59], the SOC definition employed in this thesis is as follows: SOC 

is used analogous to the fuel gauge in a conventional vehicle [57]. From an application 

perspective, it is defined based on the capacity usable for a particular temperature and 

load current [59]: 

���(�) = ���(0) −
∫ ���

�
�

����
×

���

����
       (49) 

Here, CDYN (in Ah) is the capacity value obtained from galvanostatic discharge 

experiments at different ambient temperatures and C-rates. This is calculated by 

employing a two dimensional (2D) lookup table that uses current and temperature as 

inputs (Figure 45). The capacity values were obtained from galvanostatic discharge 

experiments at different ambient temperatures and C-rates; as shown in Chapter 4. The 
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data tables used to populate the corresponding look-up tables are given in Appendix 

C. The initial SOC is estimated from the OCV SOC relationship (to be discussed in 

Section 5.2.2). The coloumb counter operates as a simple integrator of current at each 

time step (0.1 s). The experimental surface temperature of the cell is chosen to ensure 

that the SOC estimation subsystem is independent of the rest of the ECM and thus, the 

CDYN can be parameterised purely on the basis of experimental data from Chapter 4. 

 

Figure 45. SOC Estimation Subsystem 

5.1.1.2 SOE Estimation 

Recently in literature, state-of-energy (SOE), instead of SOC, has been proposed as a 

metric to quantify the remaining available energy of lithium-ion cells and in turn, the 

remaining driving range of BEVs [56,57,86,87]. Analogous to SOC, SOE is defined 

as follows: 

���(�) = ���(0) −
∫ ���

�
�

����
×

���

����
       (50) 

Here, ���� (in Wh) is the energy value obtained from galvanostatic discharge 

experiments at different ambient temperatures and C-rates. This is calculated by 

employing a two dimensional (2D) lookup table that uses current and temperature as 
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inputs (Figure 46). The data tables used to populate the corresponding look-up tables 

are given in Appendix C. The energy values were obtained from galvanostatic 

discharge experiments at different ambient temperatures and C-rates. The initial SOE 

is estimated from the OCV SOE relationship (to be discussed in Section 5.1.2). The 

Watt counter operates as a simple integrator of power at each time step (0.1 s). Similar 

to the SOC subsystem, the experimental surface temperature of the cell is chosen to 

ensure that the SOE estimation subsystem is independent of the rest of the ECM and 

the EDYN can be parameterised purely on the basis of experimental data.  

 

Figure 46. SOC Estimation Subsystem 

Note, for the SOC and SOE estimation functions, capacity and energy values for both 

air based and oil based cases were employed. This enables comparison of the battery 

states, viz. SOC and SOE based on air-based and oil-based parameters in Chapter 6.  

5.1.2 Open Circuit Voltage and Hysteresis 

For the lithium-ion cells under test, the OCV versus SOC relationship including 

hysteresis was introduced in Section 4.2.2. To implement the OCV versus SOC 

relationship in an ECM, both charge and discharge OCV values were interpolated to 
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a 1% SOC step size. To implement OCV hysteresis as part of the ECM, the following 

relationship was defined: 

1. At each SOC point, the average OCV (���), used to estimate the OCV at an 

SOC value, was calculated for the corresponding discharge and charge OCV 

values: 

���(���) =
����������������������

�
       (51) 

2. To define OCV as a function of SOC and to account for the transition between 

charge and discharge, the following rate transition model as detailed in [116] 

is employed: 

���(���) = ���(���) + ℎ(���)      (52) 

Here, a hysteresis state variable, ℎ(���), is solved as per the following: 

��

����
= �(�(���) − ℎ(���))      (53) 

Here, � (���) is the absolute difference between ��� and ������������ (a converse 

method would work with ��������� as well) and � is the rate at which the hysteresis 

state, ℎ(���), achieves � (���).  

3. To implement in an ECM, ℎ(���) is calculated as a time dependent variable. 

In Equation 53, left side is multiplied by 
����

��
 whereas the right side is 

multiplied by �
�

����
� to obtain the following equation (Note, 

����

��
= �

�

����
�): 

��

��
= � �

�

����
� (�(���) − ℎ(���))      (54) 

� (���) as a function is obtained from the OCV versus SOC experiments conducted. 

Similar to relevant literature [116], a transition rate of � = 50 was employed. Using 

this, the hysteresis state variable, ℎ (���) is calculated and implemented in the ECM 

(as illustrated in Figure 47): 

ℎ(���) = ∫� �
�

����
� (�(���) − ℎ(���)) ��    (55) 
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Figure 47. OCV and OCV Hysteresis Subsystem 

The ��� versus SOC relationship is illustrated in Figure 48, along with the H versus 

SOC relationship. A similar ��� versus SOE relationship can be defined and is 

illustrated in Figure 49.  

 

Figure 48. ��� versus SOC relationship at 25 °C Ambient Temperature (Inset: 

� (���) versus SOC) 
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Figure 49.  ��� versus SOE relationship at 25 °C Ambient Temperature (Inset: 

� (���) versus SOE) 

5.1.3 Overpotential and Output Voltage 

For a particular duty cycle, the model voltage output is essentially obtained, by solving 

the following equation at each time step: 

� = ���(���) − �        (56) 

Here, � is the cell overpotential which is obtained by multiplying the input current 

with the overall resistance at each time step. The DCR response of the cells under 

investigation was discussed briefly in Chapter 4. The DCR response was 

experimentally obtained at different ambient temperatures and SOCs for 10 s 

charge/discharge pulses of varying magnitudes (Note, discharge is positive). The 

effect of decreasing ambient temperature is illustrated in Figure 50. At 25 ℃, across 

all SOCs and charge/discharge pulses, the average DCR is 1.7 mΩ, but at −20 ℃, the 

average DCR is 24.8 mΩ. This is due to cell electrochemical processes slowing down 

as well as physiochemical parameters such as ionic conductivity and solid-state 

diffusivity decreasing as ambient temperature decreased. This is manifested as an 

increase in DCR values. It was also observed that DCR tended to decrease as current 

magnitude increased, this is probably due to cell heating related suppression of cell 

internal resistances in the internal layers of the pouch cell [114].  
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Figure 50. Effect of Temperature and SOC on Air-based Experimental DC Resistance 

for Varying Magnitudes of 10 s Charge/Discharge Pulses: (a) −20 ℃, (b) −10 ℃, (c) 

0 ℃ and (d) 25 ℃ (Note, discharge is positive) 

Similarly, for low operating currents (< 0.5C), only a portion of the electrodes’ active 

material surface area will take part in the discharge operation. Thus, pulse power 

testing at lower current amplitude could lead to localised measurement, increasing the 

resistance. On the other hand, due to temperature difference between the core and the 

cell surface, the resistances of internal pouch cell layers would be lower compared to 

those closer to the cell surface. This would cause the hotter layers to have lower 

resistances, and thus carry more current, causing overall cell DCR to decrease. This is 

in agreement with recent work by Troxler et al. and Klein et. al. who stated that, based 

on the operating temperatures of the various layers within a pouch cell, there would 

be internal temperature and SOC gradients whose individual behaviours would affect 

the overall cell behaviour [98,114].  

The heating effect was more pronounced at lower temperatures (Figure 50 & Figure 

51). This is because for the same 120 A pulse current, the heating power at 25 ℃ 

would be approximately 25 W, whereas the heating power at −10 ℃ would be 

approximately 85 W. Using the mass and the heat capacity of the cell, this would lead 

to a theoretical temperature rise of approximately 0.7 ℃. A similar temperature rise 

(~0.4 ℃) is illustrated in Figure 51. It is also seen that as discharge pulse amplitude 

increases, the surface temperature rise becomes more prominent. However, the actual 
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temperature rise is marginally lower than the theoretical value probably due to 

convective heat losses at the cell surfaces and the accuracy of the t-type thermocouple 

(±0.5 ℃). Thus, further inference cannot be drawn from these measurements.  

 

Figure 51. An Illustrative Example of Surface Temperature Rise for Pulses at −10 ℃ 

and 50% SOC [Thermocouple accuracy is ±0.5 ℃] 

5.1.3.1 Impedance Representation and Mathematical Fitting 

As discussed in Chapter 2, cell internal resistances are conventionally represented as 

a resistor connected in series to a resistor-capacitor pair connected in parallel. This 

resistor-capacitor pair connected in parallel is termed as an RC network. If ‘n’ RC 

networks are connected in series, then the ECM is termed as an nth order ECM. For an 

nth order ECM, the voltage response can generally be mathematically represented as: 

�������(�) = ��� − ������(�) ∗ ��� + ��� �1 − ���
���� � +��� �1 − ���

���� � +

⋯ +��� �1 − ���
���� ��                 (57) 

Using Equation 57 and the corresponding Jacobian matrix described in Equation 43 

as the function handle, the model parameters can be estimated via a non-linear least 

squares algorithm [151] for each pulse at different SOCs and ambient temperatures 

(MATLAB scripts provided in Appendix B). For this study, the default optimisation 

options were chosen for the fitting. However, the lower bound for the model 



101 

 

parameters was set to 0 as neither resistance not time constants can be negative. The 

initial value for RO is calculated from the voltage response after the first time interval 

(0.01 s in this study). The initial value for ��� is set at 1 mΩ, in the same order of 

magnitude as the rated DCR value for this particular cell. The �� values were set as 

10��� s based on relevant characteristic times for charge transfer and diffusion 

processes [160]. The optimisation was stopped either when the maximum number of 

function evaluations (set at 1000) was undertaken or the terminal tolerance (10��) 

was achieved.  

In the following sections, the model parameters obtained for 1st order and 2nd order 

ECMs are discussed in terms of their accuracy in estimating the corresponding 

experimental voltage profiles and in terms of their relationship with SOC and ambient 

temperature.   

5.1.3.2 1st Order ECM 

As discussed in Chapter 2, the impedance element in a 1st order ECM consists of a 

resistor connected in series (RO) with an RC network (��� and ��). As shown in Figure 

41 in Chapter 4, for a 1C discharge pulse, the voltage response depended on the SOC 

and the ambient temperature. However, just based on the DCR values it was difficult 

to comment on the detailed time characteristics of such a response. The time constant 

for an RC network is the time required to charge the capacitor from 0 V to 63.2% of 

the applied voltage. This essentially means that at the beginning of the discharge pulse, 

there is no current passing through the resistor (���) because all of the current is used 

to charge the capacitor (��). However, as time elapses, more and more current passes 

through the resistor. At t=��, 63.2% of the load current is flowing through the 

polarisation resistance. Conversely, as the load current is removed, the capacitor 

begins discharging at t=0. In which case, if the capacitor was fully charged, then at 

t=��, the capacitor discharges by 63.2% of its initial voltage.  

Table 9 shows the ECM parameters obtained from the fitting process. As ambient 

temperature decreases, the capacitance (��) decreases substantially. For example, it is 

19388.5 F at 25 ℃, and 117.5 F at −20 ℃. This implies that the RC network becomes 

resistive faster (as capacitance decreases) when ambient temperature decreases. This 
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is probably due to internal electrochemical processes slowing down [50]. It should be 

noted that ��� tended to decrease marginally (for both 50% and 80% SOC) as 

temperature decreased from 25 (1.42 mΩ at 50% SOC) to 0 ℃ (1.30 mΩ at 50% 

SOC). As shown in Table 9, the corresponding time constant also decreased 

substantially, so the effect of overpotential induced from the impedance element 

tended to increase as temperature decreased from 25 to 0 ℃. Similarly, at 25 ℃, ��� 

value at 20% SOC is lower than at higher SOCs, however, the capacitance value was 

also lower. Thus, it was likely that the RC circuit would become resistive faster for 

lower SOC at 25 ℃. The change in �� was more drastic than the change in ���. The 

average ��� increased by ~3.8 times and the average �� increased by ~5.7 times. This 

could be because, the measurement frequency for the experiments was 100 Hz. It is 

likely that at lower temperatures, the �� also included charge transfer contributions, 

rather than just Ohmic resistance. However, these parameters are based on 

mathematical equations and although some inferences can be drawn from them, they 

can be misleading if used to explain electrochemical phenomena without validation. 

Table 9. Effect of Ambient Temperatures/SOC on 1st Order ECM Parameters for 1C 

10 s Discharge Pulse 

Ambient Temperature [℃] 
−20 −10 0 25 

SOC [%] Parameter 

20 

RO [mΩ] N/A 8.1±0.34 4.69±0.11 1.43±0.07 

RP1 [mΩ] N/A 7.88±1.25 2.58±0.41 1.25±0.10 

�� [s] N/A 3.36±0.36 2.5±0.11 20.6±3.12 

C1 [F] N/A 426.39±0.19 968.99±0.17 16480±0.17 

50 

RO [mΩ] 9.69±0.37 5.82±0.14 4.23±0.20 1.33±0.07 

RP1 [mΩ] 6.39±0.15 3.49±0.18 1.03±0.06 1.49±0.38 

�� [s] 0.87±0.08 0.65±0.12 2.45±0.49 34.81±1.71 

C1 [F] 136.15±0.03 186.24±0.20 2378.64±0.21 23362.4±0.42 

80 

RO [mΩ] 8.62±0.32 5.92±0.32 3.99±0.18 1.34±0.07 

RP1 [mΩ] 6.89±0.18 3.44±0.12 1.3±0.05 1.42±0.67 

�� [s] 0.69±0.09 0.74±0.03 3.04±0.27 25.43±1.72 

C1 [F] 100.14±0.09 215.11±0.05 2338.46±0.1 17908.5±0.84 

Average 

RO [mΩ] 9.16±0.49 6.61±0.49 4.30±0.29 1.37±0.12 

RP1 [mΩ] 6.64±0.23 4.94±1.27 1.64±0.42 1.39±0.40 

�� [s] 0.78±0.12 1.58±0.38 2.66±0.57 26.95±3.95 

C1 [F] 117.46±0.09 319.83±0.28 1621.95±0.29 19388.5±0.95 
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To show that DC and AC based testing indicates similar trends as temperature 

decreased, the electrochemical impedance spectroscopy (EIS) technique was 

employed. EIS consists of sinusoidal AC current, which are applied to the cells at 

different frequencies between 10 mHz to 10 kHz. The AC voltage response and the 

consequent phase shift is measured to obtain the impedance response of the cell. In 

this study, this experiment was carried out at −20, −10, 0 and 25 ℃ ambient 

temperatures for 50% SOC. This is illustrated in Figure 52. As illustrated in Figure 

52, as ambient temperature decreases, the magnitudes of both real and imaginary parts 

of impedance, Z’ and Z’’ increase. The frequency at which the local maxima for Z’’ 

occurs, also decreases as ambient temperature decreases. Similarly, the local minima 

for Z’’ occurs at a lower frequency as ambient temperature decreases. This implies 

that electrochemical processes are slowing down as ambient temperature decreases; 

this local minima is the frequency at which the cell operation transforms from charge 

transfer to mass transport. These results imply that charge transfer and diffusion 

related resistances will either be higher at low ambient temperatures compared to at 

room temperature, or, the corresponding capacitance values would be lower (Table 

10), making the RC networks resistive faster. Note, the resistance and capacitance 

values are different for PPC and EIS data (as they are simply fitted parameters), but 

they both indicate increased resistances and slower electrochemical phenomena at low 

temperatures compared to at 25 ℃. 

 

Figure 52. EIS Plot at 50% SOC for Different Ambient Temperatures (Inset: 25 ℃) 
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Table 10. Capacitance Values corresponding to EIS Data shown in Figure 52 for 

Different Ambient Temperatures 

Temperature [℃] −20 −10 0 25 

Polarisation Resistance [mΩ] 95.3 32.1 9.8 0.02 

Capacitance [F] 5.5 6.2 6.5 218.7 

Conversely, the frequencies in Figure 52 also explain why, at lower temperatures, it 

takes longer for the cells to relax back to the OCV immediately after a current pulse 

is removed. This is because at lower ambient temperatures, when a current load is 

applied, greater potential gradients are induced at the electrode electrolyte interface as 

the charge transfer process is slower. This is largely due to slower chemical activity 

as well as slower ionic conductivity. Furthermore, it takes longer for the active 

material to diffuse from the bulk of the electrode to the surface, leading to greater 

concentration gradients. On the other hand, when the current load is removed, due to 

slower nature of the cell internal processes, it takes longer for the cell to go into 

equilibrium. In this case, as the polarisation resistance is higher, the corresponding 

overpotential is also higher at lower ambient temperature compared to room 

temperature. 

In Figure 53, the standard deviation in RO and ��� across all the 10 s discharge current 

pulses successfully met by the cells at different ambient temperatures are illustrated. 

At 25 ℃, for the RO, the mean was 1.36 mΩ and the standard deviation was 0.06 mΩ. 

Correspondingly, the standard deviation as a percentage of mean for all discharge 

pulses was 4.1% at 25 ℃. However, this value increased to 31.0% at −20 ℃. Similarly, 

for ��� the corresponding standard deviation as a percentage of mean increased from 

19.9% at 25 ℃ to 63.1% at −20 ℃.  This means that the effect of current magnitude 

on cell pulse power capability and in turn the RC parameters becomes more prominent 

as ambient temperature decreases. Note, as introduced in Figure 50, any discharge 

pulses higher than 0.5C and 1.5C were not met for 10 s at 20% and 50% SOC at −20 

℃, respectively. Similarly, any discharge pulses higher than 1C and 2C were not met 

for 10 s at −10 and 0 ℃ for 20% SOC, respectively.  
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Figure 53. Using Standard Deviation of RO and RP for All 10 s Discharge Pulses at a 

Particular Ambient Temperature to Illustrate Effect of Pulse Current Amplitude at 

Different Ambient Temperatures 

5.1.3.3 2nd Order ECM 

As discussed in Chapter 2, the impedance elements in a 2nd order ECM consists of a 

resistor connected in series (RO) with two RC networks (��� and ��, and ��� and ��). 

Similar to the fitting results for the 1st order ECM, the resistances (RO, RP1 and RP2) 

increase as ambient temperature decreases (Table 11). However, the time constants 

tend to become more convoluted. This is because, as stated in Section 5.1.3.2, these 

parameters are based on mathematical equations and although some conclusions can 

be drawn from them, they can be misleading if relied on to explain electrochemical 

phenomena without validation.  

As suggested in Section 3.2.3, the reason a 2nd order ECM is being explored in this 

study along with a 1st order ECM, is due to this model structure being commonly 

employed in literature to investigate model performance [7,123,154]. 
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Table 11. Effect of Ambient Temperatures/SOC on 2nd Order ECM Parameters for 1C 

10 s Discharge Pulse 

Ambient Temperature 

[℃] −20 −10 0 25 

SOC [%] Parameter 

20 

RO [mΩ] N/A 3.7±0.09 2.1±0.12 1.4±0.07 

RP1 [mΩ] N/A 6.0±0.81 3.3±0.47 0.4±0.03 

�� [s] N/A 0.2±0.02 0.1±0.01 4.8±0.68 

C1 [F] N/A 31.6±1.55 33.6±1.61 13250.0±10.55 

RP2 [mΩ] N/A 7.1±1.36 2.2±0.06 3.0±0.61 

�� [s] N/A 5.4±0.35 5.0±0.90 144.9±6.60 

C2 [F] N/A 758.1±0.85 2238.7±0.91 48939.2±1.10 

50 

RO [mΩ] 5.4±0.03 2.9±0.14 1.5±0.11 1.3±0.06 

RP1 [mΩ] 8.6±0.81 4.3±0.91 3.1±0.25 0.3±0.09 

�� [s] 0.2±0.01 2.3±0.60 0.1±0.01 5.4±0.19 

C1 [F] 22.1±1.69 541.0±1.07 15.9±1.77 19321.4±1.97 

RP2 [mΩ] 4.0±0.81 2.9±0.12 1.1±0.21 2.7±0.49 

�� [s] 8.5±0.22 4.7±0.57 9.1±0.07 157.9±4.42 

C2 [F] 2124.4±0.99 1615.9±1.74 8234.2±1.07 58932.8±1.12 

80 

RO [mΩ] 5.7±0.03 3.4±0.07 2.2±0.02 1.3±0.05 

RP1 [mΩ] 8.5±1.85 6.7±0.10 1.7±0.07 0.4±0.05 

�� [s] 0.2±0.02 23.3±0.63 0.1±0.02 4.9±0.95 

C1 [F] 24.7±1.71 3500.8±1.28 63.2±1.73 13243.2±1.97 

RP2 [mΩ] 17.9±2.17 9.4±0.29 7.5±0.82 3.4±1.07 

�� [s] 88.7±1.00 59.0±9.97 113.5±6.33 179.0±7.85 

C2 [F] 4949.7±1.84 6312.3±1.91 15051.7±1.01 52029.1±1.13 

Average 

RO [mΩ] 5.5±0.04 3.3±0.18 1.9±0.16 1.3±0.10 

RP1 [mΩ] 8.5±2.02 5.7±1.22 2.7±0.54 0.3±0.11 

�� [s] 0.2±0.02 8.6±0.87 0.1±0.02 5.0±1.18 

C1 [F] 23.4±2.40 1520.4±2.28 33.1±2.95 14794.1±10.91 

RP2 [mΩ] 11.0±2.32 6.5±1.39 3.6±0.85 3.0±1.33 

�� [s] 48.6±1.02 23.0±9.97 42.5±6.39 160.6±11.17 

C2 [F] 4430.3±2.09 3570.5±2.72 11748.6±1.73 53000.0±1.93 

In Figure 54 it is shown that accuracy in voltage estimation increases as model order 

increases. For example, for the 1st order ECM (1RC), the average root-mean-squared 

error in voltage estimation (VRMSE) at −10 ℃ is 10.67 mV but decreases to 5.08 mV 

for the 2nd order ECM (2RC). Furthermore, VRMSE is shown to increase for both ECM 

structures as ambient temperature decreases. This implies that model accuracy suffers 

as ambient temperature decreases. Particularly, the decline is worse for the 1st order 
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ECM compared to the 2nd order ECM. Although not a lot of scientific inferences can 

be drawn from the mathematical ECM parameters obtained from curve fitting; it can 

be inferred that that there are two different underlying processes when it comes to cell 

behaviour as ambient temperatures decrease (see τ values for 2RC in Table 11). These 

processes are not adequately represented by the 1RC model. However, model 

parameters for both 1RC and 2RC models were deemed reliable as the standard 

deviation of each parameter across all iterations of the mathematical fitting operation 

was an order lower than the average value that was estimated for a current pulse at a 

particular SOC and/or temperature. For example, at −20 ℃ and at 50% SOC, for 0.5C 

discharge pulse, the RO was 10.2 mΩ for 1RC parameterisation, whereas the standard 

deviation across the entire fitting operation for that pulse was 0.2 mΩ. Note, this 

standard deviation is for a single pulse illustrating how each impedance parameter 

varies across multiple iterations of the mathematical fitting function, whereas those 

reported earlier in this thesis (such as in Figure 53 is for estimated parameters across 

multiple pulses at different operating conditions). 

 

Figure 54. Comparison of Errors for Pulse Fitting: 1RC v/s 2RC 

The inputs and outputs for the overpotential subsystem are illustrated in Figure 55 and 

Figure 56. The data tables used to populate the corresponding look-up tables are given 

in Appendix C. The RC parameters are updated based on the SOC, the input current 

and the operating temperature. Then, based on Equation 57, the overpotential is 

calculated.  
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Figure 55. RC Parameters Subsystem 

 

Figure 56. Overpotential Calculation Subsystem 

The current passing through any RC network ���,�� i.e. the polarisation current is a 

function of the load current �������� and time as per below: 

��,�(�) = ������(�) ∗ �1 − ���
���� �       (58) 

As Equation 58 is only applicable for constant currents, Equation 59 discretising 

Equation 58 was implemented in Matlab®/Simulink using a ‘Discrete-Time 

Integrator’ block:  
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��,� [� + 1] = �
�∆�

��� ∗ ��,�[�] + �1 − �
�∆�

���� ∗ ������[�]    (59) 

The integration method employed was the default Forward Euler method: 

�(�)  =  �(� − 1) +  � ∗ [�(�) − �(� − 1)] ∗ �(� − 1)     (60) 

Here, � (�) is the block output at step ‘n’, � is the initial gain (set to 1 here), � (� −

1) is the block input in the previous step and � (�) –  � (� − 1) is the sample time.  

5.1.4 Thermal Feedback Subsystem 

As part of the ECM, a 1st order thermal feedback model was employed that included 

convective heat losses at the cell surface (illustrated in Figure 57).  

 

Figure 57. Thermal Feedback Subsystem 

The following cell parameters were employed as part of this: 

 Mass of cell, ‘�’: 0.97 kg (manufacturer’s datasheet) 

 Surface area of cell, ‘�’: 0.10125 m2 (manufacturer’s datasheet) 

 Specific heat capacity of cell, ‘�’: 1243 J/kg/K [161] 

 Convective heat transfer coefficient of cell operating in thermal chamber, ‘ℎ −

�����’: 20 W/m2/K (averaged from [65,124,162]) 
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The inputs to this subsystem were the input current, the polarisation currents and the 

impedance parameters (depending upon the number of RC networks). The outputs of 

this subsystem were operating temperature and surface temperature. While operating 

temperature was calculated from the heat generated by the ECM for a particular duty 

cycle, the surface temperature calculation also included the convective heat losses 

(Figure 57). The following protocol was followed to obtain the operating temperature 

and surface temperature of the ECM at each time step: 

1. At every time step heat generation was calculated as: 

a. For 1st Order ECM (‘1RC’) with one RC network: 

���� = ������
� × ������ + ���

� × ���       (61) 

b. For 2nd Order ECM (‘2RC’) with two RC networks: 

���� = ������
� × ������ + ���

� × ��� + ���
� × ���     (62) 

2. The change in operating temperature at every time step (∆T) was calculated as: 

∆� =
����

�×�
          (63) 

3. The operating temperature of cell was calculated as: 

���������� = �� + ∫ ∆�
�

�
        (64) 

where, �� is the ambient temperature for the duty cycle. 

4. The surface temperature of cell was calculated as: 

�������� = ���������� − �����       (65) 

5. ����� was calculated as [163]: 

����� =
�������×�

�×�
∫ ��������� − �����

�

�
     (66) 

As shown in Equations 61 and 62, the heat generation value (����) can be separated 

into two components depending on the number of RC networks - heat generated from 
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the Ohmic resistances and heat generated from polarisation resistances. However, in 

literature, if reversible heat generation is ignored, the total cell heat generation rate is 

presented as in Equation 45. As discussed in Chapter 2, at lower ambient temperatures, 

potential gradients occur due to slower charge transfer whereas, concentration 

gradients occur due to slower mass transport. Furthermore, this has physical basis in 

the characteristic times of the different internal cell processes. Thus, depending on the 

time elapsed and the current flowing through these resistors (���), the heat generated 

from each impedance element in the ECM would be different. The above suggests that 

‘separation of currents’ should be considered as part of the thermal feedback 

subsystem of an ECM to ensure practical implementation. This hypothesis will be 

examined in Chapter 6. 

5.2 Drive Cycle Experiments: Obtaining ECM Validation 

Data using Power Control Approach 

In this section, a short comparison between current control and power control 

approaches to battery testing is conducted. This comparison has been undertaken to 

support objective III of this research work. The comparison has been undertaken 

using reference legislative drive cycles. At the end of this chapter, it will be confirmed 

that only the power control approach should be chosen for drive cycle testing, 

particularly at low temperatures or low operating voltages. 

5.2.1 Backward Facing Model 

The vehicle level duty cycle was scaled down for the cells used for this study. As 

illustrated in Figure 58 (Figure 16 reproduced for ease of understanding), the scaling 

of the duty cycle was achieved using a backward facing model, where the legislative 

speed versus time profile was converted to a vehicle level power versus time profile 

[164,165]. The conversion was carried out for a typical passenger BEV with a kerb 

weight of approximately 1600 kg [149]. Other parameters were: Coefficient of Drag, 

CD = 0.28, Density of Air, ρ = 1.225 kg/m3, Frontal Area of Vehicle, Af = 2.744 m2, 

Gravitational Acceleration, g = 9.81 m/s2, Friction Coefficient, fr = 0.01 [146,166]. 

The gear-box ratio (G) was 7.94. The motor efficiency was assumed to be 0.9 at 

ambient temperatures [44,165], and 100% regenerative-braking efficiency (RE) was 
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assumed. Since the study is focused at low ambient temperatures, a 5 kW load for 

cabin-heating was added at every time step [167]. It was assumed that the vehicle 

battery pack consisted of 48 modules and each module consisted of four cells arranged 

in a SP2S2P architecture [34]. The nominal voltage of a single cell was 3.7 V, and 

nominal voltage of the battery pack was 355.2 V. The power demand per second of a 

single cell was calculated. The ideal energy available from the battery pack at the 

nominal pack voltage was 28.4 kWh, which is comparable to a real BEV [168].  

 

Figure 58. Backward Facing Model to obtain Cell-level Profile from Vehicle-level 

Speed Profile: Contrast between Power Control and Current Control (Images for EV, 

battery pack and cell obtained from Internet) 

As discussed in Chapter 3, to compare the effect of choosing different control methods 

(power and current), the US06 drive cycles were considered. The cells were cycled for 

two back-to-back 600 s long US06 drive cycles (2xUS06) for equivalence. The starting 

SOC chosen was 65%. As justified in Chapter 3, the ambient temperatures chosen 

were −15, −5, 5 and 25 °C. Fully charged cells were first discharged to 65% SOC 

using 0.5C operating current at 25 °C ambient temperature. Then, the cells were cooled 

down to the test temperature and rested for 4 hours before employing the drive cycle.  

2�2� × 48 
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Note, the drive cycle experiments were conducted in a standard thermal chamber with 

forced air convection (air-based method). This is because these drive cycles are 

representative of real-world load currents/voltages and operating conditions where 

battery internal heating would be beneficial to battery performance. This is in contrast 

to the SOC parameterisation experiments that were conducted for both air-based and 

oil-based methods. The equipment used for these experiments is identical to those used 

in Chapter 4. In the following section, it is shown that discrepancy between power 

control and current control approaches increases as temperature decreases and/or drive 

cycle demand increases. In particular, power and energy demands are underestimated 

in the current control approach compared to the actual drive cycle demand.  

5.2.2 Results and Discussion 

In Figure 59, the experimental current profiles for both power control and current 

control approaches are illustrated for the 2xUS06 at −15 ℃ and 65% starting SOC. 

The experimental current profile for the power control approach is based on the actual 

power requirement for the drive cycle. 

 
Figure 59. Comparison between Experimental Current and Current for 3.7 V Voltage 

for 2xUS06 at −15 °C Ambient Temperature and 65% Starting SOC 

In Figure 59, it is shown that the current values for the power control (or actual) 

approach are higher than the theoretical current values for the current control 

(calculated for the 3.7 V reference voltage) approach. This is reflected in the 10.9 Ah 
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capacity discharged in the actual experiment compared to the theoretical 9.1 Ah 

calculated for current control approach.  

As shown in Figure 60, the capacity discharged increases as ambient temperature 

decreases for the 2xUS06; as ambient temperature decreased from 25 to −15 ℃, the 

capacity discharged from the cells increased by 13.2%. This is because as ambient 

temperatures decrease, cell internal resistances increase, resulting in a lower operating 

voltage. To meet the power demand of the drive cycle, which is independent of the 

ambient temperature, the current values have to increase, leading to increased capacity 

discharged.  

 

Figure 60. Effect of Starting Ambient Temperature on Capacity (left) and Energy 

(right) Discharged for 2xUS06 for 65% Starting SOC 

Furthermore, as shown in Figure 60, between 25 and −15 ℃, as ambient temperature 

decreased, the energy discharged decreased by 5.7%. This is because at this 

temperature, the cells reached the 2.7 V minimum cut-off voltage at several points 

during the drive cycle (red circles) and the current had to be reduced (compared to the 

actual demand for the drive cycle) to prevent over-discharge related damage to the 

cells. At 25 ℃ ambient temperature, the peak power required in both the 1st and 2nd 

US06 driving phases was ~614 ±3 W, and the corresponding peak currents were ~176 

A and ~181 A, respectively. The corresponding cell voltages at those points in the 

drive cycle were 3.46 V and 3.41 V, respectively. However, at −15 ℃, the cells hit the 

minimum cut-off voltage of 2.7 V and were only able to deliver ~155 A and ~165 A 
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peak currents, respectively and thus, the cells were unable to deliver the required 

power levels. This is illustrated in Figure 61c.  

There is a clear inconsistency between reference voltage based current profiles and 

actual (or real-world) power profiles particularly at low temperatures. Therefore, in 

this thesis only power control with a dynamically changing voltage will be considered 

for obtaining validation experimental data.  

 

Figure 61. Experimental Characteristics of 2xUS06 for 65% Starting SOC and −15 °C 

Starting Ambient Temperature: (a) Power, (b) Current, (c) Voltage and (d) Surface 

Temperature 

5.3 Chapter Summary 

In this chapter, Objectives II and III of this thesis are addressed.  

In this chapter, the alternative approaches to modelling lithium-ion batteries at low 

temperatures were investigated. Initially, the various subsystems that comprise of a 

typical equivalent circuit model were discussed including SOC/SOE estimation, 

overpotential calculation and output voltage estimation, and thermal feedback 

subsystem. As part of the thermal feedback subsystem, it was hypothesised that instead 

of a common current for estimating the heat generated in the model, it may be better 



116 

 

to use separate polarisation currents for each RC network. This alternative approach 

to estimating heat generation will be examined further in Chapter 6. 

To implement the cell impedance in the ECM, two model structures were considered, 

1RC and 2RC. The independent variables considered were temperature, SOC and 

charge/discharge current. To parameterise the ECM, as well as to implement the 

different subsystems, underlying mathematical equations and flow charts were 

detailed and illustrated. The MATLAB/Simulink subsystems are further illustrated in 

Appendix A, the background MATLAB scripts are given in Appendix B and key look-

up tables are presented in Appendix C. This enables model validation to be discussed 

in Chapter 6. 

Performance testing of lithium-ion cells under different operating conditions is a key 

stage in battery pack design process of an electric vehicle. It was found in this chapter 

that it is crucial that power control rather than current control is employed as the 

primary approach to obtain validation data for cell models. This is because power 

control is representative of real-world driving scenarios in terms of energy and power 

demands. A power control approach would account for real-time cell voltage response, 

depending on the operating state of the battery.  

In Chapter 6, the ECMs generated in this chapter, along with the power control based 

validation data, will be utilised to validate the following: (a) oil-based parameters lead 

to better estimation of battery states such as SOC and SOE and (b) Battery states 

parameterised using oil-based parameters and heat generation rates calculated using 

separate currents for each impedance element can improve model accuracy and 

applicability. 
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6. Effect of Close-to-Isothermal Parameterisation on 

Battery State Estimation and ECM Performance 

The primary objective of this chapter is to examine the effect of improvements to 

battery model parameterisation methods and how that has positive effect on battery 

state estimation and how that affects model accuracy (Objective IV of this thesis).  

First, the effect of choosing oil-based parameters over air-based parameters to estimate 

battery SOC and SOE is investigated. Then, the benefits of choosing oil-based SOC 

estimates, rather than air-based SOC estimates, on accuracy in output voltage 

estimation for 1st and 2nd order ECMs is quantified to further contrast the effect of the 

two parameterisation datasets. Following from Section 5.1.4, it is examined whether 

employing separate currents for each impedance element (by considering polarisation 

currents) is better than using a common (Ohmic) current to calculate the heat 

generation from the cell. This is investigated by comparing effect on model accuracy 

in terms of output voltage estimated as well as surface temperature estimated. 

A key contribution of this chapter is demonstrating that better isothermal control while 

conducting battery model parameterisation experiments leads to improved battery 

state estimation. Improved battery state estimation in turn leads to improved model 

accuracy. These findings will establish a better methodology for parameterising 

models for low temperature performance investigations, thus improving range 

estimation in cold weather conditions. A further contribution from this chapter is that 

using separate currents (allowing for inclusion of polarisation currents) rather than 

only the common Ohmic current as part of the thermal feedback subsystem leads to 

improved estimation of modelled surface temperature and output voltage. 

The chapter is structured as follows. In Section 6.1, the validation methodology is 

discussed along with key metrics chosen. In Section 6.2, the comparison between air-

based and oil-based parameterisation datasets on SOC and SOE evolution is 

undertaken. In Section 6.3, the effect of heat generation estimates on surface 

temperature estimation and on model accuracy is investigated. In Section 6.4, the key 

findings of the chapter are given. Note, the validation datasets chosen for these 



118 

 

investigations are cell level power control based back-to-back US06 (2xUS06) drive 

cycles obtained using an air-based thermal chamber at different ambient temperatures.  

6.1 Validation Methods 

To validate the effect of parameterisation data on battery states (SOC and SOE), the 

definitions of SOC and SOE as given in Equations 49 and 50 are used; they are 

repeated here for convenience: 

���(�) = ���(0) −
∫ ���

�
�

����
×

���

����
       (67) 

���(�) = ���(0) −
∫ ���

�
�

����
×

���

����
       (68) 

To validate the effect of parameterisation and validation methods on model accuracy, 

the accuracy in output voltage estimation (VRMSE) is considered: 

����� = �∑ |(������(�)�����(�))|�������
���

�
     (69) 

Here, ������ is the total time with change in time being 0.1 s (size of each time step). 

VMODEL is the modelled voltage at each time step and VEXP is the experimentally 

obtained voltage of the cell at each time step for the 2xUS06 drive cycle discussed in 

Section 5.2. The starting ambient temperatures chosen were −15, −5, 5 and 25 ℃ and 

the starting SOC was 65%. 

To validate the effect of thermal feedback subsystem of model accuracy and surface 

temperature estimation, the accuracy in surface temperature estimation (TRMSE) is 

considered: 

����� = �∑ |(� �����(�)�����(�))|�������
���

�
     (70) 

TMODEL is the modelled surface temperature at each time step and TEXP is the 

experimentally obtained voltage of the cell at each time step for the 2xUS06 drive 

cycle discussed in Section 5.2. The method to estimate the surface temperature was 

discussed in Section 5.1.4. 
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6.2 Battery State Estimation: Effect of Close-to-Isothermal 

Parameterisation 

In this section, the effect of choosing ‘air’ and ‘oil’ based parameters on battery state 

estimators will be discussed. The state estimators considered are SOC and SOE. As 

discussed in Section 5.1.1, the inputs to the SOC/SOE algorithm were experimental 

current/power (current for SOC and power for SOE) and experimentally measured 

surface temperature obtained for the power control based 2xUS06 drive cycle at 

different ambient temperatures for 65% starting SOC. The outputs of the subsystem 

are SOC and SOE. Fully charged cells were first discharged to 65% SOC using 0.5C 

operating current at 25 °C ambient temperature. Then, the cells were cooled down to 

the test temperature and rested for at least 4 h before being used for the drive cycle 

tests.  

Note, the drive cycle experiments were conducted in a standard thermal chamber with 

air-based cooling (Espec Platinous J Series). This was done to replicate real-world 

operating conditions and thus allowing the cells to rise in temperature as they would 

in a real application due to internal heat generation. 

6.2.1 SOC Estimation 

To compare the effect of choosing different thermal control parameterisation methods 

(air-based and oil-based), the ambient temperatures chosen were −15, −5, and 5 °C. 

As an example, the power, current, voltage and surface temperature profiles for the 

2xUS06 drive cycle at −15 ℃ are given in Figure 62.  

The inputs considered for the SOC estimation model are experimentally obtained 

current and surface temperature (as per Figure 62 b & d). For the 2xUS06 cycling at 

−15 °C starting ambient temperature, the experimental capacity and energy discharged 

were 11.3 Ah and 33.9 Wh, respectively. The surface temperature at the end of the 

drive cycle was −4.8 ℃. Thus, the surface temperature rose by 10.2 ℃ over the course 

of the 2xUS06 drive cycle.  
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Figure 62. Experimental characteristics of the power control based 2xUS06 for 65% 

starting SOC and −15 °C starting ambient temperature: (a) power, (b) current, (c) 

voltage and (d) surface temperature 

As illustrated in Figure 63, from the SOC estimation model, at the end of the drive 

cycle, the SOC estimated for the air case was 33.4% and that for the oil case was 

23.9%. The absolute difference in SOC between the two approaches is 9.5% and there 

is an overestimation in the air case compared to the oil case. If a 100 mile remaining 

driving range is assumed for 100% SOC, the remaining driving range would therefore 

be 8.4 miles lower for the oil approach compared to air approach.  

To obtain the approximate real SOC of the cells under operation, the following steps 

were followed: 

1. Calculate the mean power of the drive cycle (2xUS06), i.e. 140 W in this case.  

2. Following the 2xUS06 cycle: 

a. Immediately further discharge the cell using constant power of 140 W.  

b. Set the cell voltage limit as 2.7 V. 

c. Stop discharge as power delivery from cells reduces by 50% to 70 W.  

3. Essentially, to calculate the real SOC, after the drive cycle, the cell was 

discharged to 0% SOC using the mean power of the drive cycle. Then, using 

Equation 71, the approximate real SOC at the end of the drive cycle was back-

calculated:  

���� ���, % =
�� ������ �������� ����� ��������� �����

��������� �������� ���� ��� ����������������
×

���

����
  (71) 
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Note, the constant power discharge phase is terminated at 50% of mean power. This 

metric is comparable to other literature where  power reduction is employed as an end-

of-test condition for performance assessment of automotive lithium-ion batteries 

[35,83,150]. This is illustrated in Figure 64. Thus, assuming a 41.7 Ah capacity from 

the OCV experiments in Section 4.2, the approximate real SOC at the end of 2xUS06 

was calculated to be 19.8% using Equation 71 above (Figure 63).  

Assuming the 19.8% end SOC value as the reference end SOC for the 2xUS06 drive 

cycle at −15 ℃ ambient temperature, the thesis finds that the oil-based parameters, at 

23.9% end SOC estimated, are closer to the reference value (Figure 63). The 5.1% 

absolute SOC difference in the oil-based case is substantially lower than the 13.5% 

absolute SOC error estimated from the air-based parameters where a 33.4% end SOC 

is estimated. Therefore, employing an ‘air’ parameterised dataset will lead to a more 

inaccurate assessment of usable capacity and cause models to overestimate remaining 

driving range compared to those parameterised using oil-based thermal control, using 

data from the cell closer to the predefined parameterisation temperature.  

 

Figure 63. Comparison between air and oil parameterised SOC profiles for 2 back-to-

back US06 cycles (2xUS06) at 65% starting SOC and −15 °C ambient temperature. 
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Figure 64. Experimental characteristics of 2xUS06 for 65% starting SOC and −15 °C 

starting temperature: (a) power, (b) current, (c) voltage and (d) surface temperature 

(Includes post drive cycle discharge at 140 W until power drops below 70 W) 

These experiments were repeated for −5, 5 and 25 ℃. The remaining SOCs estimated 

for these starting ambient temperatures are shown in Figure 65. It is shown that for the 

2xUS06, the remaining SOC values parameterised for air and oil cases converge at 

higher ambient temperatures. The absolute difference in the remaining SOC values for 

air compared to oil decreases from 9.5% (at −15 °C ambient temperature) to 0.1% at 

25 °C ambient temperature. This shows reduced impact of differences in surface 

temperature control during parameterisation at higher temperatures. This is due to the 

cell internal resistances being lower at higher temperature, leading to lower heat 

generation rates. This is likely why the significance of ensuring isothermal operating 

conditions may have been overlooked until now. This is because most battery testing 

is conducted at higher operating conditions where the degree of internal heat 

generation is lower. This follows from Chapter 4, where it is shown that while at −20 

℃ the air-based capacity for 1C discharge was 31.7% higher than oil-based capacity, 

at 25 ℃ this difference was negligible. It should be noted that the experimental 

remaining SOC for 25 ℃ starting temperature was higher than the SOCs predicted by 

both the air and oil based estimators. This is because parameterisation data at 

temperatures higher than 25 ℃ was not measured, which was the surface temperature 

range during the extended 140 W discharge period. 
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Figure 65. Comparison of Remaining SOCs: Effect of Using Air and Oil thermal 

control Parameters at Different Starting Ambient Temperatures (for 65% Starting 

SOC) for 2 back-to-back US06 Cycles (2xUS06) 

Correspondingly, the experimental surface temperature rise also reduces as ambient 

temperature increases. Note, the surface temperature data reported are experimentally 

obtained, therefore, there is no distinction between air-based and oil-based values. As 

shown in Figure 66, the experimental surface temperature rise for −15 ℃ and 25 ℃ 

starting ambient temperatures are 10.2 °C and 1.2°C, respectively. Note, the cell core 

temperature will be higher due to poor through-plane thermal conductivity of lithium-

ion cells [140], which can be estimated through an appropriate thermal model. In the 

ECM discussed in the following sections, operating temperature estimated from the 

thermal model is utilised to parameterise the model impedance parameters as they 

represent cell internal processes. Furthermore, if temperature is measured at the core, 

a better thermal control can be effected [104]. This could be more appropriate, 

allowing better separation of thermal and electrical phenomena by maintaining exact 

isothermal conditions during the experiment.  



124 

 

 

Figure 66. Experimental Surface Temperature Rise for Experimental 2xUS06 for 

Different Starting Ambient Temperatures and 65% Starting SOC 

For a particular drive cycle, the greater the surface temperature rise, the larger is the 

discrepancy between choosing air and oil based parameters to estimate the SOC (Table 

12). For example, at 25 ℃, the surface temperature rise experimentally recorded for 

the 2xUS06 is only 1.2 ℃, so there is negligible difference between using air or oil 

based parameters for SOC estimation. However, at −15 ℃, the air based remaining 

SOC estimated is higher by 9.5% (absolute SOC difference) than the oil based 

remaining SOC. Correspondingly, the surface temperature rise is 10.2 ℃. This 

suggests that due to higher degree of internal heat generation at low temperatures, the 

SOC is likely to be overestimated if using air-based parameters because of mixing of 

electrical and thermal phenomena. Therefore, it is recommended that parameters 

collected from isothermal or close to isothermal test setup are used, such as the oil-

based setup presented here. This will ensure that the capacity values used to populate 

the look-up tables are obtained accurately. This will ensure better estimation of SOC 

evolution and in turn, improve range prediction accuracy. 
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Table 12. Comparison between Remaining SOC Estimated from Air and Oil based 

Parameters and Surface Temperature Rise Obtained from Experiments 

Ambient 

Temperature 

[℃] 

Remaining 

SOC (Air) 

[%] 

Remaining 

SOC (Oil) 

[%] 

Absolute SOC 

Difference 

[%] 

Actual Surface 

Temperature 

Rise [℃] 

−15 33.4 23.9 9.5 10.2 

−5 35.1 30.2 4.9 7.1 

5       37.4 34.7 2.7 4.4 

25 40.6 40.5 0.1 1.2 

6.2.2 SOE Estimation 

Using the experimental data obtained for the 2xUS06 cycling at −15 °C starting 

ambient temperature, the end SOE estimated from the model for the air case was 

36.4% and that for the oil case was 20.1% (Figure 67). The absolute difference in SOE 

between the two approaches is 16.3%. Assuming a 100 mile remaining driving range 

for 100% SOE, the remaining driving range would therefore be 16.3 miles lower for 

the oil-based approach compared to the air-based approach.  

Similar to the validation for SOC, assuming a 148 Wh capacity from the OCV 

characterisation in Chapter 4, the approximate real SOE was 15.8% (obtained from 

experiment). Therefore, employing an air parameterised dataset will lead to inaccurate 

assessment of usable energy as well and cause models to overestimate remaining 

driving range compared to those parameterised using oil cooling, using data from the 

cell closer to the desired parameterisation temperature.  

Note, for both SOC and SOE there is still a slight overestimation for the model 

compared to the real values. This is because despite a sophisticated oil based thermal 

control system employed, there exists a marginal temperature rise within the cell 

internal layers which can only be validated or controlled by placing a temperature 

sensor at the cell core [169]. This is because, for the results reported in this thesis, the 

cooling effect of the Lauda unit is controlled by the Pt-100 placed on the cell surface 

rather than at the cell core. 
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Figure 67. Comparison of Remaining SOEs: Effect of Using Air and Oil Parameters 

at Different Starting Ambient Temperatures (for 65% Starting SOC) for 2 back-to-

back US06 Cycles (2xUS06) 

Comparing Figure 65 and Figure 67, for the air cases, it should also be noted that as 

ambient temperature decreases, the SOE values tend to be higher than the SOC values 

(Table 12 and Table 13). For example, at −15 ℃, for the air parameterisation case, 

while the remaining SOC is 33.4%, the remaining SOE is 36.4%. This trend is in 

contrast to that observed for the oil parameterisation cases. At −15 ℃, for the oil case, 

while the remaining SOC is 23.9%, the remaining SOE is 20.1%. This is probably 

because of the higher degree of heat generation observed for the air based 

parameterisation data as the ambient temperature decreases (Section 4.2.1). This 

results in cell voltage being affected to the extent that it prolongs discharge. This is 

contrary to the assumption in literature that as ambient temperature decreases, the 

operating cell voltages would be lower and hence, the SOE should be lower than SOC 

[86]. Since temperature rise is minimal for the oil-based parameterisation data, the 

operating voltages for the parameterisation experiments are lower. This further affirms 

the hypothesis that isothermal control of battery model parameter experiments is 

required to adequately separate electrical and thermal phenomena, especially at lower 

operating temperatures.  
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Table 13. Comparison between Remaining SOE Estimated from Air and Oil based 

Parameters and Surface Temperature Rise Obtained from Experiments 

Ambient 

Temperature 

[℃] 

Remaining 

SOE (Air) 

[%] 

Remaining 

SOE (Oil) 

[%] 

Absolute 

SOE 

Difference 

[%] 

Surface 

Temperature 

Rise [℃] 

−15 36.4 20.1 16.3 10.2 

−5 36.6 29.0 7.6 7.1 

5         37.7 33.2 4.5 4.4 

25 39.8 39.2 0.6 1.2 

Overall, the results have demonstrated that maintaining isothermal test conditions 

during model parameterisation experiments have a direct effect on battery state 

calculation. However, the latest testing standards, such as the IEC 62660-1 and 

UNECE 38.3, only specify the ambient temperature. This is because most standards 

are defined to emulate testing for real-world performance of lithium-ion cells. 

However, for modelling purposes, particularly to parameterise models, there do not 

exist any testing standards. Most researchers and OEMs rely on engineering best 

practices to obtain repeatable data [60]. However, the effect of thermal boundary 

conditions during a charge/discharge process especially at low temperatures has been 

largely ignored. It is recommended that future testing standards should include 

adherence to isothermal test conditions and a maximum tolerance level away from 

isothermal conditions. This should allow for improvement to the quality of model 

parameterisation data and in turn battery state estimates relying on them.  

6.2.3 Effect on Model Accuracy 

In this section, it is investigated whether using oil-based SOC estimates instead of air-

based SOC estimates leads to ECM performance improvements in terms of improving 

model accuracy in output voltage estimation. Furthermore, the effect of temperature 

and model order on the accuracy in output voltage estimation (VRMSE) is discussed. In 

this section, both 1st order and 2nd order ECMs (1RC and 2RC, respectively) are 

considered. The validation duty cycle considered is the same as above i.e. 2xUS06 at 

different ambient temperatures for 65% starting SOC.  
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First, using the 1st order ECM (1RC), for the 2xUS06 drive cycle, the accuracy in 

output voltage estimation (quantified as a root-mean-squared error, VRMSE) is 

compared at different temperatures (Figure 68). Initially, this is done for air-based 

SOC estimates which are used to parameterise the impedance parameters as per 

Section 5.1.3. It is shown below that model accuracy decreases as ambient temperature 

increases. For example, from 18.8 mV VRMSE at 25 ℃ ambient temperature, the VRMSE 

at −15 ℃ ambient temperature was 134.2 mV. This is in line with literature that model 

accuracy decreases as temperature decreases due to greater coupling of electrical and 

thermal phenomena [7,59,66]. It is also due to increased internal SOC and thermal 

gradients within the cell that cause non-uniform cell behaviour at low temperatures 

[65]. Lastly, in Section 5.1.3.3, it was shown that even for parameterisation datasets, 

model accuracy decreased as ambient temperature decreased (Figure 54).  

 

Figure 68. Output Voltage Estimation from 1RC and Air based SOC ECM and 

Experimental Voltage Profiles for 2xUS06 for 65% Starting SOC at different Ambient 

Temperatures: (a) −15 ℃, (b) −5 ℃, (c) 5 ℃ and (d) 25 ℃ 

Similarly, for the 1RC ECM with oil-based SOC estimates, as ambient temperature 

decreased from 25 ℃ to −15 ℃, the VRMSE increased from 19.0 mV to 101.4 mV 

(Figure 69). Furthermore, it should be noted that model accuracy for both (1RC+air) 

and (1RC+oil) was similar at 25 ℃ in terms of VRMSE. However, as ambient 

temperature decreased, the (1RC+oil) model became more accurate than the 
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(1RC+air) model in terms of VRMSE. For example, at 25 ℃, while the difference 

between the two models is 0.2 mV, at −15 ℃, the (1RC+oil) model has a 32.8 mV 

lower VRMSE compared to the (1RC+air) model for the same experimental validation 

dataset.  This suggests that using oil-based SOC rather than air-based SOC improves 

model accuracy in terms of output voltage estimation. This is probably because the 

oil-based SOC decreases faster compared to the air-based SOC, which allows higher 

internal resistances associated with lower SOC operation or with non-uniform cell 

behaviour to be captured more accurately (Figure 63).   

 

Figure 69. Output Voltage Estimation from 1RC and Oil based SOC ECM and 

Experimental Voltage Profiles for 2xUS06 for 65% Starting SOC at different Ambient 

Temperatures: (a) −15 ℃, (b) −5 ℃, (c) 5 ℃ and (d) 25 ℃ 

At −15 ℃ ambient temperature, although for the oil-based SOC case, the VRMSE was 

101.4 mV overall, the VRMSE for the 1st US06 was 109.4 mV and that for the 2nd US06 

was 92.6 mV (Figure 70 a & b). This is in contrast to the air-based SOC case, where 

the VRMSE was higher - 134.2 mV overall for the 2xUS06, and that for the 1st and 2nd 

US06 cycles were 127.6 mV and 140.5 mV, respectively. As shown in Figure 70c, at 

the end of the 1st and 2nd US06 cycles at −15 ℃ starting temperature, the end SOCs 

for the air parameters were 48.9% and 33.4%, respectively. Whereas for the oil case, 

the end SOCs were lower at 42.9% and 23.9%, respectively (Figure 70d). This further 
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implies that the oil-based SOC captures the real cell behaviour better compared to the 

air-based SOC, resulting in lower modelling errors as the duty cycle progresses.  

 

Figure 70. Correlation between Accuracy in Output Voltage Estimation (VRMSE) and 

SOC Evolution at Different Starting Ambient Temperatures for 1st Order ECM: 

Investigating the Effect of Air and Oil Based SOC Estimation 

In Figure 71, the results contrasting the effect of air-based and oil-based SOC 

estimation on estimated voltage errors for both 1st and 2nd order ECMs are presented. 

As discussed above and as shown in Figure 71a, at lower temperatures, using oil-based 

SOC leads to improved accuracy in output voltage estimation. Similar conclusions can 

be made for the 2RC ECM (Figure 71b). This figure suggests that as ambient 

temperature decreases, a greater degree of non-uniformities are caused within the cell, 

probably due to mass transport limitations. This results in effectively a lower usable 

capacity that is better captured by the oil-based SOC compared to the air-based SOC. 

Note that the improvement in model error is lesser for the 2nd order ECM compared to 

the 1st order ECM. This could be because the 2nd RC network impedance values are 

captured similarly for both air and oil-based cases.  

The findings in this section support that usable capacity values obtained from close-

to-isothermal testing are employed for parameterising/modelling lithium-ion cells, 

particularly for low temperature applications. The improvements compared to 
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traditional (air-based) parameterisation are two-fold: battery state variables 

(SOC/SOE) are tracked better and model performance improves in terms of accuracy 

in output voltage estimation. 

 

Figure 71. Comparison between Accuracy in Output Voltage Estimation at Different 

Temperatures for both 1st and 2nd Order ECMs (1RC and 2RC): Effect of Air and Oil 

Based SOC Estimation 

6.3 Effect of Thermal Feedback Subsystem on ECM 

Performance 

As discussed in Section 5.1.4, separate currents depending on the model structure (��, 

��� and ��) were employed to estimate the heat generated from each resistive element 

of the ECM. This is because the polarisation currents in each RC network are time 

dependent and depend not just on the load current but also on the corresponding time 

constant (or capacitance value). This is in contrast to traditional ECMs which employ 

a common current (usually the Ohmic current) to estimate heat generation. Further, 

the ‘separate currents’ approach was used for the results reported in Section 6.2.3. The 

following section illustrated the advantages of this approach over the traditional 

‘common current approach’. Here, a 1st order ECM is used to investigate the difference 

between the ‘separate currents’ and ‘common current’ approaches as it has a single 

polarisation element. In this section, only oil-based, rather than air-based, SOC 
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estimates are used for validation as they led to better ECM accuracy. As an example, 

in Figure 72, the polarisation current and the total load current (Ohmic current) are 

illustrated for the 2xUS06 at −15 ℃. Note, the polarisation current and the 

corresponding heat generation calculations/equations were detailed in Section 5.1.4.  

 

Figure 72. Total Load Current Profile and Polarisation Load Current Profile for 

2xUS06 for 65% Starting SOC at −15 ℃ Ambient Temperature using 1RC ECM 

In Figure 73a, the heat generation rates in the RC element for both ‘common current’ 

and ‘separate currents’ approaches are illustrated for the 2xUS06 at −15 ℃ using a 

1RC ECM. The waste energy passing (in Wh) through the RC network is 2.49 Wh for 

the ‘common current’ approach compared to 2.15 Wh for the ‘separate currents’ 

approach (Figure 73b). Therefore, for this drive cycle, the heat generated by the RC 

element is overestimated in the ‘common current’ approach by 15.8% compared to in 

the ‘separate currents’ approach. This is because instead of using the load current, the 

polarisation current (calculated based on Equation 58) is used.  

Similarly, the total waste heat (in Wh) is also higher for the ‘common current’ 

approach compared to the ‘separate currents’ approach (higher by 4.3%) (Figure 73c). 

Following which, the operating temperature rise for both approaches is also different 

with final operating temperature for the ‘common current’ approach being 0.9 ℃ 

higher than for the ‘separate currents’ approach. This suggests that heat generation 

rates are overestimated in the ‘common current’ due to inaccurate consideration of the 
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heat generated by the different impedance element. To show that the ‘separate 

currents’ approach is more accurate than the ‘common current’ approach as part of the 

thermal feedback subsystem in the ECMs considered, the accuracy in modelling the 

surface temperature rise compared to the experimental values should be considered. 

Furthermore, the effect of the difference in operating temperature estimates on the 

ECM should be quantified in terms of modelling accuracy in output voltage 

estimation. The surface temperature was estimated based on the subsystem described 

in Figure 57 (Section 5.1.4).  

 

Figure 73. (a) Heat Generation Rate in RC Element, (b) Waste Heat Generated in RC 

Element, (c) Total Waste Heat Generated by Model and (d) Operating Temperature 

Evolution for Common Current and Separate Current Approaches using 1RC ECM 

for 2xUS06 for 65% Starting SOC at −15 ℃ Ambient Temperature 

As illustrated in Figure 74, it was found that for −15 °C starting temperature, the TRMSE 

for the ‘separate currents’ approach was 1.4 ℃; lower than the TRMSE for the ‘common 

current’ approach (2.5 ℃). This supports the hypothesis that using a ‘separate 

currents’ approach may be advantageous in terms of accurately capturing the thermal 

behaviour of a cell, particularly at low temperatures. Further, the surface temperature 

at the end of the drive cycle for the ‘common current’ approach was −2.2 ℃ 

(estimating a temperature rise of 12.8 ℃). However, the surface temperature at the 

end for the ‘separate currents’ approach was −7.4 ℃. The actual surface temperature 
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was measured to be −4.8 ℃. These results further support the suggestion above that 

heat generation rates are over-predicted if a ‘common current’ is employed. Finally, 

as shown in Figure 75a-b, for both 1RC and 2RC ECMs types, choosing ‘separate 

currents’ leads to improved accuracy in capturing the surface temperature evolution 

of the cell for the 2xUS06 validation drive cycle at different ambient temperatures.  

 

Figure 74. Surface Temperature Estimation for Common Current and Separate Current 

Approaches c.f. Experimentally Measured Surface Temperature for 1RC ECM for 

2xUS06 for 65% Starting SOC at −15 ℃ Ambient Temperature 

 

Figure 75. Comparison between Accuracy in Surface Temperature Estimation at 

Different Ambient Temperatures for both 1st and 2nd Order ECMs (1RC and 2RC): 

Effect of Choosing Separate Currents or Common Current for Thermal Feedback 
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To confirm that the ‘separate currents’ approach is better, the accuracy in output 

voltage estimation (in terms of VRMSE) was compared. Within an ECM, in an RC 

network circuit, the capacitor acts as a high pass filter. This is validated by conducting 

a Fast Fourier transformation (FFT) of the drive cycle power profile at the different 

validation ambient temperatures. The FFT was conducted by using the MATLAB ‘fft’ 

function directly. So, when the branch current (polarisation current) was accounted 

for, higher frequency currents did not pass through the polarisation resistor (Figure 

76). In which case, the polarisation resistor is heated up by a lower frequency current. 

The higher the frequency content of the duty cycle (more transient), the more the 

polarisation current is important and therefore would be more accurate than 

considering just an Ohmic current. This is probably the reason why, even at 25 ℃ 

ambient temperature, as the time constants are longer indicating greater capacitive 

effect, the surface temperature estimation is more accurate for the separate currents 

approach compared to the common current approach (Figure 76d). 

 

Figure 76. FFT of 2xUS06 Drive Cycle Power Profile at Different Starting Ambient 

Temperatures for 1st Order ECM: (a) −15 ℃, (b) −5 ℃, (c) 5 ℃ and (d) 25 ℃ 

As the RC parameters are updated based on the operating temperature, this could have 

a direct effect on model accuracy (in terms of output voltage estimation). As illustrated 

in Figure 77a, although there is a marginal increase in model accuracy for the 1RC 

ECM, a greater degree of improvement is seen if separate currents are used instead of 
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common current for the 2RC ECM type (Figure 77b). For example, at −15 ℃, if a 

common current approach is chosen, the VRMSE is 209.9 mV. However, if a separate 

currents approach is chosen, the VRMSE decreases to 154.4 mV. This supports the 

hypothesis that the method to estimate heat generated in an ECM has a direct effect 

on its accuracy in terms of output voltage estimation. The effect on output voltage 

estimation is not as pronounced as on surface temperature estimation. However, 

accurate surface temperature estimates are critical to model reliability. 

 

Figure 77. Comparison between Accuracy in Output Voltage Estimation at Different 

Ambient Temperatures for (a) 1st and (b) 2nd Order ECMs (1RC and 2RC): Effect of 

Choosing Separate Currents or Common Current for Thermal Feedback 

6.4 Summary 

In this chapter, Objective IV of this thesis is addressed.  

The primary objective of this chapter was to examine the effect of experimental 

parameterisation data on subsequent battery models. In particular, the benefits of 

choosing oil-based parameters over air-based parameters on battery state evolution 

were examined. The findings in this chapter support that usable capacity values 

obtained from close-to-isothermal testing are employed for parameterising/modelling 

lithium-ion cells, particularly for low temperature applications. This is because 

maintaining isothermal test conditions during model parameterisation experiments 
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have a direct effect on battery state calculation. It was shown that, battery SOC/SOE 

estimates parameterised using oil-based datasets were shown to be closer to real-world 

battery performance. Furthermore, using 1st and 2nd order ECMs, it was shown that 

using oil-based SOC rather than air-based SOC improved model accuracy in terms of 

output voltage estimation. Thus, it is imperative that at least at a model 

parameterisation stage, electrical and thermal effects on battery performance are 

adequately separated.  

The significance of ensuring isothermal operating conditions has been overlooked as 

most battery testing and modelling validation is conducted at higher operating 

temperatures where the degree of internal heat generation and their impact on usable 

capacity are lower. In this chapter, it was shown that difference between battery states 

(SOC and SOE) estimated from air and oil based datasets increased as ambient 

temperature decreased; with oil-based SOC/SOE being substantially lower. Thus, the 

improvements from close-to-isothermal (oil-based) parametrisation compared to 

traditional (air-based) parameterisation are two-fold: battery state variables 

(SOC/SOE) are tracked better and model performance improves in terms of accuracy 

in output voltage estimation. 

It has been shown for the first time in this study that the ‘separate currents’ method of 

calculating heat generated within an ECM positively affects the accuracy of an ECM 

in terms of modelled surface temperature estimation and output voltage estimation. 

The effect of thermal feedback on model accuracy validates greater coupling of 

electrical and thermal phenomena, particularly at lower ambient temperatures. 

Furthermore, it supports the argument that modelling assumptions that are acceptable 

at higher operating temperatures (say, 25 ℃) may become detrimental to model 

performance at lower operating temperatures.  

The above findings can potentially help standardise the approach for a model-based 

design process (in particular, methods to experimentally obtain model 

parameterisation data), leading to improved performance estimation of lithium-ion 

cells in real applications. This will ultimately improve the reliability of battery range 

predictions for electric vehicles, particularly in cold weather conditions. 
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7. Discussion and Future Work 

Discrepancy in estimated range is accepted as the norm in conventional IC engine 

based vehicles. For example, in terms of real-world usage, the reduction can be up to 

22% compared to the range advertised (at 18 ℃, based on WLTC) by the manufacturer 

[170]. Similarly, for EVs, this discrepancy is also known to customers [171]. 

However, the issue with estimated range becomes more prominent at low temperatures 

[43,172]. At low temperatures, for EVs, the discrepancy between advertised range and 

actual range increases by a large margin. This creates an issue in regions which have 

low temperatures such as Norway, Sweden and large parts of North America. For 

example, before a road test for the Nissan Leaf at about −15 ℃, the initial estimated 

range was 126 miles (compared to 151 miles claimed) [54]. However, after an actual 

64 mile journey, the estimated range decreased by 116 miles. This indicates an initially 

overestimated range by almost 45%. Clearly, the estimated driving range displayed at 

the beginning of the journey was inaccurate. This thesis provides insight into the 

fundamental cause of such discrepancies and proposes novel methods to reduce them. 

The primary objective of this chapter is to bring together the contributions from the 

results chapters and highlight novelty and significance in the context of the gaps 

highlighted in the literature review (Section 7.1). Future avenues of research are also 

proposed in this chapter and ongoing research work is outlined (Section 7.2). 

7.1 Discussion 

Countries like Norway and Sweden, and large parts of continental Europe and North 

America, are characterised by seasonally extreme cold weather down to −20 °C [5,34]. 

In these conditions, a lithium-ion battery’s capacity, maximum output power and 

charge acceptance capability are reduced. These manifest as reductions in driving 

range and performance of EVs at low ambient temperatures [42]. These reductions are 

worsened by increased energy/power demands due to higher cabin heating 

requirements in cold weather conditions [44,45]. For instance, the real-world range of 

the latest Chevy Bolt was ~184 miles at −2 ℃ [42,43]. This is a substantial reduction 

(29.8% less) from the 263 mile range advertised as per the WLTC (at 18 ℃). Low 

temperatures also lead to large inaccuracies in range estimation of EVs [54,173], 
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unlike at higher  temperatures (between 18 to 25 ℃), where the range estimates are 

close to the actual distances driven [171]. For example, for a road test conducted at 

around −15 ℃, a Tesla Model 3 showed a predicted range of 293 miles [54]. However, 

after a 64 mile journey, the remaining range decreased by 104 miles. This suggests 

that the range displayed initially was overestimated by 38.4%. The range estimation 

inaccuracy, in particular at low temperatures, is largely due to the increased errors in 

estimating the underlying battery states such as SOC or SOE [7,122]. Nejad et al. 

stated that, at low temperatures, existing battery models fail to capture the slower 

dynamics of internal electrochemical processes of the on-board battery pack [7]. This 

indicates that battery model parameters or the underlying parameterisation data could 

be the source of modelling error. This in turn implies that the battery model parameters 

should be captured accurately from experiments at low temperatures to ensure 

applicability in real-world cold weather conditions [59,99].  

7.1.1 Advantages of Close-to-Isothermal Model Parameterisation and 

Battery State Estimation 

The environmental requirements for battery testing can be different, based on whether 

the data is used to assess battery performance or to parameterise battery models. For 

instance, rapid heat generation is critical to improving battery performance at low 

temperatures [82]. This is confirmed by results in Section 4.2, Table 7, showing that 

at −20 ℃ ambient temperature, as discharge C-rate increased from 0.25C to 3C, the 

capacity discharged increased from 31.9 Ah to 34.7 Ah. This is largely related to 

suppression of internal cell resistances as the internal layers of the cell get hotter as 

discharge progresses [97]. This was demonstrated in Section 4.2.1, Figure 34, where 

for −20 ℃ ambient temperature, at the end of 1C discharge cycle, the cell surface 

temperature was −3.9 ℃, deviating by 16.1 ℃ from the starting ambient temperature. 

This leads to inhibited cell overpotentials, leading to sustained discharge and apparent 

benefits to cell discharge performance. This rapid heat generation is beneficial to 

battery performance in the real-world by allowing the cells to reach more favourable 

operating temperatures more quickly. This is probably the reason why previously 

battery modellers used experimental data which were not obtained at isothermal 

conditions as they assumed that the data represented real-world conditions. But the 
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issue is different in state-of-the-art battery models as fundamental parameters need to 

be quantified accurately first; then the variation coming from a secondary (such as 

thermal) effect should be introduced. That is, if a particular battery performance metric 

is being quantified as a function of two parameters, viz. current and temperature, then 

the two parameters should be independent of each other. Thus, for battery model 

parameterisation it is crucial that battery testing is conducted in isothermal 

environmental conditions, to separate electrical and thermal processes.  

Usable capacity, obtained from galvanostatic battery experiments at different 

temperatures and C-rates, is employed to directly model battery performance and in 

turn EV range under different operating scenarios for automotive applications [60]. 

However, by allowing the battery temperature to deviate from the starting ambient 

temperature, the electrical and thermal effects become convoluted. For example, it is 

possible that if battery temperature was held constant at −20 ℃, as reported in Section 

4.2.1, Figure 34, the capacity discharged from the cells would have been lower than 

the 32.2 Ah obtained from air-based experiments. In Section 4.2, additional DCR 

measurements and residual capacity experiments confirm that data generated in air 

based experiments are representative of much higher temperatures, than that reported. 

This lack of isothermal test conditions during battery model parameterisation 

experiments could be the reason for inaccuracies in EV range estimation, especially in 

winter conditions. Inaccurate quantification of usable capacity of lithium-ion batteries 

could also be the reason why BEVs run out of driving range even if the dashboard 

indicator suggests otherwise [52]. Furthermore, there is a vast literature on lithium-ion 

cell models, where researchers have claimed that model parameters have been 

obtained from battery experiments conducted under isothermal conditions, see for 

example [7,33,58,122,123]. On closer examination of the literature, claimed 

isothermal conditions are often found to be non-isothermal.  

In fact, substantial literature attests to the rapid heat generation seen in lithium-ion 

batteries at low temperatures and how that is a potential performance enhancement 

strategy [65,82,174]. However, there is very little literature investigating whether 

claimed isothermal test conditions in literature are actually maintaining their thermal 

boundary conditions [99].  
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In recent work, using an electrochemical model, Ardani et al. concluded that by 

conducting experiments in environmental chambers based on forced air convection, 

internal cell properties such as diffusivity and conductivity are representative of higher 

temperatures rather than the pre-set lower ambient temperature [99]. For stepped 

discharge (10% SOC change with 30 minute intermittent rest periods) experiments, 

claimed to be conducted at 5 ℃ ambient temperature, they suggested that the 

physiochemical parameters obtained were actually more representative of 10 ℃. Their 

research did not consider the more extreme case of continuous discharge which is 

critical to quantifying the usable capacity of a lithium-ion cell and hence estimating 

EV range, especially for lower temperatures.  

There is no clear distinction between how battery experiments are conducted for 

performance characterisation and model parameterisation. Researchers assume that 

the environmental conditions are isothermal, but this is not the case. Very few 

researchers have investigated the effect of non-isothermal test conditions on battery 

model parameters [99]. In fact, no research has been undertaken to quantify the effect 

of isothermal model parameters on model performance and battery state estimation. 

In this thesis, this gap in knowledge is identified, confirmed using state-of-the-art 

experiments and then addressed by proposing a novel immersed oil-based isothermal 

experimental setup.  

In the present study, to try and separate battery electrical and thermal phenomena, a 

novel immersed oil bath based cooling system was proposed (Section 4.1.1, Figure 

31). The experimental setup was not intended for examining the thermal management 

system but to allow for battery testing under isothermal environmental conditions. To 

the best of the author’s knowledge, this is the first time in literature that an isothermal 

experimental setup to measure usable capacity/energy has been proposed. In this work, 

it was evidenced that, compared to traditional air-based model parameterisation, 

isothermal model parameterisation using immersed oil bath could lead to improved 

BMS range estimation accuracy of EVs operating at low temperatures. 

Using immersed oil cooling, it was reported in Chapter 4 that at the same starting 

ambient temperature, the capacity and energy discharged for a particular C-rate is 

lower than that recorded for air cooling. These results demonstrate the importance of 
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battery temperature on its electrical characteristics. It was shown that as starting 

ambient temperature decreased and/or discharge C-rate increased, the capacity 

discharged for the air cooling case was higher than that for the oil cooling case. Battery 

models and particularly, state estimation algorithms have utilised non-isothermal 

capacity/energy values for parameterisation. By allowing battery temperature to 

deviate from the pre-set ambient temperature, the parameters obtained become 

unreliable and the experiment itself inconsistent. This is because different thermal 

chambers will have different heat transfer properties depending on the model (such as 

Espec [82] or Neware [175]) and their heating/cooling capabilities. However, 

isothermal testing will ensure that primarily the true electrical characteristics of the 

lithium-ion cells are extracted as any thermal behaviour is eliminated. This will make 

battery testing more accurate, and allow better repeatability; similar to how a 

calorimeter is employed to measure the true heat generation during a battery 

charge/discharge operation [176]. 

Recently, it has been suggested that energy (in Wh), rather than capacity (in Ah), 

should be employed as the primary parameter for estimating remaining driving range 

(RDR) [56,87]. It was shown in Chapter 4 that the effect of isothermal operating 

conditions is more prominent on discharged energy rather than on discharged capacity. 

This is because the operating voltages for the oil cases are lower than that for the air 

cases. Hence, the power delivery capability of the cell is reduced if the oil-based 

approach is employed rather than the air-based approach. Thus, using a traditional air-

based approach would also lead to overestimated battery power capability by 

underestimating battery resistance. This could also explain why commercial EVs 

suddenly lose power despite the battery being at a high enough SOC [83]. In Section 

5.1.3, Figures 50-51, due to increased heat generation, the DC resistance of the cells 

is shown to decrease as the magnitude of the current pulse increases. Thus, even for 

pulse power characterisation, isothermal test conditions are crucial to ensuring that 

battery power capability is quantified accurately. Otherwise, it is possible that the DC 

resistances obtained for different SOCs and temperatures, are only characterised for a 

few hotter layers within a lithium-ion cell and do not represent the entire cell [97,115].  

Accurate assessment of usable capacity/energy characteristics is particularly important 

for range estimation algorithms which consist of look-up tables with current and 
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temperature as inputs [177]. In look-up tables, capacity is a function of current and 

temperature. These should both be independent of each other as to elicit the effect of 

one variable on battery capacity, the other should be kept constant. However, by 

allowing cell temperatures to change substantially, the result is a convoluted effect of 

temperature and current on the discharged capacity/energy. Despite this, in the latest 

testing standards, such as the IEC 62660-1 and UNECE 38.3, only the ambient 

temperature is specified [60,103]. This is because most standards are defined to 

emulate testing for real-world performance of lithium-ion cells. However, for 

modelling purposes, particularly to parameterise models, there do not exist any testing 

standards. It is recommended that future testing standards should include adherence to 

isothermal test conditions and a maximum tolerance level away from isothermal 

conditions. This should allow for improvement to the quality of model 

parameterisation data and in turn battery state estimates relying on them.  

To validate the importance of isothermal model parameterisation experiments at a 

modelling stage, scaled-down cell level versions of realistic driving scenarios were 

considered. Using two back-to-back US06 drive cycles (2xUS06) it was shown that 

SOC/SOE estimated using oil parameters was closer to how the actual cells behaved 

compared to estimates using air parameters. For example, employing an immersed oil-

cooled experimental setup it was found that battery state estimation reduced absolute 

SOC error from 13.5% to 5.1% at −15 °C. It was also shown that greater the surface 

temperature rise for a particular drive cycle, the larger is the discrepancy between 

choosing air and oil based parameters to estimate battery states. This is illustrated in 

Section 6.2.1, Table 12. This suggests that if the battery temperature deviates 

substantially during the parameterisation experiments, it leads to overestimation of 

battery states and subsequently, inaccurate assessment of vehicular remaining driving 

range. This is consistent with findings of Ardani et al. who reported that solid-phase 

diffusivity and ionic conductivity values are overestimated at low temperatures [99]. 

Therefore, it is recommended that parameters collected from close-to-isothermal or 

better isothermal test setup, such as the oil-based setup proposed, should be considered 

for parameterising battery state estimation algorithms. 

Artificial reduction in capacity has also been previously employed by limited 

researchers as a tool to improve model performance at low temperatures [40,59,138]. 
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Nikolian et al. utilised ‘optimised capacity’ to estimate SOC at 5 ℃ for WLTC drive 

cycles [59]. This ‘optimised capacity’ was a mathematical value which led to 

minimisation of the modelled voltage error. They showed that the ‘optimised capacity’ 

was lower than that obtained for nominal 0.2C discharge; which led to improvement 

in model accuracy. They attributed this to slower electrochemical dynamics. However, 

this could also be due to overestimation of battery capacity from using a thermal 

chamber (manufactured by CTS, series C-40/350 L) to conduct the experiments.  

In this study, it was shown that oil-based capacity values rather than air-based capacity 

values lead to improved accuracy in voltage estimation for both 1st and 2nd order 

ECMs, particularly at low temperatures. This could be because lower capacity values 

better capture cell internal non-uniformities that arise due to low temperature induced 

potential and concentration gradients. This argument is supported by the observation 

that for the 2xUS06 validation cycle, the improvements to VRMSE due to using oil-

based SOC over air-based SOC were higher for the 2nd US06 phase (Figure 70). At 

the same time, the oil-based SOC decreased at a much faster rate compared to the air-

based SOC. This feature could be similar to the reversible capacity fade concept 

suggested by Singer et al. [40]. They found that even for pseudo-OCV tests, the cell 

capacities are reduced at low temperatures. This reversible capacity fade could also be 

due to SOC and temperature gradients within the layers of the cell (with internal layers 

being hotter), potentially causing localised measurements, even for low C-rates.  

Thus, it is recommended that for model parameterisation oil-based capacity values, 

obtained under close-to-isothermal conditions, should be used rather than air-based 

capacity values. The improvements are two-fold: battery state variables (SOC/SOE) 

are tracked better and model performance improves in terms of accuracy in output 

voltage estimation. 

7.1.2 Model Prediction Improvements through Consideration of 

Polarisation Currents for Thermal Feedback 

A battery thermal management system is critical to ensuring optimal battery 

performance and maintaining safe operation [69,75]. Within this, it is important that 

the heat generated inside a battery pack (and cells) is estimated accurately. To achieve 
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this in real-time, the accuracy of the thermal feedback subsystem is critical to ECM 

performance as it helps update the electrical parameters dynamically as battery 

temperature changes [74]. This is particularly important at low temperatures, where a 

greater coupling between electrical and thermal battery phenomena exists [58]. 

However, it is known that accuracy of thermal models in predicting cell temperature 

evolution decreases as temperature decreases [91]. For example, Hosseinzadeh et al. 

showed that for a WLTC cycle, the peak error in estimating the temperature profile 

increased from 5.3% at 25 ℃ to 12.1% at 5 ℃ [91]. Thus, further research is required 

into how cell behaviour is modelled thermally at lower temperatures. 

The majority of thermal models in literature make certain assumptions such as 

ignoring reversible heat generation [178] by arguing that the larger irreversible heat 

component decreases its influence particularly at higher C-rates [179]. In literature, if 

reversible heat generation is ignored, the total cell heat generation rate (����) is 

calculated as in Equation 45b. Equation 45b is reproduced here for convenience: 

���� = ������
� × (�� + ���)        (45b) 

Here, it is assumed that that the heat generated by the various impedance elements is 

dependent on the Ohmic current (which is the input current) and the various resistances 

(Ohmic and polarisation). However, as shown in Equation 46, the heat generation rate 

(����) should be separated into two components depending on the number of RC 

networks (heat generated from the Ohmic resistances and heat generated from 

polarisation resistances). Equation 46 is reproduced here for convenience: 

���� = ������
� × �� + ���

� × ���       (46) 

To calculate heat generated from the polarisation resistances, the time dependent 

current (polarisation current) flowing through the RC circuits should be considered 

separately. This has physical basis in the characteristic times of the different internal 

cell processes such as diffusion and charge transfer. Thus, depending on the time 

elapsed and the current flowing through the RC networks, the heat generated from 

each impedance element in the ECM would be different and could potentially affect 

model performance.  
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It has been shown for the first time in this study that the ‘separate currents’ method of 

calculating heat generated within an ECM (by including polarisation currents in 

thermal feedback subsystem) directly affects the accuracy of an ECM in terms of 

modelled surface temperature estimation and output voltage estimation. As discussed 

in Chapter 6, Section 6.3, using separate currents method leads to improved accuracy 

in estimating cell surface temperature evolution for both 1st and 2nd order ECMs. 

Similarly, the accuracy in output voltage estimation is also improved; albeit to a lesser 

extent. For example, for the 2xUS06 drive cycle at −15 ℃, the root-mean-squared 

error in surface temperature estimate decreased from 3.8 ℃ to 1.2 ℃ if separate 

currents method was used instead of common current method. Correspondingly, the 

root-mean-squared error in terminal voltage also decreased from 209.9 mV to 154.4 

mV. This effect of thermal feedback on model accuracy validates greater coupling of 

electrical and thermal phenomena, particularly at lower ambient temperatures. This 

further suggests that there is a more intricate coupling of electrical and thermal 

behaviour as ambient temperature decreases, particularly due to the temporal and 

spatial temperature gradients within the cell. These localised effects and deviations 

from average behaviour arise from the edge and geometrical aspects of the cell [141].  

Osswald et al. stated that, particularly at low temperature, there exist gradients in 

current distribution within a cell, which is frequency (and thus, time) dependent [115]. 

Within an ECM, in an RC network, the capacitor acts as a high pass filter (as shown 

in Section 6.3, Figure 76). So, when the branch current (polarisation current) is 

accounted for, higher frequency currents do not pass through the polarisation resistor. 

In which case, the polarisation resistor is heated up by a lower frequency current. The 

higher the frequency content of the duty cycle (more transient), the greater the increase 

in accuracy that would arise from considering polarisation currents rather than 

considering just an Ohmic current. Thus, based on the method of calculating heat 

generation within an ECM, the surface temperature estimates are different, that also 

lead to improved accuracy in output voltage estimation. 

A key objective of the IEC 62660-1 standard is to obtain the essential characteristics 

of lithium-ion cells to be used for the propulsion of electric road vehicles 

(BEVs/HEVs) [180]. This implies that if a lithium-ion cell is to be used as a part of an 

automotive battery, the duty cycles used for characterising these cells should be 
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representative of the real-world. However, as discussed in Chapter 2, Section 2.2.2, 

most battery testing for legislative drive cycles is conducted using current control as 

the default approach. While this approach ensures that consistency in capacity 

throughput is maintained across all operating scenarios, energy throughput is not 

maintained. For example, in a battery cycle life test conducted by Keil et al. current 

control is employed to cycle the cells until end-of-life [49]. This means that if actual 

cell level energy/power demands were accounted for (using power control), the cycle 

life may be lower, leading to misleading real-world decisions.  

In this thesis, it was shown that if current control approach to testing lithium-ion cells 

for model validation is employed, the resulting capacity throughput and peak currents 

are unrealistic and inadequate in terms of capturing the real-world energy/power 

demands seen for the same drive cycle. Conversely, if power control is used, allowing 

current to change based on the voltage response, consistency in energy throughput and 

peak power values are ensured, across all driving scenarios. Thus, it is recommended 

that power control approach to testing lithium-ion cells is chosen over current control 

to ensure suitability for model validation, and to inform ageing characterisation 

methods, consequently improving real-world applicability. 

7.1.3 Research Impact 

Today’s market leading electric vehicles, driven on typical UK motorways, have real-

world range estimation inaccuracy of up to 27%, at around 10 °C outside temperature 

[52]. In this work, by employing an immersed oil-cooled experimental setup, which 

can create close-to isothermal conditions, it has been shown that battery state 

estimation can be improved by reducing absolute SOC error from 13.5% to 5.1% 

(reducing absolute SOE error from 20.6% to 4.3%) at −15 °C. These findings provide 

a way forward towards improving range estimation in cold weather conditions for 

automotive applications. 

Learnings from this research have also helped inform experimental rig design for 

WMG’s various research projects [J4, J5 and C3: See ‘List of Publications’], such as 

the Faraday Degradation study which now uses immersed oil bath for maintaining an 

isothermal test environment. Even outside WMG, other industrial partners have 
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replicated similar setups, particularly to obtain experimental data at low temperatures 

for modelling purposes. The journal articles published as part of this research 

meaningfully show that battery evaluation methods, particularly at low temperatures, 

can be improved to produce more accurate battery parameters, especially for state 

estimation. In particular, advances from this research positively impact how usable 

capacity is evaluated, especially at low temperatures. This will potentially lead to 

increased adherence to rigid environmental conditions for global testing standards for 

lithium-ion batteries (such as IEC 62660-1 and UN ECE 38.3) and battery modelling 

research community.  

Building on the success of land transport EVs, aerospace electrification is fast 

emerging [181]. Although inaccuracies in range estimation would rarely have caused 

catastrophic failure in road transport EVs, in electric aircraft they could. For example, 

following an aborted landing, inaccurate range estimation could be the difference 

between an aircraft undertaking a safe holding pattern or an unsafe future landing. 

Therefore, with burgeoning aircraft electrification, accurate range estimation has 

never been more important.  

Similarly, in an automotive context, a modelling error of 5-10% is acceptable, but 

these errors have a more severe impact in aerospace applications. A range estimation 

error of 10% means that the size of the battery pack (and weight) has to increase by 

10%; this in turn will reduce the range. In the aerospace sector, the range estimation 

error is required to be minimal. This is only possible by most accurately capturing 

fundamental battery parameters under different operating conditions (low 

temperatures, extreme currents, etc.). The research presented in this thesis addressed 

this for low temperature by meaningfully separating battery electrical and thermal 

phenomena for model parameterisation experiments.  

7.2 Future Work 

In this study, every effort has been made to improve experimental methods for battery 

model parameterisation and validation for low temperature applications. The work in 

this thesis, also opens up other research avenues that can be explored.  



149 

 

In the following section, recommendations regarding future research and related 

ongoing work are outlined. 

1. Isothermal Parameterisation using Smart Thermal Sensing 

In the experimental work in this thesis, a single hermetically sealed t-type 

thermocouple has been positioned at the geometric centre of the cell surface in 

accordance with IEC 62660-1 testing standard. There will exist a temperature 

inhomogeneity across the surface where testing is conducted using air cooling. 

However, for the oil cooling there should exist minimal in-plane thermal gradients due 

to high thermal conductivity for pouch cells in that direction, large thermal mass of 

the oil bath and high transfer capability of the cooling system. In this study, additional 

thermocouples were also avoided because, inside the oil bath, attaching thermocouples 

is very difficult and was only possible using Perspex and cable ties. This created 

impressions on the cell surface and adding more Perspex would have also 

compromised the area available for heat transfer. Thus, further work is required to 

investigate how improvements can be made to the experimental test setup.  

Lithium-ion cells display substantial thermal gradients in the through-plane direction 

[140,182]. This is supported by the difference in cell operating temperature and 

surface temperature reported in this thesis (Chapter 6, Section 6.3). Thus, control of 

the oil bath temperature through measurements provided from the cell core would be 

crucial to maintaining isothermal test conditions. Further, there is burgeoning 

literature where in situ measurements of cell thermal characteristics are conducted by 

placing temperature sensors in the cell core or between the layers of a pouch cell 

[104,183,184]. This allows monitoring of the temperature characteristics of the cells 

during both charge and discharge operations.  

For future replication, to improve the experimental setup used in this study, 

instrumentation of the lithium-ion cells internally using negative temperature 

coefficient (NTC) thermistor elements is suggested (Figure 78). This will allow better 

thermal control by using temperatures measured inside the cell rather than outside (on 

the surface) as with the Pt-100 discussed in Chapter 4, Section 4.1.2. Techniques for 

internal cell instrumentation have only matured recently, hence could not have been 

applied as part of the work presented in this thesis. However, it is likely that using 
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internal thermal control using thermistors would allow for idealised isothermal test 

conditions producing a more accurate usable capacity value. 

 

Figure 78. Smart Pouch Cell Construction using NTC Thermistor Elements having 

Kapton tape substrate and electrolyte resistant conformal coating [184] 

2. Immersion oil cooling using dielectric fluids is a promising technique to reduce 

thermal gradients within a real-world battery pack due to the large thermal 

mass of the cooling system [127]. In future work, effect of this thermal 

management system can be investigated at module level, particularly to 

investigate thermal performance for motorsport applications and cycling life 

for passenger car applications. This can be contrasted against traditional 

battery modules that employ either air cooling or indirect liquid cooling using 

water/glycol. This comparison will be particularly relevant for rapid 

heating/cooling and fast charging scenarios.  

3. It was established in this thesis that separate currents should be considered 

while calculating individually the heat generated from each impedance 

element in an ECM. It was shown that this leads to improved model 

performance. This should be explored further by a combination of 

electrochemical-thermal modelling and thermal impedance spectroscopy. This 

will allow researchers to explore the time/frequency dependent heat generation 

in a lithium-ion cell better, especially at low temperatures.   

4. The research presented in this thesis, although performed on cells with NMC 

cathode and graphite anode, is transferable to other battery chemistries and 

format. However, validation exercises for other cell chemistries/format were 

not undertaken since the key contribution is related to the isothermal model 

parameterisation. The lithium-ion cell employed in this thesis was a high-
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power cell. Extending this research to high-energy cells may lead to interesting 

conclusions. This is because high-power cells tend to have lower internal 

resistances than high-energy cells. Also, the ratio of active material and current 

collector mass changes, leading to different specific heat capacity for high-

energy cells compared to high-power cells.  

5. Finally, it is proposed in this thesis, that isothermal parameterisation leads to 

improved range accuracy for electric vehicles in the real-world. This should be 

validated: (a) through BMS implementation in a prototype EV, and (b) by 

contrasting against legacy data from EV fleets operating in winter conditions.  
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8. Conclusions 

This chapter summarises the significant findings from the work and highlights their 

contributions to the knowledge.  

Very little research has earlier been undertaken into the validity of battery 

parameterisation experiments, particularly for low temperatures. This thesis proposes 

novel dielectric oil-based thermal control experimental setup for isothermal battery 

testing for model parameterisation; which is a substantial improvement over the state-

of-the-art air-based thermal chambers wherein cell temperature deviates from the 

predefined chamber temperature. 

For the first time, it was demonstrated that using oil-based rather than air-based 

thermal control, battery usable capacity and energy characteristics were substantially 

lower, especially at low temperatures and/or high C-rates. An immersed oil-based 

method allowed for close-to-isothermal tracking of battery usable capacity, by 

eliminating the effect of rapid heat generation at low temperatures and high C-rates. 

This novel method therefore will lead to more accurate capacity/energy 

parameterisation for models used for range estimation in future electric vehicles.  

It was also established that model parameterisation data obtained from oil-based rather 

than air-based experiments leads to far more accurate estimation of battery states i.e. 

SOC and SOE comparable to actual or measured values. Employing the proposed 

methodology, the absolute SOC error for scaled-down legislative drive cycles can be 

reduced (compared to state-of-the-art) from 13.5% to 5.1% (20.6% to 4.3% absolute 

SOE error) at −15°C starting ambient temperature. This can translate to improved 

BEV range estimation under cold weather conditions. 

It was demonstrated that use of oil-based SOC leads to improved accuracy in terminal 

voltage estimation due its faster decrease compared to the air-based SOC. Greater 

improvements to accuracy in terminal voltage estimation were also observed during 

the 2nd phase of the 2xUS06 drive cycle. Thus, the oil-based SOC captures the real cell 

behaviour better compared to the air-based one, resulting in lower modelling errors 

particularly as the drive cycle progresses. The differences between air and oil based 
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SOC and SOE estimations became more pronounced as cell surface temperature 

deviated more from the starting ambient temperature for a particular drive cycle. The 

difference between the two approaches was also observed to increase with decreasing 

starting ambient temperature for the drive cycle.  

A new method for estimating heat generation within an ECM thermal feedback 

subsystem has also been presented. For the first time, it is demonstrated that by 

including polarisation current in a thermal feedback subsystem in place of only the 

common (Ohmic) current leads to more accurate modelled surface temperature and 

terminal voltage estimates. The effect of thermal feedback on model performance 

demonstrates greater coupling between electrical and thermal phenomena, particularly 

at lower temperatures. This validates that assumptions acceptable at room 

temperatures for modelling lithium-ion batteries do not hold true at lower 

temperatures.  

Lastly, the thesis demonstrates that it is better to employ power control as the sole 

approach to obtain validation data for cell models. This is because the power control 

approach updates the current based on the instantaneous operating voltage and ensures 

consistency in energy/power delivery across all driving conditions.  

These findings will ensure increased adherence to rigid environmental test conditions 

in the battery research community and inform global battery testing standards. Overall, 

the key contributions are: 

 Novel oil-based experimental test methodology, which generates close-to-

isothermal test conditions, leads to more reliable and repeatable method to 

accurately assess usable capacity/energy of lithium-ion batteries, especially at 

low temperatures.  

 A model parameterised using datasets obtained from oil-based experiments 

compared to traditional air-based experiments, leads to more accurate 

estimation of battery states and terminal voltage, particularly at low 

temperatures.  

 Inclusion of polarisation currents for heat generation estimates as part of 

thermal feedback subsystem improves model performance by better capturing 

battery temperature evolution. 
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 Use of power control approach for experimentally characterising batteries for 

model validation is recommended because it ensures consistency in energy 

throughput and power, especially at low temperatures and low operating 

voltages. 

Advances from this research can improve range estimation accuracy for BEVs 

operating under cold weather conditions, paving the way for increased market uptake 

of electrified transportation. 
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Appendix A. MATLAB/Simulink ECMs: Graphical 

Representation and Implementation 

In this thesis, MATLAB/Simulink software R2017b edition was employed to build the 

equivalent circuit models (ECMs) used in this research. In the following section, the 

corresponding Simulink representations of the models described in Chapter 5 are 

presented. Two ECM structures were discussed in Chapter 5. First, the 1st order ECM 

(1RC) with a R-RC (a resistor in series with a single RC network) configuration for 

its impedance element. An RC network is a resistor connected in parallel with a 

capacitor. Second, the 2nd order ECM (2RC) with a R-RC-RC (a resistor in series with 

two RC networks) configuration for its impedance element.  

In Figure A-1, the inputs and ouputs to a 1st order ECM are given. The inputs are 

experimentally measured cell current, voltage and surface temperature. The outputs 

are SOC, modelled terminal voltage, estimated OCV, modelled surface temperature, 

modelled operating temperature and finally, SOE. For the 1RC ECM, discharge 

current is positive. 

 

Figure A-1. Overview of MATLAB/Simulink Model for 1st Order (1RC) ECM 

In Figure A-2, the overall Simulink graphical representation of the various subsystems 

of the 1RC ECM are presented. 
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Figure A-2. Various Subsystems as part of 1RC ECM using MATLAB/Simulink: (a)  Input Current and Simulation Time, (b) SOC 

Estimation, (c) Impedance and Terminal Voltage, (d)   Thermal Feedback   and  (e) Surface Temperature Output
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In Figure A-3, the SOC estimation subsystem developed in Simulink is presented. The 

inputs are measured current and measured surface temperature. The output is the SOC 

calibrated between 0 and 100. Note, the capacity values are parameterised based on 

input current and temperature and differ for air and oil based capacity datasets. 

 

Figure A-3. SOC Estimation Subsystem for 1st order (1RC) ECM with Current Input 

and Measured Temperature Inputs 

In Figure A-4, the thermal feedback subsystem designed for the 1RC ECM is given. 

The inputs are the Ohmic and Polarisation currents along with the corresponding 

resistances. The outputs are estimated operating temperature and estimated cell 

surface temperature. The cell heat transfer properties were detailed in Section 5.1.4. 

 

Figure A-4. Thermal Feedback Subsystem for 1st order (1RC) ECM 

K=3600 

K=0.01 
Initial OCV 
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In Figure A-5, the impedance parameterisation for the 1RC ECM is presented. The 

inputs are estimated SOC, estimated operating temperature and drive cycle current. 

Note, the drive cycle current is the mean drive cycle current including both charge and 

discharge. Furthermore, the OCV and the � (���) as a function of estimated SOC 

and current sign are parameterised. The resistance values (�� and ���) and �� values 

are calculated using 3-D look-up tables. The ‘n-D’ look-up table Simulink blocks are 

used in their default configuration.  

  

 

Figure A-5. Hysteresis and RC Parameters from Lookup Tables for 1st order (1RC) 

ECM 

In Figure A-6, the overpotential and terminal voltage calculation subsystems for the 

1RC ECM are presented.  

 

Figure A-6. Overpotential and Terminal Voltage Estimation for 1st order (1RC) ECM: 

(a) Overpotential Calculation, (b) OCV & Hysteresis and (c) Terminal Voltage 
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In Figure A-7, the Simulink implementation of cell overpotential calculation for the 

1RC ECM is presented. The inputs are the parameterised impedance values and the 

experimental drive cycle current. As described in Section 5.1.3.2, the total 

overpotential arising from Ohmic overpotential and polarisation overpotential is 

calculated. The polarisation current implemented using a discrete time integrator 

Simulink block (in default setting) is saturated between −80 A (maximum charge 

current) and 200 A (maximum discharge current). The key outputs of the subsystem 

are total overpotential and polarisation current.  

 

Figure A-7. Polarisation Currents and Cell Overpotential Calculation for 1st order 

(1RC) ECM 

In Figure A-8, the implementation of voltage hysteresis to calculate model OCV is 

presented. The inputs are experimental current and � (���) and the output is 

modelled OCV.  

Figure A-8. Implementation of Hysteresis to OCV for 1st order (1RC) ECM 
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In Figure A-9, the terminal voltage calculation in the 1RC ECM is graphically 

presented. The inputs are OCV and cell total overpotential (‘eta’) at each time step. 

The output is modelled terminal voltage at each time step. 

 

Figure A-9. Using OCV and Overpotential (eta) to Calculate 1st order (1RC) ECM 

In Figure A-10, the SOE estimation subsystem implemented in Simulink is presented. 

The inputs are measured power (� = � × �) and measured surface temperature. The 

energy values are parameterised based on these inputs and the output is SOE saturated 

between 0 and 100. Note, the energy values are parameterised based on measured input 

current and surface temperature and differ for air and oil based capacity datasets. 

 

 

Figure A-10. SOE Estimation Subsystem with Current Input and Measured 

Temperature Inputs for 1st order (1RC) ECM 

In Figure A-11, the Simulink model for the 2nd order ECM (2RC) is outlined. The 

inputs are experimentally measured cell current, voltage and surface temperature. The 

outputs are SOC, modelled terminal voltage, estimated OCV, modelled surface 
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temperature, modelled operating temperature and finally, SOE. For the 2RC ECM, 

discharge current is positive. 

 

Figure A-11. Overview of MATLAB/Simulink Model for 2nd Order (2RC) ECM 

In Figure A-12, the overall Simulink graphical representation of the various 

subsystems of the 1RC ECM are presented. 
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Figure A-12. Various Subsystems as part of 2RC ECM using MATLAB/Simulink: (a)  Input Current and Simulation Time, (b) SOC 

Estimation, (c) Impedance and Terminal Voltage, (d)   Thermal Feedback   and  (e) Surface Temperature Output 
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In Figure A-13, the SOC estimation subsystem developed in Simulink for the 2RC 

ECM is presented. The inputs are measured current and measured surface temperature. 

The output is the SOC calibrated between 0 and 100. Note, the capacity values are 

parameterised based on measured input current and surface temperature and differ for 

air and oil based capacity datasets. 

 

Figure A-13. SOC Estimation Subsystem for 2nd order (2RC) ECM with Current Input 

and Measured Temperature Inputs 

Similar to the 1RC ECM, in Figure A-14, the thermal feedback subsystem designed 

for the 2RC ECM is given. The inputs are the Ohmic and Polarisation currents along 

with the corresponding resistances. The outputs are estimated operating temperature 

and estimated cell surface temperature. The cell heat transfer properties were detailed 

in Section 5.1.4. 

 

Figure A-14. Thermal Feedback Subsystem for 2nd order (2RC) ECM 

K=3600 

Initial OCV K=0.01 
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In Figure A-15, the impedance parameterisation for the 2RC ECM is presented. The 

inputs are estimated SOC, estimated operating temperature and drive cycle current. 

Note, the drive cycle current is the mean drive cycle current including both charge and 

discharge. Furthermore, the OCV and the � (���) as a function of estimated SOC 

and current sign are parameterised. The resistance values (��, ��� and ���) and, �� 

and �� values, were calculated using 3-D look-up tables. The ‘n-D’ look-up table 

Simulink blocks are used in their default configuration. 

  

Figure A-15. Hysteresis and RC Parameters from Lookup Tables for 2nd order (2RC) 

ECM 

In Figure A-16, the overpotential and terminal voltage subsystem for the 1RC ECM is 

presented.  
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Figure A-16. Overpotential and Terminal Voltage Estimation for 2nd order (2RC) 

ECM: (a) Overpotential Calculation, (b) OCV & Hysteresis and (c) Terminal Voltage 

In Figure A-17, the Simulink implementation of cell overpotential calculation for the 

2RC ECM is presented. The inputs are the parameterised impedance values and the 

experimental current. As described in Section 5.1.3.2, the total overpotential arising 

from Ohmic overpotential and polarisation overpotential is calculated. The 

polarisation current implemented using a discrete time integrator Simulink block (in 

default setting) is saturated between −80 A (maximum charge current) and 200 A 

(maximum discharge current). The key outputs of the subsystem are total overpotential 

and the polarisation currents for the 2RC networks. 

 

Figure A-17. Polarisation Currents and Cell Overpotential Calculation for 2nd order 

(2RC) ECM 
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In Figure A-18, the implementation of voltage hysteresis to calculate model OCV is 

presented. The inputs are experimental current and � (���) and the output is 

modelled OCV. 

 

Figure A-18. Implementation of Hysteresis to OCV for 2nd order (2RC) ECM 

In Figure A-19, the terminal voltage calculation in the 1RC ECM is graphically 

presented. The inputs are OCV and cell total overpotential (‘eta’) at each time step. 

The output is modelled terminal voltage at each time step. 

 

Figure A-19. Using OCV and Overpotential (eta) to Calculate 2nd order (2RC) ECM 

In Figure A-20, the SOE estimation subsystem implemented in Simulink is presented. 

The inputs are measured power (� = � × �) and measured surface temperature. The 

energy values are parameterised based on these inputs and the output is SOE saturated 

between 0 and 100. Note, the energy values are parameterised based on measured input 

current and surface temperature and differ for air and oil based capacity datasets. 
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Figure A-20. SOE Estimation Subsystem with Current Input and Measured 

Temperature Inputs for 2nd order (2RC) ECM 
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Appendix B. MATLAB/Simulink ECMs: Code 

Employed to Develop and Simulate ECMs 

1. For comparing air and oil based SOC estimation and for investigating their 

effect on model performance, the following MATLAB script was employed: 

1 soc=65; 

2 temperature='minus15'; 

3 

4 load(['C:\PhD\Model\Validation_Data_New_Processed\2xUS06_', 

temperature,'degC_master.mat'],'real_data','real_soc','real_soe'); 

5 

6 order='2'; 

7 op_t=-15; 

8 

9 compare_US06 

10 clearvars -except data1 soc temperature order op_t real_soc real_soe 

11 

12 warning off 

13 

14 % Initialise power profile for into current-based ECM 

15 

16 data1(1,4)=0; 

17 

18 test1=data1; 

19 

20 test=test1; 

21 

22 time=test(:,4); 

23 

24 current(:,1)=time; 

25 

26 current(:,2)=-test(:,1); 

27 

28 rc_current_discharge=mean(current(current(:,2)>0,2)); 

29 rc_current_charge=mean(current(current(:,2)>0,2)); 

30 

31 rc_current=mean(current(:,2)); 

32 

33 % rc_current_discharge=rc_current; 

34 

35 current_sign(:,1)=time; 

36 current_sign(:,2)=0; 

37 

38 voltage(:,1)=time; 
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39 voltage(:,2)=test(:,2); 

40 

41 measured_temperature(:,1)=time; 

42 measured_temperature(:,2)=test(:,3)+op_t; 

43 

44 load('C:\PhD\Model\Parameters_MATLAB\param_master_pulse_values.mat') 

45 

46 pulse_set=pulse_new; 

47 

48 load('C:\PhD\Model\Parameters_MATLAB\hysteresis.mat') 

49 

load(['C:\PhD\Model\Parameters_MATLAB\param_master_charge_and_discharge

_', 

order,'_air_new.mat']) 

50 

51 init_ocv=voltage(1,2); 

52 

53 % Run current-based ECM for power profile 

54 

55 current(:,1)=time; 

56 current(:,2)=-test(:,1); 

57 

58 

sim(['C:\PhD\Model\ECM\Submission\Take_1_Current_Profile_',order,'RC_fi

nal. 

slx']); 

59 

60 vrms(1,1)=1000*rms(voltage_exp-voltage_fcp); 

61 vpeak(1,1)=1000*max(abs(voltage_exp-voltage_fcp)); 

62 trms(1,1)=rms(temperature_exp-temperature_fcp); 

63 

64 soc_air=soc_fcp-soc_fcp(1,1)+65; 

65 soe_air=soe_fcp-soe_fcp(1,1)+65; 

66 

67 air_soc=soc_air(end); 

68 air_soe=soe_air(end); 

69 

70 nominal_capacity(1,1)=mean(nominal_capacity_fcp); 

71 

72 nominal_energy(1,1)=mean(nominal_energy_fcp); 

73 

74 voltage_fcp1=voltage_fcp; 

75 

76 operating_temperature_fcp1=operating_temperature_fcp; 

77 

78 surface_temperature_fcp1=temperature_fcp; 

79 

80 polarisation_current_fcp1=polarisation_current_1; 
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81 

82 polarisation_heat_fcp1=polarisation_power; 

83 

84 total_heat_fcp1=qgen_fcp; 

85 

86 

87 clearvars -except air_soc air_soe real_soc real_soe pulse_set 

total_heat_fcp1 

polarisation_heat_common_fcp1 polarisation_heat_fcp1 

polarisation_current_fcp1 

surface_temperature_fcp1 soc_star_air soe_star_air tm vpeak 

operating_temperature_fcp1 

voltage_fcp1 soc temperature order op_t nominal_capacity nominal_energy 

current time 

rc_current_discharge rc_current_charge voltage vrms trms soc_air soe_air 

temperature_fcp temperature_exp voltage_fcp current_fcp 

operating_temperature_fcp 

measured_temperature 

88 

89 load('C:\PhD\Model\Parameters_MATLAB\hysteresis.mat') 

90 

load(['C:\PhD\Model\Parameters_MATLAB\param_master_charge_and_discharge

_', 

order,'_oil_new.mat']) 

91 

92 init_ocv=voltage(1,2); 

93 

94 % Run current-based ECM for power profile 

95 

96 

sim(['C:\PhD\Model\ECM\Submission\Take_1_Current_Profile_',order,'RC_fi

nal. 

slx']); 

97 

98 vrms(1,2)=1000*rms(voltage_exp-voltage_fcp); 

99 vpeak(1,2)=1000*max(abs(voltage_exp-voltage_fcp)); 

100 trms(1,2)=rms(temperature_exp-temperature_fcp); 

101 

102 rms = 1000*sqrt(movmean((voltage_exp-voltage_fcp).*(voltage_exp-

voltage_fcp), 

100)); 

103 

104 soc_oil=soc_fcp(:,1)-soc_fcp(1,1)+65; 

105 soe_oil=soe_fcp(:,1)-soe_fcp(1,1)+65; 

106 

107 oil_soc=soc_oil(end); 

108 oil_soe=soe_oil(end); 

109 
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110 nominal_capacity(1,2)=mean(nominal_capacity_fcp); 

111 

112 nominal_energy(1,2)=mean(nominal_energy_fcp); 

113 

114 voltage_fcp2=voltage_fcp; 

115 

116 operating_temperature_fcp2=operating_temperature_fcp; 

117 

118 surface_temperature_fcp2=temperature_fcp; 

119 

120 polarisation_current_fcp2=polarisation_current_1; 

121 

122 polarisation_heat_fcp2=polarisation_power; 

123 total_heat_fcp2=qgen_fcp; 

124 

125 clearvars -except air_soc air_soe oil_soc oil_soe real_soc real_soe 

vpeak 

polarisation_heat_common_fcp1 polarisation_heat_common_fcp2 

total_heat_fcp1 

total_heat_fcp2 polarisation_heat_fcp1 polarisation_heat_fcp2 

polarisation_current_fcp1 polarisation_current_fcp2 

surface_temperature_fcp1 

surface_temperature_fcp2 soc_star_air soe_star_air soc_star_oil 

soe_star_oil tm 

measured_temperature operating_temperature_fcp1 

operating_temperature_fcp2 soc 

temperature order op_t current_fcp rc_current_discharge 

rc_current_charge vrms trms 

soc_air soc_oil soe_air soe_oil nominal_capacity nominal_energy 

voltage_fcp2 

voltage_fcp1 voltage_exp 

 

2. For comparing the effect of choosing polarisation current as part of thermal 

feedback subsystem on surface temperature estimation and for investigating 

their effect on model performance, the following MATLAB script was 

employed: 

1 soc=65; 

2 temperature='25'; 

3 

4 load(['C:\PhD\Model\Validation_Data_New_Processed\2xUS06_', 

temperature,'degC_master.mat'],'real_data','real_soc','real_soe'); 

5 

6 order='1'; 

7 op_t=25; 

8 
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9 compare_US06 

10 clearvars -except data1 soc temperature order op_t real_soc real_soe 

11 

12 warning off 

13 

14 % Initialise power profile for into current-based ECM 

15 

16 data1(1,4)=0; 

17 

18 test1=data1; 

19 

20 test=test1; 

21 

22 time=test(:,4); 

23 

24 current(:,1)=time; 

25 

26 current(:,2)=-test(:,1); 

27 

28 rc_current_discharge=mean(current(current(:,2)>0,2)); 

29 rc_current_charge=mean(current(current(:,2)>0,2)); 

30 

31 rc_current=mean(current(:,2)); 

32 

33 % rc_current_discharge=rc_current; 

34 

35 current_sign(:,1)=time; 

36 current_sign(:,2)=0; 

37 

38 voltage(:,1)=time; 

39 voltage(:,2)=test(:,2); 

40 

41 measured_temperature(:,1)=time; 

42 measured_temperature(:,2)=test(:,3)+op_t; 

43 

44 load('C:\PhD\Model\Parameters_MATLAB\param_master_pulse_values.mat') 

45 

46 pulse_set=pulse_new; 

47 

48 load('C:\PhD\Model\Parameters_MATLAB\hysteresis.mat') 

49 

load(['C:\PhD\Model\Parameters_MATLAB\param_master_charge_and_discharge

_', 

order,'_oil_new.mat']) 

50 

51 init_ocv=voltage(1,2); 

52 

53 % Run current-based ECM for power profile 
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54 

55 current(:,1)=time; 

56 current(:,2)=-test(:,1); 

57 

58 sim(['C:\PhD\Model\ECM\Submission\Take_1_Current_Profile_', 

order,'RC_final_common.slx']); 

59 

60 vrms(1,1)=1000*rms(voltage_exp-voltage_fcp); 

61 vpeak(1,1)=1000*max(abs(voltage_exp-voltage_fcp)); 

62 trms(1,1)=rms(temperature_exp-temperature_fcp); 

63 

64 soc_air=soc_fcp-soc_fcp(1,1)+65; 

65 soe_air=soe_fcp-soe_fcp(1,1)+65; 

66 

67 air_soc=soc_air(end); 

68 air_soe=soe_air(end); 

69 

70 nominal_capacity(1,1)=mean(nominal_capacity_fcp); 

71 

72 nominal_energy(1,1)=mean(nominal_energy_fcp); 

73 

74 voltage_fcp1=voltage_fcp; 

75 

76 operating_temperature_fcp1=operating_temperature_fcp; 

77 

78 surface_temperature_fcp1=temperature_fcp; 

79 

80 polarisation_current_fcp1=polarisation_current_1; 

81 

82 polarisation_heat_fcp1=polarisation_power; 

83 

84 total_heat_fcp1=qgen_fcp; 

85 

86 total_heat_energy_fcp1=cumsum(qgen_fcp)/3600; 

87 

88 

89 clearvars -except total_heat_energy_fcp1 air_soc air_soe real_soc 

real_soe 

pulse_set total_heat_fcp1 polarisation_heat_common_fcp1 

polarisation_heat_fcp1 

polarisation_current_fcp1 surface_temperature_fcp1 soc_star_air 

soe_star_air tm vpeak 

operating_temperature_fcp1 voltage_fcp1 soc temperature order op_t 

nominal_capacity 

nominal_energy current time rc_current_discharge rc_current_charge 

voltage vrms trms 

soc_air soe_air temperature_fcp temperature_exp voltage_fcp current_fcp 

operating_temperature_fcp measured_temperature 
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90 

91 load('C:\PhD\Model\Parameters_MATLAB\hysteresis.mat') 

92 

load(['C:\PhD\Model\Parameters_MATLAB\param_master_charge_and_discharge

_', 

order,'_oil_new.mat']) 

93 

94 init_ocv=voltage(1,2); 

95 

96 % Run current-based ECM for power profile 

97 

98 

sim(['C:\PhD\Model\ECM\Submission\Take_1_Current_Profile_',order,'RC_fi

nal. 

slx']); 

99 

100 vrms(1,2)=1000*rms(voltage_exp-voltage_fcp); 

101 vpeak(1,2)=1000*max(abs(voltage_exp-voltage_fcp)); 

102 trms(1,2)=rms(temperature_exp-temperature_fcp); 

103 

104 rms = 1000*sqrt(movmean((voltage_exp-voltage_fcp).*(voltage_exp-

voltage_fcp), 

100)); 

105 

106 soc_oil=soc_fcp(:,1)-soc_fcp(1,1)+65; 

107 soe_oil=soe_fcp(:,1)-soe_fcp(1,1)+65; 

108 

109 oil_soc=soc_oil(end); 

110 oil_soe=soe_oil(end); 

111 

112 nominal_capacity(1,2)=mean(nominal_capacity_fcp); 

113 

114 nominal_energy(1,2)=mean(nominal_energy_fcp); 

115 

116 voltage_fcp2=voltage_fcp; 

117 

118 operating_temperature_fcp2=operating_temperature_fcp; 

119 

120 surface_temperature_fcp2=temperature_fcp; 

121 

122 polarisation_current_fcp2=polarisation_current_1; 

123 

124 polarisation_heat_fcp2=polarisation_power; 

125 

126 total_heat_fcp2=qgen_fcp; 

127 

128 total_heat_energy_fcp2=cumsum(qgen_fcp)/3600; 

129 
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130 clearvars -except total_heat_energy_fcp1 total_heat_energy_fcp2 

temperature_exp air_soc air_soe oil_soc oil_soe real_soc real_soe vpeak 

polarisation_heat_common_fcp1 polarisation_heat_common_fcp2 

total_heat_fcp1 

total_heat_fcp2 polarisation_heat_fcp1 polarisation_heat_fcp2 

polarisation_current_fcp1 polarisation_current_fcp2 

surface_temperature_fcp1 

surface_temperature_fcp2 soc_star_air soe_star_air soc_star_oil 

soe_star_oil tm 

measured_temperature operating_temperature_fcp1 

operating_temperature_fcp2 soc 

temperature order op_t current_fcp rc_current_discharge 

rc_current_charge vrms trms soc_air soc_oil soe_air soe_oil 

nominal_capacity nominal_energy voltage_fcp2 voltage_fcp1 voltage_exp 

3. The following MATLAB script was utilised to implement the fitted RC 

parameters into lookup-tables for both 1st and 2nd order ECMs (1RC and 2RC, 

respectively): 

 

1 clearvars -except capacity energy_values hysteresis soe_ocv 

2 

3 ambient{1,1}='minus20'; 

4 ambient{2,1}='minus10'; 

5 ambient{3,1}='0'; 

6 ambient{4,1}='25'; 

7 

8 soc{1,1}='20'; 

9 soc{2,1}='50'; 

10 soc{3,1}='80'; 

11 

12 order=0; 

13 

14 master_Ro=zeros(3,18,4); 

15 

16 if order~=0 

17 

18 master_Rp1=zeros(3,18,4); 

19 master_Tau1=zeros(3,18,4); 

20 

21 if order==2 

22 

23 master_Rp2=zeros(3,18,4); 

24 master_Tau2=zeros(3,18,4); 

25 end 

26 end 

27 
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28 for aa=1:4 

29 

30 for jj=1:3 

31 

32 load(['C:\PhD\Model\Xalt\MAT\PPC_',num2str(order),'RCx\',ambient{aa, 

1},'degC_soc_',soc{jj,1},'.mat']) 

33 

34 

35 

36 nc=max(size(transpose(fliplr(RoCm)))); 

37 

38 nd=max(size(transpose(RoDm))); 

39 

40 RoCm=fliplr(transpose(RoCm)); 

41 

42 ErCm=fliplr(transpose(ErCm)); 

43 

44 stdRoCm=fliplr(transpose(stdRoCm)); 

45 

46 RoDm=transpose(RoDm); 

47 

48 ErDm=transpose(ErDm); 

49 

50 stdRoDm=transpose(stdRoDm); 

51 

52 PulseCm=fliplr(transpose(PulseCm)); 

53 

54 PulseDm=transpose(PulseDm); 

55 

56 master_Ro(jj,9-nc:8+nd,aa)=[RoCm RoDm]; 

57 

58 master_Er(jj,9-nc:8+nd,aa)=[ErCm ErDm]; 

59 

60 master_stdRo(jj,9-nc:8+nd,aa)=[stdRoCm stdRoDm]; 

61 

62 master_Pulse(jj,9-nc:8+nd,aa)=[PulseCm PulseDm]; 

63 

64 if order ~= 0 

65 

66 RpCm=fliplr(transpose(RpCm)); 

67 

68 stdRpCm=fliplr(transpose(stdRpCm)); 

69 

70 RpDm=transpose(RpDm); 

71 

72 stdRpDm=transpose(stdRpDm); 

73 

74 TauCm=fliplr(transpose(TauCm)); 
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75 

76 stdTauCm=fliplr(transpose(stdTauCm)); 

77 

78 TauDm=transpose(TauDm); 

79 stdTauDm=transpose(stdTauDm); 

80 

81 master_Rp1(jj,9-nc:8+nd,aa)=[RpCm(1,:) RpDm(1,:)]; 

82 

83 master_stdRp1(jj,9-nc:8+nd,aa)=[stdRpCm(1,:) stdRpDm(1,:)]; 

84 

85 master_Tau1(jj,9-nc:8+nd,aa)=[TauCm(1,:) TauDm(1,:)]; 

86 

87 master_stdTau1(jj,9-nc:8+nd,aa)=[stdTauCm(1,:) stdTauDm(1,:)]; 

88 

89 if order==2 

90 

91 master_Rp2(jj,9-nc:8+nd,aa)=[RpCm(2,:) RpDm(2,:)]; 

92 

93 master_stdRp2(jj,9-nc:8+nd,aa)=[stdRpCm(2,:) stdRpDm(2,:)]; 

94 

95 master_Tau2(jj,9-nc:8+nd,aa)=[TauCm(2,:) TauDm(2,:)]; 

96 

97 master_stdTau2(jj,9-nc:8+nd,aa)=[stdTauCm(2,:) stdTauDm(2,:)]; 

98 

99 else 

100 

101 master_Rp2(jj,9-nc:8+nd,aa)=[RpCm(1,:) RpDm(1,:)]; 

102 

103 master_stdRp2(jj,9-nc:8+nd,aa)=[stdRpCm(1,:) stdRpDm(1,:)]; 

104 

105 master_Tau2(jj,9-nc:8+nd,aa)=[TauCm(1,:) TauDm(1,:)]; 

106 

107 master_stdTau2(jj,9-nc:8+nd,aa)=[stdTauCm(1,:) stdTauDm(1,:)]; 

108 

109 end 

110 

111 end 

112 

113 for index=1:18 

114 

115 if master_Ro(jj,index,aa)==0 && index<9 

116 

117 master_Ro(jj,index,aa)=master_Ro(jj,9-nc,aa); 

118 master_Er(jj,index,aa)=master_Er(jj,9-nc,aa); 

119 master_stdRo(jj,index,aa)=master_stdRo(jj,9-nc,aa); 

120 master_Pulse(jj,index,aa)=master_Pulse(jj,9-nc,aa); 

121 

122 if order~=0 
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123 master_Rp1(jj,index,aa)=master_Rp1(jj,9-nc,aa); 

124 master_Rp2(jj,index,aa)=master_Rp2(jj,9-nc,aa); 

125 master_Tau1(jj,index,aa)=master_Tau1(jj,9-nc,aa); 

126 master_Tau2(jj,index,aa)=master_Tau2(jj,9-nc,aa); 

127 

128 master_stdRp1(jj,index,aa)=master_stdRp1(jj,9-nc,aa); 

129 master_stdRp2(jj,index,aa)=master_stdRp2(jj,9-nc,aa); 

130 master_stdTau1(jj,index,aa)=master_stdTau1(jj,9-nc,aa); 

131 master_stdTau2(jj,index,aa)=master_stdTau2(jj,9-nc,aa); 

132 

133 end 

134 

135 elseif master_Ro(jj,index,aa)==0 && index>8 

136 

137 master_Ro(jj,index,aa)=master_Ro(jj,8+nd,aa); 

138 master_Er(jj,index,aa)=master_Er(jj,8+nd,aa); 

139 master_stdRo(jj,index,aa)=master_stdRo(jj,8+nd,aa); 

140 master_Pulse(jj,index,aa)=master_Pulse(jj,8+nd,aa); 

141 

142 if order~=0 

143 master_Rp1(jj,index,aa)=master_Rp1(jj,8+nd,aa); 

144 master_Rp2(jj,index,aa)=master_Rp2(jj,8+nd,aa); 

145 master_Tau1(jj,index,aa)=master_Tau1(jj,8+nd,aa); 

146 master_Tau2(jj,index,aa)=master_Tau2(jj,8+nd,aa); 

147 

148 master_stdRp1(jj,index,aa)=master_stdRp1(jj,8+nd,aa); 

149 master_stdRp2(jj,index,aa)=master_stdRp2(jj,8+nd,aa); 

150 master_stdTau1(jj,index,aa)=master_stdTau1(jj,8+nd,aa); 

151 master_stdTau2(jj,index,aa)=master_stdTau2(jj,8+nd,aa); 

152 

153 end 

154 end 

155 

156 end 

157 end 

158 end 

159 

160 clearvars -except master_Er order capacity energy_values hysteresis 

soe_ocv 

master_Ro master_Rp1 master_Rp2 master_Tau1 master_Tau2 master_Pulse 

master_stdRo 

master_stdRp1 master_stdRp2 master_stdTau1 master_stdTau2 

161 

162 pulse=master_Pulse(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

163 

164 Ro=master_Ro(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

165 

166 Er=master_Er(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 
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167 

168 stdRo=master_stdRo(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

169 

170 Ro=1000*Ro; 

171 stdRo=1000*stdRo; 

172 

173 if order~=0 

174 

175 Rp1=1000*master_Rp1(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

176 

177 Tau1=master_Tau1(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

178 

179 stdRp1=1000*master_stdRp1(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

180 

181 stdTau1=master_stdTau1(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

182 

183 if order==2 

184 

185 Rp2=1000*master_Rp2(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

186 Tau2=master_Tau2(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

187 

188 stdRp2=1000*master_stdRp2(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

189 stdTau2=master_stdTau2(:,[1 2 3 4 5 6 11 12 13 14 15 16 17],:); 

190 

191 end 

192 

193 end 

194 

195 clearvars -except Er Ro Rp1 Tau1 Rp2 Tau2 pulse order stdRo stdRp1 

stdTau1 stdRp2 

stdTau2 

196 

197 pcRo=100*stdRo./Ro; 

198 

199 pcRp1=100*stdRp1./Rp1; 

200 

201 pcTau1=100*stdTau1./Tau1; 

202 

203 if order==2 

204 

205 pcRp2=100*stdRp2./Rp2; 

206 

207 pcTau2=100*stdTau2./Tau2; 

208 

209 end 

210 

211 data1.soc20.Pulse=(unique(pulse(1,:,1),'stable')); 

212 data1.soc50.Pulse=(unique(pulse(2,:,1),'stable')); 
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213 data1.soc80.Pulse=(unique(pulse(3,:,1),'stable')); 

214 

215 data2.soc20.Pulse=(unique(pulse(1,:,2),'stable')); 

216 data2.soc50.Pulse=(unique(pulse(2,:,2),'stable')); 

217 data2.soc80.Pulse=(unique(pulse(3,:,2),'stable')); 

218 

219 data3.soc20.Pulse=(unique(pulse(1,:,3),'stable')); 

220 data3.soc50.Pulse=(unique(pulse(2,:,3),'stable')); 

221 data3.soc80.Pulse=(unique(pulse(3,:,3),'stable')); 

222 

223 data4.soc20.Pulse=(unique(pulse(1,:,4),'stable')); 

224 data4.soc50.Pulse=(unique(pulse(2,:,4),'stable')); 

225 data4.soc80.Pulse=(unique(pulse(3,:,4),'stable')); 

226 

227 data1.soc20.Ro=(unique(Ro(1,:,1),'stable')); 

228 data1.soc50.Ro=(unique(Ro(2,:,1),'stable')); 

229 data1.soc80.Ro=(unique(Ro(3,:,1),'stable')); 

230 

231 data2.soc20.Ro=(unique(Ro(1,:,2),'stable')); 

232 data2.soc50.Ro=(unique(Ro(2,:,2),'stable')); 

233 data2.soc80.Ro=(unique(Ro(3,:,2),'stable')); 

234 

235 data3.soc20.Ro=(unique(Ro(1,:,3),'stable')); 

236 data3.soc50.Ro=(unique(Ro(2,:,3),'stable')); 

237 data3.soc80.Ro=(unique(Ro(3,:,3),'stable')); 

238 

239 data4.soc20.Ro=(unique(Ro(1,:,4),'stable')); 

240 data4.soc50.Ro=(unique(Ro(2,:,4),'stable')); 

241 data4.soc80.Ro=(unique(Ro(3,:,4),'stable')); 

242 

243 data1.soc20.Er=(unique(Er(1,:,1),'stable')); 

244 data1.soc50.Er=(unique(Er(2,:,1),'stable')); 

245 data1.soc80.Er=(unique(Er(3,:,1),'stable')); 

246 

247 data2.soc20.Er=(unique(Er(1,:,2),'stable')); 

248 data2.soc50.Er=(unique(Er(2,:,2),'stable')); 

249 data2.soc80.Er=(unique(Er(3,:,2),'stable')); 

250 

251 data3.soc20.Er=(unique(Er(1,:,3),'stable')); 

252 data3.soc50.Er=(unique(Er(2,:,3),'stable')); 

253 data3.soc80.Er=(unique(Er(3,:,3),'stable')); 

254 

255 data4.soc20.Er=(unique(Er(1,:,4),'stable')); 

256 data4.soc50.Er=(unique(Er(2,:,4),'stable')); 

257 data4.soc80.Er=(unique(Er(3,:,4),'stable')); 

258 

259 if order~=0 

260 
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261 data1.soc20.Rp1=(unique(Rp1(1,:,1),'stable')); 

262 data1.soc50.Rp1=(unique(Rp1(2,:,1),'stable')); 

263 data1.soc80.Rp1=(unique(Rp1(3,:,1),'stable')); 

264 

265 data2.soc20.Rp1=(unique(Rp1(1,:,2),'stable')); 

266 data2.soc50.Rp1=(unique(Rp1(2,:,2),'stable')); 

267 data2.soc80.Rp1=(unique(Rp1(3,:,2),'stable')); 

268 

269 data3.soc20.Rp1=(unique(Rp1(1,:,3),'stable')); 

270 data3.soc50.Rp1=(unique(Rp1(2,:,3),'stable')); 

271 data3.soc80.Rp1=(unique(Rp1(3,:,3),'stable')); 

272 

273 data4.soc20.Rp1=(unique(Rp1(1,:,4),'stable')); 

274 data4.soc50.Rp1=(unique(Rp1(2,:,4),'stable')); 

275 data4.soc80.Rp1=(unique(Rp1(3,:,4),'stable')); 

276 

277 data1.soc20.Tau1=(unique(Tau1(1,:,1),'stable')); 

278 data1.soc50.Tau1=(unique(Tau1(2,:,1),'stable')); 

279 data1.soc80.Tau1=(unique(Tau1(3,:,1),'stable')); 

280 

281 data2.soc20.Tau1=(unique(Tau1(1,:,2),'stable')); 

282 data2.soc50.Tau1=(unique(Tau1(2,:,2),'stable')); 

283 data2.soc80.Tau1=(unique(Tau1(3,:,2),'stable')); 

284 

285 data3.soc20.Tau1=(unique(Tau1(1,:,3),'stable')); 

286 data3.soc50.Tau1=(unique(Tau1(2,:,3),'stable')); 

287 data3.soc80.Tau1=(unique(Tau1(3,:,3),'stable')); 

288 

289 data4.soc20.Tau1=(unique(Tau1(1,:,4),'stable')); 

290 data4.soc50.Tau1=(unique(Tau1(2,:,4),'stable')); 

291 data4.soc80.Tau1=(unique(Tau1(3,:,4),'stable')); 

292 

293 if order==2 

294 

295 data1.soc20.Rp2=(unique(Rp2(1,:,1),'stable')); 

296 data1.soc50.Rp2=(unique(Rp2(2,:,1),'stable')); 

297 data1.soc80.Rp2=(unique(Rp2(3,:,1),'stable')); 

298 

299 data2.soc20.Rp2=(unique(Rp2(1,:,2),'stable')); 

300 data2.soc50.Rp2=(unique(Rp2(2,:,2),'stable')); 

301 data2.soc80.Rp2=(unique(Rp2(3,:,2),'stable')); 

302 

303 data3.soc20.Rp2=(unique(Rp2(1,:,3),'stable')); 

304 data3.soc50.Rp2=(unique(Rp2(2,:,3),'stable')); 

305 data3.soc80.Rp2=(unique(Rp2(3,:,3),'stable')); 

306 

307 data4.soc20.Rp2=(unique(Rp2(1,:,4),'stable')); 

308 data4.soc50.Rp2=(unique(Rp2(2,:,4),'stable')); 
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309 data4.soc80.Rp2=(unique(Rp2(3,:,4),'stable')); 

310 

311 data1.soc20.Tau2=(unique(Tau2(1,:,1),'stable')); 

312 data1.soc50.Tau2=(unique(Tau2(2,:,1),'stable')); 

313 data1.soc80.Tau2=(unique(Tau2(3,:,1),'stable')); 

314 

315 data2.soc20.Tau2=(unique(Tau2(1,:,2),'stable')); 

316 data2.soc50.Tau2=(unique(Tau2(2,:,2),'stable')); 

317 data2.soc80.Tau2=(unique(Tau2(3,:,2),'stable')); 

318 

319 data3.soc20.Tau2=(unique(Tau2(1,:,3),'stable')); 

320 data3.soc50.Tau2=(unique(Tau2(2,:,3),'stable')); 

321 data3.soc80.Tau2=(unique(Tau2(3,:,3),'stable')); 

322 

323 data4.soc20.Tau2=(unique(Tau2(1,:,4),'stable')); 

324 data4.soc50.Tau2=(unique(Tau2(2,:,4),'stable')); 

325 data4.soc80.Tau2=(unique(Tau2(3,:,4),'stable')); 

326 

327 end 

328 

329 end 

 

4. The following MATLAB script was utilised to combine the parameters 

obtained for the three lithium-ion cells used as part of the experiments: 

1 clearvars 

2 

3 ambient{1,1}='minus20'; 

4 ambient{2,1}='minus10'; 

5 ambient{3,1}='0'; 

6 ambient{4,1}='25'; 

7 

8 soc{1,1}='20'; 

9 soc{2,1}='50'; 

10 soc{3,1}='80'; 

11 

12 cell{1,1}='1'; 

13 cell{2,1}='2'; 

14 cell{3,1}='3'; 

15 

16 %choose ECM order 

17 

18 order=2; 

19 

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

21 
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22 

23 for aa=1:4 

24 

25 for jj=1:3 

26 

27 for kk=1:3 

28 

29 load(['C:\PhD\Model\Xalt\MAT\PPC_',num2str(order),'RC\',ambient{aa, 

1},'degC_soc_',soc{jj,1},'_',cell{kk,1},'.mat']) 

30 

31 % if size(volVec,1)==size(vFit,1) 

32 % 

33 % vrms(1,kk)=1000*rms(vFit-volVec); 

34 % 

35 % end 

36 

37 c(1,kk)=size(PulseC,1); 

38 d(1,kk)=size(PulseD,1); 

39 

40 numrows_c=min(c); 

41 numrows_d=min(d); 

42 

43 end 

44 

45 for kk=1:3 

46 

47 load(['C:\PhD\Model\Xalt\MAT\PPC_',num2str(order),'RC\',ambient{aa, 

1},'degC_soc_',soc{jj,1},'_',cell{kk,1},'.mat']) 

48 

49 if order==2 

50 

51 PulseCx(:,kk)=PulseC(1:numrows_c,:); 

52 PulseDx(:,kk)=PulseD(1:numrows_d,:); 

53 RoCx(:,kk)=RoC(1:numrows_c,:); 

54 RoDx(:,kk)=RoD(1:numrows_d,:); 

55 RpCx(:,2*kk-1:2*kk)=RpC(1:numrows_c,:); 

56 RpDx(:,2*kk-1:2*kk)=RpD(1:numrows_d,:); 

57 stdRoCx(:,kk)=stdRoC(1:numrows_c,:); 

58 stdRoDx(:,kk)=stdRoD(1:numrows_d,:); 

59 stdRpCx(:,2*kk-1:2*kk)=stdRpC(1:numrows_c,:); 

60 stdRpDx(:,2*kk-1:2*kk)=stdRpD(1:numrows_d,:); 

61 stdTauCx(:,2*kk-1:2*kk)=stdTauC(1:numrows_c,:); 

62 stdTauDx(:,2*kk-1:2*kk)=stdTauD(1:numrows_d,:); 

63 TauCx(:,2*kk-1:2*kk)=TauC(1:numrows_c,:); 

64 TauDx(:,2*kk-1:2*kk)=TauD(1:numrows_d,:); 

65 

66 ErCx(:,kk)=RmsC(1:numrows_c,:); 

67 ErDx(:,kk)=RmsD(1:numrows_d,:); 
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68 

69 elseif order==1 

70 

71 PulseCx(:,kk)=PulseC(1:numrows_c,:); 

72 PulseDx(:,kk)=PulseD(1:numrows_d,:); 

73 RoCx(:,kk)=RoC(1:numrows_c,:); 

74 RoDx(:,kk)=RoD(1:numrows_d,:); 

75 RpCx(:,kk)=RpC(1:numrows_c,:); 

76 RpDx(:,kk)=RpD(1:numrows_d,:); 

77 stdRoCx(:,kk)=stdRoC(1:numrows_c,:); 

78 stdRoDx(:,kk)=stdRoD(1:numrows_d,:); 

79 stdRpCx(:,kk)=stdRpC(1:numrows_c,:); 

80 stdRpDx(:,kk)=stdRpD(1:numrows_d,:); 

81 stdTauCx(:,kk)=stdTauC(1:numrows_c,:); 

82 stdTauDx(:,kk)=stdTauD(1:numrows_d,:); 

83 TauCx(:,kk)=TauC(1:numrows_c,:); 

84 TauDx(:,kk)=TauD(1:numrows_d,:); 

85 

86 ErCx(:,kk)=RmsC(1:numrows_c,:); 

87 ErDx(:,kk)=RmsD(1:numrows_d,:); 

88 

89 else 

90 

91 PulseCx(:,kk)=PulseC(1:numrows_c,:); 

92 PulseDx(:,kk)=PulseD(1:numrows_d,:); 

93 RoCx(:,kk)=RoC(1:numrows_c,:); 

94 RoDx(:,kk)=RoD(1:numrows_d,:); 

95 

96 end 

97 

98 

99 clearvars -except vrms ambient soc cell aa jj kk PulseCx PulseDx RoCx 

RoDx RpCx RpDx stdRoCx stdRoDx stdRpCx stdRpDx stdTauCx stdTauDx TauCx 

TauDx ErCx ErDx 

c d numrows_c numrows_d order 

100 end 

101 

102 if order==2 

103 

104 for ss=1:numrows_c 

105 

106 if TauCx(ss,1)>TauCx(ss,2) 

107 

108 temp=TauCx(ss,1); 

109 TauCx(ss,1)=TauCx(ss,2); 

110 TauCx(ss,2)=temp; 

111 

112 temp=stdTauCx(ss,1); 
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113 stdTauCx(ss,1)=stdTauCx(ss,2); 

114 stdTauCx(ss,2)=temp; 

115 

116 temp=RpCx(ss,1); 

117 RpCx(ss,1)=RpCx(ss,2); 

118 RpCx(ss,2)=temp; 

119 

120 temp=stdRpCx(ss,1); 

121 stdRpCx(ss,1)=stdRpCx(ss,2); 

122 stdRpCx(ss,2)=temp; 

123 

124 end 

125 

126 end 

127 

128 for ss=1:numrows_d 

129 

130 if TauDx(ss,1)>TauDx(ss,2) 

131 

132 temp=TauDx(ss,1); 

133 TauDx(ss,1)=TauDx(ss,2); 

134 TauDx(ss,2)=temp; 

135 

136 temp=stdTauDx(ss,1); 

137 stdTauDx(ss,1)=stdTauDx(ss,2); 

138 stdTauDx(ss,2)=temp; 

139 

140 temp=RpDx(ss,1); 

141 RpDx(ss,1)=RpDx(ss,2); 

142 RpDx(ss,2)=temp; 

143 

144 temp=stdRpDx(ss,1); 

145 stdRpDx(ss,1)=stdRpDx(ss,2); 

146 stdRpDx(ss,2)=temp; 

147 

148 end 

149 

150 end 

151 

152 end 

153 

154 if order==1 

155 

156 PulseCm=mean(PulseCx,2); 

157 PulseDm=mean(PulseDx,2); 

158 

159 RoCm=mean(RoCx,2); 

160 RoDm=mean(RoDx,2); 



209 

 

161 

162 ErCm=mean(ErCx,2); 

163 ErDm=mean(ErDx,2); 

164 

165 RpCm=mean(RpCx,2); 

166 RpDm=mean(RpDx,2); 

167 

168 TauCm=mean(TauCx,2); 

169 TauDm=mean(TauDx,2); 

170 

171 stdRoCm=mean(stdRoCx,2); 

172 stdRoDm=mean(stdRoDx,2); 

173 

174 stdRpCm=mean(stdRpCx,2); 

175 stdRpDm=mean(stdRpDx,2); 

176 

177 stdTauCm=mean(stdTauCx,2); 

178 stdTauDm=mean(stdTauDx,2); 

179 

180 elseif order==2 

181 

182 PulseCm=mean(PulseCx,2); 

183 PulseDm=mean(PulseDx,2); 

184 

185 RoCm=mean(RoCx,2); 

186 RoDm=mean(RoDx,2); 

187 

188 ErCm=mean(ErCx,2); 

189 ErDm=mean(ErDx,2); 

190 

191 RpCm=[mean(RpCx(:,1:2:end),2) mean(RpCx(:,2:2:end),2)]; 

192 RpDm=[mean(RpDx(:,1:2:end),2) mean(RpDx(:,2:2:end),2)]; 

193 

194 TauCm=[mean(TauCx(:,1:2:end),2) mean(TauCx(:,2:2:end),2)]; 

195 TauDm=[mean(TauDx(:,1:2:end),2) mean(TauDx(:,2:2:end),2)]; 

196 

197 stdRoCm=mean(stdRoCx,2); 

198 stdRoDm=mean(stdRoDx,2); 

199 

200 stdRpCm=[mean(stdRpCx(:,1:2:end),2) mean(stdRpCx(:,2:2:end),2)]; 

201 stdRpDm=[mean(stdRpDx(:,1:2:end),2) mean(stdRpDx(:,2:2:end),2)]; 

202 

203 stdTauCm=[mean(stdTauCx(:,1:2:end),2) mean(stdTauCx(:,2:2:end),2)]; 

204 stdTauDm=[mean(stdTauDx(:,1:2:end),2) mean(stdTauDx(:,2:2:end),2)]; 

205 

206 else 

207 

208 PulseCm=mean(PulseCx,2); 
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209 PulseDm=mean(PulseDx,2); 

210 

211 RoCm=mean(RoCx,2); 

212 RoDm=mean(RoDx,2); 

213 

214 end 

215 

216 

save(['C:\PhD\Model\Xalt\MAT\PPC_',num2str(order),'RCx\',ambient{aa, 

1},'degC_soc_',soc{jj,1},'.mat']) 

217 

218 

219 clearvars -except ambient soc cell aa jj kk order 

220 end 

221 end 

5. The following MATLAB script was utilised to automate the parameter fitting 

for both 1st and 2nd order ECMs: 

Note, the ‘EstECMPara’ function was reproduced with permission from:  

W.D. Widanage, A. Barai, G.H. Chouchelamane, K. Uddin, A. McGordon, J. Marco, 

P. Jennings, Design and use of multisine signals for Li-ion battery equivalent circuit 

modelling. Part 2: Model estimation, Journal of Power Sources. 324 (2016) 61–69. 

https://doi.org/10.1016/j.jpowsour.2016.05.014. 

The function itself is available freely for academic usage at the following web address 

in a Github repository: https://github.com/WDWidanage/MatlabFunctions. 

1 

2 %% 

3 % Estimation options 

4 options.order = 2; % Specify the order of the ECM (Number of RC 

pairs) 

5 options.plotFit = 0; % Set to 1 or 0 if the fitted voltage should be 

plotted 

6 options.ecmFitSeriesCap = 'off'; % Set to 'on' to include a series 

capacitor or to 

'off' to correct for any OCV change 

7 

8 % % Load converted maccor data 

9 % load('Arbitrary file name 2019-08-15 12-41-59_876_003 - 003.mat'); 

10 % 

11 % % Plot and check current and voltage response 

12 % figure 

https://doi.org/10.1016/j.jpowsour.2016.05.014
https://github.com/WDWidanage/MatlabFunctions
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13 % subplot(2,1,1) 

14 % plot(data.TestTime/3600,data.Amps,'. -') 

15 % xlabel('Time (h)'); ylabel('Current (A)') 

16 % subplot(2,1,2) 

17 % plot(data.TestTime/3600,data.Volts,'. -') 

18 % xlabel('Time (h)'); ylabel('Volts (V)') 

19 

20 % [~,idxRelax] = 

find_exc_segments(data.Amps,'plotSeg',0,'timeVec',data. 

TestTime/3600); 

21 

22 [~,idxRelax] = find_exc_segments(data.Amps); 

23 

24 

25 %% Perform paramter estimation for each discharge and charge pulse 

26 

27 % Pulses start from 3rd index. 9 discharge pulses 8 charge pulses 

28 countD = 0; % Loop counter 

29 for ii = 0:2:17 % Process the discharge pulses 

30 countD = countD + 1; 

31 idxRng = [idxRelax(2+ii,1):idxRelax(2+ii,2)]; 

32 timeVecTmp = data.TestTime(idxRng); 

33 timeVec = timeVecTmp - timeVecTmp(1); 

34 currVec = -data.Amps(idxRng); 

35 volVec = data.Volts(idxRng); 

36 

37 if isempty(volVec(volVec <= 2.7)) == 1 

38 

39 % Estimate ECM parameters for the discharge pulses 

40 [thetaOpt, paraInfo, vFit] = 

EstECMPara(timeVec,currVec,volVec,options); 

41 

42 % Extract the ECM parameters for each pulse 

43 RoD(countD,1) = thetaOpt(1); % Ro 

44 RpD(countD,1:options.order) = thetaOpt(2:options.order+1); % R1, 

R2,... 

45 TauD(countD,1:options.order) = thetaOpt(options.order+2:end); % Tau1, 

Tau2,... 

46 

47 % Extract the paramter uncertainities 

48 stdRoD(countD,1) = paraInfo.stdTheta(1); % 

Ro 

49 stdRpD(countD,1:options.order) = 

paraInfo.stdTheta(2:options.order+1); % 

R1, R2,... 

50 stdTauD(countD,1:options.order) = 

paraInfo.stdTheta(options.order+2:end); 

% Tau1, Tau2,... 



212 

 

51 PulseD(countD,1) = max(currVec); 

52 

53 RmsD(countD,1)=1000*rms(vFit-volVec); 

54 

55 else 

56 

57 countD = countD - 1; 

58 

59 end 

60 

61 

62 end 

63 

64 countC = 0; % Loop counter 

65 for ii = 1:2:15 % Process 

66 countC = countC + 1; 

67 idxRng = [idxRelax(2+ii,1):idxRelax(2+ii,2)]; 

68 timeVecTmp = data.TestTime(idxRng); 

69 timeVec = timeVecTmp - timeVecTmp(1); 

70 currVec = -data.Amps(idxRng); 

71 volVec = data.Volts(idxRng); 

72 

73 if isempty(volVec(volVec >= 4.2)) == 1 

74 

75 % Estimate ECM parameters for the charge pulses 

76 [thetaOpt, paraInfo, vFit] = 

EstECMPara(timeVec,currVec,volVec,options); 

77 

78 % Extract the ECM parameters for each pulse 

79 RoC(countC,1) = thetaOpt(1); % Ro 

80 RpC(countC,1:options.order) = thetaOpt(2:options.order+1); % R1, 

R2,... 

81 TauC(countC,1:options.order) = thetaOpt(options.order+2:end); % Tau1, 

Tau2,... 

82 

83 % Extract the ECM parameters for each pulse 

84 stdRoC(countC,1) = paraInfo.stdTheta(1); % Ro 

85 stdRpC(countC,1:options.order) = 

paraInfo.stdTheta(2:options.order+1); % R1, 

R2,... 

86 stdTauC(countC,1:options.order) = 

paraInfo.stdTheta(options.order+2:end); % 

Tau1, Tau2,... 

87 PulseC(countC,1) = min(currVec); 

88 

89 RmsC(countC,1)=1000*rms(vFit-volVec); 

90 else 

91 
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92 countC = countC - 1; 

93 

94 end 

95 

96 end 
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Appendix C. MATLAB/Simulink ECMs: Lookup 

Tables 

In the following tables (Tables C -1 and C – 2), the capacity values (in Ah) at different 

discharge C-rates and ambient temperatures are presented for air-based and oil-based 

parameterisation methods, respectively. These values were implemented using the 

lookup table blocks in MATLAB/Simulink. 

Table C - 1. Values for Lookup Table: Air-based Capacity Values (in Ah) 

 

Table C - 2. Values for Lookup Table: Oil-based Capacity Values (in Ah) 

Discharge Current [A] 

0.25C 1C 3C 

Ambient Temperature [℃] 

−20 30.7 24.6 13.3 

−10 31.9 31.4 24.8 

0 38.3 34.1 30.5 

25 41.7 40.3 39.2 

 

In the following tables (Tables C -3 and C – 4), the energy values (in Wh) at different 

discharge C-rates and ambient temperatures are presented for air-based and oil-based 

parameterisation methods, respectively. These values were implemented using the 

lookup table blocks in MATLAB/Simulink. 

Discharge Current [A] 

0.25C 1C 3C 

Ambient Temperature [℃] 

−20 31.9 32.2 34.7 

−10 33.2 34.2 36.3 

0 38.4 36.4 37.3 

25 42.3 40.6 39.5 
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Table C - 3. Values for Lookup Table: Air-based Energy Values (in Wh) 

 

Table C - 4. Values for Lookup Table: Oil-based Energy Values (in Wh) 

Discharge Current [A] 

0.25C 1C 3C 

Ambient Temperature [℃] 

−20 102.6 75.7 38.0 

−10 109.4 103.8 75.7 

0 138.1 117.0 101.6 

25 153.7 146.0 136.7 

 

In Tables C-5 and C-6, the data tables used to populate the look-up tables that 

parameterise ECM impedance parameters are illustrated. Table C-5 is for the 1st order 

ECM (1RC) and Table C-6 is for the 2nd order ECM (2RC). Each cell in Table C-5 is 

represented as follows: [RO (in mΩ); RP1 (in mΩ); τ�� (in seconds)]. This represents 

the value of the mathematically fitted impedance parameters at a particular SOC, 

ambient temperature and charge/discharge current. In Table C-6, each cell is 

represented as follows: [RO (in mΩ); RP1 (in mΩ); τ�� (in seconds); RP2 (in mΩ); τ�� 

(in seconds)]. 

 

 

 

Discharge Current [A] 

0.25C 1C 3C 

Ambient Temperature [℃] 

−20 108.9 105.4 109.9 

−10 113.2 115.9 118.0 

0 138.7 126.9 124.5 

25 156.4 148.0 140.2 
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Table C - 5. 1st RC Model: Values for �� , ���, ��� based on Temperature, Current and SOC [Note: Discharge is Positive] 

Current [A] -80 -60 -40 -30 -20 -10 10 20 30 40 60 80 120 

Temperature [℃] 20% SOC 

−20 10.1; 13.6; 0.7* 10.1; 13.6; 0.7 11; 20.9; 0.7 17.6; 23.4; 2.6 16.1; 19.4; 4.3 16.1; 19.4; 4.3* 

−10 6.5; 7.4; 0.5* 6.5; 7.4; 0.5 6.8; 9.9; 0.5 9.6; 9.1; 1.4 9.3; 8; 2.2 8.6; 7.7; 2.8 8.1; 7.9; 3.4 8.1; 7.9; 3.4* 

0 3.9; 1.2; 1.7 4.1; 1.4; 1.4 4.3; 1.8; 1 4.4; 2; 0.9 4.6; 2.1; 1 4.8; 2.3; 1.1 5.1; 2.4; 1.8 5; 2.5; 2.1 4.8; 2.5; 2.3 4.7; 2.6; 2.5 4.4; 2.7; 2.9 4.2; 2.8; 3.1 4.2; 2.8; 3.1 

25 1.4; 1.2; 23.9 1.4; 1.2; 22.5 1.4; 1.1; 20.6 1.4; 1.1; 19.4 1.4; 1.1; 20.8 1.4; 1.2; 21.4 1.4; 1.5; 24.7 1.4; 1.4; 21.5 1.4; 1.3; 20.4 1.4; 1.2; 20.6 1.4; 1.2; 20 1.5; 1.2; 20.3 1.5; 1.1; 20.5 

Temperature [℃] 50% SOC 

−20 10.6; 11.8; 0.5* 10.6; 11.8; 0.5 9.9; 20; 0.4 9.4; 18.9; 0.4 10.2; 11.2; 0.5 9.6; 8.5; 0.6 9.7; 6.4; 0.9 9.1; 4.5; 1.4 9.1; 4.5; 1.4* 

−10 5; 6.5; 0.3* 5; 6.5; 0.3 4.6; 8.8; 0.2 4.9; 8.1; 0.3 5.4; 5.7; 0.3 5.4; 4.6; 0.4 5.8; 3.5; 0.7 5.8; 2.5; 1.2 5.5; 2.1; 1.6 4.9; 1.8; 2.2 

0 3.6; 0.8; 1.9 3.9; 1; 1.6 4.1; 1.2; 1.2 4.2; 1.4; 1 4.5; 1.4; 1 4.3; 1.8; 0.8 4.8; 1.3; 1.9 4.7; 1.2; 2.2 4.4; 1.1; 2.2 4.2; 1; 2.4 3.9; 0.9; 3.1 3.6; 0.8; 3.5 3.2; 0.8; 4.4 

25 1.3; 0.8; 22.1 1.3; 0.9; 22.3 1.3; 0.9; 20.9 1.3; 0.9; 20.1 1.3; 0.8; 17.1 1.3; 0.8; 16.3 1.3; 1.9; 40.7 1.3; 1.7; 35.6 1.3; 1.6; 36.4 1.3; 1.5; 34.8 1.3; 1.3; 30.4 1.3; 1.1; 28 1.3; 1; 25.8 

Temperature [℃] 80% SOC 

−20 7.3; 29.3; 0.4* 7.3; 29.3; 0.4 9.2; 17.5; 0.4 9.5; 11.3; 0.5 8.9; 8.6; 0.6 8.6; 6.9; 0.7 7.9; 4.9; 0.8 7.3; 3.8; 0.9 6.4; 2.7; 1.1 

−10 5.1; 8.2; 0.3* 5.1; 8.2; 0.3 7.2; 6.2; 0.7 7.1; 4.4; 0.8 6.4; 3.9; 0.8 5.9; 3.4; 0.7 5.4; 2.7; 0.8 4.9; 2.3; 0.8 4.3; 1.7; 0.8 

0 3.9; 1.1; 1.5* 3.9; 1.1; 1.5 4; 1.2; 1.3 4.2; 1.3; 1.5 4.3; 1.4; 1.7 4.5; 1.7; 3.3 4.3; 1.6; 3.3 4.1; 1.4; 3 4; 1.3; 3 3.7; 1.1; 3.1 3.5; 1; 2.6 3.2; 5.1; 75.4 

25 1.3; 1.8; 51.2 1.4; 2.1; 58.2 1.4; 2.2; 57.3 1.4; 2.1; 51.1 1.3; 1.8; 41.1 1.3; 1.8; 37.2 1.3; 2.1; 37.7 1.3; 1.8; 31.4 1.3; 1.5; 25.9 1.3; 1.4; 25.4 1.3; 1.2; 19.9 1.3; 1.2; 20.8 1.3; 1.2; 24.4 

            *Extrapolated using clip/hold from ECM values for previous current pulse. 
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Table C - 6. 2nd RC Model: Values for �� , ���, ���, ���, ��� based on Temperature, Current and SOC [Note: Discharge is Positive] 

Current [A] -80 -60 -40 -30 -20 -10 10 20 30 40 60 80 120 

Temp. [℃] 20% SOC 

−20 6.6; 14.8; 0.3; 9.2; 20.6* 
6.6; 14.8; 0.3; 

9.2; 20.6 

7.2; 21.5; 0.3; 

9.4; 14.7 

7.3; 19.2; 4.7; 

19.2; 2.5 

7; 16.8; 5.5; 

15.1; 2.9 
7; 16.8; 5.5; 15.1; 2.9* 

−10 3.8; 8.7; 0.2; 3.3; 11.2* 
3.8; 8.7; 0.2; 

3.3; 11.2 

3.4; 10.9; 0.2; 

3.1; 3.4 

3.7; 10.2; 0.2; 

5.9; 4.3 

4.1; 7.8; 1.9; 

6.6; 3.4 

3.8; 7.1; 1.9; 

6.4; 3.5 

3.7; 6; 0.2; 7.1; 

5.4 
3.7; 6; 0.2; 7.1; 5.4* 

0 
2.1; 2.4; 0.1; 

3.6; 48.5 

2.1; 2.8; 0.1; 

2.9; 33.4 

2; 3.4; 0.1; 1.5; 

11 

1.9; 3.7; 0.1; 

1.2; 5.5 

2; 3.8; 0.1; 1.3; 

4.4 

2; 2.2; 2.7; 3.2; 

1.4 

2.1; 3.9; 0.1; 

1.8; 4.4 

2.2; 3.7; 0.1; 2; 

4.7 

2; 3.6; 0.1; 2.1; 

4.8 

2.1; 3.3; 0.1; 

2.2; 5 

2.2; 2.8; 0.1; 

2.4; 5 

2.2; 2.5; 0.1; 

2.5; 4.9 

2.2; 2.5; 0.1; 

2.5; 4.9* 

25 
1.4; 0.3; 6; 2.7; 

144.4 

1.4; 0.3; 4.8; 

2.6; 134.6 

1.4; 0.3; 4.2; 

2.7; 136.7 

1.4; 0.3; 3.2; 

2.5; 120.5 

1.3; 0.3; 2.4; 

2.3; 106.5 

1.3; 0.2; 1.8; 

1.9; 84.3 

1.3; 0.4; 4.6; 

2.6; 133.6 

1.4; 0.4; 5; 2.8; 

145.4 

1.4; 0.4; 5.1; 

2.9; 147 

1.4; 0.4; 4.8; 3; 

144.9 

1.4; 0.3; 4.5; 

2.9; 136.4 

1.4; 0.3; 4.4; 

2.8; 133.4 

1.4; 0.3; 4.4; 

2.7; 129.1 

Temp. [℃] 50% SOC 

−20 5.6; 14.4; 0.2; 4.7; 8.2* 
5.6; 14.4; 0.2; 

4.7; 8.2 

5.3; 21.9; 0.2; 

5.7; 8.1 

5.1; 20.6; 0.2; 

5.1; 8.1 

5.6; 13.6; 0.2; 

4.3; 8 

5.3; 10.7; 0.2; 

3.8; 7.7 

5.5; 8.7; 0.2; 

3.8; 9.2 

5.6; 6.2; 0.2; 

3.6; 10.3 
5.6; 6.2; 0.2; 3.6; 10.3* 

−10 2.5; 7.9; 0.1; 1.6; 4.1* 
2.5; 7.9; 0.1; 

1.6; 4.1 

2.5; 9.6; 0.1; 

1.8; 3.3 

2.5; 9.2; 0.1; 

1.9; 4.1 

2.7; 7.3; 0.1; 

1.9; 5.2 

2.6; 6.4; 0.1; 

1.8; 5.8 

2.9; 2.9; 4.7; 

4.3; 2.3 

3.1; 3.3; 2.6; 

2.7; 6.7 

3.2; 3.4; 0.1; 

2.1; 12.5 

3.1; 2.6; 0.2; 

2.4; 17.4 

0 
1.5; 2.4; 0; 0.8; 

8.1 

1.4; 2.8; 0; 0.8; 

5.4 

1.3; 3.4; 0; 0.8; 

4.6 

1.3; 3.7; 0; 0.8; 

4.4 

1.5; 3.8; 0; 0.9; 

4.3 

1.4; 4.1; 0; 0.9; 

4.4 

1.5; 3.9; 0; 1.1; 

5.7 

1.5; 3.6; 0; 1.1; 

6.6 

1.3; 3.5; 0; 1.1; 

7.5 

1.5; 3.1; 0; 1.1; 

9.1 

1.6; 2.6; 0; 1.4; 

14.7 

1.7; 2.2; 0.1; 

1.5; 20.2 

1.7; 1.8; 0.1; 

1.9; 29.7 

25 
1.3; 0.2; 4.1; 

2.1; 145.4 

1.3; 0.2; 3.7; 

2.1; 142.4 

1.3; 0.2; 3.8; 

2.1; 139.6 

1.3; 0.2; 3.8; 2; 

136.3 

1.3; 0.2; 3.5; 

1.7; 113.5 

1.3; 0.3; 4.4; 

1.3; 95.2 

1.3; 0.3; 6; 2.6; 

159.7 

1.3; 0.3; 5.6; 

2.6; 147.5 

1.3; 0.3; 5.6; 

2.7; 154 

1.3; 0.3; 5.4; 

2.7; 157.9 

1.3; 0.3; 5.3; 

2.6; 156.1 

1.3; 0.3; 5.7; 

2.5; 163.2 

1.3; 0.3; 6.4; 

2.4; 169.5 

Temp. [℃] 80% SOC 

−20 3.5; 14.7; 1.8; 19.9; 2.1* 
3.5; 14.7; 1.8; 

19.9; 2.1 

5.1; 18.9; 0.2; 

4.8; 6.6 

5.8; 13; 0.2; 5; 

11.9 

5.6; 10.4; 0.2; 

5.9; 19.1 

5.7; 8.5; 0.2; 

17.9; 88.7 

5.5; 6.2; 0.2; 

23.3; 150 

5.3; 5; 0.2; 36.9; 

302.3 

4.7; 3.7; 0.2; 

40.7; 427.6 

−10 2.6; 9.3; 0.1; 2; 3.5* 
2.6; 9.3; 0.1; 2; 

3.5 

2.6; 8.8; 0.1; 

2.9; 5.2 

2.9; 7.1; 0.1; 

2.5; 6 

2.8; 6.1; 0.1; 

2.3; 7.7 

3.4; 9.3; 59; 6.6; 

23.3 

3.5; 3.9; 0.2; 

25.1; 261 

3.4; 3.2; 0.2; 

37.3; 472.7 

3.1; 2.5; 0.2; 51; 

838.4 

0 1.4; 3; 0; 0.8; 5* 1.4; 3; 0; 0.8; 5 
1.3; 3.2; 0; 0.9; 

4.3 

1.5; 3.2; 0.1; 

0.9; 4.1 

1.2; 3.7; 0; 1.1; 

4 

1.6; 2.7; 2; 2.1; 

4 

1.6; 2; 4.4; 2.6; 

2.1 

1.5; 2.5; 2.6; 2; 

4.5 

1.6; 2.7; 0.1; 

1.5; 9.4 

2; 2.2; 0.1; 2.8; 

29.7 

2.2; 1.7; 0.1; 

7.5; 113.5 

2.1; 1.5; 0.1; 

12.8; 252.6 

25 
1.3; 0.2; 3.9; 

3.3; 177.7 

1.3; 0.2; 3.4; 

3.4; 174.1 

1.3; 0.2; 2.6; 

3.4; 162.5 

1.3; 0.2; 2.5; 

3.2; 154.6 

1.3; 0.3; 2.9; 

3.1; 162.7 

1.3; 0.3; 2.8; 

2.7; 127.7 

1.3; 0.4; 4.3; 

3.1; 152.3 

1.3; 0.4; 5; 3.4; 

180.3 

1.3; 0.4; 5; 3.4; 

176.1 

1.3; 0.4; 4.9; 

3.4; 179 

1.3; 0.4; 5; 3.5; 

182.7 

1.3; 0.3; 5; 3.4; 

179.3 

1.3; 0.3; 5.6; 

3.4; 179.4 

 
*Extrapolated using clip/hold from ECM values for previous current pulse. 
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