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Modeling Epistemic Uncertainty in Offshore Wind Farm
Production Capacity to Reduce Risk

Athena Zitrou , Tim Bedford , and Lesley Walls ∗

Financial stakeholders in offshore wind farm projects require predictions of energy produc-
tion capacity to better manage the risk associated with investment decisions prior to construc-
tion. Predictions for early operating life are particularly important due to the dual effects of
cash flow discounting and the anticipated performance growth due to experiential learning.
We develop a general marked point process model for the times to failure and restoration
events of farm subassemblies to capture key uncertainties affecting performance. Sources of
epistemic uncertainty are identified in design and manufacturing effectiveness. The model
then captures the temporal effects of epistemic and aleatory uncertainties across subassem-
blies to predict the farm availability-informed relative capacity (maximum generating capac-
ity given the technical state of the equipment). This performance measure enables technical
performance uncertainties to be linked to the cost of energy generation. The general mod-
eling approach is contextualized and illustrated for a prospective offshore wind farm. The
production capacity uncertainties can be decomposed to assess the contribution of epistemic
uncertainty allowing the value of gathering information to reduce risk to be examined.

KEY WORDS: Availability; epistemic uncertainty; offshore wind farm; production capacity; risk man-
agement

1. INTRODUCTION

Global operational offshore wind capacity
reached over 21 GW in 2019 with a new build pro-
gram reported to be over 100 GW (Global Offshore
Wind Report, 2019). The United Kingdom has the
largest market share with almost 8.5 GW of opera-
tional capacity and a new build program of nearly
30 GW. Germany and China both have new build
programs of around 10 GW. Currently, the United
States has one operational 30 MW offshore wind
project and is regarded as an emerging market with
14.5 GW of projects at different stages of maturity
(Global Offshore Wind Report, 2019). Ram (2016)
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& Staid and Guikema (2015) highlight the need to
analyze the risks to offshore wind farms in view of
the increasing importance of wind power within the
global energy portfolio. In proposing an integrated
approach to risk analysis motivated by the U.S. con-
text, Staid and Guikema (2015) identify the need for
existing projects to be economically and technically
successful to encourage a willingness to invest in
future offshore wind developments.

Similar concerns related to investment in off-
shore wind farms have existed in the United King-
dom (Freshfields Bruckhaus Deringer, 2013; Price
Waterhouse Coopers, 2011). The contract for differ-
ence (CfD) scheme used by the U.K. Government
allows developers to derisk the impact of future
wholesale energy prices. This scheme guarantees
the chosen developer a fixed strike price for wind
farm power, whereby it receives a top-up payment
when wholesale prices are lower, and it pays back if
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wholesale prices are higher. Development sites are
allocated after a bidding process based on the lowest
bid strike price. A developer’s bid to such a scheme
therefore effectively reflects their assessment of un-
certainty about the future cost of generation, to-
gether with an assessment of what competitive bids
might be. The steep reduction in bids over the three
rounds of the U.K. CfD scheme has been driven by
ever larger turbines and higher reliability. However,
since each new generation of wind farms use larger
turbines, innovative technologies and are possibly lo-
cated further from shore, vulnerabilities might arise
because of, for example, construction delays due to
novel installation processes, loss of production capac-
ity due to teething problems with technically imma-
ture designs, and reduced availability due to delays
in essential maintenance given access challenges to
remote sites. Uncertainties about new farm perfor-
mance therefore should play in to assessing the right
bid value in such auctions, and therefore the overall
level of return.

Following the definitions of Der Kiureghian and
Ditlevsen (2009), Tannenbaum, Fox, and Ülkümen
(2017), & van der Bles et al. (2019), we class such
uncertainties as epistemic since they concern phe-
nomena not known at the time of bidding but which
could, at least in theory, be known or established
given more information. Given the implications for
risk management, epistemic uncertainties should be
distinguished from aleatory uncertainties, which are
due to the intrinsic randomness of a phenomenon
(Der Kiureghian & Ditlevsen, 2009). According to
(Packard & Clark, 2020), epistemic uncertainty im-
plies decision-makers could mitigate their ignorance
of knowable information by adopting a predictive ap-
proach tomanaging. The value of modeling epistemic
uncertainties to provide decision-makers with analy-
sis will depend on the cost of information, which in-
cludes themodeling effort. Epistemic uncertainty can
introduce dependencies that require sophisticated
modeling effort to avoid misleading results (Bier
& Lin, 2013). Currently no models exist to repre-
sent epistemic uncertainty and to support wind farm
decision-makers address challenges such as that of
adopting a predictive approach to assess bid values at
auctions for an offshore wind farm site. Many models
exist for supporting operational planning decisions
associated with wind farm operations (Andrawus
et al., 2007; Dalgic, Lazakis, Dinwoodie, McMillan &
Revie, 2015; Duard, Domecq, & Lair, 2012; Endre-
rud, Liyanage, & Keseric, 2014; Hofmann & Sper-
stad, 2013; Phillips, Morgan, & Jacquemin, 2005;

Rademakers, Braam, Obdam and Pieterman, 2009).
Such models consider only aleatory uncertainty. Of
course, epistemic uncertainty can be explored in
analysis using such models by considering the effect
of deviations from their assumptions through sensi-
tivity analysis on key parameters (Martin, Lazakis,
Barbouchi, & Johanning, 2016; Scheu, Kolios, Fis-
cher, & Brennan, 2017). However, sensitivity anal-
ysis results often do not provide a clear association
between decisions and performance improvements,
failing to give clear support for decisions to manage
uncertainties. As discussed in (Bier & Lin, 2013), dis-
tinguishing between types of uncertainty is key be-
cause epistemic uncertainties introduce dependen-
cies that have a compound effect, whereas aleatory
uncertainties will average out over the farm. The
larger the farm, the more significant the effects of
epistemic uncertainty on estimates of performance
and energy produced.

In this article, we present a new model designed
to represent key epistemic uncertainties in offshore
wind farm performance and to model how these
uncertainties are influenced by stakeholder deci-
sions. Our goal is to help decision-makers better
understand how much control they have over risk.
The model is motivated by decision-making contexts
arising before an offshore wind farm is constructed,
such as those relating to bids for offshore wind farm
auctions. The model estimates farm performance and
can be used to investigate potential mitigation ac-
tions to buy-down epistemic uncertainties. Although
the prediction horizon supported by the general
model is flexible, here we focus upon the early
operating life of a farm because of the combined
importance of cash flow discounting effects and the
anticipated performance growth due to operational
learning and technical innovations. Although the
model will be used before real experience data are
available to fine-tune farm performance and opera-
tions, it is worth underlining that there is both real
engineering conceptual knowledge about new sys-
tems which could influence the perceived investment
risk and subsequently the required rate of return
demanded by investors. Such knowledge needs to be
captured on a systematic and transparent basis, hence
our model is formulated using contextual insight and
quantified for specific instances using methodolog-
ical processes for eliciting structured engineering
expert judgment (Dias, Morton, & Quigley, 2018).

Section 2 introduces our conceptual framework.
Section 3 explicates modeling choices such as the
representation of epistemic uncertainties within
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the stochastic process underpinning the analysis.
Section 4 describes the key measure of farm perfor-
mance supported by the model. Section 5 presents an
illustrative use of the model grounded in a contem-
porary decision problem of the type facing U.K. off-
shore wind farms. We reflect upon the value and lim-
itations of our modeling approach, suggesting areas
for further research and development in Section 6.

2. CONCEPTUAL FRAMEWORK

2.1. Measure of Farm Performance

To predict the capacity of a wind farm to pro-
duce power, we need a performance measure that re-
lates energy production to technical availability per-
formance. Drawing on the general meaning of avail-
ability as the ability of a system to be in a state to
perform as required, then loss of farm availability will
arise when there is an inability to generate power due
to failures and/or maintenance.

We define a bespoke performance measure, the
availability-informed relative capacity, to be the frac-
tion of farm power output at a specified time given
the operating condition of the turbines relative to the
installed power capacity of the farm. This is related,
but not identical, to standard industry terms (IEEE
P762, 2006; IEC 61400-26-3, 2019). These standards
introduce terminology allowing for the specification
of contracts between different parties involved in
the operation and maintenance of wind turbines. In
particular, they enable accounting of the costs of
lost production depending on the underlying reasons.
The appropriateness of energy based rather than
purely technical availability measures for engineer-
ing models of farm performance has been examined
by (Conroy, Deane, &ÓGallachóir, 2011; Hawker &
McMillan, 2015), contributing to a debate partly in-
formed by the contracting experiences for early gen-
eration offshore wind farms (Feng, Tavner, & Long,
2010). This is a level of detail not required for this
article, hence the choice of definition made here.
The supplementary Appendix 2 explains how the
availability-informed relative capacity relates to stan-
dard performance measures in the wind energy sec-
tor.

2.2. Model Features

The model is primarily designed to be applied
prior to farm operation to estimate the availability-

informed relative capacity, enabling predicted perfor-
mance to be assessed against target and action taken
to reduce risk if required. Setting “Time Zero” to be
the start of operation allows the timing of analysis to
support decisions to be distinguished from the pre-
diction horizon.

Fig. 1 shows the conceptual framework, with re-
lations between key model elements across the two
time phases. The diagram captures decisions (e.g.,
management choices), uncertainties (e.g., factors in-
fluencing availability), and performance-related met-
rics, encompassing both output performance mea-
sures (i.e., availability-informed relative capacity)
and interim measures (e.g., reliability). The solid ar-
rows represent information dependencies (e.g., farm
restoration time will depend on logistics, travel and
repair time as well as repair duration). The bro-
ken arrows represent system upgrades that might oc-
cur through time during operation. We discuss these
elements of the conceptual model framework fur-
ther below.

Availability will be influenced by the reliability of
the farm equipment and their restoration upon fail-
ure. Equipment refers to the wind turbines, connect-
ing cables, and balance of plant (BOP) up to, but not
including, the onshore substation. Prior to construc-
tion targets will be set, while the actual reliability
and restoration will be manifested during the oper-
ational period. For prior analysis, the actual reliabil-
ity, and restoration, will be estimated from the model
and so should not be confused with those computed
using observational data once the farm is truly in
operation.

Reliability will affect farm uptime (working fully
or partially). Failure to work can be triggered by
weaknesses or flaws affecting the equipment. All
newly installed turbines are assumed to be the prod-
ucts of the same design and manufacturing process,
and during operation are assumed to be subject to
the same types of operational errors. Systemic fail-
ures due to shocks, such as design inadequacies or
manufacturing faults, could be anticipated prior to
operation. While failure due to human and other er-
rors will originate in operation. We use “trigger” as a
collective term for those design inadequacies, manu-
facturing faults or operational errors that might lead
to (i.e., “trigger”) a systematic increase in, for exam-
ple, the rate of failure events, and which hence reduce
overall availability. These triggers are represented as
uncertainties in Fig. 1.

Maintenance, planned and unplanned, will
restore a farm that is down (not working) to an
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Fig 1. Conceptual framework for farm availability-informed relative capacity in terms of uncertainties (oval nodes), intervention decisions
(rectangular boxes), and performance-related metrics (rounded-edge boxes). Solid arrows represent information dependencies and broken
arrows represent through time upgrades.

operational state. Downtime will be affected by
uncertainties in the time to complete restoration,
including the logistical delays, service vessel travel
times, and repair durations.

We assume the design inadequacy and manufac-
turing fault triggers are the main sources of epis-
temic uncertainty given the pre-operational state of
knowledge about the novel technologies being de-
veloped to operate in new marine locations. Other
uncertainties are treated as aleatory. For example,
restoration can be affected by logistics and repair
uncertainties some of which, although not necessar-
ily all, might be weather-related. Since we present
a generic model, here we treat weather uncertain-
ties as aleatory. We recognize that such uncertainties
might be appropriately treated as epistemic if and
when the model is applied to a specific site where in-
formation may be available to learn about the local
environment.

The unit of analysis for the model is subassem-
bly level. For example, turbine subassemblies include

the gearbox, generator, blades, rotor, etc. In addi-
tion, we have BOP such as electrical cables to the on-
shore substation. Modeling at the level of subassem-
blies allows us to represent the dependencies due
to epistemic uncertainties. Each type of subassem-
bly, such as gearboxes of the same design version,
can be considered a population. Following (Bier &
Lin,2013), we distinguish between those epistemic
uncertainties which introduce dependencies between
individual subassemblies within a population and the
aleatory uncertainties which average out over all sub-
assemblies within a population. For example, the de-
sign inadequacy trigger can affect all equivalent sub-
assemblies in the population implying that epistemic
uncertainty due to that trigger has the potential to
have a first-order effect on the uncertainty in farm
performance. The larger the farm, the more substan-
tial this effect becomes. Therefore, failing to rep-
resent epistemic uncertainty through the adequate
modeling of triggers at subassembly level can lead
to considerable under- or over-estimation of farm
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performance and energy yield. Gaining insight in the
levels of farm performance uncertainty itself is use-
ful in many decision-making contexts, making the
modeling of triggers important even when decision-
makers cannot act to reduce risk.

2.3. Dependency between Epistemic Uncertainties

A trigger has an individual impact on a sub-
assembly population if it affects subassemblies
independently of others in the population, whereas
it has a shared impact when all subassemblies in the
population are affected equally. Furthermore, a trig-
ger could impact in a one-off manner or dynamically
through time. We assume triggers originating prior
to operation have a one-off dependency, while trig-
gers originating during operation have a temporal
dependency. For example, design inadequacies are
intrinsic features of a subassembly corresponding
to inappropriate design or lack of understanding of
the operating environment and so are assumed to be
present from installation and remain unless removed
through replacement or upgrade and, further, are
shared by all subassemblies within a population
(i.e., one-off time-dependence and shared impact).
Manufacturing faults due to poor quality control
and production processes are introduced during
production and are assumed to affect subassemblies
independently of each other in the population, and
furthermore are present from installation and re-
main until they are actively removed (i.e., individual
impact and one-off time-dependence). Operational
errors are maintenance-induced and are assumed
to occur independently in each subassembly (i.e.,
individual impact) at any time during the operation
of the farm (i.e., dynamic time-dependence). Fig. 2
shows the classification.

To examine the relationships between different
triggers and the subassembly failure behavior, con-
sider a population of n equivalent subassemblies,
such as gearboxes. Fig. 3 provides a graph of the
uncertainties (nodes) and their dependencies (arcs).
Design inadequacy is assumed to influence equally
the failure propensities of all equivalent subassem-
blies through time. The likelihood of a manufactur-
ing fault is assumed to depend on manufacturing pro-
cess fault and to occur independently across the sub-
assemblies in a population. Operational errors are as-
sumed to independently affect each individual sub-
assembly, and to represent time-varying risks which
depend on factors such as maintenance history.

Fig 2. F Classification of assumed trigger effects on farm availabil-
ity.

2.4. Interventions and Buying Down Epistemic
Uncertainty

Interventions are actions intended to improve
farm performance. In this article, we focus upon as-
sessing the need for and the value of management
decisions intended to buy-down epistemic uncertain-
ties prior to operation. Generally, such actions can
gain information to inform the need for design and
manufacturing enhancements to improve the inher-
ent reliability of farm equipment and processes dur-
ing their development. The model also allows for
interventions during operation. Such interventions
may be major innovations intended to lead to a step-
change in performance, such as upgrades in technolo-
gies, maintenance strategy, or logistics solutions. In
addition, during operation we allow for learning as,
say, operating and maintenance practices are refined
with experience. Innovations and minor adaptations
are treated as two classes of intervention to allow ap-
propriate modeling of their intended effects to grow
farm performance. Further mathematical details of
this aspect of the model are given in (Zitrou, Bed-
ford, & Walls, 2016).

In summary, the conceptual framework in Fig. 1
captures the relationships between choices, uncer-
tainties, and performance over two phases of a farm
life. Here we focus upon assessment of farm per-
formance prior to operation and use modeling to
examine the effect of actions intended to buy-down
epistemic uncertainty. In this way, analysis can inform
decision-makers of effective risk reduction strategies.
More generally, the model could be used to provide
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Fig 3. Graph representing dependency of triggers on subassembly state. Gray nodes portray triggers. Solid arcs represent static relationships
(within the same time slice t) whereas dotted arcs represent dynamic relationships between time slices t and t + �t

analysis to inform major upgrade decisions during
operation since epistemic uncertainties might sim-
ilarly arise for the equipment or processes subject
to innovation.

3. STOCHASTIC MODEL

3.1. Marked Point Process (MPP) Model of Farm

Using a continuous-time MPP (Sigman, 1995) al-
lows us to model the evolution of the wind farm
failure, repair, and generation capacity processes
through a stochastic model. A finite set of marks
represents the different types of event affecting the
farm. Marks can be conveniently thought of as mul-
tidimensional, and they include information on the
realization of triggers. A realization of an MPP is a
set of times with associated marks (tn, jn). Consistent

with Fig. 3, we assign marks associated to triggers at
the start of the farm operation (t = 0). These marks
represent realizations of the epistemic uncertainties
in the model. The epistemic uncertainties represent
“the world we are in,” and the evolution of this world
through the simulation model provides a single real-
ization of the aleatory uncertainties arising given the
realizations of the epistemic uncertainties.

An MPP provides a model of the history of the
process up to time t as the collection of all events that
occurred up to that time, denoted by Ht− , and allows
this history to influence what happens next through
the specification of the (conditional) intensity func-
tion. Thus, to specify an MPP we need to identify the
set of marks and the conditional intensity function
(as a function of time) given the history.

The intensity function for the system is written
as a sum of intensity functions used to model the be-
havior of subassemblies. The complete history of the
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farm might not be relevant to the failure behavior of
each of these subassemblies, but part of it is, and this
is the relevant history for a given subassembly. The
different subassembly processes are not usually inde-
pendent because previous events from one process
may appear in the relevant history for another.

In order to construct a useful and usable model,
we have captured what we regard as the key drivers
of uncertainty while at the same time keeping the
model as a simple, consistent representation of the
system under study. Our set of marks includes:

• operating states representing whether sub-
assemblies are working (up) or failed (down);

• epistemic states representing the design and
manufacturing triggers, assigned once and for all
at time 0;

• epistemic states representing operational error,
assigned at time 0 and then changed through
time using a learning model;

• subassembly failure type and repair type (major,
normal, and minimal interventions), together
with corresponding times;

• times of onset of partial operation (since opera-
tors may choose to de-rate a turbine);

• arrival time of maintenance resources (includ-
ing logistic and weather delays).

3.1.1. MPP for Subassemblies

To model a subassembly’s alternating behavior
between an operable and a failed condition, we use
an MPP (Tn, Jn),n ≥ 1 (note that we allow some
subassemblies—in particular gearboxes—to have in-
termediate degraded states, but for simplicity here
we present the approach with just two states). Let
Tn denote the accumulated times to events and Jn ∈
{0, 1} be marks taking values according to the type
of event (failure or onset of operation) occurring at
time Tn. We let {Yt, t ≥ 0} be the subassembly state at
time t, that is, the state corresponding to the mark Jn
at the last event time (e.g.,Yt = 1 when the subassem-
bly operates). The relevant history of the wider sys-
tem that influences the intensity function for Tn can
include other events such as, for example, start of re-
pair, arrival of maintenance resources as indicated in
Fig. 1, and this history up to time t is denoted byHt− .

The MPP for the subassembly is described fully
by the conditional event intensity ι(t|Yt− ,Ht− ), which
describes the instantaneous rate of occurrence of the
next mark, or equivalently the next switch of value

of Yt (Strictly speaking, Yt− is included in the history
Ht− , but it is convenient to distinguish it).

Transitions to the failed and working states obey
different stochastic laws, with the failure transition
assumed to follow a failure intensity function, λ,
which we define formally in Section 3.1.2: When
Yt− = 1 (i.e., subassembly is working), we can write

ι(t|Yt− = 1,Ht− ) = λ(t|Ht− ). (1)

The quantity λ(t|Ht− )�t is the approximate
probability that the subassembly will fail in the time
interval [t, t + �t) given that it operates just before
time t (Yt− = 1), conditional on the history Ht− until
this time,

P(Y(t+�t)− = 0|Yt− = 1,Ht− ) ≈ λ(t)�t. (2)

For simplicity, from this point forward where
there is no possibility of confusion, we write λ(t) in-
stead of λ(t|Ht− ). The failure intensity λ(t) is speci-
fied so that dependency across subassemblies, shown
in Fig. 3, is appropriately modeled and the probabil-
ity in Equation (2) explicitly captures the potential
effect of triggers. For example, the formula used for
different subassemblies will include shared variables
from the history, including those representing epis-
temic uncertainties such as triggers.

3.1.2. Failure Intensity and Impact of Triggers

Let h(t) denote the hazard rate for the time to
first failure of a subassembly in the absence of trig-
gers. Then, we can take account of the existence
of triggers as follows. Let the “target” hazard rate
for subassembly i at time t, denoted by h̃i(t), repre-
sent the intended subassembly reliability. An addi-
tive hazard model is used to modify the target hazard
rate to take account of the effect of triggers. Thus the
hazard rate for subassembly i is expressed as

hi(t) = h̃i(t) +
3∑
j=1

Xi
j (t)h

i
j(t), (3)

where Xi
j (t) is an indicator variable set to 1 if sub-

assembly i, i = 1, . . . ,n, at time t is affected by trig-
ger j (and 0 otherwise), and hij(t) is the added haz-
ard due to trigger j where j = 1, 2, 3 corresponds to
design inadequacy, manufacturing fault, and opera-
tional error, respectively. The added hazard describes
the time to first failure of subassembly i arising from
mechanisms associated to the presence of trigger j.
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Combining Equations (2) and (3) gives

P(Yi
(t+�t)− = 0|Yi

t− = 1,Ht− ) (4)

= λi(t)�t

=
⎛
⎝h̃i(t) +

3∑
j=1

Xi
j (t)h

i
j(t)

⎞
⎠�t.

3.1.3. Parametric Form of Subassembly Hazard
Rate

A parametric form for the hazard rates in Equa-
tion (4) has been chosen to aid the elicitation of
structured engineering judgment about the impact of
triggers and potential management interventions. We
classify subassembly failure mechanisms as shocks
(sudden failures due to single-stress events) and
wear-out failures (gradual events due to damage ac-
cumulation). Initially, we assume the hazard rate is
constant given the occurrence of shocks only. Then
from time w we assume additionally that wear-out
events occur with the hazard rate having a Weibull
form from the onset of degradation. Thus the para-
metric form of the hazard rate, expressed in general
form as h(t), is given by

h(t) =
{
ρ, t ≤ w,

ρ + ab(t − s)b−1, t > w,
(5)

where ρ is the subassembly hazard rate for shock fail-
ures, and a and b are the scale and shape parame-
ters, respectively, of the nondecreasing hazard rate
for wear-out.

We relax the assumption that the onset of age-
ing occurs at a fixed time, which allows us to treat
the onset time as a random variable, W , and for the
purposes of this article, we assume a lognormal distri-
bution, i.e.,W ∼ logN(μ, σ ). Under this assumption,
a given population of subassemblies consists of items
that start ageing at various points in time.

Maintenance activities impact subassembly relia-
bility by modulating the virtual age (the effective age
of a subassembly rather than its calendar age since
installation as discussed further in Section 3.1.4) and
so do not affect the shape of the hazard rate. We as-
sumemaintenance actions do not change the onset of
wear variable,W , but innovations, such as subassem-
bly replacements, may do so.

The parametric form in Equation (5) is used to
model both target hazard rates (the underlying sub-
assembly hazard rate in the absence of triggers) and
the additional hazard for subassemblies affected by

triggers. Consider two situations corresponding to a
subassembly reliability being above or below target
over an early life time window. A relatively low rate
of shock failures ρ with an onset of wear-out w after
the time window characterises an above target situ-
ation. While a subassembly performing below target
reliability would be subject to more frequent shock
failures (ρ ′ > ρ) and/or premature and more severe
wear-out (w′ < w).

Following the above line of argument Equation
(4) can be now written as

P(Yi
(t+�t)− = 0|Yi

t− = 1,Ht− ) (6)

=
⎛
⎝h̃i(t|θi) +

3∑
j=1

Xi
j (t)h

i
j(t|θij)

⎞
⎠�t,

where θi = (ρ i,wi, ai,bi) are the target reliability
parameters for subassembly i and θij = (ρ i

j,w
i
j, a

i
j,b

i
j)

are the reliability parameters for subassembly i given
trigger j.

The reliability parameters are set in the model at
t = 0 for a particular subassembly and are recorded
as part of the history Ht− . They are only reset in the
case of a major intervention. Hence, the right-hand
side of Equation (6) simply depends on a subset of
parameters identified within Ht− .

3.1.4. Impact of Maintenance on Virtual Age and
Downtime

Maintenance and logistics impact the model in
two ways. Most obviously they affect the downtime
of a subassembly, which we come to later. There is
also an impact on the subsequent uptime, modeled
through the hazard rate for the time to failure after
the first failure. The previous sections explained how
the hazard rate for time to first failure is modeled,
and we use the notion of virtual age (Kijima, 1989) to
specify the hazard rate for subsequent failures. The
virtual age describes the effective age of a subassem-
bly as a result of maintenance, as opposed to its cal-
endar age which equals the amount of time passed
since installation. By combining the hazard rate with
virtual age, denoted by vt , the failure intensity of the
subassembly at time t—in the absence of triggers—
can be written as

λ(t) = h(vt ), t > 0. (7)

In the particular case of a minimal repair (one in
which the minimum repair is performed subject to
making the subassembly functional again), the virtual
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age immediately post the repair time equals the vir-
tual age just prior to the repair, while in the case of
complete repair the virtual age immediately after the
repair is assumed to be 0 (subassembly is assumed to
be as good as new).

Returning to Equation (4), we can now adapt it
to account for repair type using the virtual age:

λi(t) = h̃i(vt ) + Xi
1h

i
1(vt ) (8)

+ Xi
2h

i
2(vt ) + Xi

3(t)h
i
3(t),

where the underlying hazard rate, and the extra haz-
ard due to design inadequacy and manufacturing
faults are assumed to be reset by the virtual age,
whereas hazard from operational error is not.

The modeling approach adopted is flexible
enough to incorporate a variety of failure types and
maintenance models. Subassembly failures are as-
sumed to be complete failures except in the case of
gearboxes where we allow for degraded failures (be-
cause in practice a turbine will be operated in a de-
graded mode). The latter situation is modeled by a
“time to degraded mode” and a “time from degraded
mode to failure.” The restoration of the subassem-
bly can happen in three different ways depending on
whether the intervention is major, moderate, or min-
imal. A major intervention is where the subassembly
is renewed by an upgraded version. In this case, the
triggers are no longer assumed to be present and a
different hazard rate may be used. A moderate in-
tervention corresponds to complete repair (as good
as new, but still subject to the same triggers as previ-
ously), and a minor adaptation corresponds to a min-
imal repair (as bad as old, and still subject to the same
triggers).

The intervention type and subassembly type both
have implications for the required logistics, which in-
fluences the overall downtime. We can accommodate
delays for those repairs requiring special equipment,
like a large crane, whereas we assume smaller repairs
can be carried out by technicians on a vessel avail-
able to the farm. In the case of the gearbox, where
we assume that a signal of degraded performance is
sent to operators, the turbine is assumed to be oper-
ated at partial load in order to extend the working life
(albeit with lower production capacity) until a ves-
sel with the required equipment becomes available.
These assumptions have been made for simplicity in
this model, based on discussions with operators, as
reflecting practice. These assumptions can be varied
to make them better reflect practice as ideas change.

A key motivation for our modeling approach
has been to capture the improvements to availability
in operation that can be made by a combination of
improving maintenance and making step changes in
performance via innovations—for example, upgrad-
ing subassemblies. The costs of doing so can be large,
and are the reason why upfront investment in equip-
ment maturation is important.

3.2. Representation of Epistemic Uncertainty

Now consider the representation of the epistemic
uncertainty associated with the “world we are in.”
That is, in situations where specific design inade-
quacies, manufacturing faults, and/or other triggers
might exist and, from the perspective of the wind
farm operator, will impact on rates of failure and re-
pair until upgrades (design and manufacturing) or
operator learning has taken place. The residual un-
certainty in the model are the aleatory uncertainties;
that is, the uncertainties contingent on knowing the
trigger states as captured by the distributions set out
in Section 3.1.

To capture epistemic uncertainty, we treat the
Xi

j (t) as random variables, where j = 1, 2, 3 corre-
sponds to design inadequacy, manufacturing fault,
and operational error, respectively. This allows the
hazard rate hi(·) to take alternative forms depend-
ing on the realizations of the epistemic uncertain-
ties at t = 0. Consistent with Fig. 3, we assume that
Xi

1 has a Bernoulli distribution with probability 0 <

q1 < 1 and Xi
1 = X1,∀i, Xi

2 has a Bernoulli distribu-
tion with parameter 0 < q2 < 1. Finally, Xi

3(t) has a
Bernoulli distribution with time-dependent param-
eter q3 · ϕ(t), where ϕ is a time-dependent function
representing the learning effect, described in (Zitrou
et al., 2016).

Uncertainties due to imperfect knowledge on the
part of the analyst can be quantified in terms of prior
probability distributions on the model parameters.
This means representing uncertainty on the trigger
probabilities, the onset of ageing parameters and so
on by state-of-knowledge distributions. For the pur-
poses of this article, we only use hyperparameters for
the onset of wear-out wi

j for subassembly i due to
trigger j, using a lognormal distribution for the on-
set of wear-out. Since the model is implemented as a
simulation where the wear-outwi

j is sampled at t = 0,
Equation (6) still holds.

The key advantage of explicitly representing trig-
ger probabilities and wear-out uncertainties is that
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we can explore the impact of management decisions
prior to operation on the uncertainty of farm perfor-
mance. This gives a route to link engineering deci-
sions to financial risk for the wind farm developer.

4. PERFORMANCE MEASURE

4.1. Availability-Informed Relative Capacity

The performance measure output by the model,
the availability-informed relative capacity intro-
duced in Section 2, can be expressed formally as

C(t) = P(t)
PO

, (9)

where P(t) is the net maximum capacity of the wind
farm, modified to take account of any in-service der-
ating for technical issues at turbine level (or within
other BOP) at time t, and PO is the net maxi-
mum capacity of the wind farm. Other useful met-
rics can be derived, including the average and level
availability-informed relative capacities. The average
availability-informed relative capacity over a time in-
terval (τ1, τ2) is given by

C(τ1,τ2) = 1
τ2 − τ1

∫ τ2

τ1

C(t)dt. (10)

The level availability-informed relative capacity is
the proportion of the time interval (τ1, τ2) whenC(t)
is above a predetermined (acceptable) level of per-
formance L and is given by

C(τ1,τ2 )(L) = 1
τ2 − τ1

∫ τ2

τ1

1{C(t) > L}dt, (11)

where 1(·) is the indicator function. A value of
α100% forC(τ1,τ2)(L) implies that α100% of the time
over (τ1, τ2) the farm maximum output exceeds L%
of the installed power.

The level availability-informed relative capacity
over the interval (τ1, τ2) is the proportion of time
C(t) is above a predetermined (acceptable) level of
performance L and is given by

C(τ1,τ2)(L) = 1
τ2 − τ1

∫ τ2

τ1

1{C(t) > L}dt, (12)

where 1(·) is the indicator function. C(τ1,τ2)(L) =
k100% implies that k100% of the time over (τ1, τ2)
the farm maximum output exceeds L% of the in-
stalled power.

4.2. Estimating Farm Performance

Since we are interested in modeling the potential
future performance of wind farms, we now need to
rewrite the definition ofC(t) in terms of the variables
defined within the model described in Section 3. For
a farm comprising of n1 turbines and n2 BOP sub-
assemblies (the BOP are assumed to be fully func-
tional or failed, and assuming series connection with
no redundancy) then we can write

C(t) =
(∑n1

i=1 Pi(t)
)(∏n2

k=1 Ak(t)
)

∑n1
i=1 POi

, (13)

where Pi(t) is the net maximum capacity of turbine
i modified by in-service derating for technical issues,
Ak(t) is the point availability of subassembly k in the
BOP, and POi is the net maximum power output of
turbine i.

Our model allows us to simulate C(t) given the
initial states of the subassemblies and the BOP (nor-
mally assumed to be fully functional at time 0), and
given the states of triggers (that is, the impact of man-
agement decisions made before time 0 as shown in
Fig. 1). The simulation allows us to estimate the dis-
tribution for C(t) and key parameters such as quan-
tiles or expected value, as a function of t, and then
also to evaluate the dependency and sensitivity of
such quantities to the triggers. The model is coded in
Matlab as a two-loop Monte Carlo simulation sepa-
rating the epistemic and aleatory uncertainties in the
outer and inner loops, respectively (Bier & Lin, 2013;
Wu & Tsang, 2004). This computational strategy can
be related back to our conceptual framework since
the outer loop corresponds to the epistemic uncer-
tainties arising in the preoperation period by simu-
lating different possible outcomes of the manufactur-
ing and design uncertainties, while the inner loop is a
Monte Carlo simulation of the wind farm operation
through life from commencement of operation given
the realizations of the outer loop variables. Our sim-
ulation method is described in supplementary Ap-
pendix 3 .

Decision-makers might also wish to understand
the corresponding impact on energy production,
hence we show how to adapt the methods used
to compute the availability-informed relative capac-
ity using simple assumptions on wind speed at a
farm site.

We define m + 1 generation states for a tur-
bine, where state m corresponds to full technical
performance and state 0 is out of operation while
other intermediary states represent different types of
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degraded power production capacity, each with its
own power curve (the function that gives power out-
put as a function of wind speed). Technically these
generation states are constructed by merging the
combinations of the subassembly states to derive the
overall state of the wind turbine. The power output
can then be determined for each turbine based on its
power curve.

As above, we assume BOP subassemblies have
two states, operational (1) or not (0). For each tur-
bine i, we writeXi(t), t ≥ 0, for the stochastic process
with state space {0, 1, . . . ,m} representing its gen-
eration condition, Xi(t) = j, and Zk(t), t ≥ 0, with
state space {0, 1} to model BOP subassembly k.
We normally assume all subassemblies are in per-
fect operating condition at t = 0, which implies that
Zk(0) = 1 for k = 1, 2, . . . ,n1 and Xi(0) = m for i =
1, 2, . . . ,n2.

Therefore, the required information to track the
technical state of the farm with respect to power gen-
eration is represented by the vector of turbine and
BOP states at time t,

U (t) = (X1(t), . . . ,Xn1 (t),Z1(t), . . . ,Zn2 ). (14)

Now we consider the impact of wind conditions
and define Vi(t) as the wind speed at time t for tur-
bine i. We define G(t) as the total generation of
power (MW) at time t, andGij(t) as the power gener-
ated from turbine i in state j at time t given the wind
speedVi(t). Assuming a power curve pj for a turbine
when in state j, this implies that Gij(t) = pj(Vi(t)),
and we can write

G(t) =
⎛
⎝ n1∑

i=1

m∑
j=0

Gij(t)1{Xi(t) = j}
⎞
⎠ n2∏

k=1

Zk(t). (15)

Therefore, the expected generation at time t, given
U (t) = (x1, . . . , xn1 , z1, . . . , zn2 ) is given by

E(G(t)|U (t)) =
(

n1∑
i=1

E(Gixi (t)|U (t))

)
n2∏
k=1

zk. (16)

4.3. Dependency of Power Generation on
Technical State

Our underlying stochastic model does not in-
clude wind speed, and so further assumptions are
required to be able to express the dependence of
Gj(t) on U (t). Given the primary intended use of
this model to support decision-making on design and
manufacture prior to farm operation, simplifying as-
sumptions are appropriate. The following are made

Fig 4. Estimated energy produced weekly for Scenario 1—
gearbox design inadequacy trigger present from start of farm op-
eration and gearbox upgrade is rolled out during year 3—with
bounds aggregating epistemic and aleatory uncertainty.

in our illustrative example described in Section 5.
First, the wind speed distribution, i.e., the distribu-
tion ofVi(t), is the same for all turbines (all i) and for
all t, and we denote this simply by V (t). Second, the
wind speed distribution is independent of the tech-
nical state of the wind farm U (t). Note that these
assumptions can be relaxed if required to adapt the
model to other applications. The first assumption as-
sumes no spatial impacts (e.g., shadowing of one tur-
bine by another) and no seasonality. This assumption
can be relaxed without difficulty in the model, but
will lead to greater effort in specifying the required
input data. If the wind speed distribution is assumed
seasonal then the second assumption is not entirely
valid because of the possibility of longer repair times
during winter, but still remains a reasonable first-
level approximation for the purposes of our exam-
ple. Given again thatU (t) = (x1, . . . , xn1 , z1, . . . , zn2 )
these assumption imply that Equation (16) can be
simplified as follows:

E(G(t)|U (t)) = (n1E(G1x1 (t)))
n2∏
k=1

zk (17)

= (n1E(px1V (t)))
n2∏
k=1

zk.

Hence, in order to calculate the expected power
generation (averaged over the wind speed distribu-
tion), we only need to specify the expected power
generation in each of the turbine generating states.

5. ILLUSTRATIVE USE OF MODEL

We illustrate how the model can be applied in a
decision-making situation. Prior to construction of a
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(a) (b)

(c) (d)

Fig 5. Empirical probability distribution functions (PDF) of estimated availability-informed relative capacity over first five years of farm
operation, decomposed within years 2, 3, and 4, combining epistemic and aleatory uncertainties.

Fig 6. Comparison of epistemic uncertainty distributions for the availability-informed relative capacity estimated over the first five years of
farm operation under Scenarios 1 and 2.
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wind farm the model is used to predict production
capacity over the first five years of operation. The
purpose of the example is to show the impact of
uncertainty on the availability-informed relative ca-
pacity and to provide a basis for assessing the value
of information of actions (e.g., field tests) to buy-
down epistemic uncertainty before the farm is op-
erational. The example has been developed col-
laboratively with offshore wind energy practition-
ers who have informed the model setup and as-
sessed output credibility. The model is based on
the key assumptions discussed in Sections 2–4 and
summarized in the index given in supplementary
Appendix 5.

5.1. Tailoring the Model
The project is for a 500 MW farm with 100 5 MW

turbines where the rate of failure should be no worse
than expectations, which is taken to be an average
time to failure of 0.26 years, or, equivalently, 3.81
failures/turbine/year. Based on discussions with ex-
perts in wind farm engineering, technology, and op-
eration, the design inadequacy of the gearbox was
identified as being of most concern and we model
it as an epistemic uncertainty. The uncertainties re-
lated to the remaining subassemblies, such as the
pitch system, are characterized as aleatory only. In
addition, the gearbox, the generator, the main shaft
bearing, and the blades are suspectible to manu-
facturing faults. The design inadequacy is assumed
to be shared across all turbine gearboxes, while
the manufacturing faults can occur independently
for the respective subassemblies across different
turbines.

The farm will be subject to both corrective and
preventive maintenance strategies. Biannual over-
hauls will refurbish certain subassemblies, such as the
gearbox, which is treated here as resetting the sub-
assembly virtual age to 50% of its value prior to the
intervention. Operating decisions will be taken to
limit the energy output of a turbine to avoid catas-
trophic failure based on signals about the condition
of the gearbox.

The epistemic uncertainty associated with the
gearbox design inadequacy and the onset to wear-
out time have been obtained as probability assess-
ments from a panel of eight engineering experts us-
ing a structured elicitation process (Dias et al., 2018;
Quigley & Walls, 2020). All experts were employed
by the same renewable energy company and had rel-
evant experience in the sector and/or with the rele-

vant technologies. Experts have been selected in col-
laboration with a lead technical specialist to ensure
all were suitably qualified to provide probability as-
sessments. Details of the elicitation methods used are
in supplementary Appendix 4 . The experts assessed
the probability of a design inadequacy trigger being
present to be q1 = 0.8. Each expert in our panel pro-
vided their own subjective probability assessment of
the number of months of operation since installation
until initial signs of degradation is likely to be ob-
served for the type of turbine affected by a gearbox
design inadequacy but by no other triggers. On analy-
sis of the elicited judgmental data, we model the vari-
ation in the time to onset of wear-out, aggregated
across experts using equal weights, by a lognormal
distribution with mean 1.99 and standard deviation
0.01.

Other model parameters have been populated
using empirical observations from relevant generic
databases. For example, subassembly hazard rates
have been selected from the Reliawind analysis
(Wilkinson et al., 2010) for relatively mature tur-
bines that achieve target reliability. Classifying fail-
ures as minor, moderate, and major, in line with
Faulstich, Hahn, and Tavner (2011) & Rademakers
et al. (2009), allows typical duration and effectiveness
of repairs on subassembly condition to be specified
for each class. For example, moderate failures are as-
sumed to require two operational days to restore a
subassembly to its good-as-new condition, that is, are
modeled as complete repairs.

To calculate the energy generation in this ex-
ample, we specify a small number of parameters
that summarize the overall impact of wind variabil-
ity and technical availability of the farm. First, that
a turbine has three states: fully operational; derated
(when gearbox is partially operating); nonfunctional.
Second, for each turbine state we specify the ratio
of power output to net maximum capacity. Here,
we assume the 5 MW rated turbines have a ratio
= 0.3 when the turbine is fully operational, a ratio
= 0.3 × 0.85 when the gearbox is in a partial operat-
ing state, and a ratio = 0 when the turbine is in a non-
functional state. Note that these settings are made for
this example only.

5.2. Selected Findings

Through analysis we explore two scenarios. Sec-
tion 5.2.1 describes the situation where the current
gearbox design, about which there is epistemic un-
certainty about its adequacy, is used from the start
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of farm operation. Section 5.2.2 examines how this
epistemic uncertainty might be bought down by con-
ducting field tests to learn if an inadequacy can be
established and, if so, then action is taken to im-
prove the gearbox design before the start of farm
operation.

5.2.1. Scenario 1: Gearbox Design Inadequacy Risk
Carried into Operation

Fig. 4 shows the estimated energy produced each
week over the first five years of farm operation for
the situation where the turbines enter service carry-
ing a design inadequacy before an upgrade. The up-
grade is rolled out in year 3 and addresses this inade-
quacy. The bounds show the combined epistemic and
aleatory uncertainties. Following the start of farm op-
eration, we find that production decreases until it
drops to the lowest level at the end of year 2. This is
intuitive given the joint effects of the gearbox design
inadequacy and the manufacturing faults affecting
various subassembly types. Production improves af-
ter year 2 as the gearbox upgrade is rolled out across
turbines in the farm, with a return to stable perfor-
mance levels in year 4.

Fig. 5 shows the empirical distribution of the
combined epistemic and aleatory uncertainty in the
availability-informed relative capacity. Fig. 5(a) is
the distribution averaged over the first five years
of farm operation together, while Figs. 5(b)-(d) are
the equivalent distributions for selected years (i.e.,
2,3,4) within this five-year window. The distributions
in Figs. 5(b)-(d) are shown on the same vertical axis
scale so that year-on-year comparisons of uncertainty
can be made. Fig. 5(a), which provides a composite
view for the overall first five years of farm opera-
tion, uses a different vertical axis scale for legibil-
ity. All plots use the same horizontal axis scale for
the availability-informed relative capacity. Over the
five-year early life period, Fig. 5(a) shows a bimodal
pattern—the primary peak just below 96% with a
secondary lesser peak close to 97.5%. Focusing on
specific years, Figs. 5(b)-(d) show changes in both the
level and the degree of uncertainty in the annual ca-
pacity distributions. As we shift from year 2 to 3,
the capacity increases on average and the uncertainty
decreases with both distributional shapes being bi-
modal. In year 4, the distribution is located at yet a
higher capacity and has further reduced uncertainty.
These patterns are intuitive given they represent the
within year(s) availability-informed relative capacity
that underpins the temporal slices of the energy pro-

duced profile shown in Fig. 4. Furthermore, they re-
flect the changes in capacity associated with original
gearbox and the upgrade roll-out during year 3.

We can decompose the variation in the distri-
butions of the availability-informed relative capacity
in terms of the epistemic and aleatory components.
Following the approach detailed in Appendix 3, the
epistemic component is found by summarizing each
aleatory distribution in terms of its expected value
then calculating the variance across all epistemic
scenarios. We find that 84% of the uncertainty in
the estimated capacity over the first five years of
farm operation can be classed as epistemic. This im-
plies that epistemic uncertainty dominates the pat-
terns shown in Figs. 4 and 5. This prompts us to ex-
amine whether this uncertainty, and hence the as-
sociated risk, can be reduced before the farm is
operational.

5.2.2. Scenario 2: Buying Down Epistemic
Uncertainty Before Operation

We consider the scenario where field testing can
be conducted to learn about the gearbox design in-
adequacy before farm construction, providing an op-
portunity to improve this design before start of op-
eration. We asked our panel of engineering experts
to reassess the probability of a gearbox design in-
adequacy in view of information from an assumed
field test followed by appropriate action. Their re-
vised probability of a gearbox inadequacy for Sce-
nario 2 was q1 = 0.15 (previously, this was q1 = 0.8
under Scenario 1).

Fig. 6 shows the probability distributions of the
epistemic uncertainties in the expected availability-
informed relative capacity over the first five years
of farm operation for both scenarios. The distribu-
tion under Scenario 2 (field test and, if appropri-
ate, action to improve gearbox design) shifts to the
right of the distribution for Scenario 1 (no field test
and original gearbox design used) indicating that,
on average, better farm performance is estimated
for the former. The degree of epistemic uncertainty
is also less for Scenario 2 relative to Scenario 1.
Correspondingly, the 95% intervals for the expected
availability-informed relative capacity are found to
be (0.962,0.977) and (0.952,0.976) for Scenarios 2
and 1, respectively. The reduction in epistemic un-
certainty following field test is intuitive, while the re-
sults allow us to assess the impact of this reduction.
Here, we do this by examining the level availability-
informed relative capacity which allows us to
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estimate the chance of meeting the specified farm
target performance, which is a minimum of 97%.
Fig. 6(b) shows the exceedance probabilities for Sce-
narios 1 and 2. That is, the cumulative probability
distributions for the metric, probability that the es-
timated farm availability-informed relative capacity
over first five years of operation is at least meeting
the target level of 97%. Fig. 6(b) shows that the ex-
ceedance probability distribution for Scenario 2 is al-
ways much higher than that for Scenario 1. For ex-
ample, say the farm’s performance is considered to
be unacceptable when there is a 20% or less chance
of meeting the target. Then our findings imply that
investing in field testing will decrease the probability
that the farm will have an unacceptable performance
from 0.8 to 0.1. That is, risk is reduced to 12.5% of its
original value if we opt to conduct field testing and
act appropriately on the findings.

6. CONCLUSIONS

We propose a new model to support stake-
holders to better understand their degree of con-
trol over risk for a pre-construction offshore wind
farm and to estimate the effectiveness of risk
reduction interventions before the farm becomes
operational.

The model enables a performance measure we
call the availability-informed relative capacity to be
estimated. This measure captures the net maximum
generating capacity of the farm given the technical
state of the equipment, such as the turbines. Sources
of epistemic uncertainty arise in equipment design
and manufacturing effectiveness. Setting our model-
ing unit of analysis at the subassembly level of the
equipment allows us to capture the systemic effects
on overall farm performance; intuitively we might
expect that the larger the farm, the more substan-
tial the combined effect of epistemic uncertainties
will be. Our exposition of the underpinning stochas-
tic model shows how the epistemic and aleatory un-
certainties are represented mathematically. An illus-
trative example shows how the model can be used
to distinguish the contributions of epistemic and
aleatory uncertainties as well as to investigate the ef-
fectiveness of actions to reduce the epistemic uncert
ainties.

Throughout our model development, we have
engaged with stakeholders with expertise in the
off-shore wind sector. These included engineering
subject-matter experts, operations managers, and fi-
nancial and insurance practitioners. Our collabo-

rations included facilitated workshops with multi-
ple stakeholders at model structuring and validation
stages, as well as an in-depth case with a service
provider to develop the example.

The characterization of uncertainties as epis-
temic or aleatory is not always clear because it de-
pends on the problem context and model use. Our
model, as presented in this article, represents weather
as an aleatory source of uncertainty because we have
developed the model for a generic wind farm. Given
our intent is to apply our general model to support
decisions for a specific offshore site, then there might
be interest in adjusting weather-related uncertainties
in the light of, say, meteorological data collected from
that location, and so we would treat these uncertain-
ties as epistemic, as well.

Treating uncertainties as epistemic implies addi-
tional modeling layers, increasing model complexity.
As discussed in Section 3.2, the treatment of the
trigger indicator variables as random leads to the
addition of the Bernoulli models, whereas the in-
corporation of parameter uncertainty requires the
use of distribution models and hyperparameters. As
model sophistication increases, so does the modeling
and computational effort required. Therefore, it is
imperative that analysts make informed modeling
choices to pragmatically decrease model complexity
to a manageable level and increase the practical
interpretation of the model structure and outputs to
provide a requisite model.

Our stochastic model has been coded as a mod-
ular Matlab simulation. Inputs relate to wind farm
features (e.g., number of turbines, critical subassem-
blies, farm layout), operating scenarios (e.g., length
of the planning horizon, granularity of simulated
time period, and type of intervention to address
triggers) and empirical/judgmental data (e.g., trig-
ger probabilities, target hazard parameters for each
subassembly type). The representation of epistemic
uncertainties also adds computational complexity.
We believe our model can be extended in a number
of ways to manage such computational challenges.
For example, we could screen model parameters to
identify those with greatest impact on output un-
certainty. Or, to reduce the computations we could
consider the use of emulators (O’Hagan, 2006; Wil-
son, Henderson, & Quigley, 2018). For example, an
emulator will have as model inputs critical decision-
making parameters, such as trigger likelihoods or
wear-out onset times, and the emulator could be
used in the place of the model to explore a range of
decision-making scenarios.
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Future research could also include investiga-
tion of the relative contributions of the turbine-
based uncertainties presented here and the over-
all uncertainty of wind speeds, variation in wind
resource, or long-term wind droughts. To develop
the model as a decision support tool involves more
consideration of issues such as modeling condition-
monitoring, as well as further evaluation from the
perspective of those managing risk in offshore wind
farms.
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