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ABSTRACT

MODELING DEWETTING, DEMIXING, AND THERMAL EFFECTS
IN NANOSCALE METAL FILMS

by
Ryan Howard Allaire

Thin film dynamics, particularly on the nanoscale, is a topic of extensive interest.

The process by which thin liquids evolve is far from trivial and can lead to dewetting

and drop formation. Understanding this process involves not only resolving the fluid

mechanical aspects of the problem, but also requires the coupling of other physical

processes, including liquid-solid interactions, thermal transport, and dependence of

material parameters on temperature and material composition. The focus of this

dissertation is on the mathematical modeling and simulation of nanoscale liquid

metal films, which are deposited on thermally conductive substrates, liquefied by laser

heating, and subsequently dewet into nanoparticles, before cooling and resolidifying.

Both single- and multi-metal configurations are considered.

In the former case, continuum theory is used to describe the thermohydrody-

namics. Separation of length scales (in-plane length scales are larger than those in the

out-of-plane direction) allows for formulation of asymptotic theory that reduces the

fluid dynamics problem, involving Navier-Stokes equations in evolving domains, to a

fourth order nonlinear partial differential equation for the fluid thickness. Similarly, a

leading order thermal model is developed that is novel, computationally efficient, and

accurate. The resulting coupled fluid dynamics and thermal transport model is then

used to simulate metal film evolution in both two and three dimensional domains,

and to investigate the role of various material parameters. Thermal effects are found

to play an important role; in particular it is found that the inclusion of temperature

dependence in the metal viscosity modifies the time scale of the evolution significantly.

On the other hand, in the considered setup the Marangoni (thermocapillary) effect



turns out to be insignificant. The rate of heat lost in the substrate, measured by a Biot

number (Bi) is found to influence peak metal film temperatures and liquid lifetimes

(time from film melting to resolidification) more strongly than substrate thickness

(Hs). Nevertheless, changes in both Bi and Hs can lead to films that freeze in place

prior to full dewetting due to the strong dependence of viscosity on temperature.

In the case of multi-metal configurations, molecular dynamics simulations are

used to investigate the competition between chemical instabilities and Rayleigh-

Plateau type dewetting behavior in NiAg alloys of various geometries. Phase

separation occurs for decreasing temperatures and results in Ag@Ni core-shell

particles. During the breakup, phase separation and the Rayleigh-Plateau instability

either compete or cooperate depending on the relative positioning of Ag and Ni.

When the phase separation length scale is sufficiently large, axial migration of Ag

onto Ni can result in both Ag@Ni core-shell and pure Ag nanoparticles. Chemical

instabilities, therefore, can strongly affect the dewetting mechanism.
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CHAPTER 1

INTRODUCTION

1.1 Motivation from Nanoscale Metallic Films

Metal films on the nanoscale are relevant for a number of applications. Recently,

there has been great interest in using pulsed laser-induced dewetting (PLiD) to turn

these thin metallic films into ensembles of nanoparticles. During PLiD, the nanoscale

liquid metals and other patterned nanostructures are irradiated by a nanosecond

laser pulse, break up (dewet) into nanoparticles, and subsequently freeze in place on

underlying substrates. These arrangements of metallic nanoparticles have a number

of applications due to the optical and magnetic properties [18,77,111], and have been

used, for example, as a catalyst for the growth of nanowires [25, 54, 72, 114, 145],

to enhance solar cell devices by trapping light [8], and as waveguides to transport

electromagnetic energy [88]. Numerous other examples ranging from advanced sensing

to photonics leverage metallic nanoparticles [9, 38, 87, 94, 130]. The initial deposited

films could either be made out of a single metal, or multiple metals. The motivation

for considering multiple metals is that, when molten, the film may destabilize, leading

to particles with a specific composition, which may inherit properties from each of the

constituent metals. Harnessing these effects to direct the assembly of nanostructures

is a grand challenge in materials synthesis [6, 36,70].

The dynamics of thin liquid films has been a topic of interest for a number

of years, with a range of applications such as paint drying and tear films, as well

as many others (see [27] for a review). Understanding the thin film dynamics

becomes increasingly difficult in the context of liquid metals deposited on thermally

conductive substrates because, in addition to the fluid dynamics, one must account

for thermal effects, including the external heating, dependence of material properties
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on temperature, heat losses, and phase changes. One must also account for the

heat flow within the substrate as well as the interaction between the liquid and the

substrate. Numerous models have been developed to address these complications

using continuum theory, which in general describes both the thermodynamics and

fluid dynamics in terms of partial differential equations (PDEs), derived from first

principles. Since the films are typically thin relative to their width (small aspect

ratio) long-wave theory (LWT) can be used to simplify the fluid dynamics problem

into a 4th order PDE for film thickness.

A number of authors have used the LWT approach and have developed models

that include a number of the thermal effects listed above [7,33,118,119,124,127,135].

Notably, many models assume that heat is lost primarily at the surface of the film

rather than through the metal-substrate interface [7,102,119], which alters the model

significantly compared with those that neglect such free-surface heat loss. Others

consider heat loss through the substrate to be the primary cooling mechanism, but

use a simplified thermal model, which omits in-plane diffusion [33,124,135]. The best

model depends on the situation of interest, and on which effects are determined to

be dominate or be negligible.

Due to the short length scales, an alternate approach to LWT is to use Molecular

Dynamics (MD) simulations. These simulations use inter-atomic potentials, which

are well-documented for metals, to describe the forces that one metallic particle has

on another. A number of authors have taken this approach to model dewetting

in liquid metals. Previous work by Nguyen et al. [97] presents MD simulations of

liquid metal rings and shows that the behavior is consistent with LWT. The work by

Fowlkes et al. [40], for example, shows simulations of liquid filaments deposited on

graphite substrates. There, the filaments were exposed to instabilities on the surface

and dispersion relations were obtained via Fourier analysis. MD simulations have

also been used to extract various information, such as diffusion coefficients [20] and
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wettability [48], which may be useful to those that use continuum modeling. MD

simulations are computationally expensive, however: experimental size geometries

may contain millions of atoms; and furthermore, in order to generate data, averages

must be taken over many simulations. Nonetheless, with appropriate resources, MD

can potentially provide some important details that continuum theory cannot.

The approach that we take here in this dissertation is twofold. We focus first on

single metal configurations using continuum theory. In particular, we utilize LWT to

derive an asymptotically consistent thermal model, and investigate various thermal

effects on the evolution of the liquid metal films. The second component of the thesis

deals with multi-metal configurations. In particular, we consider the NiAg alloy,

which is immiscible at sufficiently low temperatures. For this topic, we focus on the

competition between chemical instabilities that occur due to phase separation and

the classical Rayleigh-Plateau (RP) instability that arises due to surface tension in

free-standing liquid jets. This work on alloys was done in part at Oak Ridge National

Laboratory, initiated by a Summer internship funded by the Department of Energy

(DOE) Office of Science Graduate Student Research Program (SCGSR), which is

administered by the Oak Ridge Institute for Science and Education, for the DOE,

under contract number DE-SC0014664.

1.2 Overview and Structure

The rest of the dissertation is organized as follows. In Chapter 2, we focus on films

deposited on thin substrates. In Section 2.3, we formulate a general mathematical

model by introducing appropriate scales, the corresponding dimensionless system,

and relevant dimensionless parameter groups. We present three different models

of heat conduction: a full diffusion model (F), a 1D diffusion model (1D), and an

asymptotic model (A); and we summarize the derivation of the thin film evolution

equation (the fluid mechanical model used throughout our continuum modeling work
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for the single-metal configurations), accomplished using LWT and accounting for the

possibility of temperature dependence of material parameters. Section 2.4 contains

our main results. In Section 2.4.1, we perform linear stability analysis (LSA) on the

film evolution equation to understand the circumstances under which disturbances

to the liquid film lead to instabilities, and to predict the manner of film breakup.

In Section 2.4.2, we summarize the conditions under which our simulations are

carried out, and in Section 2.4.3, we display results comparing the three models

for heat conduction. In Section 2.4.4, we restrict attention to the asymptotic

model for heat conduction and study how temperature dependence of both viscosity

and surface tension influence the results. We find that temperature dependence

of the viscosity has the most significant effect on the instability development,

while temperature-induced variation of surface tension plays only a minor role.

Furthermore, in the physically-relevant regime, allowing viscosity to vary with

temperature produces films that dewet fully in the liquid phase, while if viscosity

is fixed at its melting temperature value the dewetting occurs much closer to the

solidification time, which may result in only partial drop formation. We conclude in

Section 2.5 with a brief summary and discussion. The material presented in Chapter 2

is published in the Journal of Fluid Mechanics [3].

In Chapter 3, we focus on films deposited on thick substrates and investigate

the role that the substrate has on the heating and evolution of the film, in both two

and three spatial dimensions. In Section 3.3, we extend the thermal model developed

in Chapter 2 to include substrates that are thick and whose thermal conductivity may

vary with temperature. The main results for this chapter are given in Section 3.4.

In Section 3.4.2, we investigate the role of substrate thickness, substrate heat loss,

and nonlinear thermal conductivity effects in the heating of non-deformable flat films.

Section 3.4.3 then considers the evolution of 2D films and the dependence on substrate

thickness and heat loss. 3D evolving films are studied in Section 3.4.4 and conclusions

4



are drawn in Section 3.5. The material presented in Chapter 3 is being prepared for

publication and the 3D numerical codes therein can be found online at Github [2].

In Chapter 4, we turn our focus to Ni0.5Ag0.5 alloys and use molecular dynamics

simulations to investigate the demixing process. We give a brief introduction in

Section 4.2. In Section 4.3, we outline the methodology used for the discrete molecular

dynamics simulations. Results are then presented in Section 4.4. Phase-separated

bulk and droplets (exposed to vacuum) are presented and analyzed in Sections 4.4.1

and 4.4.2, respectively. The droplets are then placed on graphite substrates and the

role of wettability is explained in Section 4.4.3. Conclusions are drawn in Section 4.5.

The work presented in Chapter 4 is based on a paper, which is published in the

journal Nanomaterials [4].

In Chapter 5, we examine the competition between demixing and dewetting

with Ni0.5Ag0.5 alloys and the classical Rayleigh-Plateau instability. We begin with a

brief introduction in Section 5.2. In Section 5.3, we present the methodology used for

constructing metallic bulk and templated nanostructures. Rayleigh-Plateau theory

is applied to the templated nanostructures and used to make predictions about the

dewetting procedure in Section 5.4. Section 5.5 contains results that show the process

by which these alloys evolve into droplets and how the procedure is affected by

phase separation. In Section 5.6, we conclude by outlining the importance of phase

separation on the dewetting process. The work of Chapter 5 is based on a paper,

which is published in the Journal of Physical Chemistry, C [5].

In Chapter 6, we revisit the initial goals of the dissertation and explain the

overarching conclusions that may be drawn. We then discuss possible future directions

of research for which the results presented in this thesis could provide a basis.
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CHAPTER 2

ON EFFICIENT ASYMPTOTIC MODELLING OF THIN FILMS ON
THERMALLY CONDUCTIVE SUBSTRATES

2.1 Overview

We consider a free surface thin film placed on a thermally conductive substrate and

exposed to an external heat source in a setup where the heat absorption depends

on the local film thickness. Our focus is on modeling film evolution while the film is

molten. The evolution of the film modifies local heat flow, which in turn may influence

the film surface evolution through thermal variation of the film’s material properties.

Thermal conductivity of the substrate plays an important role in determining the

heat flow and the temperature field in the evolving film and in the substrate itself. In

order to reach a tractable formulation, we use asymptotic analysis to develop a novel

thermal model that is accurate, computationally efficient, and that accounts for the

heat flow in both the in-plane and out-of plane directions. We apply this model to

metal films of nanoscale thickness exposed to heating and melting by laser pulses, a

setup commonly used for self and directed assembly of various metal geometries via

dewetting while the films are in the liquid phase. We find that thermal effects play

an important role, and in particular that the inclusion of temperature dependence in

the metal viscosity modifies the time scale of the evolution significantly. On the other

hand, in the considered setup the Marangoni (thermocapillary) effect turns out to be

insignificant.

2.2 Introduction

The dynamics of thin liquid films is a topic of extensive interest with a number of

applications ranging from biomedical [24, 83] to electronic coatings and nanotech-

nology [147]. The inclusion of thermal effects in thin film dynamics, relevant for
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many applications, is a mathematically challenging problem. To develop a realistic

model one must consider multiple factors, such as the heat supply mechanism(s),

possible dependence of material parameters on temperature, heat loss mechanisms,

and phase changes. When the liquid of interest is placed upon a thermally conductive

substrate, one must also account for the heat flow within the substrate as well as

the interaction between the liquid and the substrate. Numerous models have been

developed to address these complications using continuum theory, which in general

describes both the thermodynamics and fluid dynamics in terms of partial differential

equations (PDEs), derived from first principles. In situations where there is a small

aspect ratio (ratio of typical film thickness to typical lateral length scale of interest),

long-wave theory (LWT) may be used, which effectively enables the fluid dynamics

problem to be reduced to a 4th order PDE for film thickness. LWT has already proved

very valuable in a variety of settings such as liquid crystals, paint coatings, tear-films,

nanotechnology and many others (see [27] for a comprehensive review). Due to the

variety of length and time scales present, the applicability of LWT to the problem of

heat conduction in a thin liquid film is not always clear-cut. Of the issues outlined

above, we highlight the following in this work: (i) the influence of temperature on

film evolution; (ii) heating/cooling mechanisms; and (iii) the application of LWT to

heat conduction.

Various thermal effects that may influence the evolution of the film thickness

have been considered in prior work. For an isothermal nanoscale film the primary

dewetting mechanism is liquid-solid interaction, often modeled by a disjoining

pressure (see [66] for an extended review). For non-isothermal films, gradients in

temperature may give rise to surface tension gradients (thermocapillary or Marangoni

effects), which develop when heating from below [123] and can destabilize the film.

The work of Shklyaev et al. [126] finds novel stability thresholds between monotonic

and oscillatory instabilities (in both cases, in the linear regime the instability grows
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as eωt with <(ω) > 0, but =(ω) is zero in the former case and nonzero in the latter)

that also account for heat losses from the free surface of the film (referred to here

as radiative heat losses). In that work, the film is heated from below via a constant

heat flux from a substrate of much lower thermal conductivity. Batson et al. [10]

perform a stability analysis similar to that in [126], but model the substrate explicitly

rather than as a simple boundary condition. They solve a full heat equation for the

substrate temperature, and find that oscillatory instabilities arise primarily due to

thermal coupling between the film and the substrate. A number of other works have

considered the coupling between the evolution of film and substrate temperatures.

Saeki et al. [118], for example, consider a film/substrate system heated by a laser

and find that the rate of change of film reflectivity R with thickness h, dR/dh, may

promote either stability or instability of the film depending on the sign of dR/dh. The

magnitude of the incident laser energy was earlier shown to influence film thickness

evolution by Oron [101], who showed in particular that increasing the laser energy

can partially inhibit film instability.

Another important effect that may influence film evolution is the dependence

of material parameters, such as density, thermal conductivity, surface tension, heat

capacity and viscosity, on temperature. These relationships are often assumed to

be linear, although a strongly nonlinear Arrhenius-type dependence of viscosity on

temperature may exist. Oron et al. [103] formulated a thin film model in which

viscosity variation is included, and in the later work of Seric et al. [124], it was found

that film evolution is strongly affected by the inclusion of temperature-dependent

viscosity. If temperature variations are sufficiently large, the film may undergo a

phase change (liquefaction or solidification). This has been considered using a variety

of approaches; for example, Trice et al. [135] use a latent heat model to describe such

phase change whereas others, such as Seric et al. [124], assume phase change to be

instantaneous.
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Modelling of heat losses in a liquid film often focuses on the boundary effects,

since viscous dissipation can usually be ignored. Radiative heat losses from the

liquid to the surrounding medium are typically modelled by a Robin type boundary

condition [7,101,118,119,126] whereas the heat loss/gain from the film to the substrate

has been modelled variously by (i) a constant temperature [101,104,118], (ii) constant

flux [7, 126], or (iii) continuity of temperatures and fluxes, known as perfect thermal

contact [33,118,124,135]. The choice of boundary conditions plays an important role

when formulating and solving equations to describe the heat flow.

In many cases an asymptotic approach may be adopted, giving rise to simplified

leading order temperature equation(s). The work of Saeki et al. [118], for example,

includes both radiative heat losses and heat transfer at the liquid-solid interface,

and gives rise to a depth-averaged (z-direction) equation for film temperature, which

retains parametric z-dependence even when radiative heat losses are ignored. In later

work, Saeki et al. [119] developed similar leading order equations for film temperature

when the film is optically transparent. In this case, the film temperature dependence

on z is slaved to the inclusion of radiative heat losses. Trice et al. [135], on the other

hand, conclude that using a z-independent film temperature model is sufficient when

radiative heat losses can be neglected and film-to-substrate heat losses are dominant

(e.g., when there is a high thermal conductivity ratio between the film and substrate).

These previous works demonstrate that boundary conditions play an integral role in

the asymptotic formulation of a model and may facilitate simple models that eliminate

z-dependence (e.g., [126]).

Due to the small aspect ratio of the film, a commonly used “reduced” model for

heat conduction is one that neglects in-plane diffusion altogether [33, 124, 135]. This

model, which we refer to here as (1D), is much simpler than a model that includes

full heat diffusion and is typically justified by arguing that in-plane diffusion occurs

on a much longer time scale than that of out-of-plane diffusion. Alternative simplified
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models have also been proposed. The work of Shklyaev et al. [126], for example, uses

LWT to derive evolution equations for heat conduction that differ significantly from

the 1D model of Dong & Kondic [33] (and from the asymptotic model considered

in this dissertation). Atena & Khenner [7] also derive leading order temperature

equations that do not rely on the 1D approximation. More recent work by Seric

et al. [124] briefly compares predictions from (1D) with those using a full thermal

diffusion model, and suggests that (1D) performs poorly by comparison, though the

analysis is far from complete. Despite the extensive literature, the scenarios for

which thermal diffusion model (1D) is valid remain unclear. A key objective of this

dissertation is to present a thermal model for thin film flow that includes in-plane

heat conduction at reasonable computational complexity and to compare with both

(1D) and with the full heat diffusion model (which serves as a benchmark).

In this chapter, we consider films placed upon a thermally conductive substrate

and heated by a laser. Heat generation by a laser source is complicated to model

and requires in general that one accounts for the optical properties of the film,

such as reflectivity, transmittance, and absorption. These properties may depend

on refractive indices of the air, film and substrate, as well as the respective extinction

coefficients. Again, various modeling approaches have been taken in the literature:

we note for example that Saeki et al. [118, 119] present a detailed model for laser

energy that involves complicated expressions for the optical properties; whereas

Trice et al. [135] propose a simpler approach (to be discussed later) in which these

properties are approximated. An important application of laser heating is pulsed

laser induced dewetting (PLiD) of metal films. The mechanism by which liquid

metals evolve into assemblies of droplets has been explored via experiments [59],

simulations [33, 124], and theory [135] with applications ranging from nanowire

growth [72, 114, 125], to plasmonics [55] and photovoltaics [8]; see also [64] and [89]

for recent application-centered reviews, and [115] and [76] for reviews focusing on
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molten metal film instabilities. Of late, PLiD has been used to organize nanoparticles

into patterns of droplets via Rayleigh-Plateau type instabilities [34, 92, 116], induced

by exposing metal films/filaments upon (typically) Si/SiO2 substrates to laser

irradiation, effectively liquefying the film for tens of nanoseconds. The liquefied

film breaks up into droplet patterns, which then resolidify, freezing the patterns in

place. Thermal effects are found to be highly relevant, influencing the stability,

evolution, and final (solidified) configurations of molten metal films (see for example,

[135]). A number of experimental studies have considered metallic systems such as

Co [34,35,37,135], Ag [78], Au [144], Ni [42], as well as multi-metal systems [44]. The

large variety of experimental work that has been done on nanoscale metal films calls

for a firm theoretical foundation, which can both explain existing results and suggest

new approaches.

The focus of the present chapter is development of a consistent, asymptotically

valid, mathematical model that accounts for (i) heat absorption that is influenced

by the local value of (time-dependent) film thickness; (ii) in-plane and out-of-plane

heat diffusion in a tractable manner; (iii) self-consistent coupling of the heat flow

and film evolution, and (iv) thermal variation of material properties, in particular of

surface tension and viscosity. Long-wave theory (LWT) is used to reduce modeling

of the film evolution to a 4th order PDE for the film thickness and to develop an

asymptotic model for heat conduction. We consider a setup where the primary

heat loss mechanism is through the substrate rather than the liquid-air interface,

and the thermal conductivity of the film is much higher than of the substrate, as

appropriate for metal films on SiO2 substrates. We will show that the proposed

model (called asymptotic model (A) in what follows) produces accurate results,

while avoiding the shortcomings of models that ignore coupling of fluid dynamics

and thermal transport and producing results with a reasonable computational effort.

It should be emphasized that the use of a more complex model (called full (F)
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model below) is orders of magnitude more computationally expensive (even for

small computational domains, the computing time is measured in days on a modern

computational workstation (in a serial mode)). Our asymptotic model provides

essentially indistinguishable results at a fraction of the computational cost.

The rest of the chapter is organized as follows. In Section 2.3, we formulate a

general mathematical model by introducing appropriate scales, the corresponding

dimensionless system, and relevant dimensionless parameter groups. We present

three different models of heat conduction: a full diffusion model (F), a 1D diffusion

model (1D), and an asymptotic model (A); and we summarize the derivation of the

thin film evolution equation (the fluid mechanical model always used), accomplished

using LWT and accounting for the possibility of temperature dependence of material

parameters. Section 2.4 contains our main results. In Section 2.4.1, we perform

linear stability analysis (LSA) on the film evolution equation to understand the

circumstances under which disturbances to the liquid film lead to instabilities, and

to predict the manner of film breakup. In Section 2.4.2 we summarize the conditions

under which our simulations are carried out, and in Section 2.4.3 we display results

comparing the three models for heat conduction. In Section 2.4.4, we restrict

attention to the asymptotic model for heat conduction and study how temperature

dependence of both viscosity and surface tension influence the results. We find

that temperature dependence of the viscosity has the most significant effect on the

instability development, while temperature-induced variation of surface tension plays

only a minor role. Furthermore, in the physically-relevant regime, allowing viscosity

to vary with temperature produces films that dewet fully in the liquid phase, while if

viscosity is fixed at its melting temperature value the dewetting occurs much closer to

the solidification time, which may result in only partial drop formation. We conclude

in Section 2.5 with a brief summary and discussion.
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Figure 2.1 3D schematic of the film, substrate and laser system. In dimensionless
units the mean film thickness is equal to 1, the substrate thickness is given by Hs and
the domain width is 2Nπ (both N = 1 and N = 20 will be used in simulations). The
model is presented in 3D but for simplicity simulations will be performed only in 2D.

2.3 Model Formulation

Consider a molten metal film (assumed initially solid) of characteristic lateral

length-scale L, and (nanoscale) thickness H, heated by a laser, and in contact with

a thermally conductive solid substrate of finite thickness, which itself rests upon a

much thicker Si slab. The basic setup is sketched in Figure 2.1. Here we consider the

substrate to be thin, and comparable in size to the film thickness, H. We define the

aspect ratio of the film to be ε = H/L� 1.

In this chapter, we refer to the in-plane coordinates as x, y and the out-of-plane

coordinate as z. For completeness, we present the governing equations for a 3D

system, though the results presented in this chapter will be for the 2D case in which
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all quantities are independent of y. We define L, H, U , εU , ts, Tmelt, µfU/(ε
2L)

and γf (where µf and γf are the viscosity and surface tension of the film at melting

temperature, Tmelt) to be the in-plane length scale, out-of-plane length scale, in-plane

velocity scale, out-of plane velocity scale, time scale, temperature scale, pressure scale,

and surface tension scale, respectively (the values of the material parameters used

are given in Table A.1 in Appendix A.1.1). Similar to [52], we set ts = 3µfL/(ε
3γf),

which can be interpreted as a viscous time scale. The in-plane velocity scale is fixed

as U = ε3γf/(3µf) so that ts = L/U . The length scale is fixed as L = λm/(2π), where

λm is the most unstable wavelength obtained from linear stability analysis (LSA) with

surface tension and viscosity fixed as γf and µf , respectively (see Appendix A.1.2 for

details). We treat the film as an incompressible Newtonian fluid and assume that

viscosity is independent of z. The resultant dimensionless system then comprises the

following fluid equations, which hold on 0 < z < h,

ε2Re (∂tu+ u · ∇u) = −∂xp+ ε2∇2 · (M∇2u) +M∂2
zu+ ε2∂yM∂xv, (2.1)

ε2Re (∂tv + u · ∇v) = −∂yp+ ε2∇2 · (M∇2v) +M∂2
zv + ε2∂xM∂yu, (2.2)

ε4Re (∂tw + u · ∇w) = −∂zp+ ε4∇2 · (M∇2w) + ε2M∂2
zw + ε2∇2M · ∂z(u, v),

(2.3)

∇ · u = 0, (2.4)

the following equations of heat conduction,

ε2Pef∂tTf = ε2∇2
2Tf + ∂2

zTf + ε2Q, for z ∈ (0, h) , (2.5)

Pes∂tTs = ε2∇2
2Ts + ∂2

zTs, for z ∈ (−Hs, 0) , (2.6)
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and boundary conditions,

w = ∂th+ u∂xh+ v∂yh, on z = h, (2.7)

[n · T · n] = 3γ (∇ · n)− 3Π(h), on z = h, (2.8)

ε [n · T · t1] = −3∂xγ, on z = h, (2.9)

ε [n · T · t2] = −3∂yγ, on z = h, (2.10)

n · ∇Tf = 0, on z = h, (2.11)

∂zTf = Kε2∂zTs, Tf = Ts, on z = 0, (2.12)

u = 0, on z = 0, (2.13)

∂zTs = Bi (Ts − Ta) , on z = −Hs, (2.14)

∂xTf = ∂xTs = 0, on x = ±Nπ, (2.15)

∂yTf = ∂yTs = 0, on y = ±Nπ. (2.16)

Here, the fluid velocity is given by u = (u, v, w), pressure by p, and film and substrate

temperatures by Tf and Ts, respectively. Subscripts f and s stand for film and

substrate, respectively, unless otherwise stated and 0 = (0, 0, 0). We refer to the

gradient operator as ∇ = (∂x, ∂y, ∂z), its in-plane counterpart as ∇2 = (∂x, ∂y, 0),

and the in-plane Laplacian operator as ∇2
2 (defined by ∇2

2u = ∂2
xu + ∂2

yu for a

given scalar function u). Equations (2.1)–(2.6) are the Navier-Stokes (NS) equations

representing conservation of mass and momentum for the film, together with thermal

energy conservation in both film (0 < z < h) and substrate (−Hs < z < 0) domains,

both of lateral extent 2Nπ, −Nπ < x, y < Nπ (for simulations we use either N = 1 or

N = 20, but N can be any positive integer). The unit vector n denotes the outward

normal to the film’s free surface, z = h. The equations above introduce the following

dimensionless parameters:
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Re =
ρfUL

µf

, M =
µ

µf

, K =
ks

kf

ε−2, (2.17)

Pef =
(ρc)f UL

kf

, Pes =
(ρc)s UεH

ks

, Bi =
αH

ks

,

which are the Reynolds number, dimensionless viscosity, (scaled) thermal conductivity

ratio, Peclet numbers, and Biot number, respectively. We assume ε2Re � 1; the

remaining quantities in Equation (2.17) are assumed O(1). For further discussion of

the choice of scales and parameter values see Appendix A.1.1, in particular Table A.1,

and Section 2.3.1.3 later. The definitions of the laser source term Q and the disjoining

pressure Π(h) are given in the discussion below. The material parameters (ρ, c, k)f,s

represent the density, specific heat capacity, and thermal conductivity of the film and

substrate, respectively. We assume that the substrate is optically transparent and

does not absorb laser energy.

In experiments, a Si substrate is often used [59, 141, 144] on top of which a

native layer of oxide, usually SiO2, 3-4 nm in thickness, typically exists (though an

additional oxide layer, typically about 100 nm thick, may also be deposited). Below

the oxide in either case is Si, which has a much higher thermal conductivity, and can

therefore be assumed isothermal relative to the SiO2. Consistently, we consider the

(SiO2) substrate to be positioned on top of a thick layer of much higher conductivity,

assumed to be at constant ambient temperature, Ta. We model the heat loss from

the top (SiO2) substrate to the thick Si layer below via a Newton law of cooling at

z = −Hs (Equation (2.14)) with Biot number, Bi (related to the dimensional heat

transfer coefficient, α). The value of Bi was chosen so that the film melts and solidifies

on a time scale comparable to the film evolution (although the value Bi = 2 × 10−3

is presented, the range 7× 10−4-7× 10−3 was considered). We assume the following

form of the heat source, Q in Equation (2.5), representing the external volumetric
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heating due to the laser at normal incidence (see [124,135]),

Q = F (t) [1−R(h)] exp [−αf (h− z)], (2.18)

F (t) = C exp
[
− (t− tp)2 /(2σ2)

]
,

C =
E0αfL

2

√
2πσtsHkfTmelt

,

where C is a constant (assumed O(1)) proportional to the amount of incident energy,

E0, applied from the laser onto the film, α−1
f is the (scaled) absorption length for

laser radiation in the film, and F (t) captures the temporal power variation of the

laser, taken to be a Gaussian pulse centred at tp and of width defined by σ =

tp/(2
√

2 ln 2). Similar to prior work by a number of authors [33,101,118,119,124,135]

the transmittance of laser-source heating is modeled via the Bouguer-Beer-Lambert

Law (see, e.g., [63]), which in Equation (2.18) is presented as a spatially-dependent

source term, exp(−αf(h − z)). In general, the reflectivity of the film, R(h), on a

transparent substrate, can be determined by solving Maxwell’s equations with the

appropriate boundary conditions [58]. The resultant form is quite cumbersome to

work with, however, and instead we approximate R(h) by the simple functional

form [124]

R(h) = r0 (1− exp (−αrh)) ,

where r0 and αr are dimensionless fitting parameters, determined by a least-squares

fit of the approximate R(h) to the full expression for reflectivity.

Equations (2.7)–(2.11) are boundary conditions on the free surface, z =

h(x, y, t), with unit normal n =∇ (z − εh) /|∇ (z − εh) | and tangent vectors t1 and

t2 given by t1 = (1, 0, ε∂xh)/
√

1 + ε2(∂xh)2 and t2 = (0, 1, ε∂yh)/
√

1 + ε2(∂yh)2. The

kinematic boundary condition (KBC) is given by Equation (2.7); Equations (2.8),

(2.9) and (2.10) are the dynamic boundary conditions, representing a balance of

stress between the liquid and air phases, where T is the Newtonian stress tensor, γ
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is the surface tension, and Π(h) is the disjoining pressure representing liquid-solid

interaction. Many forms of Π(h) are used in the literature1; we take

Π(h) = K

[(
h∗
h

)n
−
(
h∗
h

)m]
, K =

AHL

6πεγfh3
∗H

3
, (2.19)

with equilibrium thickness h∗, exponents n > m > 1 (we use (n,m) = (3, 2) since

these values were shown by [52] to be appropriate for liquid metals), and Hamaker

constant AH. We assume that the radiative heat loss from the film to the air is small

compared to the heat conduction from the film to the substrate. As a consequence,

we neglect heat loss through the liquid-air interface and apply Equation (2.11), an

insulating boundary condition. Furthermore, we model the (assumed) primary heat

loss mechanism through the interface between the film and the substrate at z = 0

by perfect thermal contact via Equation (2.12). At z = 0 we also assume no-slip

and no-penetration of fluid via Equation (2.13). Finally, we assume that the film and

substrate are thermally insulated at the lateral ends, x = ±Nπ and y = ±Nπ.

We will now proceed to simplify the full model as outlined above. We begin in

Section 2.3.1 with a discussion of the various models for heat conduction, and derive

a leading order asymptotic model that (we will show) compares well with the full

heat conduction model. In Section 2.3.2, we discuss the long-wave approximation for

thin films and the inclusion of thermal effects in the resultant thin film equation.

2.3.1 Thermal Modeling

In what follows, we present three different models for the inclusion of thermal

effects (the fluid dynamics in all cases will be described by the long-wave model, see

Section 2.3.2). In Section 2.3.1.1 we give a “Full” model for heat conduction, denoted

(F), which includes both in-plane and out-of-plane heat diffusion, but omits both

1For more information regarding the microscopic nature of the disjoining pressure, we refer
the reader to [66].
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viscous dissipation and thermal advection. As discussed in Chapter 1, a number of

previous works have utilized a much simpler model that neglects lateral heat diffusion

(e.g., [33, 124, 135]). Although the exact relevance of such lateral (in-plane) heat

transfer has not yet been carefully analyzed, prior work by [124] suggests that it may

be important. To study and quantify the possible significance, in Section 2.3.1.2 we

describe such a “one dimensional” model for heat conduction, denoted (1D). Finally,

in Section 2.3.1.3 we apply long-wave theory to (F) to develop an “Asymptotic” model

for heat conduction, (A). This model utilizes key assumptions on the non-dimensional

parameters introduced in Equation (2.17) to arrive at a system that is simpler than

(F), but unlike (1D) retains lateral heat diffusion. These three models will be

compared in Section 2.4.3.

2.3.1.1 Full model. In order to compare models of heat conduction, we must

first declare a model that serves as a benchmark. We refer to Equations (2.5)–

(2.6), (2.11)–(2.12), and (2.14)–(2.16) (despite the presence of terms that may appear

asymptotically small with respect to ε in comparison to other terms), as the Full

Model (F) for heat conduction.

2.3.1.2 1D model. Here we display the model obtained by neglecting in-plane

heat conduction in (F), assuming that the term ε2∇2
2Tf may be neglected compared

with ∂2
zTf in Equation (2.5) but retaining all other terms. Equation (2.11) is replaced

by ∂zTf = 0 since n = (0, 0, 1) + O(ε2). This yields the following 1D Model (1D)
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for heat conduction:

ε2Pef∂tTf = ∂2
zTf + ε2Q, for z ∈ (0, h) , (2.20)

Pes∂tTs = ∂2
zTs, for z ∈ (−Hs, 0) , (2.21)

∂zTf = 0, on z = h, (2.22)

∂zTf = Kε2∂zTs, on z = 0, (2.23)

Tf = Ts, on z = 0, (2.24)

∂zTs = Bi (Ts − Ta) , on z = −Hs, (2.25)

∂xTf = 0, on x = ±Nπ, (2.26)

∂yTf = 0, on y = ±Nπ, (2.27)

where Q is given by Equation (2.18). We note that although the substrate

temperature Ts only diffuses in the out-of-plane direction, z, it is still functionally

dependent on the in-plane coordinates x, y, due to Equation (2.24) and the

dependence of film temperature Tf on x, y (via dependence on film height h). It follows

from (2.24), (2.26) and (2.27) that ∂xTs = 0 at x = ±Nπ, and ∂yTs = 0 at y = ±Nπ

automatically. For the rest of the dissertation, we refer to Equations (2.20)–(2.27) as

the (1D) model.

2.3.1.3 Asymptotic model. Next, we formulate a model of intermediate

complexity by carrying out further asymptotic analysis. To do so, we first

make a number of assumptions about the non-dimensional parameters defined in

Equation (2.17) and provide estimates of time scales based on the parameters given

in Table A.1:

(i) Pef = O(1). The term ε2Pef = [(ρc)f H
2/kf ] /ts = tDf

/ts appearing in
Equation (2.5) is a ratio of two time scales: tDf

, the time scale of diffusion
of heat in the film, and ts, the time scale of film evolution. Thus, we assume
tDf
� ts; heat diffuses rapidly through the film, before any significant film

evolution can occur. In our setup, tDf
≈ 1.17 ps, whereas ts ≈ 26.86 ns.
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(ii) Pes = O(1). Similar to (i) the Peclet number for the solid layer can be written
as a ratio of time scales, Pes = [(ρc)s H

2/ks] /ts = tDs/ts, where tDs is the time
scale of out-of-plane thermal diffusion in the substrate. We assume that this
diffusion occurs on a time scale comparable to that of film evolution. Here,
tDs ≈ 0.147 ns. Although this is small relative to ts, this assumption ensures
that the time-derivative is retained in Equation (2.21), which is numerically
convenient and has a negligible effect on results.

(iii) Bi = O(1). The Biot number Bi = (H/ks)/(1/α) can be interpreted as the
ratio of internal thermal resistance due to diffusion, H/ks, and external thermal
resistance, 1/α, due to convection away from the boundary z = −Hs. We
assume these internal and external thermal resistances are comparable.

(iv) K = ks/(ε
2kf) = O(1); the film has much higher thermal conductivity than the

substrate.

(v) Hs = O(1), indicating that the substrate thickness is comparable in size to the
film thickness. Hence the substrate is also thin.

The difference in length scales in the problem motivates the idea that in-plane and

out-of-plane diffusion can occur on different time scales. As a consequence of the

thin substrate assumption, (v), the in-plane diffusion is much slower than that of

out-of-plane diffusion. The ratio of the film evolution time scale to that of diffusion

is therefore much smaller for in-plane diffusion than out-of-plane. Consequently,

in-plane diffusion can be neglected in the substrate (cf. [124]).

To obtain an asymptotically valid model, we assume the following expansions:

Tf = T
(0)
f + ε2T

(1)
f + · · · , Ts = T (0)

s + ε2T (1)
s + · · · ,
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so that, on substituting in Equations (2.5)–(2.6), (2.11)–(2.12), (2.14)–(2.15) and

using assumptions (i)–(v) listed above, the leading order model is given by

∂2
zT

(0)
f = 0, for z ∈ (0, h), (2.28)

Pes∂tT
(0)
s = ∂2

zT
(0)
s , for z ∈ (−Hs, 0),

∂zT
(0)
f = 0, on z = h, (2.29)

∂zT
(0)
f = 0, on z = 0, (2.30)

T
(0)
f = T (0)

s , on z = 0,

∂zT
(0)
s = Bi

(
T (0)

s − Ta

)
, on z = −Hs,

∂xT
(0)
f = 0, on x = ±Nπ,

∂yT
(0)
f = 0, on y = ±Nπ.

Equations (2.28)–(2.30) result in a leading order film temperature that is independent

of z but still unknown, T
(0)
f = T

(0)
f (x, y, t). We must therefore proceed to next order

in the asymptotic expansion to obtain a closed model for the leading order film

temperature. Collecting terms at next order in Equation (2.5) yields:

Pef∂tT
(0)
f = ∇2

2T
(0)
f + ∂2

zT
(1)
f + F (t) [1−R(h)] exp [−αf (h− z)] , (2.31)

while the boundary conditions (2.11) and (2.12) at the same order are:

∂zT
(1)
f =∇2h ·∇2T

(0)
f , on z = h, (2.32)

∂zT
(1)
f = K∂zT (0)

s , on z = 0. (2.33)

Since T
(0)
f is independent of z we can integrate Equation (2.31) from z = 0 to z = h.

Doing so, and applying the boundary conditions (2.32) and (2.33), gives the following

evolution equation for leading order film temperature:

hPef∂tTf =∇2 · (h∇2Tf)−K (∂zTs) |z=0 + hQ, (2.34)
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for x, y ∈ (−Nπ,Nπ), where Q = h−1
∫ h

0
F (t) [1−R(h)] exp [−αf (h− z)] dz is the

averaged heat source and the superscripts on Tf , Ts are dropped for convenience,

since now only leading order quantities are considered. Here, ∇2 · (h∇2Tf) in

Equation (2.34) describes the lateral heat diffusion, while the terms K∂zTs and

hQ represent the heat lost from the film due to contact with the substrate and

the generation of heat in the film due to the laser source, respectively. The final

asymptotic model for heat conduction is Equation (2.34) in the film, together with:

Pes∂tTs = ∂2
zTs, for z ∈ (−Hs, 0) , (2.35)

Tf = Ts, on z = 0, (2.36)

∂zTs = Bi (Ts − Ta) , on z = −Hs, (2.37)

∂xTf = 0, on x = ±Nπ, (2.38)

∂yTf = 0, on y = ±Nπ. (2.39)

We note that, even though lateral diffusion is neglected in equation (2.35), the

substrate temperature Ts remains a function of x, y and z, the in-plane variation

entering through the boundary condition (2.36). By the same reasoning as in the

previous section, the lateral end insulating conditions on Ts, Equations (2.15)–(2.16),

are satisfied vacuously.

In summary, we have formulated an asymptotic model for heat conduction that

exploits the natural geometry of the problem as well as the relative sizes of material

parameters (assumptions (i)–(v)). This model, denoted (A), has advantages over both

(F) and (1D). By integrating over the z-direction, a closed model is obtained for a

leading order temperature profile that is independent of z, simplifying the problem

significantly. As a consequence, (A) is considerably less computationally demanding

than (F). Solving (F) for the temperature profile throughout the evolving film is

cumbersome since the domain is deformable (see the appendix for details): model

(A) eliminates this complication since film temperature depends only on the in-plane
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direction(s) and time. Model (A) is also (as we will see) substantially more accurate

and faster to compute than (1D).

A number of other authors have developed reduced models for heat transfer

within films, which we now briefly highlight and contrast with our model (A). The

models presented in [33,124,135] ignore in-plane diffusion in the substrate, similar to

Equation (2.35). Furthermore, all use a Dirichlet boundary condition at the bottom

of the substrate rather than the Newton law of cooling used here (Equation (2.37)).

[126] arrive at a leading order temperature equation through arguments similar to

ours above. Their model also retains the in-plane diffusion term, ∇2 · (h∇2Tf) in

Equation (2.34), but considers radiative heat losses through the liquid-air interface

to be dominant rather than the heat loss through the substrate. One important

difference between our model (A) and that of [126] is that in (A) volumetric heating

is considered, which depends on the local value of the film thickness. This fully couples

the fluid and thermal problems, whereas the heating mode considered by Shklyaev

et al. [126] (heating from the substrate below) does not depend directly on the film

thickness. Atena & Khenner [7] also assume such volumetric heating but consider

the case where the internal heat generation is promoted to leading order so that

z-dependence is retained in the film temperature, leading to a more computationally

demanding formulation.

2.3.2 Free Surface Evolution

Each of our heat conduction models couples to the film evolution problem, which must

be solved simultaneously. Here we briefly summarize the long-wave approximation

that we utilize in all our simulations, which effectively reduces the NS equations

to a 4th order PDE for film thickness, h. To retain maximum generality and

reasonable tractability, we allow both viscosity and surface tension (which appears

in boundary conditions (2.8)–(2.10)) to vary with temperature but treat material
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density, specific heat, and thermal conductivity as fixed at their respective values at

melting temperature. We present forms for both surface tension and viscosity that

utilize the average free-surface temperature, defined for our purposes by

T =
1

(2Nπ)2

∫ Nπ

−Nπ

∫ Nπ

−Nπ
(Tf |z=h) dxdy. (2.40)

We assume that surface tension depends linearly on temperature in the following

sense:

γ = 1 +
2Ma

3
(T − 1) + ε2

2Ma

3
∆T +O(ε4) = Γ + ε2

2Ma

3
∆T +O(ε4), (2.41)

where Ma is the Marangoni number, given by Ma = (3γTTmelt)/(2γf), where γT =

(γf/Tmelt)dγ/dT |T=1 is the change in surface tension with temperature when the film

(on average) is at melting temperature, T = 1 (the factors of 2/3 are used for later

convenience); and ∆T is given by

∆T = Tf |z=h − T . (2.42)

Since T depends only on time, Equation (2.41) can be interpreted as defining

a surface tension that varies in time (at leading order) due to variations in the

average temperature, and in space (at higher order), due to spatial variations in

temperature. This asymptotic form of γ proposed in Equation (2.41) provides a

consistent balance in the normal and tangential stress balances presented below. The

temperature dependence of the dimensionless viscosity,M = µ/µf , is modeled by an

Arrhenius-type relationship, which we take as

M(t) = exp

(
E

RTmelt

(
1

T
− 1

))
, (2.43)

where R = 8.314JK−1mol−1 is the universal gas constant and E is the activation

energy [49].
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To leading order in ε2 the normal and tangential stress balances (Equations

(2.8)–(2.10)) are:

p = −3Γ∇2
2h− 3Π(h), on z = h, (2.44)

M∂z(u, v) = 2Ma∇2 (∆T ) , on z = h. (2.45)

To obtain an evolution equation for film thickness, we express conservation of mass

in the form

∂th+∇2 · (hu) = 0, (2.46)

where u is the film-averaged (in-plane) velocity, u = h−1
∫ h

0
(u, v) dz. To determine u

and v, we expand pressure and velocity fields in Equations (2.1)–(2.3) to leading order

in ε, assume Γ is O(1), and apply the boundary conditions (2.44) and (2.45), together

with the kinematic condition (2.7), to obtain the leading order velocity profile,

(u, v) =
1

M

[(
z2

2
− zh

)
∇2p+ 2zMa∇2 (∆T )

]
, (2.47)

and z-independent pressure, p. Equation (2.44), therefore, gives the pressure

throughout the layer and∇2p is found by taking the gradient of (2.44). After plugging

(2.47) into (2.46) we then arrive at the thin film equation,

∂th+∇2 ·
[

1

M

(
h3∇2

(
Γ∇2

2h+ Π(h)
)

+ h2Ma∇2 (∆T )
)]

= 0. (2.48)

Following the time derivative term in Equation (2.48), the terms (from left to right)

represent the capillary, disjoining pressure, and Marangoni terms, respectively. In

general, Equation (2.48) describes the evolution of a nanoscale thin film and is

applicable for any of our three thermal models (A), (F), or (1D) by using ∆T

(Equation (2.42)) and T (Equation (2.40)) from the appropriate model.

Equation (2.48) is already sufficiently general to incorporate in-plane variation

of viscosity. For model (A), this may be accomplished by using T
(0)
f in place of T
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in equation (2.43). This is an additional advantage of (A) that is not immediately

shared by (F) or (1D) (including spatial dependence of viscosity is more complex with

these models due to the dependence of temperature on z, as discussed further in the

next section).

Although the choice of scales made at the start of Section 2.3 is standard in

the long-wave approximation (e.g., [103]), the introduction of heat conduction adds

significant complications, and it is important to check for consistency. For example,

to retain surface tension to leading order in Equation (2.48), the velocity scale must

be such that Γ = O(1). This leads to the specific choice of time scale ts, which may be

slower than the (nanoseconds) duration of the Gaussian pulse. Further discussion of

the choice of scales is provided in Appendix A.1.1. We note that as a consequence of

our chosen scalings, it would be asymptotically consistent to replace Equations (2.34)

and (2.35) by their quasi-steady analogues; however, solving the resulting boundary

value problems is numerically more complicated (and does not affect results), hence

we retain these time derivatives in the formulation.

2.4 Results

For simplicity, we limit our considerations to two spatial dimensions, eliminating

y-dependence, so that the film’s free surface is at z = h(x, t). In Section 2.4.1, we

perform linear stability analysis (LSA), which provides a framework for describing

instability growth and motivates our choice of initial film profile(s). Section 2.4.2

outlines the setup of the simulations, including the initial conditions and numerical

procedures. Sections 2.4.3 and 2.4.4 show simulation results for both film and thermal

evolution. In Section 2.4.3 we compare the thermal models. In Section 2.4.4, we

(almost) exclusively use (A) to solve for heat conduction and allow the surface tension

and viscosity to vary with temperature. For what follows, we define the spatially-
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averaged film temperature,

Tavg =
1

2Nπ

∫ Nπ

−Nπ

1

h

∫ h

0

Tf dzdx, (2.49)

where the film temperature Tf is found using model (1D), (F) or (A) (leading-order

temperature for (A)).2 The parameters used are as given in Table A.1, except where

specified otherwise.

2.4.1 Linear Stability Analysis (LSA)

To provide insight into the mechanism by which films dewet, we carry out linear

stability analysis (LSA). Consider a uniform film of height h0, perturbed as follows

h(x, t) = h0

(
1 + δeikx+βt

)
,

where k is the wavenumber, β is the growth rate, and δ � 1 is the amplitude. A more

complete analysis could also incorporate independent perturbations to temperature

profiles, as was done by [126]; for simplicity we do not take this approach. We also

neglect, for now, the influence of thermal gradients on film instability by setting

Ma = 0 in Equation (2.48). LSA then provides the following dispersion relation,

β(k) =
1

M
h3

0k
2
(
2− Γk2

)
. (2.50)

From Equation (2.50), it is immediately apparent that viscosity sets the timescale

of the perturbation growth/decay. The stability of the film, on the other hand, is

controlled by the surface tension. For our purposes we only consider perturbations

that grow (β > 0 when k2 < 2/Γ). The wavenumber km corresponding to maximum

growth is found from Equation (2.50) by setting ∂β/∂k = 0. The wavelength of

maximum growth Λm and the maximum growth rate βm = β(km) can then be written

2For model (A) this is exactly the 2D free-surface average given by (2.40). For models (F)
and (1D) it is the average temperature of the entire film.
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in the simple form:

Λm = 2π
√

Γ, βm ≡
h3

0

ΓM
. (2.51)

Since increasing temperature decreases Γ and M (see Equations (2.41) and (2.43)),

higher temperatures will lead to smaller Λm and larger βm. In what follows next, Λm

will be used to define simulation geometries. We note that Λm and L are related when

Γ = 1 via Λm = λm/L = 2π, where the expression for λm is given in Appendix A.1.2.

2.4.2 Simulation Setup

Here we describe the details of the simulations. The numerical solution of (2.48)

is obtained using an approach adapted from [31] with uniform grid size, ∆x = h∗

(h∗ is defined in Equation (2.19) and is fixed for all simulations as h∗ = 0.1),

which is sufficient to ensure accuracy. Models (F), (1D), and (A) are all solved

using central difference spatial discretisation. Model (F) utilizes a mapping onto a

rectangle to account for the moving boundary (this is not needed for models (1D)

and (A) due to lack of in-plane diffusion and lack of z-dependence, respectively); see

Appendix A.3.1 for details. For (1D) temporal discretisation is performed using the

Crank-Nicolson scheme, while for (A) an implicit-explicit (IMEX) scheme is used (see

Appendix A.3.2). Model (F) is solved using an alternating direction implicit (ADI)

method, treating mixed derivative terms explicitly. Adaptive time stepping is used

to ensure a tolerance of 10−3 maximum allowable relative error in temperature and

film thickness. Note that the time-stepping tolerance criteria must be satisfied for

both film and heat evolution equations in order to proceed with a successful iteration

(a point to which we return later). No-flux boundary conditions ∂xh = ∂3
xh = 0

are imposed at x = ±Nπ (hu = 0 from Equation (2.46)). The domain length,

2Nπ = NΛm(Γ = 1), is now set by fixing N = 1 or N = 20. For N = 1, the initial
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film profile is set to represent a small perturbation to a uniform film thickness,

h(x, 0) = h0

(
1− δ cos

(
2πx

Λm

))
, (2.52)

where δ = 0.01. We refer to the corresponding simulations as those with domain

length Λm. For N = 20 the following initial film profile is imposed:

h(x, 0) = h0

[
1 + δ

40∑
i=1

Ai

(
cos (2πx/λi) + sin (2πx/λi)

)]
, (2.53)

where the amplitudes Ai are randomly chosen in [−1, 1] and λi = 2Λm/i. Similarly,

we refer to simulations that use Equation (2.53) as those with domain length 20Λm.

For both values of N , the film and substrate are each initially set to the ambient

temperature,

T
(0)
f (x, 0) = Tf(x, z, 0) = Ts(x, z, 0) = Ta.

The numerical solutions for Tf and Ts are found first, with the film static, since

the film is initially solid (Ta < 1). Once the film is melted (we define this shortly)

the solutions for h, Tf , Ts are then iterated successively. The flow of the numerical

algorithm is as follows:

• Film solid and static.

– Update Tf .

– Update Ts.

– Repeat the previous 2 steps until melted.

• Film melted.

– Set Γ,M,∆T . Update h(x, t).

– Update Tf .

– Update Ts.

– Repeat the previous 3 steps until re-solidification.
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• End.

Once the film is melted, both film evolution and heat conduction are solved at every

time step (although the numerical algorithm allows for a less frequent numerical

solution of the temperature equation relative to that of h). The film evolution

is coupled to the temperature profile through the material parameters Γ (surface

tension) andM (viscosity), and the Marangoni term ∆T in Equation (2.48). The film

is allowed to evolve (flow) only when the temperature is everywhere greater than the

melting temperature: it then evolves according to Equation (2.48). Subsequently, as

the laser heat source decays, the film temperature eventually drops below the melting

point and the film re-solidifies. All simulations shown in this chapter are ended when

the average temperature decreases to solidification temperature, Tavg = 1. In what

follows, we will be using the liquid lifetime (LL), defined as the time interval during

which the average film temperature is above melting (Tavg > 1).

2.4.3 Model Comparison with Fixed Parameters

We now compare models (F), (1D), and (A) holding the material parameters fixed.

As a basic check, we first consider a stationary flat film (h = h0), with material

parameters fixed at the values corresponding to the melting temperature (Γ = 1,M =

1). For such a film there is no in-plane heat conduction: the temperature Tf is a

function of time t only; and models (F), (1D), and (A) all agree.

Figure 2.2a plots average film temperature against h0 and time, showing that

temperature depends on film thickness in a non-monotonous manner. Figure 2.2b

plots the change of temperature with film thickness, ∂Tf/∂h, evaluated at h = 1

(this value of h will be used in later simulations), as a function of time. For early

times (t < 2.95), ∂Tf/∂h < 0, so that a decrease in film thickness corresponds to

an increase in temperature (thinner film is hotter). For later times ∂Tf/∂h > 0, so

that a decrease in film thickness leads to a decrease in temperature (thinner film
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Figure 2.2 (a) Contour plots of average film temperature for a static flat film.
(b) Rate of change of temperature with film thickness, ∂Tf/∂h as a function of time
for h = 1. At early times (t < 2.95) ∂Tf/∂h < 0 and later (t > 2.95) ∂Tf/∂h > 0.

is colder). This non-monotonic behavior of ∂Tf/∂h in time is due to the changing

balance between the heating from the source and the heat loss through the substrate

(see Appendix A.4 for more details).

We next consider evolving films, with the initial film profile given by Equation

(2.52). Figure 2.3a shows the evolution using model (F), though the behaviour is

also representative of (A) and (1D). Melting temperature is reached at t ≈ 0.54; by

time t = 3.32 the liquid film begins to evolve appreciably; at t = 4.52 significant film

evolution has occurred and the film first reaches the equilibrium film thickness; and

at t = 6.50 the film has fully dewetted. Figure 2.3b shows average film temperatures

using models (F), (1D) and (A), as well as the film height at the midpoint x = 0. The

average film temperatures are in good agreement before dewetting, but afterwards

model (1D) begins to deviate significantly from models (F) and (A), which show

excellent agreement for the entirety of the simulation. The cooling rate, dTavg/dt, is

faster for (1D) than for (F) and (A) since heat cannot diffuse laterally through the

film in (1D). This, in turn, produces a film that solidifies sooner (this will be discussed

further in Section 2.4.4). Despite this difference, the midpoint film height h(x = 0),

shown here for (F), is similar for all models (see also Figure 2.3a).
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Figure 2.3 (a) Evolution of film thickness when material parameters are fixed and
h(x, 0) is given by Equation (2.52), at a few representative time points. (b) Average
film temperature (see Equation (2.49)) and midpoint film thickness h(0, t) for the
film profiles given in (a). Deviation between the models appears after the the film
dewets. The material parameters are set to their melting temperature values, Γ = 1
and M = 1.
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Figure 2.4 Left: Free surface (z = h) temperature profiles, Tf |z=h and Right:
Midpoint (x = 0) temperature corresponding to times (a) t = 0.54, (b) t = 3.32,
(c) t = 4.52, and (d) t = 6.50. Here Γ = 1, M = 1 and the overlapping curves
correspond to models (F) and (A). Note the difference in vertical axis scales between
parts (a)-(d). Color code: (F) (red), (A) (green dashed), (1D) (blue).
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We next discuss the spatial variation of temperature. Figure 2.4 shows free

surface temperatures (left column) and film midpoint temperatures (at x = 0; right

column) at the times displayed in Figure 2.3a. Since the film thins at its midpoint

as t increases (see Figure 2.3b), the film domain (z > 0) shrinks from (a)-(d) in the

right column. The lateral spatial variation of temperature is seen to be much weaker

for models (F) and (A) than for model (1D) (left column), due to the inclusion of

lateral heat diffusion in (F) and (A); and the substrate/film midpoint temperatures

are lower for (1D) than for (F)/(A) in frames (b)-(d) (right column). In particular we

find that the temperature predictions of models (F) and (A) differ by at most 0.01%,

whereas (F) and (1D) differ by as much as 30%. For model (1D) the temperature

is initially higher at the film midpoint (x = 0) than at the edges, a situation that is

reversed at later times (e.g., Figure 2.4b). Using model (1D), therefore, may lead to

overestimated temperature gradients, such as in [135], which may significantly alter

the evolution of the film.

To emphasize the lateral temperature variation for all models, Figure 2.5 plots

the difference between the free surface temperatures at the thinnest (x = 0) and

thickest (x = ±π) parts of the film. Consistent with Figure 2.4a this temperature

difference for model (1D) is much larger than for models (F) and (A). All models

show the same trend: initially the thinnest part of the film is hottest, but ultimately

the thickest parts are hottest. We attribute this change of behaviour, which occurs

relatively early in the film evolution, to the combination of lateral diffusion and the

heat loss through the substrate (see Equation (2.30)).

To conclude this section, we summarize our main findings. We have compared

models (F), (1D), and (A) and found that (A) provides a much better approximation

to (F) than does (1D). After dewetting, the film cools more rapidly with model (1D)

than with (A) and (F) due to the neglect of in-plane thermal diffusion. Consequently,

the average film temperatures in model (1D) vary significantly from those predicted by
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Figure 2.5 (a) Difference between free surface temperatures at the thickest part of
the film (x = ±π) and the thinnest part (x = 0) for models (F) (red), (A) (green),
and (1D) (blue). (b) Zoom-in of results for models (F) and (A) from (a) to illustrate
behaviour more clearly. The black dashed line represents the horizontal axis where
T (x = π) = T (x = 0).
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models (F) and (A). From a computational point of view, since the film temperature is

independent of z in model (A), it is significantly more computationally efficient than

(F), and even more efficient than (1D). For illustration, we note that for a 255× 200

computational grid in x and z, the simulation times for a typical run reported in

this section are 73.4, 1.3, 4.8 hours for models (F), (A), and (1D), respectively, on a

reasonably fast workstation.

2.4.4 Variation of Material Parameters

In this section, we consider the effect of varying surface tension and viscosity with

temperature (see Equations (2.41) and (2.43)) and consider the influence of the

Marangoni effect, by comparing film evolution with Ma = 0 and Ma 6= 0. In the

previous section (as well as in additional tests, not reported here for brevity), we

have demonstrated that model (A) provides a good approximation to the full model

(F) with considerably less computational effort, and so henceforth, we will focus

on exploring the differences between models (A) and (1D). In this section, domain

lengths of Λm and 20Λm are simulated, beginning with the former (domain length of

Λm may be assumed until otherwise stated).

We focus first on the case where both surface tension and viscosity depend on

average temperature and are therefore time-dependent, Γ(t),M(t), but we ignore

the Marangoni effect (set Ma = 0 in Equation (2.48)). In the subsequent text,

any reference to time-dependent surface tension or viscosity, Γ(t),M(t), refers solely

to time-dependence through the average temperature. Figure 2.6a shows the film

thickness profiles and Figure 2.6b shows the free-surface temperature profiles, Tf |z=h,

at the thin (F) and thicker (�) parts of the film. We observe that model predictions

differ only after dewetting (B) and therefore the film thickness profiles in (1D) and (A)

remain nearly identical. After dewetting, the two models exhibit marked differences

in the temperature profiles. The large difference in cooling rates between (A) and
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Figure 2.6 (a) Film thickness profiles (simulated with (F), but representative of
(A) and (1D) also) for times A (melting), B (dewetting), C (1D) re-solidification
and D (A) re-solidification. The markers in (a) represent x = 0 (F) and x = π (�).
(b) Free surface temperature at F and � for (A) and (1D). The temperature profiles
agree until the film dewets (B). Then, (1D) temperatures vary significantly at F and
�, whereas (A) produces similar temperatures at both locations. Surface tension and
viscosity vary in time, but Marangoni effect is not included (Ma = 0).
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Figure 2.7 Average film temperatures using models (A) and (1D) for Ma = 0 and
Ma 6= 0, and using Γ(t) andM(t). Points A-D correspond to those of Figure 2.6(a).
Near t = 0.54 (A), the film melts in both models. The models begin to deviate around
t = 1.72 (B) when dewetting occurs; from this point until solidification (which for
Ma = 0 occurs at C for (1D), D for (A); the times for the Ma 6= 0 cases are similar)
the temperature in model (1D) is lower than that in (A). The liquid lifetimes (LL)
are LL ≈ 4.73 (1D) and LL ≈ 5.94 (A).

(1D) is consistent with Figure 2.3b. For (1D), this leads to the thin part of the filmF

being significantly colder than the thicker parts � and the difference is exacerbated

by the retention of heat in the thick part of the film.

Figure 2.7 shows the average film temperatures for models (A) and (1D) with

Γ(t),M(t) as considered in Figure 2.6, for both Ma = 0 and Ma 6= 0. The Marangoni

effect seems to have only a very minor influence on Tavg for both models. Furthermore,

the rapid cooling seen in model (1D) leads to a significantly shorter liquid lifetime

(LL = 4.73) than that predicted by model (A) (LL = 5.94).

Figure 2.8 compares the results obtained with(out) temperature variation of

material properties. From Figure 2.8a, we immediately conclude that the Marangoni

effect is very weak, and will be ignored henceforth (Ma = 0 for the remaining results).
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Figure 2.8 (a) Midpoint film thickness, h(0, t), for the cases: surface tension
and viscosity fixed, Γ = 1,M = 1, with no Marangoni effect, Ma = 0 (red, solid
line); surface tension and viscosity fixed with Marangoni effect, Ma 6= 0 (black,
dash-dotted line); surface tension varies in time, Γ(t), with viscosity fixed and no
Marangoni (green, dashed line); viscosity varies in time, M(t), surface tension fixed
and no Marangoni (blue, dot-dashed line). In all cases model (A) was used to
calculate temperature. (b) Growth rate, β as a function of wavenumber, k, using
Equation (2.50) with Γ = 1 andM = 1 and no Marangoni effect, Ma = 0. The blue,
green, and red dots represent maximum growth rate extracted from the corresponding
simulations in (a).
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The weak Marangoni effect is, at least in part, due to the high thermal conductivity

of the film, which sets the thermal timescale and gives rise to the very weak spatial

variations in interfacial temperatures seen in Figure 2.4. The second observation is

that allowing surface tension to depend on time, Γ = Γ(t), has a small but measurable

effect on the results. With this dependence included, the film instability appears to

develop faster than in the constant-Γ case (compare the green dashed curve with the

red solid curve in Figure 2.8a). The third observation is that the time-dependence of

viscosity has by far the largest effect on the film instability development, leading to

much faster dewetting.

We now revisit the predictions of LSA and compare them to simulation results.

Figure 2.8b plots the dispersion curve according to Equation (2.50), for the constant

parameter case Γ = 1 and M = 1 (with Ma = 0). To estimate the maximum

growth rate, βm, in our numerical simulations, we assume the film perturbation grows

exponentially at early times, consistent with LSA: h = h0(1 + δ exp(ikmx+ βmt)),

where km is the corresponding wavenumber.3 We then perform a best linear

fit of ln((h(0, t) − h0)/(δh0)) versus t for early times. The red, green and blue

dots correspond to growth rates βm extracted from the corresponding colour-coded

simulations in Figure 2.8a. The film with parameters fixed (red) grows at the rate

predicted by LSA, whereas the film with time-dependent surface tension (green) grows

at a slightly faster rate. The growth rate in the time-dependent viscosity case (blue) is

similar to the time-dependent surface tension case, despite the much faster instability

development in Figure 2.8a. This indicates the relevance of the nonlinear part of

instability growth.

To highlight further the significance of time-dependent viscosity, Figure 2.9

compares film evolution for the constant (a) and variable (b) viscosity cases. The

3Though in practice perturbations of many different wavenumbers exist, the one usually
most apparent in the unstable regime is km.
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Figure 2.9 Comparison of free surface evolution h(x, t) when (a) viscosity is fixed
at the melting value, M = 1, and (b) viscosity varies in time according to average
temperature, M(t) (see Equation (2.43)). In both cases surface tension is fixed at
the melting value Γ = 1, and all times plotted are prior to film re-solidification. In
this and in the figures that follow, Ma = 0. In (a) we find that re-solidification
happens before dewetting (note the vertical axis scale), while the converse is true for
(b), indicating the importance of variable viscosity. The times are as follows: t = 0
(red), t = 1.47 (blue), t = 1.75 (orange), t = 1.88 (black dashed), t = 1.92 (light
blue), t = 2.21 (green).
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difference in film evolution is significant, with much larger instability growth rate for

time-dependent viscosity.

To summarize, we have simulated and compared the results with and without

the Marangoni effect, with and without time-varying surface tension, and with and

without time-varying viscosity. We have found that allowing either surface tension

or viscosity to depend on time through the average temperature speeds up the

dewetting mechanism. In particular, varying viscosity has the strongest impact on

film dynamics.

For completeness, we also consider the possible variation of viscosity with x.

For model (A), since T
(0)
f (x, t) is a function only of the in-plane spatial variable x

(and time t), we may replace T in the definition of M (Equation (2.43)) by T
(0)
f , so

that viscosity, which we denote in this case by M(x, t), depends on both space and

time, namely:

M(x, t) = exp

(
E

RTmelt

(
1

T
(0)
f (x, t)

− 1

))
. (2.54)

For model (1D) on the other hand, the calculated film temperature Tf(x, z, t) depends

on both spatial coordinates x and z, so obtaining an analogous model for M(x, t)

requires some additional assumptions. We use the free-surface temperature Tf |z=h, so

that viscosity takes the form

M(x, t) = exp

(
E

RTmelt

(
1

(Tf |z=h)
− 1

))
. (2.55)

The film thickness profiles produced in theseM(x, t) cases (both (1D) and (A))

are similar to the M(t) cases shown above and are thus omitted from the main text

for brevity (an example is shown in Appendix A.2). Figure 2.10 plots the average

film temperature profiles for each of the models; we observe that the temperatures

agree up until point A, at which the film dewets for variable viscosity. The inset

shows that, with model (A), the variable viscosity cases (M(t),M(x, t)) lead to a
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Figure 2.10 Average film temperatures with model (A): Γ = 1,M = 1 (red solid
line); Γ(t),M = 1 (green dashed line); Γ = 1,M(t) (cyan dash-dotted line); Γ = 1,
spatiotemporally-varying viscosityM(x, t) (blue dashed double-dotted line). Average
film temperatures with model (1D): Γ = 1,M(t), (magenta dash-dotted line) and
Γ = 1,M(x, t), (black dash-dotted line). In all cases the domain length is Λm from
LSA. Point A marks the film dewetting time for the time-varying viscosity M(t)
case. Inset: zoomed-in image of solidification point for the model (A) cases. Here,
including M(t) or M(x, t) leads to a slightly longer LL than the constant viscosity
(M = 1) cases. Contrast with model (1D) where variable viscosity produces a LL
that differs significantly from the rest. Simulations are marked 1-6 and placed near
the curves as a guide. 1-4 were simulated with (A) and 5-6 with (1D).
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slightly longer LL than if viscosity is constant, M = 1. This may be important

considering that the films dewet much nearer the resolidification time when M = 1.

This difference, however, is always small relative to that between models (A) and (1D).

When viscosity varies with time and/or space, model (1D) predicts LLs that are far

shorter. Furthermore, for both models the results forM(x, t) andM(t) are identical.

This is, we believe, due to the film temperatures not deviating far from the respective

average temperatures (even for model (1D) where x-variation of temperature is much

larger than for (A), the temperature deviates from the average by at most 30%, which

appears to be insufficient to cause significant differences between results forM(t) and

M(x, t)). We conclude, therefore, that to simulate cases where film dewetting occurs

much faster than resolidification, the dependence of viscosity on average temperature

is the most important effect to include.

To emphasize the importance of accurately modeling the film viscosity, we

present simulation results for domains of length 20Λm, with films subjected to initial

random perturbations according to Equation (2.53). Figure 2.11 plots film thickness

for (a) M = 1 and (b) M(t), both using model (A) with Γ = 1 and Ma = 0.

We again see that films with time-dependent viscosity (Figure 2.11b) dewet much

faster than those with constant viscosity (Figure 2.11a). The black curve represents

the solidification time of (a) (nearly the same as that for (b)), and hence represents

the final configurations of both simulations. The main finding is that the M = 1

case does not fully dewet, whereas the M(t) case does. This difference in dewetting

time scales is consistent with the earlier results for domains of length Λm, except

that there the film was completely dewetted at solidification for both cases. We

note slight coarsening in Figure 2.11a,b with some droplets merging, leading to fewer

than 20 resultant (primary) droplets. The film height evolution for model (1D),

casesM(t),M(x, t), and model (A) caseM(x, t) is identical to Figure 2.11b. In the

Appendix A.2, we show a case where models (1D) and (A) lead to diverging results
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Figure 2.11 Evolution of films subject to initial random perturbations for (a)
constant viscosity, M = 1, and (b) time-dependent viscosity, M(t). Color code: red
t = 0; blue t = 1.66; green t = 2.30; orange t = 3.31; black t = 6.47 (re-solidification
time for (a)). The domain length was taken to be 20Λm and all simulations were
done using model (A) with Γ = 1. The h-axis is plotted on a log scale to emphasize
satellite droplet formation.
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(for a different choice of parameters). We omit the temperature profiles here as the

short LL for (1D) and identical M(t) and M(x, t) results are consistent with the

results on domain length Λm.

To summarize the results on long domains of length 20Λm, we have found that

including the time-dependence of viscosity permits the films to fully dewet in the

span of the liquid lifetime whereas keeping viscosity fixed at the melting temperature

value (M = 1) produces films that dewet only partially during the liquid phase. Any

effects due to spatial variation of viscosity appear to be irrelevant here. Finally, the

liquid lifetime is much shorter for model (1D) than model (A), as expected.

2.5 Conclusions

To conclude this chapter, we have formulated three models for heat conduction

in nanoscale thin films on thermally conductive substrates: a full model (F) that

accounts for heat conduction in all directions in both film and substrate; an

asymptotically-reduced model (A) that exploits a disparity in length scales in both

film and substrate to derive an equation governing in-plane diffusion of heat within

the film coupled to out-of-plane heat diffusion in the substrate; and a one-dimensional

model (1D) model that simply neglects any in-plane diffusion in both film and

substrate. In all cases a thin film model is used to describe the associated fluid

dynamics. The main finding is that including in-plane diffusion in the thermal

modeling influences strongly the film evolution. In particular, neglecting in-plane

diffusion is found to amplify (artificially) in-plane thermal gradients and expedite

film cooling. We have found that model (A) is significantly more accurate than (1D)

while being considerably more computationally efficient than (F). We have also found

that when material parameters are allowed to vary in time through the average film

temperature, model (A) produces liquid lifetimes significantly longer than those of
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model (1D), due to the absence of lateral heat conduction in (1D). Therefore model

(A) combines both accuracy and efficiency.

With regard to the individual (dimensionless) material parameters that arise

in our models, Ma (Marangoni number), Γ (surface tension parameter) and M (film

viscosity), we find that the variation of viscosity with time has the greatest effect

on model outcomes. By including time-dependent viscosity, films exposed to laser

heating (on both small and large domains) fully dewet while in the molten state. In

contrast, when viscosity is held constant, dewetting occurs much later in the cooling

process, which may result in partial droplet formation only. This suggests strongly

that time-dependent viscosity is needed to represent accurately experiment-like

behavior. Using a spatiotemporally varying viscosity, M(x, t), produces essentially

identical results to the case where viscosity depends only on time. Introducing time

dependence of the surface tension (Γ(t)) has a larger effect on the film instability

growth rate (increasing it) than does the Marangoni effect (Ma 6= 0), though the

effect is always small, and insignificant when compared to the variation of viscosity

with time. The Marangoni effect was found to be negligible in all cases considered.

Although model (A) is found to be useful in the current setting, its validity

relies on a number of underlying assumptions. Therefore, its applicability to other

problems must be carefully verified prior to use. In this chapter, we have considered

the time and space variation of only selected physical parameters (surface tension

and viscosity) through temperature, and have not considered how temperature

dependence of other material parameters, such as thermal conductivity and density,

may influence the results. Furthermore, all simulations presented here are restricted to

the two-dimensional geometry: much more significant computational benefit of model

(A) is expected in three spatial dimensions (3D). In Chapter 3, we will extend model

(A) to include thicker substrates and temperature-varying thermal conductivity, as

well as present simulations in 3D.
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CHAPTER 3

MODELING SUBSTRATE THERMAL EFFECTS IN THE

DEWETTING OF NANOSCALE THIN FILMS

3.1 Overview

We consider metal films of nanoscale thickness, deposited on a much thicker substrate

and melted by an external laser heat source. Our primary focus is on the influence

of the underlying substrate on the temperature and the evolution of the film.

We consider the influence of substrate thickness, Hs, the rate of heat loss in

the substrate (characterized by a Biot number, Bi), and nonlinear effects due to

temperature-dependent thermal conductivity. We show that a balance between

absorption and heat loss in the substrate separates the (Hs,Bi) parameter space

into two regions, where the maximum (spatially-averaged) film temperature, Tpeak, is

either positively or negatively correlated to substrate thickness depending on the size

of Bi. Using an in-house 3D GPU code that solves the governing partial differential

equations, we simulate both film evolution and heat conduction on large domains. We

find that including the temperature dependence of substrate thermal conductivity in

the model decreases Tpeak, modulating film viscosity and hence the dewetting speed,

leading to (in some cases) partial drop formation only. The rate of heat lost in the

substrate is found to influence peak temperatures and liquid lifetimes more strongly

than substrate thickness (Hs). Nevertheless, changes in both Bi and Hs can lead to

films that solidify in place prior to full dewetting due to the strong dependence of

film viscosity on temperature.

3.2 Introduction

This work explores the role of thermal effects in the dynamics of thin films on the

nanoscale, which has become increasingly important in nanotechnology [54], electronic
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coatings [147], and photovoltaics [8], as well as numerous other applications. Thin

film dynamics is well-studied, with a diverse range of applications including liquid

crystals, paint drying, and the flow of lava (see the review by Craster & Matar

[27]). A particular challenge can be to model external effects that couple to the fluid

dynamics of the film. For example, certain studies have investigated the influence

of an electric field on the dynamics of thin liquid films [23, 93, 137], the competition

between chemical instabilities in multi-mixture liquids and their dewetting [5, 32,

46, 96, 133], and even the effect of permeable underlying substrates [28, 146]. The

modeling of thermal effects in nanoscale thin films has received an increasing share of

attention, in particular in the context of the pulsed laser irradiation of liquid metal

films deposited on thermally conductive substrates [7, 39, 118, 119, 124, 135], inspired

by a number of potential applications (e.g., arrangements of liquid metal droplets may

be used as a catalyist for growing carbon nanowires [54]). Numerous experimental

works have investigated the assembly mechanism of droplets that result from liquified

metal films [78, 79, 144]. From a mathematical perspective, accurate modeling and

simulation of such effects is challenging since one must account for phase changes,

temperature dependence of material parameters, and substrate effects.

Recently, we developed a novel thermal model for a thin molten metal film

evolving on a thin substrate that accounts for many of these effects and their influence

on film evolution [3]. We used long wave theory (LWT) to develop a consistent model

for the coupled fluid/thermal dynamics. A key finding was that to leading order, film

temperature is uniform across the film thickness, with spatial and temporal evolution

governed by an in-plane diffusion equation with additional terms accounting for the

laser heating and heat loss to the substrate. Neglecting in-plane diffusion in the

film [33, 124, 135] leads to inaccurate results for heat transport and may shorten

liquid lifetimes. A second focus of the work by Allaire et al. [3] was on the influence

of temperature-dependent surface tension and viscosity on the dewetting of the films.
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It was found that including temperature-varying viscosity is crucial for accurately

simulating films that dewet during the liquid phase. Although the dynamics of the

film were coupled to the thermal transport in the substrate, the study was limited to

asymptotically thin substrates, and the influence of substrate physical characteristics

on film temperature and fluid dynamics remains to be addressed, especially since in

practice, substrates may be much thicker than the metal film.

Many other authors have developed thermal models in the present context.

Shklyaev et al. [126], for example, used LWT to derive a model similar to that

provided in our previous work [3], but omitting laser heating. There, the underlying

substrate, due to the assumed difference in thermal conductivities of substrate and

film, is modeled simply by a constant temperature gradient rather than solving for the

temperature self-consistently. Batson et al. [10] found that self-consistently solving

for substrate temperature is crucial for the development of oscillatory free surface film

instabilities, which have been previously observed, for example, when thermocapillary

effects are present in multi-layer film configurations [11] and when the film is heated

from below by a sufficiently low conductivity substrate [126]. Atena & Khenner [7]

developed a model for liquid metals that accounts for heat transport in the substrate

as well as laser heating, but considers heat loss at the film surface to be relevant

(see also work by Oron [102] and Saeki et al. [118, 119] in this context), leading to

differences with the model of Allaire et al. [3]. In contrast, other works assume heat

loss to the substrate to dominate over any free surface losses [33,135]. Many authors

have investigated the significance of temperature-dependent material parameters.

Viscosity, for example, is often modeled by an Arrhenius dependence [102,124,135] on

temperature. Allaire et al. [3] showed that it is sufficient to use the spatially-averaged

film temperature in the Arrhenius definition of viscosity. Trice et al. [135] explicitly

modeled temperature dependence of a number of other material parameters for the

film, but did not consider the variation of substrate parameters, such as thermal
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conductivity, with temperature. Regarding substrate thermal conductivity, little is

known about its value at high temperatures, but a cubic dependence on temperature is

found to provide a good fit to experimental data at low temperatures [73]. Following

Combis et al. [26], the approach used in the present work is to define a thermal

conductivity that utilizes this cubic relationship at low temperatures, supplemented

with manufacturer data [60] at higher temperatures.

Our focus in this work is to investigate the role that the underlying substrate has

on both the heating of the film and its free surface evolution. In particular, we focus

on the role of substrate thickness, heat loss through the lower substrate boundary,

and nonlinear effects due to temperature varying thermal conductivity. The thermal

model developed in our earlier work (asymptotically thin substrates, constant thermal

properties) [3] is extended to account for thick substrates that have temperature-

dependent thermal conductivity. Similarly, temperature variation of surface tension

and viscosity are also included, but Marangoni effects are neglected since these were

demonstrated to be very weak [3].

The remainder of the chapter is organized as follows. In Section 3.3, we

present the thin film equation governing the fluid dynamics and the extension of

the thermal model developed previously [3]. The main results are presented in

Section 3.4. In Section 3.4.1 we outline the numerical scheme used to solve our

models. In Section 3.4.2, we present results that highlight effects due to thermal

transport only, in the absence of film evolution (the film surface is held flat and static

even when above melting temperature); in particular the correlation between peak

film temperatures and substrate thickness, as the heat loss from the substrate varies

(via tuning the Biot number, Bi). In Section 3.4.3 we consider evolving 2D films and

investigate the influence of thermal effects on the film dynamics. In Section 3.4.4, we

present large-scale 3D numerical results for both film evolution and heat conduction.

The main finding is that in both 2D and 3D the substrate heat loss, thickness, and
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thermal conductivity temperature dependence may influence the final solidified film

configuration, and depending on their values, films may either dewet fully or only

partially by the time they resolidify. In Section 3.5, we present the conclusions and

directions for future work.

3.3 The Model

Consider a metal film of nanoscale thickness, H, and characteristic lateral length-scale

L, which is initially solid and in contact (at z = 0) with a thermally conductive solid

SiO2 substrate, with thickness Hs that may be much larger than that of the film (for

our setup we consider substrates at least 5 times thicker than the film). The whole

assembly is placed upon another, thicker, slab of Si. The metal film is heated by

a laser and may change phase (solid to liquid and vice-versa). The basic setup is

sketched in Figure 3.1. We define the aspect ratio of the film to be ε = H/L � 1.

For clarity we list a number of underlying assumptions:

• the film has free surface, z = h(x, y, t) and is thin, ε� 1;

• inertial effects are negligible;

• liquid-solid interactions are relevant and can be modeled by a disjoining
pressure;

• the laser energy is absorbed volumetrically in the film, but the substrate is
optically transparent;

• the film is in perfect thermal contact with the SiO2 substrate at z = 0;

• heat loss in the film is only through the substrate and not through radiative
losses;

• the underlying SiO2 substrate is thick relative to the film, H/Hs � 1;

• the Si slab underneath the SiO2 is a perfect conductor so that it remains at
ambient temperature (this is reasonable since its thermal conductivity is much
larger than that of SiO2) but there is contact resistance at the interface z = −Hs;
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• the surface tension and viscosity of the film as well as the thermal conductivity
of the substrate may vary with temperature; and

• the film does not evaporate.

Figure 3.1 Schematic of a three-dimensional (3D) film with free surface z = h(x, t),
deposited on a substrate that may be much thicker than the film and is in contact
with an even thicker Si slab underneath.

We refer to the in-plane coordinates as x, y and the out-of-plane coordinate as

z and define the in-plane and out-of-plane length scales as L and H, respectively.

Following our earlier work [3], we choose the in-plane velocity scale U = ε3γf/(3µf)

(where γf and µf are surface tension and viscosity at melting temperature, Tmelt)

so that the time scale, L/U , is comparable to the duration of the laser pulse, but

the model also retains surface tension effects to leading order in ε. Subsequently,
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we choose εU , Tmelt, µfU/(ε
2L) and γf as the out-of-plane velocity, temperature,

pressure, and surface tension scales, respectively. We take the domain length/width

to be 2Pπ, where P is a positive integer. In what follows, the words two-dimensional

and three-dimensional, are referred to as 2D and 3D, respectively.

We treat the film as an incompressible Newtonian fluid, assume that the

viscosity and surface tension may vary in time through the average film temperature

(details to be specified below; in Appendix A.11 we consider spatial dependence as

well), but fix material density and heat capacity at their melting temperature values.

Since our focus is on substrate effects we also assume the film thermal conductivity

is fixed at the melting temperature value. However, for thick substrates, large

temperature gradients could lead to significant differences in thermal conductivity

across the depth. Therefore, we allow thermal conductivity of the substrate to

vary with temperature and use its value at ambient temperature, ks, as the thermal

conductivity scale. For what follows we use Tf and Ts to denote the temperatures of

the film and substrate, respectively. We assume that surface tension depends linearly

on average temperature, to leading order, and is given by:

Γ = 1 +
2Ma

3
(Tavg − 1), (3.1)

where the Marangoni number Ma and time-dependent average free surface temper-

ature, Tavg(t), are given by

Ma =
3γTTmelt

2γf

, Tavg(t) =
1

(2Nπ)2

∫ Nπ

−Nπ

∫ Nπ

−Nπ
Tf dxdy. (3.2)

Here, γT = (γf/Tmelt)dγ/dTavg|Tavg=1 is the change in surface tension with temperature

when the film (on average) is at melting temperature, Tavg = 1. For the remainder of

the text we omit the argument of Tavg(t) with the understanding that it is dependent

on time. It should be noted that more general expressions for surface tension exist

that account for spatial variation of temperature (Marangoni effect). It has been
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shown, however, that the Marangoni effect has little influence on film evolution in the

present context and thus we omit spatial dependence of Γ [3].

We follow the long-wave theory approach [27] adopted in our earlier work [3],

which reduces conservation of mass and momentum to a 4th order nonlinear PDE for

film thickness, h, written in the general form ∂th+∇2 ·(hu) = 0, where∇2 = (∂x, ∂y)

is the in-plane gradient, and u = (u, v) is the depth-averaged in-plane fluid velocity,

related to the pressure gradient. For the remaining text, vector quantities are in bold

and scalar quantities are not. We assume that the pressure at the interface, z = h, is

given by a modified Laplace-Young type boundary condition, which includes both free

surface curvature and also liquid-solid interactions, modeled by a disjoining pressure

Π(h). Although various forms of Π(h) have been proposed [85], we use

Π(h) = K

[(
h∗
h

)n
−
(
h∗
h

)m]
, K =

AHL

6πεγfh3
∗H

3
. (3.3)

In Equation (3.3) the terms on the right-hand side represent the repulsive and

attractive components; h∗ is the equilibrium film thickness, where the attraction

and repulsion balance; AH is the Hamaker constant [52]; and n > m are positive

exponents. In this manuscript, we use (n,m) = (3, 2) following Gonzalez et al. [52],

who showed that this exponent pair is appropriate for liquid metals. The thin film

equation can then be written as

∂th+∇2 ·
[

1

M
(
h3∇2

(
Γ∇2

2h+ Π(h)
))]

= 0, (3.4)

where M = µ/µf is the dimensionless viscosity, assumed to vary exponentially with

average temperature via an Arrhenius law,

M(t) = exp

(
E

RTmelt

(
1

Tavg

− 1

))
, (3.5)

where R = 8.314JK−1mol−1 is the universal gas constant, and E is the activation

energy [49]. Other approaches have been used to implement temperature dependence
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of viscosity; see for example, the work of Craster & Matar [27] for an alternate

form in the context of thin films, or that of Kaptay [69] for a comparison of

Arrhenius and statistical mechanics approaches, or Oron [103], who derives an analog

of Equation (3.4) that includes z-dependence of viscosity. We follow the approach

of Seric et al. [124] in utilizing the Arrhenius expression Equation (3.5), but we use

average film temperature and thus omit spatial dependence of viscosity (which has

been shown to lead to essentially identical results to those obtained using spatially

dependent viscosity [3]). Following the time derivative term in Equation (3.4),

the terms (from left to right) represent the capillary and disjoining pressure terms,

respectively.

Equation (3.4) describes the evolution of the nanoscale thin film, which is

coupled to its temperature. The temperature is determined using a similar approach

to that of our previous work [3], where a thin substrate was assumed to allow

for an asymptotic reduction of the heat flow problem in both film and substrate

regions. We assume (i) the film is heated volumetrically by a laser, but the SiO2

substrate is transparent, (ii) heat conduction in the film is much faster than the

evolution of the film, (iii) substrate heat conduction and film evolution occur on

similar timescales, and (iv) film heat loss is only through the SiO2 substrate, which

is in perfect thermal contact with the film, and itself loses heat to an underlying

Si substrate of much higher thermal conductivity. To extend our previous work we

present a formulation that includes temperature-varying thermal conductivity in the

substrate, k(Ts) (k(Ta) = 1 represents dimensionless thermal conductivity at ambient

temperature). Furthermore, we now consider the substrate to be thick, but with

negligible in-plane diffusion (in Appendix A.6, we show this assumption to be valid).

The leading order film temperature is found to be independent of z and the model
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describing the transport of heat in the film/substrate system is then [3]

hPef∂tTf = ∇2 · (h∇2Tf)−K (k(Ts)∂zTs) |z=0 + hQ, for z ∈ (0, h) , (3.6)

Pes∂tTs = ∂z (k(Ts)∂zTs) , for z ∈ (−Hs, 0) , (3.7)

Tf = Ts, on z = 0, (3.8)

k(Ts)∂zTs = Bi (Ts − Ta) , on z = −Hs, (3.9)

∂xTf = 0, on x = ±Pπ, (3.10)

∂yTf = 0, on y = ±Pπ, (3.11)

where the dimensionless parameters defined by

Pef =
(ρc)f UL

kf

, Pes =
(ρc)s UεH

ks

, K =
ks

kf

ε−2, Bi =
αsH

ks

,

are the film and substrate Peclet numbers, thermal conductivity ratio, and Biot

number, respectively. Following the time derivative in Equation (3.6), the terms

from left to right represent lateral diffusion, film heat loss due to contact with

the substrate, and the laser heat source, respectively. Equation (3.7) reflects the

assumption that heat flow in the substrate is affected by out-of-plane diffusion only.

Since the substrate thickness may actually be comparable in size to the domain

length, dropping lateral substrate diffusion is not necessarily a consequence of the

leading order approximation of heat conduction in ε, but rather an assumption,

justified later in Appendix A.6 by showing that in-plane derivatives of substrate

temperature are orders of magnitude smaller than those in the out-of-plane direction.

Equation (3.8) represents continuity of film/substrate temperatures and the nonlinear

boundary condition in Equation (3.9) represents heat loss from the SiO2 substrate

to the underlying Si slab, assumed to be at ambient temperature, Ta. Values of the

heat transfer coefficient, αs, in the definition of Bi are difficult to find in the literature

so in this work we consider Bi to be a variable parameter within the range given in
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Table 3.1. The lateral boundaries are thermally insulated (see Equation (3.10) and

(3.11)). The above model assumes that radiative losses are negligible relative to heat

loss to the substrate. By a simple energy argument, we find that the time scale on

which radiative losses are relevant is on the order of milliseconds, orders of magnitude

longer than the time scales considered here; see Appendix A.8 for more details.

We assume the film-averaged heat source, Q in Equation (3.6), representing

external volumetric heating due to the laser at normal incidence, is given by [124,135],

Q =
1

h

∫ h

0

F (t) [1−R(h)] exp [−αf (h− z)]dz, (3.12)

F (t) = C exp
[
− (t− tp)2 /(2σ2)

]
, C =

E0αfL
2

√
2πσtsHkfTmelt

,

where C is a constant proportional to the laser fluence, E0, the (scaled) absorption

length for laser radiation in the film is given by α−1
f , and the temporal shape of the

laser, F (t), is taken to be Gaussian centered at tp and of width σ = tp/(2
√

2 ln 2).

For the reflectivity of the film, R(h), we follow Trice et al. [135] and assume

R(h) = r0 (1− exp (−αrh)) ,

where r0 and αr are dimensionless fitting parameters, specified in Table A.3.
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Table 3.1 Dimensionless Parameters Based on Material parameters in Table A.3

Dimensionless Numbers Notation Value Expression

Aspect Ratio ε 0.347 H/L

Film Peclet Number Pef 1.42× 10−3 (ρc)fUL/kf

Substrate Peclet Number Pes 2.17× 10−2 (ρc)sUεH/ks

Biot Number Bi 10−3 − 103 αH/ks

Thermal Conductivity Ratio K 0.034 ks/(ε
2kf)

Range of Dimensionless Viscosity M 0.028− 1 µ/µf

3.4 Results

After outlining our numerical approach in Section 3.4.1, we consider 2D films with

free surface z = h(x, t) in Section 3.4.2 and Section 3.4.3, focusing on the influence

of substrate thickness, Biot number, and variable substrate thermal conductivity. In

Section 3.4.4 we expand our consideration to 3D films with free surface z = h(x, y, t).

3.4.1 Numerical Schemes

In the 2D case, Equation (3.4) for h(x, t) is solved using the approach of our earlier

work [3], with spatial discretization commensurate with the precursor thickness, ∆x =

h∗ = 0.1. Equation (3.4) can be rewritten as ∂th + ∂xJ = 0 for some flux J , and a

Crank-Nicolson scheme is used for the time-stepping, turning Equation (3.4) into a

nonlinear system of algebraic equations

hi(t+ ∆t)− hi(t)
∆t

=
1

2
Di(t+ ∆t) +

1

2
Di(t), i = 1, 2, . . . , N, (3.13)

where hi(t) ≈ h(xi, t), {xi} is a N-point spatial discretization, and Di is a

discretization of ∂xJ , at xi. Although any iterative method for solving nonlinear
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equations would suffice to solve Equation (3.13), we use Newton’s method; since

Equation (3.13) must be solved at each time-step, the rapid quadratic convergence

ensures faster computing times. The initial condition takes the form of a small

perturbation to a flat film h = h0,

h(x, 0) = h0 (1 + δ cos (x)) , (3.14)

where h0δ is the perturbation amplitude (|δ| � 1), and the wavelength of the

perturbation is equal to the domain length, 2π (see Table A.3 for the physical sizes).

A similar approach is used to solve Equation (3.7) for the substrate temperature

Ts, while for the film temperature, Tf in Equation (3.6), an implicit-explicit

methodology is used (see the appendix of Allaire et al. [3] for more details). The

film and substrate are initially fixed at room temperature,

Tf(x, 0) = Ts(x, z, 0) = 0. (3.15)

During the initial laser heating both film and substrate temperatures are found by

solving Equations (3.6)–(3.7) with the film flat and static until it melts, which we take

to be the time at which the minimum film temperature (over space) surpasses Tmelt.

Film evolution, film temperature, and substrate temperature are then sequentially

found at each time step (see Appendix A.12 for more details on the procedure). Once

the minimum film temperature decreases past Tmelt the film is considered solid. After

this time, only film and substrate temperatures are solved for; we no longer evolve

the free surface, which is frozen in what we refer to as its final configuration.

A successful time iteration requires that two criteria are met for both film

evolution and heat conduction: (i) the iterative method should converge to a relative

error tolerance of 10−9 in fewer than 10 iterations; and (ii) the relative truncation

error should be less than 10−3. If either (i) or (ii) are not satisfied, the time step
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is decreased and the equations are integrated again for that time. For more details

regarding the 2D numerical scheme see Appendix A.12.

For the 3D simulations, one needs to be careful with the choice of the

initial condition, so as to produce a surface h(x, y, 0) with perturbations that are

uncorrelated (between the x and y directions) and that excite a significant number of

Fourier modes (note that using simply a sum or a product of sines and cosines with

random amplitudes produces noise that is not random). Here we follow in spirit the

approach of Lam et al. [81] 1. The approach described in Appendix A.14 defines the

perturbation η(x, y), which is then used to define the initial condition by

h(x, y, 0) = h0 (1 + δη(x, y)) (3.16)

where, as in the 2D case, δ = 0.01.

Equation (3.4) is written as ∂th + ∇2 · J = 0, with flux J, and solved for

h(x, y, t) using the methodology of Lam et al. [81], in which an alternating-direction

implicit (ADI) method is combined with the Newton iterative method described above

(Di, hi in Equation (3.13) are now replaced by Di,j, hi,j). Equation (3.6) is now solved

using an implicit-explicit ADI approach, which consists of a predictor and corrector

step. Equation (3.7) is solved similarly to the 2D case, except now Ts = Ts(x, y, z, t).

Due to the dependence on three spatial variables, this equation alone amounts to

a system of a significant number of discrete nonlinear equations to be solved at

each time-step. Similarly, Equations (3.4) and (3.6) lead to large discrete systems,

which present a daunting computational challenge. To enhance computational

performance the equations are solved in parallel using the Compute Unified Device

Architecture (CUDA) programming framework [99] developed by NVIDIA®, which

utilizes graphics processing units (GPUs). Lam et al. [81] showed that GPUs offer

significant computational advantages over traditional (CPU) computing, especially

1Note that the formulation of Lam et al. [81] includes a few typos, which are fixed in the
current formulation of the initial condition.
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when large domains are considered. The parallel numerical schemes used for heat

conduction are described in Appendix A.13.

3.4.2 Flat Film Results - Influence of Substrate Thickness, Biot Number,
and Thermal Conductivity

In this section, we suppress dewetting in the molten film and consider the static flat

film h = h0, focusing on the influence of substrate properties on film temperature.

In particular, we analyze the influence of (i) the substrate thickness, (ii) the

substrate heat loss, and (iii) nonlinear effects due to temperature-dependent thermal

conductivity in the substrate (compared with constant thermal conductivity, k = 1).

For more details on the model used for temperature dependent thermal conductivity,

see Appendix A.7. In the following discussion we focus on two quantities: peak film

temperature, Tpeak (the maximum spatially-averaged film temperature attained by

the film over the duration of the simulation), and the liquid lifetime (LL) of the film,

defined as the time interval during which the average film temperature remains above

melting (Tavg > 1).
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Figure 3.2 Phase plane plots for the film peak temperature, Tpeak and liquid lifetime
(LL). Here surface tension and viscosity are fixed at the melting temperature values,
Γ =M = 1. (a,c) Tpeak for thermal conductivity fixed at room temperature (k = 1),
or temperature dependent, k = k(Ts). (b,d): corresponding results for LL. Log base
10 is used on the horizontal axes and the color bars for (b,d) are nonuniform.

Figure 3.2(a) and (b) show contour plots of Tpeak and LL, respectively, for

various values of substrate thickness Hs and Biot numbers, Bi; see Equation (3.9).
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A zero Biot number corresponds to a perfectly insulated substrate that loses no

heat to the underlying Si slab, while Bi → ∞ corresponds to a poorly insulated

substrate in contact with a Si slab at ambient temperature, Ta (in Equation (3.9)

this corresponds to a Dirichlet boundary condition, Tf = Ta). In Figure 3.2(a) we see

that films on well-insulated substrates (Bi � 1) retain more heat and reach higher

peak temperatures than those on their poorly-insulated counterparts (Bi � 1). In

Figure 3.2(b) this corresponds to longer LLs for Bi � 1. Furthermore, we see little

variation in Tpeak in the range Bi ∈ [1, 103], which manifests in Figure 3.2(b) as

near-horizontal constant LL contour lines in this range, compared to those in the

remaining range of Bi where LL varies significantly. Between Bi = 10−1 and Bi = 1

there is a sharp transition in peak temperature and LL. This is primarily due to the

changing balance between the heating of the substrate and the heat loss from the

substrate (there is perfect thermal contact at the film–substrate interface, and since

radiative losses are neglected no heat is lost at the film’s free surface). For perfectly

insulating substrates, heat is retained in the substrate (and thus the film, due to the

perfect thermal contact) more so than in the poorly insulating case, where the film

rapidly loses heat to a near-room-temperature substrate.

The influence of substrate thickness is also significant, and depends strongly on

the value of Bi. For well-insulated substrates (Bi� 1), peak average film temperature

decreases with increasing Hs, while for poorly-insulated substrates (Bi � 1) peak

temperature increases with Hs. This is again due to the competition between the

absorption of heat in the substrate and the heat loss at the lower boundary, z = −Hs.

For Bi� 1, thicker substrates absorb more energy per unit volume and transfer less

heat back to the film, as more heat can be distributed throughout (see Appendix C,

movie1). For Bi � 1, substrate heat loss is rapid and the farther the z = −Hs

interface is from the film, the less heat is lost in the film (see Appendix C, movie2).

Therefore, in this case thicker substrates yield higher film peak temperatures. Note
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that in Figure 3.2(b) the LL scale is nonuniform and the LL varies with substrate

thickness even for Bi < 10−1. Liquid lifetime is, in general, positively correlated with

peak temperature, despite differences in cooling. Furthermore, peak temperatures are

similar for substrates thicker than Hs = 20 (beyond this value the substrate effectively

behaves as one of infinite depth). The analytical solution for Hs →∞ is given in Trice

et al. [135] and Seric et al. [124]; in Appendix A.9 we demonstrate the convergence

of our results to theirs as Hs increases.

Figure 3.2(c) and (d) show peak average film temperatures and LL, respectively,

for the substrate whose thermal conductivity varies with temperature according to

Equation (A.6). The trend of peak temperature and LL is similar to the k = 1

results shown in Figure 3.2(a) and (b), although the temperatures are much lower

and thus the LL is shortened for given (Bi, Hs) pairs. For the entire simulation

k(Ts) ≥ 1, so that substrate diffusion occurs more rapidly, and heat is then transferred

faster away from the film, compared with the k = 1 case. This becomes increasingly

important when considering films that evolve, since viscosity may depend strongly

on temperature [3]. Finally, it should be noted that some temperatures in Figure 3.2

surpass the boiling point of the film (Tboil ≈ 2.088), while our model neglects possible

evaporation. Although models that account for evaporation exist (e.g., see [103] for

a classical review), in practice the laser fluence is often adjusted to the system of

interest so that no significant mass is lost to evaporation. These results, therefore,

can serve as a guideline for such fluence adjustments.

3.4.3 2D Evolving Films

In this section the film surface is initially prescribed by Equation (3.14), with δ = 0.01,

on the spatial domain x ∈ [−π, π], and we investigate the influence of Bi and Hs on

the film evolution. The initially solid film is static until it melts, at which point it

evolves according to Equation (3.4). Once the film re-solidifies, its evolution stops.

To maintain generality, we allow the material parameters governing surface tension,
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viscosity and thermal conductivity to vary with average film temperature, so that

Γ = Γ(t) via Equation (3.1) and M = M(t) via Equation (3.5). Similarly, the

thermal conductivity of the substrate is allowed to depend on substrate temperature,

k = k(Ts) (see Equation (A.6) in Section A.7 for the form used).
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Figure 3.3 (a) Evolution of film thickness at x = 0 for Bi = 0.1 (black), 0.2 (red,
dash-dotted), 0.5 (blue dash-dotted), 1.0 (green dashed); and precursor thickness h =
h∗ (orange dot-dashed). (b) Average film temperature corresponding to the cases in
(a). The material parameters are variable, Γ = Γ(t),M =M(t), k = k(Ts), substrate
thickness is fixed, Hs = 10, and melting temperature, Tmelt (orange dot-dashed).

Figure 3.3(a) and (b) show the evolution of the film midpoint (x = 0) and the

average film temperature, respectively, for various values of Bi and for fixed substrate

thickness, Hs = 10. The trend of shorter LL in Figure 3.3 as Bi increases is consistent

with Figure 3.2(d). Consequently, the films for Bi = 0.5 and Bi = 1.0 solidify prior

to any significant evolution, whereas for Bi = 0.1 the film dewets fully. For Bi = 0.2

the film mostly dewets, but solidifies just before its surface reaches the equilibrium

film thickness, h = h∗. This intricate balance between solidification and dewetting
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highlights the importance of the value of Bi in determining whether full or partial

dewetting occurs.
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Figure 3.4 (a) Evolution of film thickness at x = 0 for Hs = 5 (black), 10 (red,
dash-dotted), 15 (blue dash-dotted), 20 (green dashed), 25 (magenta dashed), and
the precursor thickness h = h∗ (orange dot-dashed). (b) Average film temperature
corresponding to the Hs cases in (a) and melting temperature, Tmelt (orange dot-
dashed). The material parameters are variable, Γ = Γ(t),M =M(t), k = k(Ts), and
Bi = 0.1.

Next, we consider the influence of substrate thickness. Similarly to Figure 3.3,

Figure 3.4(a) and (b) show the midpoint film thickness and average film temperature,

but for varying Hs. Here the Biot number is fixed at Bi = 0.1. The main finding

is that varying Hs does not alter the dewetting speed of the film as much as Bi,

see Figure 3.4(a). From Figure 3.4(a), we see that increasing substrate thickness

increases the dewetting speed by only a small amount. Since in Figure 3.4(b) films

on thinner substrates achieve higher temperatures, the film on the thinnest substrate,

Hs = 5, has lowest viscosity and dewets fastest in (a). The observed increase in peak

temperature with substrate thickness, and the similar LLs for Bi = 0.1, are consistent
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with Figure 3.2(c) and (d). For completeness, we include the analog of Figure 3.4 for

the case Bi = 0.2 in Appendix A.10 and show that the findings are again consistent.

To summarize, varying substrate thickness (Hs) and heat loss from the lower

surface (via Bi) may result in films that solidify prior to full dewetting. We will see

in Section 3.4.4 that the substrate thickness plays a significant role in determining

the final configurations of the 3D films.

3.4.4 3D Evolving Films

Next, we consider the role of the temperature-dependent material parameters, the

substrate thickness, Hs, and the Biot number, Bi, in the pattern formation for

3D films, with free surface z = h(x, y, t). For this section, we consider randomly

perturbed films with the initial free surface disturbance specified by Equation (3.16)

(shown in Figure 3.5), and follow the same melting/solidification procedure described

in Section 3.4.3. In all cases, the domain is a square of linear dimension 16π, surface

tension is a function of average film temperature via Equation (3.1) and, except

where otherwise specified, the Biot number is fixed at Bi = 0.1. We consider both

constant viscosity M = 1 and (average) temperature-dependent viscosity M(t) (see

Equation (3.5)), and k = 1, k(Ts) for substrate thermal conductivity.

In earlier work [3, 124], 2D simulations reveal that temperature-dependent

viscosity is crucial for modeling the correct dewetting speed of the films. We now

confirm the importance of accounting for temperature-dependent viscosity in 3D

simulations.
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Figure 3.5 Initial film thickness h(x, y, 0) for 3D simulations, described by random
noise perturbations to the flat film h = 1, and given by Equation (3.16).
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Figure 3.6 Local film thickness, h(x, y, t) for (a)M = 1 and (b)M(t). Average film
temperatures are shown in (c), with melting temperature, Tmelt. In (a) the film freezes
before significant evolution occurs, whereas in (b) further dewetting occurs with some
droplet formation. Both films are initialized with the random noise (Equation (3.16),
shown in Figure 3.5). The LLs are approximately 1.10 and 1.05 for (a) and (b),
respectively. For full animation, see Appendix C, movie3.

3.4.4.1 Influence of viscosity. Figure 3.6(a) and (b) both show the final

solidified film for k = k(Ts) but (a) corresponds to M = 1 (viscosity fixed at

melting value) and (b) to M = M(t) (viscosity depends on average temperature

as given by Equation (3.5)). The main finding is that the variable-viscosity film

in Figure 3.6(b) has mostly dewetted and formed droplets prior to resolidification,

whereas the constant-viscosity film in Figure 3.6(a) has barely evolved. Figure 3.6(c)

shows the average film temperature Tavg in both cases, along with the melting

temperature, Tmelt; we see that Tavg is nearly identical for the two cases, despite the

very different fluid dynamics. Since the final film structures are very different but the

LLs are nearly identical, we conclude that the variable viscosity is crucial for accurate
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modeling of dewetting within the liquid phase. Note that the spatially-varying

form of viscosity, M(x, t), given by Allaire et al. [3], which replaces Tavg by Tf in

Equation (3.5), produces essentially identical results to Figure 3.6(b), due to the

weak in-plane spatial variation of film temperature (result shown in Appendix A.11

for completeness).

Figure 3.7 Local film thickness, h(x, y, t) for (a) k = 1 and (b) k(Ts) cases in
their final solidified configuration. Average film temperatures are shown in (c), with
melting temperature, Tmelt. Here, M = M(t), (b) is identical to Figure 3.6(b) and
the LL for (a) is approximately 1.22. For full animation, see Appendix C, movie4.

3.4.4.2 Influence of thermal conductivity. Next, we consider the influence

that temperature varying thermal conductivity in the substrate has on the dewetting

behavior of the films. Figure 3.7 shows final solidified film thickness for (a) constant,

and (b) temperature-varying, substrate thermal conductivity, both with temperature-

dependent viscosity M = M(t). Figure 3.7(c) shows the average film temperature

over time for both cases. The decreased LL and lower peak temperature for k(Ts) is
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consistent with the flat film results in Figure 3.2(c) and (d), although the difference

is not dramatic. Despite this, dewetting has clearly proceeded further in (a) than in

(b), as evidenced by the differences in film heights, with thicker droplets in (a) than

in (b). This is due to merging of droplets in (a) that did not occur in (b) due to both

premature solidification (in (b)) and different values of the surface tension parameter

Γ, which is known to alter instability wavelengths [3]. Dewetting in case (b) is also

slower, due to the higher film viscosity resulting from lower temperatures.

Figure 3.8 Average film temperatures, Tavg, in cases (a) Bi = 0.1 and (b) Bi = 103,
when deposited on substrates of thickness Hs = 10 (black solid line), Hs = 15 (red
dot dashed line), Hs = 20 (blue dot dashed line), and Hs = 25 (green dashed line).
The melting temperature is given by the magenta dot dashed line.

3.4.4.3 Influence of substrate thickness. In Figures 3.8, 3.9, and 3.10 we

investigate the role of Hs on the dewetting process for Bi = 0.1 and Bi =

103. Figure 3.8(a) shows average film temperatures for Bi = 0.1 and Hs = 10,

15, 20, and 25 where both film viscosity and substrate thermal conductivity are

temperature-dependent, M = M(t) and k = k(Ts). The similar LLs and small

variations in peak temperature observed are nearly identical to those for the 2D

film in Figure 3.4(b). Nevertheless, the small deviations in peak temperature as Hs
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varies are important because of the strong temperature dependence of viscosity, which

changes the dewetting speed.

Figure 3.8(b) similarly shows average film temperature for the same substrate

thicknesses as in (a) but for a poorly insulated substrate, Bi = 103. The significantly

decreased temperatures and shorter LLs for thinner substrates are consistent with

Figure 3.2(c). Note in particular the reversal of the trend between Figure 3.8(a) and

(b), with peak temperature decreasing with Hs in (a), and increasing with Hs in (b).

In Figure 3.8(b), the peak temperatures are generally lower and the LLs much shorter,

which (we now show) may lead to different final solidified film configurations.
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Figure 3.9 Final solidified film heights, h(x, y, t), for Bi = 0.1, and on substrates
of thickness (a) Hs = 10, (b) Hs = 15, (c) Hs = 20, and (d) Hs = 25, with
temperature-dependent material parameters, Γ(t),M(t), and k(Ts). Films on thicker
substrates dewet more slowly due to the lower temperatures (and higher viscosity) in
Figure 3.8(a). Here, (a) is the same as Figure 3.6(b) and the LLs are (a) t = 1.05, (b)
t = 1.09, (c) t = 1.06, and (d) t = 1.00. For full animation, see Appendix C, movie5.

Figure 3.9 shows the final solid film configurations for (a) Hs = 10, (b) Hs = 15,

(c) Hs = 20 and (d) Hs = 25, for Bi = 0.1 (corresponding to Figure 3.8(a)). Since

average peak temperature Tpeak decreases with Hs, the dewetting speed decreases

from (a)-(d) due to the viscosity increase. This is to some degree surprising, since the

influence of Hs was not readily apparent in the 2D case. The proposed explanation is

that, in our 3D simulations, we prescribe a random initial condition, and therefore it

takes time for the fastest growing mode of instability to develop. This surplus time
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slows the dewetting sufficiently for the thicker substrates that it is still incomplete at

resolidification.

Figure 3.10 Final solidified film heights, h(x, y, t), on poorly insulated substrates,
Bi = 103, of thickness (a) Hs = 10, (b) Hs = 15, (c) Hs = 20, and (d) Hs = 25,
with temperature-dependent material parameters, Γ(t), M(t), and k(Ts). Films on
thicker substrates dewet faster due to the higher temperatures (and lower viscosity)
in Figure 3.8(b). The LLs are (a) t = 0.37, (b) t = 0.65, (c) t = 0.80, and (d) t = 0.89.
For full animation, see Appendix C, movie6.

Figure 3.10 shows the final solid film configurations for (a) Hs = 10, (b) Hs =

15, (c) Hs = 20 and (d) Hs = 25 for the poorly insulating substrate, Bi = 103,

corresponding to Figure 3.8(b). Since Tpeak now increases with substrate thickness,

viscosity decreases and dewetting speed increases from (a)-(d). In this case, none of

the simulations (a)-(d) fully dewet (recall the lower peak temperatures in Figure 3.8(b)
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compared with Figure 3.8(a) leading to earlier resolidification in Figure 3.10 compared

with Figure 3.9). The films in Figure 3.10(c) and (d) begin to form holes, but those

in (a) and (b) barely evolve. Collectively, Figure 3.9 and 3.10 indicate that the final

configuration of the resolidified film depends on both Hs and Bi in a nontrivial way.

3.5 Conclusions

We have modeled and simulated the evolution of pulsed laser irradiated nanoscale

metallic films that are deposited on thick substrates. In particular, we have focused

on the role that the underlying substrate plays in determining both the temperature

of the film and its corresponding evolution. With regards to material parameters, our

model accounts for temperature dependence of both surface tension and viscosity of

the film. Our 3D simulations indicate that if temperature dependence of viscosity is

not included, the films may not fully dewet.

The film liquid lifetime (LL) and spatially-averaged peak temperature (Tpeak)

are found to depend on the substrate heat loss (as characterized by a Biot number,

Bi, governing heat loss at the lower surface), substrate thickness Hs, and the thermal

conductivity model used (specifically, whether it is taken to be constant, or varying

with temperature). Tpeak is found to vary strongly with Bi, but less so with Hs.

In particular, we found that the correlation between Hs and Tpeak changes from

negative to positive according to whether the substrate is well-insulated (Bi � 1)

or poorly-insulated (Bi � 1). The choice of well- or poorly-insulated substrates

can lead to significantly different final solidified film configurations. Including

temperature-varying thermal conductivity, in general, increases the heat loss from the

film to the substrate, decreasing Tpeak and therefore liquid lifetimes. The decreased

film temperatures observed with temperature-varying thermal conductivity lead to a

much smaller film viscosity, which reduces the speed of dewetting. Our 3D simulations

showed that this can lead to films that solidify prematurely, although the effect is not
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as dramatic as that of changing Hs. Interestingly, we found that varying Hs does not

appear to alter significantly the the LL of the films; however, a small but significant

change in Tpeak results, which again alters viscosity and thus the final configuration

of the film.

Our model omits a number of effects, the possible relevance of which we briefly

discuss. First, we neglected temperature-dependent thermal conductivity of the metal

film. Although this could be added to the model, with notable added complexity to

the numerical schemes described in Appendices A.12 and A.13, the modest changes

to thermal conductivity [108] would be inconsequential on the fast time scale of heat

transfer across the film. Second, our simulations assume that phase change occurs

instantaneously. In practice, partial melting and solidification may occur, in different

parts of the film. The current model could be altered to include such effects, most

readily by modifying the form of Equation (3.5) to account for spatial variations in film

temperature, and viscosities that increase dramatically when the film temperature

drops below Tmelt. Radiative heat losses and evaporation are also neglected in the

modeling; both effects may become important for certain choices of film materials.

Finally, in-plane diffusion is neglected in the substrate. Such modifications will be

considered in future work.
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CHAPTER 4

SURFACE, INTERFACE, AND TEMPERATURE EFFECTS ON THE
PHASE SEPARATION OF BI-METALLIC NI0.5AG0.5: A MOLECULAR

DYNAMICS STUDY

4.1 Overview

Classical molecular dynamics (MD) simulations were used to investigate how free

surfaces, as well as supporting substrates, affect phase separation in a NiAg alloy.

Bulk samples, droplets, and droplets deposited on a graphene substrate were

investigated at temperatures that spanned regions of interest in the bulk NiAg

phase diagram, i.e., miscible and immiscible liquid, liquid-crystal, and crystal-crystal

regions. Using MD simulations to cool down a bulk sample from 3000 K to 800

K, it was found that phase separation below 2400 K takes place in agreement with

the phase diagram. When free surface effects were introduced, phase separation was

accompanied by a core-shell transformation: spherical droplets created from the bulk

samples became core-shell nanoparticles with a shell made mostly of Ag atoms and a

core made of Ni atoms. When such droplets were deposited on a graphene substrate,

the phase separation was accompanied by Ni layering at the graphene interface and

Ag at the vacuum interface. Thus, it should be possible to create NiAg core-shell and

layer-like nanostructures by quenching liquid NiAg samples on tailored substrates.

Furthermore, interesting bimetallic nanoparticle morphologies might be tuned via

control of the surface and interface energies and chemical instabilities of the system.

4.2 Introduction

Recently, pulsed-laser-induced dewetting (PLiD) has been used to organize nanopar-

ticles on surfaces with a correlated length scale. The PLiD exposes an ∼ 10ns

pulsed laser to a metal thin film (single digits to tens of nm thick), which

liquefies the film for up to tens of nanoseconds. During the liquid lifetime of the
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PLiD procedure, the film [34, 61, 92, 116] or lithographically pattered nanostructure

[41, 43, 54, 56, 57, 75, 110, 140, 141] experiences instabilities. The balance of viscous,

capillary, and inertial forces induces liquid phase transport at the nanoscale. Natural

two-dimensional thin film (spinodal and nucleation) instabilities and one-dimensional

Rayleigh–Plateau instabilities have been studied. Since the rapid solidification

of the features locks in even metastable morphologies, the sequence of low laser

fluence/low liquid lifetime pulse has revealed a transient behavior. While much of

the work has been dedicated to elemental metals, multifunctional nanoparticles can

be realized by exploiting competing chemical instabilities. For instance, metallic

alloys with liquid and solid phase miscibility [141, 142] /immiscibility [67, 117] gap

can lead to tunable/multifunctional nanoparticles, respectively. Beyond experimental

studies, complementary continuum modeling [7, 52, 75, 135] and molecular dynamics

simulations [40, 48, 97, 98] have been used to elucidate the various liquid phase

instabilities and transport behavior operative in nanoscale metallic liquids. While

historically mainly elemental films have been studied, we are turning our attention

to alloys where competing chemical instabilities may also be operative during fluid

mechanical evolution.

In order to study the evolution of a liquid alloy to create nanoparticles, one

must consider three effects. First, the chemical composition of the alloy, which

might lead to phase separation in certain temperature ranges. Second, the surface

energies of the metals involved, as one expects that the metal with a smaller surface

energy would migrate to the free surface. And third, the interaction of the alloy

with the substrate that supports the liquid, which determines the wetting/dewetting

angle and also can induce preferential migration of the lower interfacial energy

liquid. Cumulatively, various nanoparticle morphologies can emerge depending on

the chemical and surface/interface energies.
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In this study, in order to understand these three effects, we investigate the

Ni0.5Ag0.5 alloy. At the Ni0.5Ag0.5 atomic composition, the NiAg phase diagram

contains four distinct regions: (i) Above ∼ 2700 K, a liquid region phase where

both Ni and Ag are miscible; (ii) between ∼ 2700–1800 K, a liquid-liquid phase

where Ni and Ag have limited solubility and two liquid phases emerge; (iii) between

∼ 1700–1200 K, a liquid-solid phase where the Ag-rich phase is liquid, the Ni-rich

phase is crystalline and both have limited solubility; and finally (iv) below ∼ 1200 K,

a solid-solid phase where both Ni-rich and Ag-rich phases are crystalline and again

have limited solid solubility. The phase fraction and specific phase compositions, of

course, vary with temperature.

Here, we use classical molecular dynamics (MD) simulations to study the

Ni0.5Ag0.5 chemical composition, and we focus on how surface and liquid-substrate

interfacial interactions affect phase separation at the aforementioned regions of

interest in the phase diagram. The results obtained provide a road map for future

studies, which will investigate competing chemical and hydrodynamic instabilities

that occur during the bimetallic liquid phase assembly of nanoparticles.

4.3 Materials and Methods

The simulations started from a 256 atom structure of Ni0.5Ag0.5, created from a

face-centered cubic (FCC) lattice, where Ni and Ag were randomly mixed and the

lattice parameter of Ni (3.524 �A) was assumed in the original structure. Subsequent

to generating the Ni0.5Ag0.5 lattice, its total energy was minimized. An illustration

of this structure is shown in Figure 4.1.
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Figure 4.1 FCC structure of NiAg with 256 atoms and a 50/50 composition.

The 256 atom NiAg structure was then expanded in the x, y, and z directions

to generate a sample that contained 55,296 atoms. We refer to this sample as the

bulk sample, as we employed periodic boundary conditions at each +/- x, y, and z

boundary. Then, the bulk sample was studied, first assuming the isothermal-isobaric

(NPT) ensemble for 300 ps, followed by a canonical (NVT) ensemble for 600 ps,

followed by the microcanonical ensemble (NVE) for 300 ps, all using a time step

of 1 fs. These simulation times were found to be sufficient to converge the values of

pressure, temperature, and energy in NPT, NVT, and NVE, respectively. The highest

temperature considered was 3000 K, and once the sample was equilibrated with NVE

at this temperature, it was quenched by reducing the temperature in 200 K increments

until reaching 800 K. The corresponding atomic densities for the equilibrated 3000
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K and 800 K structures were 54 and 65.8 atoms/nm3, respectively. Because at every

temperature the sample was equilibrated for 1.2 ns (300 ps NPT, 600 ps NVT and 300

ps NVE), the cooling rate in our simulations was 200 K every 1.2 ns, i.e., 1.67× 1011

K/s. The melting points of Ni and Ag were 1726 and 1235 K, respectively, and by

creating a Ni0.5Ag0.5 sample at different temperatures we aimed to study the different

regions that appeared in the phase diagram.

The embedded-atom method (EAM) potential derived by Zhou et al. [149]

was used to describe the Ni-Ni, Ag-Ag, and Ni-Ag interactions. This potential was

developed for studying a NiAg alloy and it is the only NiAg potential we know of

that is capable of capturing the relevant Ni-Ag phase separation. Indeed, we used

the universal form of the EAM potential for Ni and Ag, and the NiAg Finnis–Sinclair

potential of Pan et al. [105]. With the former, no phase separation was observed

when the system was similarly quenched; with the latter, we obtained a similar radial

distribution function to that shown by Pan et al. Figure 7 of [105] for a Ag80Ni20

alloy. However, when we used this potential to quench Ni0.5Ag0.5 from 3000 K to 800

K with a cooling rate 1.67× 1011 K/s, phase separation was not observed.

To ensure that the Zhou et al. [149] EAM potential for Ni0.5Ag0.5 was accurate

for the individual elements, we melted and cooled down a sample of 2048 atoms of Ni

and Ag using NPT with melting and cooling rates of 2×1013 K/s (in 100 K increments

for 500 ps each). Figure 4.2 shows the change in volume with temperature for the

samples containing only Ni and only Ag, respectively. A sudden increase/decrease in

the volume indicates melting/freezing has taken place and the hysteretic behavior is

consistent with what is commonly observed [86]. In the case of Ni (Ag), the volume

increases suddenly between 1800 K and 1900 K (1300 and 1400 K), which is close to

the experimental melting point of 1726 K (1235 K). Upon cooling, the Ni (Ag) volume

decreases dramatically at a temperature between 1000 and 900 K (800 and 700 K).

Table 4.1 shows the slopes of the plots during the heating and cooling. Ag has a higher
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dV/dT relative to Ni, which is consistent with the fact that Ag (∼ 19× 10−6 /K) has

a higher coefficient of thermal expansion than Ni (∼ 13 × 10−6 /K). As expected,

both liquids have higher dV/dT than their respective solids. For comparison, we

also heated and cooled a sample of 2048 atoms of Ni0.5Ag0.5 atomic composition; the

results are also shown in Figure 4.2.

Table 4.1 Slope of Melting and Cooling Curves Given in Figure 4.2 for Ni, Ag, and
NiAg

Element Solid Phase Slope(�A/K) Liquid Phase Slope (�A/K)

Ni 2.047 2.072

Ag 2.855 3.549

NiAg 1.962 2.815

Figure 4.2 Melting and cooling of a 2048 atom sample of Ni (red), Ag (blue), and
NiAg (black).

In this case, upon heating (cooling), only one abrupt volume change was

observed between 1000 and 1100 K (900 and 800 K). This abrupt change was due
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to the Ag phase transformation, where both the heating and cooling were shifted to

slightly lower temperatures, which could have been due to the smaller cluster size of

the Ag. The slope of the cooling curve of the Ni0.5Ag0.5 is approximately the average

between the Ag and Ni cooling curve slopes. Notably, the Ni phase transformation

is not observed, which is likely due to the sluggish phase separation and perhaps

supersaturation of the Ni phase. Interestingly, the Ni0.5Ag0.5 slope is also close to

the average of the solid Ni and liquid Ag (2.8 �A/K). Interestingly, the slope of

the Ni0.5Ag0.5 heating curve is close to that of pure Ni and lower than the average.

From the bulk sample created at each temperature, we generated droplets by simply

adding a vacuum interface. It was found, then, that running 1800 ps of NVT and

300 ps of NVE was enough to equilibrate the resultant droplets. An example of an

equilibrated NiAg droplet at 2000 K is shown in Figure 4.3a. Finally, a droplet at

2000 K was deposited on a single layer graphene substrate at an initial distance of

3 �A, see Figure 4.3b. The droplet was subsequently equilibrated using 1500 ps of

NVT, while the substrate, as in previous studies [80], was kept frozen.

(a) (b)

Figure 4.3 (a) Droplet of NiAg at 2000 K. (b) Droplet of NiAg at 2000 K deposited
on 1-layer of graphite. The scale bar on (b) corresponds to the diameter of the droplet.
Color code: Ni, red and Ag, blue.
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Table 4.2 Lennard-Jones Parameters for Ni-C and Ag-C Interactions

Interaction ε(eV) σ (�A) rc (�A)

Ni-C 0.071 2.8 11.0

Ag-C 0.01 3.006 11.0

When the droplet was deposited on the graphitic substrate, the metal-C

interactions were described with a 12-6 Lennard-Jones potential given by

V (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, r < rc, (4.1)

where ε is the depth of the potential well, r is the inter-particle distance, σ is the

distance at which the potential is zero, and rc is the truncation radius. Previous

studies [1, 53, 80, 121, 132] have provided values for ε, σ, and rc but, as explained in

Appendix B, Figure B.1, we found that none of these sets of values were able to

reproduce the contact angle of pure Ni and Ag liquid droplets deposited on graphite.

Here, we find that using the values in Table 4.2 for ε, σ, and rc, respectively, we

obtain a contact angle of 59◦ for Ni on graphite, and 145◦ for Ag on graphite; these

theoretical contact angles are very close to the values found experimentally (Ag-C =

135◦ and Ni-C = 60◦) [19,62,82,95,112,139]. All the simulations were done with the

software LAMMPS [107].

4.4 Results

In what follows, we show how temperature and environment (bulk, suspended droplet,

or droplet on graphite), affect the phase separation and nanostructure morphology.

4.4.1 Bulk Samples

Crystallization and phase separation are realized in MD simulations by calculating

the radial pair distribution function (RDF). Figure 4.4 shows the RDF (computed
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with OVITO [129]) for the Ni0.5Ag0.5 system at all the temperatures considered. Each

panel in the figure shows the RDF of Ni-Ni, Ag-Ag, and Ni-Ag. At 3000 K, the RDF

shows that there is a slight preference to form homogeneous pairs, i.e., Ni-Ni and

Ag-Ag, rather than heterogeneous Ni-Ag pairs. The difference is slight, and it can be

said that at this temperature the system is a miscible liquid of Ni and Ag. According

to the phase diagram, the onset of phase separation starts below 2700 K. In the

simulations, phase separation starts clearly at 2400 K. As seen in Figure 4.4, at 2400

K, the first Ni-Ni and Ag-Ag peaks increase while the first peak for Ni-Ag decreases, a

sign that Ni and Ag are forming homogeneous clusters and that heterogeneous clusters

containing Ni-Ag are becoming smaller and less numerous. This trend continues down

to 2000 K, and the fact that between 2400 and 2000 K there are no clear second and

third peaks in the RDFs indicates that the system is still liquid, albeit immiscible. At

1800 K, Ni is close to its melting point and the first peak of the RDF has increased

considerably, while a second peak has emerged. Ag, on the other hand, still remains

liquid at 1800 K. Between 1600 and 1400 K, the crystallization of Ni is obvious, Ag

still remains liquid, and the number of Ni-Ag pairs has decreased even further. The

system is now phase separated into a Ni-rich crystal and an Ag-rich liquid. At 1200

K and below, the Ag-rich phase has already started to crystallize, and the system

consists of a mixture of Ag-rich and Ni-rich crystalline phases, where both phases

have very low solubility of the other constituent. The amplitudes of the first peaks

are plotted in Figure 4.4d, showing an increase in pure metal pairs (Ni-Ni, Ag-Ag)

and a decrease in mixed pairs (Ni-Ag) with decreasing temperature.

Phase separation is also observed with the coordination number, CN. The CN

of the bulk samples at different temperatures is shown in Figure 4.5. Here, the

CN was computed using the Visual Molecular Dynamics (VMD) software [65], by

prescribing the radius at which the RDF attains the first minimum, corresponding

to the first coordination number, and was performed for each pure and mixed pair.
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At 3000 K, the number of Ag (Ni) neighbors around Ag (Ni) is 8 (6.2), whereas the

number of Ag (Ni) neighbors around Ni (Ag) is 5.8. Upon cooling from 3000 K, the

CN remains constant until about 2400 K, when the number of Ag (Ni) neighbors

around Ag (Ni) starts to increase slightly, while the number of Ag neighbors around

Ni starts to decrease, also slightly. Below 2000 K, the rate of change of the CN

increases and there is a sharp increase and decrease in the number of homogeneous

and heterogeneous pairs, respectively. At 800 K, there are very few heterogeneous

pairs while the homogeneous ones have reached a value of 12 in the CN, which is

consistent with the FCC crystal structure.

88



Figure 4.4 Radial distribution functions (RDFs) for the bulk samples at all the
temperatures studied for Ni (a), Ag (b), and NiAg (c). (d) Plot of the the amplitude
of the first peak (located between radii of 2 and 3 �A), as a function of temperature
for Ni, Ag, and NiAg.

Despite the fact that the cooling rate used here is much greater than the rates

used in typical PLiD experiments, the MD simulations with the atomic potential

are still capable of capturing phase separation in Ni0.5Ag0.5, in accordance with the
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experimental phase diagram. This encouraged us to explore the effect of a free surface

and a supporting graphene substrate on phase separation.

Figure 4.5 Coordination numbers for the bulk samples at different temperatures.

4.4.2 Droplets

To investigate the free surface effects on phase separation, we added a vacuum

interface to each of the already extant bulk samples and equilibrated each resultant

droplet. Equilibration was achieved with 1800 ps of NVT. This approach, as compared

to directly quenching a single droplet from 3000 to 800 K (which was avoided due

to surface evaporation of Ag atoms), reduces the effect of Ag surface migration, as

each bulk sample starts from a more nanogranular initial condition. Nonetheless, we

expect that the results obtained in this way approximately represent the effect of

Ag surface migration in the phase separation of a Ni0.5Ag0.5 droplet. As it will be

seen, even at low temperature, where diffusion is slower, we observe the expected Ag

diffusion towards the surface of the droplet.

The RDFs for the droplets, along with their peak amplitudes, at all temper-

atures studied are shown in Figure 4.6. These RDFs are similar to those of the
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corresponding bulk samples (see Figure 4.4) and thus at first one might conclude

that phase separation is not significantly affected by the presence of a free surface.

However, as Figure 4.7a and 4.7b illustrate, at 2200 K the NiAg droplet’s surface is

preferentially Ag-rich due to its lower surface energy; for instance, the surface energies

of Ni and Ag at their respective melting temperatures are approximately 1.78 N/m

and 0.93 N/m. To demonstrate the morphology evolution, Figure 4.7c shows the

plots of the relative Ag and Ni concentration in 5 �A concentric annuli slices as a

function of the inner radius of the slice. We did not consider spheres beyond an inner

radius of 60 �A, as any atoms at locations beyond this radius are either due to small

perturbations in the spherical shape or due to evaporated particles.
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Figure 4.6 RDFs for the droplets at all temperatures for Ni (a), Ag (b), and NiAg
(c). (d) Plot of the amplitude of the first peak (located between radii of 2 and 3 �A),
as a function of temperature for Ni, Ag, and NiAg.
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(a) (b)

(c)

Figure 4.7 (a) NiAg droplet at 2200 K showing preferential movement of Ag to the
surface, (b) slice of NiAg droplet at 2200 K, and (c) atomic concentration distribution
analysis for the droplets at 3000 K, 1800 K, 1600 K, and 800 K. Color code: Ni, red
and Ag, blue.

At 3000 K, the local distributions of Ni and Ag are nearly equal, with a slightly

higher concentration of Ag at the surface as well as preferential Ag evaporation,

see Figure 4.7c. Except for the surface, the amounts of Ni and Ag are practically

the same everywhere in the droplet. This, together with the corresponding RDFs,

indicates that the system is not phase separated, i.e., is a miscible liquid. As the
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temperature decreases, the concentration of Ag atoms in the surface increases steadily,

and similarly to the bulk simulation RDFs, phase separation is initiated at ∼ 2400 K

(the atomic local distribution analysis for all the temperatures in this study is shown in

the Appendix B, Figure B.2). At 1800 K, close to the Ni melting point, the following

significant change is observed: the concentration of Ni (Ag) increases (decreases)

significantly in the middle of the droplet (i.e., the region between the surface and the

center of the droplet), whereas, the opposite effect is seen in the center. To understand

this behavior, Figure 4.8a-4.8c shows a cross section of the droplet at 2000, 1800, and

1600 K.

(a) (b)

(c) (d)

Figure 4.8 Cross sections of the droplets at 2000 K (a), 1800 K (b), 1600 K (c),
and 800 K (d). Color code: Ni, red and Ag, blue.
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As shown in Figure 4.8, it is observed that Ni clustering is clearly occurring

at 2000 K, and that at 1800 K the Ni grains coarsen and occupy the middle section

of the droplet; at 1600 K, the Ni solidifies, as evidenced by the RDF peak increase,

and coarsens nearly to a single large cluster with a few Ag cluster inclusions. At the

liquid-to-solid phase transformation, the solubility of Ag in Ni also drops. Finally, at

1600 K the Ni cluster occupies most of the interior of the droplet, whereas, the Ag

atoms migrate to the surface and form a shell around the Ni core. As seen in Figure

4.8d, the core-shell morphology continues down to 800 K; at this temperature, the

Ni cluster is displaced from the sphere centroid, but the surface layer of Ag is still

present. Notably the solubilities at 800 K, at which both metals are in a solid state,

is very low as evidenced by the few solute atoms in each solvent matrix.

4.4.3 Droplets on Graphite

An equilibrated droplet at a temperature of 2000 K was deposited on a one-layer

graphene substrate and subsequently re-equilibrated. Next, the droplet was quenched

to 1600 K with a cooling rate of 1.33 × 1011 K/s. Figure 4.9 shows snapshots of a

cross section of the droplet on graphite at 2000, 1800, and 1600 K. As explained

in the Methodology section, the Ni-C and Ag-C interactions were described with a

Lennard–Jones potential adjusted to reproduce the wetting angles of liquid droplet Ni

and Ag on graphite. This produces a Ni-C interaction (ε = 0.072 eV) that is stronger

than that for Ag-C (ε = 0.01 eV). Consequently, when a droplet of Ni0.5Ag0.5 at

2000 K is deposited on graphite, Ni atoms migrate towards the C atoms, whereas, Ag

atoms migrate to the surface of the droplet. This creates a layered-like structure in

the Ni0.5Ag0.5 droplet, with Ni (Ag) occupying most of the graphite-metal (vacuum)

interface, see Figure 4.9a. Lowering the temperature to 1800 K and then 1600 K

(Figure 4.9b and 4.9c) does not change this migration of Ni and Ag. When the

temperature decreases, the solubility decreases, and the coarsening of Ag and Ni takes
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place. However, because of the presence of a graphite substrate, Ni agglomeration is

located mostly near the droplet-substrate interface. This is consistent with the fact

that Ni has a lower surface energy than Ag on graphite, and thus the contact angle

resembles that of Ni.

(a) (b)

(c) (d)

Figure 4.9 (a) 2000 K droplet deposited on one-layer of graphite. (b), (c), and
(d) a cross-section snapshot at 2000, 1800, and 1600 K, respectively. The scale bar
in (a) corresponds to the length of the droplet. Color code: Ni, red; Ag, blue; and C,
grey.

To make clear the layering effect seen in Figure 4.9, atomic compositions of Ni

and Ag are plotted in Figure 4.10 as a function of the distance from the substrate.

These slices were taken in 5 �A increments from the droplet-substrate interface to the
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top of the droplet. In each slice, the Ni and Ag compositions were both measured.

Figure 4.10 reveals that the crossover point where the slice compositions are equal are

all at approximately 8 �A from the substrate. Below this point, the composition of Ni

is higher due to the lower surface energy of Ni-C relative to Ag-C. Interestingly, the

wetting angle decreases with decreasing temperature, as evidenced by the change in

height for the composition profiles. The larger Ni-C interface at a lower temperature

causes the total nickel content to be higher in this ∼ 8 �A layer. Thus, as is illustrated

in the graphs, the Ni composition increases above the crossover point with increasing

temperature.

Figure 4.10 Atomic concentration distribution analysis of the droplets at (a) 2000
K, (b) 1800 K, and (c) 1600 K on substrates as a function of the distance from the
substrate.

4.5 Conclusions

Molecular dynamics simulations were used to investigate the effects of free surface

and substrate in the phase separation process of a NiAg alloy. It was found that the

atomic potential employed in the simulations was capable of reproducing the phase

separation observed in the experimental phase diagram. Subsequently, droplets were
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created, and it was found that while phase separation still occurred, surface effects

drove Ag towards the surface of the droplet substrate while Ni moved towards the

interior. This led to the creation of Ni-Ag core-shell nanodroplets, with Ni in the

interior and Ag in the surface. On the other hand, when these droplets were deposited

on a graphitic substrate, phase separation led to a layered-type structure in which

Ni agglomerated close to the substrate, while Ag still migrated to the surface of the

droplet. In Chapter 5, we use the information gathered here to combine both phase

separation and fluid mechanical instabilities.
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CHAPTER 5

THE ROLE OF PHASE SEPARATION ON RAYLEIGH-PLATEAU
TYPE INSTABILITIES IN ALLOYS

5.1 Overview

Classical molecular dynamics (MD) simulations are used to investigate the role

of phase separation (PS) on the Rayleigh-Plateau (RP) instability. Ni-Ag bulk

structures are created at temperatures (2000 K and 1400 K) that generate different

PS length scales, λPS, relative to the RP instability length scale, λRP. Rectanguloids

are then cut from the bulk structures and patterned with a perturbation of certain

amplitude and wavelength, λRP. It is found that when λPS � λRP (2000 K), the

patterned rectanguloids break up into nanoparticles in a manner consistent with

classical RP theory, whereas when λPS ≈ λRP (1400 K), soluto-capillarity affects the

RP instability significantly. Specifically, since Ag has a lower surface energy than Ni,

Ag migrates to cover neighboring Ni regions, therefore modifying the RP instability.

Thus, we demonstrate that the phase separation length scale of an immiscible alloy

can be exploited to direct the assembly of functional bimetallic alloys.

5.2 Introduction

This work extends recent studies that explore how hydrodynamic instabilities in two

dimensional single-component thin metal films [16,34,37] and nanostructures [75,140]

can be used to create different arrays of organized and correlated nanoparticles. The

Rayleigh-Plateau (RP) instability, for instance, is a phenomenon that emerges in

a liquid jet: as different modes of surface-tension-driven instabilities evolve on the

surface of the liquid, the fastest-growing mode dominates and pinches the liquid jet at

regular points along its length, breaking it into droplets. The spinodal and nucleation

types of instability for a thin film deposited on a substrate are other examples; in
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such a configuration, thin films break up and may generate nanoparticles with a

correlated size and length scale; see recent reviews [76, 115] for more details. Other

effects can compete with (or enhance) these types of instabilities. For example,

thermal gradients can lead to gradients in surface energy (the thermo-capillary

effect, also known as thermal Marangoni effect), which may influence the dewetting

mechanism [7, 136]. Similarly, differences in chemical concentration may lead to

gradients in surface energy [57], known as the soluto-capillary effect (or concentration

Marangoni effect). In this work, we focus on how RP hydrodynamic instabilities

compete with soluto-capillarity. We leverage so-called synthetic perturbations, which

are lithographically patterned rectanguloids with varicose edge perturbations, to

control the competition/cooperation of the RP and soluto-capillarity. Synthetic

perturbations in elemental liquid metals have been demonstrated experimentally and

verified via detailed simulations to direct the precise assembly of nanoparticle arrays

via unstable RP instabilities [41,43].

Similar to Chapter 4, we use here classical MD simulations to study the Ni-Ag

system at Ni0.5Ag0.5 chemical composition but now focus on the influence of phase

separation (PS) on RP-type hydrodynamic instabilities. Several previous MD studies

have investigated the spinodal [97, 98] and RP [40, 71, 97] instabilities, as well as

other dewetting phenomena [1, 14, 15, 17, 29, 30, 47, 48, 80] in single-component films.

Additionally, several groups have studied liquid-state PS in metallic systems, such

as Al-Pb [84] and Al-Ge-Mn [131]; see also our recent work exploring the role that

a liquid-vacuum and liquid-substrate interface has on the phase separation in Ag-Ni

single drops [4]. The Ag-Ni system is interesting in that Ag is an efficient plasmonic

material and Ni is ferromagnetic, thus in principle bi-functional magnetoplasmonic

nanoparticles can be generated [50]. Recent experimental pulsed laser induced

dewetting studies of various alloys for plasmonic [12, 22, 100,142,143], magnetic [77],

and magnetoplasmonic [67, 117, 128] systems have been performed. For instance,
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control of the thin film thickness of gold and silver affects the resultant nanoparticle

size distribution, which subsequently affects the surface plasmon resonance energy.

5.3 Materials and Methods

Bulk structures of Ni0.5Ag0.5 were equilibrated at 3000 K using a small initial sample of

256 atoms with the isothermal-isobaric (NPT), canonical (NVT), and micro-canonical

(NVE) ensembles, respectively. We employed both the Nose-Hoover thermostat and

barostat [45] with a temperature damping parameter of 100 fs and pressure damping

parameter of 0.5 fs. The embedded-atom method (EAM) potential derived by Zhou et

al. [149] was used to describe the Ni-Ni, Ag-Ag, and Ni-Ag interactions (see the work

done by Allaire et al. for details [4]). Subsequently, the small samples were expanded

to a large bulk of 829440 atoms and equilibrated (using the same ensembles) from 3000

K to 1400 K in 200 K increments similar to our previous work [4]. For temperatures

1800K-3000K the bulk structure was sequentially equilibrated using 400 ps of NPT,

600 ps of NVT, and 200 ps of NVE (total of 1.2 ns). Thus, the cooling rate from 3000

K to 1800 K was 1.67× 1011 K/s. At 1600K, the bulk is equilibrated for 4.8 ns (400

ps NPT, 2400 ps NVT, 2000 ps NVE) so the cooling rate from 1800 K to 1600 K was

0.42× 1011 K/s. We cooled the bulk to 1400 K from 1600 K in 6.6 ns (400 ps NPT,

1800 ps NVT, and 4400 ps NVE), so the cooling rate was 0.30× 1011 K/s. Note that

lower temperatures required more time to equilibrate temperature and energy.

In our previous work, we found that phase separation of Ni and Ag phases

in a Ni0.5Ag0.5 bulk started at temperatures below 2400 K, consistent with the

equilibrium phase diagram, and that larger phase separation length scales emerged as

the temperature was lowered [4]. When the bulk Ni0.5Ag0.5 was suspended in vacuum,

such that a free surface existed, a Ag@Ni core-shell morphology emerged due to Ag’s

lower surface energy. Based on our previous work, here we consider temperature

as a proxy to control the PS length scale, which we call λPS. We focus on two
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temperatures: 2000 K, which is in the immiscible Ag-Ni liquid-liquid phase region of

the phase diagram; and 1400 K, which for a bulk material is in the Ag-Ni liquid-solid

phase. In materials at the nanoscale, however, it is well-known that the melting

point is suppressed. Recently, Ridings et al. [113] showed that for the effective radii

investigated below (∼ 18 �A), that the (100) and (110) planes have surface melting

temperatures ∼1300 K and 1200 K, respectively. Furthermore, the “bulk” cylinder

core has a melting temperature close to 1400 K. Thus, in the dewetting studies below,

the suppressed nickel melting point leads to a Ag-Ni (liquid-liquid) system where some

nanogranular solid Ni could exist in the cylinder core. It should be noted, however,

that the RP-like instabilities, while derived for liquid filaments, are operative in both

solid [68, 134] and granular materials [109,138].

To emulate pulsed laser induced dewetting experiments, where metal nano

structures are lithographically patterned onto substrates, we cut thin rectanguloids

(referred to as lines for simplicity) from the bulk structures with lengthwise (x)

perturbations of a prescribed wavelength and amplitude. We denote the length of the

respective bulk and associated line by L and impose periodic boundary conditions

at x = 0, L. Figure 5.1 shows bulk structures created at 2000 K (a), and at 1400

K, (b). Note that both the lengths of the bulks in Figure 5.1a, 5.1b and the width

of the respective lines are not constructed exactly equal (see Appendix B.4 for more

details).
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(a) (b)

(c) (d)

Figure 5.1 Equilibrated Ni0.5Ag0.5 bulk structures at (a) 2000 K and (b), (c) 1400
K. In (a) phase separation leads to the formation of small clusters of Ni and Ag,
whereas in (b) PS results in the formation of unequally sized stripes along the x-axis.
In (c) PS stripes were created to have a fixed length (the difference in size is due to
the unequal atomic volumes of the two phases). (d) Straight lines (1) and lines with
perturbations (referred to as synthetic lines) (3) are cut from bulks (a)-(c) (here the
lines from (a) are shown). In vacuum, the lines quickly deform into cylinders (2).
The cross-sections of (1) and (3) are both rectangles of thickness, τ but (1) has a
fixed width, W , whereas the width in (3) varies with x. The cross-sections of (2) are
circles of radius Reff . For (3) the perturbations have wavelength λ and amplitude A
(half the distance of peak to trough). Color code: Ni (red), Ag (blue).

As seen in Figure 5.1a, at 2000 K small clusters of Ni and Ag form. Using the

cluster analysis tool in Ovito [129], the average sizes of Ni and Ag clusters (assuming

clusters are all densely [13] filled spheres) are found to be 6.2 and 6.7 �A, respectively,

and λPS = 12.9 �A is defined to be the sum of the Ni and Ag average cluster sizes. In

Figure 5.1b, at 1400 K, Ni (red) and Ag (blue) stripes form along the longitudinal

axis, x. There is some variation in the lengths of each of the stripes as the line was
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equilibrated from high temperature. The PS length scale is defined as a sum of the

average lengths of both Ni and Ag stripes, λPS = 170.7 �A.

To emphasize and better interrogate the competing effects that phase separation

has on the dewetting dynamics, we equilibrated so-called “forced” periodic structures

with regions of equal number of Ag and Ni regions at length scales similar to those

observed in Figure 5.1b. The bulk (Figure 5.1c) was first created with 5120 atoms,

equal parts Ni and Ag. The energy was minimized and both NPT/NVT ensembles

were used to equilibrate pressure, volume, and temperature at 300K, 1000K, and then

finally 1400 K. The small bulk structure was then replicated (expanded) into one

containing 921,600 atoms (this is where the stripe patterns emerge) and subsequently

equilibrated with 1.2ns of NVT and 9ns of NVE, which we found to be sufficient for

convergence. Note that controlled bimetal patterns can be achieved via lithography

[57] (albeit at larger length scales) and chemical synthesis routes [91].

Similar to Figure 5.1b, Ni and Ag stripes form but now, by design, each Ag-Ni

stripe pair has a fixed length; note also that each Ag and Ni stripe has approximately

the same number of atoms, but the atoms are closer to each other for Ni (the atomic

volume for Ag is roughly 1.66 times larger than that for Ni at 1400 K). The PS length

scale, defined in the same manner as in Figure 5.1b, is λPS = 315.6 �A.

Figure 5.1d shows an example of lines cut from the bulk structure at 2000 K

(Figure 5.1a). Here, image (1) shows a straight line of length L and width W , and

image (3) is a line of the same length L with applied perturbations of amplitude A

and wavelength λ (referred to as a synthetic line). Note that, when suspended in

vacuum, both straight and synthetic lines quickly form a cylinder, so as to minimize

surface energy (such a cylinder is shown in Figure 5.1d, image (2)); even in the case

of the synthetic lines cylinders form faster than line breakup, as discussed in what

follows.
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5.4 The Rayleigh-Plateau Theory for Liquid Metals

Consider a perturbed liquid cylinder of radius R(x, t) with axis, x and surface given

by:

R(x, t) = R0 + A exp (ikx+ ωt) , (5.1)

where R0 is the average radius and A, k, and ω are the perturbation amplitude,

wavenumber, and growth rate, respectively, with A � R0. Classical RP theory

predicts that such small perturbations to liquid cylinders in vacuum, neglecting

viscosity, will grow at the rate given by

ω2 =
γ

ρR3
0

kR0
I1 (kR0)

I0 (kR0)

(
1− k2R2

0

)
, (5.2)

where γ, ρ are the liquid surface tension and density, and I0, I1 are Bessel functions

of the first kind of the zeroth and first order, respectively. In this chapter, we focus

on the (unstable) modes that grow (ω > 0, only possible when kR0 < 1). Of the

unstable modes, the one that grows the fastest is that with wavenumber km, found

by maximizing ω(k) in Equation (5.2) with given values of γ, ρ (see Table 5.1) and

R0 (see Table 5.2), given by

kmR0 ≈ 0.697. (5.3)

The corresponding wavelength, λm = 2π/km, of this mode depends only on the initial

radius of the cylinder, and is given by λm = 9.01R0.
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Table 5.1 Material Parameters for Ni, Ag, and Ni0.5Ag0.5 Alloy at Both 2000
K and 1400 K, Obtained by Linearly Extrapolating Properties from the Melting
Temperature, where Properties for the Alloy are Found by Averaging

Element ρ2000K(kg/m3) γ2000K(N/m) ρ1400K(kg/m3) γ1400K(N/m)

Ni 7587.2 1.7 8283.2 1.9

Ag 8652.4 0.8 9196.4 0.9

Ni0.5Ag0.5 8119.8 1.2 8739.8 1.4

Previously, we have shown that synthetic perturbations characterized by an

unstable RP wavelength can be used to control the breakup of nanoscale metallic

liquid lines into droplets of desired size and spacing [41, 43]. Here we investigate

whether the RP instability can be used to describe the breakup of Ni0.5Ag0.5 lines

(rather than pure element cylinders) in vacuum. Although the RP theory technically

only applies to single-element liquids, we apply it to the Ni0.5Ag0.5 alloy by averaging

densities and surface liquid tensions for the single elements (Vegard’s law) as given in

Table 5.1. As mentioned earlier, when suspended in vacuum, the lines transform into

cylinders of effective radius Reff perturbed along the long axis with effective amplitude

Aeff (in the case of straight lines, Aeff = 0). For simplicity, we define the effective

radius to be the radius of the cylinder that results from the straight lines, found by

equating cross-sectional areas, and is given by:

Reff =

√
Wτ

π
,

where τ is the line thickness, which we fix in all cases as τ = W/5. For the

synthetic perturbation cases, the effective amplitude can be found by equating the

cross-sectional area of the perturbation troughs to that of the thinnest part of the

perturbed cylinder. Since the width of the line at troughs is (W −2A) and the radius

of the thinnest parts of the cylinder is Reff − Aeff , equating cross-sectional areas,
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(W − 2A)τ = π(Reff − Aeff)2, we find the effective amplitude,

Aeff =

√
Wτ

π
−
√

(W − 2A)τ

π

For each of Figure 5.1a, 5.1b, and 5.1c, the wavelength is chosen so that L = 5λ,

where L is the (fixed) length of the respective bulk. With the values of the widths

W given in Table 5.2, the chosen wavelengths correspond to unstable perturbations

(stability curves will be shown shortly). By removing atoms from the bulk structures,

Ni0.5Ag0.5 lines of certain width, wavelength, amplitude and thickness (values are

given in Table 5.2) are extracted at 2000 K and 1400 K. We use A, B and C to denote

the straight and synthetic lines cut from Figure 5.1a, 5.1b, and 5.1c, respectively.
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Figure 5.2 RP dispersion curves, using Equation (5.2) with effective cylinder radius
Reff , where the growth rate is calculated using the geometric parameters from lines
A (red solid line), B (green dashed line) and C (blue dot-dashed line) (Table 5.2),
and the material parameters given in Table 5.1. The vertical dashed lines correspond
to the wavelengths used in the corresponding simulations.

Figure 5.2 displays the theoretical dispersion curves for the material parameters

given in Table 5.1 and using R0 = Reff in Equation (5.2) for A, B and C. The values

of the chosen wavelengths for A, B and C are given by vertical dashed lines and are

denoted here by λA, λB and λC, respectively. Except for the differences in maximum

growth rate, ωm at λm = 9.01Reff , these curves are very similar. Note that we have

used a non-maximum wavelength, λ > λm, in each case so that the RP dynamics

occur on a longer timescale (see Appendix B.6, Figure B.3, for a case where λm is

used). The numerical values of λ and ω(λ) are given in Table 5.2 along with the

widths, effective radii, lengths, temperatures and PS length scales. The values of
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Aeff will be discussed further at the end of Section 5.5. The question now is, how

do the values for ω and λ obtained from the RP analysis differ from those obtained

via MD simulations? Specifically, we are interested in studying how phase separation

interacts with the RP instability and affects the breakup of the lines.

Table 5.2 Temperature, Width W , Wavelength λ, Phase Separation Length Scale
λPS, and Length L, for Lines A, B and C, as well as Transformed Cylinder Effective
Radius Reff , and Associated RP Growth-Rate Prediction ω, via Equation (5.2)

Line Temp. (K) W (�A) Reff (�A) λ (�A) λPS (�A) L (�A) ω (1/ps)

A 2000 65.0 16.4 292.6 13.0 1463.2 4.3× 10−2

B 1400 63.6 16.1 286.7 170.7 1433.7 4.5× 10−2

C 1400 71.0 17.9 319.8 315.6 1598.9 3.8× 10−2

5.5 Results

In what follows we show how temperature and the phase separation length scale affect

the breakup of straight and synthetic lines into nanoparticles, producing results that

differ from those predicted by the RP theory. Unless otherwise stated we set the

RP length scales to the wavelengths provided in Table 5.2 and denote them λRP to

differentiate from λPS.
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Figure 5.3 Time evolution of straight (left) and synthetic (right) lines at 2000 K
((a) and (b)) and 1400 K ((c) and (d)). The parameters for 2000 K and 1400 K are
given in Table 5.2 under A and B, respectively. Time labels in ps (see text below)
are placed next to the corresponding lines. Color code: Ni (red), Ag (blue).

Figure 5.3 shows the temporal evolution of Ni0.5Ag0.5 lines in vacuum. Note that

the lines are evolved using the NVE ensemble. Straight and synthetic lines are shown

in the left and right columns of Figure 5.3, respectively. Labels i)-v) indicate the

time stamps at which the lines undergo significant changes during the simulation: i)

indicates the initial configuration; ii) the time at which surface perturbations develop;

iii) the time immediately prior to the breakup of the line; iv) the intermediate

time between the breakup and the formation of nanoparticles; and v) the time of

nanoparticle formation. On panel (b), the wavelength of the imposed perturbation is

also indicated. In Figure 5.3 a key difference between the initial structures (row

i)) is in the relative sizes of the PS and RP length scales. At 2000 K, the PS

length scale is a stable RP wavelength (surface perturbations due to PS would decay:

ω(λPS) < 0 in Figure 5.2), whereas at 1400 K surface perturbations of wavelength

λPS are RP-unstable (ω(λPS) > 0). For what follows we refer to a small PS length

scale as one where PS-induced perturbations decay, and a large PS length scale as

one where they grow.
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At 2000 K, the PS length scale is small and the straight line (Figure 5.3(a))

develops surface perturbations at 11ps (row ii)) due to small fluctuations in the

initial configuration rather than perturbations induced by PS. By comparison, in

the synthetic lines (Figure 5.3(b)), at 10 ps (row ii)) the perturbation is already

well developed, as expected since the perturbation of wavelength λRP was already

prescribed in the initial configuration. Nanoparticles are formed in the synthetic

lines 90 ps faster than in the straight lines. Five nanoparticles are formed in the

synthetic lines, which corresponds well to the five patterned wavelengths, whereas in

the straight lines the asymmetry of line breakup results in shortening of the resulting

line parts via material transport, leading to (in this case) four nanoparticles only. For

instance, note that, following line breakup the central part of Figure 5.3(a), row iv)

at 150 ps has 3 varicose perturbations (and thus one would expect 4 droplets), but

the breakup only occurs near the middle of this region (the surrounding instabilities

are suppressed) resulting in just two particles. The two droplets in the rightmost

region of Figure 5.3(a), row iv), on the other hand, coalesce into one droplet by row

v). The locations of the nanoparticles differ in the straight and synthetic lines. For

the latter, as expected, nanoparticles form at the peaks of the perturbation and are

well spaced; for the straight lines, the nanoparticles are not equidistant/periodic. For

both types of lines, the resultant nanoparticles are homogeneous and contain Ni and

Ag in a liquid-like configuration with a small phase separation length scale.

At 1400 K (Figure 5.3(c) and (d)), the PS length scale is large. As the

simulations proceed, the troughs of the perturbation develop primarily in Ag-rich

regions or at the interface between adjacent Ag-rich/Ni-rich regions. Both lines break

up faster than their 2000 K counterparts, 110ps and 30ps faster for the straight and

synthetic lines, respectively. This is somewhat counterintuitive: 1400 K is below the

melting point of Ni (1728 K) and less than 200 K above the melting point of Ag (1235

K). Therefore, at 1400 K one would expect the atom mobility to be less than at 2000
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K and thus breakup to take longer. The reason behind a faster breakup at 1400 K

is due to the thinning of the line in Ag-rich locations (Ag “migrates” to neighboring

regions faster than does Ni due to the lower melting temperature). The straight

line, for instance, forms seven nanoparticles, whereas the synthetic line forms five.

Interestingly, these nanoparticles are not uniform but have a core-shell like structure,

with Ag in the shell and Ni in the core (see particle slices in Appendix B.6).

For reference, pure Ni and Ag straight lines with comparable Reff = 16.1 �A

were simulated at 1400 K (and equilibrated similar to the alloys as described above).

The evolution of the pure metals (see Appendix B.7), confirms that the dewetting

instability is RP-like even in the Ni metal. In fact, the initial breakup time for Ni

(∼ 120 ps) is faster than for Ag (140 ps), which confirms that the Ni is largely, if not

fully, liquefied as a solid phase filament would dewet much more slowly, even if still

RP-like. The faster Ni dewetting time is consistent with Ni having a higher surface

energy than Ag. Finally, we also compared the radial distribution functions for Ni-Ni

in the bulk and in the filament at 1400 K (from Figure 5.1b and 5.3(c)ii, respectively;

see Appendix B.7). As expected, the peak in the Ni-Ni radial distribution function

for the ∼ 16 �A cylinder is smaller than the bulk, suggestive of a reduced order and

at least partial melting.

From the results above, it appears that at 1400 K for lines where the PS

length scale is on the order of the RP instability length scale, the soluto-capillary

Ag migration induces unstable perturbations that modify the existing RP instability

and affect breakup. To investigate this effect more carefully, we created synthetic lines

and prescribed perturbations (cut from bulk Figure 5.1c) where troughs are located

in the Ag-rich or Ni-rich regions, or close to the interface between these two regions,

see Figure 5.4(a), (b), and (c), respectively. In all these lines, the lengths of Ni and

neighboring Ag regions sum to the RP wavelength, λRP. As stated earlier, the length

of the Ag phase-separated regions (average length of blue regions in Figure 5.3(c))
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is slightly larger than that of the Ni regions. This difference is small, however, thus

the structures seen for the lines in Figure 5.4 correspond to the regime where the PS

length scales of Ni and Ag are approximately half the RP length scale. Two different

perturbation amplitudes were considered, 3.2 �A and 16 �A, which we refer to as small

and large amplitudes.

Figure 5.4 Time evolution of synthetic lines for Ag-rich troughs (a), Ni-rich troughs
(b), and mixed Ni and Ag troughs (c) for perturbations of amplitudes A=3.2 �A (left)
and A=16.0 �A (right). The labels i)-v) correspond to different time intervals in ps
with description as in Figure 5.3. Guides (dotted lines) are placed at the location of
the original synthetic peak position in i). The geometric details for the lines are given
in Table 5.2 under simulation C. Color code: Ni (red), Ag (blue).

Figure 5.4 shows the temporal evolution of Ni0.5Ag0.5 lines at 1400 K. The

troughs of the perturbations are either located at (a) Ag-rich regions (referred to

as Ag trough), (b) Ni-rich regions (Ni trough) or (c) mixed Ni/Ag regions (Mixed

trough). The main finding is that the location of the resultant nanoparticles differs

between (a), (b) and (c).

The primary difference between the small (Figure 5.4, left column) and large

amplitude (Figure 5.4, right column) is the time it takes the lines to reach the first
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pinch. In general, the large amplitude lines pinch faster than their small amplitude

counterparts since there is less material in the trough of the perturbation. The large

amplitude case can be thought of as further along in the destabilization process that

is inherited from the RP instability. The largest difference in the pinch time (60ps)

occurs in case (a). Further, the small amplitude case generates small secondary or

satellite particles near two of the perturbation peak regions in Figure 5.4(b), left

column.

Figure 5.4(a), (b), and (c) collectively highlight the importance of the initial

trough composition. Consider, in the large amplitude cases (right panel of Figure 5.4),

the position of the resultant nanoparticles in v) relative to the trough guides (the

dashed vertical lines). In (a), the nanoparticles are primarily located at the peak of

the perturbation (the dashed lines), which is consistent with the typical RP instability

where the material thins at the troughs and accumulates at the peaks. In comparison,

the resultant nanoparticles in (b) are slightly misaligned relative to the prescribed

peaks. This difference can be explained as follows. The RP instability tends to thin

and pinch the lines at the trough of the perturbation. If the trough is Ag-rich, the

Ag migration and the RP instability cooperate in breaking the line. However, if

the trough is Ni-rich, Ag migration and the RP instability compete. Cooperation

and competition should be more apparent in the small amplitude case, since in this

case breakup occurs later. Indeed, the left panel of Figure 5.4 shows that for the

Ag-rich trough (a), the primary particle positions are aligned with the peak regions.

For the Ni-rich trough (b), the trough coarsens slightly as the Ag soluto-capillary

effect opposes the RP instability. The initially Ag-rich regions eventually act as

the pinch points and the primary particles end slightly off-center from the original

synthetic perturbation peak; secondary particles also emerge due to the inter-Ag

filament thinning. Notably, all secondary satellite particles are nearly pure Ag and
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thus, while most of the core-shell nanoparticles are approximately Ni0.5Ag0.5, primary

particles that neighbor a secondary satellite are Ag-deficient.

Figure 5.5 Time evolution of synthetic lines patterned with wavelength λRP =
533.0 �A and amplitudes A = 3.2 �A (a), A = 5 �A (b), and A = 6 �A (c). Time labels
(in ps) are placed next to the corresponding lines. The labels i)-v) correspond to
those of in Figure 5.4. Guides (dotted lines) are placed at the location of the original
peak in i). Except for the wavelength, the geometric details for the lines are as given
in Table 5.2 under simulation C. Color code: Ni (red), Ag (blue)

To test the competition between the soluto-capillary effect and the RP, we use

the PS length scale, λPS , from Figure 5.4 (see C from Table 5.2 for the parameters);
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and in addition we pattern the synthetic perturbations at longer (slower growth rate)

unstable wavelengths (λRP = 533.0 �A; see Figure 5.2, simulation C) and variable

amplitudes. Figure 5.5 illustrates the time evolution of these structures with the

following initial amplitudes in i): (a) 3.2 �A, (b) 5 �A, and (c) 6 �A (larger amplitudes

were also simulated, and the outcomes are similar to (c)). The times i)-iv) are similar

to those described for Figure 5.3 and 5.4. Time v) represents the earliest time stamp

of full droplet coalescence. The main finding is that the number of resultant primary

droplets depends on the amplitude of the prescribed perturbation. At low amplitude

(A < 5�A; (a)), the soluto-capillary driven instability clearly dominates as 5 primary

nanoparticles (droplets roughly comparable in size) result and are positioned near the

original Ni-rich regions (the Ag migration offsets the resultant droplet positioning

slightly and leads to formation of 2 smaller satellite droplets). At intermediate

amplitudes (5�A < A < 6�A; (b)), there is a transition: 4 primary nanoparticles result

(also one satellite droplet), and the coalescence of two Ni regions occurs adjacent to

the peak located in the Ag region (left-most droplet). Finally, at higher amplitudes

(A > 6�A; (c)), the RP driven instability dominates as 3 primary nanoparticles result

and are located at the peaks of the synthetic perturbations.
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Table 5.3 Comparison of Simulated Breakup (Pinch) Times and Predicted Pinch
Times According to RP Theory for the Simulations A, B, and C, where Label (3)
Refers to Figure 5.3 and (4) Refers to Figure 5.4

Temp. (K) Reference Amplitude

(�A)

Effective

Amplitude

(�A)

MD Pinch

Time (ps)

RP Pinch

Time (ps)

2000 (3) (2000

K)

16 4.7 40 29

1400 (3) (1400

K)

16 4.7 30 27

1400 (4) (Ni

Trough)

3.2 0.8 100 80

1400 (4) (Ni

Trough)

16 4.6 70 35

1400 (4) (Ag

Trough)

3.2 0.8 120 80

1400 (4) (Ag

Trough)

16 4.6 60 35

1400 (4) (Mixed

Trough)

3.2 0.8 100 80

1400 (4) (Mixed

Trough)

16 4.6 50 35

Finally, we compare MD pinch times of the nanoscale alloys to RP theory pinch

times. Table 5.3 lists the MD simulated breakup times for the simulations reported

here (where data was recorded every 10 ps), and the prediction made via RP theory.

The theoretical breakup times are based on the linear growth rate ω, amplitude, A,
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and effective radius, Reff , via:

tpinch =
− ln (Aeff/Reff)

ω
. (5.4)

Though detailed statistics and higher time resolution output would enhance

the accuracy of the MD pinch time, the simulated breakup times agree well with the

theoretical predictions even though, in some instances, PS competes with or enhances

RP. Thus, it appears that the soluto-capillary dynamics occur on timescales similar1

to those of traditional RP.

5.6 Conclusions

Molecular dynamics (MD) simulations are used to investigate the effect of phase

separation on the breakup mechanism of thin liquid lines of Ni0.5Ag0.5 alloy in vacuum.

At 2000 K, the NiAg structures are mostly homogeneous and the defining phase

separation (PS) length scale, λPS, is much smaller than the Rayleigh-Plateau (RP)

length scale, λRP. Here, breakup occurs in the classical manner, as if the structure

were homogeneous with material parameters averaged over those of the constituents,

and resultant nanoparticles are aligned with the peak of the underlying synthetic

perturbations. At 1400 K, the PS length scale is comparable to the RP length scale

and the long axis migration of Ag onto Ni influences the resultant droplet location

relative to the initial perturbation. The positioning of the final droplets is found to

be influenced by the composition of the trough of the undulations and the strength of

the RP instability (controlled by the amplitude). For small amplitudes, PS competes

with RP when lines contain Ni-rich troughs, resulting in some primary nanoparticles

of Ag@Ni core-shell morphology aligned with the initially Ni-rich regions as well as

some pure Ag satellite drops. When the troughs contain either Ag-rich or mixed

1Although the MD pinch times are comparable in size to the RP predictions, they are
consistently longer, possibly due to nonlinear effects which slow down the exponential
growth predicted by linear stability analysis.
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NiAg troughs the RP instability is complemented by the PS structure resulting in

primary nanoparticles aligned with the peaks of the initial perturbation. In general,

these resultant nanoparticles are of Ag@Ni core-shell morphology, but for the low

amplitude, Ag-rich trough, some pure Ag satellite droplets form.

The soluto-capillary/RP competition is further interrogated by simulating lines

with PS length scales shorter than λRP, so that growth of the RP instability

is slow relative to PS-induced perturbations. We demonstrate that tuning the

synthetic perturbation amplitude dictates whether soluto-capillarity or RP drives the

instability. Keeping in mind the average line radius of 35.5 �A, when the amplitude

is sufficiently small (here, A < 5 �A), soluto-capillarity dominates. Increasing the

amplitude increases the “strength” of the RP instability and for A > 6�A the RP

mechanism dominates. The MD breakup times of the nanoscale alloys are found to

be in good agreement with the predictions of RP theory.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

To conclude, we used both continuum modeling and molecular dynamics simulations

to understand the dewetting dynamics of liquid metals with thermal transport. First,

in Chapter 2, we focused on pure element metals and formulated an asymptotically-

reduced continuum model for heat conduction, model (A), which couples in-plane

diffusion within the film to out-of-plane diffusion in the substrate, which is assumed

thin. This validity of this model is verified by simulating both a full heat conduction

model (F), and a model that neglects in-plane diffusion, model (1D). We found that

model (A) is more accurate than (1D), and agrees very well with model (F), while

being much more computationally efficient.

Regarding the dimensionless parameters that arise in our continuum model, Ma

(Marangoni number), Γ (leading order surface tension), and M (film viscosity), we

find that films that account for time-dependent viscosity fully dewet during the liquid

phase, whereas films with constant (melting temperature) viscosity barely evolve, for

the same external heating. The time-dependent viscosity arises via an Arrhenius

law that specifies viscosity as a function of the spatially-averaged film temperature.

The variation of surface tension in time (again via dependence on film-averaged

temperature) is found to increase the dewetting speed, but the effect is weaker than

that of the time-dependent viscosity. The Marangoni effect was found to be weak in

comparison to both, and does not significantly alter the evolution of the film, due to

the weak spatial gradients of film temperature.

By empirical arguments, this asymptotic model (A) was then extended, in

Chapter 3, to substrates of arbitrary thickness and the influence of the substrate

on the temperatures and evolution of the film were investigated. The influence of
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the thickness of the substrate, Hs, the heat loss measured by the Biot number,

Bi, and temperature-varying thermal conductivity in the substrate, k(Ts), were all

investigated. Due to the fast computations afforded by model (A), we were able

to simulate a large parameter sweep in Bi, Hs (the parameter Bi characterizes how

well insulated the substrate is, with the limit Bi → 0 corresponding to a perfectly

insulated substrate). The influence of Bi was found to be significant, in that the peak

film temperatures and liquid lifetime (LL) of the molten film significantly decrease

from small to large Bi. Consequently, the dewetting speeds varied across the range

of Bi through time-varying viscosity, and as a result, the films with relatively large

Bi solidified prior to fully dewetting. Substrate thickness Hs also alters the peak film

temperatures and LLs, in a way that depends strongly on the value of Bi: films on

perfectly and poorly insulated substrates behave very differently.

By developing a 3D GPU code that solves the underlying model, (A), we were

able to investigate these effects on larger domains, with computational ease. Our

3D simulations revealed clearly the influence of Hs on the film evolution for different

substrate Biot numbers. For substrates that are perfectly insulated below (Bi →

0), dewetting speed decreases with increased Hs, whereas if the substrate is only

poorly-insulated below (Bi→∞), dewetting speed increases with substrate thickness.

This can result in different final solidified film configurations for different Hs and

Bi pairs. Inclusion of temperature-dependent substrate thermal conductivity in our

model as well, we found a decrease in the peak film temperatures and LL, resulting

in films that solidified close to, but before, the final stages of dewetting.

We next turned our attention to alloys, in Chapters 4 and 5, with a focus

on the competition between chemical instabilities and dewetting in Ni0.5Ag0.5 alloy

nanostructures. Due to the computational complexity of the problem, we used

molecular dynamics simulations with the software LAMMPS [107] on both Titan

and Summit supercomputers at Oak Ridge National Laboratory. We considered two
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structures: a bulk, which contains no free surface, and a sphere, whose surface is

freely exposed to vacuum. The latter is used to gather qualitative behavior about the

droplets that emerge from the dewetting process. We found that phase separation

increases with decreasing temperature. In the spheres the phase separation becomes

apparent around 1800 K. By depositing the spheres on graphene substrates, the

wettability is used to tune the Lennard-Jones potential governing the liquid-solid

interactions.

We then used those potentials to model the competition between phase

separation and Rayleigh-Plateau (RP) type instabilities in the alloy free-standing

rectanguloid alloys that are patterned with a wave of a given wavelength guided

by RP theory. In particular, we looked at two different temperatures (2000 K and

1400 K), which generate different phase separation length scales, λPS, relative to the

RP instability length scale λRP. We found that when the phase separation length scale

is short, λPS � λRP (2000 K), the breakup of the rectanguloids is consistent with

classical RP theory, whereas when the phase separation length scale is comparable

in size to RP, λPS ≈ λRP, the soluto-capillarity driven instability (concentration

gradients) affects the RP instability. Due to the decreased surface energy of Ag

relative to Ni, the Ag-rich regions move along the long axis of the rectanguloid early

in the dewetting. This induces surface perturbations consistent with λPS and modifies

the RP instability mechanism, resulting in shifted placement of nanoparticles that are

either Ag@Ni core-shell or pure Ag.

We conclude by highlighting model limitations and directions for future work.

First, the validity of the asymptotic thermal model (A) relies on a number of

simplifying assumptions. For example, the time scale of heat conduction in the

film is assumed fast relative to film evolution. In this dissertation we used material

parameters from copper. Before utilizing this model for other metals the consistency

of these assumptions should be checked. Secondly, in all of our continuum modeling
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we have neglected in-plane diffusion in the substrate. Although this can be

asymptotically justified for thin substrates considered in Chapter 2, this is not the

case for the thick substrate simulations presented in Chapter 3. We were able to

justify the validity of model (A) in that setting empirically in Appendix A.6, but in

other cases the effect of the in-plane derivatives may become important. Utilizing

our 3D GPU code to simulate different film configurations where such thermal effects

are relevant is one possible future direction of this work. To this point, the in-house

numerical code is scalable. So, simulating larger domains than those presented here

is possible and should be done so as to better compare to experiments.

When simulating films on thick substrates, some of our simulations revealed very

high metal temperatures. However, evaporation of the liquefied metal was neglected

in all of our continuum modeling. The inclusion of evaporative losses is another

possible future direction of this work, which would make some of the simulations more

realistic, and would complement the existing melting/solidification phase changes

implemented.

When considering metal alloys we restricted our investigations to molecular

dynamics simulations, and did not use any continuum modeling. To develop a

consistent continuum model one must couple concentration dynamics (for each metal

species present) into the existing thin film dynamics, which would present a significant

numerical challenge. Extending the existing 3D GPU code to include such dynamics

is one possible direction of future work, and would help bridge the scale between

molecular dynamics and experiments. Besides the brief consideration of wettability of

droplets, all the molecular dynamics metal alloy simulations presented were performed

in vacuum. Performing these simulations on substrates would certainly be relevant

and interesting, and should be done so as to compare to both continuum modeling and

experiments. Furthermore, future studies warrant the simulation of other geometries

considered in experiments such as films [32,67] and rings [141].
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APPENDIX A

IMPLEMENTATION DETAILS AND ADDITIONAL RESULTS FOR
THE CONTINUUM SIMULATIONS OF PURE METAL FILMS

In this appendix, we provide additional results and discuss details of the simulations

performed in Chapters 2 and 3. This includes, but is not limited to, a discussion

on the choice of scalings made, the values of parameters used, and the numerical

algorithms used.

A.1 Scalings and Parameter Values for Simulations of Films on Thin
Substrates

A.1.1 Discussion of the Choice of Scales and Table of Parameters

The choice of scales has important implications for the derivation of both the thin

film equation (Equation (2.48)) and the thermal model (A) (Equations (2.34)-(2.39)).

The choice of timescale is typically based on the fluid flow, L/U . From the perspective

of the thermal model, however, the pulsed laser heating duration is on the order of

nanoseconds. With the timescale choice L/U , L and U should be chosen consistent

with such a thermal time scale, while still retaining surface tension effects in the fluid

flow model, known to be important. Therefore, we choose U = ε3γf/(3µf) and scale

L on the (inverse) wavenumber of maximum growth km = 2π/λm as L = k−1
m (from

Section 2.4.1) so that surface tension effects and disjoining pressure are retained

to leading order. The tradeoff is that the aspect ratio ε consistent with the data

(Table A.1) is rather large, 0.246. However, the time scale is then on the order

of nanoseconds, as desired, and we consider this acceptable in order to develop a

consistent model.

For the materials in question, the values of Pef ,Pes,K, and Bi are small despite

the O(1) assumption (Table A.1). This is primarily a consequence of the size of ε,

which is directly related to the dependence of L on λm. Given this observation,
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Table A.1 Parameters used for Liquid Cu Film and Thin SiO2 Substrate

Parameter Notation Value Unit

Base Viscosity µf [33] 4.3× 10−3 Pa · s
Base Surface tension γf [33] 1.303 J ·m−2

Vertical length scale H 10 nm

Horizontal length scale L = λm/(2π) 40.58 nm

Time scale ts = 3Lµf/(ε
3γf) 26.86 ns

Melting Temperature Tmelt 1358 K

Film density ρf [33] 8000 kg ·m−3

SiO2 density ρs [33] 2200 kg ·m−3

Film specific heat capacity cf [33] 495 J · kg−1 ·K−1

SiO2 specific heat capacity cs [33] 937 J · kg−1 ·K−1

Film heat conductivity kf [33] 340 W ·m−1 ·K−1

SiO2 heat conductivity ks [33] 1.4 W ·m−1 ·K−1

Film absorption length α−1
f H [33] 11.09 nm

Temp. Coeff. of Surf. Tens. γT [33] −0.23× 10−3 J ·m−2 ·K−1

Hamaker constant AH [52] 1.75× 10−17 J

Reflective coefficient r0 [33] 0.3655 1

Film reflective length α−1
r H [33] 12.0 nm

Laser energy density E0 [92] 300 J ·m−2

Gaussian pulse peak time tpts [92] 15 ns

Equilibrium film thickness h∗H 1 nm

Mean Film thickness h0H 10 nm

SiO2 thickness HsH 10 nm

Room temperature TaTmelt 300 K

SiO2 Heat Transfer Coefficient α 3.0× 105 W ·m−2 ·K−1

Characteristic Velocity U 1.504 m · s−1

Activation Energy E 30.5 kJ ·mol−1
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Table A.2 Dimensionless Parameters used for Liquid Cu Film and SiO2 Substrate

Dimensionless Numbers Notation Value Expression

Aspect Ratio ε 0.246 H/L

Reynolds Number Re 0.114 ρfUL/µf

Film Peclet Number Pef 7.14× 10−4 (ρc)fUL/kf

Substrate Peclet Number Pes 5.46× 10−3 (ρc)sUεH/ks

Biot Number Bi 2.14× 10−3 αH/ks

Marangoni Number Ma 0.360 3γTTmelt/(2γf)

Thermal Conductivity Ratio K 0.068 ks/(ε
2kf)

Range of Dimensionless Viscosity M 0.028− 1 µ/µf

we briefly consider the limit of small Pef ,Pes,K, and Bi. Firstly, in the limit

Pef → 0, Equation (2.34) would reduce to a quasi-steady (no time-derivative) equation

governing temperature Tf(x, y, t) in the film. The resultant equation is computa-

tionally more difficult to solve (and leads to only negligible differences), so we do not

adopt this approach. Secondly, in the limit Pes → 0, the solution to Equation (2.35)

would be linear in z. The numerical solutions given in Figure 2.4 display substrate

temperatures that deviate from linear behavior in z. We consider this the motivation

for retaining Pes in Equation (2.35) (which leads to better agreement between models

(A) and (F)). In the limit K → 0, film temperature no longer depends directly on

substrate temperature (although the substrate temperature still depends on the film

temperature). Since the primary heat loss mechanism is considered to be through

the film-substrate interface, we retain K in Equation (2.34). If the primary heat

loss mechanism is elsewhere, it may be possible to drop the term containing K in

Equation (2.34). Finally, in the limit Bi→ 0, Equation (2.37) becomes an insulating

boundary condition, which in turn leads to much higher substrate/film temperatures.

In the case where SiO2 sits on a native layer of Si it is expected that there is some

heat transfer. Therefore, we retain Bi in Equation (2.37).
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A.1.2 Wavelength of Maximum Growth

When the material parameters are fixed at melting temperature, Γ,M = 1, the

dimensional dispersion relation can be written as:

β(k) =
h2

0H
2k2

3µf

(
P0 − γfHh0k

2
)
, (A.1)

P0 =
AH

6πh3
∗H

3

[
m

(
h∗
h0

)m
− n

(
h∗
h0

)n]
, (A.2)

where (in this section only) β(k) is the dimensional growth rate and k the dimensional

wavenumber. The remaining parameters are given in Table A.1. The wavelength of

maximum growth, λm, can then be found by setting ∂β/∂k = 0 and written as

λm = 2π

/√
AH

12πγfh3
∗H

3h0

[
m

(
h∗
h0

)m
− n

(
h∗
h0

)n]
.

For the parameters used in Chapter 2, λm = 255nm. For the entirety of Chapter 2,

this value is used to define a base length scale L = λm/(2π).

A.2 Effect of Spatially Varying Viscosity with a Larger Biot Number

Here we increase the Biot number to Bi = 5.71 × 10−3 (more than twice the value

used in the main text; see Table A.1). This leads to much earlier resolidification of

the film (for (A) resolidification occurs at t ≈ 2.8 whereas for (1D) t ≈ 2.7). We

specifically focus on the influence of model choice when the spatiotemporally-varying

viscosity is used, M(x, t).

127



Figure A.1 Film thickness evolution for both the asymptotic model (left) and the
1D model (right) for the spatiotemporal varying viscosity caseM(x, t). The y-axis is
plotted on a log scale to emphasize satellite droplet formation which is more prominent
with (1D) than with (A). Here the Biot number is Bi = 5.71× 10−3. The times are:
t = 0 (red), t = 1.47 (green), t = 1.84 (blue), t = 2.21 (magenta), t = 2.40 (orange
dashed), resolidification of (1D), t = 2.69 (black).

Figure A.1 shows the film evolution for both models (A) (left) and (1D) (right).

The black solid line represents the film profiles at the (1D) solidification time (model

(A) predicts a larger solidification time but the final solidified film configuration is

nearly identical to the black solid line in Figure A.1a). The times are given in the

caption. The main finding is that for sufficiently large α the decay of the satellite

droplet that forms for both (A) and (1D) is slower in (1D). Essentially, for (1D)

the satellite droplet is cold relative to the thicker parts of the film (recall the much

more significant x-variation of temperature observed for (1D)). Since the viscosity

varies with space the centre (x = 0) of the satellite droplet approaches the precursor

thickness more slowly than the surrounding area. In (A), the temperature variation

with x is less pronounced and so the satellite droplet has drained more than its

(1D) counterpart before reaching the final solidified configuration. In summary, these
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results demonstrate that the choice of thermal model can influence the final resulting

film profiles.

A.3 Numerical Schemes for Films on Thin Substrates with Constant
Substrate Thermal Conductivity

A.3.1 Numerical Solution of Model (F)

To solve Equation (2.5) numerically, along with corresponding boundary conditions

in model (F), we define the new variables (u, v, τ) as:

u = x, v =
zh0

h
, τ = t,

which is a time-dependent mapping transforming the deformable domain, describing

the film, into a fixed rectangle (see Figure A.2 below).
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Figure A.2 Schematic of mapping used to transform the computational domain for
(F). Here the domain width shown is X = 2π. Blue points represent the film domain
and black points represent the substrate domain.

This approach trades a simplified domain for an increase in complexity of

the thermal equation in the film. Equation (2.5) is transformed into the following

differential equation:

∂τTf =
1

Pef

∂2
uTf +B(u, v)∂uvTf + A(u, v)∂2

vTf + F (u, v)∂vTf +Q(h(u), v, τ), (A.3)
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where

B(u, v) = − 1

Pef

(
2v∂uh

h

)
,

A(u, v) =
1

Pef

[(
v∂uh

h

)2

+
1

ε2

(
h0

h

)2
]
,

F (u, v) =
1

Pef

(
vh∂2

uh

h2
− v(∂uh)2

h2

)
+
v∂τh

h
,

Q(h(u), v, τ) =
F (t)

Pef

[1−R(h)] exp [−αf (h− hv/h0)],

are the coefficients, and subscripts u, v, τ denote partial derivatives. To solve Equation

(A.3) numerically the ADI method is used, with the term containing B(u, v) treated

explicitly. A Crank-Nicolson scheme is used to solve Equation (2.6), the heat equation

in the substrate. We use a cell-centered grid system:

ui = xi = x0 + ∆x (i− 1/2) , i = 1, . . . , n, ∆u = ∆x =
(xmax − x0)

n
,

zj = − (j − 1/2) ∆zs, j = 1, . . . , ns, ∆zs =
Hs

ns

,

vj = h0 − (j − 1) ∆v, j = 1, . . . , nf , ∆v =
h0

nf

,

T ki,j ≈


Tf(ui, vj, tk), 1 < j < nf ,

Ts(xi, zj, tk), nf + 1 < j < nf + ns,

hki ≈ h(ui, tk), Qk
i,j ≈ Q(ui, vj, tk).

The numerical system can be then written as:
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T ∗i,j − T ki,j
∆t

= D∗i,j +Gk
i,j +Mk

i,j +
1

2
Q
k+1/2
i,j ,

T k+1
i,j − T ∗i,j

∆t
= D∗i,j +Gk+1

i,j +
1

2
Q
k+1/2
i,j ,

D∗i,j =


1
2
Pe−1

f δ2
uT
∗
i,j, j ≤ nf ,

1
2
ε2Pe−1

s δ2
xT
∗
i,j, j ≥ nf + 1,

Gk
i,j =


1
2
Aki,jδ

2
vT

k
i,j + 1

2
F k
i,jδvT

k
i,j, j ≤ nf ,

1
2
Pe−1

s δ2
zT

k
i,j, j ≥ nf + 1,

Mk
i,j =


Bk
i,jδuvT

k
i,j, j ≤ nf ,

0, j > nf ,

where Tf(xi, zj, tk) ≈ T ki,j is a discretisation of the film temperature, and T ∗i,j represents

the solution at an intermediate time-step. In the interior grid the spatial derivatives

are given by:

δuTi,j =
Ti+1,j − Ti−1,j

2∆u
, δvTi,j =

Ti,j−1 − Ti,j+1

2∆v
,

δ2
xTi,j = δ2

uTi,j =
Ti+1,j − 2Ti,j + Ti−1,j

∆u2
,

δuvTi,j =
Ti+1,j−1 − Ti−1,j−1 − Ti+1,j+1 + Ti−1,j+1

4∆u∆v
,

δ2
zTi,j =

Ti,j−1 − 2Ti,j + Ti,j+1

∆z2
s

, δ2
vTi,j =

Ti,j+1 − 2Ti,j + Ti,j−1

∆v2
,

which are second-order central difference approximations and the source, Q, is

approximated by an average at times tk, and tk+1,

Q
k+1/2
i,j =

1

2

(
Qk+1
i,j +Qk

i,j

)
.
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A.3.2 Numerical Solution of Model (A)

We use the same cell-centered grid as §A.3.1 except for zj:

zj = − (j − 1) ∆zs, j = 1, . . . , ns, ∆zs =
Hs

ns − 1/2
,

so that a grid point exists on the liquid-solid interface (a Dirichlet boundary condition

is prescribed there). For simplicity we let T ki ≈ Tf(xi, tk), S
k
i,j ≈ Ts(xi, zj, tk) and

F k
i =

1

Pef

[
δ2
xT

k
i +

(
∂xh

h

)k
i

δxT
k
i

]
,

Gk
i = − K

Pefhki
∂z (S)kI ,

where ∂z(S)kI = ∂Ts/∂z|z=0(t = tk). To solve Equation (2.34) and (2.35) we use a

predictor-corrector Runge-Kutta/Crank-Nicolson scheme. In the prediction phase we

use a forward-Euler scheme to deal with Gk
i :

T k+1
i − T ki

∆t
=

1

2

[
F k+1
i + F k

i

]
+Gk

i +Q
k+1/2

i , i = 1, . . . , n,

Sk+1
i,j − Ski,j

∆t
=

1

2
Pe−1

s

[
δ2
zS

k+1
i,j + δ2

zS
k
i,j

]
, j = 2, . . . , ns, i = 1, . . . , n,

where Q
k+1/2

i = (Q
k

i + Q
k+1

i )/2. We then correct this prediction by using a Runge-

Kutta, order 2, method on Gk
i using the prediction Ĝk

i :

T k+1
i − T ki

∆t
=

1

2

[
F k+1
i + F k

i

]
+

1

2

(
Gk
i + Ĝk

i

)
+Q

k+1/2

i , i = 1, . . . , n,

Sk+1
i,j − Ski,j

∆t
=

1

2
Pe−1

s

[
δ2
zS

k+1
i,j + δ2

zS
k
i,j

]
, j = 2, . . . , ns, i = 1, . . . , n.

A.3.3 Numerical Solution of Model (1D)

The numerical scheme used for model (1D) is a simple Crank-Nicolson scheme:

T k+1
i,j − T ki,j

∆t
=

1

2
ε−2Pe−1

f

(
δ2
zT

k
i,j + δ2

zT
k+1
i,j

)
+Q

k+1/2
i,j , j = 1, . . . , nf

T k+1
i,j − T ki,j

∆t
=

1

2
Pe−1

s

(
δ2
zT

k
i,j + δ2

zT
k+1
i,j

)
, j = nf + 1, . . . , nf + ns,
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where i = 1, . . . , n and n, nf and ns are the same as in §A.3.1.

A.3.4 Convergence Results

For what follows we define the discrete L2 error, E(t), where

E2(t) =

n∑
i=1

(
nf∑
j=1

∆zi
∣∣T comp
i,j − T bench

i,j

∣∣2 + ∆zs

ns∑
j=1

∣∣T comp
i,j − T bench

i,j

∣∣2)
n∑
i=1

(
nf∑
j=1

∆zi
∣∣T bench
i,j

∣∣2 + ∆zs

ns∑
j=1

∣∣T bench
i,j

∣∣2) ,

and T comp
i,j is the computed temperature and T bench

i,j is a benchmark solution which,

for the results presented next, we take to be the numerical solution on the finest grid

since no exact solution is known.

Figure A.3 (a) ∆t convergence for (F), (A), and (1D) in the stationary curved
film case. All models use O(∆t2) schemes. (b) ∆zs convergence for (F), (A), and
(1D) in the stationary curved film case where h is given by Equation (2.52), but
time-independent. All models use O(∆z2

s ) schemes.
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Figure A.4 (a) ∆x convergence for (F) and (A) in the stationary curved film case
(Note that (1D) has no derivatives with respect to x). Each model uses a O(∆x2)
scheme. (b) ∆v convergence for (F) and (1D) in the stationary curved film case
(Note that Tf is independent of z for (A)). Each model uses a O(∆v2) scheme.

A.4 Variation of Temperature with Film Thickness

In the case when the film is flat, its temperature is independent of the in-plane

variables and conservation of energy may be reduced to an expression for the average

film temperature, written as a simple balance of source heating and substrate cooling:

∂tTavg = Pe−1
f

[
−K
h

(∂zTs) |z=0 +Q

]
. (A.4)
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Figure A.5 (a) Average Source, Q, and (b) magnitude of film heat loss through
the substrate, K(hPef)

−1∂zTs|z=0 and (c) average film temperature all for flat films of
h = 8nm (blue, solid), h = 10nm (red, dot-dashed), and h = 12nm (black, dashed).

Figure A.5 shows the variation of both (a) source heating (measured by Pe−1
f Q)

and (b) substrate cooling (measured by (hPef)
−1 (∂zTf) |z=0) for three different film

thicknesses, h = 8, 10, 12 nm. Figure A.5(c) gives the average film temperatures for

each case. As seen in Figure A.5(a), thinner films retain more energy from the source

and, in the absence of cooling, should be hotter. Physically, thicker films reflect more

energy and absorb less. Although (to keep the presentation simple) we use Q here

rather than Q from Equation (2.18), it can be shown also that dQ/dh < 0 for all times.

Figure A.5(b) demonstrates that thinner films also cool faster (through the substrate)

than thicker ones. When these two effects are combined, we arrive at average film

temperatures that are non-monotonic in film thickness h. In Figure A.5(c), thinner

films are observed to be initially hotter over the early stages of evolution, primarily

due the magnitude of the laser heating, which is initially larger than that of cooling.

Over the later stages, the source decreases in strength sufficiently so that the trend of

cooling with film thickness is dominant and thinner films are colder. Note that this
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non-monotonic behavior depends on the relative strengths of the heat source and the

cooling term and may change if different forms are used to describe these effects. The

explanation given above is the primary reason for the behavior seen in Figure 2.2(b).
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A.5 Values of Parameters

Table A.3 Parameters used for Liquid Cu Film and Thick SiO2 Substrate

Parameter Notation Value Unit

Base Viscosity µf [33] 4.3× 10−3 Pa · s
Base Surface tension γf [33] 1.303 J ·m−2

Wavelength of max. growth λm 180.84 nm

Vertical length scale H 10 nm

Horizontal length scale L = λm/(2π) 28.78 nm

Time scale ts = 3Lµf/(ε
3γf) 26.86 ns

Melting Temperature Tmelt 1358 K

Film density ρf [33] 8000 kg ·m−3

SiO2 density ρs [33] 2200 kg ·m−3

Film specific heat capacity cf [33] 495 J · kg−1 ·K−1

SiO2 specific heat capacity cs [33] 937 J · kg−1 ·K−1

Film heat conductivity kf [33] 340 W ·m−1 ·K−1

SiO2 heat conductivity ks [33] 1.4 W ·m−1 ·K−1

Film absorption length α−1
f H [33] 11.09 nm

Temp. Coeff. of Surf. Tens. γT [33] −0.23× 10−3 J ·m−2 ·K−1

Hamaker constant AH [52] 3.49× 10−17 J

Reflective coefficient r0 [33] 0.3655 1

Film reflective length α−1
r H [33] 12.0 nm

Laser energy density E0 [52] 1400 J ·m−2

Gaussian pulse peak time tpts [52] 18 ns

Equilibrium film thickness h∗H 1 nm

Mean Film thickness h0H 10 nm

SiO2 thickness HsH 50− 250 nm

Room temperature TaTmelt 300 K

SiO2 Heat Transfer Coefficient αs 105 − 1011 W ·m−2 ·K−1

Characteristic Velocity U 4.237 m · s−1

Activation Energy E 30.5 kJ ·mol−1
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A.6 Model Validity: Neglecting Lateral Heat Diffusion in the Substrate

For brevity, we denote the asymptotically-reduced model described by Equations

(3.6)-(3.11) as model (A). In our previous work on this system [3], it was assumed

that the film is placed upon a substrate sufficiently thin that neglecting in-plane

diffusion in the substrate is asymptotically justified. In Section 3.3 of the present

work, we allow the underlying substrate to be thick relative to the film, so the validity

of dropping terms representing in-plane diffusion in the substrate remains to be seen.

For this purpose, we consider a model, denoted (FA),1 which includes Equation (3.6)

and Equations (3.8)–(3.11), but replaces Equation (3.7) with a full heat transport

model in the substrate,

Pes∂tTs = ε2∂2
xTs + ∂2

zTs. (A.5)

1Here, “F” indicates that a “full” model is used for heat flow in the substrate, while “A”
denotes the “asymptotically” reduced model that applies to heat transport in the film.

139



t

T
a

v
g

0 0.5 1 1.5 2 2.5

0.4

0.8

1.2

1.6

2

(A)   H
s
=10 (1)

(FA) H
s
=10 (2)

(A)   H
s
=50 (3)

(FA) H
s
=50 (4)

(A)   H
s
=100 (5)

(FA) H
s
=100 (6)

T
melt

(3)­(6)

(1)­(2)

(1
)­

(6
)

(b)

t

h
(x

=
0

)

0 0.5 1 1.5 2 2.5
0

0.4

0.8

(A)   H
s
=10 (1)

(FA) H
s
=10 (2)

(A)   H
s
=50 (3)

(FA) H
s
=50 (4)

(A)   H
s
=100 (5)

(FA) H
s
=100 (6)

(1
)­(6

)

(1)­(6)

(a)

Figure A.6 (a) Film thickness at the midpoint, x = 0, and (b) average film
temperature for model (A) (the one given by Equations (3.6)–(3.11) and model (FA)
where Equation (3.7) is replaced by Equation (A.5). Models (A) and (FA) agree for
substrate thicknesses Hs = 10, 50, and 100. For both (a) and (b) the parameters were
held constant Γ =M = k = 1 and Bi ≈ 4.3× 10−2.

Figure A.6(a) shows the evolution of the film thickness at the midpoint, x = 0,

(a) and average film temperature (b) for 2D films on substrates of thicknesses Hs =

10, 50, and 100. In (a), the film is initially given by Equation (3.14) and h(x = 0)

is determined by solving Equation (3.4) with Γ = M = k = 1 and Bi ≈ 4.3 × 10−2.

The heat conduction is solved using both model (A) and (FA). In particular, we find

good agreement between model (A) (the thermal model used in the main text) and

model (FA). This indicates that including lateral diffusion in the substrate does not

influence the film (neither evolution nor heating) and can be neglected.
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Figure A.7 Maximum magnitude of in-plane diffusion, |ε2Txx| over all x and t for
(a) Hs = 10, (b) Hs = 50, (c) Hs = 100; and maximum out-of-plane diffusion, |Tzz|
similarly for (b), (d), and (f). Out-of-plane diffusion is orders of magnitude larger
than in-plane diffusion.

To further justify dropping lateral diffusion in the substrate, we simulated

full heat conduction in both the film and substrate in the same case given in

Figure A.6. Figure A.7 shows the largest value in magnitude of both in-plane diffusion

maxx,t |ε2Txx| (blue) and out-of-plane diffusion maxx,t |Tzz| (black), as a function of

z, for Hs = 10 (a, b), Hs = 50 (c, d), and Hs = 100 (e, f). In all cases the term

representing in-plane diffusion is at least 10 times smaller than that representing

out-of-plane diffusion, and the range of z at which in-plane diffusion might conceivably

be relevant is far shorter than that of out-of-plane diffusion. The former, then, can

be dropped without significant loss of accuracy.
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A.7 Temperature-Varying Thermal Conductivity

The dimensionless substrate thermal conductivity, given by k(Ts), depends on the

local values of the substrate temperature. Limited data exists on SiO2 thermal

conductivity at high temperatures (e.g., higher than film melting temperature) and

the wide range of temperatures that occurs during film heating presents a modeling

challenge. To determine the appropriate functional dependence for k(Ts) we follow

the approach of Combis et al. [26], which utilizes both the annealing temperature,

Tanneal, and the softening temperature, Tsoften. The values we use are based on changes

in the thermal expansion coefficient [26], although in practice these temperatures

are measured by a sudden change in various material properties (such as viscosity),

which could occur in such a wide range of temperatures considered. For more general

information regarding Tanneal and Tsoften see, for example, the texts by Callister [21]

and Petrie [106]. Based on the data provided by the manufacturer Heraeus [60]

(Silica Suprasil 312 Type 2), we use Tanneal = 1.03 and Tsoften = 1.40, respectively (all

temperatures are normalized by the film melting temperature used in our simulations

and thermal conductivity is normalized by the value at melting temperature, ks).
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Figure A.8 Manufacturer data of thermal conductivity at various temperatures
(black �), extrapolated values at annealing temperature (red 4) and softening
temperature (red 5), the fit of substrate thermal conductivity to temperature Ts

used in this manuscript (black solid line), and the fit used by Combis et al. [26] (blue
dashed line).

Figure A.8 shows the piecewise functional form used for k(Ts) (black solid line),

the data provided (black squares) by the manufacturer Heraeus [60], and the fit used

by Combis et al. [26]. Instead of using a piecewise linear profile, we use a cubic

polynomial smoothed with sigmoid functions, in the following form:

k(Ts) =
1

1 + exp (β1Ts − β2)
(a+ bTs + cT 2

s + dT 3
s ) +

1

1 + exp (β2 − β1Ts)
ksoften,

(A.6)

where a, b, c, d, β2 are fitting parameters, β1 is a scaling factor, and ksoften is the thermal

conductivity at softening temperature, which are all given in Table A.4. This form

captures both the thermal conductivity at low, annealing, and softening temperatures

reasonably well and provides a large range of values for use in simulations. Note

143



that above the softening temperature the thermal conductivity is nearly constant; a

simplifying assumption due to lack of reliable data past the softening temperature.

Table A.4 Table of Parameters Used for the Fit of Temperature-Dependent
Thermal Conductivity, Given by Equation (A.6)

Parameter Notation Value

Fitting Parameter a −1.23× 10−4

Fitting Parameter b 2.06× 10−1

Fitting Parameter c −59.89

Fitting Parameter d 3.22× 104

Scaling Factor β1 30.12

Fitting Parameter β2 40.0

SiO2 Thermal conductivity at Tsoften ksoften 1.43

SiO2 Annealing Temperature Tanneal 1.03

SiO2 Softening temperature Tsoften 1.40

A.8 Relevance of Radiative Losses

Here we briefly consider the relevance of radiative losses at the film surface, z = h.

For simplicity we consider a simple energy argument. Consider the case of a flat

film h = 1, which is at melting temperature. The total internal thermal energy of

the system is then ρfcfTmeltL
2H. The rate of energy loss at the boundary z = h

due to radiation is proportional to the fourth power of temperature and is given by

σSBεrT
4
melt (1− T 4

a )L2, where σSB = 5.67 × 10−8Wm−2K−4 is the Stefan-Boltzmann

constant and εr ≈ 0.14 is the thermal emissitivity [49]. In time interval ∆t then, the
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ratio of the energy lost to free surface radiation and the internal thermal energy is,

rrad =
∆tσSBεrT

4
melt (1− T 4

a )

HρfcfTmelt

. (A.7)

For the parameter values in our problem, the timescale ∆t on which these two energies

become comparable, rrad = O(1), is found to be ∆t ≈ 2 × 10−3s, a millisecond time

interval, which is much longer than the laser pulse and dewetting time scales of interest

in this work. Therefore, radiative losses can be safely neglected.

A.9 Convergence Results

Here we show that Tavg from our model converges to the analytical solution given

by Trice et al. [135], in the limit Hs,Bi → ∞ and for a uniform flat film, h = h0.

Figure A.9 plots average film temperature for Hs = 5, 10, 20, 30, 40, 50 as well as the

analytical solution of Trice et al. [135]. As substrate thickness is increased numerically,

the average film temperatures converge to the analytical result, as expected.
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Figure A.9 Average film temperature, Tavg, for varying substrate thickness; and
the analytical solution of Trice et al. [135] in the limit Hs,Bi→∞.
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A.10 Influence of Substrate Thickness for Bi = 0.2
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Figure A.10 (a) Evolution of film thickness at x = 0 for Hs = 5 (black), 10 (red,
dash-dotted), 15 (blue dash-dotted), 20 (green dashed), 25 (magenta dashed), and
the precursor thickness h = h∗ (orange dot-dashed). (b) Average film temperature
corresponding to the Hs cases in (a) and melting temperature, Tmelt (orange dot-
dashed). The material parameters are variable, Γ = Γ(t),M =M(t), k = k(Ts), and
Bi = 0.2.

Figure A.10(a) and (b) show the evolution of the film midpoint and average

temperatures, respectively, for five different substrate thicknessesHs = 5, 10, 15, 20, 25

as in Figure 3.4, but now for Bi = 0.2. We see in Figure A.10(b) that the liquid

lifetimes vary more significantly than for Bi = 0.1, but the effect of varying Hs is

still small relative to that of varying Bi (compare Figure 3.3(a)). Of the Hs cases

considered, the film for Hs = 5 shows the biggest difference (similar to Figure 3.4(a)).

In contrast to the Bi = 0.1 case, here the film with Hs = 5 solidifies before full

dewetting (h(0, t) does not reach the equilibrium film thickness). Finally, note that

despite the weak influence of Hs on film evolution, a small change in LL can cause

premature solidification of the film, as we see in 3D simulations (e.g., Figure 3.8).

147



A.11 Influence of Spatially Varying Viscosity in 3D

Figure A.11 Film thickness, h(x, y, t) and film temperature, Tf(x, y, t) for M(t)
(a) and (b) and M(x, y, t) (c) and (d).

Here we briefly consider the effect of spatially varying viscosity, where Tavg(t) is

replaced by Tf(x, y, t) in the viscosity law Equation (3.5). Figure A.11(a) and (b)

show film thickness h(x, y, t) and film temperature Tf(x, y, t) at the final solidification

time in the case where viscosity depends only on average temperature, M = M(t)

(Figure A.11(a) is identical to Figure 3.6(b)). Figure A.11(c) and (d) show the

corresponding film thickness and temperature for the spatially-varying viscosity case,

M(x, y, t). There is no noticeable difference between film thicknesses in (a) and

(c), nor between temperatures in (b) and (d). Note that the spatial variation of
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temperature is small in (b) and (d). Consequently, Tavg(t) is a sufficient substitute

for Tf(x, y, t) in Equation (3.5).

A.12 2D Numerical Schemes Including Temperature-Dependent
Thermal Conductivity

In this section we describe the numerical schemes used to solve for the film height,

h, temperature, Tf , and substrate temperature, Ts. First, we describe the spatial

discretization, and then the solution mechanism for Ts and Tf . We conclude with the

numerical scheme used to compute h.

We define the cell-centered spatial grid in the x-direction, used for both film

and substrate:

xi = x0 + ∆x (i− 1/2) , i = 1, . . . , N, ∆x =
(xmax − x0)

N
, (A.8)

where N is the number of grid points in the x-direction, and the lateral boundaries

are x0 = −π and xmax = π. An example of the spatial grid is given in Figure A.12,

when N = 7.

Figure A.12 Visual example of the cell-centered spatial grid in the x−direction for
N = 7. The nodes are spaced by ∆x, except the the first and last grid point, which
are spaced ∆x/2 from the boundaries x0 and xmax, respectively.

Similarly, let p be the number of grid points in the z-direction (relevant only in

the substrate). To reduce the computational expense, we use a nonuniform grid in

the substrate, with grid points {zk} and variable step sizes {∆zk}, k = 0, 1, . . . , p−1,
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where the step sizes are taken to be geometric, with ratio r,

∆zk+1 = r∆zk, k = 1, . . . , p− 1. (A.9)

Figure A.13 shows an example when p = 5 and r = 1.5 (the value of r used in all

results of Chapter 3). The point z0 = 0 is always fixed at the liquid-solid interface,

z = 0, and zp−1 is the final grid point, which lies a distance ∆zp/2 above z = −Hs.

Figure A.13 Example of the nonuniform grid for p = 5. Here, the spacing between
grid points increases by a factor of 1.5 at each increment.

We then fix the first (minimum) step size, ∆zmin = ∆z1 to ensure that {∆zk},

k = 1, 2, . . . , p− 1 gives the desired geometric partition of [−Hs, 0],

∆zmin = Hs

(
p−1∑
k=1

rk−1 +
1

2
rp−1

)−1

. (A.10)
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With ∆zmin defined, we can consistently define the sequence of step sizes and grid:

∆zk = ∆zminr
k−1, k = 1, . . . , p (A.11)

zk = zk−1 −∆zk, k = 1, . . . , p− 1. (A.12)

We next proceed with the solution methods for the underlying equations. For

simplicity, we begin with the solution scheme for Equation (3.7). We define

Sni,k ≈ Ts(xi, zk, tn), i = 1, 2, . . . , N, k = 0, 1, . . . , p− 1, (A.13)

to be a discrete approximation of substrate temperature, Ts, on the spatial grid given

above. First, we apply a Crank-Nicolson time-stepping scheme, which takes the

discrete form

Sn+1
i,k − Sni,k

∆t
=

1

2
fn+1
i,k +

1

2
fni,k, i = 1, . . . , N, k = 1, . . . , p− 1, (A.14)

where fi,k(Si,k−1, Si,k, Si,k+1) ≈ Pe−1
s ∂z (k(Ts)∂zTs) |(x,z)=(xi,zk) is a nonlinear function

of Si,k−1, Si,k, and Si,k+1. For the remainder of the section, we suppress the subscript i

on Si,k and fi,k, for simplicity. For completeness, we note that fk can be approximated

as follows

∂z (k(Ts)∂zTs) = k(Ts)∂
2
zTs + k′(Ts) (∂zTs)

2 , (A.15)

∂z (k(Ts)∂zTs) |z=zk ≈ AkSk−1 +BkSk + CkSk+1 +Dk (Sk−1 − Sk+1)2 , (A.16)

Ak =
2k(Sk)

∆zk (∆zk + ∆zk+1)
, Bk =

−2k(Sk)

∆zk∆zk+1

, (A.17)

Ck =
2k(Sk)

∆zk+1 (∆zk + ∆zk+1)
, Dk =

k′(Sk)

(∆zk + ∆zk+1)2 , (A.18)

where each equation is applied for a fixed i, k′(Sk) = dk(Sk)/dSk, and k = 1, 2, . . . , p−

1.

The cases k = 1 and k = p− 1 in Equation (A.16) involve unknowns S0 and Sp,

which are determined by discretizing the boundary condition at z = 0 (Equation (3.8))
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and at z = −Hs (Equation (3.9)), respectively. Since z0 = 0, S0 is simply set to the

film temperature, S0 = T ni ≈ Tf(xi, tn) for each i. The boundary condition given by

Equation (3.9) is discretized as

k

(
Sp−1 + Sp

2

)(
Sp−1 − Sp

∆zp

)
= Bi

(
Sp−1 + Sp

2
− Ta

)
, (A.19)

which is a nonlinear equation for the unknown Sp to be solved at each node xi. To

solve Equation (A.19), we use a Newton method, although any convergent iterative

method would suffice.

Next, we assume that the substrate temperature at time tn+1 can be written as

Sn+1
k = S∗k + wk, (A.20)

where S∗k is the guess to the solution at time tn+1 and wk is a correction to that guess,

which we call a Newton correction in what follows to avoid confusion. Then, f is

linearized around the guess:

fn+1
k = fk(S

n+1
k ) = fk(S

∗
k + wk) ≈ fk(S

∗
k) + wj

∂fk
∂Sj
|Sj=S∗

j
, (A.21)

where k = 1, . . . , p − 1, and ∂fk/∂Sj|Sj=S∗
j

are the components of the Jacobian,

denoted Fk,j = ∂fk/∂Sj|Sj=S∗
j
, evaluated at the guess for the next temperature S∗j .

Equation (A.14) is then linearized by plugging in Equations (A.20), (A.21), leading to

a linear system of equations for the correction wk, where S∗k and Snk are both known

(S∗k is to be iterated):

p−1∑
j=1

(
δk,j −

1

2
∆tFk,j

)
wj = Rj, k = 1, . . . , p− 1, (A.22)

where δk,j is the Kronecker delta, and the right-hand side is

Rj = Snj − S∗j +
1

2
∆tfj(S

∗
j ) +

1

2
∆tfj(S

n
j ), j = 1, . . . , p− 1. (A.23)
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For simplicity, we abbreviate Equation (A.22) as (Aw = R)i with the understanding

that each (p− 1)× (p− 1) linear system is to be solved for each xi. Solving Equation

(A.22) completes one step of the iteration. Next, we check that |wk/S∗k | < tol for all

k. If yes, the iteration is finished, and S∗k +wk becomes the substrate temperature at

time tn+1 for each k = 1, 2, . . . , p− 1, namely Sn+1
k = S∗k +wk. If not, the iteration is

completed until the specified convergence criterion is reached. We use tol = 10−9.

Next we describe the solution mechanism for film temperature, Equation (3.6).

First, we define the approximation for film temperature and thickness by

T ni ≈ Tf(xi, tn), hni ≈ h(xi, tn), i = 1, . . . , N. (A.24)

Next, for compactness, we define the following expressions

Ψn
i =

1

Pef

[
δ2
xT

n
i +

(
δxh

n
i

hni

)
δxT

n
i

]
, (A.25)

Gn
i = − K

Pefhni

[
k(Sn0 )δ+

z (Sn0 )
]
i
, (A.26)

where [k(Sn0 )δ+
z (Sn0 )]i ≈ k(Ts)∂Ts/∂z|(x,z,t)=(xi,0,tn) is an approximation of the heat

flux along the liquid-solid interface, z = 0, at node xi and time tn, which we define as

k(Sn0 )δ+
z (Sn0 ) = k(Sn0 ) (a0S

n
0 + b0S

n
1 + c0S

n
2 ) , (A.27)

a0 =
2∆z1 + ∆z2

∆z1 (∆z1 + ∆z2)
, b0 = −

(
1

∆z1

+
1

∆z2

)
, c0 =

∆z1

∆z2 (∆z1 + ∆z2)
. (A.28)

The second-order central difference approximations of ∂x, ∂
2
x are defined as δx and δ2

x,

respectively, and are given by

δxTi =
Ti+1 − Ti−1

2∆x
, δ2

xTi =
Ti+1 − 2Ti + Ti−1

∆x2
i = 1, . . . , N,

where T0, TN+1 can be written in terms T1 and TN , respectively, by solving discretized

versions of Equation (3.10) at the lateral boundaries, x = ±π,

∂x (Tf) |x=−π ≈
T1 − T0

∆x
= 0, ∂x (Tf) |x=π ≈

TN+1 − TN
∆x

= 0. (A.29)
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Figure A.14 Depiction of the discretized film temperature adjacent to the lateral
boundaries, x = ±π (black, vertical bars). The blue nodes represent the grid
x1, x2, . . . , xN with spacing ∆x. The film temperature at the first and last interior
grid points, near x = −π, π, are T1, TN , and T0, TN+1 represent ghost points, located
at x = ± (π + ∆x/2) (red nodes).

Figure A.14 shows the spatial grid in the x direction. The red nodes represent

ghost points with temperatures T0, TN+1. By solving Equation (A.29), we obtain

T1 = T0 and TN+1 = TN .

Now, to solve Equations (3.6) and (3.7) for Tf and Ts, we use a predictor-

corrector Runge-Kutta/Crank-Nicolson scheme combined with a Newton method

as described above. In what follows, hatted quantities denote those found in

the predictor phase, whereas those without hats are determined in the corrector

phase. In the predictor phase, one finds intermediate “predicted” film and substrate

temperatures (T̂ n+1
i , Ŝn+1

k ). In the corrector phase, one uses the intermediate variables

to find corrected film and substrate temperatures (T n+1
i , Sn+1

k ). In both cases, the

substrate temperature is found by solving the linear systems given by Equation (A.22)

for ŵ or w. In the former case, the nonlinear system that is linearized is Equation

(A.14) with Ŝn+1
k in place of Sn+1

k and with fn+1
k replaced by f̂n+1

k (Ŝn+1
k−1 , Ŝ

n+1
k , Ŝn+1

k+1 ).

In the predictor phase, we use a forward-Euler scheme to deal with Gn
i :

T̂ n+1
i − T ni

∆t
=

1

2

[
Ψ̂n+1
i + Ψn

i

]
+Gn

i +Q
n+1/2

i , i = 1, . . . , N, (A.30)(
Âŵ = R̂

)
i
, i = 1, . . . , N, (A.31)
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where Q
n+1/2

i = (Q
n

i + Q
n+1

i )/2, and Ψ̂n+1
i is found by substituting T̂ n+1

i in place of

T n+1
i in Equation (A.25). Similarly, the components of ŵ are related to the predicted

substrate temperature, Ŝn+1
k , via Equation (A.20) with appropriate substitution.

Solving Equation (A.30) provides the predicted temperature T̂ n+1
i . The

linearized system given by Equation (A.31), where Â, R̂ are found using Ŝ∗k , the

guess to Ŝn+1
k , and Ŝnk in Equations (A.22) and (A.23), is solved iteratively for ŵ

and each i. The predictor phase amounts to solving one linear system of size N for

the film and N linear systems of size p − 1 for the substrate. More importantly,

the solution to Equation (A.31) in the predictor phase gives us an approximation of

substrate temperature, Ŝni,k, so that we can calculate a prediction to the heat flux at

the liquid-solid interface, Ĝn
i . We then correct the temperature predictions by using

a second-order Runge-Kutta method on Gn
i using Ĝn

i :

T n+1
i − T ni

∆t
=

1

2

[
Ψn+1
i + Ψn

i

]
+

1

2

(
Gn
i + Ĝn

i

)
+Q

n+1/2

i , i = 1, . . . , N, (A.32)

(Aw = R)i , i = 1, . . . , N, (A.33)

Next we describe the numerical scheme for film thickness, h(x, t). First, we

use the Crank-Nicolson scheme to discretize Equation (3.4) in time. The resulting

nonlinear system of equations is given by Equation (3.13), where Di(t) = Dn
i ≈

D(xi, tn) is a second-order accurate spatial discretization of the derivative of flux,

D = −∂x ·
[

1

M
(
h3∂x (Γ∂xxh+ Π(h))

)]
. (A.34)

Following the procedure implemented for solving Equation (A.14), we apply a Newton

method, first linearizing the film thickness around a guess, h∗i , and solving a resultant

linear system for the Newton correction to the guess,

hn+1
i = h∗i + q∗i , i = 1, . . . , N, (A.35)

Ahq = Rh, (A.36)
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where (Ah)i,j = ∂Di/∂hj|hj=h∗j
are the components of the Jacobian, q is the Newton

correction vector for h, and Rh is the remainder, whose components, (Rh)i, i =

1, 2, . . . , N , are analogous to Equation (A.23):

(Rh)i = hni − h∗i +
1

2
∆tDi (h

∗
i ) +

1

2
∆tDi (h

n
i ) . (A.37)

For more details regarding the 2D solution mechanism for h, we refer the reader to

Kondic [74].

Figure A.15 Flowchart for the 2D numerical method used to solve for h(x, t),
Tf(x, t) and Ts(x, z, t).

Figure A.15 shows a flowchart of the solution process for finding film thickness,

film temperature, and substrate temperature. Red circles indicate the beginning

and end of a time-step iteration. Gray circles indicate the prediction step for heat

conduction and the blue circles represent the correction step. The green circles

represent intermediate stages where the thermal flux into the substrate is updated.

First, h is found at time tn by solving Equation (A.36) for every spatial node xi.

That value of h is then used to solve Equation (A.30) for a prediction of the film

temperature, T̂ ni . That film temperature is then used to solve for the predicted
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substrate temperature, Ŝni,k via Equation (A.31). The thermal flux at the liquid-solid

interface, Ĝn
i , is then updated using Ŝni,k in Equation (A.26). These temperature

predictions are then corrected using Equations (A.32) and (A.33). Surface tension, Γ,

viscosity,M, and substrate thermal conductivity at z = 0, k(Sni,0), are then updated.

Finally, until the desired end time is reached, time is incremented, and Gn
i is updated

using Sni,k in Equation (A.26).

A.13 3D Numerical Schemes

Here, we consider the numerical scheme to solve the full 3D versions of Equations (3.4)

and (3.6)–(3.7), where h = h(x, y, t), Tf = Tf(x, y, t), and Ts = Ts(x, y, z, t). Since y-

dependence is now included (see Figure 3.1), the complexity of the numerical problems

are, as a minimum, increased by a factor of N for each set of equations. This creates

a computational challenge, which makes serial CPU computing prohibitively slow.

Parallel computing is a much more practical route. For example, the finite-difference

method discretization of PDEs often leads to tri-diagonal linear systems (such as

Equation (A.31)). In these cases, either the formation of the matrix/vector system,

or the solution method itself, can be parallelized. Parallelization of the matrix/vector

system may be done, for example, by defining the value of each element in parallel.

Solving the tri-diagonal linear systems in parallel is less trivial since the Thomas

Algorithm, typically used for such problems, is naturally sequential. To compensate,

parallel cyclic reduction methods have been proposed that trade complexity for speed

and prove superior to the traditional Thomas algorithm for many problems [148]. We

use a simpler approach, however, by solving each linear system in parallel rather than

parallelization of the solver (details following below).

Parallel computing with multi-node systems and multi-core processors is also

used in scientific computing but is resource-limited by the number of cores available

per CPU. GPUs, on the other hand, have thousands of “cores” available for computing
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and allow the programmer many more degrees of freedom in parallelization [120].

Various CUDA algorithms have been developed for solving penta-diagonal systems

[51, 81], for example, which often arise from 4th order PDEs such as Equation (3.4).

Recently, Lam et al. [81] developed a GPU-based code that can be used to solve thin

film problems, finding a near 4000 times speed up over similar CPU-based code for

certain domain sizes. In the present work, we discuss an extension of that code, which

also incorporates thermal effects with CUDA, and we briefly describe this extension

next.

The remainder of the section is structured as follows. First, we define

the 3D spatial grid. Then, we describe the solution methodology for computing

temperatures, both in the film and in the substrate. Finally, we conclude with the

solution mechanism for film thickness. We focus mainly here on the aspects of the

implementation that are specific to 3D geometry.

The x-component of the spatial grid is given by Equation (A.8) and the z-

component of the substrate grid by Equation (A.12). We similarly introduce the

y-component of the spatial grid

yj = y0 + ∆y (j − 1/2) , j = 1, . . . ,M, ∆y =
(ymax − y0)

M
, (A.38)

where M is the number of grid points in the y-direction. Therefore, the film grid

consists of N ×M interior nodes {(xi, yj), i = 1, 2, . . . , N, j = 1, 2, . . . ,M}. In the

substrate there are N ×M × p nodes (xi, yj, zk).

Similarly to Appendix A.12, we define

T ni,j ≈ Tf(xi, yj, tn), Sni,j,k ≈ Ts(xi, yj, zk, tn), hni,j ≈ h(xi, yj, tn), (A.39)

as approximations to the film and substrate temperatures, and film thickness. The

predictor/corrector solution methodology from Appendix A.12 is applied once more,

except Equation (3.6) now requires an alternating-direction implicit (ADI) method to
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achieve second-order accuracy. Similar to Appendix A.12, we begin with a predictor

step to find ŵ and (T̂ n+1
i,j , Ŝn+1

i,j,k ):

T ∗i,j − T ni,j
∆t

=
1

2
X∗i,j +

1

2
Y n
i,j +

1

2
Gn
i,j +

1

2
Q
n+1/2

i,j , (A.40)

T̂ n+1
i,j − T ∗i,j

∆t
=

1

2
X∗i,j +

1

2
Ŷ n+1
i,j +

1

2
Gn
i,j +

1

2
Q
n+1/2

i,j , (A.41)(
Âŵ = R̂

)
i,j
, (A.42)

where

Xi,j = Pe−1
f

[
δ2
xTi,j +

(
δxhi,j
hi,j

)
δxTi,j

]
, (A.43)

Yi,j = Pe−1
f

[
δ2
yTi,j +

(
δyhi,j
hi,j

)
δyTi,j

]
, (A.44)

Q
n+1/2

i,j =
Q
n

i,j +Q
n+1

i,j

2
, (A.45)

Gn
i,j = − K

Pefhni,j

[
k(Sn0 )δ+

z (Sn0 )
]
i,j
, (A.46)

hni,j ≈ h(xi, yj, tn), i = 1, . . . , N , j = 1, . . . ,M , and k(Sn0 )δ+
z (Sn0 ) approximates the

heat flux at the interface z = 0 and is given in Appendix A.12. The term T ∗i,j is the

solution at an intermediate step between times tn, tn+1, and Â, R̂ are defined as in

Appendix A.12, but with the extra index j. The solution for h is only found at times

tn and tn+1, so we approximate h at the intermediate step as

h∗i,j =
hni,j + hn+1

i,j

2
. (A.47)

Equation (A.40) yields M linear systems of equations of size N . Similarly,

Equation (A.41) yields N linear systems of equation of size M . Since the ADI method

treats one variable explicitly and the other implicitly, both Equations (A.40) and

(A.41) are solved in parallel for each j and each i, respectively (the formation of

the linear system is also parallelized; for example, T ∗i,j − (∆t/2)X∗i,j for j fixed and
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i = 1, . . . , N are the components of the N ×N matrix in Equation (A.40), which are

all found simultaneously). The 3D numerical code used here is freely available [2].

Equation (A.42) is the 3D analog of Equation (A.31), but now there are N ×

M linear systems of equations of size p − 1. Since Equation (3.7) only involves

z-derivatives, Equation (A.42) is trivially parallelized for each i and j. Since the

solution of Equation (A.42) is iterative, careful consideration of the size of domains

and the relation to memory performance is crucial. In our computations, p is relatively

small in comparison to N and M so that for each i and j both the matrix and vector of

the linear system (of size p−1) can fit on shared memory on the device (GPU), which

is known to be computationally advantageous over the use of global memory [120].

Next, we correct the predictor step using the Runge-Kutta method on Gi,j,

T ∗i,j − T ni,j
∆t

=
1

2
X∗i,j +

1

2
Y n
i,j +

1

4

(
Gn
i,j + Ĝn

i,j

)
+

1

2
Q
n+1/2

i,j , (A.48)

T n+1
i,j − T ∗i,j

∆t
=

1

2
X∗i,j +

1

2
Y n+1
i,j +

1

4

(
Gn
i,j + Ĝn

i,j

)
+

1

2
Q
n+1/2

i,j , (A.49)

(Aw = R)i,j , (A.50)

where i = 1, . . . , N , and j = 1, . . . ,M . We note that although the repetitive nature

of the predictor-corrector scheme may appear to be a performance bottleneck, in our

implementation the results from the predictor phase are stored to global memory and

imported into the corrector step to speed up the computations.

Next, we briefly describe the solution mechanism for film thickness h. Now,

h = h(xi, yj, tn) but the approach is very similar to that of Appendix A.12. First we

define the divergence of the flux

D = −∇2 ·
[

1

M
(
h3∇2

(
Γ∇2

2h+ Π(h)
))]

, (A.51)
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and define Dn
i,j to be a second-order spatial discretization of D. Equation (3.4) can

then be written as

hn+1
i,j − hni,j

∆t
=

1

2
Dn+1
i,j +

1

2
Dn
i,j, i = 1, . . . , N, j = 1, . . . ,M. (A.52)

Equation (A.52) is linearized and a Newton’s method is used to iterate guesses to the

film thickness at time tn+1. In contrast to the 2D case, D now involves derivatives

with respect to y as well as x. Therefore, the Newton’s method is split into two

separate linear systems of equations (one where y-derivatives are treated implicitly

in time and one similarly for x-derivatives), and solved iteratively. The equations in

general take the form

Ay,(l)wh = by,(l) (A.53)

Ax,(l)v = wh (A.54)

hn+1
(l+1) = hn+1

(l) + v, (A.55)

where (l) represents iteration number l, h represents the array of values hi,j, wh is

an intermediate step, and v is an array of corrections to the guess hn+1
(l) . Ay,(l),Ax,(l)

are matrices whose components are found using pure y- and x-derivative terms,

respectively, and by,(l) is a vector (containing flux discretizations), which we omit

for brevity. For details regarding these terms we refer the reader to the work of

Lam et al. [81]. Notably, Equations (A.53) and (A.54) are penta-diagonal systems

of equations, which can be solved in parallel. In the former, N linear systems of

equations of size M ×M are solved simultaneously, whereas in the latter, M linear

systems of size N ×N are solved at once.

The film thickness is again coupled to film temperature through the material

parameters, film temperature is coupled to thickness via Equations (A.43) and (A.44),

and substrate temperature to film temperature via the interface z = 0. The solution
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order is identical to that of Appendix A.12, solving first for h and then Tf and Ts

using a predictor-corrector method.

A.14 Random Noise in 3D

Here we describe the implementation of the initial condition given by Equation (3.16).

Note that in Section 3.4.4 the domain size is 16π× 16π. Suppose our grid is (xk, yj),

where k = 1, . . . , N and j = 1, . . . ,M as defined in Appendix A.13. Then, to

create the initial condition given in Equation (3.16), we consider wavelengths that

are integral partitions of the domain length

(
λxk , λyj

)
=

(
16π

k
,
16π

j

)
, k = 1, . . . , N, j = 1, . . . ,M. (A.56)

The possible wavenumbers are then

(
qxk , qyj

)
=

(
k

8
,
j

8

)
, k = 1, . . . , N, j = 1, . . . ,M. (A.57)

Next, we generate complex numbers, ζ̂(qxk , qyj), with random phase shifts and

amplitudes that decay for large qxk and qyj . We use

ζ̂(qxk , qyj) =
(
q2
xk

+ q2
yj

)−α/2
exp (2πiak,j) , (A.58)

where ak,j is a random number in [0, 1] and α is a parameter that determines the

magnitude of ζ̂. Here, the amplitudes of ζ̂ represent coefficients of the Fourier series

representation of ζ and ak,j are random phase shifts. We set α = 25∆x/(2π) as used

in Lam et al. [81] (note that this value is independent of the domain size, as discussed

further below). Then, ζk,j = ζ(xk, yj) is given by

ζk,j =
1

MN

M−1∑
m=0

N−1∑
n=0

ζ̂(qxn , qym) exp(2πikn/N) exp(2πijm/M). (A.59)
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To reduce noise at high wavenumbers, we apply a Gaussian filter to |ζk,j|, 2 and denote

the result by ξk,j. Finally, ηk,j = η(xk, yj) in Equation (3.16) is defined by rescaling

ξk,j,

ηk,j = 2
ξk,j −min

k,j
ξk,j

max
k,j

(
ξk,j −min

k,j
ξk,j

) − 1, (A.60)

which ensures both positive and negative perturbations in the initial condition, ηk,j ∈

[−1, 1] for all k and j.

To illustrate the Fourier spectrum of ηk,j, as well as the fact that α does not

depend on the domain size, Figure A.16 shows |η̂k,j|, the amplitude of the Fourier

transform of the noise, |ηk,j|, using the same value of α for linear domain lengths 16π

(a) and 8π (b). The maximum of |η̂k,j| and distribution of amplitudes for different

wavenumbers qxk , qyj are similar between (a) and (b) (note that the amplitudes of

individual modes are random and can therefore vary). It is easy to verify that the

distribution of the mode amplitudes is random, without correlations of the x and y

modes’ amplitudes.

2In our implementation, the filtering is applied four times using the ”imgaussfilt” tool in
Matlab® [90] with standard deviations 4, 3, 2 and 1. It should be noted that one may also
restrict the range of wavenumbers in Equation (A.57) or set the amplitude of the undesirable
ones to 0 manually.
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Figure A.16 Amplitude of the Fourier transform of the noise, |η̂|. (a) Linear domain
length, 16π with half of the N = 1448 modes excited. (b) Linear domain length, 8π
with all N = 724 modes excited. The value of α is the same for both (a) and (b),
and both the range and distribution of |η̂| are similar. The DC mode was removed
for visualization purposes.
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APPENDIX B

DETAILS AND ANALYSIS OF THE SIMULATIONS OF ALLOYS

In this appendix, we provide information regarding the molecular dynamics (MD)

simulations presented in Chapters 4 and 5. Here, we provide the inter-atomic

potentials used for the simulations, complementary mathematical analysis of the data,

additional simulations supportive of the main conclusions, and images detailing the

internal structure of the resultant nanoparticles.

B.1 Form of EAM Potential

According to Zhou et al., the total energy, E, can be expressed as:

E =
∑
i

Fi(ρi) +
1

2

∑
i,j,i6=j

φi,j(ri,j), (B.1)

which is composed of an embedding energy, Fi, as a function of the atomic electron

density, ρi, and a pairwise energy, φi,j, between atoms i and j which are separated by

a distance ri,j [149]. For alloys, it is necessary to incorporate different forms for the

pairwise energy depending on if the atoms are of the same or different type. More

information regarding the documentation of the parameters for the system considered

here, Ni-Ag, can be found in [149].

B.2 Calibration of Lennard-Jones (LJ) Potential

To calibrate the appropriate value of ε and σ in Equation (4.1), Ni and Ag bulk

structures, containing 55296 atoms, were created at 1900 K and 1750 K, respectively,

by sampling from NPT, NVT, and then NVE. They were then placed upon 1 layer of

graphene. The well-depth parameter, ε, was tuned so that the resultant droplets had

wetting angles consistent with the ranges found in literature [19, 62, 82, 95, 112, 139]
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whereas the values of σ were held fixed at 2.8 (Ni) and 3.006 (Ag) angstroms. The

wetting angles of the droplets were computed using a distribution of ImageJ software,

Fiji, [122] along with the Contact Angle plugin developed by Marco Brugnara, and

were averaged over four images (front, back, right, left).

(a) (b)

Figure B.1 Ag (a) at 1750 K and Ni (b) at 1900 K equilibrated on graphene (grey)
using the NVT ensemble on the metal, while holding the graphene fixed. These
pictures represent one of four pictures used to calculate the wetting angles.
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B.3 Complete List of Atomic Concentration Distribution Analysis

Figure B.2 Atomic concentration distribution analysis for the droplets at 200 K
increments from 800 K to 3000 K. Color code: Ni, red; Ag, blue.

B.4 Bulk Construction

The process of creating these bulk structures (Figure 5.1) made the lengths, L, slightly

different ((a): 1463.2 �A, (b): 1433.7 �A, (c) 1598.9 �A). The only bearing this has is

on the initial prescribed stripe length, which is determined by L. The widths (y-axis

in Figure 5.1) and heights (z-axis in Figure 5.1) of each of these structures were (a)

W = H = 98.3 �A, (b) W = H = 96.6 �A, (c) W = H = 96.0 �A.
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B.5 Maximum RP Wavelength Case

Figure B.3 Time evolution of synthetic lines patterned with amplitude A = 16 �A
and maximum RP wavelength λRP = 146.3 �A (a) and λRP = 143.4 �A (b). Time labels
(in ps) are placed next to the corresponding lines. Guides (dotted lines) are placed
at the location of the original peak in i).

Figure B.3 shows an example of synthetic lines at (a) 2000 K and (b) 1400 K patterned

with the maximum RP wavelength, λRP=λm. The time evolution is marked i)-v) and

is shown in 20ps increments. In Figure B.3(a), at 2000 K, where the phase separation

length scale is very small, the line breaks up into 10 equally-spaced nanoparticles

according to the RP mechanism. In Figure B.3(b), the PS length scale is comparable

in size to the prescribed maximum wavelength, (λPS = 170.7 �A). Similar to what was

shown for longer λRP, when the trough is aligned with the Ag/Ni interface or in a

Ag region, the soluto-capillary flow cooperates with the RP mechanism and droplets

168



form slightly faster and are aligned with the peak positions (see the center and left

side of Figur B.3(b)). When the troughs are mostly Ni, however, the soluto-capillary

flow competes with the RP mechanism as early stages of the line are observed to

coarsen as Ag atoms migrate to this Ni-rich region. Ultimately, where the troughs

are Ni-rich, the breakup is slower and the particle positions are not aligned with the

original synthetic perturbation peak positions, consistent with the soluto-capillary

effects competing with the RP.

B.6 Line Construction and Nanoparticle Slices

At the lateral ends of the lines, periodic boundary conditions are imposed. The widths

of these lines are calculated so that for lines of length L, and wavelength λ, L = Nλ

where N is an integer (we used N = 5 or N = 3).

Figure B.4 Longitudinal slices of resultant nanoparticles at the final frames v) for
(a) Figure 5.3 2000K, straight line (left), (b) Figure 5.3 2000 K, large amplitude
(right), (c) Figure 5.3 1400 K, straight line (left), (d) Figure 5.3 1400 K, large
amplitude (right). In (d) satellite droplets of pure Ag are present.
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Figure B.5 Longitudinal slices of resultant nanoparticles at the final frames v) for
(a) Figure 5.4 Ag trough, small amplitude (left), (b) Figure 5.4 Ag trough, large
amplitude (right), (c) Figure 5.4 Ni trough, small amplitude (left), (d) Figure 5.4 Ni
trough, large amplitude (right), (e) Figure 5.4 mixed trough, small amplitude (left),
and (f) Figure 5.4 mixed trough, large amplitude (right). In (a) satellite droplets of
nearly pure Ag are present.

Figure B.6 Longitudinal slices of resultant nanoparticles at the final frames v) for
(a) Figure 5.5 A=3.2 �A (b) Figure 5.5 A=5 �A, and (c) Figure 5.5 A=6 �A. In (a) and
(b) satellite droplets of pure Ag are present.
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B.7 Pure Ni and Ag simulations and Radial Distribution Functions

Figure B.7 Time evolution of straight lines of Ni (a) and Ag (b) at 1400 K. Time
labels (in ps) are placed next to the corresponding lines. The significance of times
i)-v) is similar to Figure 5.3.

Figure B.8 Radial distribution function (rdf), g(r), for the 1400 K cylinder
(black, solid) and bulk (orange, dashed) NiAg structures from ii) of Figure 5.3c and
Figure 5.1b, respectively. Note the rdfs were computed with OVITO [129] and then
normalized based on the number of atoms; as expected the cylinders have lower
amplitude peaks consistent with some surface melting relative to the bulk structure.
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APPENDIX C

SUPPLEMENTARY MATERIALS

Supplementary material related to this dissertation can be found online at https://

drive.google.com/drive/folders/1zrf7h0fdBuw2sTNKqJVPn02BxK8o281E?usp=shar

ing, available as of May 2021.
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