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ABSTRACT

INTELLIGENT AND SECURE FOG-AIDED INTERNET OF DRONES

by
Jingjing Yao

Internet of drones (IoD), which utilize drones as Internet of Things (IoT) devices,

deploys several drones in the air to collect ground information and send them to the

IoD gateway for further processing. Computing tasks are usually offloaded to the

cloud data center for intensive processing. Many IoD applications require real-time

processing and event response (e.g., disaster response and virtual reality applications).

Hence, data processing by the remote cloud may not satisfy the strict latency

requirement. Fog computing attaches fog nodes, which are equipped with computing,

storage and networking resources, to IoD gateways to assume a substantial amount

of computing tasks instead of performing all tasks in the remote cloud, thus enabling

immediate service response. Fog-aided IoD provisions future events prediction and

image classification by machine learning technologies, where massive training data

are collected by drones and analyzed in the fog node. However, the performance of

IoD is greatly affected by drones’ battery capacities. Also, aggregating all data in the

fog node may incur huge network traffic and drone data privacy leakage.

To address the challenge of limited drone battery, the power control problem

is first investigated in IoD for the data collection service to minimize the energy

consumption of a drone while meeting the quality of service (QoS) requirements. A

PowEr conTROL (PETROL) algorithm is then proposed to solve this problem and

its convergence rate is derived.

The task allocation (which distributes tasks to different fog nodes) and the

flying control (which adjusts the drone’s flying speed) are then jointly optimized to

minimize the drone’s journey completion time constrained by the drone’s battery

capacity and task completion deadlines. In consideration of the practical scenario



that the future task information is difficult to obtain, an online algorithm is designed

to provide strategies for task allocation and flying control when the drone visits each

location without knowing the future.

The joint optimization of power control and energy harvesting control is also

studied to determine each drone’s transmission power and the transmitted energy

from the charging station in the time-varying IoD network. The objective is to

minimize the long-term average system energy cost constrained by the drones’ battery

capacities and QoS requirements. A Markov Decision Process (MDP) is formulated

to characterize the power and energy harvesting control process in time-varying IoD

networks. A modified actor-critic reinforcement learning algorithm is then proposed

to tackle the problem.

To address the challenge of drone data privacy leakage, federated learning (FL)

is proposed to preserve drone data privacy by performing local training in drones and

sharing training model parameters with a fog node without uploading drone raw data.

However, drone privacy can still be divulged to ground eavesdroppers by wiretapping

and analyzing uploaded parameters during the FL training process. The power control

problem of all drones is hence investigated to maximize the FL system security rate

constrained by drone battery capacities and the QoS requirements (e.g., FL training

time). This problem is formulated as a non-linear programming problem and an

algorithm is designed to obtain the optimum solutions with a low computational

complexity.

All proposed algorithms are demonstrated to perform better than existing

algorithms by extensive simulations and can be implemented in the intelligent and

secure fog-aided IoD network to improve system performances on energy efficiency,

QoS, and security.
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CHAPTER 1

INTRODUCTION

The Internet of Things (IoT) connects billions of sensors and actuators over a

distributed environment to provision various applications such as smart city, home and

healthcare [1]. Drones, also known as unmanned aerial vehicles (UAVs), have become

an emerging technology for disaster investigation, surveillance and environment

monitoring [2]. Integrating drones into IoT networks, where drones act as IoT devices,

is referred to as Internet of Drones (IoD) and has been exploited in traffic surveillance,

object tracking and disaster rescue [3].

One fundamental application of IoD is the sensing service which collects

information of the locations of interest by taking pictures and videos. Several

computing tasks are then generated by drones and offloaded to the Internet via the

IoD gateways for further processing. The computing results are sent back to drones

and then reported to the clients [4]. A drone usually follows a pre-determined transit

route to visit all locations of interest [3].

The computing tasks of drones are conventionally offloaded to the remote cloud

which provides huge computing resources. However, cloud processing incurs a long

network latency and hence degrades the user quality of service (QoS). Fog-aided

IoT networks have thus been proposed to improve the IoD service performance for

time-sensitive services, where fog nodes are deployed close to IoT devices [5, 6]. In

practice, fog nodes are attached to the gateways to provide computing resources

and process the deadline-driven computing tasks from drones to achieve fast service

response.

The biggest challenge of IoD is the limited drone battery capacity owing to

its size and weight limitations. To address this challenge, energy efficient IoD
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systems should be designed to reduce the energy consumption of drones. The

energy consumption of a drone in IoD networks usually consists of the wireless

communication energy consumption for wireless data transmission and the propulsion

energy consumption for drone’s hovering in the air and transitions among different

locations. Both two types of energy consumptions should be considered in designing

IoD systems.

In order to reduce the energy consumption for wireless data transmission and

drone’s hovering in the air, task allocation should be well designed. Task allocation

determines which computing tasks should be assigned to which fog nodes [1]. The

conventional strategy of task allocation is to assign each task to its nearest fog node.

This approach may cause some fog nodes overloaded while others underloaded, thus

potentially elongating response latencies and violating QoS requirements. A longer

task completion time means more energy is required for drone’s data transmission

and hovering. Therefore, task allocation affects the drone’s energy consumption.

In order to reduce the energy consumption for a drone’s transitions, adjusting

drone’s flying speed should be considered. A high flying speed increases the drone’s

energy consumption for moving the drone forward in transition. Intuitively, the flying

speed should be minimized. However, the low flying speed increases the energy for

lifting the drone against the force of gravity when the drone flies [7]. Hence, the flying

speed should be balanced and controlled to reduce the energy consumption for the

drone’s transitions.

Adjusting the drone’s wireless transmission power can help reduce the energy

consumption of transmitting the collected IoD data [8]. It is thus important to

investigate the wireless power control. Energy harvesting can also be a good

alternative to prolong the lifetime of drone batteries [9]. Energy harvesting may

use the ambient energy sources, e.g., solar and wind, to harvest energy. However,

the ambient sources may not guarantee the QoS requirements (e.g., minimum data

2



transmission time) because they are random and uncertain. Hence, controllable

energy sources, e.g., radio frequency (RF) signals from a power station, can be

considered to supply energy on demand [10]. We utilize a charging station to charge

drone batteries to help maintain drones’ operations, where the radio signals are sent

from the charging station to carry energy in the form of electromagnetic radiation.

Then, the energy harvesting device of each drone converts the radio signals to its

battery energy [11]. The harvested energy depends on the transmitted energy of

the charging station and the path loss between drones and the charging station [12].

Therefore, energy harvesting control, which determines the transmitted energy from

the charging station, is important to be investigated.

The dynamic and time-varying IoD networks also pose a great challenge of

wireless power control and energy harvesting control. The varying network states

(e.g., collected data, battery level, and QoS requirements) at different time epochs

require different power control and energy harvesting control policies to achieve

the optimum performance. A Markov decision process (MDP) can be utilized to

characterize a time-varying IoD network [13]. It is usually difficult to obtain the

complete and accurate information of the MDP model in unknown and dynamic

IoD networks. We hence design a deep reinforcement learning algorithm to address

the MDP model, i.e., the sequential decision-making problem in time-varying IoD

networks [14]. Specifically, the reinforcement learning is a learning process of trials

and errors that interacts with the network environment by observing network states

(i.e., collected data and battery levels) and then taking actions (i.e., determining the

wireless power control and energy harvesting control policies). Deep reinforcement

learning uses the deep neural networks (DNNs) to approximate the state-action values

in measuring the possible system cost brought by each state-action pair [14].

Another challenge of IoD is the data privacy leakage [15,16]. To enable machine

learning services in fog-aided IoD networks, the training data collected by drones are

3



all sent to the fog node to train the machine learning models (e.g., traffic prediction

and object recognition models) [17, 18]. However, massive data transmission injects

huge network traffic and degrades the QoS because of wireless bandwidth limitations.

On the other hand, the data collected by drones may be sensitive and contain private

information (e.g., military areas and human faces). Hence, aggregating all data in

the fog node may pose the risk of privacy leakage [19].

Federated learning (FL) [20] is proposed to address the challenges of both

the bandwidth limitation and privacy leakage in fog-aided IoD networks. Instead

of sending the training data to the fog node in the conventional machine learning

services, FL enables local training at each drone on its own data and then shares

machine learning model parameters with the fog node. In this way, FL learns a shared

global model in the fog node by aggregating the local model parameters derived from

distributed drone data in a privacy preserved manner. Much wireless bandwidth can

also be saved by avoiding the massive wireless data transmission [21].

The FL performance is usually determined by the FL training time which

is composed of the local computation time for model training and the wireless

transmission time for transmitting the local model parameters [22]. Hence, the FL

performance depends on the drone computing resources and the wireless channels

between drones and the fog node. There is a tradeoff between the FL training time

and drone energy consumption [23]. To reduce the FL training time, more energy

is required to reduce the computation time and wireless data transmission time.

Therefore, the FL performance is also limited by the drone battery capacities, which

is used for local training computation, wireless data transmission, and drone hovering

in the air. Drone wireless transmission power determines the wireless transmission

time and the energy consumption for wireless data transmission, and hence is an

important factor to be investigated in order to improve the FL performance [21].
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As compared with conventional machine learning technologies, FL alleviates

the privacy concern by local training. However, security concerns still exist because

of data eavesdropping. The ground eavesdroppers may wiretap the local model

parameters when drones upload them to the fog node [24]. If the uploaded model

parameters are inferred by a malicious eavesdropper, they may leak the private

information by model inversion attack [24]. It is hence critical to improve the security

of FL communications. Security rate is a key metric to measure the security level

of wireless communications, and it is defined as the rate of reliably transmitted

information without eavesdropping (i.e., the difference of the data rate between a

drone to the fog node and a drone to a eavesdropper) [25]. Wireless power control,

which determines the data rates to the fog node and eavesdroppers, is an option to

improve the FL system security rate [26].

The rest of this dissertation is organized as follows. In Chapter 2, we

investigate the QoS-aware power control problem in IoD for the data collection

service. Specifically, we aim to optimize the wireless transmission power at each

target location of a data collection task with the objective to minimize the drone’s

energy consumption constrained by QoS requirements. In Chapter 3, we study the

joint optimization of task allocation and flying control problem in IoD. Specifically,

we provide insights on task allocation and flying control decisions to minimize the

whole journey time (during which all locations of interests are visited and all tasks are

processed) constrained by the drone’s battery capacity and task completion deadline.

In Chapter 4, we investigate the wireless power control and energy harvesting

control in time-varying IoD networks for the sensing service. Specifically, we try

to optimize each drone’s wireless transmission power and the transmitted energy

from the charging station to each drone at each time epoch with the objective to

minimize the long-term average system energy cost constrained by the drone battery

capacities and QoS requirements. In Chapter 5, we investigate the power control
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problem for federated learning in fog-aided IoD networks to exploit the tradeoff

among FL system security rate, FL training time, and drone energy consumption.

Specifically, we optimize each drone’s wireless transmission power to maximize the

system security rate constrained by the FL training time requirement and each drone’s

battery capacity. Finally, Chapter 6 summarizes the dissertation.
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CHAPTER 2

QOS-AWARE POWER CONTROL IN INTERNET OF DRONES FOR

DATA COLLECTION SERVICE

Drone-aided networks have been investigated in several works. Yang et al. [27]

studied the 3-Dimensional (3-D) drone placement problem to relieve overload under

heterogeneous traffic. Tang et al. [28] utilized multiple UAVs to construct a

D2D-enabled network in order to enable content sharing and delivery. Gong et

al. [29] proposed a localization framework for wireless sensor networks and tailored

the framework for a drone to conduct field experiments.

Gharibi et al. [30] first proposed the IoD architecture and introduced the

five conceptual layers in IoD systems. Koubaa and Qureshi [31] proposed an IoD

application to track moving objects. Chen and Wang [32] designed an IoD cloud

surveillance system where one or more drones are deployed to collect data of interest.

These sensed data are sent to a ground control station and then outsourced to

the cloud to be analyzed. Yao and Ansari [8] investigated the UAV trajectory

optimization problem for the sensing service to minimize the task completion time

constrained by UAV battery capacity.

Power control has been investigated in IoT networks. Li et al. [33] proposed

a novel ECIoT architecture to achieve mass connections and big data processing.

Admission control and power control of IoT devices were jointly optimized by a cross-

layer dynamic stochastic strategy. Bader and Alouini [34] proposed a power control

mechanism in the context of large-scale IoT. An upper bound was derived on the mean

transmit powers for a cluster of IoT devices. Yao and Ansari [35] utilized game theory

to optimize the power control policy and caching strategy in the cache-enabled energy

harvesting aided IoT. However, the above works assumed that the locations of IoT
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devices are fixed. The power control in IoD networks has not been readily addressed

yet. In this chapter, we investigate the power control problem for IoD networks for

a data collection task to minimize a drone’s energy consumption constrained by the

QoS requirement.

2.1 System Model

In our system model (Figure 2.1), data from N target locations are requested by

GW. The collected data are then sent to the service provider for further processing.

A drone flies within the flying plane at the height of H. We consider a data collection

task where a drone flies over different target locations to collect data (e.g., images or

videos). When the drone visits each target location i ∈ N = {1, 2, ..., N}, it hovers

statically above this location until the collected data are completely transmitted to

the GW. Then, the drone transits to the next target location i + 1 until the task

is completed. We characterize the QoS requirement as the minimum average data

transmission rate Rth [36]. Note that we only consider a representative drone in our

system model. When multiple drones are deployed, their transition routes should

be carefully designed to avoid collisions and the bandwidth resource allocation with

consideration of interferences should be optimized. This multiple-drone scenario will

be left as our future work.

IoT gateway 
(GW)

Service provider

Location 1

Location 2

Location 3

Drone transit 
route

Flying plane

Wireless data transfer

H
d

Figure 2.1 Data collection in IoD.
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The air to ground channel model characterizes the channel conditions between

the drone and IoT GW. We utilize the widely used probability model [37] which

assumes that received signals may be line of sight (LoS) or non-LoS (NLoS) signals

with certain probabilities. These probabilities are functions of the environment,

density and height of buildings and elevation angle, i.e.,

P (LoS) =
1

1 + α exp(−β[180
π
θ − α])

, (2.1)

P (NLoS) = 1− P (LoS), (2.2)

where α and β are environment-related constants (e.g., rural and urban); θ (as shown

in Figure 2.1) is the elevation angle. Note that the probability of receiving the LoS

signal increases with a larger elevation angle in Equations (2.1) and (2.2). Then, the

average air to ground path loss is

PL = P (LoS)× PLLoS + P (NLoS)× PLNLoS, (2.3)

where PLLoS and PLNLoS are the path loss models for LoS and NLoS signals,

respectively.

The free space propagation loss and additional excessive path loss values are

assigned to their path loss models, which are given by [38]

PLLoS = 20 log10(
4πfcd

c
) + ξLoS, (2.4)

PLNLoS = 20 log10(
4πfcd

c
) + ξNLoS, (2.5)

where fc is the carrier frequency; d is the distance between the IoT GW and drone;

c is the speed of light; ξLoS and ξNLoS are environment-related constants. Therefore,

the wireless transmission rate Ri at location i can be expressed as

Ri = W log2(1 +
piGi

N0W
), (2.6)
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where W is the system bandwidth; pi is the wireless transmission power; Gi denotes

the wireless channel gain between the drone at location i and the IoT GW, which is

calculated as Gi = 10−
PL
10 ; N0 denotes the noise power spectrum density.

The energy consumption of a drone usually consists of the propulsion energy to

support the drone’s transition and hovering in the air, and the communication energy

for wireless signal processing and IoT data transmission [7]. The hovering power is

generated when the drone remains stationary in the air, which is expressed as [39]

Phov =

√
(mg)3

2πr2
pnpρ

, (2.7)

where m is the drone mass; g is the earth gravitational acceleration; rp is the radius

of the drone’s propellers; np is the number of propellers; ρ is the air density.

The transit power is expressed as [40]

Ptrs =
Pfull
vfull

v, (2.8)

where Pfull is the hardware power when the drone transits at the full speed of vfull;

v is the drone’s current transit speed. Therefore, to complete a data collection task,

the propulsion energy consumption of a drone is

Eprl =
N−1∑
i=1

PtrsT
trs
i,i+1 +

N∑
i=1

PhovT
com
i

=
N−1∑
i=1

Ptrs
li,i+1

v
+

N∑
i=1

Phov
Di

Ri

=
N−1∑
i=1

Pfull
vfull

li,i+1 +
N∑
i=1

Phov
Di

Ri

,

(2.9)

where T trsi,i+1 and T comi are the transit time between location i and i + 1, and data

transmission time at location i, respectively; li,i+1 is the distance between location i

and i+ 1; Di is the data size of the collected data at location i.
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On the other hand, the drone’s communication energy consumption, which is

used for transmitting collected IoT data, can be approximated as [41]

Ecom =
N∑
i=1

(ηpi + pstatic)T
com
i =

N∑
i=1

(ηpi + pstatic)
Di

Ri

, (2.10)

where η is the coefficient of transmission power and pstatic is the power consumption

of drone circuits without data transmission. Ri can be obtained by Equation (5.17).

Hence, the total energy consumption of a drone to complete a task is the summation

of propulsion energy consumption and communication energy consumption as follows.

Etot = Eprl + Ecom

=
N∑
i=1

(ηpi + pstatic + Phov)
Di

Ri

+
N−1∑
i=1

Pfull
vfull

li,i+1

=
N∑
i=1

Di(ηpi + pstatic + Phov)

W log2(1 + piGi
N0W

)
+

N−1∑
i=1

Pfull
vfull

li,i+1.

(2.11)

2.2 Problem Formulation

In this section, we formulate the QoS-aware power control problem in IoD networks.

Our problem is formulated as

P0: min
pi

N∑
i=1

Di(ηpi + pstatic + Phov)

W log2(1 + piGi
N0W

)
+

N−1∑
i=1

Pfull
vfull

li,i+1

s.t. C1: pi ≤ Pm, ∀i ∈ N ,

C2:
1

N

N∑
i=1

W log2(1 +
piGi

N0W
) ≥ Rth.

The objective of P0 is to minimize the total energy consumption Etot. Constraint C1

stipulates that all wireless transmission powers pi are non-negative and less than the

maximum transmission power Pm. C2 implies the QoS requirement which imposes

the average transmission rate to be greater than Rth. Note that P0 is non-convex

and difficult to solve because the objective function is fractional and non-linear.

Lemma 1. P0 is a sum-of-ratios fractional programming problem [42].
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Proof. The sum of ratios fractional programming problem is to minimize a sum of

fractional functions where the numerator and denominator are convex and concave,

respectively. Meanwhile, the constraints are convex sets [42].

The second item of P0’s objective function,
∑N−1

i=1
Pfull
vfull

li,i+1 is a constant. The

numerator of the first item, Di(ηpi + pstatic +Phov), is linear (i.e., convex) with regard

to pi and the denominator, W log2(1 + piGi
N0W

), is concave. Constraint C1, pi ≤ Pm, is

a convex set. In C2, 1
N

∑N
i=1W log2(1 + piGi

N0W
) is a concave function with regard to pi

and greater than Rth. Hence, C2 is a convex set. Therefore, the lemma is proved.

The sum-of-ratios problem has been demonstrated to be NP-complete [43] and

hence a branch-and-bound algorithm is required to obtain the global optimization

solution. However, the branch-and-bound suffers from huge computations and slow

convergence. Hence, we propose a better algorithm to solve the problem and

demonstrate its convergence rate in next section.

2.3 Algorithm Design

In this section, we describe our proposed algorithm (inspired by [44]), PowEr

conTROL (PETROL) algorithm, to solve P0. Essentially, PETROL is an iteration-

based algorithm which, in each iteration, first solves a transformed convex optimization

problem by the gradient projection method [45] and then updates the Lagrangian

multipliers based on the modified Newton method. The convergence rate of PETROL

is also demonstrated.
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2.3.1 Convex Optimization Transformation

Note that P0 can be transformed into an equivalent problem P1 by introducing

variables ωi,

P1: min
pi,ωi

N∑
i=1

ωi

s.t. C3:
Di(ηpi + ps)

W log2(1 + ripi)
≤ ωi, ∀i ∈ N ,

C4: pi ≤ Pm, ∀i ∈ N ,

C5:
1

N

N∑
i=1

W log2(1 + ripi) ≥ Rth,

where the second item of P0’s objective function,
∑N−1

i=1
Pfull
vfull

li,i+1, is removed because

it is a constant. Note that constraint C3 can be transformed into Di(ηpi + ps) ≤

wiW log2(1+ripi). We also denote that ri = Gi
N0W

and ps = pstatic+Phov for simplicity.

Then, the Lagrangian function of P1 is

L(p,w,λ,µ, ϑ) =
N∑
i=1

ωi

+
N∑
i=1

λi[Di(ηpi + ps)− ωiW log2(1 + ripi)]

+
N∑
i=1

µi(pi − Pm) + ϑ[Rth −
1

N

N∑
i=1

W log2(1 + ripi)],

(2.12)

where λ,µ, and ϑ are the Lagrangian multipliers of constraints C3, C4 and C5,

respectively.

The Karush-Kuhn-Tucker (KKT) conditions, i.e., Equations (2.13)-(2.20), of

P1 are
∂L
∂pi

=λi(Diη − ωiW
ri log2 e

1 + ripi
)

+ ui −
ϑW

N

ri log2 e

1 + ripi
= 0, ∀i ∈ N ,

(2.13)

∂L
∂wi

= 1− λiW log2(1 + ripi) = 0, ∀i ∈ N , (2.14)
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λi[Di(ηpi + ps)− ωiW log2(1 + ripi)] = 0, ∀i ∈ N , (2.15)

µi(pi − Pm) = 0, ∀i ∈ N , (2.16)

ϑ[Rth −
1

N

N∑
i=1

W log2(1 + ripi)] = 0, (2.17)

pi ≤ Pm, ∀i ∈ N , (2.18)

1

N

N∑
i=1

W log2(1 + ripi) ≥ Rth, (2.19)

λi ≥ 0, µi ≥ 0, ϑ ≥ 0, ∀i ∈ N . (2.20)

Equation (2.14) is equivalent to

λi =
1

W log2(1 + ripi)
6= 0,∀i ∈ N , (2.21)

which is substituted into Equation (2.15) to yield

Di(ηpi + ps)− ωiW log2(1 + ripi) = 0, ∀i ∈ N . (2.22)

Note that Equation (2.13) and Equations (2.16)-(2.20) are the KKT conditions of

problems P2 if λi and ωi are fixed.
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P2: min
pi

N∑
i=1

λi[Di(ηpi + ps)− ωiW log2(1 + ripi)]

s.t. C6: pi ≤ Pm, ∀i ∈ N ,

C7:
1

N

N∑
i=1

W log2(1 + ripi) ≥ Rth.

We can observe that problem P2 is a convex optimization problem. Therefore, the

solution of P0 can be obtained by solving the convex optimization problem P2 such

that Equations (2.21) and (2.22) hold.

Denote x = [ω;λ] ∈ R2N and pi(x) as the solution of problem P2 for a fixed

x. To satisfy Equations (2.21) and (2.22), we have
−Di(ηpi(x) + ps) + ωiW log2(1 + ripi(x)) = 0, ∀i ∈ N ,

−1 + λiW log2(1 + ripi(x)) = 0, ∀i ∈ N .
(2.23)

Let φi(x) = −Di(ηpi(x) + ps) + ωiW log2(1 + ripi(x)), ∀i ∈ N and φN+i(x) =

−1 + λiW log2(1 + ripi(x)), ∀i ∈ N . Thus, we have

φ(x) = [φ1(x), ..., φN(x), ..., φ2N(x)]T = 0. (2.24)

Therefore, the solution of P0 can be considered as the solution of P2 such that

Equation (2.24) holds.

Lemma 2. φ(x) is strongly monotone.
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Proof. Let fi(x) = W log2(1 + ripi(x)) > 0 for simplicity. Based on Equations (2.23)

and (2.24), the Jacobian matrix of φ(x) can be calculated as

φ′(x) =



f1(x) . . . 0 0 . . . 0

...
. . .

...
... . . .

...

0 . . . fN(x) 0 . . . 0

0 0 0 f1(x) . . .
...

... . . .
...

...
. . . 0

0 0 0 0 . . . fN(x)


. (2.25)

Since fi(x) > 0, ∀i ∈ N , we have φ′(x) is a positive definite matrix. Therefore, φ(x)

is strongly monotone.

2.3.2 Gradient Projection Method

We first utilize the gradient projection method (GPM) to solve the convex optimization

problem P2. The Lagrangian function of P2 is

L(p, ϑ) =
N∑
i=1

λi[Di(ηpi + ps)− ωiW log2(1 + ripi)]

+ ϑ(Rth −
1

N

N∑
i=1

W log2(1 + ripi))

=
N∑
i=1

λiDi(ηpi + ps)

−
N∑
i=1

(λiwi +
ϑ

N
)W log2(1 + ripi) + ϑRth.

(2.26)

Hence, the Lagrangian dual function is

g(ϑ) = inf
pi≤Pm

L(p, ϑ). (2.27)

The derivative of L(p, ϑ) with regard to p is ∂L(p,ϑ)
∂pi

= λiDiη − (λiwi + ϑ
N

)Wri log2 e
1+ripi

.

Hence, L(p, ϑ) is firstly monotonically decreasing and then monotonically increasing.
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Meanwhile, pi ≤ Pm should also be satisfied. Therefore, the optimum solution of

minimizing L(p, ϑ) with regard to p is

p∗i = min{Pm,
(λiwi + ϑ

N
)W log2 e

λiDiη
− 1

ri
}. (2.28)

Substituting Equation (2.28) into Equation (2.27), we have g(ϑ) = L(p∗, ϑ). Hence,

the dual problem of P2 is

P3: max
ϑ

g(ϑ) = L(p∗, ϑ)

s.t. C8: ϑ ≥ 0.

The dual problem P3 can then be solved by the gradient projection method which

updates the Lagrangian variable ϑ based on the gradient search as follows.

ϑk = max{0, ϑk−1 + δk(Rth −
1

N

N∑
i=1

W log2(1 + rip
∗
i ))}, (2.29)

where k is the number of iterations; δk is the step size; p∗i is defined in Equation

(2.28).

2.3.3 Modified Newton Method

In order to satisfy Equation (2.24), we utilize the modified Newton method to update

x. The iterative equation is

xk+1 = xk + δkτ k, (2.30)
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where k is the number of iterations; τ k can be considered as the iterative direction,

which is defined as

τ k = −[φ′(xk)]
−1φ(xk)

= −



1
f1(x)

. . . 0 0 . . . 0

...
. . .

...
... . . .

...

0 . . . 1
fN (x)

0 . . . 0

0 0 0 1
f1(x)

. . .
...

... . . .
...

...
. . . 0

0 0 0 0 . . . 1
fN (x)





φ1(x)

...

φN(x)

φN+1(x)

...

φ2N(x)



= −



φ1(x)
f1(x)

...

φN (x)
fN (x)

φN+1(x)

f1(x)

...

φ2N (x)
fN (x)


=



D1(ηp1(x)+ps)
W log2(1+r1p1(x))

− ω1

...

DN (ηpN (x)+ps)
W log2(1+rNpN (x))

− ωN
1

W log2(1+r1p1(x))
− λ1

...

1
W log2(1+rNpN (x))

− λN


;

(2.31)

δk ∈ (0, 1) is the iterative step size, which satisfies

‖φ(xk + δkτ k)‖ ≤ (1− εδk)‖φ(xk)‖, ε ∈ (0, 1). (2.32)

Our proposed algorithm (PETROL) to solve P0 is then delineated in Algorithm

1. Lines 3-10 iteratively calculate the optimum solution given x. In each iteration,

Line 4 calculates the solution of the convex problem P2. If this solution satisfies

Equation (2.24), it is the optimum solution. Otherwise, x is updated according to

the modified Newton method, as shown in Lines 8-9.
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Algorithm 1: PETROL

Input : C,N,W,Hi, N0, Di, P
T , Pm, λi, ui, vi

Output: Value a satisfying ϕ(a) = 0

1 Initialize ε,ω1,λ1,x1 = [ω1;λ1] ;

2 Initialize the number of iteration k = 1 ;

3 while 1 do

4 Calculate the solution pk(xk) of the convex problem P2 with fixed

ωk,λk by gradient projection method in Equation (2.29) ;

5 if φ(xk) = 0 then

6 break ;

7 else

8 Calculate δk satisfying Equation (2.32) ;

9 Update xk+1 according to Equation (2.30) ;

10 end

11 k = k + 1 ;

12 end

13 return pk(xk);
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Lemma 3. Assume pi(x) (∀i ∈ N ) satisfies the Lipschitz condition, then PETROL

achieves a linear convergence rate to the optimum solution and a quadratic convergence

rate in the neighborhood of the optimum solution.

Proof. See Appendix A.

2.4 Performance Evaluation

In this section, we set up simulations to evaluate the performance of our proposed

algorithm PETROL. We compare PETROL with the existing work [46] where a data

collection task is considered with a fixed wireless transmission power (denoted as

NoPowerControl). We also utilize the heuristic algorithm (denoted as Heuristic) for

comparison purposes. In Heuristic, the transmission power increases when the wireless

channel condition is bad (e.g., the air-to-ground path loss between the drone and IoT

gateway is greater than 100 dB) and vice versa. Specifically, at each location, the

wireless transmission power is set as the minimal value to satisfy the QoS requirement.

We consider a 1000 m × 1000 m area, where 30 target locations’ data are required

to be collected and IoT GW is located in the center of this area. These locations are

uniformly distributed in this area. The UAV flies at a fixed flying plane at the height

of 500 m. α and β in Equation (2.1) are set to 9.6 and 0.28, respectively. The speed of

light c = 3×108 m/s. The carrier frequency fc = 2 GHz. ξLoS and ξNLoS in Equations

(2.4) and (2.5) are 1 dB and 20 dB, respectively [37]. The system bandwidth W = 10

MHz. The drone mass m = 500 gram, and the earth gravitational acceleration g = 9.8

m/s2. rp, np and ρ in Equation (2.7) are 20 cm, 4, and 1.225 kg/m3, respectively.

The hardware power Pfull = 5 W when the drone transits at the full speed vfull = 15

m/s [40]. η and pstatic in Equation (2.10) are 4.2 and 8 W, respectively. The system

bandwidth W = 10 MHz and the noise power density N0 = −174 dBm/Hz. The

amounts of collected data at different locations Di are uniformly distributed from 1

MB to 10 MB. The maximum wireless transmission power Pm = 5 W and the QoS
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requirement Rth = 135 Mbps. Note that the above values are default values and hence

may change as needed. We also plot 90% confidence intervals of the results in our

simulations.

Figure 2.2 evaluates the energy consumption of PETROL with different numbers

of target locations. Note that since the transit energy consumption (which is

a constant) is much larger than the hovering and wireless communication energy

consumption, we do not include the transit energy consumption in all figures in order

to explicitly show the differences of different algorithms (i.e., the energy consumption

is the optimal value of the equivalent problem P1). In Figure 2.2, the energy

consumptions of PETROL, Heuristic and NoPowerControl all become larger when

the number of locations increases. More locations imply that more data should

be sent to IoT GW and hence more energy is consumed. PETROL performs the

best among the three algorithms and NoPowerControl the worst. NoPowerControl

does not adjust the wireless transmission power and hence suffers from longer data

transmission time when the wireless channel condition is bad, which results in more

energy consumption. Heuristic adjusts the wireless transmission power to satisfy the

QoS requirement at each location. However, it neglects the impact of the data size

on the energy consumption.

Figure 2.3 compares the performances of PETROL, Heuristic and NoPowerControl

with different average data sizes. Note that a larger data size results in more energy

consumption for all of PETROL, Heuristic and PETROL because a larger data size

requires more data transmission time and hence increases the energy consumption.

PETROL requires the least energy consumption and NoPowerControl the most for

the similar reason in Figure 2.2. Note that when the data size is less than 30

Mb, Heuristic and PETROL achieve approximately the same energy consumptions.

However, Heuristic incurs a much lower computational complexity than that of
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Figure 2.2 Energy consumption vs number of locations.

PETROL. Hence, adopting Heuristic is beneficial when the data size is less than

30 Mb.

Figure 2.4 investigates impacts of different maximum transmission power Pm on

the performances of all algorithms. The energy consumptions of PETROL, Heuristic

and NoPowerControl all go up because a larger Pm allows the drone to transmit

data with larger transmission power and hence increases the energy consumption.

PETROL always performs better than Heuristic and NoPowerControl. Note that

the differences between PETROL and its comparison algorithms (i.e., Heuristic and

NoPowerControl) become larger when Pm increases. This is because when Pm is

small, all algorithms adopt the maximum transmission power in order to satisfy the

QoS requirement and hence their energy consumptions are similar.

Figure 2.5 illustrates the energy consumptions with different QoS requirements

Rth. A larger Rth implies that more transmission power is required and hence

increases the energy consumption. Therefore, in Figure 2.5, the energy consumptions

22



6 12 18 24 30 36 42

Average data size (Mb)

50

100

150

200

250

300

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
) Heuristic

NoPowerControl

PETROL

Figure 2.3 Energy consumption vs average data size.

of PETROL, Heuristic and NoPowerControl all increase as Rth increases. PETROL

performs the best among the three algorithms. Note that the energy consumptions of

all three algorithms remain the same when Rth arises from 150 to 160 Mbps because

of the limitation of Pm. On that occasion, increasing Rth does not affect the energy

consumption because the transmission power has reached its upper limit.

The convergence rates of GPM and PETROL are depicted in Figure 2.6. GPM,

denoting the gradient projection method, solves the transformed convex optimization

problem in PETROL. Figure 2.6(a) illustrates how ϑ converges as the number of

iterations increases. ϑ is the optimal solution of dual problem P3 which is calculated

by GPM in order to solve the convex optimization problem P2. We can observe

that ϑ converges to a fixed value after more than 300 iterations. PETROL utilizes

the modified Newton method to update the parameters in order to satisfy φ(x). In

Figure 2.6(b), function
∑N

i=1φi(xi) converges to 0 after 250 iterations.
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2.5 Summary

In this chapter, the power control problem in IoD has been investigated. A sum-of-

ratios fractional programming problem has been formulated to minimize the drone’s

energy consumption constrained by the maximum wireless transmission power and

QoS requirements. In order to solve this NP-complete problem, an iteration-based

algorithm (PETROL) has been designed; it first obtains the optimal solution of a

transformed convex optimization problem by a gradient projection method and then

updates the Lagrangian parameters by a modified Newton method. The convergence

rate of PETROL has also been proved to achieve a linear rate to the optimum solution

and a quadratic rate in the neighborhood of the optimum solution. Simulation results

have demonstrated PETROL performs better than the existing algorithms.
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CHAPTER 3

ONLINE TASK ALLOCATION AND FLYING CONTROL IN

FOG-AIDED INTERNET OF DRONES

Drones have been deployed for various applications. Yang et al. [27] investigated

the 3-D drone-cell placement problem to alleviate the traffic congestion in cellular

networks. Tang et al. [28] adopted drones to promptly construct the D2D-enabled

wireless network. They utilized game theory to solve the channel assignment problem.

Yao and Ansari [8] optimized the drone’s trajectory to minimize the network delay

for the sensing service constrained by the drone’s battery capacity. Dorling et al.

[47] optimized the battery and payload weight for package delivery to minimize the

delivery time.

Gharibi et al. [30] first proposed the IoD architecture and the conceptual layers

in IoD systems. Koubaa and Qureshi [31] proposed a real-time object tracking

system in IoD networks. In order to reduce the energy consumption of drones, Yao

and Ansari [3] investigated the power control problem in IoD networks for the data

collection service in order to minimize the drone’s energy consumption constrained by

the QoS requirement. Zeng and Zhang [7] optimized the drone’s trajectory by jointly

considering the network communication throughput and drone’s energy consumption

in order to maximize the network energy efficiency.

Task allocation has been studied in IoT networks. Zeng et al. [48] investigated

the task scheduling and resource management strategy in fog-aided networks to

minimize the task completion time. Deng et al. [49] formulated a workload allocation

problem to balance the tradeoff between power consumption and transmission delay

in a fog-cloud computing system, where tasks are allocated to both fog nodes and

cloud in order to minimize the power consumption.
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None of the above works consider the joint optimization of task allocation and

flying control (which adjusts the flying speed) in IoD networks. Hence, we investigate

the task allocation and flying control to minimize the whole journey time of visiting

all locations of interest and processing all tasks by considering the drone’s battery

capacity and task completion deadline in fog-aided IoD networks.

3.1 System Model

In our system model, as shown in Figure 3.1, a drone is launched in the flying plane

at a certain height of H. In practice, H is usually chosen as the minimum altitude to

avoid all obstructions [8]. The drone aims to complete a journey over M locations of

interest. We denote the set of all indexes of locations of interest as M = {1, ...,M}.

The drone starts from location 1, then visits location 2 to location M sequentially,

and finally ends at location 0. We assume that the drone flies in a straight line in

each segment between any two locations, and may change its heading direction and

adjust its flying speed between different segments [7]. We denote the flying speed of

segment i (starting from location i to location i + 1) as vi. When the drone arrives

at each location, it hovers above this location, collects information (e.g., images and

videos) over the area, generates several tasks, and then offloads all tasks to the fog

nodes for processing. After the drone receives the computing results from the fog

nodes, it traverses to the next location and repeats the process until it completes the

whole journey to location 0.

At location i, the drone generates Ki computing tasks. We characterize each

task k as a three-parameter model < lik, ϑik, Dik > [50], where lik is the data

length in bits, ϑik is the computing intensity (which converts data length into CPU

cycles) in CPU cycles per bit, and Dik is the task completion deadline. The task

information (i.e., task length, computing intensity, and minimum task processing

deadline) is first sent to the IoT service manager which has the knowledge of all
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network status information (e.g., computing capacity of each fog node, and wireless

channel conditions between all fog nodes and the drone). The service manager then

makes the task allocation decisions on which task should be processed at which fog

node based on the task information and network status information. After the task

allocation decisions are made, the service manager notifies the drone to offload its

tasks to the corresponding serving fog nodes which then process the tasks and send

the computing results back to the drone. We assume there are N fog nodes in the IoD

network and denote the set of indexes of all fog nodes as N = {1, ..., N}. Each fog

node is attached with an IoT gateway which receives and sends signals to communicate

with other network entities (e.g., drone and service manager). Our system model is

applicable to several applications. For example, a drone can be deployed to fly over

several locations for the disaster recovery application. When the drone arrives at each

location, it takes several pictures and videos of this location, and generates several

computing tasks. All tasks are then offloaded to the fog nodes to determine whether

any people and how many people are there under this location. If the computing

results from the fog nodes indicate there are people below, the drone notifies the

rescue team to rescue these people.

Fog node

Gateway

Flying plane

H
d

Task1 Task2
Task3

Location 1

Location 0

Location 2

Flying 

speed v1
Flying 

speed v2

Service manager

Figure 3.1 Task allocation and flying speed control in IoD networks.
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3.1.1 Drone Wireless Transmission Rate

The drone’s wireless transmission rate rij between location i and fog node j is given

by [35]

rij = W log2(1 +
piGij

N0W
), (3.1)

where W is the system bandwidth; pi is drone i’s wireless transmission power; Gij =

10−
PL
10 , where PL is obtained from Equation (2.3), is the wireless channel gain between

location i and fog node j; N0 is the noise power spectrum density. Hence, the wireless

data transmission delay for offloading task k is

dwik =
N∑
j=1

lik
rij
xijk, (3.2)

where lik
rij

is the wireless transmission time of task k to fog node j, and xijk ∈ {0, 1}

is a binary variable to indicate whether task k at location i is processed at fog node

j (xijk = 1 if affirmative).

We denote the computing capacity of fog node j as fj in CPU cycles per second.

Then, the fog processing delay of task k at location i is

dcik =
N∑
j=1

likϑik
fj

xijk. (3.3)

Note that the computing result from the fog node is relatively small in size [4], and the

downlink transmission rate (from fog nodes to the drone) is usually large. Therefore,

we neglect the downlink transmission delay in our work.

The task completion delay dik of task k at location i can then be expressed as

the summation of the uplink wireless transmission delay and the fog processing delay:

dik =dwik + dcik =
N∑
j=1

(
lik
rij

+
likϑik
fj

)xijk. (3.4)
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3.1.2 Drone Energy Consumption

The drone’s energy consumption usually consists of the propulsion energy (which

supports the drone’s mobility and hovering in the air) and the energy for wireless

data transmissions [7].

We assume the flying speed vi remains constant within segment i from location

i to location i + 1. The propulsion power from location i to location i + 1 can then

be characterized as a function of vi, and expressed as [7]:

P f
i = c1v

3
i +

c2

vi
, (3.5)

where c1v
3
i is the required power to move the drone forward, and c2

vi
is used to lift

the drone against the force of gravity; c1 and c2 are constants which are related to

the drone’s weight and wing area, and the air density. Hence, the propulsion energy

consumption for the drone’s mobility between location i and i+ 1 is

efi =
Li
vi

(c1v
3
i +

c2

vi
) = Li(c1v

2
i +

c2

v2
i

), (3.6)

where Li and Li
vi

are the distance and the transition time between location i and i+1,

respectively.

The drone’s propulsion energy consumption for hovering at location i is

ehovi = Phov

Ki∑
k=1

dik

= Phov

Ki∑
k=1

N∑
j=1

(
lik
rij

+
likϑik
fj

)xijk,

(3.7)

where Phov is a drone’s hovering power defined in Equation (2.7).
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The drone’s energy consumption for transmitting task k to fog node j at location

i can be calculated as

ewijk =
pilik
rij

, (3.8)

where pi is the drone’s wireless transmission power at location i and lik
rij

is the wireless

transmission time of task k. Hence, the drone’s energy consumption for wireless

transmissions at location i is

ewi =

Ki∑
k=1

N∑
j=1

pilik
rij

xijk. (3.9)

To sum up all drone’s energy consumptions at all locations by incorporating

all energy consumptions for wireless data transmission, hovering in the air when the

drone offloads tasks to fog nodes, and transitions between different locations, the total

energy consumption of drone to complete a whole journey can be expressed as

e =
M∑
i=1

(ewi + ehovi + efi )

=
M∑
i=1

Ki∑
k=1

N∑
j=1

[
(pi + Phov)lik

rij
+
Phovlikϑik

fj
)]xijk

+
M∑
i=1

Li(c1v
2
i +

c2

v2
i

)

(3.10)

3.2 Problem Formulation

Here, we formulate the problem of jointly optimizing the task allocation and flying

speed control in IoD networks. A drone is deployed to collect ground information

and generate computing tasks which are offloaded to the fog nodes for processing. To

complete a whole journey, the drone needs to travel through all locations of interest

and reach the final destination (i.e., location 0). The problem is formulated as
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P0: min
xijk,vi

M∑
i=1

Ki∑
k=1

N∑
j=1

(
lik
rij

+
likϑik
fj

)xijk +
M∑
i=1

Li
vi

(3.11)

s.t.
N∑
j=1

(
lik
rij

+
likϑik
fj

)xijk ≤ Dik,

∀i ∈M, k ∈ {1, ..., Ki},

(3.12)

M∑
i=1

Ki∑
k=1

N∑
j=1

[
(pi + Phov)lik

rij
+
Phovlikϑik

fj
)]xijk

+
M∑
i=1

Li(c1v
2
i +

c2

v2
i

) ≤ E,

(3.13)

N∑
j=1

xijk = 1, ∀i ∈M, k ∈ {1, ..., Ki}, (3.14)

xijk ∈ {0, 1},

∀i ∈M, k ∈ {1, ..., Ki}, j ∈ N ,
(3.15)

Vmin ≤ vi ≤ Vmax,∀i ∈M. (3.16)

The objective in Equation (3.11) is to minimize the whole journey completion

time which includes the wireless transmission time, fog processing time at each

location, and transition time between different locations. Equation (3.12) imposes

the task completion delay of each task k not to exceed the task completion deadline

Dik. Equation (3.13) implies that the total energy consumption of all tasks is limited

by the mobile IoT device battery capacity. Equations (3.14) and (3.15) indicate that

each task can only be assigned to one fog node. Equation (3.16) implies that the

flying speed in each segment should be within the range of [Vmin, Vmax]. Vmin is the
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minimum speed to support the drone’s mobility while Vmax is the maximum speed

the drone can reach [40].

Note that problem P0 is a mixed integer non-linear programming (MINLP)

problem because the variables xijk and vi are binary and continuous, respectively.

Obtaining the optimal solution of an MINLP problem is usually difficult because it

is not convex [51]. On the other hand, the future information (i.e., future generated

tasks at subsequent locations) is difficult to predict and hence unknown to the service

manager. Therefore, optimizing problem P0, which requires the complete information

of the whole journey, might be impracticable in reality. In order to address this

problem, we propose an online algorithm to circumvent the requirement of complete

information.

3.3 Algorithm Design

Owing to the unawareness of future generated task information, we propose an

online algorithm to solve the task allocation and flying speed control problem in

IoD networks. The difficulty of solving problem P0 without complete information

of tasks at all locations lies in Equation (3.13), where the energy consumptions at

different locations are coupled with each other owing to the drone’s battery capacity.

To be specific, consuming more energy for task allocation at the current location

and transition in the current segment will reduce the energy budget for subsequent

locations and segments. Therefore, the basic idea of our online algorithm is to break

this linkage by introducing the energy deficit qi of location i and segment i to denote

how the energy consumption deviates from the average energy budget.

In our online algorithm, the service manager determines the task allocation

strategy for all tasks at location i and the flying speed for segment i without the

knowledge of future information at subsequent locations. Since the drone should

travel through M locations and segments by consuming less energy than the battery
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capacity E, the average energy budget for each location and segment is E
M

. The

energy deficit qi is then defined as

qi+1 = max{qi +

Ki∑
k=1

N∑
j=1

[
(pi + Phov)lik

rij
+

Phovlikϑik
fj

)]xijk + Li(c1v
2
i +

c2

v2
i

)− E

M
, 0}.

(3.17)

The energy deficit qi+1 for location i + 1 is determined by the energy deficit qi of

location and segment i, the energy consumption of location and segment i, and the

average energy budget. If the energy consumed at location and segment i is larger than

the average energy budget (i.e.,
∑Ki

k=1

∑N
j=1[ (pi+Phov)lik

rij
+Phovlikϑik

fj
)]xijk+Li(c1v

2
i +

c2
v2i

) >

E
M

), an energy deficit is incurred and should be added to the previous deficit qi.

A larger energy deficit qi implies that less energy should be consumed at location

and segment i in order to save more energy for the future so that the energy constraint

can be satisfied in the long run. The energy deficit measures the importance of

minimizing the energy consumption for the current location and segment. The

objective of the task allocation and flying speed control problem is to minimize the

delay of task completion time and drone transition time, and hence we combine these

two objectives as the weighted sum of the delay and energy consumption at location

and segment i as

φi = α[

Ki∑
k=1

N∑
j=1

(
lik
rij

+
likϑik
fj

)xijk +
Li
vi

]

+ qi{
Ki∑
k=1

N∑
j=1

[
(pi + Phov)lik

rij
+
Phovlikϑik

fj
]xijk

+ Li(c1v
2
i +

c2

v2
i

)},

(3.18)

where qi is the weight of the energy consumption and α is the coefficient of the

delay to balance the values of the delay and energy consumption. φi is the objective

function that we aim to minimize at each location and segment i. Note that if the
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energy deficit qi is large, a large weight is put on the energy consumption. It is

hence more important to try to consume less energy as possible. Otherwise, the delay

should be minimized to optimize the objective function of problem P0. Hence, we

eliminate the linkage of the energy consumptions of different locations and segments

by introducing pi and incorporating Equation (3.13) into the objective function of

problem P0. Then, problem P0 can be transformed into M independent subproblems

P1 at each location and segment. Therefore, problem P1 should be optimized at each

location and segment i as follows,

P1: min
xijk

φi

s.t. (3.12), (3.14), (3.15), (3.16),

where i references location and segment i. Note that the variables xijk and vi in

problem P1 are independent of each other. Hence, problem P1 can be divided into

two subproblems P1-1 and P1-2.

P1-1: min
xijk

α

Ki∑
k=1

N∑
j=1

(
lik
rij

+
likϑik
fj

)xijk

+ qi

Ki∑
k=1

N∑
j=1

[
(pi + Phov)lik

rij
+
Phovlikϑik

fj
)]xijk

=

Ki∑
k=1

N∑
j=1

{[α + qi(pi + Phov)]
lik
rij

+ (α + qiPhov)
likϑik
fj
}xijk
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s.t.
N∑
j=1

(
lik
rij

+
likϑik
fj

)xijk ≤ Dik,

∀k ∈ {1, ..., Ki},

(3.19)

N∑
j=1

xijk = 1, ∀k ∈ {1, ..., Ki}, (3.20)

xijk ∈ {0, 1},∀k ∈ {1, ..., Ki}, j ∈ N . (3.21)

Problem P1-1 can be considered as the task allocation problem for all tasks at

location i.

P1-2: min
vi

ϕi = α
Li
vi

+ qiLi(c1v
2
i +

c2

v2
i

)

s.t. Vmin ≤ vi ≤ Vmax. (3.22)

Problem P1-2 can be regarded as the flying speed control problem in segment i.

Note that problem P1-1 is an integer linear programming (ILP) problem and

hence is nontrivial to obtain its optimal solutions because of the high computational

complexity. We hence design a heuristic approach to solve problem P1-1. Each task

can only be processed at one fog node (indicated by Equations (3.20) and (3.21)) and

the task completion time should not surpass the deadline Dik (indicated by Equation

(3.19)). Hence, we define a feasible fog node set Jk = {j | lik
rij

+ likϑik
fj
≤ Dik} for

each task k that incorporates the indexes of fog nodes that do not violate the task’s

deadline requirement. The basic idea of the heuristic approach is to choose the fog

node (from the feasible fog node set Jk for each task k) which achieves the minimum
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objective value %jk = [α + qi(pi + Phov)]
lik
rij

+ (α + qiPhov)
likϑik
fj

of problem P1-1.

Therefore, the solution of problem P1-1 can be expressed as

xijk =


1, if j = argminj{%jk | j ∈ Jk},

0, otherwise,

,

∀k ∈ {1, ..., Ki}.

(3.23)

Note that problem P1-2 is a continuous optimization problem. To solve

problem P1-2, we first calculate the derivative of ϕi with respect to vi (i.e., ∂ϕi
∂vi

)

and obtain critical points of vi that correspond to local minima or maxima by letting

the derivative be zero. These critical points can be derived from

∂ϕi
∂vi

= −αLi
v2
i

+ qiLi(2c1vi − 2
c2

v3
i

) = 0. (3.24)

Equation (3.24) can be transformed into

2qiLic1v
4
i − αLivi − 2qiLic2 = 0. (3.25)

We denote the set of critical points which satisfy Equation (3.25) as Vc.

Lemma 4. ϕi is a convex function with regard to vi where vi > 0.

Proof. The second derivative of ϕi can be calculated as

∂2ϕi
∂v2

i

=
∂

∂vi
(
∂ϕi
∂vi

) = 2α
Li
v3
i

+ qiLi(2ci + 6
c2

v4
i

) > 0, (3.26)

which completes the proof.

According to Lemma 4, ϕi first monotonically decreases until it reaches the

critical point (there is only one critical point) and then monotonically increases within

the range (0,+∞). However, the critical point V ∗ = {vi | vi ∈ Vc, vi > 0} is not

necessarily the optimal vi because vi has to fall into the range [Vmin, Vmax]. Otherwise,
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if V ∗ < Vmin, ϕi monotonically increases within [Vmin, Vmax]. If V ∗ > Vmax, ϕi

monotonically decreases. Therefore, the optimal vi can be calculated as

vi =


Vmin, if V ∗ < Vmin,

V ∗, if Vmin ≤ V ∗ ≤ Vmax,

Vmax, if V ∗ > Vmax,

. (3.27)

To sum up, we describe our proposed online algorithm, which provides task

allocation and flying speed control strategies at each location and segment, in

Algorithm 2. Line 1 initializes the energy deficit. Lines 2-7 determine the task

allocation and flying speed for each location and segment in an online fashion. Line 3

calculates the task allocation decisions xijk for location i. Line 4 calculates the flying

speed vi for segment i. Line 5 updates the energy deficit qi+1. Note that the gap

between our proposed online algorithm and the optimal solution is bounded by O( 1
α

)

(demonstrated by Lyapunov optimization technique [52]), where α is the coefficient

of delay in Equation (3.18).
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Algorithm 2: Online Algorithm

Input : M,N,Ki, lik, ϑik, Dik, fj, rij, E, Li, α, Phov, Vmin, Vmax

Output: task allocations xijk, flying speeds vi

1 Initialize energy deficit q1 = 0 ;

2 for each location and segment i do

3 Calculate task allocation xijk by solving problem P1-1 according to

Equation (3.23) ;

4 Calculate flying speed vi by solving problem P1-2 according to

Equation (3.27) ;

5 Update energy deficit qi+1 according to Equation (3.17) ;

6 i = i+ 1 ;

7 end

8 return xijk, vi;

3.4 Performance Evaluation

We set up simulations to evaluate the performance of our proposed ONLine Algorithm

(ONLA) in this section. We compare ONLA with the comparison algorithm inspired

by the existing work in [53]. We denote the comparison algorithm as energy-only,

where both the task allocations and flying speeds are chosen with the aim to minimize

the drone’s energy consumption. Specifically, energy-only assigns each task to the fog

node with the minimum energy consumption at each location, and fixes the flying

speed at the minimum flying speed. We also utilize the algorithm (denoted as delay-

only) inspired by the existing algorithm [54] for comparison, which assigns each task

to the fog node with the minimum task completion delay while fixing the flying speed

at the maximum flying speed to minimize the transition delay.

In our simulations, we consider a 1800 m × 1800 m area, where 9 fog nodes

are uniformly distributed. There are M = 30 locations of interests where the drone
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visits, generates computing tasks and offloads them to fog nodes for processing. These

locations of interests are uniformly distributed in the area. We assume the transit

route of the journey follows the location indexes (i.e., drone flies from location 1

to location 2, and then to location 3,...,M , until it reaches the end location 0).

The number of tasks generated at each location is randomly distributed from 400

to 600. The task length of each task is randomly distributed from 5 to 10 Mb.

The computation intensity ϑ = 50 CPU cycles per Mb. The fog nodes’ computing

capacities are randomly chosen from 200 to 800 CPU cycles per second. We assume

the height of the flying plane H = 500 m. The environment-related constants ω and

β in Equation (2.1) are 9.6 and 0.28, respectively. The speed of light c = 3 × 108

m/s. The carrier frequency fc is 2 GHz. The environment-related constants ξLoS and

ξNLoS in Equations (2.4) and (2.5) are 1 dB and 20 dB, respectively [37]. The system

bandwidth W is 10 MHz. The noise power density N0 = −174 dBm/Hz. The wireless

transmission power is 3 W. The drone mass m = 500 g and the earth gravitational

acceleration, i.e., g = 9.8 m/s2; rp, np and ρ in Equation (2.7) are 20 cm, 4, and

1.225 kg/m3, respectively. The propulsion power related parameters are c1 = 0.1 and

c2 = 200. The drone’s maximum and minimum flying speed are 20 m/s and 3 m/s,

respectively. Note that the above drone-related parameters are consistent with [46].

All the above parameters are default values and may change if we investigate their

impacts on the algorithm performances.

Figure 3.2 compares the performances of the drone’s journey completion

time and energy consumption among the three algorithms with different numbers

of locations ranging from 10 to 40. Figure 3.2(a) and Figure 3.2(b) illustrate

the completion time and energy consumption with different numbers of locations,

respectively. In Figure 3.2(a), the completion time of the three algorithms increases

with the number of locations because more locations bring more task processing time

and drone’s transition time. Delay-only achieves the smallest completion time and
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hence performs the best because delay-only tries to minimize the task completion

delay and drone’s transition delay without considering the drone’s battery capacity.

ONLA performs close to delay-only when the number of locations is small, while

the difference between them becomes larger when the number of locations increases.

Figure 3.2(b) shows that delay-only incurs the most energy consumption and greatly

violates the drone’s battery constraint when the number of locations is large while the

energy consumption of ONLA is always within the battery limit. When the number

of locations is small, energy-only performs better than ONLA because it tries to

minimize the energy consumption of task allocations. However, when the number

of locations is large, the energy consumption of energy-only increases faster than

ONLA; it becomes larger than that of ONLA, and even violates the drone’s battery

constraint because energy-only fixes the flying speed at the minimum flying speed,

hence increasing the energy consumption for drone’s transitions. On the contrary,

ONLA adjusts its flying speed and performs better than energy-only.
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Figure 3.2 Completion time and energy consumption vs number of locations.

Figure 3.3 illustrates the journey completion time and energy consumption of

the three algorithms with different average numbers of tasks ranging from 300 to 900.

We denote the average number of tasks as K̄, and then the number of tasks at each

location is randomly distributed from K̄ − 100 to K̄ + 100. Figure 3.3(a) and Figure

42



3.3(b) depict the journey completion time and energy consumption with different

average numbers of tasks, respectively. In Figure 3.3(a), the journey completion

time of all three algorithm increases when the average number of tasks increases

because more tasks bring more task processing time. Energy-only incurs the largest

completion time while delay-only the least. ONLA performs close to delay-only.

However, the energy consumption of delay-only severely surpasses the drone’s battery

capacity as shown in Figure 3.3(b). In Figure 3.3(b), the energy consumptions of all

three algorithms increase when the average number of tasks increases because more

tasks incur more energy consumption for wireless data transmissions. The energy

consumption of ONLA is always within the battery limit while that of energy-only

is more than the limit because more energy-only does not consider the flying control

problem and fixes the flying speed at the minimum flying speed.
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Figure 3.3 Completion time and energy consumption vs average number of tasks.

Figure 3.4 evaluates the performance of ONLA with different maximum flying

speeds ranging from 14 to 26 m/s. The journey completion time and energy

consumption with different maximum flying speeds are depicted in Figure 3.4(a) and

Figure 3.4(b), respectively. We can observe from Figure 3.4(a) that the journey

completion time of delay-only decreases when the maximum flying speed increases

while those of ONLA and energy-only do not change much, because delay-only fixes
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its flying speed at the maximum flying speed. A larger maximum flying speed reduces

the transition time of delay-only and hence the completion time decreases. When

the maximum flying speed is small, ONLA performs close to delay-only while their

difference becomes large at a high flying speed. In Figure 3.4(b), both delay-only and

energy-only exceed the drone’s battery limit while ONLA always performs within the

limit. The energy consumption of delay-only greatly increases when the maximum

flying speed increases because the delay-only tries to minimize the network delay

without considering the energy consumption and flies with the maximum flying speed.
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Figure 3.4 Completion time and energy consumption vs maximum flying speed.

Figure 3.5 depicts the journey completion time and energy consumption of the

three algorithms with different minimum flying speed ranging from 2 to 8 m/s. Figure

3.5(a) and Figure 3.5(b) illustrate the completion time and energy consumption

with different minimum flying speeds, respectively. In Figure 3.5(a), the journey

completion time of ONLA and that of delay-only almost remain the same while that

of energy-only greatly decreases with the increase of the minimum flying speed because

energy-only fixes its flying speed at the minimum flying speed. A larger minimum

flying speed leads to less drone transition time. In Figure 3.5(a), ONLA incurs larger

completion time than delay-only, which greatly violates the drone’s battery capacity

in Figure 3.5(b). We can observe from Figure 3.5(b) that the energy consumption of
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energy-only decreases when the minimum flying speed increases. When the minimum

flying speed is high, energy-only incurs less energy consumption than that of ONLA,

but incurs more journey completion time than that of ONLA as shown in Figure

3.5(a).
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Figure 3.5 Completion time and energy consumption vs minimum flying speed.

3.5 Summary

In this chapter, task allocation and flying control have been jointly optimized in

fog-aided IoD networks with the objective to minimize the journey completion time

during which all locations of interests are visited and all generated computing tasks

are processed. The drone’s battery capacity and task completion deadline have been

considered as the constraints. This joint optimization problem has been formulated

as an MINLP problem. In order to address the challenge of unawareness of future

task information, an online algorithm has been proposed. Extensive simulations

have demonstrated that the proposed online algorithm performs close to delay-only

(which minimizes the journey completion time without considering the drone’s battery

capacity). Moreover, the proposed algorithm performs better than energy-only (which

tries to minimize the drone’s energy consumption and maintains a certain flying

speed).
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CHAPTER 4

WIRELESS POWER AND ENERGY HARVESTING CONTROL IN

IOD BY DEEP REINFORCEMENT LEARNING

Gharibi et al. [30] introduced the conceptual model of an IoD system and detailed its

organization, features and implementation. They also explained that the IoD network

can be applied for package delivery, disaster rescue, and traffic surveillance. Wazid

et al. [55] proposed a lightweight user authentication scheme in an IoD network for

the users to access data from drones and demonstrated that their scheme provides

better security than existing schemes. Bera et al. [56] proposed a blockchain based

secure framework for data management in IoD networks that provides better security

and also incurs less communication and computation overheads. Yao and Ansari [57]

designed an online algorithm to address the joint optimization of task allocation and

flying speed control in an IoD network to minimize the drone’s journey completion

time during which a drone generates computing tasks, offloads them to a fog node,

and visits different locations of interest.

Energy harvesting is a promising technology to charge batteries. Altinel et

al. [58] proposed a Markov energy model to analyze the energy outage, shortage

and service loss probabilities of an energy harvesting aided communication system.

Nguyen et al. [59] designed an energy-harvesting-aware routing protocol for IoT

networks to improve the lifetime of IoT devices under variable traffic load and

energy availability conditions. Yao and Ansari [35] proposed a Stackelberg game

in cached-enabled energy-harvesting-aided IoT networks to incentivize the charging

station to transmit energy to the IoT devices. Jawad et al. [60] utilized the magnetic

resonant coupling (MRC) technology for the wireless power transfer to charge the

46



drone batteries. They demonstrated that the battery life of the drone was extended

from 30 to 851 minutes.

The previous work does not consider wireless power control in reducing the

energy consumption of IoT/IoD networks. Yao and Ansari [3] jointly optimized the

power control and fog resource provisioning in fog-aided IoT networks to minimize

the system cost while guaranteeing QoS requirements. Lee and Hong [61] proposed a

power control scheme for secure device-to-device communication in IoT networks to

improve system energy efficiency. Mach and Becvar [62] proposed a distributed power

control algorithm to increase the delivery ratio of computation results constrained by

the QoS requirements in mobile edge networks. Yao and Ansari [3] investigated the

power control in IoD networks for the data collection service to minimize the drone’s

energy consumption while satisfying the QoS requirement. However, none of the

above works consider the joint optimization of power control and energy harvesting

control in IoD networks. Challita et al. [63] proposed a deep reinforcement learning

algorithm to optimize the transmission power, path, and cell association of each UAV

to minimize the interference level and the wireless transmission delay in multi-UAV-

aided networks. Pace et al. [64] proposed a cognitive transmission power control

scheme in IoT networks by a muli-agent Q-learning algorithm where each IoT sensor

learns its own power control policy.

Deep reinforcement learning has been utilized in time-varying IoT/IoD networks

to improve the performance of network strategies [65]. Lei et al. [66] proposed a

joint computation offloading and multiuser scheduling problem in IoT edge system to

minimize the average weighted sum of delay and power consumption. They further

designed a deep reinforcement learning algorithm to solve this joint optimization

problem. Yao and Ansari [67] investigated the content placement problem in

time-varying cache-enabled IoT networks to minimize the data transmission delay

constrained by the cache storage capacity and IoT data freshness. Liu et al. [68]
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proposed a data collection and secure sharing scheme by combining Ethereum

blockchain and deep reinforcement learning to create a reliable and safe IoT

environment. However, none of the above works consider utilizing deep reinforcement

learning to solve the power control in energy harvesting aided IoD networks.

Our preliminary results of wireless power control in energy harvesting aided IoD

networks by deep reinforcement learning was presented at ICC2020 [69]. We extend

our preliminary work by additionally considering the energy harvesting control (i.e.,

determining the amount of transmitted energy to each drone) to further reduce our

system energy cost. In this work, we investigate the joint optimization of wireless

power control and energy harvesting control in time-varying IoD networks to minimize

the long-term average system cost constrained by the drone battery capacities and

QoS requirements. A deep reinforcement learning algorithm is proposed to solve this

joint optimization problem.

4.1 System Model

IoD gatewayCharging station

Sensing data

transfer

Energy harvesting

Flying plane

H
d

Figure 4.1 Data collection in energy harvesting aided IoD.

Consider our system model with N drones hovering in the flying plane at the

height of H, as shown in Figure 5.1. We denote the set of drone indexes as N =

{1, 2, ..., N}. The drones sense the environmental data (e.g., pictures and videos) at

different locations and send them to the IoD gateway. The IoD gateway can further
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process the sensed data and send them to a monitor or users who request these

data. Owing to the limited drone battery capacities, a charging station is utilized to

charge the drone batteries in order to support their operations. Specifically, the drone

battery can harvest energy by converting the received radio frequency (RF) signals

from the charging station to power [70]. The charging station can use the license-free

frequency bands (e.g., 915 MHz [71] and 5 GHz [72]) for energy transfer and provide

controllable energy.

We assume the network operates at discrete time epochs and the network states

remain static within a time epoch but vary over different ones [73]. At each time

epoch, the IoD gateway determines each drone’s wireless transmission power to

transmit its sensed data and the transmitted energy from the charging station to

each drone. In our work, we characterize the QoS requirement as the minimum data

transmission time.

4.1.1 Drone Data Transmission Delay

The drone’s data transmission rate depends on the wireless channel between the drone

and the IoD gateway. The wireless channel gain between drone i and IoD gateway

GBS
i is a function of the path loss, i.e.,

GBS
i = 10−

PLi
10 , (4.1)

where PLi is the path loss between drone i and the IoD gateway according to Equation

(2.3). Therefore, drone i’s wireless transmission rate ri can be calculated by the

Shannon’s formula

ri = Wi log2(1 +
piG

BS
i

N0Wi

), (4.2)

where GBS
i is the wireless channel gain between drone i and the IoD gateway, pi

is drone i’s wireless transmission power, Wi is the system bandwidth allocated to
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drone i and N0 is the noise power spectrum density. Therefore, drone i’s wireless

transmission time of sending the sensed data to the IoD gateway is

τi =
li
ri

=
li

Wi log2(1 +
piGBSi
N0Wi

)
, (4.3)

where li is the data size of drone i’s sensed data.

4.1.2 Drone’s Energy Consumption

Drone i’s energy consumption for transmitting the sensing data can be expressed

as [41]

Etrs
i = piτi =

pili

Wi log2(1 +
piGBSi
N0Wi

)
, (4.4)

where τi is drone i’s wireless data transmission time which is defined in Equation

(4.3).

We assume RF energy harvesting technology is used to charge the drone

batteries, and the amount of the harvested energy depends on the transmitted energy

from the charging station and the wireless channel gain between the charging station

and the drone. Hence, we utilize the widely used linear energy harvesting model [12]

to calculate the harvested energy Ehrv
i , i.e.,

Ehrv
i = ηiG

EH
i ei, (4.5)

where ηi is drone i’s energy harvesting efficiency, GEH
i is the wireless channel gain

between drone i and the charging station and can be similarly calculated by Equation

(4.1), and ei is the transmitted energy from the charging station to drone i.

In our work, all drone batteries are rechargeable, and the charged energy can be

stored in the battery for future use [74]. We denote the system battery level vector

at time epoch t as

b(t) = [b1(t), b2(t), ..., bN(t)], (4.6)
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where bi(t) ∈ [0, Bmax
i ], i ∈ N is drone i’s battery level at time epoch t and is bounded

between 0 and the battery capacity Bmax
i . Hence, drone i’s battery level evolves from

time epoch t to time epoch t+ 1 by

bi(t+ 1) = min{bi(t) + Ehrv
i (t)− Etrs

i (t), Bmax
i }, (4.7)

where bi(t+ 1) ≥ 0, i.e.,

bi(t) + Ehrv
i (t)− Etrs

i (t) ≥ 0, (4.8)

which is equivalent to

bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBSi
N0Wi

)
≥ 0. (4.9)

We assume the system energy cost comes from both drone energy consumption

and charging station energy consumption, and can be calculated by

Esys(t) = c1

N∑
i=1

Etrs
i (t) + c2

N∑
i=1

ei(t), (4.10)

where c1 and c2 is the energy cost per joule of drone’s battery and charging station,

respectively [10]. ei(t) is the transmitted energy from the charging station to drone i

in time epoch t.

4.2 Problem Formulation

In this section, we formulate the wireless power control and the harvested energy

control problem for sensing service in IoD networks, where drones are deployed to

sense the environmental information. In order to build an energy efficient system,

our objective is to minimize the long-term average system energy cost. Then, the

problem can be formulated as
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P0: min
pi(t),ei(t)

1

M

M∑
t=1

[c1

N∑
i=1

Etrs
i (t) + c2

N∑
i=1

ei(t)] (4.11)

s.t. pi(t) ≤ Pm
i , ∀i ∈ N , t ∈M, (4.12)

li

Wi log2(1 +
piGBSi
N0Wi

)
≤ T thi , ∀i ∈ N , t ∈M, (4.13)

bi(1) = Bmax
i ,∀i ∈ N , (4.14)

bi(t+ 1) = min{bi(t) + ηiG
EH
i ei(t)

− pi(t)li(t)

Wi log2(1 +
pi(t)GBSi
N0Wi

)
, Bmax

i }, ∀i ∈ N , t ∈M,
(4.15)

bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBSi
N0Wi

)
≥ 0,

∀i ∈ N , t ∈M.

(4.16)

In Equation (4.11), M ∈ {1, 2, ...,∞} denotes the total number of time epochs

and the objective is to minimize the average system energy cost from time epoch

1 to time epoch M . For simplicity, we define M as the set {1, 2, ...,M} to denote

time epochs from 1 to M . Equation (5.29) imposes drone i’s wireless transmission

power to be less than the maximum transmission power Pm
i . Equation (5.30) is the

QoS requirement which imposes drone i’s wireless data transmission time to be less

than the threshold T thi . Equation (5.31) imposes drone i’s initial battery level to be

Bmax
i . Equation (4.15) denotes the drone battery level evolution. Equation (4.16)
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indicates the feasibility of each drone’s battery level. Although the energy consumed

for drone’s air hovering also accounts for the drone energy consumption [7], it is related

to the drone’s physical properties (e.g., weight and propellers) and hence is fixed at

each equal-length time epoch [39]. The hovering energy consumption is affected by

neither the wireless power control nor the energy harvesting control strategies. The

energy cost generated by the drone hovering is hence a constant and can be ignored

in the objective function which minimizes the average system energy cost. Therefore,

we do not include the hovering energy consumption and only focus on the energy

consumption for wireless transmission.

Lemma 5. Constraint (4.15) is equivalent to

bi(t+ 1) = bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBSi
N0Wi

)
, (4.17)

and

bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBSi
N0Wi

)
≤ Bmax

i ,

∀i ∈ N , t ∈M.

(4.18)

Proof. We use the proof of contradiction to demonstrate this lemma.

Assume that solution 〈p∗i (t), e∗i (t)〉 achieves the minimum system energy cost

φ∗ =
1

M

M∑
t=1

[c1

N∑
i=1

Etrs
i (t) + c2

N∑
i=1

e∗i (t)] (4.19)

while satisfying that bi(t + 1) = bi(t) + ηiG
EH
i e∗i (t) −

p∗i (t)li(t)

Wi log2(1+
p∗
i
(t)GBS

i
N0Wi

)
> Bmax

i . We

can always find another 〈p∗i (t), ẽi(t)〉, where ẽi(t) < e∗i (t), that satisfies bi(t + 1) =

bi(t) + ηiG
EH
i ẽi(t)− p∗i (t)li(t)

Wi log2(1+
p∗
i
(t)GBS

i
N0Wi

)
≤ Bmax

i and achieves the system energy cost

φ̃ =
1

M

M∑
t=1

[c1

N∑
i=1

Etrs
i (t) + c2

N∑
i=1

ẽi(t)]. (4.20)
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Since ẽi(t) < e∗i (t), it can be observed that φ̃ < φ∗ which violates the assumption that

φ∗ is the optimum solution to minimize the system energy cost. Hence, the lemma is

proved.

It is challenging to obtain the global optimum solution of Problem P0 because

of its non-convexity [51]. Additionally, drones’ battery levels are coupled with each

other over different time epochs and the complete battery level information of all

time epochs are required in order to achieve the optimum; this may not be practical

in reality. Note that problem P0 can be considered as a sequential decision-making

problem (i.e., wireless transmission power and harvested energy) in a time-varying

IoD environment. To solve the time-varying decision-making problem, we first utilize

a Markov decision process (MDP) to model the time-varying decision-making problem

[13], and then solve the MDP model by a deep reinforcement learning algorithm [75]

in the following section.

4.3 Algorithm Design

To obtain the solution of problem P0, which is a sequential decision-making problem

in a time-varying IoD environment, an MDP is utilized to model problem P0. We

then describe our proposed Power and Energy hArvesting control deep Reinforcement

Learning (PEARL) algorithm, which is a modified actor-critic deep reinforcement

learning algorithm to solve the MDP model.

4.3.1 MDP Model

We use an MDP 〈S,A,F , C〉 to model the power and energy harvesting control in a

time-varying IoD network, which consists of the network state space S, action space

A, state transition probability density functions F : S × A × S 7→ [0,∞), and cost

functions C : S × A 7→ [0,∞). Specifically, at each time epoch t, the IoD gateway

(acting as the network controller) observes the network state s(t) and takes an action
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a(t). The network system then generates a system cost c(t) according to the action,

and transits to the next network state s(t+ 1).

Network State: We define the network state s(t) at time epoch t as a set of drones’

sensed data sizes and battery levels

s(t) = [l1(t), l2(t), ..., lN(t), b1(t), b2(t), ..., bN(t)], (4.21)

where li(t) and bi(t) are drone i’s sensed data size and battery level, respectively.

Hence, the network state space S can be defined as

S(t) = {s(t) | li(t) ≥ 0, 0 ≤ bi(t) ≤ Bmax
i , i ∈ N}. (4.22)

Action: The action of the network system a(t) at time epoch t determines pi(t)

(drone i’s power control strategy) and ei(t) (the transmitted energy from the charging

station to drone i). Hence, a(t) can be defined as

a(t) = [p1(t), p2(t), ..., pN(t), e1(t), e2(t), ..., eN(t)]. (4.23)

Note that constraints (5.29) and (5.30) must be satisfied, which are equivalent

to

N0Wi

GBS
i

(2
li(t)

Tth
i
Wi − 1) ≤ pi(t) ≤ Pm

i . (4.24)

Also, transmitting more energy than the drone battery capacity is a waste of energy

in practice, and hence

0 ≤ ei ≤ Bmax
i . (4.25)

We hence define the action space A(t) at epoch t as

A(t) = {a(t) | amin(t) ≤ a(t) ≤ amax(t)}, (4.26)
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where

amin(t) = [
N0W1

GBS
1

(2
l1

Tth1 W1 − 1),
N0W2

GBS
2

(2
l2

Tth2 W2 − 1), ...,
N0WN

GBS
N

(2
lN

Tth
N
WN − 1), 0, 0, ..., 0],

(4.27)

and

amax(t) = [Pm
1 , P

m
2 , ..., P

m
N , B

max, Bmax, ..., Bmax]. (4.28)

System Cost: The generated cost c(t), defined as the energy cost at time epoch t,

is related to the network state s(t) and the taken action a(t). Note that constraints

(4.16) and (4.18) should be satisfied, i.e.,

0 ≤ bi(t) + ηiG
EH
i ei(t)−

pi(t)li(t)

Wi log2(1 +
pi(t)GBSi
N0Wi

)
≤ Bmax

i . (4.29)

If the taken action a(t) = [p(t), e(t)] violates Equation (4.29), a penalty should be

given to the energy cost. Hence, we define the energy cost at time epoch t as

c(t) =

 M, if Equation (4.29) is violated,∑N
i=1 c1E

trs
i (t) + c2ei(t), otherwise,

(4.30)

where M is a very large number to penalize the actions that violate Equation (4.29).

c(t) =



∑N
i=1 c1E

trs
i (t) + c2ei(t),

if 0 ≤ bi(t) + ηiG
EH
i ei(t)− pi(t)li(t)

Wi log2(1+
pi(t)G

BS
i

N0Wi
)
≤ Bmax

i

M, otherwise.

(4.31)

Network State Evolution: The network state s(t) at time epoch t transits to

s(t+ 1) at time epoch t+ 1 according to the taken action a(t). A drone’s sensed data

size is only related to the dynamic environment and hence drone i’s sensed data size

li(t) at time epoch t and li(t+ 1) at time epoch t+ 1 are independent of each other.

On the other hand, the battery levels of different time epochs are coupled with each
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other and evolves as bi(t + 1) = bi(t) + ηiG
EH
i ei(t)− pi(t)li(t)

Wi log2(1+
pi(t)G

BS
i

N0Wi
)

(i.e., Equation

(4.17)).

Aim of MDP: The aim of a general MDP model is to find an action at each

time epoch to minimize the accumulated generated cost in the long run [13]. In our

system model, the MDP model tries to find the optimal wireless transmission power

and the charging station transmitted energy policy τ(s, a) = Pr{a(t) = a | s(t) = s},

which denotes the probability that action a is taken for a certain state s at time

epoch t, in order to minimize the accumulated generated cost in the long term. Note

that problem P0 minimizes the long-term average energy cost which is equivalent to

minimizing the long-term accumulated energy cost by dividing the total number of

time epochs M .

To evaluate the long-term generated energy cost, we define the state-action

value function [75]

Q(s(t), a(t)) = E{
M∑
i=t

γ(i−t)c(t)}, (4.32)

which denotes the expected value of all future discounted cost starting from time

epoch t in network state s(t) with action a(t) taken. γ ∈ [0, 1] is the discounted

factor to measure the importance of future cost. A larger γ puts more importance

on the future time epochs. For example, the energy costs of future time epochs are

of equal importance when γ = 1. However, we only focus on minimizing the energy

cost of time epoch t when γ = 0. Therefore, the objective of the MDP is to minimize

the state-action value function Q(s(t), a(t)) starting from the first time epoch 1, i.e.,

J (π) = E{Q(s(0), a(0))}, (4.33)

where J (π) is the long-term discounted energy cost.

The basic idea of solving the MDP model is to choose the action with the

smallest Q(s(t),a(t)) value for network state s(t) at time epoch t [13]. However,
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it is challenging to obtain the solution of our MDP model because its actions are

continuous. It is impossible to represent all state-action values Q(s(t), a(t)). Also,

there are infinite action possibilities to be searched and compared in the lookup table

where the state-action values are stored [75]. Therefore, to solve the MDP model, we

utilize the actor-critic deep reinforcement learning algorithm [14], which is specifically

applicable to the time-varying decision making problem with continuous action space.

4.3.2 Actor-Critic Deep Reinforcement Learning

The actor-critic deep reinforcement learning learns the optimum action for each

time epoch by interacting with the network environment to minimize the generated

cost [76]. The basic idea of actor-critic deep reinforcement learning is to combine

two deep neural networks (DNNs), i.e., an actor and a critic, to learn optimum

power control and energy harvesting control policies. The actor generates continuous

actions according to the current network state while the critic evaluates the generated

actions and helps the actor update its parameters to generate the actions with better

performance, as shown in Figure 4.2.

Figure 4.2 Actor-critic deep reinforcement learning.
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Actor DNN: The actor uses parameterized function πϑ(s), where ϑ is the

parameter of actor DNN, to generate continuous actions for network state s. The actor

takes the network state s(t) as the input and outputs the action a(t). Specifically,

the number of nodes of the actor’s input layer is 2N which represents the dimension

of the network state vector s(t), and the number of nodes of the actor’s output layer

is 2N which represents the dimension of the action a. The parameters of the actor

DNN is updated by the policy gradient method [14] with the objective to minimize

the long-term energy cost J (πϑ) (defined in Equation (4.33)). The gradient of the

objective function is

OϑJ (πϑ) =
∂J (πϑ)

∂πϑ

∂πϑ
∂ϑ

= E{OaQθ(s, a)Oϑπϑ(s)}, (4.34)

where Qθ(s, a) is the parametrized station-action value function of the critic and θ is

the critic DNN’s parameter. Then, the actor’s parameter ϑ is updated by the gradient

descend

ϑ = ϑ− ωaOϑJ (πϑ), (4.35)

where ωa is the actor’s learning rate.

Note that the generated action may not be optimal. We hence consider the

tradeoff between the exploitation and exploration [75]. Specifically, we prefer to

exploit the actions with predicted smallest energy cost (i.e., the generated actions by

the actor). Moreover, we still need to explore the unknown actions. Therefore, the

chosen action can be calculated as

a(t) =

 random feasible action, with probability ε,

actor generated a(t), with probability 1− ε,
(4.36)

where ε is the probability of exploring random actions.
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Critic DNN: The critic evaluates the actor’s generated action by adapting the

parametrized state-action value function Qθ(s, a), where θ is the critic DNN’s

parameter. The critic takes both the network state and the actor’s action [s(t), a(t)]

as the input, so the node number of the input layer becomes 4N . The critic outputs

the state-action value Q(s(t), a(t)) and its node number of the output layer is 1. To

improve the accuracy of the critic, its parameter is updated at each time epoch by

analyzing the actual generated cost from the environment with the temporal difference

method [14]. The temporal difference error δ(t) is defined to measure the accuracy of

the critic, and can be calculated as [14]

Q(s(t), a(t)) = c(t) + γQ(s(t+ 1), a(t+ 1)), (4.37)

a(t) = argmin
a
Q(s(t), a) (4.38)

δ(t) = c(t) + γQθ(s(t+ 1), a(t+ 1))−Qθ(s(t), a(t)), (4.39)

where s(t), c(t), s(t + 1), and a(t + 1) can be found in the replay memory. The

critic’s parameter θ is then updated by the gradient descend to minimize the temporal

difference error δ(t), i.e.,

θ = θ − ωcOθQθ(s(t),a(t)), (4.40)

where ωc is the critic’s learning rate.

Replay Memory: To train the critic DNN (i.e., update the critic’s parameters), the

network state, action, and generated cost should be stored in a replay memory, which

is a finite sized first-in-first-out cache. The training sample 〈s(t), a(t), c(t), s(t+1)〉 is
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collected after the action is made by the actor at each time epoch. When the replay

memory is full, the old samples will be discarded. At each time epoch, a mini-batch

is sampled from the replay memory to train the critic DNN and update its parameter

θ.

Operation Process: The detailed process of actor-critic deep reinforcement

learning is shown in Figure 4.2. At each time epoch, the following steps (i.e., steps

1-8 in Figure 4.2 are processed:

1. The network state s(t) is inputted to the actor DNN.

2. The actor generates the action a(t).

3. The action a(t) acts on the environment and generates the cost c(t).

4. One training sample 〈s(t), a(t), c(t), s(t+1)〉 is collected and stored in the replay
memory.

5. The network state s(t) and the actor’s action a(t) are combined and inputted
to the critic DNN.

6. The critic generates the state-action value Q(s(t), a(t)).

7. The state-action value Q(s(t), a(t)) is then utilized to update the actor’s
parameter ϑ according to Equations (4.34) and (4.35).

8. A mini-batch is sampled from the replay memory to update the critic’s
parameter θ according to Equations (4.39) and (4.40).

4.3.3 Modified Actor-Critic Deep Reinforcement Learning

The actor-critic deep reinforcement learning generates the power control and energy

harvesting control actions from the action space A(t) defined in Equation (4.26). The

generated action may not be feasible and violate the constraint Equation (4.29). In

this case, the actor-critic deep reinforcement learning algorithm adds a penalty (which
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is usually a large number) to the generated energy cost. Therefore, it may take a very

long time to converge because many infeasible solutions are considered and compared

in the action space. In order to address this problem, we propose PEARL which is a

modified actor-critic deep reinforcement learning algorithm.

The basic idea of PREAL is to only utilize the power control policy p∗i (t), i ∈ N

from the actor-critic deep reinforcement learning algorithm, and substitute p∗i (t) to

the constraint Equation (4.29). Hence, we have

1

ηiGEH
i

[
p∗i (t)li(t)

Wi log2(1 +
p∗i (t)GBSi
N0Wi

)
− bi(t)] ≤ ei(t)

≤ 1

ηiGEH
i

[Bmax
i +

p∗i (t)li(t)

Wi log2(1 +
p∗i (t)GBSi
N0Wi

)
− bi(t)],

(4.41)

which is then utilized to constrain the transmitted energy ei(t). Then, the feasible

transmitted energy e∗i (t) can be calculated by

e∗i (t) =


emini (t), if ei(t) < emini (t),

emaxi (t), if ei(t) > emaxi (t),

ei(t), otherwise,

∀i ∈ N , (4.42)

where we denote

emini (t) =
1

ηiGEH
i

[
p∗i (t)li(t)

Wi log2(1 +
p∗i (t)GBSi
N0Wi

)
− bi(t)] (4.43)

and

emaxi (t) =
1

ηiGEH
i

[Bmax
i +

p∗i (t)li(t)

Wi log2(1 +
p∗i (t)GBSi
N0Wi

)
− bi(t)] (4.44)

for simplicity. Since the action [p∗(t), e∗(t)] guarantees the feasibility, the generated

energy cost from the IoD network can be calculated by

c(t) =
N∑
i=1

[c1
p∗i (t)li

Wi log2(1 +
p∗i (t)GBSi
N0Wi

)
+ c2e

∗
i (t)]. (4.45)
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Algorithm 3: PEARL

Input : N,M,GBS
i , GEH

i , N0,Wi, li, T
th
i , P

m
i , B

max
i ,

c1, c2, γ, ωa, ωc, ε

Output: policy π

1 Initialize the actor and critic DNNs with weight parameters ϑ and θ,

respectively ;

2 Initialize the time epoch t = 1 ;

3 Initialize network state s(1) ;

4 for each time epoch t do

5 Calculate the action a(t) = [p(t), e(t)] based on the actor DNN

according to Equation (4.36);

6 Choose the wireless transmission power p∗(t) = p(t) ;

7 Calculate the feasible transmitted energy e∗(t) according to

Equation (4.42) ;

8 Choose the action a∗(t) = [p∗(t), e∗(t)] ;

9 Generate the cost c(t) according to Equation (4.45) ;

10 Observe the network state s(t+ 1) ;

11 Store the tuple 〈s(t), a∗(t), c(t), s(t+ 1)〉 in the replay memory ;

12 Update the actor DNN parameter ϑ according to Equations (4.34)

and (4.35) ;

13 Sample a mini-batch of tuples from the replay memory ;

14 Update the critic DNN parameter θ according to Equations (4.39)

and (4.40);

15 t← t+ 1 ;

16 end
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The detailed process of our proposed PEARL is delineated in Algorithm 3.

Lines 1-3 initialize the actor, critic, and network state. Lines 4-16 are executed at

each time epoch. Line 5 calculates the generated action a(t) based on the actor DNN.

Lines 6-8 fix the power control policy p(t), try to find a feasible energy harvesting

policy e∗(t), and choose the modified action a∗(t). Lines 9-11 generate the energy

cost c(t) and observe the next network state s(t+1). Line 11 stores a training sample

〈s(t), a∗(t), c(t), s(t + 1)〉 in the replay memory. Line 12 updates the actor DNN

parameter ϑ. Lines 13-14 sample a mini-batch from the replay memory to update the

critic DNN parameter θ.

4.4 Performance Evaluation

We setup simulations to evaluate the performances of our proposed algorithm,

PEARL, in this section. The simulations are implemented in Python by TensorFlow

which is a machine learning platform [77]. The implementation of a real drone testbed

will be left as our future work. We compare PEARL with two benchmark algorithms

No-energy-control and Greedy. No-energy-control is a deep reinforcement learning

algorithm proposed in our ICC2020 paper [69], where only the drones’ wireless

transmission powers are optimized. Greedy minimizes the transmitted energy at each

time epoch to minimize the system energy cost while fixing the wireless transmission

power as the maximum power to minimize the wireless transmission delay.

In our simulations, we consider a 1000 m × 1000 m, where the IoD gateway is

located at the center of the area. The charging station is located near the IoD gateway.

There are N = 12 drones deployed in the flying plane at the height of H = 50 m.

The drones are randomly distributed in the flying plane to collect information from

the ground. The environment-related parameters in Equation (2.2) are α = 9.6 and

β = 0.28. The carrier frequency fc = 2 GHz. The speed of light c = 3×108 m/s. The

environment-related parameters for calculating the path losses in Equations (2.4) and
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(2.5) are ξLoS = 1 and ξNLoS = 20 dB. The system bandwidth W = 20 MHz and is

evenly allocated to all drones. The noise power density N0 = −174 dBm/Hz. The

amount of sensed data of each drone is randomly chosen from 100 to 200 Mb. Each

drone’s maximum wireless transmission power is Pm = 5 W. The battery capacity

of each drone is Bmax = 800 J. The energy harvesting efficiency η = 0.5. The unit

energy cost c1 and c2 are normalized as 1 and 10−12, respectively. In PEARL, the

discounted factor γ = 0.9, both actor and critic DNN are fully connected and have

1 hidden layer, and each hidden layer has 64 nodes. Note that the above parameters

are default values and they may be changed as needed.

Figure 4.3 Average system energy cost vs number of drones.

Figure 4.3 illustrates the average system energy cost of three different algorithms

after convergence with different numbers of drones ranging from 10 to 18. The average

system energy costs of all three algorithms increase with the number of drones because

more drones incur more battery charging and a larger amount of transmitted data

and hence more energy consumption. PEARL generates the less energy cost than

No-energy-control because it jointly optimizes the wireless transmission power and the

transmitted energy from the charging station, while No-energy-control only optimizes
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Figure 4.4 Average system energy cost vs amount of sensed data.

Figure 4.5 Average system energy cost vs QoS requirement.
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Figure 4.6 Average system energy cost vs time epochs for different algorithms.

Figure 4.7 Average system energy cost vs time epochs for different numbers of
drones.
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Figure 4.8 Average system energy cost vs time epochs for different amounts of
sensed data.

the transmission power and assumes that all drones’ batteries are charged to its fullest.

PEARL performs better than Greedy because PEARL considers the policies over

different time epochs and utilizes the past experiences to improve its performance,

while Greedy only optimizes its solution within one time epoch.

Figure 4.4 compares the average system energy cost of PEARL with that of

No-energy-control and Greedy for different amounts of sensed data ranging from 40

to 200 Mb. The average system energy costs of all three algorithms become larger

when the amount of sensed data increases because more sensed data means more

energy is required to transmit these data, thus increasing the system energy cost.

PEARL generates the least average system energy cost among the three algorithms

for the same reason as in Figure 4.3.

Figure 4.5 evaluates the PEARL’s average system energy cost with different

QoS requirements (i.e., minimum data transmission delay) ranging from 8 to 10s.

The average system energy cost of all three algorithms decreases when the QoS

requirement becomes less strict (i.e., larger minimum data transmission delay),
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Figure 4.9 Average system energy cost vs time epochs for different maximum
wireless transmission powers.

because a less strict QoS requirement implies that less energy is required to meet the

requirement. Similarly, PEARL performs better than No-energy-control and Greedy.

Figure 4.6 illustrates how PEARL, No-energy-control and Greedy converge at

different time epochs. Greedy independently optimizes its solutions within each time

epoch and so is more likely to obtain similar results at different time epochs when the

network status is stable. Hence, Greedy achieves a fast convergence rate. However,

both PEARL and No-energy-control are deep reinforcement learning algorithms which

are trial-and-error processes, and hence require more time to converge. Additionally,

we can observe that PEARL performs the best among the three algorithms for the

similar reason in Figure 4.3.

We then investigate the impacts of different parameters on the performance

of PEARL in Figs. 4.7 to 4.11. Figure 4.7 illustrates PEARL’s average system

energy cost for three different numbers of drones including 10, 12, and 14. A larger

number of drones incur more energy cost because more drones imply more data to

be transmitted and more energy to transmit these data. Figure 4.8 compares the

69



Figure 4.10 Average system energy cost vs time epochs for different QoS
requirements.

PEARL’s average system energy costs for different amounts of sensed data including

120, 160, and 200 Mb. A larger amount of sensed data incurs more energy cost

because more sensed data requires more energy to transmit them. Figure 4.9 evaluates

PEARL’s average system energy cost for different maximum wireless transmission

powers including 3, 4, and 5 W. A larger maximum wireless transmission power incurs

less energy cost because a larger maximum wireless transmission power provides a

larger action space and more possible solutions, hence improving the probability of

finding a solution with better performance. However, a larger action space requires

more time to converge. Therefore, a larger maximum wireless transmission power

incurs a slower convergence rate. Figure 4.10 evaluates PEARL’s performance with

difference QoS requirements including 8, 9, and 10 s. A stricter QoS requirement (i.e.,

smaller minimum data transmission delay) incurs less system energy cost because less

energy is required to meet the QoS requirement. Figure 4.11 illustrates PEARL’s

average energy cost with different discounted factors including 0.1, 0.5, and 0.9. The

discounted factor measures the importance of future time epochs. Since we try to
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Figure 4.11 Average system energy cost vs time epochs with different discounted
factors.

minimize the long-term average system energy cost, a larger gamma, which puts more

importance to future time epochs, achieves a better performance, i.e., less average

system energy cost.

4.5 Summary

In this chapter, the joint optimization of power control and energy harvesting control

has been investigated in time-varying IoD networks. The joint optimization problem

has been formulated to determine each drone’s wireless transmission power and the

transmitted energy from the charging station to each drone at each time epoch with

the objective to minimize the long-term average system energy cost constrained by

the drones’ battery capacities and QoS requirements. An MDP has been formulated

to characterize our problem in time-varying IoD networks to show how the network

status evolves with different power and energy harvesting control policies. A modified

actor-critic deep reinforcement learning algorithm has been designed to solve the

problem. Extensive simulations have been conducted to illustrate the impacts of
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different parameters on the performance of the proposed algorithm as well as to

demonstrate that the our proposed algorithm performs better than the existing

algorithms.
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CHAPTER 5

SECURE FEDERATED LEARNING BY POWER CONTROL IN

INTERNET OF DRONES

Fog-aided IoD networks have been investigated to provision services such as object

tracking, traffic surveillance, and disaster rescue [3]. Gharibi et al. [30] proposed an

IoD system to provide navigation services and described how to implement the IoD

system. Koubaa and Qureshi [31] proposed a real-time object tracking system where

a drone communicates with the network controller to follow a moving object. Hossein

el al. [78] surveyed various applications, the implementation, and challenges of IoD

networks. Wazid et al. [55] proposed a user authentication scheme to access the data

from drones in IoD networks. Zhou et al. [79] jointly optimized the trajectories and

transmission power of drones to maximize the secrecy rate. However, none of the

above works consider utilizing FL in IoD networks.

Machine learning imparts intelligence into IoT networks by analyzing the data,

which are collected by all IoT devices, in the fog node. Meidan et al. [80] collected

the network traffic data from IoT devices to train a classification model to distinguish

the traffic generated by IoT and non-IoT devices. Yao and Ansari [21] constructed

a deep reinforcement learning model for the content placement problem in dynamic

cache-enabled IoT networks. They also utilized a deep reinforcement learning model

to optimize the wireless power control in energy harvesting aided time-varying IoD

networks to minimize the average system energy cost [67].

FL has been investigated in wireless networks. Wang et al. [23] proposed a

control algorithm to minimize the FL loss function constrained by a given resource

budget in edge computing systems. Tran et al. [81] formulated FL over wireless

networks as an optimization problem to balance the tradeoff of the FL learning time,
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accuracy level, and energy cost. Wang et al. [82] designed an intelligent framework

to implement an FL system by utilizing the collaboration among devices and edge

nodes and exchanging the learning model parameters. Yang et al. [83] formulated

an optimization problem to minimize a weighted sum of the FL completion time,

local computation energy, and transmission energy for FL in wireless communication

networks. However, the above works do not consider the security issue of FL systems.

None of the above works exploit the implementation of FL in IoD networks.

The security issue of FL has been studied in several works. Song et al. [19]

explored the user-level privacy leakage in federated learning and proposed a multi-task

generative adversarial network (GAN) framework to identify the anonymized updates

of the clients. Lu et al. [24] proposed a differentially private asynchronous federated

learning scheme for resource sharing in vehicular networks to protect the privacy of

updated local models. Xu et al. [84] proposed a secure federated training protocol to

verify the correctness of results returned from the global aggregator while protecting

user data privacy. Wei et al. [85] proposed a differential privacy based framework,

which adds artificial noise to the uploaded model parameters, to prevent information

leakage in federated learning.

Utilizing power control to alleviate the FL’s privacy leakage, which is caused by

the ground eavesdroppers during the learning parameter uploading in IoD networks,

has not been investigated yet. To fill this gap, we optimize the drone wireless

transmission powers to maximize the FL system security rate with the consideration

of the QoS requirement (i.e., FL training time) and drone battery capacities.

5.1 System Model

In a fog-aided IoD network (Figure 5.1), N drones are hovering in the air in the flying

plane to collect local data samples and provide the FL service in concert with the fog

node to IoD users. We denote N = {1, ..., N} as a set of indexes for indexing drones.
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Figure 5.1 Federated learning in a fog-aided IoD network with eavesdroppers.

The aim of the FL service is to obtain a global machine learning model (e.g., traffic

prediction and object recognition). In FL, each drone iteratively downloads the global

FL model parameter, updates the parameter with its own local data by local training,

and sends it back to the fog node, while the fog node iteratively gathers all updated

local parameters and aggregates them to a new global model. The local training is

based on the local data samples Dn = {(xk, yk)} where xk is sample k’s input (e.g.,

image pixels) and yk is the output (e.g., label of the image). A loss function fk(w)

is defined to measure the error of the local model based on data sample k, where

w is the parameter of the local model. Then, drone n’s local training process is to

minimize the local loss function [23]

Fn(w) =
1

|Dn|
∑
k∈Dn

fk(w), ∀n ∈ N , (5.1)

where |Dn| is the number of data samples. For simplicity, we define Dn = |Dn|

thereafter. Common examples of loss function fk(w) include fk(w) = 1
2
‖xTkw − yk‖2

for linear regression and fk(w) = {0, 1 − ykx
T
kw}, yk ∈ {−1, 1} for support vector

machine [86].
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Note that M eavesdroppers on the ground aim to steal information from the

drones. We denote M = {1, ...,M} as the set of indexes for indexing eavesdroppers.

Locations of all eavesdroppers are assumed known, and they can be detected by the

leaked power of their radio frequency (RF) front ends [87]. All drones adjust their

wireless transmission powers to reduce the possibility of information leakage of the

local model parameters.

5.1.1 Federated Learning Process

There are global FL iteration and local FL iteration in the FL process (Figure 5.2).

In a global iteration, each drone downloads the global parameter from the fog node,

trains the model with its local data, and sends the updated local parameter to the fog

node. The fog node finally aggregates all updated local parameters into a new global

model parameter. The local model parameters are updated by the gradient descent

algorithm [88]. In each local iteration, the local parameter is updated according to

the gradient of the loss function and learning rate. The relationship between the

global iteration and local iteration is shown in Figure 5.2.

Figure 5.2 Federated learning process.

The specific FL process is described in Algorithm 4 [88], which is a distributed

gradient descent algorithm. The objective of FL is to minimize the global loss function

F (w). In the t-th global iteration, all the drones first download the global parameter

wt from the fog node, and calculate the gradients of their local loss function ∇Fn(wt).

Then, the fog node collectes all local gradients and calculates the gradient of the global
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Algorithm 4: FL Algorithm

1 Initialize global parameter w0 and global iteration number t = 0 ;

2 while global model accuracy εg is not obtained do

3 Each drone n downloads global parameter wt from fog node ;

4 Each drone n calculates ∇Fn(wt) and sends it to fog node ;

5 fog node calculates ∇F (wt) = 1
N

∑
n∈N ∇Fn(wt) and broadcasts it to

all drones ;

6 for each n ∈ N in parallel do

7 Solve local training problem wt,∗n = argminwG
t
n(w) by gradient

descent algorithm ;

8 end

9 fog node collects all local parameters and calculates

wt+1 = 1
N

∑
n∈N w

t,∗
n ;

10 t = t+ 1 ;

11 end
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loss function

∇F (wt) =
1

N

∑
n∈N

∇Fn(wt), (5.2)

which is broadcast to all the drones for local trainings.

Each drone n solves the local training problem

min
w

Gt
n(w) = Fn(w)− [∇Fn(wt)− η∇F (wt)]>w, (5.3)

where Gt
n(w) is the modified loss function of drone n in the t-th global iteration, and

η is a positive constant to control the FL convergence rate [88]. The local training

problem is solved by the gradient descent algorithm. We define wt,in as drone n’s local

model parameter at global iteration t and local iteration i, and wt,∗n as the local model

parameter after convergence, i.e.,

wt,∗n = argmin
w
Gt
n(w). (5.4)

In the i-th local iteration, the local model parameter wt,in is updated according to the

gradient of Gt
n(w) and the learning rate δ, i.e.,

wt,i+1
n = wt,in − δ∇Gt

n(wt,in ), (5.5)

where wt,0n = wt because it is downloaded from the fog node. According to Equation

(5.3), ∇Gt
n(wt,in ) can be calculated as

∇Gt
n(wt,in ) = ∇Fn(wt,in )−∇Fn(wt) + η∇F (wt). (5.6)

Since wt,∗n is the converged local model parameter, we have

∇Gt
n(wt,∗n ) = ∇Fn(wt,∗n )−∇Fn(wt) + η∇F (wt) = 0, (5.7)
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The local iteration continues until the local model accuracy εl is reached, which is

defined as

Gt
n(wt,in )−Gt

n(wt,∗n ) ≤ εl[G
t
n(wt)−Gt

n(wt,∗n )]. (5.8)

After all local model parameters wt,∗n are collected, the fog node aggregates all

of them into a new global model parameter wt+1, i.e.,

wt+1 =
1

N

∑
n∈N

wt,∗n , (5.9)

The global iteration continues until the global model accuracy εg is reached, which is

defined as

F (wt)− F (w∗) ≤ εg[F (w0)− F (w∗)]. (5.10)

5.1.2 Federated Learning Convergence Analysis

It is generally impossible to know the exact number of FL iterations, and hence we

utilize the convergence bounds to approximate both the local FL iterations and global

FL iterations [23]. To analyze the convergence rate of FL, the local loss function Fn(w)

of each drone n follows the following assumptions [88]:

• Fn(w) is α-strongly convex,

• Fn(w) is β-smooth.

Assumption 1 implies that [89]

α
∥∥∥w − w′∥∥∥ ≤ ∥∥∥∇Fn(w)−∇Fn(w

′
)
∥∥∥ , ∀w,w′ , (5.11)

and

Fn(w)− Fn(w
′
)−∇Fn(w)>(w − w′) ≤ −α

2

∥∥∥w − w′∥∥∥2

, (5.12)

where ‖x‖ denotes the 2-norm of matrix x and x> is the transpose of matrix x.
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Assumption 2 implies that [89]∥∥∥∇Fn(w)−∇Fn(w
′
)
∥∥∥ ≤ β

∥∥∥w − w′∥∥∥ , ∀w,w′ , (5.13)

and

Fn(w)− Fn(w
′
)−∇Fn(w

′
)>(w − w′) ≤ β

2

∥∥∥w − w′∥∥∥2

. (5.14)

Lemma 6. F (w) is α-strongly convex and β-smooth.

Proof. According to Equation (5.12), we can derive 1
N

∑
n∈N Fn(w)− 1

N

∑
n∈N Fn(w

′
)−

1
N

∑
n∈N ∇Fn(w)>(w − w

′
) ≤ 1

N

∑
n∈N{−

α
2

∥∥w − w′∥∥2}. Combined with Equation

(5.2), we have F (w)−F (w
′
)−∇F (w)>(w−w′) ≤ −α

2

∥∥w − w′∥∥2
, which proves that

F (w) is α-strongly convex. Similarly, by combining Equation (5.14) and Equation

(5.2), we can prove that F (w) is β-smooth.

Lemma 7. If both F (w) and Fn(w) are α-strongly convex, the following inequations

hold: ∥∥∇F (wt)
∥∥2 ≥ α[F (wt)− F (w∗)], ∀t, (5.15)

and ∥∥∇Gt
n(wt,in )

∥∥2 ≥ α[Gt
n(wt,in )−Gt

n(wt,∗n )], ∀i. (5.16)

Proof. See Appendix B.

Lemma 8. Local FL problem (5.4) of drone n with the local accuracy εl can be solved

by the gradient descend method after I = 2
(2−δβ)δα

ln( 1
εl

) iterations, if the local learning

rate δ < 2
β

.

Proof. See Appendix C.

Lemma 9. The global FL algorithm converges after T = 2β2

(2α−βη)αη
ln( 1

εg
) iterations,

if η ∈ (0, α
β
).
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Proof. See Appendix D.

5.1.3 Drone Data Transmission Rate

A drone’s data transmission rate depends on the air-to-ground channel between the

drone and the fog node. The wireless channel gain between drone n and the fog node

is GD
n = 10−

PL
10 , where PL is defined in Equation (2.3). Therefore, drone n’s wireless

data transmission rate to the fog node can be calculated as

rn = Bn log2(1 +
pnG

D
n

N0Bn

), (5.17)

where Bn is the allocated bandwidth to drone n, pn is drone n’s wireless transmission

power, and N0 is the noise power spectrum density. Similarly, we can calculate the

wireless data transmission rate from drone n to eavesdropper m (i.e., eavesdropping

rate):

πn,m = Bn log2(1 +
pnG

E
n,m

N0Bn

), (5.18)

where GE
n,m is the wireless channel gain between drone n and eavesdropper m.

5.1.4 Security Rate

We utilize the security rate to measure the system security level, which is defined

as the difference between the drone data transmission rate and the maximum

eavesdropping rate [25,79,90]. Hence, drone n’s security rate is

RSEC
n = [rn − max

∀m∈M
πn,m]+, (5.19)

where [x]+ , max{x, 0}, rn is drone n’s data transmission rate, and πn,m is the

eavesdropping rate from drone n to eavesdropper m. Note that we intend to maximize

the security rates of all drones, and we hence define the system security rate RSEC as
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the summation of all drones’ security rates, i.e.,

RSEC =
∑
n∈N

RSEC
n =

∑
n∈N

[rn − max
∀m∈M

πn,m]+. (5.20)

5.1.5 Federated Learning Training Time

The FL time in each global iteration consists of both the local computation time

for local training and the wireless transmission time to transmit the updated local

parameters. Note that we neglect the global parameter download time because it is

usually very small. We denote the number of CPU cycles to process one data sample

of drone n as Cn, which can be measured offline [91]. The number of drone n’s data

samples is denoted as Dn. Hence, the number of CPU cycles for a local iteration is

CnDn. Drone n’s local computation time for one local iteration can then be calculated

as CnDn
fn

, where fn is the CPU computation capacity in CPU cycles per second [91].

Hence, drone n’s local computation time is

τ cn = I
CnDn

fn
=

2 ln(1/εl)

(2− δβ)δα

CnDn

fn
. (5.21)

Each drone uploads the updated local parameter to the fog node, and the wireless

data transmission time for uploading parameters of drone n can be calculated as

τwn = sn
rn

. Note that the global model parameters can only be aggregated until all

local model parameters are received in a global iteration. The duration of a global

iteration is hence determined by the longest local FL time among all drones. Hence,

the FL time of a global iteration can be calculated as

τ l = max
n∈N
{τ cn + τwn } = max

n∈N
{τ cn +

sn

Bn log2(1 + pnGDn
N0Bn

)
}. (5.22)

In summary, the total FL time of all global iterations is

τ = Tτ l = T max
n∈N
{τ cn +

sn

Bn log2(1 + pnGDn
N0Bn

)
}. (5.23)
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5.1.6 Drone Energy Consumption

The drone’s energy is consumed for local model training, wireless data transmission,

and hovering in the air.

Local Computation: We utilize the widely used energy consumption model which

assumes that drone n’s energy consumption for processing a single CPU cycle is γf 2
n,

where γ is a constant related to the switched capacitance [92, 93]. Then, drone n’s

energy consumption for local computation in each global iteration is

Ec
n = ICnDnγf

2
n =

2 ln(1/εl)

(2− δβ)δα
CnDnγf

2
n, (5.24)

where CnDn is the total number of CPU cycles for one local iteration, and I is the

number of local iterations.

Wireless Data Transmission: Drone n’s energy consumption for uploading the

updated local model parameter can be calculated as

Ew
n = pnτ

w
n =

pnsn
rn

=
pnsn

Bn log2(1 + pnGDn
N0Bn

)
. (5.25)

Drone Hovering Energy: The energy consumed for hovering is used for the drone

to remain stationary in the air [7]. Drone n’s hovering time τ l in each global iteration

depends on the longest local FL time among all drones. Hence, drone n’s hovering

energy can be calculated as

Ehov
n = P hovτ l = P hov max

n∈N
{τ cn + τwn }, (5.26)

where P hov is the hovering power defined in Equation (2.7).

In summary, the total energy consumption of all drones is

En = T (Ew
n + Ec

n + Ehov
n ) = T

pnsn
rn

+ TEc
n + P hovτ. (5.27)

83



5.2 Problem Formulation

We formulate the power control problem for secure federated learning in a fog-aided

IoD network that maximizes the system security rate constrained by the QoS

requirement and battery constraint, as problem P0.

P0: max
p

∑
n∈N

[rn − max
∀m∈M

πn,m]+ (5.28)

s.t. 0 ≤ pn ≤ Pm
n , ∀n ∈ N , (5.29)

τ ≤ Qth, (5.30)

En ≤ Bmax
n , ∀n ∈ N , (5.31)

where τ and En are defined in Equation (5.23) and Equation (5.27), respectively. The

objective in Equation (5.28) is to maximize the system security rate. Equation (5.29)

imposes the wireless transmission power to be positive and less than the maximum

value Pm
n . Equation (5.30) is the QoS requirement for the FL service which imposes

the FL time not to surpass the requirement Qth. Equation (5.31) implies that drone

n’s energy consumption should be less than its battery capacityBmax
n . It is challenging

to solve problem P0 because of its non-convexity.

To simplify constraint Equation (5.30), we combine it with Equation (5.22) and

(5.23), and we have T maxn∈N{τ cn+ sn

Bn log2(1+
pnG

D
n

N0Bn
)
} ≤ Qth, which can be transformed

into T (τ cn + sn

Bn log2(1+
pnG

D
n

N0Bn
)
) ≤ Qth, ∀n ∈ N . Hence, the lower bound of drone n’s

wireless transmission power pn can be calculated as pn ≥ N0Bn
GDn

[2

sn

Bn(
Qth

T
−τcn) − 1]. We
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denote p̃n = N0Bn
GDn

[2

sn

Bn(
Qth

T
−τcn) − 1] for simplicity. Then, pn satisfies

pn ≥ p̃n. (5.32)

To simplify the objective function Equation (5.28), we have∑
n∈N

[rn − max
∀m∈M

πn,m]+

=
∑
n∈N

[Bn log2(1 +
pnG

D
n

N0Bn

)− max
∀m∈M

Bn log2(1 +
pnG

E
n,m

N0Bn

)]+

=
∑
n∈N

[Bn log2(1 +
pnG

D
n

N0Bn

)−Bn log2(1 +
pn max
∀m∈M

GE
n,m

N0Bn

)]+

=
∑
n∈N

[Bn log2(
1 + pnGDn

N0Bn

1 +
pn max
∀m∈M

GEn,m

N0Bn

)]+

=
∑
n∈N

Bn log2(
1 + pnGDn

N0Bn

1 +
pn max
∀m∈M

GEn,m

N0Bn

), if GD
n ≥ max

∀m∈M
GE
n,m.

(5.33)

We denote γn = GDn
N0Bn

, γ
′
n =

max
∀m∈M

GEn,m

N0Bn
, and N ′ = {n|n ∈ N , GD

n ≥ max
∀m∈M

GE
n,m}.

Then, the objective becomes∑
n∈N

[rn − max
∀m∈M

πn,m]+ =
∑
n∈N ′

Bn log2(
1 + γnpn
1 + γ′npn

) (5.34)

Problem P0 can then be transformed into problem P1:

P1: max
pn

∑
n∈N ′

Bn log2(
1 + γnpn
1 + γ′npn

) (5.35)

s.t. p̃n ≤ pn ≤ Pm
n , ∀n ∈ N , (5.36)

T
pnsn

Bn log2(1 + γnpn)
+ TEc

n + P hovτ ≤ Bmax
n , ∀n ∈ N , (5.37)
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τ = T max
n∈N
{τ cn +

sn
Bn log2(1 + γnpn)

}, (5.38)

where T is the number of FL global iterations defined in Lemma 9, Ec
n, defined

in Equation (5.24), is drone n’s energy consumption for computation in each global

iteration, and τ cn, defined in Equation (5.21), is drone n’s computation time in each FL

global iteration. It is still difficult to solve problem P1 because of its non-convexity.

Approaches such as exhaustive search and branch-and-bound are computationally

expensive. We hence design an algorithm to tackle this problem with a much lower

computational complexity in the next section.

5.3 Algorithm Design

We propose the Power Control in Secure FL (PCSF) algorithm in this section to

solve problem P0. The basic idea of PCSF is to enumerate each possible FL time

and optimize all drones’ wireless transmission powers, and then choose the best FL

time and its corresponding power control policy which achieves the largest system

security rate.

We propose the Power Control in Secure FL (PCSF) algorithm in this section

to solve problem P0. The basic idea of PCSF is to enumerate each possible FL time

and optimize all drones’ wireless transmission powers, and then choose the best FL

time and its corresponding power control policy which achieves the largest system

security rate.

5.3.1 Subproblem Transformation

Note that the difficulty of problem P1 lies in the total FL time τ which couples all

pn’s together. In order to solve this challenge, we propose to enumerate each τ =

Tτ cj +
Tsj

Bj log2(1+γjpj)
,∀j ∈ N and then compare all derived objective values by different

τ . Since τ is determined, all drones’ pn’s are independent. It can be observed that
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Bn log2(1+γnpn
1+γ′npn

) is an increasing function with regard to pn when GD
n ≥ max

∀m∈M
GE
n,m.

Then, maximizing the summation of Bn log2(1+γnpn
1+γ′npn

) is equivalent to maximizing each

pn when the condition GD
n ≥ max

∀m∈M
GE
n,m is satisfied. Otherwise, if the drones do not

satisfy the condition, their security rates are always zero and do not contribute to the

system security rate. To minimize the FL training time, we can choose the maximum

wireless transmission power. In summary, all drones try to maximize their wireless

transmission power pn to maximize the system security rate. Therefore, problem P1

can be transformed into solving N drones’ subproblems P2:

P2: max
pn

pn (5.39)

s.t. p̃n ≤ pn ≤ Pm
n , (5.40)

T
pnsn

Bn log2(1 + γnpn)
+ TEc

n + P hovτj ≤ Bmax
n , (5.41)

τj = Tτ cj +
Tsj

Bj log2(1 + γjpj)
, (5.42)

where Equation (5.42) means drone j incurs the largest FL time.

5.3.2 FL Time Calculation

Since τj is related to variable pj, we first solve the subproblem of drone j. Then, τj

can be calculated according to pj and help determine the solutions of other drones’

subproblems. By combining constraints Equation (5.41) and Equation (5.42), we

have

(
Bmax
j

T
− Ec

j − P hovτ cj )Bj log2(1 + γjpj)− sjpj − P hovsj ≥ 0. (5.43)
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We define function g(pj) = (
Bmaxj

T
−Ec

j −P hovτ cj )Bj log2(1 +γjpj)− sjpj−P hovsj ≥ 0.

Therefore, the subproblem P2 of drone j is to find the maximum pj which satisfies

g(pj) ≥ 0, p̃j ≤ pj ≤ Pm
j . We can calculate the derivative of g(pj) as

g
′
(pj) = (

Bmax
j

T
− Ec

j − P hovτ cj )Bj
γj log2 e

1 + γjpj
− sj. (5.44)

Then, we can observe that g(pj) monotonically increases (i.e., g
′
(pj) < 0) when pj <

(
Bmaxj

T
−Ec

j −P hovτ cj )Bj
log2 e
sj
− 1

γj
, and g(pj) monotonically decreases (i.e., g

′
(pj) > 0)

when pj > (
Bmaxj

T
− Ec

j − P hovτ cj )Bj
log2 e
sj
− 1

γj
. Hence, to satisfy g(pj) ≥ 0, we have

pj ∈ [λ, u], where g(λ) = 0, g(u) = 0. Meanwhile, the constraint p̃j ≤ pj ≤ Pm
j

should also be satisfied. We then have pj ∈ [max{λ, p̃j},min{u, Pm
j }]. Therefore,

the solution of pj can be expressed as pj = min{u, Pm
j }. Since g(pj) decreases when

pj > (
Bmaxj

T
− Ec

j − P hovτ cj )Bj
log2 e
sj
− 1

γj
, we utilize the binary search method [94] to

calculate u which makes g(u) = 0.

The basic idea of the binary search method is to repeatedly dividing the search

interval in half. Initially, we choose the search interval [λ1, λ2], where g(λ1) > 0

and g(λ2) < 0. If the value in the middle of the search interval g(λ1+λ2
2

) = 0, then

we find u = λ1+λ2
2

and stop the search. Otherwise, if g(λ1+λ2
2

) > 0, we narrow the

search interval to [λ1+λ2
2

, λ2] and continue the search. If g(λ1+λ2
2

) < 0, we narrow the

search interval to [λ1,
λ1+λ2

2
] and continue the search. By the binary search method,

we can obtain the value u and pj = min{u, Pm
j }. Based on pj, the FL time τj =

Tτ cj +
Tsj

Bj log2(1+γjpj)
can be calculated.

5.3.3 Subproblem Solution

We then calculate the subproblems of drone n (n ∈ N \ j) based on τj. Combining

Equations (5.41) and (5.42) yields

(Bmax
n − TEc

n − P hovτj)Bn log2(1 + γnpn)− Tsnpn ≥ 0. (5.45)
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We define function ξ(pn) = (Bmax
n −TEc

n−P hovτj)Bn log2(1 +γnpn)−Tsnpn ≥ 0 and

hence ξ(pn) ≥ 0. The derivative of ξ(pn) is

ξ
′
(pn) = (Bmax

n − TEc
n − P hovτj)Bn

γn log2 e

1 + γnpn
− Tsn. (5.46)

It can be observed that ξ(pn) monotonically increases (i.e., ξ
′
(pn) > 0) when pn <

(Bmax
n − TEc

n − P hovτj)Bn
log2 e
Tsn
− 1

rn
and monotonically decreases (i.e., ξ

′
(pn) < 0)

when pn > (Bmax
n − TEc

n − P hovτj)Bn
log2 e
Tsn
− 1

rn
. Hence, when ξ(pn) ≥ 0, pn falls

within the interval [λ̃, ũ], where ξ(λ̃) = 0 and ξ(ũ) = 0. Note that Equation (5.40)

should also be satisfied, and then pn ∈ [max{λ̃, p̃n},min{ũ, Pm
n }].

To calculate ũ, we utilize the binary search method similar to that in Section

5.3.2. Specifically, we first initialize the search interval [λ̃1, λ̃2], where ξ(λ̃1) > 0 and

ξ(λ̃2) < 0. If ξ( λ̃1+λ̃2
2

) = 0, we stop the search and assign ũ = λ̃1+λ̃2
2

. If ξ( λ̃1+λ̃2
2

) > 0,

we change the search interval to [ λ̃1+λ̃2
2

, λ̃2] and continue the search. If ξ( λ̃1+λ̃2
2

) < 0,

we change the search interval to [λ̃1,
λ̃1+λ̃2

2
] and continue the search. Since we try to

maximize pn, we have pn = min{ũ, Pm
n }.

Note that we assume that τj = T maxn∈N{τ cn + sn
Bn log2(1+γnpn)

} = Tτ cj +

Tsj
Bj log2(1+γjpj)

. Hence, we have τn = Tτ cn + Tsn
Bn log2(1+γnpn)

≤ τj, which indicates that

pn ≥ 1
γn

[2
sn

Bn(τj/T−τcn) − 1]. By combining with the QoS requirement Equation (5.32),

pn should satisfy

pn ≥ max{ 1

γn
[2

sn
Bn(τj/T−τcn) − 1], p̃n}, ∀n ∈ N \ j, (5.47)

to denote the candidate condition on checking whether the assumption that drone j

has the longest FL training time leads to a feasible solution of problem P1.

5.3.4 Proposed Algorithm

The basic idea of our proposed algorithm PCSF is to enumerate each possible FL

time τj,∀j ∈ N and the corresponding wireless transmission power solutions pn’s.
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Algorithm 5: PCSF

1 Initialize the candidate vector V = ∅ ;

2 for each j ∈ N do

3 Calculate pj according to the binary search method in Section 5.3.2 ;

4 Calculate FL time τj = Tτ cj +
Tsj

Bj log2(1+γjpj)
;

5 for each n ∈ N \ j do

6 Calculate pn according to the binary search method in Section

5.3.3 ;

7 end

8 if Candidate condition Equation (5.47) is satisfied then

9 Calculate the system security rate RSEC ;

10 Assign V [j] = RSEC ;

11 else

12 Assign V [j] = 0 ;

13 end

14 end

15 Choose j that achieves the largest V [j] ;

16 Choose the FL time τj and its corresponding pn as the optimum

solution.
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Then, we choose the best FL time τ , which achieves the largest system security rate,

among all possible FL times that satisfy the candidate condition Equation (5.47). The

corresponding wireless transmission powers pn based on the optimum τ are our final

solutions. The detailed process of our proposed algorithm is delineated in Algorithm

5. Lines 2-14 enumerate each possible FL time. Lines 3-4 calculate the FL time τj.

Lines 5-7 calculate pn’s of all other drones. Lines 8-13 check whether the derived

solutions by the current FL time satisfy the candidate condition. Lines 15-16 choose

the best solution by comparing all the FL time possibilities. Note that the running

time of PCSF is dominated by the binary search in line 6 in the nested loop. The

computational complexity of the binary search is O(log2(λ− − λ+)), where [λ+, λ−]

is the initial interval of the binary search and satisfies ξ(λ+) > 0 and ξ(λ−) < 0.

Therefore, PCSF yields a computational complexity of O(N2 log2(λ− − λ+)).

5.4 Performance Evaluation

We set up simulations to evaluate the performance of our proposed algorithm PCSF

in this section. We compare PCSF with the existing algorithm (denoted as “Delay-

aware”) inspired by [22] which minimizes the FL training time. We also use the

existing algorithm (denoted as “Energy-aware”) as the comparison algorithm which

is inspired by [21] where the energy consumption for wireless data transmission is

minimized.

In our simulations, there are N = 16 drones hovering in the flying plane within

a 1000 m×1000 m area to provide the FL service. The drones’ locations are randomly

distributed in this area and the height of the flying plane is H = 100 m. The fog

node is located in the center of this area to communicate with all drones. There

are M = 3 eavesdroppers randomly distributed in this area. To calculate wireless

channels between drones and the fog node, the environment-related constants a and b

are respectively 9.6 and 0.28, the speed of light c = 3×108 m/s, the carrier frequency
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(a) System security rate. (b) FL training time.

(c) Drones’ energy consumption.

Figure 5.3 Key performance metrics vs number of drones.
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fc = 2 GHz, and the environment-related constants ψLoS = 1 dB and ψNLoS = 20

dB. The allocated wireless bandwidth B = 2 MHz and the noise power density

N0 = −174 dBm/Hz. The above parameters related to drone wireless communications

are consistent with [37]. The maximum wireless transmission power Pm = 3 W.

To calculate drones’ hovering power, each drone’s mass m = 500 g and the earth

gravitational acceleration g = 9.8 m/s2, constants rp, np and ρ in Equation (2.7)

are 20 cm, 4, and 1.225 kg/m3, respectively. The above parameters related to drone

hovering power are consistent with [95]. Each drone updates the local model by its

local training data, and the number of data samples Dn is randomly chosen from

300 to 500. Each data sample requires Cn, randomly chosen from 30 to 50, CPU

cycles for computation. The computation capacity of each drone f = 2 × 109 CPU

cycles per second. The constant γ which contributes to the CPU energy consumption

of drones is 10−28 [96]. The battery capacity of each drone Bmax
n = 1 J. Drone n’s

uploaded local model parameter sn = 5 Kb and the QoS requirement of the FL service

Qth = 200 ms. To analyze FL convergence, the loss function is α = 2 strongly convex

and β = 4 smooth, constant η = 1
3

in Equation (5.3), and the learning step size of the

gradient descent algorithm δ = 1
4
. The above parameters for FL convergence analysis

are consistent with [83]. Note that the above parameters are default values and may

change as needed.

We first evaluate PSCF’s performances in Figure 5.3 with different numbers

of drones ranging from 10 to 20. Figure 5.3(a), Figure 5.3(b), and Figure 5.3(c)

depict the performances of the system security rate, FL training time, and all drones’

energy consumption, respectively. In Figure 5.3(a), more drones lead to a larger

system security rate for all three algorithms because the system security rate is the

summation of all drones’ security rates. PCSF provides a larger system security

rate than those of Delay-aware and Energy-aware. In Figure 5.3(b), the FL training

time does not change much when the number of drones increases because all drones’
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computations are operated in parallel. PCSF achieves similar FL training time as

that of Delay-aware and performs better than Energy-aware. From the objective

function of problem P1, we can observe that a larger wireless transmission power

leads to a larger system security rate. Hence, PCSF prefers larger wireless power to

maximize the system security rate. Delay-aware maximizes the transmission power

to minimize the FL training time. Therefore, Delay-aware performs close to PCSF as

shown in Figure 5.3(a) and Figure 5.3(b). Delay-aware performs better than Energy-

aware because Delay-aware prefers higher transmission powers to minimize the FL

training time and thus to help improve the system security rate, while Energy-aware

prefers lower transmission powers to minimize the energy consumption. In Figure

5.3(c), the energy consumption increases when the number of drones increases because

more drones consume more energy. Counterintuitively, Energy-aware incurs the most

energy consumption because Energy-aware minimizes the energy consumption for

wireless data transmission, while a drone’s energy consumption is mostly composed

of the hovering energy consumption which is determined by the FL training time.

Since Energy-aware incurs the largest FL training time, it incurs the most drone

energy consumption. Similarly, Delay-aware achieves the smallest FL training time

and hence the least energy consumption. Note that the performance of drones’ energy

consumption is determined by the FL training time, and we hence only show the

performance of FL training time and ignore that of the energy consumption thereafter.

In summary, PCSF achieves the largest system security rate and also a small FL

training time.

Figure 5.4 illustrates the performances of three algorithms with different

numbers of eavesdroppers ranging from 2 to 7. In Figure 5.4, the system security

rates of all three algorithms decrease when the number of eavesdroppers increase

because more data can be wiretapped. PCSF provides the highest system security
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Figure 5.4 System security rate vs number of eavesdroppers.

rate and Delay-aware the second. Energy-aware achieves the smallest system security

rate because of the similar reason as that in Figure 5.3.

We then investigate the impact of the QoS requirement (i.e., FL training time

requirement), ranging from 60 to 110 ms, on our proposed algorithm in Figure 5.5.

The performances of system security rate and FL training time are shown in Figure

5.5(a) and Figure 5.5(b), respectively. In Figure 5.5(a), the system security rates of all

three algorithms decrease with the increase of the QoS requirement. When the QoS

requirement is small (i.e., strict), higher transmission powers are required to satisfy

the QoS requirement and hence the system security rate is higher. Delay-aware tries to

minimize the FL training time and does not increase much when the QoS requirement

is larger than 70 ms in Figure 5.5(b). Similar to Figure 5.3 and Figure 5.4, PCSF

achieves the largest system security rate as shown in Figure 5.5(a) and a small FL

training time 5.5(b).

Figure 5.6 evaluates the performances of PCSF with different drone battery

capacities ranging from 1 to 2 J. The performances of system security rate and FL
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(a) System security rate. (b) FL training time.

Figure 5.5 Key performance metrics vs QoS requirement.

(a) System security rate. (b) FL training time.

Figure 5.6 Key performance metrics vs drone battery capacity.
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(a) System security rate. (b) FL training time.

Figure 5.7 Key performance metrics vs global training accuracy.

training time are shown in Figure 5.6(a) and Figure 5.6(b), respectively. The system

security rate in Figure 5.6(a) and the FL training time in Figure 5.6(b) of PCSF and

Delay-aware do not change with the increase of the drone battery capacity because

the drone battery capacity restricts the minimum wireless transmission power while

PCSF and Delay-aware tend to choose the largest transmission power. Energy-aware’s

system security rate decreases in Figure 5.6(a) and its FL training time increases

in Figure 5.6(b) when the drone battery capacity increases, because Energy-aware

prefers lower transmission powers which are affected by the increasing drone battery

capacity. Moreover, PCSF performs the best among the three algorithms in Figure

5.6(a) and achieves a small FL training time in Figure 5.6(b).

We explore the performances of PCSF with different global training accuracy

ranging from 2 × 10−4 to 7 × 10−4 in Figure 5.7. Figure 5.7(a) and Figure

5.7(b) illustrate the performance of the system security rate and FL training time,

respectively. In Figure 5.7(a), the system security rate of all three algorithms

decreases when the global training accuracy becomes large. According to Lemma

9, a larger global training accuracy means less global iterations is required and more

time and energy consumption are allowed to finish one global iteration, hence reducing
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the wireless transmission power to meet the QoS and battery capacity constraints.

PCSF provides the largest system security rate among the three algorithms. In Figure

5.7(b), the FL training time of PCSF and Delay-aware decreases with the increase

of the global training accuracy while Energy-aware does not change much. Since the

transmission power becomes smaller, all three algorithms have larger FL time in one

global iteration. Meanwhile, the number of global iterations decreases. Therefore, the

FL time in one global iteration increases more than those of PCSF and Delay-aware,

and hence the FL training time of Energy-aware remains almost the same while those

of PCSF and Delay-aware decrease. We can also observe that PCSF performs close

to Delay-aware.

5.5 Summary

In this chapter, the secure FL in fog-aided IoD networks has been proposed to

counteract eavesdroppers. The FL convergence has been analyzed and demonstrated

to calculate the FL training time. The wireless transmission power control problem

has been investigated to maximize the system security rate constrained by the QoS

requirement and drone battery capacities. The algorithm PCSF has been designed

to obtain the solutions of this problem. Simulation results have demonstrated that

PCSF performs better than two existing algorithms and achieves both a high system

security rate and a small FL training time.
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CHAPTER 6

CONCLUSION

In this dissertation, the intelligent and secure fog-aided IoD network has been

proposed and different issues in the proposed system have been investigated. First,

the power control problem in IoD for data collection has been investigated. A

sum-of-ratios fractional programming problem has been formulated to minimize the

drone’s energy consumption constrained by the maximum wireless transmission power

and QoS requirement. In order to solve this NP-complete problem, an iteration-based

algorithm (PETROL) has been designed, which first obtains the optimal solution of

a transformed convex optimization problem by a gradient projection method and

then updates the Lagrangian parameters by a modified Newton method. It has been

proved that PETROL achieves a linear convergence rate to the optimum solution and

a quadratic convergence rate in the neighborhood of the optimum solution. Simulation

results have demonstrated PETROL performs better than the existing algorithms.

Then, the task allocation and flying control have been jointly optimized in

fog-aided IoD networks with the objective to minimize the journey completion time

during which all locations of interests are visited and all generated computing tasks are

processed. The drone’s battery capacity and task completion deadline are considered

as the constraints. This joint optimization problem has been formulated as an MINLP

problem. In order to address the challenge of unawareness of future task information,

an online algorithm has been proposed. The simulations have demonstrate that our

proposed online algorithm performs close to delay-only (which minimizes the journey

completion time without considering the drone’s battery capacity) and performs

better than energy-only (which tries to minimize the drone’s energy consumption

and maintains a certain flying speed).
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After that, the joint optimization of power control and energy harvesting control

in time-varying IoD networks has been investigated. The joint optimization problem

has been formulated to determine each drone’s wireless transmission power and the

transmitted energy from the charging station to each drone at each time epoch with

the objective to minimize the long-term average system energy cost constrained by

the drones’ battery capacities and QoS requirements. An MDP has been formulated

to characterize our problem in time-varying IoD networks to show how the network

status evolves with different power and energy harvesting control policies. A modified

actor-critic deep reinforcement learning algorithm has been designed to solve the

problem. Extensive simulations have demonstrated that our proposed algorithm

performs better than the existing algorithms.

Finally, the secure FL in fog-aided IoD networks has been proposed to

counteract eavesdroppers. The FL convergence has been analyzed and demonstrated

to calculate the FL training time. The wireless transmission power control problem

has been investigated to maximize the system security rate constrained by the QoS

requirement and drones battery capacities. This problem has been formulated as

a non-linear programming problem to optimize each drone’s wireless transmission

power. An algorithm PCSF has been designed to obtain the solutions of this problem.

Simulation results have demonstrated that PCSF performs better than two existing

algorithms and achieves both a high system security rate and a small FL training

time.
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APPENDIX A

PROOF OF LEMMA 3

Note that the convergence rate of PETROL is determined by that of the modified

Newton method which determines how x is updated.

Since pi(x) satisfies the Lipschitz condition, ∃L1 s.t. ‖pi(x)− pi(x̄)‖ ≤ L1‖x−

x̄‖. Since every fi(x) is a continuously differentiable function with regard to pi(x),

fi(x) is Lipschitz-continuous [97], i.e., ∃L2 s.t. ‖fi(x)−fi(x̄)‖ ≤ L2‖pi(x)−pi(x̄)‖ ≤

L1L2‖x− x̄‖, where L1 and L2 are Lipschitz constants. Hence, based on Eq. (3.24),

∃L s.t.

‖φ′(x)− φ′(x̄)‖

= ‖diag(f1(x)− f1(x̄), . . . , fN(x)− fN(x̄),

f1(x)− f1(x̄), . . . , fN(x)− fN(x̄))‖

≤ L‖x− x̄‖,

(A.1)

where L = L1L2. We can also derive from Eq. (3.24) that

[φ′(xk)]
−1 = diag(

1

f1(x)
, . . . ,

1

fN(x)
,

1

f1(x)
, . . . ,

1

fN(x)
).

Since pi(x) > 0, fi(x) = W log2(1+ripi(x)) ≥ Wε, where ε is a small number. Hence,

‖ 1
fi(x)
‖ ≤M , where M = 1

Wε
. Therefore, ∃M, s.t.,

‖[φ′(xk)]−1‖ ≤M. (A.2)
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For δ ∈ (0, 1), according to the Newton-Leibnitz formula, Eqs. (3.24) and (2.31),

we have

‖φ(xk + δτ k)‖ = ‖φ(xk) + φ(xk + δτ k)− φ(xk)‖

= ‖φ(xk) + δ

∫ 1

0

φ′(xk + ξδτ k)τ kdξ‖

= ‖(1− δ)φ(xk) + δ

∫ 1

0

[φ′(xk + ξδτ k)− φ′(xk)]τ kdξ‖

≤ (1− δ)‖φ(xk)‖+ δ2L‖τ k‖2,

(A.3)

where we utilize ‖φ′(xk + ξδτ k)− φ′(xk)‖ ≤ Lξδ‖τ k‖ derived from Eq. (A.1).

From Eqs. (2.31) and (A.2), we have

‖τ k‖ = ‖[φ′(xk)]−1φ(xk)‖ ≤M‖φ(xk)‖. (A.4)

Hence, Eq. (A.3) can be transformed into

‖φ(xk + δτ k)‖ ≤ (1− δ)‖φ(xk)‖+ δ2L‖τ k‖2

≤ (1− δ)‖φ(xk)‖+ δ2LM2‖φ(xk)‖2

= [1− δ(1− δLM2‖φ(xk)‖)]‖φ(xk)‖.

(A.5)

Let 1−δ̄kLM2‖φ(xk)‖ = ε, i.e., δ̄k = 1−ε
LM2‖φ(xk)‖ . Then, Eq. (A.5) can be transformed

to

‖φ(xk + δkτ k)‖ ≤ (1− εδk)‖φ(xk)‖, (A.6)

where δk = min{1, δ̄k}.

From Eq. (A.6), we can observe that ‖φ(xk)‖ decreases when k increases.

Hence, δ̄k is an increasing sequence. Therefore, δk increases until it reaches 1; then

it remains the same when k increases. We denote k̄ as the particular number of

iterations that makes δk̄ = 1.

102



Case 1: k ≤ k̄, where δk is an increasing sequence. Hence, 1− εδk ≤ 1− εδk−1 ≤

· · · ≤ 1− εδ1. From Eq. (A.6), we can conclude

‖φ(xk+1)‖ ≤ (1− εδ1)‖φ(xk)‖ ≤ (1− εδ1)2‖φ(xk−1)‖

≤ · · · ≤ (1− εδ1)k‖φ(x1)‖,
(A.7)

where 1− εδ1 is a constant. Therefore, ‖φ(xk)‖ achieves a linear convergence rate.

Case 2: k > k̄, where δk = 1. Eq. (2.30), i.e., the iteration equation, becomes

xk+1 = xk − [φ′(xk)]
−1φ(xk). (A.8)

Then, it becomes the Newton method which achieves a quadratic convergence rate in

the neighborhood of the optimum solution [98]. Lemma 3 is thus proved by combining

Case 1 and Case 2.
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APPENDIX B

PROOF OF LEMMA 7

Since w∗ and wt,∗n are the optimal solution of F (w) and Gt
n(w) respectively, we can

derive that ∇F (w∗) = 0 and ∇Gt
n(wt,∗n ) = 0. We then have

∥∥∇F (wt)
∥∥2

=
∥∥∇F (wt)−∇F (w∗)

∥∥2

(5.11)

≥ α
∥∥∇F (wt)−∇F (w∗)

∥∥∥∥wt − w∗∥∥2

= α∇F (wt)>(wt − w∗)
(5.12)

≥ α[F (wt)− F (w∗) +
α

2

∥∥wt − w∗∥∥2
]

≥ α[F (wt)− F (w∗)],

(B.1)

which proves Eq. (5.15). Meanwhile, we have

∥∥∇Gt
n(wt,in )

∥∥2
=
∥∥∇Gt

n(wt,in )−∇Gt
n(wt,∗n )

∥∥2

(5.7)
=
∥∥∇Gt

n(wt,in )
∥∥∥∥∇Fn(wt,in )−∇Fn(wt,∗n )

∥∥
(5.11)

≥ α
∥∥∇Gt

n(wt,in )
∥∥∥∥wt,in − wt,∗n ∥∥

(5.6)
= α[∇Fn(wt,in )−∇Fn(wt) + η∇F (wt)]>(wt,in − wt,∗n )

= α{∇Fn(wt,in )>(wt,in − wt,∗n )

− [∇Fn(wt)− η∇F (wt)]>(wt,in − wt,∗n )}
(5.12)

≥ α{Fn(wt,in )− Fn(wt,∗n )

− [∇Fn(wt)− η∇F (wt)]>(wt,in − wt,∗n )}
(5.6)
= α[Gt

n(wt,in )−Gt
n(wt,∗n )],

(B.2)

which proves Eq. (5.16).
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APPENDIX C

PROOF OF LEMMA 8

We demonstrate the relationship between Gt
n(wt,in )−Gt

n(wt,∗n ) and Gt
n(wt)−Gt

n(wt,∗n ).

The demonstration process is inspired by [83].

Gt
n(wt,i+1

n )
(5.3)
= Fn(wt,i+1

n )− [∇Fn(wt)− η∇F (wt)]>wt,i+1
n

(5.5),(5.14)

≥ Fn(wt,in )− δ∇Fn(wt,in )>∇Gt
n(wt,in )

+
δ2β

2

∥∥∇Gt
n(wt,in )

∥∥2
+ [∇Fn(wt)− η∇F (wt)]>wt,i+1

n

(5.3),(5.5)
= Gt

n(wt,in )− δGt
n(wt,in )>Gt

n(wt,in ) +
δ2β

2

∥∥∇Gt
n(wt,in )

∥∥2

= Gt
n(wt,in )− (2− δβ)δ

2

∥∥∇Gt
n(wt,in )

∥∥2

(5.16)

≤ Gt
n(wt,in )− (2− δβ)δα

2
[Gt

n(wt,in )−Gt
n(wt,∗n )].

(C.1)

Based on the above analysis, we have

Gt
n(wt,in )−Gt

n(wt,∗n )

≤ [1− (2− δβ)δα

2
][Gt

n(wt,i−1
n )−Gt

n(wt,∗n )] ≤ ... ≤

≤ [1− (2− δβ)δα

2
]i[Gt

n(wt)−Gt
n(wt,∗n )]

≤ e−i
(2−δβ)δα

2 [Gt
n(wt)−Gt

n(wt,∗n )],

(C.2)

where the last inequality holds because 1 − x ≤ e−x, x ≥ 0. If we assign the local

accuracy el = e−i
(2−δβ)δα

2 , i.e., I = 2
(2−δβ)δα

ln( 1
εl

), the local convergence definition (Eq.

(5.8)) holds. Therefore, Lemma 8 is proved.
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APPENDIX D

PROOF OF LEMMA 9

We demonstrate the relationship between F (wt)− F (w∗) and F (w0)− F (w∗).

F (wt+1)
(5.9)
= F (wt +

1

N

∑
n∈N

(wt,∗n − wt))

Lemma 6

≤ F (wt) +
1

N

∑
n∈N

∇F (wt)>(wt,∗n − wt)

+
β

2

∥∥∥∥∥ 1

N

∑
n∈N

(wt,∗n − wt)

∥∥∥∥∥
2

(5.3)
= F (wt) +

1

Nη

∑
n∈N

[Gt
n(wt,∗n )− Fn(wt,∗n ) +∇Fn(wt)>wt,∗n ]

− 1

N

∑
n∈N

∇F (wt)>wt +
β

2

∥∥∥∥∥ 1

N

∑
n∈N

(wt,∗n − wt)

∥∥∥∥∥
2

,

(D.1)
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Then,

F (wt+1)
(5.12)

≤ F (wt) +
1

Nη

∑
n∈N

{Gt
n(wt,∗n )− Fn(wt)

+ [∇Fn(wt)− η∇F (wt)]>wt}+
β

2

∥∥∥∥∥ 1

N

∑
n∈N

(wt,∗n − wt)

∥∥∥∥∥
2

≤ F (wt) +
1

Nη

∑
n∈N

{Gt
n(wt,∗n )− Fn(wt)

+ [∇Fn(wt)− η∇F (wt)]>wt}+
β

2N

∑
n∈N

∥∥wt,∗n − wt∥∥2

(5.3)
= F (wt) +

1

Nη

∑
n∈N

{Gt
n(wt,∗n )−Gt

n(wt)

− α− βη
2

∥∥wt,∗n − wt∥∥2}

(5.3)
= F (wt)− 1

Nη

∑
n∈N

{α− βη
2

∥∥wt,∗n − wt∥∥2

+ Fn(wt)− Fn(wt,∗n ) +∇Fn(wt,∗n )>(wt,∗n − wt)}
(5.12)

≤ F (wt)− 1

Nη

∑
n∈N

2α− βη
2

∥∥wt,∗n − wt∥∥2

(5.11)

≤ F (wt)− 2α− βη
2Nηβ2

∑
n∈N

∥∥∇Fn(wt,∗n )−∇Fn(wt)
∥∥2

(5.7)
= F (wt)− (2α− βη)η

2β2

∥∥∇F (wt)
∥∥2

(5.15)

≤ F (wt)− (2α− βη)αη

2β2
[F (wt)− F (w∗)].

(D.2)

Based on the above analysis, we have

F (wt)− F (w∗) ≤ [1− (2α− βη)αη

2β2
][F (wt−1)− F (w∗)]

≤ ... ≤ [1− (2α− βη)αη

2β2
]t[F (w0)− F (w∗)]

≤ e
−t (2α−βη)αη

2β2 [F (w0)− F (w∗)].

(D.3)

We assign the global accuracy εg = e
−t (2α−βη)αη

2β2 , i.e., T = 2β2

(2α−βη)αη
ln( 1

εg
), the global

FL problem is converged. Therefore, Lemma 9 is proved.
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