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Abstract

Background: Infectious disease outbreaks present unique challenges to study designs

for vaccine evaluation. Test-negative design (TND) studies have previously been used to

estimate vaccine effectiveness and have been proposed for Ebola virus disease (EVD)

vaccines. However, there are key differences in how cases and controls are recruited dur-

ing outbreaks and pandemics of novel pathogens, whcih have implications for the reli-

ability of effectiveness estimates using this design.

Methods: We use a modelling approach to quantify TND bias for a prophylactic vaccine under

varying study and epidemiological scenarios. Our model accounts for heterogeneity in vaccine

distribution and for two potential routes to testing and recruitment into the study: self-reporting

and contact-tracing. We derive conventional and hybrid TND estimators for this model and

suggest ways to translate public health response data into the parameters of the model.

Results: Using a conventional TND study, our model finds biases in vaccine effectiveness

estimates. Bias arises due to differential recruitment from self-reporting and contact-

tracing, and due to clustering of vaccination. We estimate the degree of bias when re-

cruitment route is not available, and propose a study design to eliminate the bias if re-

cruitment route is recorded.

Conclusions: Hybrid TND studies can resolve the design bias with conventional TND

studies applied to outbreak and pandemic response testing data, if those efforts collect

individuals’ routes to testing. Without route to testing, other epidemiological data will be

required to estimate the magnitude of potential bias in a conventional TND study. Since

these studies may need to be conducted retrospectively, public health responses should

obtain these data, and generic protocols for outbreak and pandemic response studies

should emphasize the need to record routes to testing.
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Background

Study designs to evaluate new vaccines during outbreaks

and pandemics are challenging for logistical, epidemiologi-

cal, social and ethical reasons.1–7 Novel and poorly under-

stood pathogens can rapidly overwhelm local health

systems, subsequently enabling other crises, or can require

intensive control policies, complicating both response

efforts and research.8–11 However, some key pathogens are

only routinely observable under these conditions, like

Ebola virus disease (EVD) and others on the World Health

Organization (WHO) R&D Blueprint priority list.12

During outbreaks of highly pathogenic infections there

may be pressure to introduce experimental vaccines as

quickly as possible,13,14 as well as resistance to classical

randomized controlled trials.15 For EVD, the existence of a

licensed vaccine (rVSV-ZEBOV)16–19 further complicates

trials for new vaccines. Such circumstances suggest alterna-

tive evaluation strategies, and a test-negative design (TND)

study has been proposed to evaluate a two-dose vaccine in

eastern Democratic Republic of Congo (DRC).20–22 This

design estimates vaccine effectiveness from the odds ratio

for test outcome conditional on vaccination status, and has

lower misclassification bias than traditional case-control

studies.23,24

TND studies have been used to estimate the effective-

ness of vaccines against influenza,25 rotavirus,26–28 pneu-

mococcus29 and other pathogens.30,31 The approach can

also assess interventions such as vector control and risk-

factor management.32–34 TND studies recruit people with

symptoms, test those recruits using a highly sensitive and

specific method to separate cases (test-positives) from con-

trols (test-negatives), and finally sort them by vaccination

status.35 TND studies can be retrospective, potentially us-

ing stratification by other factors to limit confounding

effects. For influenza, TND studies usually recruit people

seeking care for influenza-like illness, ascertain vaccine

status by self-report, and determine infection status by re-

verse transcription polymerase chain reaction (RT-PCR),

though specifics vary.25,30

To obtain unbiased estimates, the following criteria

must be met: (i) transmission occurs in a population with

partial vaccine coverage; (ii) vaccination status does not af-

fect symptom rates unrelated to the target pathogen; (iii)

given symptoms in an individual, care-seeking behaviour

does not vary by underlying cause; (iv) an individual’s past

recruitment as a control (even multiple times) must not

prevent subsequent recruitment as a case; and (v) there is

no misclassification of individuals’ infection or vaccine

status.33,36

Here we examine how outbreaks present novel misclas-

sification problems for TND studies and how this can bias

TND vaccine effectiveness estimates, and we quantify how

that bias varies with differences in vaccine distribution, re-

cruitment, risk of infection and testing practice. We intro-

duce a hybrid design that can address these biases, and we

identify alternative steps to mitigate potential bias.

Methods

Key differences during outbreaks

During outbreaks and pandemics, testing is used both to

make treatment decisions for individuals and to trigger

public health responses (e.g. testing conducted after death

or of asymptomatic contacts). For example, during EVD

outbreaks, suspect cases may be tested because of: (i) pres-

ence of symptoms; or (ii) high-risk contact with a known

case.37,38 We represent these testing reasons as distinct

recruiting routes: self-reporting people who seek care for

EVD-like symptoms (analogous to influenza studies); and

people identified via active contact-tracing from a con-

firmed case (commonly part of public health control efforts

during outbreak and pandemic responses). However,

Key Messages

• Conventional test-negative design (TND) studies can be biased when follow-up of cases leads to testing and

recruitment, which occurs for example during contact-tracing.

• A hybrid TND estimator can eliminate this bias, if individual testing routes are recorded.

• The related bias in the conventional TND estimator can be quantified using epidemiological measures.

• If testing route data is unavailable, bias can be limited by other study measures.
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depending on how data are collected, we may know total

numbers for each testing route, but not matched to out-

come. For clarity, we provide specific definitions for our

model terms (Table 1).

Vaccination model

Vaccinated individuals avoid infection if exposed to EVD

with probability E, the true vaccine efficacy. We assume

all-or-nothing vaccine protection. The study measures Ê,

the estimated vaccine effectiveness. Although there may be

a delay from vaccination to protection, e.g. a multiple dose

requirement, we model a scenario where protection has al-

ready occurred in vaccinated individuals. Aside from pre-

venting EVD, we assume vaccination has no effect on

other diseases, on self-reporting rates given symptoms or

on contact-tracing rates.

We represent vaccine distribution by dividing the

recruitable population into two types of individuals: those

targeted by the vaccination campaign and those not

(Figure 1), referred to as the targeted, pin, and non-

targeted, 1- pin, fractions (Tables 1 and 2) Among the tar-

geted population, only some individuals receive the vac-

cine, leading to a coverage level, L, in that population.

Because we consider a situation where there is already a li-

censed, efficacious vaccine, we assume there is no distribu-

tion bias (e.g. prioritization of health care workers) within

the targeted population. We assume individuals cluster by

targeted status, such as might occur if study vaccine distri-

bution targeted particular villages, so the contacts of self-

reporting cases always have the same target/non-target sta-

tus as the associated case. Aside from these distinctions, all

individuals are identical.

Ideally, a study would recruit only from targeted popu-

lations, but these may not be distinguishable in practice.

Indeed, in reality there may be many distinct populations,

for example areas with different vaccination coverage; we

consider just two, to focus on the impact of heterogeneity.

TND recruitment model

We identify recruits by their testing route, people who ei-

ther self-report or are contact-traced from a confirmed

case (Table 1 and Figure 1), because we assume these have

different criteria for testing (i.e. in our application, the self-

reporting criteria are more stringent). In the

Supplementary Material (available as Supplementary data

at IJE online), we generalise these as primary and

Table 1. Definitions of terms used in this analysis

Term Definition

Recruitable population The total population who may later be recruited into the study. In

practice unknown when the vaccination campaign occurs, but

known in the model

Vaccination campaign Administration of the study vaccine to some of the recruitable

population

Study A test-negative design (TND) study of the study vaccine against

Ebola virus disease (EVD) in the recruitable population

Targeted The portion of the recruitable population who could be vaccinated,

with vaccination homogeneously distributed. Non-targeted refers

to the complementary portion of the recruitable population: none

of these individuals receive the vaccine

Recruitment Testing for potential EVD infection and being counted in the study;

distinct from being targeted (for vaccination). Occurs via two

routes: self-reporting and contact-tracing

Self-reporting (SR) Testing of individuals without a known link to a previous case

Contact-tracing (CT) Testing of individuals because of contact with a confirmed EVD case

N, U, and V Populations for non-targeted (N), or targeted and unvaccinated (U)

or vaccinated (V)

Annotations ’ and ” Recruitment route indicators; e.g. V’ would be vaccinated individu-

als recruited via self-reporting vs N” would be non-targeted indi-

viduals recruited via contact-tracing

Subscripts þ and Test outcome indicators; e.g. U’– would be unvaccinated individuals,

recruited via self-reporting, who test negative vs V”þ would be

vaccinated individuals, recruited via contact-tracing, who test

positive
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secondary recruitment routes. We assume that introduced

cases in the recruitable population are found before any

contacts have become symptomatic and therefore infec-

tious (though they may be infected but not yet symptom-

atic), consistent with the typical experience in the rVSV-

ZEBOV trial in Guinea and deployment in DRC.17,39 In

those efforts, after identifying an index case via self-

reporting, the response programmes contact-traced around

that individual (an index case) to identify potential expo-

sures (direct contacts) and to identify people for vaccina-

tion (contacts-of-contacts) under the ring protocol. This

assumption means that in the model all self-reported cases

result from external introductions, and all contact-traced

recruits are only exposed to a single case.

Consistent with the WHO guidance for EVD outbreak

response,38 we assume self-reporting individuals present

with multiple EVD-like symptoms. Both EVD and other

causes of EVD-like symptoms lead to these self-reports,

resulting in test-positive and test-negative outcomes, re-

spectively. Targeted and non-targeted populations are as-

sumed to have equal rates of EVD exposure, but on

average the targeted population has fewer EVD cases, due

to the vaccine. Other causes of EVD-like symptoms occur

at the same rate in both populations. During an outbreak,

rates of EVD exposure and of other causes of EVD-like

symptoms may vary, but our analysis only depends on a

consistent, long-term average relative rate of these pro-

cesses. As such, we can define parameters as per self-

(a)

(c) (d)

(b)

Figure 1 The modelled population and recruitment into the test-negative design study. (a) Individuals and their contacts are either targeted for vacci-

nation (filled circles—dark blue receive the vaccine and light blue do not) or not (open circles). (b) The fraction who are targeted (and thus may be vac-

cinated) is pin; none of the non-targeted population (open circles, N label) receives the vaccine. Of those targeted, some are not vaccinated (e.g.

because they are ineligible due to age, pregnancy, recent illness, immunocompromised status or because there is only sufficient study vaccine to de-

liver partial coverage) (light blue, U label) and some are (dark blue, V label). The vaccine coverage in the targeted population is L. In the recruitable

population (the combination of N, U and V), non-vaccinees (N and U) are infected on EVD exposure, whereas vaccines (V) avoid disease at the vaccine

efficacy, E. (c) An expected number of self-reported people test negative (circles with _ sign), B, until a test-positive (circle with þ sign) is identified.

This leads to an expected amount of follow-up testing, k, which finds R” more cases if the initial case is in the non-targeted population, and (1-LE)R”

if targeted. The coverage, L, efficacy, E, and targeted fraction, pin, determine the likelihood of observing the self-reporting case among targeted vs

non-targeted individuals and vaccinated vs unvaccinated individuals. (d) Resulting categories that can be recruited into the study. U and V are, re-

spectively, the unvaccinated and vaccinated individuals in the targeted population; N are non-targeted individuals. The ’ vs ’ annotations indicate, re-

spectively, self-reporting vs contact-traced, and the _ vs þ subscripts indicate test-negative and test-positive outcomes, respectively
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Table 2 Parameter summary. This table summarizes the measurements and model parameters used in this analysis. We also in-

troduce an alternative parameterization of the recruitment model, which is less intuitive when describing the model but more

useful for understanding the impact on bias

Vaccination parameters

Symbol Name Description Calculation

E True vaccine efficacy The probability of preventing

disease given an Ebola

exposure

Estimation target

Ê Estimated vaccine effectiveness Estimator, Equations 1–3

pin Targeted fraction The fraction of the recruitable

population with some vaccine

coverage; the non-targeted

fraction, 1-pin, has no vaccine

coverage

see Supplementary Material

Section S7 (available as

Supplementary data at IJE

online)

L Vaccine coverage In the targeted population, the

achieved vaccine coverage

see Supplementary Material

Section S7 (available as

Supplementary data at IJE

online)

Outbreak response metrics

SRþ Self-reported test-positive Total number of individuals who

test positive when they

self-report to a health centre

Estimated from outbreak re-

sponse metrics if available, ei-

ther before or after start of

vaccine campaignSR- Self-reported test-negative Number who test negative when

they self-report to a health

centre

CTþ Contact-traced test-positive Number who test positive after

identification by

contact-tracing from a known

case

CT- Contact-traced test-negative Number who test negative after

identification by

contact-tracing from a known

case

Recruitment parameters

B Self-reporting test-negative rate The expected number of

self-reporting test-negatives

per self-reporting test-positive

case

SR�
SRþ

K Contact-tracing test rate The expected number of tested

contacts per self-reporting

test-positive case

CTþþCT�
SRþ

R” Contact-tracing test-positive rate The expected number of new

infections among tested

contacts of a known case,

when the study vaccine is not

present, per self-reporting

test-positive case

CTþ
SRþ

Alternative recruitment parameters

f� Self-reporting test-negative

fraction

The proportion of self-reporting

individuals who test negative

B
Bþ1 or SR�

SRþþSR�

q Recruitment route ratio The ratio of contact-tracing

recruitment to self-reporting

recruitment

k
Bþ1 or CTþþCT�

SRþþSR�

pt Contact-tracing test-positive

fraction

The test-positive fraction of

direct contact-tracing

recruitment in the absence of

vaccination

R0 0

k or CTþ
CTþþCT�
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reported test-positive, and we use the background self-

reporting test-negatives per test-positive rate, B, to repre-

sent the self-reporting process overall (Table 2).

We also represent testing of traced contacts based on

the outbreak response control protocols, which direct test-

ing based on high-risk interaction and fever.38 However,

fever is common in EVD-prone areas and may be subjec-

tively evaluated, so we assume that this criterion is practi-

cally based on high-risk contact. Thus, the average number

of tested contacts is k, which we assume is the same irre-

spective of targeted or vaccination status (Supplementary

Material, Section S3.3, available as Supplementary data at

IJE online, relaxes this assumption). These contacts are ex-

posed or not, according to the contact-tracing test-positive

rate, R”, which is reduced within the targeted population

by the vaccine.

Translating outbreak metrics to estimate bias

To evaluate a particular study’s potential bias, we need

real-world outbreak response metrics to estimate model

parameters. For studies augmenting an ongoing outbreak

response, data already collected could be used. For exam-

ple, partial data on the number of tested individuals, strati-

fied by test outcome and testing route, could be used to

bound model parameters (Table 2).

The model also depends on how the study vaccination

is distributed, represented by targeted fraction and cover-

age within that fraction, pin and L (respectively).

Depending on the study protocol, these could be ascer-

tained in different ways (Supplementary Material Section

S7, available as Supplementary data at IJE online).

Summary of assumptions

• The study period and population are sufficient to use

expected values and minimize the impact of heterogene-

ity, for example superspreading events.

• Cases and their contacts have the same targeted status.

• All individuals have the same exposure risk to EVD and

other causes of EVD-like symptoms, average number of

contacts and risk of infection per contact.

• Non-vaccination among targeted populations happens

randomly.

• There are different testing criteria for self-reporting and

contact-tracing individuals.

• Self-reporting cases are identified before anyone they

have infected becomes symptomatic, and contact-tracing

prevents transmission among contacts.

TND estimator for outbreak context

There are twelve recruitment categories in our model,

based on targeted and vaccination status (N, U and V for

non-target, unvaccinated and vaccinated respectively), test

outcome (subscripts_ and þ), and testing route (annota-

tions ’ and ”for self-reporting and contact-tracing, respec-

tively) (Table 1 and Figure 1). The conventional TND

estimator:

estimated

effectiveness
¼ 1� #vaccinated; test� positive

#unvaccinated; test� positive

� #unvaccinated; test� negative

#vaccinated; test� negative

can be written with these categories as:

Ê ¼ 1�
V
0
þ þ V

0 0
þ

N
0
þ þN

0 0
þ þU

0
þ þU

0 0
þ
�N

0
� þN

0 0
� þU

0
� þU

0 0
�

V 0
� þ V 0 0

�
(1)

The expected counts of these categories can be

expressed with the six model parameters we defined (full

derivation in Supplementary Material Sections S3–S4,

available as Supplementary data at IJE online). Recall

these are true efficacy (E), the targeted fraction of the

recruitable population (pin), the vaccine coverage in tar-

geted population (L), the number of self-reporting test-neg-

atives per test-positive (B), average number of contacts

tested per self-reporting test-positive (k), and average num-

ber of contacts that test-positive (R”). Substituting these,

we can obtain:

Ê ¼ 1� 1� Eð Þ 1þ ER
0 0

1þ R0 0 1� LEð Þ
L 1� pinð Þ
1� Lpin

" #�1

Bþ 1þ Lpin

1�Lpin

LE 1�pinð Þ
1�LEpin

h i
k� R

0 0ð Þ

Bþ 1�LE
1�LEpin

k� R0 0 1� Eð Þð Þ (2)

The terms to the right only cancel under very specific

circumstances, thus the bias is generally non-zero and

the magnitude is a function of all model parameters. We

refactor Eq. (2) with alternative parameters relating to

recruitment and epidemiological measures from the out-

break, namely the fraction of tests that are negative for

self-reporting individuals (f–), the ratio of contact-traced

to self-reporting individuals (q), and the fraction of tests

that are positive among contact-traced individuals in the

absence of vaccination (pt) (Supplementary Material

Section S4). We use this form to explore the bias and to

evaluate potential maximum bias under specific out-

break scenarios:
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Ê ¼ 1� 1� Eð Þ 1þ
E ptq

1�f�

1þ ptq
1�f�

1� LEÞ Lð1�pinÞ
1�Lpin

� i�1

2
64

1þ 1þ Lpin

1�Lpin

LEð1�pinÞ
1�LEpin

h i
q
f�

1� ptð Þ
1þ 1�LE

1�LEpin

q
f�

1� ptð1� EÞð Þ
(3)

We also consider an alternative study design, where the

testing route is always available. With that information, it

is possible to stratify individuals into a group that matches

conventional TND requirements (i.e. self-reporting) and

another that is a natural cohort population (i.e. contact-

traced) with a common characteristic of confirmed EVD

exposure. This cohort has a mixture of vaccine uptake, and

otherwise shared demographic characteristics (under these

model assumptions). This stratification maintains TND ef-

ficiency and controls for health care-seeking behaviour,

while taking advantage of known exposure status to use

the generally preferred cohort design for the contact-traced

individuals. This results in an estimator that is a weighted

combination of these distinct study estimators:

Ê ¼ 1P
x

xTNDÊTND þ xCSÊCS

� �
(4)

TND estimator bias

Across a wide range of self-reporting test-negative frac-

tions (f�), contact-tracing test-positive fractions (pt), tar-

geted fractions (pin) and testing route ratios (q), the

absolute error in Ê is � 0:1 (Figure 3). If information

from the outbreak response indicates these parameter val-

ues are bounding, then our model indicates that conven-

tional study bias lies in that range. Ideally, individual

testing routes will be available and the hybrid design can

be used. When the hybrid design cannot be used, we have

identified two avenues to limit bias, restricting recruitment

to either targeted or self-reporting individuals only.

Hybrid design: no recruitment bias

If study data permit stratifying recruits by testing route,

then an alternative study design can be used to eliminate

the design bias (Figure 2).

Consider a cohort study-like estimator of vaccine effec-

tiveness using only the contact-traced recruits:

Ê
0 0

¼ 1� Vþ
00

V 00
N00 þU00

Nþ00 þUþ00

Figure 2 The modelled population and recruitment into the TND study. (a) Individuals and their contacts are either targeted for vaccination (filled

circles—dark blue receive the vaccine and light blue do not) or not (open circles). (b) The fraction who are targeted (and thus may be vaccinated) is

pin; none of the non-targeted population (open circles, N label) receives the vaccine. Of those targeted, some are not vaccinated (e.g. because they

are ineligible due to age, pregnancy, recent illness, immunocompromised status or because there is only sufficient study vaccine to deliver partial

coverage) (light blue, U label) and some are (dark blue, V label). The vaccine coverage in the targeted population is L. In the recruitable population

(the combination of N, U and V), non-vaccinees (N and U) are infected on EVD exposure, whereas vaccines (V) avoid disease at the vaccine efficacy,

E. (c) An expected number of self-reported people test negative (circles with _ sign), B, until a test-positive (circle with þ sign) is identified. This leads

to an expected amount of follow-up testing, k, which finds R” more cases if the initial case is in the non-targeted population, and (1-LE)R” if targeted.

The coverage, L, efficacy, E, and targeted fraction, pin, determine the likelihood of observing the self-reporting case among targeted vs non-targeted

individuals and vaccinated vs unvaccinated individuals. (d) Resulting categories that can be recruited into the study. U and V are, respectively, the

unvaccinated and vaccinated individuals in the targeted population; N are non-targeted individuals. The ’ vs ”annotations indicate, respectively, self-

reporting vs contact-traced, and the _ vs þ subscripts indicate test-negative and test-positive outcomes, respectively
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Under our model assumptions, this estimator is asymp-

totically equal to the true efficacy, E. The positive fraction

of contact-traced individuals will be a context-specific

transmission probability. For vaccinees, it is reduced by (1-

E). The transmission-related term cancels from the two

fractions, leaving only Ê¼ 1 – (1—E) ¼ E, indicating that

this estimator is asymptotically unbiased. When only con-

sidering self-reporting individuals, our model assumptions

match the TND requirements for an unbiased estimate,

and therefore the test-negative estimator limited to self-

reporting individuals is also asymptotically unbiased.

Thus, any weighted combination of the two estimators like

Eq. (4) is also asymptotically unbiased.

Restricting recruitment to targeted populations

Ideally, a study would strictly recruit from populations that

were targeted for vaccination. This could be achieved either

by expanding the targeted (for vaccination) population to

coincide with the potentially recruitable (by testing) popu-

lation, or by censoring the tested population to only the

population targeted for vaccination. The former may be

possible with, for example, an extensive community en-

gagement programme that results in homogeneous coverage

across a wide region. The latter may be possible if there are

additional data collected, like place of residence, that allow

exclusion of individuals outside the targeted population.

Even if the study is constrained to only a targeted

Figure 3 Bias trends across all model parameters. The figure illustrates the bias trends with respect to true efficacy, E, and vaccination coverage in

the targeted population, L. The 16 panels correspond to combinations of example values for: (outer columns) self-reporting test-negative fraction (f_

at low ¼ 0.8 and high ¼ 0.99); (inner columns) the recruitment route ratio (q at low ¼ 0.5 and high ¼ 2; less than 1 implies more self-reporting recruit-

ment, greater than 1 implies more contact-tracing recruitment); (outer rows) contact-tracing test-positive fraction (p_t at low ¼ 0.1 and high ¼ 0.3);

and the targeted fraction (pinf_- at low ¼ 0.6 and high ¼ 0.9)
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population, i.e. pin ¼ 1, some bias remains due to recruit-

ment of contact-traced individuals, but it no longer depends

on the vaccine coverage (see Supplementary Material

Section S5.1, available as Supplementary data at IJE on-

line). However, uniformly distributing a vaccine among the

population will be complicated in an outbreak response set-

ting, and the bias is sensitive to other factors even when

most of the recruited population was targeted (Figure 4).

If the targeted fraction decreases, generally the magni-

tude of bias in the estimate increases. Bias generally peaks

when the true vaccine efficacy is around 50% and goes to

zero as true efficacy approaches 0 or 100%. Because initial

cases are more likely among non-targeted populations,

contact-traced individuals are likewise biased towards be-

ing non-targeted and thus un-vaccinated. Thus, bias tends

towards overestimation as contact-traced individuals more

frequently test positive. This can reverse for high levels of

contact-traced recruitment, when most contact-traced indi-

viduals are test-negative. All other factors being equal,

more coverage means more extreme bias as targeted and

non-targeted populations diverge.

Restricting recruitment to self-reported

individuals

The bias can also be corrected by restricting recruitment

strictly to self-reported individuals. If perfectly achieved,

then the bias is 0 (see Supplementary Material S4.4).

However during outbreak response, priorities and data pro-

cesses may focus on identified cases, neglecting detailed

tracking of test-negatives. Thus in retrospective analyses,

test-negative data might only reflect vaccine status, not route

Figure 4 Impact of decreasing targeted fraction among recruits. The panels show decreasing targeted fraction (columns from left to right) for scenar-

ios stratified by self-reported test-negative fraction in recruitment (0.8 and 0.99) and recruitment route ratio (0.1 and 0.3) (rows). This figure shows

70% coverage level in the targeted population, L¼ 0.7
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to testing, whereas more detailed data for test-positives are

available. If that applies, the resulting estimator bias is:

E� Ê ¼ � 1� Eð Þ

E

1� LEð ÞR00 � L
1� pin

1� Lpin
k� R

00ð Þ

B 1� LEpinð Þ þ 1� LEð Þ k� R00 1� Eð Þð Þ

2
64

3
75 (5)

Minimizing and ultimately eliminating bias in Eq. (5)

still depends on maximizing pin. One way of achieving

high pin is excluding non-targeted populations. This sug-

gests a trade-off between precision and bias: if the study

invests the effort to exclude any non-targeted population,

it may make sense to include contact-traced recruits.

If contact-traced test-positives are excluded retrospec-

tively, the resulting bias magnitude may be lower even if

contact-traced test-negatives are included due to misclassi-

fication (Figure 4 vs Figure 5). However, the direction of

bias changes with changing targeted fraction (pin): the no-

bias line falls at higher contact-tracing test-positive frac-

tions (pt) when targeted fraction decreases. The magnitude

of bias at the extremes of the contact-tracing test-positive

fractions is driven largely by the number of self-reporting

test-negatives. Other factors being equal, fewer self-

reported test-negatives means a lower self-reporting test-

negative fraction (f– ¼ 0.8 versus 0.99) and higher testing

route ratio (q ¼ 0.3 versus 0.1), both of which correspond

to more extreme bias.

Figure 5 Bias due to inability to exclude contact-traced test-negatives. The panels show decreasing targeted fraction (columns from left to right) for

scenarios stratified by self-reported test-negative fraction in recruitment (0.8 and 0.99) and recruitment route ratio (0.1 and 0.3) (rows). This figure

shows 70% coverage level among targeted individuals, L¼ 0.7. The range of bias is usually smaller than when recruitment is restricted to the targeted

population only (Figure 3)
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Quantifying potential bias from outbreak

response metrics

To quantify the bias range for an EVD vaccine study in

DRC, we determined the plausible range of outbreak re-

sponse metrics and corresponding model parameters

(Table 2). We consider test-positive counts SRþ in100,150

and CTþ in,100 400 for self-reporting and contact-tracing,

respectively. We consider test-negative counts SR� in

(6500, 7000) and CT� in (900, 1200), for self-reporting

and contact-tracing, respectively.

When restricting recruitment to targeted populations

only, the bias in estimated effectiveness is less than 3%

overestimation (Figure 6, left panel), but can increase to

>15% overestimate if coverage is high and targeted frac-

tion is low (Figure 6, right panel; 90% coverage, 40% tar-

geted fraction). As a larger non-targeted population is

recruited, increasing coverage increases bias, correspond-

ing to the increasing distinction in infection risk between

targeted and non-targeted populations. For these outbreak

response metrics, the estimate of vaccine effectiveness con-

sistently exceeds the true efficacy.

When restricting recruitment to self-reported individu-

als only, with no misclassification of testing route for test-

negatives, there is no bias (Figure 7, left panel). As the mis-

classification increases from 0 to 100%, the magnitude of

bias increases and tends towards underestimation, though

the range of possible bias includes overestimation. For the

most extreme case, where all contact-traced test-negatives

are included in a scenario with a low targeted fraction and

high coverage, the bias spans roughly 1% overestimate to

5% underestimate (Figure 7, right panel; 90% coverage,

40% targeted fraction). As with restricting recruitment to

the targeted population, the magnitude of the bias

increases with coverage among targeted individuals.

Discussion

Previous work has explored biases in TND studies due to

care-seeking or other confounding and selection

effects,35,40,41 test or vaccine status misclassification

errors25,42–44 and vaccine mechanism.36,45 Here, we dem-

onstrate that public health response efforts can also gener-

ate bias in the effectiveness estimates of a conventional

TND study. If the response effort collects data on route to

testing, a hybrid design study is possible and does not suffer

this bias. Retaining this information should therefore be a

high priority. This hybrid design warrants further analysis,

as we have only considered it with a simplified model.

When a conventional TND study cannot distinguish

self-reported and contact-traced recruits, nor whether

recruits were generally among a population targeted for

vaccination, then the vaccine effectiveness estimate is po-

tentially biased. These are both real, practical problems: in

addition to general difficulty in collecting data during an

outbreak, it may be difficult to achieve uniform levels of

coverage when deploying a vaccine in an emergency set-

ting, particularly in highly mobile populations or those af-

fected by civil unrest.

In our model, the bias arises from the interaction of het-

erogeneous vaccination distribution and the inclusion of

tested individuals from contact-tracing. Because initial

cases found through self-reporting are more likely to be

Figure 6 Bias possible when recruiting targeted individuals only. These bias envelopes were computed assuming outbreak response metrics For

Review Only [“SR” ]_-2(6500, 7000), [“SR” ]_þ2(100, 150), [“CT” ]_þ2(100, 400) and [“CT” ]_-2(900, 1200), which corresponds to 97.7–98.6% of self-

reporting cases testing negative, testing 6–16 contact-traced individuals per self-reported case and 10–25% of those contact-traced individuals testing

positive. If the study is restricted to recruit only the targeted population (leftmost panel), then bias can be limited to less than 3% overestimation.

However, as the targeted fraction falls, the error range generally increases, to >15% peak bias for high coverage (90%) and low targeted fraction

(40%). Higher coverage in the targeted population generally increases bias; this reflects increasing differences between the targeted and non-targeted

individuals
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non-targeted (and thus unvaccinated) individuals, includ-

ing contact-traced recruits over-represents those individu-

als in the estimator. This in turn can tilt the bias either

towards or away from the null, depending on how infec-

tion risk and testing criteria differ in the contact-traced

population versus the general population. If the self-

reporting process leads to many more test-negative recruits

than recruits from contact-tracing (either positive or nega-

tive), then the bias from contact-tracing is relatively

smaller. If it does not, then the relative number of cases

versus controls from contact-tracing will determine the

general direction of bias: more cases lead to overestima-

tion, more controls lead to underestimation.

The ideal solution is to maintain data on route to testing

but, if that does not occur, we show that the range of po-

tential bias can be quantified with aggregate epidemiologi-

cal data from an outbreak. For the range of outbreak

response metrics we used to represent the EVD outbreak in

DRC, this is less than 10% if the study can achieve high

targeted fraction (pin � 0:6) with at most moderate cover-

age (L � 0:7).

Practically, it may be possible to limit but not eliminate

these drivers of the bias. For the EVD epidemic in eastern

DRC, responders tried to test individuals meeting one of

the outbreak ‘suspected case’ definitions which combine

different levels of symptoms and potential contact with

known cases.37,38 This practice would likely continue in

populations that received a study vaccine, meaning this

testing process would be the likely source for a retrospec-

tive TND study of a new vaccine.

We framed our analysis in terms of event counts, but it

can also be thought of in terms of testing thresholds. For

example, we frame contact-tracing recruitment as a number

of contacts and the number of cases among them. The result-

ing effectiveness estimator error is then driven by the ratio of

those values. In an infectious disease sense, this ratio is the

transmission probability, but it could instead be interpreted

in terms of the sensitivity of the criteria for testing: should

testing criteria be stricter to conserve limited resources, or

more relaxed to ensure no positives are missed? A similar

analogy applies for testing self-reporting individuals. For

both self-reported and contact-traced testing, bias in the vac-

cine effectiveness estimate is generally lower when testing

criteria are less strict (i.e. the protocol is more sensitive), con-

sistent with a control-oriented outbreak response, whereas a

more resource-limited response would have higher bias.

Our analysis describes vaccination during EVD out-

breaks, but our work has general implications for evaluat-

ing interventions in other infectious disease settings with a

public health response that includes testing, for example

efforts to control the COVID-19 pandemic. We have fo-

cused on self-reporting and contact-tracing, but the chal-

lenges are generic when there are distinct, but potentially

undistinguished, primary and secondary recruiting pro-

cesses. For example, more active general-population sur-

veillance could still qualify as the primary recruitment in

our model, as long as it were random with respect to inter-

vention status. Likewise, geographical follow-up could be

a secondary process, as long as intervention status were

correlated with the secondary process (e.g. for dengue, ad-

jacent households followed up, as long as vector control

reached some areas and not others).

This analysis of the conventional TND and hybrid de-

sign under outbreak conditions does not consider other

Figure 7 Bias possible when recruitment is restricted to self-reported individuals only. If the study analysis is able to restrict recruits to only self-

reporting individuals, then there is no bias (left panel). However, as For Review Only contact-traced test-negative individuals are increasingly included

(moving right across panels), bias range increases to between 1% overestimate and 5% underestimate. However, this range is notably smaller than if

only recruiting from the targeted population (Figure 5). As with restricting recruitment to targeted individuals only, higher levels of coverage lead to

wider bias range. These ranges reflect the same parameters used in Figure 6, including targeted fraction p_in 2(0.4,1). In this figure, the overestimate

bounds (upper ribbon lines) closely align
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possible sources of bias, such as different exposure risk be-

tween groups, testing errors or errors in ascertaining vac-

cine status. Further investigation of the reliability of these

studies for estimating effectiveness during outbreaks

remains critical. However, as we have shown, use of this

design in an outbreak setting will need to account for the

realities of control activities and plan to collect data on

testing route or otherwise accommodate the mix of recruit-

ment routes.

Adoption of a TND or hybrid design to evaluate a new

vaccine in DRC may increase pressure for similar studies

that do not have an explicit, randomized control group in

future outbreaks of similarly highly pathogenic diseases.

Understanding the biases and limitations of these designs

will therefore be critical to evaluate vaccines that are cur-

rently being developed against these pathogens. All analy-

sis code is available from [https://gitlab.com/ebovac/

TNCC_math].

Supplementary Data

Supplementary data are available at IJE online.
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Lancet 2017;389:505–18.

18. European Commission. Vaccine Against Ebola: Commission

Grants First-Ever Market Authorisation. 2019.. https://ec.eu

ropa.eu/commission/presscorner/detail/en/IP_19_6246 (11

November 2019, date last accessed).

19. US Food and Drug Administration. First FDA-Approved Vaccine

for the Prevention of Ebola Virus Disease, Marking a Critical

International Journal of Epidemiology, 2021, Vol. 00, No. 00 13

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyab172/6359515 by London School of H

ygiene & Tropical M
edicine user on 14 O

ctober 2021

https://gitlab.com/ebovac/TNCC_math]
https://gitlab.com/ebovac/TNCC_math]
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab172#supplementary-data
https://www.msf.org/ebola-drc-independent-ebola-vaccination-committee-needed 
https://www.msf.org/ebola-drc-independent-ebola-vaccination-committee-needed 
https://ec.europa.eu/commission/presscorner/detail/en/IP_19_6246 
https://ec.europa.eu/commission/presscorner/detail/en/IP_19_6246 


Milestone in Public Health Preparedness and Response. 2019.

https://www.fda.gov/news-events/press-announcements/first-

fda-approved-vaccine-prevention-ebola-virus-disease-marking-

critical-milestone-public-health (19 December, date last accessed).

20. WHO. Weekly Epidemiological Record 2019. https://www.who.

int/immunization/sage/meetings/2019/april/SAGE_April_2019_

meeting_summary.pdf

21. SAGE. Strategic Advisory Group of Experts (SAGE) on

Immunization Interim Recommendations on Vaccination

against Ebola Virus Disease (EVD). 2019. https://www.who.int/

immunization/policy/position_papers/interim_ebola_recommen

dations_may_2019.pdf

22. Johnson & Johnson. Johnson & Johnson Announces Donation

of up to 500,000 Regimens of Janssen’s Investigational Ebola

Vaccine to Support Outbreak Response in Democratic Republic

of the Congo (DRC). 2019. https://www.jnj.com/johnson-john

son-announces-donation-of-up-to-500-000-regimens-of-jans

sens-investigational-ebola-vaccine-to-support-outbreak-re

sponse-in-democratic-republic-of-the-congo-drc

23. Vandebosch A, Mogg R, Goeyvaerts N et al. Simulation-guided

phase 3 trial design to evaluate vaccine effectiveness to prevent

Ebola virus disease infection: statistical considerations, design

rationale, and challenges. Clin Trials 2016;13:57–65.

24. Ecbs E. Guidelines on the quality, safety and efficacy of Ebola

vaccines. WHO Technical Report Series 2017;68:87–179.

25. Sullivan SG, Feng S, Cowling BJ. Potential of the test-negative

design for measuring influenza vaccine effectiveness: a systematic

review. Expert Rev Vaccines 2014;13:1571–91.

26. Araki K, Hara M, Shimanoe C, Nishida Y, Matsuo M, Tanaka

K. Case-control study of rotavirus vaccine effectiveness com-

pared to test-negative controls or hospital controls. J Epidemiol

2019;29:282–87.

27. Walker JL, Andrews NJ, Atchison CJ et al. Effectiveness of oral

rotavirus vaccination in England against rotavirus-confirmed

and all-cause acute gastroenteritis. Vaccine X 2019;1:100005.

28. Haber M, Lopman BA, Tate JE, Shi M, Parashar UD. A compari-

son of the test-negative and traditional case-control study

designs with respect to the bias of estimates of rotavirus vaccine

effectiveness. Vaccine 2018;36:5071–76.

29. Broome CV, Facklam RR, Fraser DW. Pneumococcal disease af-

ter pneumococcal vaccination: an alternative method to estimate

the efficacy of pneumococcal vaccine. N Engl J Med 1980;303:

549–52.

30. Chua H, Feng S, Lewnard JA et al. The use of test-negative con-

trols to monitor vaccine effectiveness: a systematic review of

methodology. Epidemiology 2020;31:43–64.

31. Li Y, Zhou Y, Cheng Yet al. Effectiveness of EV-A71 vaccination in

prevention of paediatric hand, foot, and mouth disease associated

with EV-A71 virus infection requiring hospitalisation in Henan,

China, 2017–18. Lancet Child Adolesc Health 2019;3:697–704.

32. Yung CF, Chan SP, Thein TL, Chai SC, Leo YS.

Epidemiological risk factors for adult dengue in Singapore: an

8-year nested test negative case control study. BMC Infect Dis

2016;16:323.

33. Anders KL, Cutcher Z, Kleinschmidt I et al. Cluster-randomized

test-negative design trials: a novel and efficient method to assess

the efficacy of community-level dengue interventions. Am J

Epidemiol 2018;187:2021–28.

34. Anders KL, Indriani C, Ahmad RA et al. The AWED trial

(Applying Wolbachia to Eliminate Dengue) to assess the efficacy

of Wolbachia-infected mosquito deployments to reduce dengue

incidence in Yogyakarta, Indonesia: study protocol for a cluster

randomised controlled trial. Trials 2018;19:302.

35. Foppa IM, Haber M, Ferdinands JM, Shay DK. The case test-

negative design for studies of the effectiveness of influenza vac-

cine. Vaccine 2013;31:3104–09.

36. Dean NE. Re: “Measurement of vaccine direct effects under the

test-negative design”. Am J Epidemiol 2019;188:806–10.

37. WHO. Case Definition Recommendations for Ebola or Marburg

Virus Diseases. 2014. https://www.who.int/csr/resources/publica

tions/ebola/case-definition/en/

38. WHO. Implementation and Management of Contact Tracing for

Ebola Virus Disease. 2015. https://www.who.int/csr/resources/

publications/ebola/contact-tracing/en/

39. WHO. Preliminary Results on the Efficacy of rVSV-ZEBOV-GP

Ebola Vaccine Using the Ring Vaccination Strategy in the Control

of an Ebola Outbreak in the Democratic Republic of the Congo: an

Example of Integration of Research Into Epidemic Response.

2019. https://www.who.int/csr/resources/publications/ebola/ebola

-ring-vaccination-results-12-april-2019.pdf

40. Ainslie KEC, Shi M, Haber M, Orenstein WA. On the bias of

estimates of influenza vaccine effectiveness from test-negative

studies. Vaccine 2017;35:7297–301.

41. Ferdinands JM, Foppa IM, Fry AM, Flannery BL, Belongia EA,

Jackson ML. Re: “Invited commentary: beware the test-negative

design”. Am J Epidemiol 2017;185:613.

42. Orenstein EW, De Serres G, Haber MJ et al. Methodologic

issues regarding the use of three observational study designs to

assess influenza vaccine effectiveness. Int J Epidemiol 2007;

36:623–31.

43. Jackson ML, Rothman KJ. Effects of imperfect test sensitivity

and specificity on observational studies of influenza vaccine ef-

fectiveness. Vaccine 2015;33:1313–16.

44. De Smedt T, Merrall E, Macina D, Perez-Vilar S, Andrews N,

Bollaerts K. Bias due to differential and non-differential disease-

and exposure misclassification in studies of vaccine effectiveness.

PLoS One 2018;13:e0199180.

45. Lewnard JA, Tedijanto C, Cowling BJ, Lipsitch M.

Measurement of vaccine direct effects under the test-negative de-

sign. Am J Epidemiol 2018;187:2686–97.

14 International Journal of Epidemiology, 2021, Vol. 00, No. 00

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyab172/6359515 by London School of H

ygiene & Tropical M
edicine user on 14 O

ctober 2021

https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health 
https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health 
https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health 
https://www.who.int/immunization/sage/meetings/2019/april/SAGE_April_2019_meeting_summary.pdf
https://www.who.int/immunization/sage/meetings/2019/april/SAGE_April_2019_meeting_summary.pdf
https://www.who.int/immunization/sage/meetings/2019/april/SAGE_April_2019_meeting_summary.pdf
https://www.who.int/immunization/policy/position_papers/interim_ebola_recommendations_may_2019.pdf
https://www.who.int/immunization/policy/position_papers/interim_ebola_recommendations_may_2019.pdf
https://www.who.int/immunization/policy/position_papers/interim_ebola_recommendations_may_2019.pdf
https://www.jnj.com/johnson-johnson-announces-donation-of-up-to-500-000-regimens-of-janssens-investigational-ebola-vaccine-to-support-outbreak-response-in-democratic-republic-of-the-congo-drc
https://www.jnj.com/johnson-johnson-announces-donation-of-up-to-500-000-regimens-of-janssens-investigational-ebola-vaccine-to-support-outbreak-response-in-democratic-republic-of-the-congo-drc
https://www.jnj.com/johnson-johnson-announces-donation-of-up-to-500-000-regimens-of-janssens-investigational-ebola-vaccine-to-support-outbreak-response-in-democratic-republic-of-the-congo-drc
https://www.jnj.com/johnson-johnson-announces-donation-of-up-to-500-000-regimens-of-janssens-investigational-ebola-vaccine-to-support-outbreak-response-in-democratic-republic-of-the-congo-drc
https://www.who.int/csr/resources/publications/ebola/case-definition/en/
https://www.who.int/csr/resources/publications/ebola/case-definition/en/
https://www.who.int/csr/resources/publications/ebola/contact-tracing/en/
https://www.who.int/csr/resources/publications/ebola/contact-tracing/en/
https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf
https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf



