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Abstract: This paper presents a novel and robust two-stage pursuit strategy for the incomplete-
information impulsive space pursuit-evasion missions considering the J2 perturbation. The strategy 
firstly models the impulsive pursuit-evasion game problem into a far-distance rendezvous stage 
and a close-distance game stage according to the perception range of the evader. For the far-distance 
rendezvous stage, it is transformed into a rendezvous trajectory optimization problem and a new 
objective function is proposed to obtain the pursuit trajectory with the optimal terminal pursuit 
capability. For the close-distance game stage, a closed-loop pursuit approach is proposed using one 
of the reinforcement learning algorithms, i.e., the deep deterministic policy gradient algorithm, to 
solve and update the pursuit trajectory for the incomplete-information impulsive pursuit-evasion 
missions. The feasibility of this novel strategy and its robustness to different initial states of the 
pursuer and evader and to the evasion strategies are demonstrated for the sun-synchronous orbit 
pursuit-evasion game scenarios. The results of the Monte Carlo tests show that the successful pur-
suit ratio of the proposed method is over 91% for all the given scenarios. 

Keywords: space pursuit-evasion mission; incomplete-information game; reinforcement learning; 
impulsive propulsion; J2 perturbation 
 

1. Introduction 
The space pursuit-evasion (PE) game is a typical zero-sum game [1,2], where the 

goals of both confrontation sides are completely opposite and irreconcilable. With the de-
velopment of space technology, it is one of the focuses of space security and has been 
investigated extensively by many scholars. Differential game theory was firstly proposed 
by Isaacs [3] in 1965 and is an effective approach to address the zero-sum game problem 
[4,5]. In differential game, the PE game is transformed into a two-point boundary value 
problem (TPBVP) using Hamilton–Jacobi–Bellman equation [6]. However, for the space 
PE game, it is a challenge to solve the transformed TPBVP due to its high dimensionality 
and strong nonlinearity. 

Some approaches were proposed to address these two challenges and improve the 
performance of differential theory on space PE game problems. Anderson et al. [7] linear-
ized the equations of the spacecraft motion and approximated the thrust angle control 
using polynomial to obtain a simplified spacecraft planar PE analytical expression. Li et 
al. [8] modeled the relative states of two spacecraft in near-circular orbits with the circular-
orbit variational equations to reduce the dimensionality. Jagat and Sinclair [9] applied the 
state-dependent Riccati equation method to obtain nonlinear control law for two space-
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craft PE game in the Hill coordinate system. Blasch et al. [10] degenerated the three-di-
mensional (3D) PE game into a two-dimensional coplanar PE game by firstly assuming 
that the pursuer matches the orbital plane of the escaper, which is easy to address. How-
ever, both the linear simplified approaches and the planarity assumptions are inconsistent 
with the actual situation as the space PE game is a typical 3D nonlinear PE game. Further-
more, the perturbations in realistic dynamics of the actual space PE game missions make 
it more challenging to solve the game. The major perturbation is from the J2 spherical 
harmonic term of the Earth gravity field. 

Li et al. [11] developed the combined shooting and collocation method to address the 
accurate saddle point of the 3D PE game using the J2-perturbed dynamics. Based on the 
state-dependent Riccati equation method, Jagat et al. [12] used a state-dependent coeffi-
cient matrix to derive a nonlinear control law from the linear quadratic differential game 
theory. Pontani and Conway [13] proposed a semi-direct collocation with nonlinear pro-
gramming (SDCNLP) method, which obtains the solution for one side with the analytical 
necessary conditions of another side, and the initial guesses of the nonlinear programming 
method are generated using the genetic algorithm (GA). Carr et al. [14] developed a fast 
method to obtain initial guesses of the co-states needed in the SDCNLP method and a 
penalty-functions technique to deal with state inequality constraints in the indirect 
player’s objective. Because SDCNLP only uses the analytic optimal necessary condition 
for the evader, the obtained saddle point is not accurate. Therefore, Sun et al. [15] pro-
posed a hybrid method combining the new SDCNLP that introduces two optimal control 
problems corresponding to the differential game and the multiple shooting method to 
improve the convergence and accuracy of solving the TPBVP of the space PE game. Hafer 
et al. [16] employed the sensitivity method to address space PE game problems and uti-
lized a homotopy strategy to improve the efficiency of the algorithms. Shen et al. [17] ap-
plied an indirect optimization method to the 3D space PE game and found the local opti-
mal solutions, which satisfy the analytical necessary conditions for optimality. Further, 
the constraints of the minimum altitude and mass variation were considered for making 
the saddle-point solution more accurate. 

For the above studies, the information of both players is completely disclosed and 
both two players in space PE game are assumed to be sane enough. Actually, due to the 
communication delay and the non-cooperation of the players, there are large uncertainties 
during the PE game. Cavalieri et al. [18] applied a two-step dynamic inversion to allow 
behavior learning methods to estimate the opponent behavior for incomplete-information 
PE games with uncertain relative dynamics. Shen et al. [19] considered the uncertainty of 
the J2-perturbed dynamical model and used quantitative indicators of uncertainty as the 
game payoff function to solve the incomplete-information space PE problem. Li et al. [20] 
developed a currently optimal evasive control method using a modified strong tracking 
unscented Kalman filter to modify the guess and to update the strategy during the game.  

The closed-loop control method, which can update the trajectory based on the real-
time feedback, is a valid approach to deal with uncertainties and emergencies and is 
widely used in space missions, especially for the realistic space PE game that is a dynam-
ical process [20]. However, the approaches based on the differential game theory are 
mainly used for continuous-thrust cases and inapplicable for impulse cases. In addition, 
the computational time cost of solving the saddle point is expensive. Therefore, it is chal-
lenging to develop a feedback closed-loop control method with high efficiency for the 
impulsive space PE game missions considering the perturbations of the dynamics. The 
development of artificial intelligence provides alternative ways to address this challenge. 
Reinforcement learning (RL) as the representative of intelligent algorithms can interact 
with the environment in real time and obtains the optimal control of the maximum reward 
through data training [21,22]. RL has been widely employed to solve PE problems in the 
field of unmanned aerial vehicle (UAV) [23–25]. Different from the UAV PE game, the 
space PE game has a long mission duration and complex dynamics. In the field of space 
PE game, Liu [26] and Wang [27] developed the improved branching deep Q networks 
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and the fuzzy actor-critic learning algorithm, respectively. These previous researches usu-
ally restricted the initial distance between the two spacecraft to reduce the PE game dura-
tion and used a simplified dynamical model to improve the computational efficiency. To 
remove this limitation and consider realistic space PE game problems, in this paper, a 
novel two-stage pursuit strategy is developed to find a robust solution for incomplete-
information impulsive space pursuit-evasion missions considering J2 perturbation. For 
the far-distance rendezvous stage (FRS), a new game capability index of the pursuer is 
proposed as the objective function of multi-impulses transfer trajectory optimization with 
the J2-perturbed dynamical model. For the close-distance game stage (CGS), a novel 
closed-loop approach using the deep deterministic policy gradient (DDPG) algorithm is 
developed to solve the impulsive maneuver strategy according to the incomplete feedback 
information. The proposed method is applied to the scenarios of spacecraft games in the 
sun-synchronous orbit, which demonstrates outstanding advantages in robustness to var-
ious initial states of the pursuer and the evader and to the different evasion strategies. 

2. Problem Formulation 
This section introduces the dynamical model considering the J2 non-spherical term 

of the Earth and the formulations of the space pursuit-evasion game problem. 

2.1. Dynamical Model with J2 Perturbation 
Motion of the spacecraft during impulsive PE game is described in the J2000 Earth-

centered inertial frame, and both the pursuer and evader use impulse maneuvers to per-
form orbital transfer. J2 perturbation is considered in the dynamical model, and the cor-
responding equations of the spacecraft’s motion are given as follows: 
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 (1)

where [x, y, z]T and [vx, vy, vz]T denote the position and velocity vectors of the spacecraft in 
the J2000 Earth-centered inertial frame. 𝑟 = ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ is the magnitude of the posi-
tion. J2 is the J2 zonal harmonic coefficient representing the effect of the Earth’s oblateness, 
and R0 represents the mean equatorial radius of the Earth. [Δvx, Δvy, Δvz,]T denotes the 
impulse maneuver of the spacecraft. 

2.2. Formulation of Non-Cooperation Target Pursuit Problem 
Actually, the pursuit and evasion spacecraft move in different orbits at a safe distance 

before the space PE game mission starts. Considering the perception range constraint of 
the evasion spacecraft (e.g., 200 km), the practical space PE game mission usually breaks 
down into two phases: the far-distance rendezvous stage and the close-distance game 
stage, as shown in Figure 1. The evader and pursuer spacecraft have different game strat-
egies at different stages of missions. 
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Figure 1. Illustration of FRS and CGS for a practical space PE game mission. 

In the FRS, the pursuit spacecraft implements impulse maneuvers to be injected into 
the rendezvous trajectory of the evader and approaches the evader until reaching its per-
ceived boundary. During this stage, the evader stays in its initial orbit with no response 
to the pursuer’s action, since the pursuit spacecraft is out of its perception range. Thus, 
the PE game problem is transformed to a multi-impulse rendezvous trajectory optimiza-
tion problem of the pursuit spacecraft. The formula of the objective function is given as 
follows, 

( )1 1 2 2 1, , , , , ,F n n n nJ f t t t t− − −= Δ Δv v  (2)

where ti is the epoch of the i-th impulse maneuver, and Δvi denotes the i-th velocity incre-
ments. n is the total number of impulse maneuvers. The last two impulse maneuvers are 
calculated by solving the Lambert problem. 

The CGS starts when the pursuit spacecraft moves within the evader’s perception 
range. At this stage, the evader performs impulsive maneuvers to evade the pursuer. 
Meanwhile, the pursuit spacecraft also try to rendezvous the evader by impulsive maneu-
ver operations. For complete-information games, the pursuer and evader know each 
other’s objective function and game strategy. However, for a more general and realistic 
space PE mission, the players only know their own game strategies and the delayed in-
formation of their opponent’s actions, which is defined as the incomplete-information 
game.  

Without loss of generality, the state of space PE game is defined as s = sP-sE, where si 
= [xi, yi, zi, vxi, vyi, vzi]T denotes the state vector of the spacecraft in the J2000 Earth-centered 
inertial frame, where the subscript i = P or E indicates the pursuer and evader respectively. 
Therefore, the general objective functions of the pursuit and evasion spacecraft are de-
fined in Equations (3) and (4) [20]. The objective function consists of two parts: the process 
state and the terminal state. The former includes the relative states of the pursuer and 
evader and their control consumption during the mission. The game strategy of the space-
craft is determined by the weight matrix of each item. 

0
P P P P-P P E P-E E f fP f0.5 d 0.5ft T T T T

t
J t = + − +  Q W W Qs s u u u u s s  (3)

0
E E P E-P P E E-E E f fE f0.5 d 0.5ft T T T T

t
J t = + − +  Q W W Qs s u u u u s s  (4)

where t0 and tf are the initial and final epoch of the mission, respectively. sf denotes the 
final state of the game mission. ui = [Δvxi, Δvyi, Δvzi]T represents the impulsive maneuver of 
spacecraft, where the subscript i = P or E indicates the pursuer and evader respectively. 
Qi and Qfi present the weight coefficient matrices of the process and terminal states, re-
spectively. WP-P and WE-E denote the self-control weight coefficient matrices of pursuer 
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and evader. WP-E and WE-P are the weight coefficient matrices of opponent’s control strat-
egy of pursuer and evader, respectively. These weight coefficient matrices are defined as 
follows [20] 
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where qi, qfi, wPi, and wEi are the preference parameters of the player i between the relative 
distance and consumed energy in the game, which are the private information of player i. 

For traditional zero-sum game problems, the values of the weight matrices in Equa-
tions (3) and (4) are the same, and the signs are opposite. However, the game strategies of 
players have different preferences and the information obtained by both players is also 
incomplete in realistic missions. Therefore, the weight coefficient matrices in Equations 
(3) and (4) have different values. 

The game mission ends when the states of the spacecraft firstly meet the successful 
pursuit conditions in Equation (6) or any other terminal constraints in Equation (7). 

P E max

P E max

r
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 − ≤
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ft t

v
=
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where rmax and vmax are the maximum distance and velocity tolerances for a successful 
pursuit, respectively. tmax is the maximum mission duration. These mission parameters 
are set according to realistic mission requirements. ΔvPres denotes the residual velocity in-
crement of the pursuit spacecraft. 

Both players in the space PE game aim to minimize their own objectives. However, 
the incomplete-information game is a non-zero-sum game due to the different preferences 
of the players. It is a challenge to address the robust pursuit solution due to the lack of the 
information of the evader’s game strategy. A novel method using the RL technique is pro-
posed to obtain a robust pursuit solution efficiently, which will be introduced in detail in 
Section 3.2. 

3. Two-Stage Pursuit Strategy Using Reinforcement Learning 
A two-stage pursuit strategy that consists of an FRS and a CGS is proposed in this 

section for incomplete-information impulse pursuit-evasion missions. Firstly, a GA is em-
ployed to solve the multi-impulse rendezvous trajectory with the optimal terminal game 
capability. Then, a closed-loop pursuit method using the DDPG algorithm is developed 
to address a robust impulsive pursuit trajectory for the incomplete-information PE game. 

3.1. Multi-Impulse Pursuit Trajectory Optimization for FRS 
During the FRS, the pursuit trajectory solving is a typical transfer trajectory optimi-

zation problem because the evader cannot perceive the pursuer. The process of multi-
impulse rendezvous is shown in Figure 2. In order to ensure successful rendezvous with 
the evader at the terminal time epoch, the last two impulse maneuvers are obtained by 
solving the Lambert problem. Therefore, the independent variables to be optimized are 
the maneuver time ti and the first n−2 velocity increments Δvi, i.e., X = {t1, t2, …, tn, Δv1, 
Δv2, …, Δvn−2,}. 
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Figure 2. The multi-impulse pursuit trajectory for the far-distance rendezvous stage. 

Different from the traditional rendezvous mission trajectory, the pursuit trajectory of 
the FRS terminates when it reaches the perception range of the evader. Therefore, the ma-
neuvers planned in the perception range of the evader are not actually implemented. The 
pursuit trajectory aims to achieve the optimal terminal game capability for the FRS. Firstly, 
the pursuer has a stronger pursuit potential when the terminal residual velocity increment 
is large. Secondly, when the pursuer’s terminal state is closer to that of the evader, it is 
easier for the subsequent operations in the CGS. The required velocity increment for the 
close-distance PE game is the minimum if the evader does not perform any evasive ma-
neuvers, which is equal to the sum of the Δv that were planned in FRS but not executed 
because they are within the perception range. Therefore, the terminal game capability of 
the pursuer is defined as the ratio of the minimum velocity increments required for the 
close-distance PE game to the terminal residual velocity increments of the pursuer in the 
FRS. The corresponding formula is defined as follows, 
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where n is the number of the planned impulse maneuvers, and k is the number of impulse 
maneuvers actually performed in the FRS. Δvj denotes the j-th velocity increment vector. 
Δvtol is the total velocity increment of the pursuit spacecraft. 

The equations of motion of the spacecraft with the J2-perturbed dynamics are given 
as Equation (1), and it is assumed that the impulsive maneuver is performed instantane-
ously. Therefore, the constraints on the states before and after impulsive maneuver are 
listed as follows. 

i i

i i

i i i

t t

+ −

+ −

+ −

 =


=
 = + Δ

r r

v v v

 (9)

where the superscripts “+” and “−” indicate before and after the i-th impulse maneuver, 
respectively. 

Finally, the GA is used to search the optimal pursuit trajectory for the FRS. The ve-
locity increment vector is described by the spherical coordinate to improve the optimiza-
tion performance of algorithm, i.e., Δvj = [Δv, α, β]T, where Δv, α, and β are the magnitude, 
azimuthal angle, and polar angle of the velocity increment vector. 

3.2. DDPG-Based Pursuit Method for CGS  
After completing the FRS, the pursuer moves within the evader’s perception range 

and is discovered by the evader. Then, the evader will perform evasive maneuvers in re-
sponse to the threat of the pursuer during the CGS. As mentioned in Section 2.2, the close-
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distance PE game is actually an incomplete-information game, where the pursuer does 
not know the game strategy of the evader. Therefore, the pursuer must have the capability 
to continuously update its pursuit strategy based on the feedback information, to improve 
the robustness of the pursuit during the CGS. Reinforcement learning, as an important 
methodology of machine learning, is mainly used to describe and solve the problem of 
maximizing returns or achieving specific goals through learning strategies in the process 
of interaction between the agent and the environment. Therefore, a closed-loop pursuit 
method using a deep deterministic policy gradient algorithm, which is one of the earliest 
deep RL algorithms, is proposed in this section to solve the robust pursuit strategy for the 
incomplete-information PE game. 

3.2.1. Deep Deterministic Policy Gradient Algorithm 
The DDPG algorithm is designed to operate on the large potential state and action 

spaces with a deterministic policy, which combines both Q-learning and Policy gradients 
and uses the deep neural networks to approximate the action and the Q-value [25]. DDPG 
adopts the actor and critic (AC) architecture, as shown in Figure 3. The actor is a policy 
network that takes the state as the input and outputs the exact action, rather than a prob-
ability distribution over actions. The critic is a Q-value network to evaluate the value of 
the action, which takes state and action as the inputs and outputs the Q-value. Both actor 
and critic have two networks: the online network and the target network. The roles of 
these four networks in DDPG are briefly introduced as follows. 
• Online actor network a = A(s, θA): it takes state s and returns the corresponding action 

a that maximizes the long-term reward R. 
• Target actor network a′ = A′(s′, θA′): it outputs the next action a′ using the next state 

s′ sampled in the experience replay memory. Its parameters θA′ are regularly updated 
according to the parameters of the online actor network θA. 

• Online critic network q = Q(s, a, θQ): it takes state s and action a as inputs and returns 
the corresponding expectation of Q-value q. 

• Target critic network q′ = Q′(s′, a′, θQ′): it outputs the next expectation of Q-value q′ 
using the next action a′ and the next state s′ sampled in the empirical playback pool. 
Its parameters θQ′ are regularly updated according to the parameters of the online 
critic network θQ. 
θQ and θQ′ are the weights of the online critic network and the target critic network, 

respectively. θA and θA′ denote the weights of the online actor network and the target actor 
network, respectively. 

 
Figure 3. The actor and critic architecture of DDPG. 
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The soft update technique and the target network are applied to improve the conver-
gence and robustness of the training. The parameters of the online networks are firstly 
updated through the optimizers (e.g., stochastic gradient descent algorithm), and then the 
parameters of the target networks are updated through the soft update algorithm, where 
only a fraction of the weight parameters is transferred in the following manner. 
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where τ∈[0,1] is the parameter of soft update algorithm. 
The loss function of the online critic network is formatted as follows 
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where N is the number of samples from the replay memory buffer. Ri is the reward of the 
i-th action. γ is the discount factor of the future reward. 

The policy gradient of the online actor network was formulated according to the de-
terministic policy gradient method as,  

( ) ( ) ( ),
1 , , ,A A

i i

Q A
AiJ Q A

N = =∇ ≈ ∇ ∇ iθ a ss s a s θs a θ s θ  (12)

According to the deterministic policy gradient method, the actor-network only out-
puts the action with the highest probability. This effectively improves the computational 
efficiency of the algorithm, while its exploration capability was significantly insufficient. 
Therefore, the off-policy method, which chooses the action at based on the current policy 
and the exploration noise Nt, was employed to improve the exploratory capability of the 
algorithm. 

( ), A
t t tA Ν= +a s θ  (13)

3.2.2. Closed-Loop Pursuit Method Using DDPG 
This section presents a closed-loop pursuit method using DDPG, which enables the 

pursuer to interact with the environment, to address the incomplete-information PE game 
problem, as shown in Figure 4. Markov Decision Process (MDP) [28], which is a common 
model for RL, was used to model the space PE game problem. According to the MDP 
theory, the agent (here, it is the pursuit spacecraft) takes action after interacting with the 
environment to change its state for obtaining a reward. 

 
Figure 4. The agent-environment interaction in MDP. 

The state and action spaces of the PE game are defined as follows 
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The states of the pursuer and the evader are propagated using Equation (1). The re-
turn and reward functions are defined as follows 
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where the variables in Equation (15) have the same definition as those in Equation (3). WP-

E is equal to 06 × 6 because the strategy of the evader was unknown. Nf denotes the number 
of steps when the successful pursuit condition in Equation (6) or terminal constraints in 
Equation (7) are met. κ is the scale coefficient, whose default value is 0.0001. εf is the re-
ward of the mission completion and is defined as 

{f
successful pu

e
10 , if it sati c osfies rsuit onditi ns i

s
n Eq.(6)

10 ,elε = −  (17)

If the pursuer has a successful rendezvous with the evader, it receives a positive constant 
reward. Otherwise, it was punished with a negative constant reward. 

It is assumed that the evader will perform an impulse maneuver to evade the pursuer 
when the evasive condition was activated. The evasive condition is defined as 

( )P E ec c fmin , [ , ]t t r t t t− < ∈r r  (18)

where rtP and rtE are the position vectors of the pursuer and evader at time t. tc and tf are 
the current and terminal time of the mission. rec denotes the warning distance of the evader. 

The maneuver time tm and delta-v Δv are optimized using the sequential quadratic 
programming (SQP) with the following objective function  

( )f

c
E E E E-E E f fE f m E0.5 d 0.5 ,

t T T T
t

J t f t = − + = Δ  Q W Qs s u u s s v  (19)

where the variables in Equation (19) have the same definition as those in Equation (4). 
Therefore, the evader’s strategy was adjusted by changing the weight matrix QE, WE-E and 
QfE during the training. 

In order to improve the robustness and generalization capability of the training 
agent, the initial states of the pursuer and evader and the evasive strategy of the evader 
are randomly initialized before each episode. The initial states of the pursuer and evader 
for the CGS are their terminal states of the FRS that are solved using the multi-impulse 
pursuit trajectory optimization for FRS in Section 3.2.1. 

4. Simulations and Analysis 
A series of PE games in the sun-synchronous orbit (SSO), whose right ascension of 

ascending node drifts with a fixed precession rate under the effect of J2 perturbation, are 
studied to verify the feasibility and performance of the proposed two-stage pursuit strat-
egy. The pursuit and evasion spacecraft park on a sun-synchronous circular orbit and a 
sun-synchronous elliptical orbit, respectively. Both the pursuer and the evader use the 
impulse to implement orbital maneuver. According to the realistic space PE mission re-
quirements, the mission constraints are listed in Table 1. The mission duration was limited 
to 4 h for the consideration of the timeliness of the space PE mission. In addition, consid-
ering the difference between the initial orbital planes of the pursuer and evader, the total 
delta-V of the pursuer was set to be 3 times of that of the evader. 
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Table 1. The mission constraints of the sun-synchronous orbit PE game case. 

Constraints Value 
Mission duration 0~4 h  

Total delta-v of the pursuer 1.5 km/s 
Total delta-v of the evader 0.5 km/s 

Perceived distance of the evader 200 km 
Warning distance of the evader 20 km 

Maximum distance tolerances of successful pursuit 1 km 
Maximum velocity tolerances of successful pursuit 0.1 km/s 

The initial orbital ranges of the pursuit and evasion spacecraft are given in Table 2. 
We always generate the initial conditions starting from an initial set of orbital elements. 
Values of the orbital elements for each sample are randomly generated with the rand func-
tion in MATLAB using the intervals defined in Table 2. 

Table 2. The initial orbital ranges of the pursuit and evasion spacecraft. 

Orbital Elements Pursuer Evader 
Semi-major axis, a0 (km) [6678, 7178] [6678, 7178] 

eccentricity, e0 0 [0, 0.02] 
inclination, Inc0 (deg) [96.67, 98.6] [96.67, 98.6] 

Right ascension of the ascending node, RAAN0 (deg) [56.25, 60] [56.25, 60] 
Argument of perigee, w0 (deg) [0, 180] [0, 180] 

Mean anomaly, M0 (deg) [0, 180] [0, 180] 

A pair of pursuer and evader forms one PE game sample scenario and 50,000 game 
sample scenarios are randomly generated. The disparity of the initial parking orbits of the 
pursuer and evader of all sample scenarios are given in Figure 5. It is seen that the differ-
ence of the semi-major axis and the orbital plane are limited to 500 km and 5 deg respec-
tively. In addition, the initial relative distances between the pursuers and evaders are all 
over 200 km, making sure that the pursuer was out of the perceived range of the evader. 
Therefore, the proposed two-stage pursuit strategy in Section 3 can be applied to generate 
the pursuit trajectory. 

 
Figure 5. The disparity of the initial parking orbits of the pursuer and evader of all sample scenar-
ios  

4.1. Far-Distance Rendezvous 
The number of the impulse maneuvers was set to three for the FRS because the mis-

sion duration was limited to 4 h. GA was used as the optimizer to find the optimal transfer 
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trajectory, and the fitness function is defined as Equation (8). For the training, the popu-
lation was 200 and the maximal generation was 300. The rates of reproduction, crossover 
and mutation are 0.9, 0.75 and 0.05, respectively.  

A specific scenario (denoted as case A) with initial states given in Table 3 was imple-
mented to verify the performance of the proposed method. The variation of the pursuer’s 
terminal game capability JF with the generations is given in Figure 6. After 216 genera-
tions, the JF finally converges to 0.00789, which indicates that the pursuer retains a strong 
pursuit potential when reaching the evader’s perception boundary. 

Table 3. The initial orbits of the pursuer and evader in case A. 

Player a0 (km) e0 Inc0 (deg) RAAN0 (deg) w0 (deg) M0 (deg) 
Pursuer 7045.317 0 98.054 56.542 116.152 249.070 
Evader 6688.282 0.002 96.707 57.635 225.359 63.076 

 
Figure 6. The variation of the pursuer’s terminal game ability JF with generations for GA optimiza-
tion. 

The pursuit trajectory of the FRS for case A is shown in Figure 7. The pursuer per-
formed the first impulse maneuver at 25.11 min to be injected into the pursuit trajectory. 
Then, the second impulse maneuver was performed at 2 h 51 min to rendezvous with the 
evader. With these two maneuvers, the trajectory of the pursuer until it reached the 
evader’s perception boundary is given as the red solid line in Figure 7. The trajectory rep-
resented by the pink dotted line is the planned pursuit trajectory but not executed because 
it is within the evader’s perception range. The third maneuver was planned at the rendez-
vous position with the evader, which was also not executed. The obtained pursuit trajec-
tory in the FRS allowed the pursuer to retain the pursuit potential and obtain more ad-
vantage in the subsequent close-distance PE game. 
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Figure 7. The pursuit trajectory of the FRS for case A (left is the pursuit trajectory in J2000 Earth-centered inertial frame; 
right is the pursuit trajectory in the orbital coordinate system of the evader). 

Similarly, the pursuit trajectory of the FRS is optimized using GA for all 50,000 sam-
ple scenarios to obtain the initial state of the close-distance game, which generates the 
initial state database for the DDPG training. The optimization results of 50,000 sample 
scenarios are given in Figure 8.  

 
Figure 8. The terminal game capability of the pursuer JF in the FRS for 50,000 sample scenarios. 

The terminal game ability of the pursuer JF represents the pursuit potential of the 
pursuer. If JF is greater than 1, it means the pursuer does not have enough delta-v to reach 
the evader. A smaller JF indicates the greater pursuit potential of the pursuer. There are 
41,926 sample scenarios, whose JF are all less than 1, have enough delta-v to continue the 
subsequent close-distance game. The JF distribution of these 41,926 sample scenarios is 
given in Figure 9.  

 
Figure 9. The JF distribution of the feasible sample scenarios for FRS. 

4.2. Close-Distance Pursuit-Evasion Game 
DDPG includes four deep neural networks that are fully connected, and the specific 

parameters of these neural networks are given in Table 4. All critic neural networks have 
five hidden layers and actor neural networks have three hidden layers. Based on the ex-
perience from the multiple tests and the test results, the number of neurons per hidden 
layer was 100 for all neural networks. The activation functions of all deep neural networks 
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used a combination of the linear function “relu” and the hyperbolic tangent function 
“tanh”. 

Table 4. The specific parameters of the neural networks in DDPG. 

Type Online Critic Target Critic Online Actor Target Actor 
Hidden layers 5 5 3 3 

Neurons per hidden layer [100; 100; 100; 100; 100] [100; 100; 100; 100; 100] [100; 100; 100] [100; 100; 100] 
Activation function [relu; relu; relu; relu; tanh] [relu; relu; relu; relu; tanh] [relu; relu; tanh] [relu; relu; tanh] 

The maximum time duration of the CGS was set to 3600 s, and the time-step of the 
training was set to 10 s. Therefore, the maximal steps of each game were 360. The learning 
rates of online actor network and online critic network are 0.001 and 0.0001, respectively. 
The discount factor of future reward was 0.95. In order to increase the agent’s exploration 
ability, the action interference factor was introduced with the initial value of 0.1, and it 
decayed at a rate of 0.8 per episode. The capacity of the experience library was set to 
30,000. When the experience library was full, the network training was carried out. In the 
follow-up training, the experience library was gradually updated. In order to obtain inde-
pendent samples as many as possible, each episode extracted a small batch of samples 
from the experience library for training. The number of the batch samples set was 256. 

For each episode, the sample scenario was randomly selected from the initial state 
database that is obtained in Section 4.1, and the evasion strategy of the evader was up-
dated as well. According to Equations (5) and (19), the weight matrices QE, WE-E and QfE 
in Equation (19) are updated by the random parameters qE, wE-E, and qfE, whose value 
ranges are listed in Table 5. Similarly, the weight matrices in Equation (15), which are 
defined in Equation (5), and the values of weight parameters are also given in Table 5. 

Table 5. The values and ranges of weight parameters of pursuer and evader. 

Players qi qfi wPi wEi 
Pursuer 2 4 2 0 
Evader [−5, −1] [−5, −1] [1, 5] [1, 5] 

The return value in the DDPG training process is obtained and given in Figure 10. 
After more than 5000 episodes of random exploration, the return value of the agent and 
the probability of successful rendezvous gradually increased. Finally, after 30,000 epi-
sodes, the pursuit success percentage (PSP) per 100 episodes reached above 95%, as shown 
in Figure 11. 
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Figure 10. The return value of the DDPG during training. 

 
Figure 11. The pursuit success percentage per 100 episodes during the training. 

A well-trained agent was applied to solve the pursuit trajectory in the CGS for case 
A. Without loss of generality, the evasion strategy parameters qE, wE-E, and qfE are 1, 2 and 
1, respectively. The relative distance and velocity between the pursuer and evader during 
the CGS are given in Figure 12. The evader performed five impulse maneuvers to evade 
the pursuer. However, the pursuer with DDPG always updated the pursuit strategy and 
implemented corresponding maneuvers in time to maintain the tendency of approaching 
the evader. The trajectory of the pursuer in the orbital coordinate system of the evader is 
given in Figure 13. 

  

Figure 12. The relative distance (left) and velocity (right) between the pursuer and evader during 
the CGS. 

 
Figure 13. The trajectory of the pursuer in the orbital coordinate system of the evader. 
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4.3. Monte Carlo Analysis 
In order to verify the robustness of the DDPG-based pursuit approach to the initial 

states of the pursuer and the evader and to the evasion strategies for the CGS, four sets of 
Monte Carlo simulations were performed. The JF value ranges of the four sets are [0, 0.25], 
[0.25, 0.5], [0.5, 0.75] and [0.75, 1], respectively. Each set contained 100 samples and the 
evasion strategy of the evader for each sample was obtained by randomly generating pa-
rameters qE, wE-E, and qfE. The number of successful pursuits for each set is given in  
Figure 14. When JF is less than 0.5, all pursuers successfully rendezvous with the corre-
sponding evaders. The successful pursuit rate decreased with the increase of JF, because a 
large JF indicates poor pursuit capability. The total successful pursuit rate was 99.5% and 
the successful pursuit rate also achieved 91% even for the worst set with JF of [0.75, 1]. 
This indicates that the proposed method has good robust performance for incomplete-
information impulsive pursuit-evasion missions. 

 
Figure 14. Number of successful pursuits for scenarios with different JF using DDPG. 

5. Conclusions 
A novel two-stage pursuit strategy is proposed to find the pursuit trajectory for the 

incomplete-information impulsive pursuit-evasion missions with the J2-perturbed dy-
namics using reinforcement learning. The major contributions of this method include the 
following aspects. The spacecraft PE game problem is modeled into two stages, i.e., FRS 
and CGS, for the first time. For the FRS, a new objective function defining the terminal 
pursuit capability of FRS is proposed to optimize the pursuit trajectory for FRS with GA. 
For the CGS, a closed-loop pursuit approach using the DDPG algorithm is developed to 
solve the robust pursuit trajectory based on the real-time feedback information of the 
evader. The consideration of the J2 perturbation significantly improves the feasibility and 
reliability of the solutions for realistic missions. In addition, the well-trained agent with 
DDPG directly outputs the impulsive maneuver information based on the real-time con-
ditions of the dynamical environment, which is very efficient because it does not require 
complicated calculation operations of solving the nonlinear equations and integration. 
The application to the sun-synchronous orbital PE game scenario demonstrates the feasi-
bility and validity of the proposed method. The Monte Carlo tests show that the proposed 
method is very robust to the initial states of the pursuer and the evader and to the evasion 
strategies. The successful pursuit ratio achieves 91% even for the worst test scenarios. 
Therefore, it is concluded that the proposed two-stage pursuit strategy is an efficient and 
promising method to obtain robust pursuit trajectories for the realistic incomplete-infor-
mation impulsive pursuit-evasion missions. 
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