1 Characterisation of uranium-pyrite associations within organic-rich Eocene

2 sediments using EM, XFM-µXANES and µXRD

3 Susan A Cumberland^{1,2,3}, Katy Evans⁴, Grant Douglas⁵, Martin de Jonge², Louise Fisher⁶, Daryl Howard²,

4 John W Moreau^{1,7}

5 1 School of Earth Sciences, The University of Melbourne, Parkville 3010, Melbourne, Victoria, Australia

- 6 2 ANSTO-Australian Synchrotron, 800 Blackburn Road, Clayton 3163, Melbourne, Victoria, Australia
- 7 3 Current Address: University of Strathclyde, Dept. of Civil and Environmental Engineering, Glasgow,8 Scotland, UK
- 9 4 Curtin University, Bentley, Western Australia, Australia
- 10 5 CSIRO Land and Water, Wembley, Western Australia, Australia
- 11 6 Australia CSIRO Mineral Resources, Bentley, Western Australia, Australia
- 12 7 School of Geographical and Earth Sciences, University of Glasgow, Scotland, UK
- 13

14 Abstract

15 Sediments that are rich in organic matter (OM) can trap and accumulate metals, including uranium 16 (U), and provide favourable conditions for the formation of minerals such as pyrite. In OM-sediments, 17 pyrite may play an important role in sorption and reduction of U and other metals that are sensitive to redox change. Mulga Rock, located in Western Australia, is an Eocene polymetallic deposit hosting 18 19 economic uranium within its OM-rich sediments. Our previous work on the Mulga Rock deposits showed 20 that OM may host U(VI) for long periods and suggested that reduction to U(IV) may occur through 21 different pathways. Framboidal-like pyrite, embedded in lignite, displaying U(IV)-rich rims, > 100 µm, were investigated using synchrotron-X-ray fluorescence microscopy-micro-X-ray absorption near edge 22 23 structure (XFM-µXANES), laboratory micro-X-ray diffraction (µXRD) and electron microscopy. Micro-24 XRD analyses indicated that the U(IV) phase was mostly coffinite [USiO₄] mixed with uraninite [UO₂]. Analyses of transects across U-pyrite rims using XFM and XFM-µXANES revealed higher concentrations 25 of U(IV) near the pyrite, and proportionally more U(VI) away from the edge of the pyrite. We infer that 26 27 within OM environments, pyrite has a local influence on the oxidation state of U, which may be influential when considering U mobility. 28

- 29 **Kevwo**
 - Keywords: Uranium, pyrite, oxidation state, synchrotron, organic sediments, Mulga Rock

Graphical Abstract

3	Δ
\mathcal{I}	4

35 Highlights

36	•	Uranium-rich rims are associated with pyrite grains in organic sediments.
37	٠	The U-layer is 100s of microns thick.
38	٠	The U at the pyrite edge consists of a mix of U(IV), coffinite and uraninite.
39	٠	The proportion of U(VI) increases with distance from pyrite.
40	•	Organic matter-hosted pyrite may be important for U immobilisation.
41		
42		

44 1 Introduction

45 1.1 Uranium and organic matter

Sediments rich in organic matter (OM) can accumulate uranium (U), and other metals, from
groundwater and hydrothermal fluids (Greenwood et al., 2012) and over time may reach economic
concentrations. Examples of OM-U-rich sediments are found in the Grants Region, Texas (Deditius et al.,
2008; Hansley and Spirakis, 1992) and the Mulga Rock, polymetallic deposits, Western Australia
(Cumberland et al., 2018a; Douglas et al., 2011; Jaraula et al., 2015).

The mobility and deposition of U are largely determined by two main oxidation states (U(IV) and 51 52 U(VI)), pH, Eh, and complexation with ligands (Langmuir, 1978). The U(IV) phases, unless colloidal, have limited solubility and mobility, while U(VI) forms many more complexes (e.g., UO22+) of varying solubility 53 54 (Cumberland et al., 2016). The most common soluble complexes are the uranyl carbonates and –hydroxyls, whereas the phosphates and silicates are more likely to precipitate and U may also complex with OM 55 56 (Cumberland et al., 2018b). Pentavalent U is less well understood and might occur as an unstable 57 intermediary, but this is unlikely to persist in the environment (Burns and Finch, 1999; Renshaw et al., 58 2005) or at low pH. However, metastable U(V) might be incorporated into green rust (Roberts et al., 2017).

59 Uranium accumulation within OM-rich sediments is thought to occur through adsorption of 60 mobile U(VI) species onto OM functional groups followed by reduction to U(IV) (Disnar and Sureau, 61 1990; Hobday and Galloway, 1999; Nakashima, 1992; Nakashima et al., 1984, 1999; Sharp et al., 2011). A 62 number of recent studies of natural samples (e.g. soils, peats and sediments) have reported U existing either 63 in a mixed (U(IV)/U(VI)) oxidation state, or predominantly as U(VI) (Cumberland et al., 2018a; Fuller et 64 al., 2020; Mikutta et al., 2016; Regenspurg et al., 2010; Zhang et al., 2020). U(VI) complexes with OM may 65 therefore be more stable than previously thought. Nevertheless except for colloidal forms, U(IV) is 66 considerably insoluble and therefore immobile and the presence of non-mobile U(IV) in samples may be 67 indicative of in situ U(VI) reduction to U(IV) (Cumberland et al., 2016; Wang, et al., 2013a). Direct 68 reduction of U(VI) by lignite has been reported in the laboratory at low temperatures from 120-250°C 69 (Nakashima, 1992, Nakashima et al., 1984, 1999). However, the extent to which OM reduces U(VI) to 70 U(IV) is still unconfirmed. It is therefore useful to investigate other U immobilisation mechanisms within low temperature OM-rich sediments, and their capacity to facilitate changes in U speciation. Among the 71 72 factors thought to influence U(VI) to U(IV) reduction are direct enzymatic microbial reduction (Campbell 73 et al., 2015; Newsome et al., 2014) and interaction with minerals that are sensitive to redox change (Wang 74 et al., 2013b; Wersin et al., 1994). It has also been suggested that the reduction of U involves a combination 75 of abiotic and biotic reactions that occur sequentially or simultaneously (Bargar et al., 2013; Bone et al., 76 2017; Janot et al., 2016; Noël et al., 2017). Pyrite (FeS₂) and its polymorphs have sometimes been associated 77 with U reduction in OM-rich environments and may be sufficiently reactive to be involved in the 78 abiotic/biotic processes mentioned above (Bonnetti et al., 2017).

79 1.2 Pyrite

80 Pyrite (cubic, FeS₂) and its polymorph, marcasite (orthorhombic, FeS₂), are common iron sulphide 81 minerals. Other iron (II) sulphide minerals include mackinawite (FeS) and pyrrhotite. Framboidal pyrite is 82 commonly present in low temperature sediments, particularly where there is OM, forming via either 83 biogenic or geogenic (abiotic) processes (Gartman and Luther III, 2014; Nordstrom and Southam, 1997). 84 Framboidal pyrite, consists of clusters of equidimensional and equimorphic micro-crystals that form a spheroidal composite grain with a larger surface area to volume ratio than cubic pyrite (Ohfuji and Rickard, 85 2005; Wilkin and Barnes, 1997; Wilkin et al., 1996). The terms 'framboid-like' pyrite or 'pseudo-framboids' 86 87 apply when the microcrystals are non-equidimensional and non-spheroidal (Ohfuji and Rickard, 2005). 88 Pyrite can be synthesised under a range of temperature, pressure, and chemical conditions in the laboratory 89 (Ohfuji and Rickard, 2005). The reactivity of pyrite arises from the presence of Fe^{2+} and sulphide (S⁻), 90 either of which can donate electrons to become oxidised (Murphy and Strongin, 2009). A range of bivalent transition elements can substitute for Fe (Rosso and Vaughan, 2006), and other elements are incorporated 91 as nanoscale inclusions or within the matrix, so pyrite often sequesters elements such as As, Au, Co, Cu, 92

Ni, Pb and U (Hu et al., 2016; Moreau et al., 2013). Secondary pyrite can precipitate between the
microcrystals (Wilkin and Barnes, 1997).

95 Co-located U and pyrite have been reported from metamorphic and sedimentary settings, 96 particularly organic-rich and pyritic shales (Och and Shields-Zhou, 2012; Schoonen, 2004), including South 97 Australian uranium mines (e.g., Beverley: Ingham et al., 2014; Wülser et al., 2011), South African gold 98 mines (e.g., Witwatersrand: England et al., 2001; Law and Phillips, 2006) and Chinese coals (Bonnetti et 99 al., 2017). Pyrite and U are also commonly co-located in roll-front deposits, which form in reducing 100environments, with the role of pyrite as a reductant remaining infrequently reported (Min et al., 2005; 101 Renard and Beucher, 2012; Reynolds and Goldhaber, 1983; Yang et al., 2014). Under laboratory 102 conditions, U(VI) can sorb to pyrite with partial reduction of aqueous U(VI) to U(IV) and precipitation of Fe(III)oxyhydroxide and/or polysulphides (Descostes et al., 2010; Eglizaud et al., 2006; Wersin et al., 103 1994). The extent of sorption and reduction of the UO_2^{2+} ion is dependent on the pH and Eh of the 104 105 system and the availability of surface sites, so reduction of U(VI) to U(IV) can be incomplete (Wersin et 106 al., 1994).

107 Few studies have reported micro-scale spatial relationships between U-species and pyrite in natural samples. Exceptions describe OM-poor and OM-rich environments in recent (Qafoku et al., 2009) and 108109 ancient sediments (Bonnetti et al., 2017; Wülser et al., 2011). In these studies, U is reported either in a mixed U(IV)/U(VI) oxidation state or as U(IV) coffinite microspheres ([USiO₄] or [U(SiO₄)_{1-x}(OH)_{4x}]), 110 interpreted as microbial in origin (Bonnetti et al., 2017; Wülser et al., 2011). However, the spatial 111 distribution of U(IV)/U(VI) at the pyrite boundary remains unconstrained, particularly within OM-rich 112 113 environments, and the nature of the U(IV) to U(VI) transition with increasing distance from the pyrite is 114 unknown. A more refined and spatially-constrained understanding of micro-scale U-pyrite relationships 115 would provide additional insights into the role of pyrite, and its influence on U reduction and accumulation 116 within OM-rich environments. Such knowledge is necessary for a process-based understanding of in-situ or *ex-situ* U extraction from OM-rich sediments, and U stability within pyritic mining wastes and relevant
 pollution situations.

119 Here, we present a detailed investigation of a U-rich lignite (CD1577) that contains pyrite with U-rich 120 rims from the Mulga Rock deposits, Kalgoorlie, Western Australia. The oxidation state and distribution of the U in the rims was investigated using micro-X-ray diffraction (µXRD) and synchrotron X-ray 121 122 fluorescence (XFM), coupled with micro-X-ray absorption near edge spectroscopy (µXANES). As part of 123 a mixed method approach, scanning electron microscope-energy dispersive X-ray (SEM-EDX) and 124 transmission electron microscopy (TEM) analyses were conducted to strengthen conclusions and provide 125 additional insights. Previous investigation of one of the sections from this sample and other powdered 126 bulk samples from the Mulga Rock deposits using X-ray absorption spectroscopy (XAS) at the U L₃ edge revealed that U is present in a mixed oxidation state, dominated by U(VI) (71%) (Cumberland et al., 2018a). 127 128 Fits to the XAS spectra were consistent with a bidentate U species, in which U(VI) is bound to carbon via 129 two carboxyl groups. The U(IV) phase was consistent with a coffinite structure (Cumberland et al., 2018a), 130 a phase which has been reported elsewhere within OM (Deditius et al., 2008; Leventhal et al., 1987; Min et al., 2000). However, the origin, speciation and distribution of the U(IV) identified at Mulga Rock were 131 132 not elucidated by Cumberland et al. (2018a).

133 2 Mulga Rock deposits

134 Mulga Rock, located near Kalgoorlie, Western Australia (Figure 1), consists of a series of OM-rich 135 sedimentary deposits that host U and other economic metals (e.g., Co, Cr, Cu, Ni, Pb, Ti, V, Zn, and 136 REEs). Four orebodies make up the Mulga Rock deposits: Ambassador, Emperor, Princess and Shogun 137 (Figure 1). Early investigations of Ambassador, discovered in 1979, indicated 13,000 tonnes of U (Douglas et al., 1993; Douglas et al., 2011). Subsequent studies uncovered U in the other three deposits. Collectively, 138 Mulga Rock contains an estimated 66.5 Mt of ore at 520 mg kg⁻¹U₃O₈ (Vimy, 2016). The OM-rich layers 139 140 at Mulga Rock also host an abundance of metals and rare earth elements (REE) in the order Ti > U > Zn > Ca > total REE > Cu > Ni > Pb > Cr > Co > Sc > V > As > Th, with total REE present in similar 141

142 concentrations to total U in the samples that were analysed (1-1500 ppm) (Cumberland et al., 2018a;
143 Douglas et al., 2011).

144

145 [Figure 1 here]

146

The main ore material is an OM-rich layer, 0.5 to 2 m thick, that occurs 30–50 m below the surface; U is also present in the immediately adjacent, upper (reduced) sandy-clay layer (Figure 2). The OM-rich layers at Mulga Rock are anoxic and acidic, and likely accumulated within paleochannels and lacustrine beds that formed during the Eocene and were subsequently buried (56–34 Ma, Douglas et al., 2011). These OM-rich layers contain a mixture of woody (lignite) material combined with aquatic algal and bacterial biomass, which make up the particulate and non-particulate OM-rich fractions (Jaraula et al., 2015).

153

154 [Figure 2 here]

155

The U present at Mulga Rock likely accumulated as a result of the immobilisation of mobile U(VI) 156 in groundwater (present day average 8 µg L⁻¹ U in local groundwater) that flowed through permeable 157 158 sandstones within paleochannels, and sorbed to OM where the groundwater interacted with OM-rich layers (Cumberland et al., 2018a; Douglas et al., 2011; Jaraula et al., 2015). This sorption process has been 159 tested experimentally with U(VI) solutions, whereby U adsorbed to OM within packed columns 160 (Cumberland et al., 2018b). The transition of the OM-rich layers and deeper sediments to anoxic 161 conditions, led to the formation of Fe-sulphides, most likely as result of bacterial sulphate reduction 162 163 (Douglas et al., 2011).

165 3 Materials and Methods

166 3.1 Sample details

The sample material originated from an archived (diamond-drilled) core extracted from the Mulga 167 168 Rock Ambassador deposit in July 1988 during exploration by PNC Exploration Australia in 1979–1988 169 (Vimy, 2016). The sample used in this study is a lignite fragment from core CD 1577 (Ambassador, 170 Northing 6682708.94 mS, Easting 579942.81 mE (UTM WGS84 51J), depth of core was 43.5 m). At this 171 site, the lignite lies at depths of 37–44 metres above sandy-clay mudstones and below claystone (Figure 2). 172 Further details of core from the Ambassador deposit are provided by Douglas et al. (2011). The U- and 173 OM-rich layer was protected after sampling by covering the cores in plastic on site. On return from site, 174 cores were carefully placed in a core room and stored under climate-controlled conditions at CSIRO. 175 Selected fragments, including the fragment examined here, were encased within epoxy resin and thus 176 protected from the air. U-rich ore fragments were selected for more detailed analysis, based on gamma 177 counter radiography.

178 An epoxy-preserved sample fragment from CD1577 was selected for analysis from these archives 179 (labelled 6101) because it displayed high gamma radiation counts. SEM imaging revealed pyrite and U-180bearing minerals on the surface of the sample, with some of the latter ellipsoidal (2 \times 10 μ m). These ellipsoidal features were investigated further using a focussed ion beam (FIB) to produce micro sections 181 182 and analysed using TEM (BIO21, University of Melbourne, Australia) and synchrotron-XFM. Thin 183 sections were then prepared from the 6101 sample at Federation University (Ballarat, Australia), and 184 mounted on pure quartz microscope slides to produce four mounted sub-samples 30-50 µm in thickness (slides 1-4), and one unmounted subsample of ~1 mm thickness. Reflective and transmitted light 185 microscopy images of slides 1-4 are presented in Figure S1 to show the extent of the analytical area and 186 187 the reflectance of the pyrite grains. SEM-EDX maps were performed on an edge in pyrite feature 1; and 188 SEM-EDX maps and a μ XRD transect were performed on a pyrite feature located on slide 3 (see Figure 189 S2 for locations). The mounted thin sections were then analysed on two occasions at the Australian 190 Synchrotron in 2014. Early in 2014, all four thin sections were image scanned using XFM and a FIB section 191 with ellipsoidal features analysed for XANES at the U L₃ edge. Later in the same year, transects across two 192 selected pyrite features, one each from slides 1 and 2, were imaged using μ XANES (Figure S1).

193

194 3.2 Electron microscopy and analysis

195 SEM images and element maps were acquired using an environmental-SEM (FEI Quanta) equipped with 196 an OXFORD INCA EDX spectrometer and Gatan cold stage (BIO21, University of Melbourne, 197 Australia). The latter was used to reduce beam damage to the OM. Samples were carbon-coated to improve 198 conductivity. Images were acquired at 15 kV in backscatter using a solid state backscatter detector at 0.6 199 mbar pressure. In addition to the composite map image, the individual element map images were cross-200 correlated to recognize inter-element relationships. To do this, each element map was converted to equal 201 pixel dimension bitmaps (8-bit) using ImageJ (Fiji); cropping where necessary. The Pearson correlation coefficient was then calculated for pairs of element maps using the 'Image_Correlation]_10.class' plug-in 202 203 (Chinga and Syverud, 2007). For these analyses, the original image size was 233×203 pixels, with a pixel 204 resolution of 5 μ m². The local region size for correlation was set to three by three pixels giving the number 205 of observations as n= 5250. ImageJ produced scatterplots and a correlation (R) value, and the inbuilt R software used to calculate additional statistics and the probability factor, p, values. Micro-sized sections of 206 207 ellipsoid-shaped U phases were milled using a dual beam FEI Nova Nanolab gallium ion focussed ion 208 beam (FIB) SEM equipped with EDX and Pt deposition system (BIO21, University of Melbourne). The 209 FIB-sections were placed on a Cu holey carbon mesh TEM grid and imaged using a 200 kV TEM (Tecnai F20, BIO21, University of Melbourne, Australia) equipped with a scanning transmission electron 210 211 microscope (STEM) and EDX. Images of the FIB sections were also acquired using synchrotron X-rays 212 at the XFM beamline.

214 3.3 μXRD

215 Micro X-ray diffraction (µXRD) patterns were collected using a general area detector diffraction system (GADDS, Bruker) micro-diffractometer, at the Commonwealth Scientific and Research 216 217 Organisation (CSIRO) laboratories in Clayton (Melbourne, Australia). The source of the X-ray beam was a Cu Ka X-ray tube operating at 40 mA, 40 kV that passed through crossed reflecting Göbel mirrors to 218 219 produce a monochromatic, parallel, high-brilliance source which collimated by a 300 µm or 800 µm 220 pinhole system. Twenty diffraction patterns were collected at 50 µm steps over a one mm transect using a 300 µm collimator (see Figure S2). Spot measurements used the 800 µm collimator. Patterns were fitted 221 222 using EVA software (Bruker) and Brukers' powder diffraction file (pdf) database.

223

224 3.4 Synchrotron X-ray Fluorescence Microscopy (XFM)

225 Element images and µXANES were collected at the XFM beamline (Australian Synchrotron, Melbourne, Australia). It is possible to detect matrix-hosted (i.e., non-mineral) and mineral-bound U, and 226 227 the beamline is suitable for analysis of complex samples that contain OM and U, at concentrations of a 228 few ppm to wt.% (Fisher et al., 2015; Ryan et al., 2014). The measurements employed a Si(111) 229 monochromator crystal, with a bandpass $\Delta E/E$ of approximately 1.4e⁻⁴. The monochromatized X-ray 230 beam focusses to a spot of approximately 2 µm (Full Width at Half Maximum, FWHM) diameter using a mirror pair (Kirkpatrick-Baez, KB type) (Paterson et al., 2011). Secondary X-rays are detected at 180° from 231 232 the sample using the 384-element Maia detector in a backscatter geometry (Fisher et al., 2015; Kirkham et al., 2011; Ryan et al., 2014). 233

Although the Maia detector is sensitive to fluorescence X-rays above ~ 2 keV, the low penetration of the S fluorescence (~ 2.4 keV) means that maps of S show S on the surface, whereas maps of the heavier elements show the average concentration over a greater depth interval within the sample. For this reason, the S map is spatially decoupled in the Z direction from maps of the heavier elements, and the relationship

238 between the maps is semi-quantitative at best. Furthermore, at the time of analysis, μ XANES could not 239 be performed at the Australian Synchrotron XFM beamline for light elements such as S.

240 3.4.1 Element and µXANES stack image maps

241 Element maps and µXANES stack images were produced using the GeoPIXE software (Etschmann et al., 2010; Li et al., 2016; Ryan, 2000; Ryan and Jamieson, 1993). Where stack images are 242 243 defined as image maps that also contain energy information for each excitation energy across an absorption 244 edge of a targeted element. GEOPIXE works by deconvolving the photon event stream using the dynamic 245 analysis (DA) method to project quantitative elemental images from the full spectra (Ryan, 2000; Ryan and Jamieson, 1993). Following detailed XFM scanning of the element distribution (2-18.2 keV) at 2 µm, a 246 247 series of scans across the U L₃ edge (~17170 eV) were performed to acquire the µXANES, for selected 248 regions of interests (ROIs). In our scans, the ROIs were drawn perpendicular to the pyrite grain edges as 249 'transects'. The two transects were approximately $800 \times 100 \ \mu\text{m}$ and $2000 \times 200 \ \mu\text{m}$. Each transect 250 consisted of 121 energies covering the U L₃ edge between 17000 and 17510 eV with energy steps of 15 eV 251 from 17000 to 17105 eV(pre-edge), 5 eV between 17105 and 17145 eV, 1 eV between 17150 and 17199 eV 252 (edge and white line), 2 eV between 17200 and 17268 eV, and 5 eV between 17270 and 17510 eV. The 253 position of the edge energy in the U L₃ µXANES spectrum is sensitive to the U oxidation state and, to a 254 limited extent, U species. The presence or absence of a post-white-line shoulder provides further 255 information on the species. This process produces stackable images that were used to create 4D (x-y-256 energy-intensity) maps using GeoPIXE.

The μ XANES spectra were extracted and exported from the 4D stacked energy scans by drawing uniform-sized segments across the transect using GeoPIXE of about 73 × 70 µm or 120 × 120 µm. The μ XANES spectra (11 from feature one, 17 from feature two) were processed and normalised using XAS analysis software (Athena, DEMETER v. 0.9.26) and then used for linear combination fitting (LCF) to determine the oxidation state and species. The XFM-derived spectra were aligned using XAS-derived spectra of the U mineral sub-samples where the XAS-derived spectra were acquired in both fluorescence and transmission and calibrated using a Zr foil (K-edge, $E_0 = 17998 \text{ eV}$) to $\pm 0.5 \text{ eV}$ (Cumberland et al., 2018a suppl. data). The U minerals used in this study were supplied by Melbourne Museum, and included coffinite (M32495), uraninite (M26415), uranopilite (M40774) [(UO₂)6SO₄(OH)6O₂·14H₂O], saleeite (M45514) [Mg(UO₂)₂(PO₄)₂·10H₂O] and schoepite (M44367) [(UO₂)₈O₂(OH)₁₂·12(H₂O)].

268 3.4.2 Linear combination fitting (LCF)

269 Linear combination fitting (LCF) was performed to determine the oxidation state of U using the Athena software package. Each fit used two end members, one U(IV) and one U(VI) compound. Uraninite 270 271 and coffinite were used to represent the U(IV) end-member, and uranopilite, schoepite and saleeite, 272 represented the U(VI) end-members. Uranium spectra that gave poor fits were eliminated through the 273 process of LCF. The multiple fits using all combinations of the U(IV) and U(VI) end-members ensured 274 that the fits were robust and that the uniqueness of the fits could be assessed. which is supported by the 275 work of Cumberland et al. (2018) where the paths from uranopilite data, was applied to EXAFS modelling 276 of the bulk samples.

The LCF parameters were as follows: all weights were set between zero and one and the sum of the resulting fits was forced to equal one. The fit range was from -20 eV below E_0 to +30 eV above E_0 , to include the first U=O shell of U(VI) compounds (post white-line shoulder). Each LCF was performed simultaneously on a set of spectra against a pair of endmembers always returned a weighting of one. The results were plotted as bar charts to show the proportions of U(IV) and U(VI) across the transect using R packages, ggplot2 and Majick.

The LCF provides estimates of the proportions of chemical species, and has been applied to a wide range of metal compounds (Calvin, 2013). However, LCF fits to the μ XANES spectra of U(VI) oxides can be challenging because the number of oxygens present in the first shell and the presence of a U=O double bond are relatively consistent across species, so the spectral shape is similar for many of the vast number of known U(VI) minerals (~200, Hazen et al., 2009). Collection of high-resolution data at
higher numbers in K-space can provide additional detailed information on the coordination environment
through analysis of the extended X-ray absorption of the fine structure (EXAFS). It was not practical to
do this at the Australian Synchrotron-XFM beamline at the time of measurement.

291

292 4 Results

293 4.1 Element analyses

Analyses of thin sections of lignite sample 6101 from core CD1577 via XFM revealed multiple iron- and 294 sulphur-rich grains surrounded by extensive U-rich rims (up to $\sim 500 \,\mu\text{m}$) (see Figure 3). Two features 295 296 were selected for detailed analysis and are hereon referenced as 'pyrite grain 1' and 'pyrite grain 2', as 297 identified in Figure 3. Although not shown in the RGB maps, XFM element analyses revealed that rims also contained trace amounts of As and Y and the Fe-S phase also contained Co and Ni. Collected data, 298 including traverse data extracted from XFM images show that relationships existed between Co and Ni 299 and that neither Ni nor Co correlated with Fe or U. Complementary spot analyses of a pyrite grain located 300 301 on slide 3 (see Figure S2) using µXRD fitted with a 800 µm collimator indicated that the main phase is pyrite containing minor millerite (Co, Ni S) (Figure 4). The presence of marcasite was inconclusive. As 302 depicted in Figure S2, the grain selected for spot analysis shows an inclusion that contains Co, Ni or Zn, 303 this feature is not considered further in this study. 304

305

306 [Figure 3 here]

307 [Figure 4 here]

309 4.2 Electron microscopy

310 4.2.1 SEM

The SEM-EDX analyses of the region identified which features an edge of a pyrite grain from 311 slide 3 (see Figure S2 for location) revealed a local enrichment in C, Fe, O, S and Si (Figures 5, S3, S4). 312 The composite image, Figure 5, shows three distinct regions are identifiable; an Fe- and S- rich region 313 314 (orange), a U–O–Si-rich region (green), and a C-rich region of the sample matrix (purple-brown). Uranium 315 is most abundant close to the edge of the pyrite grain/region and in sample cracks. The organic-rich 316 (lignite) area around the pyrite appears light brown in reflective and transmitted light (Figure S1) and clearly 317 surrounds the pyrite grains. The sample was preserved by C-bearing resin impregnation, so the map of C (Figure 5) should be interpreted with caution. Nevertheless, some inferences can be made; micron-sized 318 319 areas of U-enrichment occur within the OM-rich area (see Figure S5), and there is no detectable C within 320 the Fe-S area. Phosphorus, which can be an indicator of remnant microbial biomass, was only present at 321 low concentrations. Other elements detected by EDX include trace Al, As, Co, Na, Nd, Ni, Y and Zn. In 322 these samples, the Fe-S phase does not show a classic framboidal texture. Instead, it is similar to the 323 framboidal-like pyrite described by Ohfuji and Rickard (2005) in that it contains micro-clusters consisting 324 of individual crystals of 5-10 µm, which are visible in the SEM and XFM images (Figures 5, 6; and a higher 325 resolution EDX map of pyrite grain 1 provided in Figure S6). Furthermore, mats of U-rich microcrystals were observed on other regions of the sample, see section 4.2.2 for more detail. 326

327

328 [Figure 5 here]

329 [Figure 6 here]

330

The composition of individual microcrystals from 'pyrite grain 1' (Figure 3A and 6B), based on semi-quantitative SEM–EDX spot analyses of the detected elements showed percent level concentrations of $C > O > S > Fe > N > Ni \approx Co$, and ppm concentrations of Si and U. The EDX analysis positioned on the bright phase (Figure 6C and D) showed higher concentrations of U e.g. with percent concentrations of O > S > N > Fe > Ni > U and ppm concentrations of $Co > Zn \approx Si$. whereas the darker phase indicated much less U with percent concentrations of $O > S > N > Fe \approx Ni > Co$ and ppm concentrations of Zn > U > Si with U likely detected from the nearby brighter phase.

338

Several elements are correlated (p < 0.001, n = 5250), based on the SEM map data (Figure 5; Table S1). Uranium is positively correlated with Si ($\mathbb{R}^2 = 0.72$). The points on O versus U scatterplots fall into two groups. In the first group, O is independent of the U concentration. In the second group, O and U are positively correlated (Figure S3) and a negative correlation exists between U and C (Figure S4).

Iron and S are positively correlated ($R^2 = 0.88$, slope = 1.27) whereas S and U are negatively 343 correlated ($R^2 = 0.30$, p < 0.001). The S vs. U plot however shows a much more complicated picture: i) a 344 very steep, negative S vs. U at low S; ii) a less steep, negative S vs. U trend spanning a broad range of S 345 and U concentrations; and iii) uncorrelated showing no increase in U with increase in S. A similar pattern 346 is also observed between S and Si. The S–C scatterplot ($R^2 = 0.36$, p < 0.001, Figure S3) reveals two 347 348 populations, one showing a positive correlation and the second showing a broader negative correlation. 349 There is little S in the OM-rich matrix. Oxygen and Si portray a similar relationship to that between U and O (Table S1), and is suggestive that U, Si, and O are part of the same phase. An example is the U(IV)-350 351 bearing mineral coffinite (USiO₄). Traces of other oxides might be present but could not be resolved from the data. In addition to above SEM-EDX analyses performed at three positions on a pyrite grain located 352 353 on slide 3 are presented in Table S2.

354 4.2.2 TEM of FIB sample

355 Mats of mineralised ellipsoids that were observed on the surface of the lignite sample prior to sub-356 sectioning, see Figures S7 and S8, were sectioned using a FIB for further examination using TEM, and then later by XFM. These ellipsoids were 10 μ m in length by 2 μ m in diameter containing U as tightly packed nanoparticles of about 10 nm, they were not located near to the larger pyrite grains, but occasionally the odd single grain was found amongst them (Figure S8 C-1). Diffraction patterns were poorly- or polycrystalline with *d*-spacings consistent with coffinite. XFM- μ XANES LCF analysis (Figure S8) also indicated coffinite in the sample. A poorly crystalline, 'non-uraninite' phase has been observed by Alessi (2014) and Bernier-Latmani et al. (2010) as a U microbial product.

363

364 4.3 μXRD

A transect taken across a pyrite boundary using μ -XRD, illustrated in Figure S2, revealed two 365 distinct mineral phases, pyrite and coffinite (Figure 7). The spectrum in Figure 7b indicated 81–100% cubic 366 pyrite (a = b = c = 5.441 Å), but due to high background counts, the presence of other minerals, for 367 example millerite and marcasite, could not be easily determined. The pattern lacks peaks around 45-55° 20 368 369 indicating that marcasite and millerite are either present in low quantities or absent entirely. Other phases 370 which could be present as residuals of reaction products, e.g. iron oxide (Fe₂O₃, PDF-00-005-0637), greigite (Fe₃S₄, PDF 089-1998), sphalerite (Zn, FeS) and coffinite, were not identified. The µXRD pattern 371 is inconsistent with the presence of U(VI) oxide and uraninite. Coffinite (PDF-00-011-0420) (tetragonal, 372 a = b = c = 6.979, h,k,l = 2,0,0) is the only phase that can explain the main μ XRD peaks (~95.7%) (Figure 373 374 7c), but U(VI) oxide (e.g., UO₃: PDF 00-011-0420, hexagonal, a = b = 3.971, c = 4.168 Å, h,k,l = 2,0,0) also fits under the broader peaks which may explain the remaining $\sim 4.3\%$ of the fit in Figure 7c. It is 375 noteworthy that uraninite (UO₂, PDF 00-047-1879) was not a feasible fit to the spectra of Figure 7c. 376

377

378 *[Figure 7 here]*

380 4.4 Synchrotron XFM-µXANES

381 Synchrotron XFM RGB (Fe, S, U) element, maps of Fe, S and U, LCF U(IV):U(VI) ratios, and 382 element concentrations for two analysed pyrite grains as a function of the position on the transect were 383 plotted (Figures 8, 9). XANES spectra along with their fits as dotted lines are shown in Figure S9. The 384 LCFs for both pyrite grains using two U end members gave similar results irrespective of the choice of U(IV) mineral (coffinite or uraninite), and with U(VI) represented by uranopilite (Table 1). Four tests were 385 performed: test 1 modelled pyrite grain 1 using coffinite and uranopilite; test 2 modelled pyrite grain 1 386 387 using uraninite and uranopilite; test 3 modelled pyrite grain 2 using coffinite and uranopilite; and test 4 388 modelled pyrite grain 2 using uraninite and uranopilite. Uranopilite was the preferred U(VI) end-member because S is present in the sample, and LCFs using the other U(VI) minerals gave inconsistent results and 389 390 the calculated proportions are negative. Therefore, it is likely that the U(VI) end-member was sulphate-391 bearing, but it is not possible to identify the end-member with confidence. The mean of the relative error on the LCF (relative error = $\Sigma((\text{data} - \text{fit})^2)/\Sigma(\text{data}^2)$; Calvin, 2013) was less than 2%. The uncertainties 392 393 for test 1 are \pm 13% for uranopilite and \pm 4% for coffinite, for test 2, \pm 15% for uranopilite and \pm 8% for 394 uraninite, for test 3, \pm 12% for uranopilite and \pm 3% for coffinite, and for test 4, \pm 6% for uranopilite and \pm 3% for uraninite. 395

396 The U concentration is highest at the edge of the pyrite grains (Figures 8d, 8f, 9d, 8f) and most U 397 is in the U(IV) oxidation state, based on the µXANES LCF analysis. The proportion of U(IV) decreases with increasing distance from the pyrite margin towards the matrix. In Figure 9 the trend shows a clear 398 399 decline from 100% U(IV) to 16% in segments #13 to #17 whereas in Figure 8 the U(IV) initially shows a 400 decrease from 100% to 19% in segments #6 to #10 but then slightly increases in segment #11 to 27%. U within the pyrite grains recorded a mix of oxidation states where U concentrations are lower, but significant 401 at ~0.3 to 0.5 wt.% for fluorescent XANES measurements (Figures 8, 9). The XFM analyses of non-pyrite 402 areas show that U is disseminated throughout the matrix (Figure S3 and Figure S5). Carbon is not detected 403

404 by XFM, however details of the matrix can be depicted in the individual element maps including U, which

405 indicates that U is disseminated throughout the matrix.

406 [Figure 8 here]

407 *[Figure 9 here]*

408 [Table 1 here]

409

410 5 Discussion

411 5.1 Uranium and pyrite within organic matter-rich sediments

Pyrite is commonly found in reduced OM environments, such as recent and ancient wetlands and coals 412 413 (Bonnetti et al., 2015; 2017). The formation of pyrite requires a highly reduced form of sulphur (e.g., HS⁻, 414 H₂S) that may be supplied via sulphate-reducing bacteria (Southam and Saunders, 2005). Framboidal pyrite 415 occasionally contains other sulphide phases such as millerite and marcasite as might be suggested by the 416 µXRD patterns presented here. At Mulga Rock, the OM-U-rich layers were likely formed at low 417 temperature with a low pH and fluctuating redox conditions. Such an environment might therefore suggest 418 the possibility of other sulphide phases juxtaposed with micro grains of the framboidal-like pyrite (Douglas et al., 2011; Ohfuji and Rickard, 2005; Reynolds and Goldharbour, 1983). 419

The U within Mulga Rock samples was likely sequestered as U(VI) from groundwater through adsorption to OM functional groups (Cumberland et al., 2018a; b). A previous study of the U-OM relationship on Mulga Rock samples showed that U is finely dispersed within the OM, existing as a mix of U(VI) and U(IV), predominantly as U(VI) (Cumberland et al., 2018a). EXAFS scans performed on Mulga Rock bulk cores indicated that the U(VI) was likely in monomeric form bound with carboxylic acid groups of humic compounds, with spectral patterns analogous to U-humics reported by Denecke et al., (1998) and Kaplan et al., (2016). A non-pyritic section of sample 6101, the focus of the present study, was 427 previously investigated using XAS by Cumberland et al. (2018a). The 6101 EXAFS spectra taken from six 428 blind locations revealed two oxidation states, a reduced U of mineralised coffinite, and an oxidised U similar to Mulga Rock bulk core samples (Cumberland et al., 2018a). In another study, plant sourced OM 429 430 highly rich in aromatics within a column, could rapidly adsorb U(VI) without reduction (Cumberland et al., 2018b). Only where U adsorbed to (non-sterile) cotton wool bungs did partial reduction of U(VI) to 431 432 U(VI) occur (Cumberland et al., 2018b). Fuller et al. (2020) reported U(VI) complexation to organic rich sediments at Needle's Eye, UK, noting that a reduced non-crystalline U only existed where sediments were 433 434 organic poor and sulphate reducing. An explanation postulated was that the U(VI)-OM complexes are stable against reduction to U(IV) for prolonged periods irrespective of local conditions (Fuller et al., 2020). 435 436 Other constituents, such as pyrite or microbial influences, within the sediments might be necessary for in 437 situ reduction to U(IV), and which might not be complexed to OM because local OM sites are already 438 saturated with U.

439 Geochemical models (e.g., PHREEQC, Geochemist's workbench) suggested that given a wide availability of ligands, a range of UO2²⁺ species may be present at low pH/high Eh, in particular, 440 441 U(VI)O₂SO₄ (Cumberland et al., 2016). In the same work, a U-humate species, representing OM, 442 incorporated into the model was prevalent between pH 3 and 6.5. Uraninite is the precipitating phase over 443 a range of pH and at low Eh, however increasing the amount of dissolve silica, results in coffinite 444 precipitation instead of uraninite (Cumberland et al., 2016). Cumberland et al. (2018b), showed that in a WHAM-VI model output, UO_2^{2+} adsorbs to quartz above pH 5 to ~8. The addition of particulate humic 445 acid, changes the behaviour of UO2²⁺ adsorption to quartz and instead preferentially binds to OM across 446 a wider pH range of 4 to 10 (Cumberland et al. 2018b). Higher surface charge from humics was one likely 447 explanation (Cumberland et al., 2018b). 448

449

450 While U-pyrite associations have been observed under laboratory conditions, few studies have 451 reported this in natural samples and the extent to which U crusts can form remains controversial. Yang et 452 al. (2014) considered that abiotic sorption of U onto pyrite was not viable, however previous studies have shown that surface sorption of UO_2^{2+} could occur on pyrite, inferring that sorption was facilitated by the 453 negative surface charge of pyrite at pH > 2 (Descostes et al., 2010; Wersin et al., 1994). The electrochemical 454 455 properties of pyrite were also explored by Möller and Kersten (1994), demonstrating that gold could 456 accumulate on pyrite-type surfaces when in electrolyte solutions. The distribution of the gold in the Möller and Kersten (1994) study mainly occurred at the cathode where the gold was reduced from Au⁺ to Au⁰. 457 While this process is unexplored in the Mulga Rock samples, it is interesting to note that the U surrounding 458 459 the large pyrite grain shown on slide 3 appears to be greater at each end of the grain (Figure 1, 2). None of these studies included OM and while simple sorption cannot be excluded, the OM in our samples might 460 be facilitating sorption of UO_2^{2+} to pyrite to 100's of microns thick. Understanding these occurrences and 461 462 interactions have implications for management of U fate in mining activities, waste storage and 463 contaminated land.

464 5.2 Uranium reduction process

465 The observed thickness of reduced U on the Mulga Rock sample shows that U might be reduced 466 even if it is not in direct contact with pyrite and thus might not be surface-limited. The implications of this 467 observation are significant, because previously U(IV) has only been observed as an uneven discontinuous coating on (cubic) pyrite surfaces (Descostes et al., 2010; Qakfoku et al., 2009; Scott et al., 2007; Wersin et 468 al., 1994). The condition of these pyrite surfaces such as age and the limited number of defect sites, may 469 470 contribute to unevenness and heterogeneity of such sorption (Scott et al., 2007; Wersin et al., 1994). The 471 surfaces of framboidal pyrites, (and marcasite), are rougher and might provide a large number of 472 adsorption and reaction sites, compared to cubic pyrite, enabling more effective U(VI) reduction (Hu et 473 al., 2016; Murowchick and Barnes, 1996; Qafoku et al., 2009; Reynolds and Goldhaber, 1983). In addition 474 to simple sorption and reduction processes, the replacement of minerals at the surface through dissolution 475 and precipitation is described for a wide range of systems that could also result in mineral surface crusts 476 which in turn diminished the host mineral, e.g. pyrite (Fang et al., 2009; Putnis, 2009).

477 In addition to U on the perimeter of the framboidal-like pyrite, the presence of traces of U within pyrite, might indicate that there is porosity between the microcrystals for an interstitial phase of U to exist 478 (Figure 6). Townsend et al. (2019) recently reported that a U(VI)-persulfate might form a transient phase 479 during the reduction of ferrihydrite to form mackinawite. However, the longevity of such a transient phase 480 remains uncertain. The existence of U(V) as an intermediary oxidation state is more uncertain as U(V)481 482 species are short-lived and analytically difficult to recognise at the L_3 edge, although U(V) might be resolved at the M₄ edge (Fuller et al., 2020). Fuller et al. (2020) examined OM-U-rich samples from Needle's Eye 483 484 in Scotland using the M₄ edge, but the presence of U(V) was not detected.

Here, we propose two possible explanations for the thick U(IV) rim, assuming that U(VI) is reduced to U(IV) in situ: (1) the youngest U(IV) occurs on the outer perimeter of the concentrated U rim that surrounds pyrite; in this case electrons donated by pyrite are transported to the youngest U, with the implication that both pyrite and U(IV) acts as semiconductors; or, (2) the youngest U(IV) grows on the pyrite surface, with pyrite consumption continually releasing new sites for U(VI)-pyrite reactions.

490 In (1), it is postulated that the pyrite can drive U reduction remotely from the pyrite surface. 491 Rimstidt and Vaughan (2003) note that pyrite is a semi-conductor so electron transfer can occur across grains to supply reactions at other sites. They propose that oxidation of Fe(II) to Fe(III) takes place, but 492 that the Fe(III) state is cathodic and temporary because electrons produced by oxidation of S_2^2 -oxidation 493 reduce Fe(III) back to Fe(II). Sulphide, S_2^{2-} , oxidation on the other hand is a multi-step process that can 494 supply up to seven electrons (Rimstidt and Vaughan, 2003). Electrons produced by S may drive reduction 495 of U(VI) beyond the immediate boundary of the pyrite, aided by the semi-conduction properties of USiO₄. 496 497 Labile, reactive OM, whether lignite or extracellular biomass, in the Mulga Rock sample, may also facilitate electron transfer. While the reaction could be feasible, it is inconsistent with the observed shape of the 498 499 pyrite and the presence of U found between the micro-crystals. The observations made by Wersin et al. 500 (1994) are less supportive of this theory whereby they noted that reduction of sorbed uranyl was limited 501 to fresh reaction sites at pyrite surfaces. More recently however, Townsend et al. (2020) reported a new

observed U(VI)-persulphide phase, though its longevity is unknown. No pyrite oxidation products were
 observed in the current study, and further detailed investigation into such products are required for future
 studies.

In support of explanation (2), an inward reaction pathway at the surface of the pyrite, numerous 505 researchers have proposed the oxidation of Fe^{2+} to Fe^{3+} with simultaneous reduction of UO_2^{2+} to UO_{2-x} 506 507 (Boland et al., 2014, Du et al., 2011, Latta et al., 2012, O'Loughlin et al., 2003; Percak-Dennett et al., 2014; 508 Scott et al., 2007) and the production of S as sulphates or polysulphides (Descostes et al., 2010; Sachs et 509 al., 2010); although S products can only be speculated here. In the literature, the end-product in reactions 510 between U and pyrite are often written for uraninite (e.g. Scott et al., 2007), however coffinite is reported 511 in samples from OM-rich environments, and this work proposes a mixture of coffinite and uraninite as end-products (e.g. Bonnetti, 2015, 2017; Deditius, 2008; Leventhal, 1987). The formation of coffinite in 512 513 addition to uraninite requires the availability of dissolved silica supplied either from groundwater or via 514 bacterial processes (Southam and Saunders, 2005). Coffinite formation processes are poorly constrained (Guo et al., 2015; Mesbah et al., 2015) and Guo et al. (2015) proposes the reversible reaction; USiO_{4[s]} + 515 516 $2H_2O_{(1)} \leftrightarrow UO_{2[s]} + Si(OH)_{4[aq]}$, in which coffinite may be metastable with respect to uraninite and silicate. 517 Additional electrons provided by OM and/or microbes maybe important for coffinite formation to meet 518 the conditions of the above reaction (Dedituis et al., 2008; Nakashima, 1992a). A pathway previously 519 proposed by Nakashima (1992b) involves R, as an OM residual group, reacting with U for binding. Such 520 that U and OM might react with dissolved silica to form coffinite, for example; $RH_2 + UO_2^{2+} + Si(OH)4$ \leftrightarrow R + USiO4 + 6H⁺. Evidence of the action of microbes with coffinite formation is not substantiated in 521 the Mulga Rock samples, however the observation of randomly orientated coffinite-rich ellipsoids seen in 522 523 Figures S7 and S8 raise doubts about purely geogenic processes.

524 In further support of explanation (2), the potential for U(IV) to accumulate whilst the pyrite is 525 simultaneously consumed is illustrated by the element map shown in Figure S10, where relatively wide 526 zones of U(IV), \sim 500µm wide, surround small pyrite grains, <50 µm diameter. This reaction requires a 527 continuous supply of groundwater-derived $UO_2^{2^+}$ to the reaction sites. The size of U(IV) rims in the 528 images, extend from 20 to 600 µm, however it could be speculated that the U(IV) might mark the original 529 extent of the pyrite. This mechanism is comparable to the replacement of minerals by dissolution and 530 precipitation, described by Putnis (2009) and Fang et al. (2009), and is consistent with the U found between 531 the micro-crystals of the framboids.

532 5.3 Microbes, uranium, pyrite and OM.

It has long been recognised that biogenic U reduction via direct enzymatic reduction (e.g., bacteria, 533 fungi) can occur under laboratory conditions (Suzuki et al., 2002), mediated by Shewanella oneidensis, and in 534 acetate and various amended sediments (Alessi et al., 2014; Bargar et al., 2013; Bernier-Latmani, et al., 535 536 2010; Suzuki et al., 2002). If the U-rich ellipsoids, observed within the lignite sample prior to sectioning, 537 are either microbial in origin or have occurred as a result of microbial action (see Figure S7 and 8), this might suggest a link between the reduced U, pyrite and OM. The diffraction patterns for coffinite within 538 539 the ellipsoids showed an untypically poorly or poly-crystalline structure. Uraninite phases, not conforming 540 to a typical uraninite structure have been associated with microbial U reduction (Bernier-Latmani et al., 541 2010). However, no such findings are reported for coffinite.

542 Bacteria have been shown to be pivotal in the reduction of U(VI) to U(IV) in roll-front deposits 543 (Bhattacharyya et al., 2016; Bone at al., 2017). Bone et al. (2017) demonstrated that U(VI) reduction to 544 U(IV) occurred in a non-sterile organic sample but reduction did not occur in a system otherwise identical 545 but sterile, indicating that the role of microbes could be feasible within natural settings. However, in our sample, concentrations of U-rich ellipsoids were not viewed near our studied pyrite grains and might 546 547 constitute a different process of electron exchange. For example, if microbes were present they could be capable of mediating the dissolution of mineralised silica, which is required for coffinite formation, while 548 549 other process drive pyrite formation e.g. via sulphate-reducing bacteria (Southam and Saunders, 2005). In 550 a study investigating the reduction of U(VI) by microbes and pyrite, Behrends and Van Cappellen (2005) showed that S. putrefaciens most likely reduced Fe(III) to Fe(II) first, and Fe(II) then donated electrons to 551

552 drive reduction of U(VI) to U(IV). Both processes may involve OM, which is utilised by microbes to 553 produce organic acids that can dissolve the silica and/or the metals (Southam and Saunders 2005). As part of their actions, microbes may facilitate the complexing of metals to OM to achieve self-preservation 554 555 (Southam and Saunders, 2005). Collectively OM, metal and microbes could produce the conditions that facilitated formation of the observed textures at Mulga Rock. Thus, microbial activity might have played a 556 557 role in U(VI) reduction at Mulga Rock, but does not point to the exact process that occurred at the edge of the pyrite. The complexity of the mechanisms examined here highlights the complexity and variability 558 559 of the redox state of U and chemical speciation for U-OM associations in modern sediments (Bone et al., 2017; Mikutta et al., 2016). In our samples, the formation of framboidal-like pyrite could have formed 560 561 biogenically or geogenically. Whilst the former might have occurred, the subsequent reduction of U(VI) 562 to U(IV) was likely primarily driven by pyrite oxidation, but the role of bacteria cannot be discounted. 563 Further study is required to disentangle the possible pathways between U, OM, pyrite and microbes.

564 6 Conclusion

565 In this work we show in high resolution using SEM and XFM, natural formations of U-rich rims (~100 microns) on framboidal-like pyrite within OM sediments. Results of multi-method analyses of U using 566 567 µXRD, XFM and µXANES are consistent with a U(IV) phase which is predominantly coffinite mixed with uraninite. Further analyses of the U rim reveals a progression to U(VI) with increasing distance away 568 569 from the edge of the pyrite. This suggests that U(VI) was reduced to U(IV). We further suggest that the 570 reduction reaction was likely occurring at the interface between the pyrite and reduced U phase and that the direction of the reaction progressed towards the pyrite resulting in the pyrite grain diminishing. The 571 572 presence of U between the micro-crystals and the shape of the framboidal-like pyrite is supportive of U being mobilised to the pyrite which was then reduced at its edge. This proposes the notion that framboidal-573 574 like pyrite immobilises aqueous U(VI) through reduction to U(IV) in OM-bearing deposits. The presence 575 of U-rich microfossils found on another part of the sample using SEM-FIB and TEM, away from the 576 framboidal-like pyrite grains, indicates that U(VI) was reduced to U(IV) but though another mechanism

577 to pyrite. This work is relevant for understanding the stability of U in industrial mining and tailing and 578 environmental management. Further study however is required to disentangle the processes that may occur 579 between U, OM, pyrite and microbes.

580 7 Acknowledgements

581 This work was funded through a grant to JWM and KAE from the CSIRO Organic Geochemistry of Mineral Systems (OGMS) Research Cluster. Parts of this research were undertaken on the XAS and 582 XFM beamline at the Australian Synchrotron, part of ANSTO. We would like to thank: Xavier Moreau 583 (Vimy Resources) for Mulga Rock samples; Dr David Paterson for beamline assistance at AS XFM; Dr 584 585 David Hay for GADDS Micro-XRD at CSIRO; Dr Sergey Rubanov and Roger Curtain at Bio21, University of Melbourne; Museum Victoria (Melbourne) for uranium minerals, Dr Jason Kirby (CSIRO) 586 587 for his valuable comments; and Dr Steven Henderson and Dr Keith Torrance for editorial contributions. SC would like to thank the Australian Synchrotron (AS) for beamtime R1-2015-8840. 588

589

590 8 References

Alessi, D.S., Lezama-Pacheco, J.S., Janot, N., Suvorova, E.I., Cerrato, J.M., Giammar, D.E., Davis,
J.A., Fox, P.M., Williams, K.H., Long, P.E., Handley, K.M., Bernier-Latmani, R. and Bargar, J.R., 2014.
Speciation and Reactivity of Uranium Products Formed during in Situ Bioremediation in a Shallow Alluvial
Aquifer. Environmental Science & Technology, 48(21): 12842-12850.

- Bayliss, P, 1977. Crystal structure refinement of a weakly anisotropic pyrite cubic model.
 Database_code_amcsd_605. American Mineralogist (62) 1168-1172.
- Bargar, J.R., Williams, K.H., Campbell, K.M., Long, P.E., Stubbs, J.E., Suvorova, E.I., LezamaPacheco, J.S., Alessi, D.S., Stylo, M., Webb, S.M., Davis, J.A., Giammar, D.E., Blue, L.Y. and BernierLatmani, R., 2013. Uranium redox transition pathways in acetate-amended sediments. Proceedings of the
 National Academy of Sciences, 110(12): 4506-4511.

601	Behrends, T. and Van Cappellen, P. (2005) Competition between enzymatic and abiotic reduction
602	of uranium(VI) under iron reducing conditions. Chemical Geology 220: 315-327.
603	Bernier-Latmani, R., Veeramani, H., Vecchia, E.D., Junier, P., Lezama-Pacheco, J.S., Suvorova,
604	E.I., Sharp, J.O., Wigginton, N.S. and Bargar, J.R. (2010) Non-uraninite Products of Microbial U(VI)
605	Reduction. Environmental Science & Technology 44, 9456-9462.
606	Bhattacharyya, A., Campbell, K.M., Kelly, S.D., Roebbert, Y., Weyer, S., Bernier-Latmani, R. and
607	Borch, T. (2017) Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits.
608	Nature Communications 8: 15538.
609	Boland, D.D., Collins, R.N., Glover, C.J., Payne, T.E. and Waite, T.D. (2014) Reduction of U(VI)
610	by Fe(II) during the Fe(II)-Accelerated Transformation of Ferrihydrite. Environmental Science &
611	Technology 48: 9086-9093.
612	Bone, S.E., Dynes, J.J., Cliff, J. and Bargar, J.R. (2017) Uranium(IV) adsorption by natural organic
613	matter in anoxic sediments. Proceedings of the National Academy of Sciences 114, 711-716.
614	Bonnetti, C., Cuney, M., Malartre, F., Michels, R., Liu, X. and Peng, Y., 2015. The Nuheting
615	deposit, Erlian Basin, NE China: Synsedimentary to diagenetic uranium mineralization. Ore Geology
616	Reviews, 69(0): 118-139.
617	Bonnetti, C., Liu, X., Zhaobin, Y., Cuney, M., Michels, R., Malartre, F., Mercadier, J. and Cai, J.,
618	2017. Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu
619	sandstone-hosted U deposit, SW Songliao Basin, NE China. Ore Geology Reviews, 82: 108-129.
620	Burns, P.C. and Finch, R.J. (1999) Wyartite: crystallographic evidence for the first pentavalent-
621	uranium mineral. American Mineralogist 84, 1456-1460.
622	Calvin, S., 2013 Xafs for everyone. CRC Press, Taylor and Francis. pp 449. ISBN 13: 978-1-
623	4398-7864-4

624	Campbell, K.M., Gallegos, T.J. and Landa, E.R., 2015. Biogeochemical aspects of uranium
625	mineralization, mining, milling, and remediation. Applied Geochemistry, 57: 206-235.
626	Chinga, G. and Syverud, K., 2007. Quantification of paper mass distributions within local picking
627	areas. Nordic Pulp and Paper Res J, 22(4): 441-446.
628	Cumberland, S.A., Douglas, G., Grice, K. and Moreau, J.W., 2016. Uranium mobility in organic
629	matter-rich sediments: A review of geological and geochemical processes. Earth-Science Reviews, 159:
630	160-185.
631	Cumberland, S.A., Etschmann, B., Brugger, J., Douglas, G., Evans, K., Fisher, L., Kappen, P. and
632	Moreau, J.W., 2018a. Characterization of uranium redox state in organic-rich Eocene sediments.
633	Chemosphere, 194: 602-613.
634	Cumberland, S.A., Wilson, S.A., Etschmann, B., Kappen, P., Howard, D., Paterson, D. and
635	Brugger, J., 2018b. Rapid immobilisation of U(VI) by Eucalyptus bark: Adsorption without reduction.
636	Applied Geochemistry, 96: 1-10.
637	Deditius, A.P., Utsunomiya, S. and Ewing, R.C., 2008. The chemical stability of coffinite,
638	USiO4.nH(2)O; $0 \le n \le 2$, associated with organic matter: A case study from Grants uranium region, New
639	Mexico, USA. Chemical Geology, 251(1-4): 33-49.
640	Denecke, M.A., Reich, T., Pompe, S., Bubner, M., Heise, K.H., Nitsche, H., Allen, P.G., Bucher,
641	J.J., Edelstein, N.M., Shuh, D.K. and Czerwinski, K.R. 1998 EXAFS investigations of the interaction of
642	humic acids and model compounds with uranyl cations in solid complexes. Radiochimica Acta 82, 103-
643	108.

Descostes, M., Schlegel, M.L., Eglizaud, N., Descamps, F., Miserque, F. and Simoni, E., 2010.
Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochimica et Cosmochimica Acta,
74(5): 1551-1562.

- Disnar, J.R. and Sureau, J.F., 1990. Organic matter in ore genesis: Progress and perspectives.
 Organic Geochemistry, 16(1–3): 577-599.
- Douglas, G.B., Butt, C.R.M. and Gray, D.J., 2011. Geology, geochemistry and mineralogy of the
 lignite-hosted Ambassador palaeochannel uranium and multi-element deposit, Gunbarrel Basin, Western
 Australia. Mineralium Deposita, 46(7): 761-787.
- Douglas, G.B., Gray, D.J. and Butt, C.M. (1993) Geochemistry, minerology and hydrogeochemistry of the Ambassador multi-element lignite deposit, Western Australia: With additional investigations on the characterization of organic matter. CSIRO, Australia.
- Du, X., Boonchayaanant, B., Wu, W.-M., Fendorf, S., Bargar, J. and Criddle, C.S. (2011) Reduction
 of Uranium(VI) by Soluble Iron(II) Conforms with Thermodynamic Predictions. Environmental Science
 & Technology 45, 4718-4725.
- Eglizaud, N., Miserque, F., Simoni, E., Schlegel, M. and Descostes, M., 2006. Uranium(VI)
 interaction with pyrite (FeS2): Chemical and spectroscopic studies, Radiochimica Acta, pp. 651.
- England, G.L., Rasmussen, B., Krapež, B. and Groves, D.I., 2001. The Origin of Uraninite,
 Bitumen Nodules, and Carbon Seams in Witwatersrand Gold-Uranium-Pyrite Ore Deposits, Based on a
 Permo-Triassic Analogue. Economic Geology, 96(8): 1907-1920.
- Etschmann, B.E., Ryan, C.G., Brugger, J., Kirkham, R., Hough, R.M., Moorhead, G., Siddons,
 D.P., De Geronimo, G., Kuczewski, A., Dunn, P., Paterson, D., de Jonge, M.D., Howard, D.L., Davey, P.
 and Jensen, M., 2010. Reduced As components in highly oxidized environments: Evidence from full
 spectral XANES imaging using the Maia massively parallel detector. American Mineralogist, 95(5-6): 884887.
- Evangelou, V.P. and Zhang, Y.L., 1995. A review: Pyrite oxidation mechanisms and acid mine
 drainage prevention. Critical Reviews in Environmental Science and Technology, 25(2): 141-199.

670	Evans, K.A., Gandy, C.J. and Banwart, S.A., 2003. Mineralogical, numerical and analytical studies
671	of the coupled oxidation of pyrite and coal. Mineralogical Magazine, 67(2): 381-398.
672	Xia, F., Brugger, J., Chen, G., Ngothai, Y., O'Neill, B., Putnis, A. and Pring, A. (2009) Mechanism
673	and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of
674	pentlandite by violarite. Geochimica et Cosmochimica Acta 73, 1945-1969.
675	Fisher, L.A., Fougerouse, D., Cleverley, J.S., Ryan, C.G., Micklethwaite, S., Halfpenny, A., Hough,
676	R.M., Gee, M., Paterson, D., Howard, D.L. and Spiers, K., 2015. Quantified, multi-scale X-ray fluorescence
677	element mapping using the Maia detector array: application to mineral deposit studies. Mineralium
678	Deposita, 50(6): 665-674.
679	Fuchs, L.H, Gebert, E, 1958. X-ray studies of synthetic coffinite, thorite and uranothorites.
680	Database_code_amcsd_83. American Mineralogist. 43: 243-248.
681	Fuller, A.J., Leary, P., Gray, N.D., Davies, H.S., Mosselmans, J.F.W., Cox, F., Robinson, C.H.,
682	Pittman, J.K., McCann, C.M., Muir, M., Graham, M.C., Utsunomiya, S., Bower, W.R., Morris, K., Shaw,
683	S., Bots, P., Livens, F.R. and Law, G.T.W. (2020) Organic complexation of U(VI) in reducing soils at a
684	natural analogue site: Implications for uranium transport. Chemosphere 254, 126859.
685	Gartman, A. and Luther III, G.W., 2014. Oxidation of synthesized sub-micron pyrite (FeS2) in
686	seawater. Geochimica et Cosmochimica Acta, 144(0): 96-108.
687	Greenwood, P., Brocks, J., Grice, K., Schwark, L., Jaraula, C., Dick, J. and Evans, K. (2013)
688	Organic Geochemistry and Mineralogy: I. Characterisation of Organic Matter Associated with Metal
689	Deposits. Ore Geology Reviews, 1-27.
690	Guo, X., Szenknect, S., Mesbah, A., Labs, S., Clavier, N., Poinssot, C., Ushakov, S.V., Curtius, H.,
691	Bosbach, D., Ewing, R.C., Burns, P.C., Dacheux, N. and Navrotsky, A. (2015) Thermodynamics of
692	formation of coffinite, USiO4. Proceedings of the National Academy of Sciences 112, 6551-6555.

- Hansley, P.L. and Spirakis, C.S., 1992. Organic matter diagenesis as the key to a unifying theory
 for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau.
 Economic Geology, 87(2): 352-365.
- Hazen, R.M., Ewing, R.C. and Sverjensky, D.A. (2009) Evolution of uranium and thorium
 minerals. American Mineralogist 94, 1293-1311.
- Hobday, D.K. and Galloway, W.E., 1999. Groundwater processes and sedimentary uranium
 deposits. Hydrogeology Journal, 7(1): 127-138.
- 700 Hu, S.-Y., Evans, K., Fisher, L., Rempel, K., Craw, D., Evans, N.J., Cumberland, S., Robert, A.

and Grice, K., 2016. Associations between sulfides, carbonaceous material, gold and other trace elements

702 in polyframboids: Implications for the source of orogenic gold deposits, Otago Schist, New Zealand.

703 Geochimica et Cosmochimica Acta, 180: 197-213.

- Ingham, E.S., Cook, N.J., Cliff, J., Ciobanu, C.L. and Huddleston, A., 2014. A combined chemical,
 isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South
 Australia. Geochimica et Cosmochimica Acta, 125(0): 440-465.
- Janot, N., Lezama Pacheco, J.S., Pham D.Q., O'Brien, T.M., Hausladen, D., Noël, V., Lallier, F.
 Maher, K., Fendorf, S., Williams, K.H, Long, P.E, and Bargar, J.R. 2016. Physico-Chemical Heterogeneity
 of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry.
 Environmental Science and Technology, 50, 46–53
- Jaraula, C.M.B., Schwark, L., Moreau, X., Pickel, W., Bagas, L. and Grice, K., 2015. Radiolytic
 alteration of biopolymers in the Mulga Rock uranium deposit. Applied Geochemistry, 52: 97-108.
- 713 Kirkham, R., Dunn, P.A., Kuczewski, A.J., Siddons, D.P., Dodanwela, R., Moorhead, G.F., Ryan,

C.G., De Geronimo, G., Beuttenmuller, R., Pinelli, D., Pfeffer, M., Davey, P., Jensen, M., Paterson, D.J.,

715 de Jonge, M.D., Howard, D.L., Küsel, M. and McKinlay, J. (2011), The Maia Spectroscopy Detector

716	System: Engineering for Integrated	Pulse Capture, Low-Latence	y Scanning and Real-Tin	<u>ne Processing,</u> AIP
717	Conf. Proc.	2011,	1234,	240-243.
718	http://scitation.aip.org/content/ai	p/proceeding/aipcp/10.100	<u>53/1.3463181</u>	
719	Langmuir, D. (1978) Uraniu	am solution-mineral equilibr	ria at low temperatures w	with applications to
720	sedimentary ore deposits. Geochim	ica et Cosmochimica Acta	42: 547-569.	
721	Latta, D.E., Boyanov, M.I.	, Kemner, K.M., O'Loughl	in, E.J. and Scherer, M.	.M. (2012) Abiotic
722	reduction of uranium by Fe(II) in se	oil. Applied Geochemistry 2	27: 1512-1524.	
723	Law, J. and Phillips, N., 2	006. Witwatersrand gold-p	vyrite-uraninite deposits	do not support a
724	reducing Archean atmosphere. Geo	ological Society of America	Memoirs, 198: 121-141.	
725	Le Pape, P., Blanchard, M.,	, Brest, J., Boulliard, JC., I	lkogou, M., Stetten, L., V	Wang, S., Landrot,
726	G. and Morin, G. (2017) Arsenic In	acorporation in Pyrite at Am	ibient Temperature at B	oth Tetrahedral S–
727	I and Octahedral FeII Sites: Eviden	ce from EXAFS–DFT Anal	lysis. Environmental Scie	ence & Technology
728	51, 150-158.			
729	Leventhal, J.S., Grauch, R.I.	, Threlkeld, C.N., Lichte, F.	E. and Harper, C.T., 198	7. Unusual organic
730	matter associated with uranium from	m the Claude Deposit, Cluf	f Lake, Canada. Econom	nic Geology, 82(5):
731	1169-1176.			
732	Li, K., Etschmann, B., Rae	, N., Reith, F., Ryan, C.G.,	, Kirkham, R., Howard,	D., Rosa, D.R.N.,
733	Zammit, C., Pring, A., Ngothai, Y.,	, Hooker, A. and Brugger, J	., 2016. Ore Petrograph	y Using Megapixel
734	X-Ray Imaging: Rapid Insights into	Element Distribution and	Mobilization in Comple	x Pt and U-Ge-Cu
735	Ores. Economic Geology, 111(2): 4	487-501.		
736	Lindsay, M.B.J., Moncur, N	M.C., Bain, J.G., Jambor, J	.L., Ptacek, C.J. and Blo	owes, D.W., 2015.
737	Geochemical and mineralogical asp	ects of sulfide mine tailings.	Applied Geochemistry,	57(Supplement C):
738	157-177.			

739	Mesbah, A., Szenknect, S., Clavier, N., Lozano-Rodriguez, J., Poinssot, C., Den Auwer, C., Ewing,
740	R.C. and Dacheux, N. (2015) Coffinite, USiO4, Is Abundant in Nature: So Why Is It So Difficult To
741	Synthesize? Inorganic Chemistry 54, 6687-6696.
742	Mikutta, C., Langner, P., Bargar, J.R. and Kretzschmar, R., 2016. Tetra- and Hexavalent Uranium
743	Forms Bidentate-Mononuclear Complexes with Particulate Organic Matter in a Naturally Uranium-
744	Enriched Peatland. Environmental Science & Technology, 50(19): 10465–10475.
745	Min, M., Xu, H., Chen, J. and Fayek, M., 2005. Evidence of uranium biomineralization in
746	sandstone-hosted roll-front uranium deposits, northwestern China. Ore Geology Reviews, 26(3-4): 198-
747	206.
748	Min, M.Z., Meng, Z.W., Sheng, G.Y., Min, Y.S. and Liu, X., 2000. Organic geochemistry of
749	paleokarst-hosted uranium deposits, South China. Journal of Geochemical Exploration, 68(3): 211-229.
750	Möller, P. and Kersten, G. 1994 Electrochemical accumulation of visible gold on pyrite and
751	arsenopyrite surfaces. Mineralium Deposita 29, 404-413.
752	Moncur, M.C., Jambor, J.L., Ptacek, C.J. and Blowes, D.W., 2009. Mine drainage from the
753	weathering of sulfide minerals and magnetite. Applied Geochemistry, 24(12): 2362-2373.
754	Moreau, J.W., Fournelle, J.H. and Banfield, J.F. 2013 Quantifying heavy metals sequestration by
755	sulfate-reducing bacteria in an acid mine drainage-contaminated natural wetland, Frontiers in
756	Microbiology, 4(43): 1-10.
757	Murowchick, J.B. and Barnes, H.L. 1986 Marcasite precipitation from hydrothermal solutions.
758	Geochimica et Cosmochimica Acta 50, 2615-2629.
759	Murphy, R. and Strongin, D.R., 2009. Surface reactivity of pyrite and related sulfides. Surface
760	Science Reports, 64(1): 1-45.

Nakashima, S. 1992 Complexation and reduction of uranium by lignite. Science of The TotalEnvironment 118, 425-437.

763	Nakashima, S., Disnar, J.R., Perruchot, A. and Trichet, J. 1984. Experimental-Study of Mechanisms
764	of Fixation and Reduction of Uranium by Sedimentary Organic-Matter Under Diagenetic or Hydrothermal
765	Conditions. Geochimica et Cosmochimica Acta 48, 2321-2329.
766	Nakashima, S., Disnar, J.R. and Perruchot, A. 1999. Precipitation kinetics of uranium by
767	sedimentary organic matter under diagenetic and hydrothermal conditions. Economic Geology and the
768	Bulletin of the Society of Economic Geologists 94, 993-1006.
769	Newsome, L., Morris, K. and Lloyd, J.R., 2014. The biogeochemistry and bioremediation of
770	uranium and other priority radionuclides. Chemical Geology, 363: 164-184.
771	Noël, V., Boye, K., Lezama Pacheco, J.S., Bone, S.E., Janot, N., Cardarelli, E., Williams, K.H. and
772	Bargar, J.R. 2017. Redox Controls over the Stability of U(IV) in Floodplains of the Upper Colorado River
773	Basin. Environmental Science & Technology 51, 10954-10964.
774	Nordstrom, D.K. and Southam, G. (Editors), 1997. Geomicrobiology of sulfide mineral oxidation.
775	Reviews in Mineralogy, 35. Mineralogical Sociaet of America, Washinton, 361-390 pp.
776	Och, L.M. and Shields-Zhou, G.A., 2012. The Neoproterozoic oxygenation event: Environmental
777	perturbations and biogeochemical cycling. Earth-Science Reviews, 110(1-4): 26-57.
778	Ohfuji, H. and Rickard, D., 2005. Experimental syntheses of framboids—a review. Earth-Science
779	Reviews, 71(3): 147-170.
780	O'Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R. and Kemner, K.M. (2003) Reduction of
781	Uranium(VI) by Mixed Iron(II)/Iron(III) Hydroxide (Green Rust): Formation of UO2 Nanoparticles.
702	

782 Environmental Science & Technology, 37: 721-727.

783	Qafoku, N.P., Kukkadapu, R.K., McKinley, J.P., Arey, B.W., Kelly, S.D., Wang, C., Resch, C.T.
784	and Long, P.E., 2009. Uranium in Framboidal Pyrite from a Naturally Bioreduced Alluvial Sediment.
785	Environmental Science & Technology, 43(22): 8528-8534.
786	Paterson, D., de Jonge, M.D., Howard, D.L., Lewis, W., McKinlay J., Starritt A., Küsel M., Ryan,
787	C.G., Kirkham, R., Moorhead, G., & Siddons, D.P. (2011) AIP Conf. Proc. 2011, 1365, 219–222.
788	http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3625343
789	Percak-Dennett, E.M. and Roden, E.E. (2014) Geochemical and Microbiological Responses to
790	Oxidant Introduction into Reduced Subsurface Sediment from the Hanford 300 Area, Washington.
791	Environmental Science & Technology 48: 9197-9204.
792	Putnis, A., (2009) Mineral Replacement Reactions, Reviews in Mineralogy and Geochemistry, 70:
793	87-124.
794	Renshaw, J.C., Butchins, L.J.C., Livens, F.R., May, I., Charnock, J.M. and Lloyd, J.R. (2005)
795	Bioreduction of Uranium: Environmental Implications of a Pentavalent Intermediate. Environmental
796	Science & Technology 39, 5657-5660.
797	Rimstidt, J.D. Vaughan, D.J. 2003. Pyrite oxidation: A state-of-the-art assessment of the reaction
798	mechanism. Geochimica et Cosmochimica Acta 67(5):873-880. DOI: 10.1016/S0016-7037(02)01165-1
799	Regenspurg, S., Margot-Roquier, C., Harfouche, M., Froidevaux, P., Steinmann, P., Junier, P. and
800	Bernier-Latmani, R., 2010. Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine
801	region (Switzerland). Geochimica et Cosmochimica Acta, 74(7): 2082-2098.
802	Renard, D. and Beucher, H., 2012. 3D representations of a uranium roll-front deposit. Applied
803	Earth Science, 121(2): 84-88.
804	Reynolds, R.L. and Goldhaber, M.B., 1983. Iron disulfide minerals and the genesis of roll-type
805	uranium deposits. Economic Geology, 78(1): 105-120.

806	Roberts, H.E., Morris, K., Law, G.T.W., Mosselmans, J.F.W., Bots, P., Kvashnina, K. and Shaw,
807	S. (2017) Uranium(V) incorporation mechanisms and stability in Fe(II)/Fe(III) (oxyhydr)oxide.
808	Environmental Science and Technology Letters, 4(10): 421-426.
809	Rosso, K.M. and Vaughan, D.J., 2006. Reactivity of Sulfide Mineral Surfaces. Reviews in
810	Mineralogy and Geochemistry, 61(1): 557-607.
811	Ryan, C., 2000. Quantitative trace element imaging using PIXE and the nuclear microprobe.
812	International Journal of Imaging Systems and Technology, 11(4): 219-230.
813	Ryan, C. and Jamieson, D., 1993. Dynamic analysis: on-line quantitative PIXE microanalysis and
814	its use in overlap-resolved elemental mapping. Nuclear Instruments and Methods in Physics Research
815	Section B: Beam Interactions with Materials and Atoms, 77(1): 203-214.
816	Ryan, C.G., Siddons, D.P., Kirkham, R., Li, Z.Y., Jonge, M.D.d., Paterson, D.J., Kuczewski, A.,
817	Howard, D.L., Dunn, P.A., Falkenberg, G., Boesenberg, U., Geronimo, G.D., Fisher, L.A., Halfpenny, A.,
818	Lintern, M.J., Lombi, E., Dyl, K.A., Jensen, M., Moorhead, G.F., Cleverley, J.S., Hough, R.M., Godel, B.,
819	Barnes, S.J., James, S.A., Spiers, K.M., Alfeld, M., Wellenreuther, G., Vukmanovic, Z. and Borg, S., 2014.
820	Maia X-ray fluorescence imaging: Capturing detail in complex natural samples. Journal of Physics:
821	Conference Series, 499(1): 012002.
822	Sachs, S., Reich, T. and Bernhard, G. (2010) Study of the role of sulfur functionalities in humic
823	acids for uranium(VI) complexation. Radiochimica Acta 98: 467-477.
824	Schoonen, M.A.A., 2004. Mechanisms of sedimentary pyrite formation. In: J.P. Amend, K.J.
825	Edwards and T.W. Lyons (Editors), Sulfur Biogeochemistry - Past and Present. Geological Society of
826	America.

Scott, T.B., Riba Tort, O. and Allen, G.C. (2007) Aqueous uptake of uranium onto pyrite surfaces;
reactivity of fresh versus weathered material. Geochimica et Cosmochimica Acta 71: 5044-5053.

829	Sharp, J.O., Lezama-Pacheco, J.S., Schofield, E.J., Junier, P., Ulrich, KU., Chinni, S., Veeramani,
830	H., Margot-Roquier, C., Webb, S.M., Tebo, B.M., Giammar, D.E., Bargar, J.R. and Bernier-Latmani, R.,
831	2011. Uranium speciation and stability after reductive immobilization in aquifer sediments. Geochimica et
832	Cosmochimica Acta, 75(21): 6497-6510.
833	Southam, G. and Saunders, J.A. (2005) The Geomicrobiology of Ore Deposits. Economic
834	Geology 100, 1067-1084.
835	Suzuki, Y., Kelly, S.D., Kemner, K.M. and Banfield, J.F., 2002. Radionuclide contamination:
836	Nanometre-size products of uranium bioreduction. Nature, 419(6903): 134-134.
837	Townsend, L.T., Shaw, S., Ofili, N.E.R., Kaltsoyannis, N, Walton, A.S., Mosselmans, J.F.W., Neill,
838	T.S., Lloyd J.R., Heath, S., Hibberd, R., Morris., K. (2020) Formation of U(VI)-persulfide Complex during
839	Environmentally relevant Sulfidation of Iron (oxyhy)droxides. Environmental Science & Technology 54
840	(1), 129-136.
841	Vimy, 2016. Significant Resource Upgrade for Mulga Rock Project. Vimy Resources Limited;

842 Annual Report 2016, p. 98. Perth.

Wang, Y., Frutschi, M., Suvorova, E., Phrommavanh, V., Descostes, M., Osman, A.A.A., Geipel,
G. and Bernier-Latmani, R. 2013a. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland.
Nat Commun 4.

- Wang, Z., Lee, S.-W., Kapoor, P., Tebo, B.M. and Giammar, D.E., 2013b. Uraninite oxidation and
 dissolution induced by manganese oxide: A redox reaction between two insoluble minerals. Geochimica
 et Cosmochimica Acta, 100: 24-40.
- Wersin, P., Hochella Jr, M.F., Persson, P., Redden, G., Leckie, J.O. and Harris, D.W., 1994.
 Interaction between aqueous uranium (VI) and sulfide minerals: Spectroscopic evidence for sorption and
 reduction. Geochimica et Cosmochimica Acta, 58(13): 2829-2843.

Wilkin, R.T. and Barnes, H.L., 1997. Formation processes of framboidal pyrite. Geochimica et
Cosmochimica Acta, 61(2): 323-339.

854	Wilkin, R.T., Barnes, H.L. and Brantley, S.L., 1996. The size distribution of framboidal pyrite in
855	modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-
856	3912.
857	Wülser, PA., Brugger, J., Foden, J. and Pfeifer, HR., 2011. The Sandstone-Hosted Beverley
858	Uranium Deposit, Lake Frome Basin, South Australia: Mineralogy, Geochemistry, and a Time-Constrained
859	Model for Its Genesis. Economic Geology, 106(5): 835-867.
860	Yang, Z., Kang, M., Ma, B., Xie, J., Chen, F., Charlet, L. and Liu, C. (2014) Inhibition of U(VI)
861	Reduction by Synthetic and Natural Pyrite. Environmental Science & Technology 48, 10716-10724.
862	Zhang, Y., Lv, J., Dong, X, Fang, Q., Tan, W., Wu, X., Deng, Q (2020) Influence on Uranium (VI)
863	migration in soil by iron and manganese salts of humic acid: Mechanism and Behavior. Environmental
864	Pollution 256, 113369

867 Figure captions

868

Figure 1 Top, Map showing location of Mulga Rock near Kalgoorlie, Western Australia. Note that lakesshown are ephemial and/or salt, and the area is largely desert.

871 Bottom map shows the geological depiction and location of the Ambassador Deposit and borehole 872 location of CD 1577 (UTM 51J: Easting 579942.81 mE, Northing 6682708.94 mS, depth = 43.5m) also 873 shown are neighbouring Princess, Emperor and Shogun Deposits. Modified from Cumberland et al. 874 (2018a) and from Vimy Resources (2016) report.

875

Figure 2 Details of the drilled core (CD1577). The sample analysed in this study formed part of the black
peaty layer (37–44 m). The figure is adapted from the original core log (source Vimy archives). Note the
gamma spectra on the right are shown on a log scale.

879

Figure 3 (A) False colour red–green–blue XFM map of pyrite grain 1, red = Fe, green = U and blue = S, showing pyrite surrounded by U. (B) False colour red–green–blue XFM map of pyrite grain 2, red = S, green = U and blue = Fe, showing pyrite surrounded by U. The very dark regular shapes at the top right and left of the pyrite grain contain Si. The rectangles indicate the approximate region of the transects used for the μ XANES analysis.

885

Figure 4 General area detector diffraction system (GADS) generated µXRD pattern with reference peaks.
The main phase is pyrite (blue) (Bayliss, 1977) with traces of millerite (pink) (RRUFF-ID-R060898, Orford,
Quebec, Canada) and marcasite (light blue) (RRUFF-ID-R060882, Racine, Wisconsin, USA). X-ray beam

source was a Cu K α , 800 μ m focussed beam.

890

Figure 5(A) Back scattered SEM–EDX elemental map of a pyrite grain within the lignite sample. (B) relative abundances of elements (wt. %). (c) C, Fe, O, S, Si, S, U maps. A correlation analysis of these maps is available in the supporting information (Figures S3 and S4). The sample was preserved by C-bearing

resin impregnation, so the map of C should be interpreted with caution. All scale bars represent 100 µm.

895

Figure 6 High resolution SEM images of framboidal-like pyrite crystal grains from pyrite grain 1. (A) Pyrite–U boundary; (B) and (C) show the centre of the framboidal-like pyrite. The square in B indicates the site of EDX analysis. (D) Enlargement of the rectangle shown in C. Lower contrast phases in C and

899 D are mostly Fe and S and the brightest phases, is a mixed phase containing U, Fe, S and O.

901 Figure 7 (A) General area detector diffraction system (GADS) µXRD patterns for a transect across a pyrite 902 grain edge. Analysis was performed using a Cu Ka 300 µm focussed beam (smallest resolvable beam size); 903 (B) Pattern for pyrite-rich area (a, blue) with corresponding reference peaks for pyrite (Bayliss, 1977); and 904 (C) Pattern for U-rich area (b, green), with corresponding reference peaks for coffinite (Fuchs and Gilbert 905 1958).

906

907 Figure 8 Distribution and concentration of Fe, S, U, and U oxidation state on a transect across pyrite grain 908 1. (A–D) XFM element maps; scales are in microns and concentration in wt.%. (A) Composite Red Green Blue (Fe, S and U); (B) Fe map; (C) S map; (D) U map. Rectangles show the segments from which the U 909 910 spectra were extracted. (E) Bar chart showing U(IV):U(VI) ratios derived from U L₃ µXANES spectra for the boxes shown in (D). (F) Element concentrations of Fe (red) and U (green) on the same transect. The 911 S concentration is semi-quantitative (see text for details). 912

913

- 914 Figure 9 Distribution and concentration of Fe, S, U, and U oxidation state on a transect of 'pyrite grain 2'.
- 915 (A–D) XFM element maps; scales are in microns and concentration in wt.%. (A) Composite Red Green
- Blue (Fe, S and U); (B) Fe map; (C) S map; (D) U map. Rectangles show the segments from which the U 916 spectra were extracted. (E) Bar chart showing U(IV):U(VI) ratios derived from U L₃ µXANES spectra for
- 917
- the boxes shown in (D); (F) Element concentrations of Fe (red) and U (green) on the same transect. The 918
- 919 S concentration is semi-quantitative (see text for details).
- 920

921 **Table captions**

- 922 Table 1 Results of linear combination fitting for uranopilite and coffinite (tests 1, 3), and uranopilite and
- uraninite (tests 2, 4) for pyrite grains 1 and 2. Values represent the proportion of U present in the specified 923
- 924 oxidation state.

926 Figure 1

929 Figure 2

Core CD1577 Ambassador		Diamond drilled Core recovery 84%			Gamma log				
	Descriptio	n							
	Orange surfa	ce sand		0 -					
	Red orange s Silicified ferro quartz sand Hard at 6 m	lightly uginous	clayey medium-grained						
	Yellow orang sand	e fine to	medium-grained quartz	10-					
	Pale yellow fi and minor cla	ine to me ay	edium-grained quartz sand						
	Pale orange f sand; slightly	ine to mo silicified	edium-grained quartz		{				
	Grey fine to r grained suba Finer at 18 m 24 m, grading Band of silicif	medium-1 ngular qu g to fine a fied kaoli	grained, coarse – medium- uartz sand to coarse at at 30 m n at 20 m	920 - Metres 30 -					
34 - 37.2 sand 128 cm - cor 85 cm thick Medium to d			aolin and medium grain m/yellow clay ined quartz sand with clay						
	Dark brown/ and minor ca and minor m More clayey	black pe rbonace edium-gr and sand	at ous clay rained quartz sand ly with depth	40 -					
Fine sandstone			Clay /sand fine		10 100 1000 10000				
Medium grain sandstone			Clay / sand medium-grain	_	log 10 gamma cps				
Coarse sandstone			Lignite/coal	-					
	r7 r e sandstone dium grain arse sandsto	77 Diamond of Core recovers >r Description Orange surfa Red orange surfa Red orange surfa Red orange surfa Quartz sand Hard at 6 m Yellow orange sand Yellow orange sand Pale yellow fi and minor cla Pale orange fi sand; slightly Grey fine to r grained suba Finer at 18 m Finer at 18 m 24 m, grading Band of silicit Band of silicit Medium to cr 85 cm thick la Medium to cr Dark brown/ and minor ca and minor clayey Store clayey	77 Diamond drilled Core recovery 84 Description Orange surface sand Red orange slightly Silicified ferruginous quartz sand Hard at 6 m Yellow orange fine to sand Pale yellow fine to me and minor clay Pale orange fine to me sand; slightly silicified Grey fine to medium	77 Diamond drilled Core recovery 84% Description Orange surface sand Red orange slightly Silicified ferruginous clayey medium-grained quartz sand Hard at 6 m Yellow orange fine to medium-grained quartz sand Pale yellow fine to medium-grained quartz sand and minor clay Pale orange fine to medium-grained quartz sand; slightly silicified Grey fine to medium-grained, coarse – medium- grained subangular quartz sand Finer at 18 m, grading to coarse at 24 m, grading to fine at 30 m Band of silicified kaolin at 20 m 30 cm kaolin: 70 cm kaolin and medium grain sand 128 cm - core loss 85 cm thick layer cream/yellow clay Medium to coarse grained quartz sand whore clayey and sandy with depth Dark brown/ black peat and minor carbonaceous clay and minor carbonaceous clay E sandstone Clay / sand m	77 Diamond drilled Core recovery 84% Gam Description 0 Orange surface sand 0 Red orange slightly Silicified ferruginous clayey medium-grained quartz sand 0 Yellow orange fine to medium-grained quartz sand 10 Pale yellow fine to medium-grained quartz sand and minor clay 10 Pale orange fine to medium-grained quartz sand; slightly silicified 20 Finer at 18 m, grading to coarse at 24 m, grading to fine at 30 m 30 Band of silicified kaolin at 20 m 30 30 cm kaolin: 70 cm kaolin and medium grain sand 30 128 cm - core loss 85 cm thick layer cream/yellow clay Medium to carse grained quartz sand with clay 40 Dark brown/ black peat and minor carbonaceous clay and minor medium-grained quartz sand More clayey and sandy with depth 40				

Table 1

µXANES Transect segment	LCF TEST 1 urano- pilite	coffinite	uranopilite	coffinite	1	LCF TEST 2 urano- pilite	uraninite	uranopilite	uraninite	R-
number	weight	weight	error ±	error ±	R-factor	weight	weight	error ±	error ±	factor
#0	0.65	0.35	0.13	0.05	0.007	0.59	0.41	0.15	0.09	0.010
#1	0.37	0.63	0.12	0.02	0.001	0.29	0.71	0.15	0.10	0.011
#2	0.51	0.49	0.12	0.03	0.002	0.45	0.55	0.14	0.08	0.008
#3	0.51	0.49	0.12	0.03	0.002	0.45	0.55	0.14	0.08	0.008
#4	0.00	1.00	0.12	0.00	0.008	0.00	1.00	0.12	0.00	0.046
#5	0.00	1.00	0.12	0.00	0.004	0.00	1.00	0.12	0.00	0.034
#6	0.00	1.00	0.12	0.00	0.007	0.00	1.00	0.12	0.00	0.041
#7	0.16	0.84	0.12	0.04	0.004	0.05	0.95	0.19	0.14	0.023
#8	0.64	0.36	0.16	0.11	0.030	0.56	0.44	0.20	0.16	0.033
#9	0.79	0.21	0.14	0.08	0.019	0.74	0.26	0.17	0.13	0.020
#10	0.82	0.18	0.14	0.07	0.014	0.76	0.24	0.16	0.11	0.015
#11	0.73	0.27	0.13	0.05	0.006	0.67	0.33	0.14	0.08	0.007
mean	0.43	0.57	0.13	0.04	0.01	0.38	0.62	0.15	0.08	0.02
SD	0.32	0.32	0.01	0.03	0.01	0.30	0.30	0.03	0.06	0.01

µXANES Transect segment	LCF TEST 3 urano- pilite	coffinite	uranopilite	coffinite		LCF TEST 4 urano- pilite	uraninite	uranopilite	uraninite	
number	weight	weight	error ±	error ±	R-factor	weight	weight	error ±	error ±	R- factor
#0	0.00	1.00	0.12	0.00	0.040	0.00	1.00	0.00	0.00	0.040
#1	0.00	1.00	0.12	0.00	0.039	0.00	1.00	0.00	0.00	0.039
#2	0.00	1.00	0.12	0.00	0.030	0.00	1.00	0.00	0.00	0.030
#3	0.05	0.95	0.12	0.03	0.024	0.00	1.00	0.00	0.03	0.024
#4	0.21	0.79	0.13	0.05	0.022	0.08	0.92	0.14	0.05	0.022
#5	0.00	1.00	0.12	0.00	0.036	0.00	1.00	0.00	0.00	0.036
#6	0.00	1.00	0.12	0.00	0.041	0.00	1.00	0.00	0.00	0.041
#7	0.61	0.39	0.12	0.04	0.008	0.55	0.45	0.08	0.04	0.008
#8	0.67	0.33	0.13	0.05	0.010	0.63	0.37	0.09	0.05	0.010
#9	0.62	0.38	0.12	0.03	0.007	0.56	0.44	0.07	0.03	0.007
#10	0.55	0.45	0.12	0.04	0.009	0.51	0.49	0.09	0.04	0.009
#11	0.80	0.20	0.15	0.09	0.021	0.76	0.24	0.13	0.09	0.021
#12	0.69	0.31	0.13	0.06	0.013	0.65	0.35	0.10	0.06	0.013
#13	0.00	1.00	0.12	0.00	0.048	0.00	1.00	0.00	0.00	0.048
#14	0.19	0.81	0.12	0.03	0.019	0.06	0.94	0.13	0.03	0.019
mean	0.29	0.71	0.12	0.03	0.02	0.25	0.75	0.06	0.03	0.02
SD	0.32	0.32	0.01	0.03	0.01	0.31	0.31	0.06	0.03	0.01