
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Dissertations Electronic Theses and Dissertations 

8-31-2021 

The interplay of the physical landscape and social dynamics in The interplay of the physical landscape and social dynamics in 

shaping movement of African savanna elephants (loxodonta shaping movement of African savanna elephants (loxodonta 

africana) africana) 

Maggie Wisniewska 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations 

 Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons 

Recommended Citation Recommended Citation 
Wisniewska, Maggie, "The interplay of the physical landscape and social dynamics in shaping movement 
of African savanna elephants (loxodonta africana)" (2021). Dissertations. 1543. 
https://digitalcommons.njit.edu/dissertations/1543 

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital 
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1543?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

 
THE INTERPLAY OF THE PHYSICAL LANDSCAPE AND SOCIAL DYNAMICS 

IN SHAPING MOVEMENT OF AFRICAN SAVANNA ELEPHANTS 
(LOXODONTA AFRICANA) 

 
 

by 
Maggie Wiśniewska 

Free ranging African savanna elephants (Loxodonta africana) are increasingly 

impacted by human-induced habitat loss and poaching for ivory. Because 

elephants live in tightly knit groups, this combination of threats not only reduces 

the size of their populations but also degrades their social interactions. Long-term 

relationships with socially competent individuals, such as experienced seniors, 

benefit the ability of other group members to access limiting resources and avoid 

danger. Understanding how anthropogenic pressure may affect persistence of 

elephant populations is important, because elephants are an economically 

important keystone species. This dissertation characterizes how individual 

elephants influence the movement of their social partners, and how the social 

network properties of elephant groups related to information sharing may change 

when socially competent members are killed by poachers. To that end, two 

techniques commonly used to study movement of individuals in their habitat, and 

one used to study the consequences of repeated social interactions, are modified 

and extended to incorporate a number of the social processes typically found in 

groups of elephants. First, an established, choice-based statistical framework for 

movement analysis is modified and validated using synthetic and empirical data. 

It allows for simultaneous modeling of the effects of the habitat quality and social 



interactions on individual movement choices. Next, this new model is applied to a 

unique set of remotely sensed tracks from five male elephants navigating across 

the same habitat in southern Africa. A key result is that known dominance 

relationships observed at water points and other gathering places are determined 

to persist even when elephants are ranging more widely across the landscape. 

Lastly, an existing ‘social network and poaching’ simulation model is 

parameterized with data from wild elephants. It reveals debilitating effects of 

poaching on various network metrics thought to correlate with group 

communication efficiency. The modeling and simulation tools developed over the 

course of this doctoral research may be generalized to include the influence of 

‘dynamic points’ other than social conspecifics, such as predators or poachers, 

on long-term movement patterns, and thus may provide a tool to both understand 

and mitigate human-wildlife conflict. In addition, they may aid hypothesis testing 

about disturbance of social dynamics in animal systems subject to exploitation by 

humans or lethal management. 
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1 CHAPTER 1 

INTRODUCTION 

1.1 Background 

1.1.1 Movement ecology of free-ranging animal collectives 

The ability to move is necessary for free-ranging animals to persist in their habitat 

(1). Movement allows for acquisition of resources and avoidance of danger which 

in turn affect individual survival and reproductive success (2–5). In group-living 

species, such as the great desert skinks (Liopholis kintorei) or the king penguins 

(Aptenodytes patagonicus), the movement behavior of individuals can impact 

resource use by conspecifics and the stability of entire populations, for instance 

by efficient discovery or development of foraging skills (6–9). For example, 

movement decisions by experienced pod members in killer whales (Orcinus orca) 

benefit resource acquisition and fitness of their kin especially when resources are 

scarce (10). Finally, movement of animal groups often impacts entire ecosystems 

(11–13). This phenomenon is well manifested in the effect of swarming locusts 

(order Orthoptera; family Acrididae) or migrating blue wildebeest (Connochaetes 

taurinus) on nutrient cycling, plant growth and species richness across areas 

spanning hundreds of kilometers (14, 15).  

The blue wildebeest and other relatively large-bodied and long-lived 

species moving in groups, such as wolves (Canis lupus) or the eastern gray 

kangaroo (Macropus giganteus), are particularly impactful as ecosystem 

engineers (16).  Given their relatively large datary and space use requirements, 
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fulfilled through wide-ranging movement, large-bodied keystone species are 

increasingly more vulnerable to human encroachment (17, 18). The 

pervasiveness of anthropogenic activities (e.g., buildout of infrastructure 

supporting the global economy from agriculture to mining activities), climatic 

changes and biodiversity loss alter natural movement patterns of animal groups 

through creation of barriers, displacement or inadvertent setting of ecological and 

perceptual traps (19–24). The consequences of perturbing movement by animal 

groups include extirpation, emergence of novel pathogens, loss of ecological 

services or human-wildlife conflict (25–27). For instance, white storks (Ciconia 

ciconia)—a useful ecological indicator species, foraging in landfills in southern 

Europe, exhibit partial migration and higher reproductive rates than fully 

migratory, wetland populations at higher latitudes (28–30). Planned closures of 

these facilities, in compliance with the European Union Landfill Regulations, may 

severely reduce this population through direct mortality, collapse of colonial 

breeding and loss of experienced migrators (31). Understanding space use 

patterns in this population in the context of changing physical landscape and 

interactions with conspecifics in breeding colonies may offer insights about how 

comparable conditions would affect at-risk species with important ecological 

functions, such as the greater noctule bat (Nyctalus lasiopterus) — a key 

insectivore of agriculture pest, or the European bison (Bison bonasus) shaping 

Europe's remaining primeval forests (32–35). This perspective is increasingly 

important because many group-living species, to persist in human altered habitat, 



   
 

 3 

already depend on some degree of conservation, management or policy 

interventions (36–38). 

1.1.2 African savanna elephants as a model system  

In this dissertation, I evaluate the interplay of physical and social dynamics in 

shaping movement behavior of free-ranging African savanna elephants 

(Loxodonta africana), from now referred to as ‘elephants’. Elephants are a 

prominent example of a widely ranging keystone species with complex sociality 

and subject to increasing anthropogenic pressure, introduced in the Section 1.1.1 

(39–43). 

As the largest terrestrial herbivores, elephants shape many of the 

continent’s ecosystems, for instance by limiting the encroachment of woody 

vegetation and intensive fire onto the African savanna (44, 45). Due to ongoing 

habitat loss, for instance driven by agriculture, logging or armed conflict in 

traditional wilderness zones, some elephant populations seek resources outside 

of protected areas often trespassing on private property. Resulting damage to 

agricultural crops or property antagonizes local stakeholders and prioritizes 

research on conflict mitigation initiatives focused on exclusion of elephants from 

human-dominated areas—many of which are locally or temporally effective, 

anthropocentric and thus unsustainable (46–49). Presence of exclusion barriers, 

such as electric or range fences limits the ability of many populations to admix, 

reducing genetic diversity, and access resources critical for survival (46, 50, 51). 

At the same time, elephants are increasingly threatened by poaching for 

ivory. During the last two poaching phases (ca. 1970-80 and 2007-2016) the 
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continental elephant population decreased from approximately one million to 

400,000 individuals (52–55). The ecological consequences of this decline range 

from altered nutrient cycling to changes in community structure (56, 57). For 

instance, extirpation of African forest elephants (L. cyclotis)1, along with 

elimination of their seed dispersal has already led to a drastic decline in 

recruitment of many fruiting plants which are important resource for a variety of 

animals in in the Equatorial Afrotropic—the second largest carbon-sequestering 

rainforest complex on Earth (62). Furthermore, release from browsing and 

trampling pressure by elephants will likely result in denser tree stands, low 

recruitment of large tree species and an overall decrease in species 

heterogeneity and carbon stock (56, 63).  

Together, habitat degradation and poaching impede movement and 

contribute to a rapid decline of elephant populations across their range. In fact, 

the International Union for Conservation of Nature Red List of Endangered 

Species recently changed the status of elephants from vulnerable to endangered 

(61). Fortunately, another recent study determined potentially suitable habitats 

across Africa and indicated that elephants as a genus occupy merely 17 percent 

of that area (64). Judicious integration of suitable yet still unoccupied habitats 

into conservation planning may prevent, or at least slow down, further population 

 
1 In the past, despite genetic evidence indicating that there may exist two species of the African elephant 
(Loxodonta spp. Lin.), namely the forest (L. cyclotis) and the savanna elephant (L. africana), the 
International Union for Conservation of Nature (IUCN) cautioned against premature split of the Loxodonta 
genus into two species. The organization was concerned about the uncertainty of the protection status of 
populations inhabiting potential hybrid zones (e.g., Southern Chad). However, in face of growing evidence, 
the genus was split into two species (58–60). More recently, IUCN’s Red List of Endangered Species, with 
input of the African Elephant Specialist Group under its auspices, has changed the conservation status of 
both species from vulnerable and endangered to endangered and critically endangered, respectively (61) to 
more appropriately reflect the threat to African elephants.   
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loss and extirpation of elephants from the wild. This kind of effort will require a 

transboundary approach focused on enrichment and expansion of the existing 

protected areas and ensuring increased coexistence with humans across 

unprotected areas which must serve as connectors between protected 

fragments.  

I argue that the success of such efforts will depend on a comprehensive 

and socially contextual perspective about the movement ecology of elephant 

groups. Their multilevel social structure functions as a fluid aggregate of closely 

knit groups—each made of related individuals bound by long-term relationships, 

is fundamental to understanding how male elephants and female herds use their 

habitat, and thus an important factor in their conservation and management. Yet, 

the interplay of physical and social processes that affects elephant movement is 

still poorly understood. 

1.1.3 Movement ecology of elephants 

Extensive research on elephant movement focused on individual behaviors has 

helped answer important questions about space use, conflict with humans and 

conservation of elephants (65, 66). For instance, real-time tracking of elephant 

movements has shown that measuring basic properties of a trajectory, such as 

speed, can help rangers locate and treat injured individuals or deter crop-raiders 

(67–69). Linking high-resolution animal tracking with increasingly available data 

on Earth’s surface and atmosphere has already offered a more holistic 

perspective on the feedback between the causes and consequences of animal 

movements (5, 70). Elephants, for example, avoid mountains, prefer to raid crops 
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at night and form spatially explicit memories about key resources and relatives 

(2, 43, 70–72).  

Consideration of simultaneous movement by multiple individuals in the 

context of the physical environment, still rare in most group-living species, 

including elephants, should be a natural extension of progress in movement 

ecology and its application to conservation (73, 74). Asking how different 

elephants respond to their environment and conspecifics may clarify meaningful 

differences in motivations or mechanisms driving individuals with diverse traits; 

and how their motivation is shaped by pursuit or avoidance of physical versus 

social resources (8, 75). For instance, evaluating movement decisions by non-

crop-raiding male elephants may inform management of their crop-raiding 

conspecifics across wildlife corridors or transitional zones (Table 1.1). 

Specifically, characterizing forage species preferred by non-crop raiding 

individuals may inform 1) selection of similar future habitats and rehabilitation of 

existing habitat to reflect the preferred forage composition; and  2) designing  

translocation of trespassing males which if paired with conspecifics that could set 

a good foraging example  learn to rely on resources outside of buffer and 

transitional zones and human settlements  (Table 1.1)  (76–79). In addition, this 

perspective may contribute to development of more informative models of group 

movement (77, 80, 81) 
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Table 1.1 Definitions of Different Areas used by Elephants and Example 
Conservation Goals  
 

Area type Purpose Proposed management goals 

core habitat for use by and conservation of 
wildlife  
 

prioritize research into/maintenance of 
high-quality resources; landscape 
rehabilitation 

wildlife 
corridors 

for maintenance of vital 
connections for wildlife 
transfer/dispersal between core 
habitats  

prioritize research into/maintenance of 
quality resources; landscape rehabilitation; 
methods encouraging directional moment 
(e.g., olfactory stimuli) 

buffer zones for protection of wildlife from 
damaging external impact  

prioritize research into/maintenance of 
quality resources at the internal edge and 
sustainable deterrents encourage rare use 
on the external edge  

transitional 
zones 

for human use to prevent 
encroachment by wildlife  

prioritize research into/maintenance of 
sustainable deterrents (e.g., unpalatable 
crops gradients; beehives); 
encourage/develop avenues for 
stewardship/ownership by local 
stakeholders 

Sources: (82, 83) 
 

1.1.4 Limitation to studying group movement by elephants 

Limited knowledge about group movement in elephants is in large parts due to  

1) the scarcity of multi-individual tracking in wild populations and 2) the 

constraints of still developing tools for simultaneous assessment of the physical 

and social predictors of multi-individual movement  (84–86).  

The multi-individual tracking of free-ranging animals, which until recently 

was prohibitively expensive for most research projects, is becoming more 

affordable and capable of transmitting relatively accurate positional data at 

moderately high-resolution for extended periods of time (87–91). Deployment of 

most tracking devices, on the other hand, is still a big barrier, because it usually 

requires anesthesia (92). Sedating multiple individuals in a social unit, as part of 

a group tagging effort, is logistically daunting but also dangerous for the subjects 

(through potentially exposing them and their young to predation). Unless remote 
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deployment methods become available for commercial use, multi-individual 

tracking of elephants in the wild will remain a challenge and a rarity. Instead, 

tracking of arbitrarily selected individuals in a group is assumed to be sufficient in 

capturing the behavioral repertoire of the entire group. Justification for this 

practice stems from past evidence that females spend much of their time in 

proximity to other herd members and engage in similar activities (93, 94). More 

recent analysis of resource preference in closely associating female elephants 

suggests that this view may be an oversimplification (74). In addition, this 

justification is not easily applicable to movement of male elephants which, 

depending on their age, reproductive status and availability of resources, 

frequently transition between solitaire and group movement modes (95, 96). 

Analysis of multiple trajectories, although a growing effort in studies of 

group-living species, is still challenging, particularly in free-ranging animals (86, 

97–99). In elephants, and other widely ranging species, the resolution of 

movement data (e.g., typically ranging from daily to quarter-hourly records), 

although constantly improving, is still too coarse for techniques developed using 

nearly continuous, highly synchronized movement by large groups with well-

defined centroids and relatively simple landscapes (e.g., schools of fish or 

synthetic particles) (100–102). Evolution of these methods has led to many 

sophisticated approaches based on maximum-likelihood estimation or Bayesian 

inference. They generally differ in the types of questions they are suited for (i.e., 

exploratory, explanatory or predictive); the degree of expert knowledge-based 

parameterization required for model development; and the ease of output 
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interpretation (103). For instance, behavioral change point or state-space models 

aim to explore different modes of movement by one or multiple individuals (104–

107). In contrast, resource selection (RSF) or related step selection function 

approaches seek to explain how the habitat features affect the pattern of 

individual space use or movement characteristics  (108–110).  

Compared to other perspectives, the RSF family of models involves 

relatively little expert knowledge for model parameterization. This is desirable in 

animal systems with limited (e.g., given possible space and time scales of 

collection, or emphasis on contrasts instead of gradient of biological process) or 

potentially erroneous empirical record (e.g., due to instrument or human error). 

Such data may, for example, obscure 1) the process of asking relevant question 

or 2) stochastic events associate with the  process of interest and result in biased 

model parameters as well as misleading estimates (11, 103, 111). Instead, the 

RSF family of models rely on generally confirmable natural phenomena and 

established ecological principals, such as forage quality preferences in 

herbivores. The interpretability of the outputs from these models is relatively 

user-friendly and benefits non-statisticians tackling basic or applied questions 

about multi-individual movement (80, 112) .  

Finally, regardless of the analytical method used, integration of multi-

individual movement and landscape data, remains a fundamental challenge. The 

decisions about spatiotemporal resolution prior to collection of such data, usually 

made by different entities, arise from equipment limitations and disparate 

research priorities between academics, practitioners and governmental 
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organizations (113–115). For instance, a small non-governmental organization, 

such as Elephants For Africa (using tracking equipment with lithium batteries and 

manual data retrieval) is likely more judicious about its choice of data resolution 

compared to the decisions that pioneers in the field of anima tracking at Max 

Planck Institute of Animal Behavior are able to afford (116, 117). Resulting 

disparities require ensuring that the scale of an animal's choice is compatible with 

available environmental data (11, 118). For instance, the 250 meters per pixel 

resolution of the Normalized Difference Vegetation Index (NDVI) — a proxy for 

vegetation productivity, produced by Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments aboard the National Aeronautics and 

Space Administration’s (NASA’s) Terra satellite, is too coarse to assess 

interactions occurring at the level of a mother-calf unit (typically a few meters 

only) near a point resource. Fortunately, it is still useful for parsing social 

dynamics during moderate- to long-distance movement-related behaviors. 

1.1.5 The role of disturbed social network as a potential factor motivating 

movement behavior in elephant groups 

As most behaviors in elephant herds, their movement is a social process where 

core units — the smallest functional units consisting of one or several adults with 

their immature offspring, form temporary associations most often with other units 

within their matriline2 (119, 121). This process, known as fission-fusion 

 
2 Social structure in elephant herds ranges from matrilinear associations of closely related females and their 
immature offspring core groups or families, to bonded groups consisting of several related core groups, to 
even larger aggregates referred to as clans consisting of multiple bonded groups. Elephant from different 
clans interact with each other but less frequently. These interactions are often initiated by either the most 
mature females, or the most gregarious juveniles exhibiting indiscriminate play behavior (39, 119, 120).  
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dynamics, is thought to mitigate the costs of group-living (e.g., competition over 

resources) (4, 122). It seems to be facilitated by long-term interactions among 

mature females and serves as an opportunity for younger conspecifics to learn 

about and engage in their social landscape (123–125). The benefits of social 

interaction in elephants have been extensively studied and range from increased 

fitness to antipredator defense (126, 127). In comparison, social dynamics in 

male elephants are less well understood, but existing evidence indicates that 

their sociality ranges from solitary to gregarious. Males exhibiting gregarious 

tendencies often form preferred affiliations, at first with multiple males of varying 

ages in aggregates commonly referred to as bachelor groups, and later in life 

with similarly aged conspecifics in more stable bonded groups (128–130). Their 

social interactions play an important part in the development of leadership 

structure during collective movement and the development of crop-raiding 

behavior (48, 78, 131, 132).  

Poaching for ivory, and to lesser extent trophy hunting, target the largest 

and oldest elephants with the most prominent tusks (125, 129, 133, 134). 

Elimination of the oldest and presumably most socioecologically experienced 

females has been correlated with changes in movement by their surviving kin 

(135). In addition, reports on habitat use and movement in poached populations 

indicate a shift in group foraging towards lesser quality resources, potentially 

away from danger (135, 136). Analysis of movement speed during periods of 

high poaching activities revealed that herds and male elephants move faster 

suggesting that they detect and attempt to avoid risk (137). Analysis of the social 
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network — an emergent property of repeated interactions among social partners, 

in heavily poached herds indicated that the composition and association patterns 

were conserved among close but not distant surviving kin (125). Whether 

removal of the older individuals and the associated change in the network 

structure at the population-level relate to group functionality is an outstanding 

question in elephants—because simultaneous time series data on behavioral, 

demographic and poaching-induced mortality, necessary to detect patterns 

between associations, individual fitness and group performance, are collected 

mostly opportunistically, with little to no spatial replication, and are rarely shared 

due to the species’ conservation status or concerns over intellectual property.  

As for male elephant associations, behavioral record in populations 

subject to culling indicates that some juvenile elephants maturing without seniors 

entered musth — a period of heightened sexual activity, prematurely and 

exhibited aberrant levels of aggression which ceased after reintroduction of 

mature males (130, 132). Direct evidence on the effect of poaching on the 

structure of their social network is missing.  

I believe that the disturbance to elephant social networks in survivors, 

whether members of herds or male elephant groups, may impact the way they 

navigate the landscape. This impact may occur through removing portions of 

spatially explicit memories about resource distribution and phenology or 

increased levels of agonsim between fragmented social units. Because this idea 

is difficult to test directly for reasons explained above, simulating poaching to 

determine its effect on network features (which in many simulated and a few 
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empirical systems have been associated with group cohesion and transfer of 

valuable information) may be an early useful step. Tying changes to the 

characteristics of social networks and to movement behavior may inform our 

understanding of the mechanistic causes of movement behavior - a perspective 

that is rarely undertaken by movement ecologists and animal behaviorists (11). 

This kind of assessment can add to the holistic perspective on movement 

ecology, which considers movement to be a product of intrinsic motivation (e.g., 

gestation), motion capacity (e.g., incapability of running), navigational capacity 

(e.g., spatially explicit memory), extrinsic triggers (e.g., distance to quality 

resource) and consequences of movement (ability to remain in protected habitat). 

In addition, it may improve our perspective on actions useful for  mitigation of 

human-elephant conflict, for instance by translocating socially functional units 

instead of single individuals - which so far has proven to be problematic (78, 129, 

138) and conserve this economically important but endangered, keystone 

species (139, 140).  

1.2 Aims 

Given data and tool limitations in research on movement-related behaviors in 

elephants, I decided to study how elephants integrate information about 

landscape structure and social dynamics in their movement; and whether 

poaching disturbance to social dynamics relates to group performance - a 

potential mechanism underpinning movement decisions. My work is, therefore, 

divided into two aims detailed in the following Sections 1.2.1 and 1.2.2.  
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1.2.1 First aim 

My first aim has two objectives: to develop a statistical model for analyzing how 

group-living animals integrate sociophysical information in their movement; and 

to estimate if behavioral tendencies by a group of five male elephants, measured 

with behavioral sampling at a local scale, can be recovered from long-term 

movement patterns use with this statistical model. 

To achieve my first objective, presented in Chapter 2, I developed a 

spatially explicit, statistical model for analyzing simultaneously the effects of the 

landscape structure and social dynamics on the movement of group-living 

animals. This tool is modified from an established research selection framework 

(RSF) used to study habitat preference in animals (118, 141, 142). Unlike the 

traditional approach, this modified ‘social resource selection function’ (SRSF) 

takes into account the social impact by treating distances between group 

members as time-varying physical influences. I validated the SRSF model by 

fitting it to simulated group movement with predictable characteristics and 

empirical movement from a herd of domestic goats (Capra aegagrus hircus) 

(143, 144). I found that the estimated patterns of movement resembled the 

observed patterns in the simulated and real-world testing scenarios. More 

importantly, I also found that consideration of the physical environment without 

the social landscape, or vice versa, produced less parsimonious explanations of 

the individual movements than considering both pieces of information in tandem.  

To carry out the second objective, which I detail in Chapter 3 and 

Appendix A, I fit the SRSF model to high frequency movement data that are very 
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regular across five male elephants residing in the same region of the Etosha 

National Park in Namibia. Prior to this study, the dominance hierarchy in this 

group had been inferred from long-term traditional behavioral sampling at several 

high visibility points (145). I tested if this dominance hierarchy could be recovered 

from movement patterns (95). The results indicated that estimated habitat 

preferences (i.e., tendency to movement towards water sources) made sense in 

the context of elephant biology, and that observed dominance relationships could 

be indeed recovered directly from movement patterns. In conclusion, my work 

showed that a modification of the SRSF output allows for the assessment of 

social affinities between animals analogous to that of a social network approach.   

In general, the SRSF model is useful for research on movement behavior 

in group-living animals as a function of the impact of social information on 

resource preferences. Its application in other systems may inform outstanding 

theoretical questions about behavioral processes underlying the distribution of 

individuals within their social units, inside entire populations, and in relation to 

heterospecifics across space and time (146). In addition, the added perspective 

on the structure of social interactions in mobile anima, analogous to a social 

network perspective, from multi-individual movement alone (without the need for 

direct observation) may be valuable to research on animal social networks in 

species with that are challenging to observe directly (e.g., cryptic or nocturnal 

animals) (147). 



   
 

 16 

1.2.2 Second aim  

My second aim has one objective: using animal social network analysis, I and my 

collaborators characterized if poaching disturbance of social dynamics relates to 

a decrease in four network features associated with efficient group performance. 

Although we did not test this link explicitly, we assumed that the social dynamics 

depicted using social network analogy underpin complex behaviors such as 

group movement in search of resources. This effort is described in in Chapter 4 

and Appendix B.  

To that end, we modified an existing social network simulator by 

parameterizing it with association data from free-ranging elephants inhabiting the 

Amboseli National Park in Kenya. Next,  we simulated a series of social networks 

and nonrandom poaching events, targeting most mature or gregarious network 

members (148). Finally, we quantified four network features generally correlated 

with social cohesion and the efficiency of transferring socially valuable 

information. Unlike elimination of the most mature individuals, targeted poaching 

of the sociable conspecifics was detrimental. It degraded three out of four 

network features considered in my analysis as correlates of group 

communication efficiency (149). These findings suggest that further inquiry into 

the relationship between resilience to poaching and group performance in free-

ranging elephants is warranted (125). The simulator we developed through this 

research can be modified for hypothesis testing in other systems, wild or captive, 

subject to human disturbance or lethal management. 
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After submitting this work as a research manuscript to journal PLOS 

Computational Biology (PLOS CB),  we received feedback form the journal’s two 

reviewers. The first main point raised by the reviewers pertains to the formula 

used to calculate the association index (AI) (i.e., an index expressing the rate of 

association between two individuals based on the number of times they were 

observed associating out of the total number of times their social group was 

observed). The criticism offered by the reviewers appears to be correct, and we 

will most likely incorporate this suggestion during the revision process. To do so 

will require repeating the simulation experiments in the empirically based portion 

of this study. This process, however, will likely not require a major changes to the 

existing simulation and analysis process.  

The second main criticism offered by the reviewers is in regard fact that 

we treat each AIs between two individuals as independent, when in fact they may 

not be (e.g., AI between individuals A and B is correlated with AI between 

individuals A and C). The reviewers graciously suggested a potential approach to 

resolving this issue. In the coming days, we plan to discuss this criticism as well 

as the suggested resolution and chart our way forward. Although both issues 

raised will require reassessing our data, and potentially our conclusion, we are 

grateful for, and excited about, the overall positive feedback. In the words of one 

of the reviewers, “This is clearly a vitally important topic from a conservation 

perspective, and is additionally theoretically interesting. I generally found the 

paper to be interesting, well written, and of great scientific merit.” 
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In Chapter 4, we presented this research as it was submitted to PLOS CB. Upon 

addressing the reviewers’ concerns, we will resubmit this work for further 

consideration at PLOS CB.    
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2 CHAPTER 2 

MODELING THE PHYSICAL AND SOCIAL IMPACTS ON INDIVIDUAL 
MOVEMENT IN GROUP-LIVING SPECIES 

 

2.1 Abstract 

Two key, extrinsic factors that shape the movement of group-living species are 

the physical environment, for instance, proximity to consumable resources, and 

social dynamics, such as interactions with conspecifics. However, much remains 

unknown about how individuals engaged in group movement integrate complex 

information about their physical and social landscapes. In this research, a 

spatially explicit, statistical model was developed based on the established 

‘resource selection function’ to simultaneously test for, and separate, the impact 

of physical and social influences on an individual’s movement. Unlike the 

traditional approach, this modified ‘social resource selection function’ (SRSF) 

takes into account social impact by treating distances between group members 

as a spatial type of time-varying physical influences. As a proof of concept, 

validation of this approach is carried out by fitting it to multi-individual movement 

and physical landscape data simulated in a process resembling the three-zone 

model of animal aggregation. The SRSF model proved capable of recovering all 

key characteristics of the simulations. The key characteristics of this simulation 

representing an individual’s choice of a habitat with particular physical and social 

resources are reflected in the estimates from the SRSF model. To evaluate how 

it performs when applied to empirical data, the SRSF model was fit to remotely 
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sensed movement of a free-ranging herd of domesticated goats and high-

resolution, aerial imagery of the study site. The estimates of individual preference 

for movement towards locations occupied by conspecifics and at the edge of 

vegetation are consistent with our expectations about foraging behavior in goats. 

This work provides and validates a new tool for examining movement behavior in 

group-living animals as a function of the impact of social information on resource 

preferences. Application of this framework may inform outstanding theoretical 

questions about behavioral processes underlying the distribution of individuals 

within their social units, inside entire populations, and in relationship to 

heterospecifics across space and time.  

2.2 Introduction 

Physical and social environments shape animal movement decisions and affect 

their fitness and their ecological niche (150, 151). The physical environment 

includes persistent resources, such as food or shelter, which an animal may seek 

out (2, 152). It can also include less tangible and more dynamic features, such as 

areas associated with higher predation risk or other dangers, which an animal 

may avoid (153–156). Some features, like waterholes, can simultaneously serve 

as both a vital resource and a serious risk (157), in which case, an animal’s 

behavior may depend on its physiological needs and assessment of risk (158). 

The social environment can include information about the movement of 

conspecifics who provide experience or leadership (10, 127), those with whom it 

may be desirable or necessary to coordinate movements (8, 159, 160), and 

those whom it may be desirable to avoid (161). The physical and social factors 
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can operate at various scales, often simultaneously (118, 162), and interact in 

complex ways (163–165). For instance, African savanna elephants (Loxodonta 

africana) traveling with dominant matriarchs, or the most mature close kin, 

accessed better quality resources and spent more time in protected habitats than 

individuals moving with subordinate matriarchs (94). As another example, 

compared to historically migrating herds with presumably continual learning 

about ecological conditions from experienced elders, populations of free-ranging 

bighorn sheep (Ovis canadensis) reintroduced to novel habitats failed to migrate 

for several decades when subject to spatiotemporal shifts in vegetation (166). 

Together, these results indicate that considering the combined effects of the 

physical and social factors on animal movement may better inform our ideas 

about their behavior and ecology (167, 168), and guide wildlife conservation 

efforts (65, 169–171) and management outcomes (67, 114, 172).  

Simultaneous analysis of physical and social stimuli in free-ranging 

animals depends on access to individual movement data and data on the 

physical and social contexts of individual movement (173). In the past, habitat-

dependent movement analyses were limited due to coarse spatiotemporal 

resolution of physical and movement data, as well as lack of scale 

correspondence between them (174, 175). In addition, due to logistical 

constraints of studying animal populations in the wild, many earlier studies of 

movement in social species focused on a few, key individuals with conspicuous 

characteristics (39, 176). Advances in remote sensing and wearable tracking 

devices have improved the acquisition of high-resolution physical and movement 
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data (177–179). The ongoing miniaturization and improved reliability of tracking 

devices (168) make it increasingly possible to acquire multi-individual data and 

draw inferences about collective movement patterns (180). Analysis of multi-

individual movement, although still limited to a few species (8, 151, 179), has 

already offered novel insights into group movement patterns (181), leadership 

structure (98), as well as context-dependent landscape use (182, 183). For 

example, Strandburg-Peshkin and her research team (97) reported that individual 

movement decisions in a troop of olive baboons (Papio anubis) were strongly 

influenced by the number of conspecifics that had recently visited an area of 

interest, and, secondarily, by several landscape features, such as the density of 

vegetation and distance to human-made roads. In addition, while moving away 

from dense vegetation was not apparent at coarse scales, this behavior was 

common at a fine scale, implying that proximity to dense vegetation may impede 

individual baboons from tracking others. This study demonstrated how coupled, 

multi-scale analysis of physical and social variables allows for a biologically 

relevant interpretation of group movement behavior. 

Recent methodological developments enabling simultaneous analysis of 

multi-scale preferences for the physical and social environment (118, 162, 184) 

have presented exciting possibilities for research in animal movement (11, 81, 

168). For instance, several mathematical approaches (185), such as agent-

based (186–189), state-space (73, 80, 105) and resource-selection models (118, 

190–192), have facilitated multi-scale analyses of individual movement in relation 

to the physical environment (91, 168, 193, 194). Application of these techniques 
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to understand multi-individual movement in animal groups, at multiple 

spatiotemporal scales, is beginning to be implemented in the field of movement 

ecology (97, 98, 166). However, many studies that assess the physical and 

social influences on collective movement use empirical data to conduct 

parameter estimation and validate pertinent model predictions. To our 

knowledge, it is still rare for published models assessing the simultaneous effect 

of the physical and social landscape on individual movement to validate their 

approaches using data with well-understood characteristics (195). Given their 

potential for repeated empirical application, the development and validation of 

new movement models in social species will benefit from using data with known 

structure allowing for a high degree of confidence about the model behavior and 

its predictive properties (196–198).  

Here, I present a novel statistical model of collective movement in a 

heterogenous physical landscape. Our model is a spatially explicit, statistical tool 

designed to explore the interplay between landscape structure and complex 

social dynamics in shaping individual movement choices in group-living species. 

We developed this model by extending the established ‘resource selection 

function’ framework (RSF) based on a conditional logistic regression (CLR) (118, 

141, 142). As does the traditional approach, our model operates on movement 

data and the imagery of the physical landscape. In our model, however, I account 

for the social landscape by converting the positions of all nonfocal individuals into 

a time-varying, neighbor distance map. This approach allows for the 

simultaneous treatment of the map of neighbor distances with maps of the 



   
 

 24 

physical environment. Thus, I named our model a ‘social resource selection 

function’ (SRSF). I validated the SRSF model by fitting it to group movement data 

simulated with movement rules inspired by the three-zone model of animal 

aggregation (143). This is a self-propelled particle model in the context of three 

interdependent zones representing repulsion from, orientation with, and attraction 

towards others. To test its usefulness as a statistical tool with real-world 

application, I fit the SRSF model to remotely sensed movement data on a herd of 

domestic goats (Capra aegagrus hircus) and the aerial imagery of the research 

site (179).  

I predicted that the key aspects of the group movement simulation would be 

reflected in the SRSF model estimates of 1) the nearest neighbor distance and  

2) resource density preference functions. I also predicted that fitting the SRSF 

model to empirical data would produce estimates consistent with known foraging 

behaviors of domestic goats (144, 179, 199). I discuss our results in the context 

of our modeling process and the underlying assumptions. I also offer our insight 

about collection and processing of remotely sensed movement data, in a patch-

corridor landscape. Finally, I consider real-life applications of the SRSF model 

and the importance of using multi-individual movement in a range of biological 

fields from conservation biology to wildlife management. 
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2.3 Methods 

2.3.1 The SRSF model  

The SRSF model is an extension of the existing RSF approach (109, 118, 141, 

191). Mechanistically, the RSF approach treats an individual’s location at any 

moment in time as a choice made out of a ‘sample’ set of alternative locations 

(141). This set of locations is bounded spatially, usually by a consideration of 

how far the individual in question could plausibly have moved from its previous 

location in the time available. The relative probability of ending up at different 

destinations is modeled using a CLR as a function of various environmental 

parameters that differ between locations. Some of these, for example ‘resource 

density,’ may be measurements of local conditions. Others, such as ‘distance to 

water’ or ‘distance to human settlements’ may be values related to more distant 

features, but which the individual might reasonably perceive or know about. One 

such measurement, ‘distance to previous location,’ is a proxy for the effort 

required to move to the new location. As long as individuals are optimizing 

benefit-cost ratios in their movements, such as when foraging, I would expect this 

particular variable to almost always be important, and indeed previous work 

shows that it is (200, 201). 

The SRSF model adds to the RSF framework by considering the locations 

of other individuals in a moving group as time-varying point features of the 

landscape. One individual (the focal individual) is modeled, and the locations of 

the others are incorporated as a single ‘distance to nearest neighbor’ value that 

can be calculated for any location on the landscape (Figure 2.1). I could treat 
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each nonfocal individual as a separate predictor, which would be appropriate if, 

for example, individuals respond differently to different group members. In this 

project, however, I assume for simplicity that all group members are identical in 

how their proximity influences the focal individual. 

To fit the SRSF model, some decisions have to be made at the outset. For 

a location to be a choice, the landscape must be made up of discrete areas, and 

because local measurements are often derived from remote imagery the usual 

practice is to make it a grid. Choosing the grid cell (or pixel) size requires a 

balancing of various interrelated factors, such as the spatial scale of the 

landscape features under consideration and the length of the typical movement 

distance between locations. In cases of high-resolution movement data, in which 

locations are close together in time, a second choice is required: whether to 

subsample every nth location (creating larger movements) (202). There are no 

rules of thumb for these choices yet, and full consideration of all possibly relevant 

factors is outside the scope of this paper. Here, I will simply explain the choices I 

made for the purpose of the validation I carried out.  

For any given movement m, the ‘choice’ is a binary response where a 

potential location i is either the endpoint at which the individual was recorded (yi 

= 1) or one of the sampled alternatives (yi = 0). For convenience I will label the 

chosen location with the subscript j (j ∈ i). The probability of a movement is 

modeled as a CLR: 
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𝑒"!	$

∑ 𝑒"!	$%
 



   
 

 27 

 
where X is a matrix of k predictor variables derived from the landscape data and 

β is a k by 1 vector of parameters to be estimated. Thus, pm is the predicted 

‘preference value’ for the location the individual is found in divided by (and 

therefore conditional on) the sum of the preference values for the random sample 

of possible locations. In practice, depending on the grid size of the landscape 

and the boundary of possible distances reached, the denominator could include 

hundreds or even thousands of pixels. This can make computation of the 

expression, which is repeated for every movement in a dataset, time consuming 

— a challenge that then translates into model fitting. It is thus a standard practice 

to randomly select a fixed number (e.g., 20–100;  considered as a fair 

representation of a unbiased sample) of non-chosen alternative locations, on the 

assumption that they will comprise a representative sample of the landscape 

variation available to the individual (Figure 2.1) (203).  

 
 
Figure 2.1 The sociophysical landscape in the social resource selection model 
(SRSF model).  
 
Notes: Physical and social landscapes around the focal individual between time t and t + 1, in a radially 
bounded, heterogeneous, 2-D grid. The center of the grid is the location of the focal individual at time t. 
Empty white squares are a ‘sample’ set of 30 locations available at time t + 1. Filled white square represents 
the location chosen by the focal individual at time t +1. Black arrow shows the movement between time t and 
time t +1. Black circles indicate the locations of all neighbors at time t +1.    
Source: (203) 
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I fit the CLR model by maximizing the log-likelihood of the entire set of n 

movements m, denoted as 

𝐿 = ' 𝑝!

&

!'(

 

 
using quasi-Newton nonlinear maximization. 

2.3.2 SRSF model interpretation 

I performed variable selection by first fitting models with all possible subsets of 

‘physical’ and ‘social’ landscape variables, and with each included variable in 

either linear or quadratic forms. The sole exception was the ‘distance from 

previous location’ variable, which was always included in a linear form to 

represent cost of movement (see SRSF model in Section 2.3.1). I then ranked 

models using Akaike’s Information Criterion (AIC) (204) and calculated 

importance scores for each variable as the cumulative Akaike weight of the 

models in which it appeared (156, 205). 

Interpretation of SRSF model output depends on the functional shape of 

the model for each variable over the range of values of that variable. In particular, 

quadratic functions have a single maximum or minimum but that may or may not 

occur within the range of the variable. Thus, I divide fitted functional forms into 

four categories: monotonically increasing; or decreasing (each of which might 

arise from a linear or quadratic expression), indicating a preference for larger or 

smaller values respectively of the variable in question; convex with the maximum 

within the data range (a preference for intermediate values), or concave with the 

minimum within the data range (118). 
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2.3.3 Multi-individual movement and physical landscape data for model 

validation and testing 

I validated the SRSF model in two ways. I first fit it to simulated group 

movements in a heterogeneous landscape and compared the estimated 

parameters to those of the simulation. I then fit the SRSF model to the 

movements of a semi free-ranging herd of domestic goats in an arid landscape to 

test if the model recovers the most obvious and well-documented physical and 

social drivers of their movements (goats move together while browsing 

vegetation) (144, 179, 199). 

2.3.4 Simulated movements 

I simulated group movements on a heterogenous, two-dimensional grid. Group 

movement rules were modified from the three-zone, agent-based flocking model 

(206) in which two social forces (repulsion-attraction and orientation) operate at 

different separation distances within the interval {0, +∞} (Figure 2.2a). The model 

returns a social force vector acting on each individual which combines the 

repulsion, attraction and orientation forces from all (or a subset) of neighbors, 

and to which the focal individual responds by turning. The repulsion becomes 

important when the focal individual is too close to a neighbor, risking collision. 

The attraction starts affecting the focal individual when it moves too far from all of 

its neighbors and risks separation. The orientation acts upon the focal individual 

at an intermediate distance to all of its neighbors, thereby maintaining a relatively 

low risk of both collision and separation. Our version of the model also includes 
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limited perception; individuals only respond to neighbors within a specified 

angular range around the direction they are facing (206, 207) (Figure 2.2b). 

A simulation landscape with multiscale heterogeneity was created by 

generating an image of 1000 by 1000 random grayscale pixels and iteratively 

adding a blurred version back to the developing landscape, using successively 

larger radii for the blurring kernel. The final image was binarized to create a 

physical environment with two habitat types (i.e., pixels having a value of 0 or 1), 

and then blurred one more time with a radius of 20 pixels to soften the ’edges’ 

between the habitats (i.e., creating 0-1 gradients across the edges) (Figure 2.2c). 

Most ecosystem transitions are not sharp, but in this case the edge blurring is 

done to allow simulated organisms to locate themselves with respect to a habitat 

edge, which has intermediate values. It also generates an edge effect whereby, 

for example, an individual that strongly prefers habitat ‘1’ will not only tend to stay 

within patches of ‘1’ pixels, but even avoid the edge where values begin to drop 

off. The smoothing method, of course, raises the question of what kernel radius 

to use when fitting, and methods for choosing an optimal radius (which might be 

different for different environmental variables) have been published by our 

research group elsewhere (118)). 

To add the physical environment to the group movement model, I simply 

applied a quality function to the landscape array (indicating what values the 

individual prefers), and then for each individual I calculate the net attraction force 

of every pixel within a given perception radius and angle. These forces were 

weighted by a declining function of distance. This net environmental force vector 
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was added to the net social force vector with a parameter that scaled their 

relative weights (Figure 2.2b).   

 

 
 
Figure 2.2 Modification of the three-zone movement model and group movement 
simulation 
 
Notes: (a) A discontinuous version of the three-zone model; it requires two step functions detailing three 
zones of constant value for optimal social spacing 1) to prevent collisions with or separation from neighbors 
and 2) to facilitate directional orientation. The first function with parameters r and a defines repulsion and 
attraction strength (solid lines); repulsion occurs at relatively shorter between-neighbor distance (e.g., y = - 1 
for 0 < x ≤ 4), whereas attraction at relatively long distance (e.g., y = 1 for 8 ≤ x < 25). Beyond the maximum 
a value an individual loses track of its neighbors. The second function with parameter o defines orientation 
strength (dashed line). Orientation occurs at relative short to medium between-neighbor distance (e.g., y = 1 
for 0 < x ≤ 7). At a medium distance (e.g., y = 1 for 4 < x ≤ 7) there is no repulsion or attraction affecting the 
individual. (b) Example diagram representing the forces acting on the focal individual (white dot) at the end 
of the third consecutive movement (t + 2), with previous two movements (t, t + 1) shown to depict the path. 
The net distance force (dashed, white arrow) and the net angle force (double-line, white arrow) are exerted 
by the surrounding environment and neighbors (grey dots). The net force (single-line, white arrow) is an 
aggregate of the net distance and angle force. Repulsion and attraction forces are represented by the inner 
and outer solid, white circles around the focal individual, whereas the orientation force is represented by the 
dashed white circle around the focal individual. The angle of perception is represented by the cone 
surrounding the net force between the three movements. (c) Simulated tracks of 10 individuals in an 
example, 1000 x 1000 pixelated landscape consisting of two-pixel types with values of 0 or 1. Smoothing of 
this landscape using a circular kernel with 20-pixel radius created 0-1 gradient. Pixels with values 
approximately equal to 0.5 (shades of gray) represent the edge between two habitat types, whereas pixels 
with values above 0.5 (shades of white) represent resource-rich habitat. 
 

To simulate group movement on a heterogenous grid, a number of 

parameters, detailed in Table 2.1, have to be set first. Setting meaningful values 

for these parameters depends on understanding how they may be impacted by 

the spatial resolution of the underlying, physical landscape. For instance, the 

value preset as the length of a movement only makes sense if considered in the 

context of both pixel size and the characteristics of the preferred habitat (e.g., 
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homogenous versus mosaic). To exclude occasions where any individual 

became permanently separated from the group, I evaluated only the set of 

locations where the focal individual and at least one of its neighbors were within 

a distance smaller than three times the group’s median diameter. Using this 

cutoff process, I managed to preserve a majority of simulated, group movement 

data.  

Table 2.1 Summary of the Parameters Required to Carry Out the Group 
Movement Simulation   
 
Model 
parameters  

Parameter values Parameter details  

Repulsion- 
Attraction 
force   

near r = 0 – 4 pixels 
near a = 8 – 25  
far r = 0 – 10 
far a = 14 – 25 

Repulsion-attraction strength is a discontinuous movement 
function with parameters r and a; it defines two zones of constant 
values at different social separation distances within the interval 
{0+∞} setting the preferred distance between the focal individual 
and its neighbors (Figure 2.2a).  

Orientation 
force   

near o = 0 – 7pixels 
far o = 0 – 13 

Orientation strength is a discontinuous step function with 
parameter o; it sets the strength of positioning oneself in the 
same direction as the neighbors. The interval between r and a 
parameter is a neutral zone (Figure 2.2a).  

Social force 0.95 Fraction weighing the total strength of all the forces exerted by 
other individuals, compared to those exerted by the environment 
(Figure 2.2b) 

Habitat type   edge v = 0.5 
intensity 
in-patch v = 1 

Habitat type v expresses the density of two-pixel types on a 0-1 
gradient in a mosaic of high (‘in-patch’) and intermediate (‘edge’) 
resource density patches (Figure 2.2c). 

 

2.3.5 Predictions about simulated movements 

I predicted that the functional forms of the SRSF model estimates would be 

simultaneously consistent with both the neighbor distance and resource density 

functions in the group movement simulation. For instance, when the simulation 

parameters specified a ‘preference’ for high resource density, so should the fitted 

SRSF model function. Although the fitted functions, built using generic 
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polynomial equations, could not replicate the exact shape of the simulation 

functions, I decided that a notable parallel between them would be the grounds 

for validation of the SRSF model. To test our predictions, I performed four 

experiments manipulating four different aspects of the group movement 

simulation. In each experiment, each model analyzed the movement of one 

individual in the context of the remaining group members. Data simulation and 

fitting the SRSF model using simulated data were performed by two members of 

our group. The person responsible for the fitting process was not aware of the 

parameters used in the respective simulations.  

In the first experiment (E1), I evaluated the performance of the SRSF 

model using simulated movement data subsampled at an increasingly large 

interval in a group of 10 individuals. At each sampling interval, I selected the first 

location of each individual’s trajectory followed by every nth location. I predicted 

that the SRSF model estimates would most accurately recover the preferred 

social distance and resource density at some intermediate sampling interval 

because it would be most suitable for a simultaneous assessment of the physical 

and social landscapes occurring at different scales. I planned to use the most 

appropriate sampling interval as a parameter in the following experiments.  

In experiment two (E2), I tested the accuracy of the SRSF model in 

capturing the preference for a specific neighbor distance and resource density. 

Figure 2.3 exemplifies our predictions for this experiment regarding the direction 

and the magnitude of a difference in both parameters. 
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Figure 2.3 Example predicted functional forms of the SRSF model.  
 
Notes: Fits of the SRSF model to simulated group movement data used the following preference: (a) near 
neighbor distance (dN) (r = 0 – 4, a = 8 – 25, o = 0 – 7) and the edge of resource (dV) (v = 0.5) or (b) near 
dN and in-patch dV (v = 1). The SRSF model estimates are expressed in terms of relative preference of a 
given location as a function of dN and dV. I evaluated the movement preferences of each individual in the 
context of others and the surrounding landscape (N =10). 
 

In the third experiment (E3), I assessed the sensitivity of the SRSF model 

to varying amounts of social signal available to the focal individual by simulating 

groups of two, six and 10 individuals respectively. The parameters for social 

distance and resource density were kept constant across all group size 

simulations. I predicted that as the number of individuals in a group increased, 

the average spacing between individuals would decrease below the optimal 

spacing specified in the simulations, due to ‘crowding’ in a pixelated landscape. 

As for resource density, I predicted that the fitted functions would reflect the 

simulated parameter regardless of the group size. 

Finally, in experiment four (E4), I evaluated the ability of the SRSF model 

to simultaneously discover physical and social drivers of movement with 

incomplete social data. After simulating the movements of a group of 10 

individuals, I created random subsets of 10, 9, 8, … …2 tracks, simulating a 

situation in which only some individuals in a group were tracked. I predicted that 
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incomplete social information in smaller subsets would yield poorer estimates of 

the sociophysical preference, because group members would be responding to 

‘unseen’ social forces, effectively adding ‘noise’ to their movements.  

2.3.6 Empirical movements 

To assess how the SRSF model performs when fitted to empirical data, I used a 

subset of herd movement data on a semi-free-ranging group of 16 adult, 

domesticated goats inhabiting Tsaobis Nature Park, Namibia (15° 45’E 22° 23’S) 

(179). In September 2015, each animal was equipped with a wearable tracking 

device which included a GPS logger programmed to collect longitude and latitude 

data every second. The herd browsed freely within the park, between the hours 

of 6:30 a.m. and 2:30 p.m. for a total of 10 days, except for occasional active 

herding events to prevent trespassing on neighboring properties. Because a 

detailed assessment of the species’ socioecology is beyond the scope of this 

publication, I evaluated subset of data from one day characterized by  

1) prolonged absence of active herding events, 2) a nearly complete, continuous 

coverage of GPS data and 3) the abundance of biologically relevant and easily 

classifiable physical landscape attributes (i.e., vegetation).  

Although the data presented in this study were characterized by a near-

complete coverage of GPS points, occasional tracking device failure, unique to 

each device, led to desynchronization in the recording of consecutive locations 

across all devices. To proceed, I selected only the locations with timestamps 

present in trajectories of all goats and applied the cutoff process described in the 

Section 2.3.4. This synchronized subset of movement data consisted of 
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approximately four and a half hours of group movement equivalent to 8049 

movements per animal. Finally, to set movement in the context of the underlying 

landscape and to express them in real-world units (i.e., meters), I projected the 

synchronized trajectories in the Universal Transverse Mercator coordinate 

system (UTM) (208).  

Goats are generalist browsers, tracking the edges of bushes and larger 

vegetation patches, and most of the daily activity of the Tsaobis goats was this 

behavior (Figure 2.4a). I therefore used vegetation as our physical landscape 

data layer. The layer was derived from an orthorectified, composite RGB color 

image obtained by aerial survey. The original image's 3 cm2 resolution was down 

sampled to 30 cm2 pixels, making it more computationally tractable while 

maintaining resolution on par with the width of a goat, and therefore with 

minimum social distances. The pixels were classified into vegetation and a few 

other categories using a supervised maximum likelihood technique (Figure 2.4b). 

For this analysis, however, I generated a simple binary vegetation/non-vegetation 

array and smoothed it using a 10-pixel (30 cm2) radius kernel allowing for more 

realistic interpretation of the behavior around the edge (as an alternative to a 

preference or avoidance of one habitat type within a binary landscape) (Figure 

2.4c). Values around 0.5 represent the edge; other values between 0 and 1 

represent areas just outside or inside the patch. 
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Figure 2.4 Goat movement and the physical landscape. 
 
Notes: (a) An overview of the ‘core movement range’ measuring approximately 430 x 368 meters with 
juxtaposed goat trajectories shown in context of a high-resolution, color aerial image (i.e., 30 cm2 pixels), (b) 
land-type classified (using the supervised maximum likelihood classification tool) (ESRI 2015)) featuring five 
habitat types (i.e., dead and live vegetation, rock, sand and shadow). (c) An overview of a binarized, gray-
scale map featured in (b) to enhance the contrast between vegetation and non-vegetation features and 
blurred by averaging each pixel around the center of each vegetation patch with the neighboring pixels using 
10-pixel radius. The gray region represents the edge of the vegetation (v = 0.5), the white region represents 
the inside of a dense vegetation patch (v > 0.5) and the black region represents little to no vegetation (v < 
0.5).  
 

2.3.7 Predictions about empirical movements 

Since our intention has been to develop a tool for analysis of movement behavior 

by real animals, which are unlikely to recognize strict zones in their landscape, I 

fit the SRSF model to the previously described goat movement as a function of 

neighbor distance and vegetation density. To determine the most appropriate 

resolution for simultaneous analysis of the sociophysical landscape, in 

experiment five (E5) I fit the SRSF model to movement data subsampled at an 

increasingly large interval. I then use the most appropriate sampling interval as a 

parameter in experiment six (E6) detailing the closeness of the SRSF model 

estimates to observed data. And lastly, to explore if fitting the SRFS model to 

goat movement in the context of each landscape alone versus a coupled 

landscape would produce different conclusions about goat behavior, I parsed the 

results from E6. I predicted that fitting the SRFS model to movement of goats at 
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intermediate sampling intervals would most reliably estimate species-specific 

behaviors of interest. Because domestic goats typically browse as a group (144, 

199), I predicted that the SRSF model estimates would reflect a preference for 

movement towards other goats but avoid running into nearby group members 

(i.e., a monotonic function peaking at relatively near social distance and 

decreasing at distances approaching less than one body length to reflect the 

avoidance of collision). I also predicted that the SRSF model estimates would 

reflect the movement towards the edge of vegetation (i.e., a convex quadratic 

function with a peak at an intermediate density of vegetation). Finally, I 

anticipated that simultaneous analysis of the physical and social landscapes 

would in general reflect the patterns seen after fitting the SRSF model to either 

landscape separately.  

2.3.8 Software used 

Data processing and statistical analyses were carried out in Mathematica 

12.1.0.0 (Wolfram Research, Inc. 2019) and RStudio 1.0.136 programming 

languages (R Core Team 2017), as well as ArcGIS 10.4.1 mapping software 

(ESRI 2016).  

2.4 Results 

2.4.1 Outcomes of fitting the SRSF model to simulated data  

As I predicted, the SRSF model estimates indicate that social distance and 

resource density are predictors of movement preferences among simulated 

individuals.  
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In E1, where I tested the SRSF model on group movement subsampled at 

increasingly large intervals in the context of two landscape types, an intermediate 

sampling interval produced the most parsimonious results (lowest AIC values) 

regardless of the habitat type. In addition, considering the physical and social 

contexts separately and then jointly revealed that these cues impact individual 

movement choices simultaneously, although not always uniformly. In the case of 

the edge of the vegetation as a preferred resource, the sociophysical landscape 

resulted in more parsimonious estimates than either landscape alone (Figures 

2.5a, 2.5b and 2.5c). In contrast, when the in-patch habitat was the context for 

group movement, models considering only social dynamics as well as 

sociophysical dynamics produced equally parsimonious results (Figures 2.5d, 

2.5e and 2.5f). 
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Figure 2.5 Results from experiment 1 – subsampling simulated movement.  
 
Notes: Comparison of the best SRSF model AIC values in E1 characterizing trajectories of 10 simulated 
individuals, subsampled at a number of intervals within the interval 10 – 390 in increments of 20. The black 
dots represent best full models (i.e., y = x + x^2), whereas gray dots represent best reduced models (i.e., y = 
x). The top panels detail results of fitting the SRSF to movement data in the context of edge as the 
preferred, physical resource density (dV) (v = 0.5) and the (a) the social, (b) physical or (c) the sociophysical 
landscape. The bottom panels (d, e, and f) detail results of fitting the SRSF to the same landscape contexts 
as described in (a, b and c) while in the context of in-patch dV (v = 1). AIC ranges in figures (a), (c), (d) and 
(f) are inserted on the figures for easier interpretation. To generate an equal amount of data points, I 
selected 623 random movements per each sampling interval limited by the coarsest subsampling. The 
preferred social separation (dN) across all sampling intervals was set to near social distance (r = 0 – 4 
pixels, a = 8 – 25, o = 0 – 7). For each sampling interval, the radius was set to twice the average pixel 
distance moved during that interval and fell within the range 40 – 60 pixels.  

 

In E2, I evaluated the SRSF model’s accuracy in capturing the difference 

in preference for social distance and resource density in a group of 10 

individuals. The estimates of neighbor distance across the four scenarios did not 

reflect the ‘optimal separation’ specified in the simulation models, but they did 

reflect the actual distances maintained by the simulated individuals, which were 

generally much smaller than the simulation model optimum, especially for the 

edge-foraging simulations. Nevertheless, the simulations using the model with 

larger optimal spacing did generate larger actual spacings and larger estimates 

of that optimal spacing compared to the model with small optimal spacing 
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(Figures 2.6a and 2.6c). By contrast, the resource density estimates closely 

matched the simulation parameters and the observed choices in all experimental 

scenarios (Figures 2.6b and 2.6d). 

 

 
Figure 2.6 Results from experiment 2 – accuracy of the SRSF model fit to 
simulated movement.  
 
Notes: Top panels represent the comparison of simulated group movement data (histograms) and 
associated best SRSF model estimates (parabolas) in E2 characterizing location choices by 10 focal 
individuals across four scenarios with disparate preferences for neighbor distance (dN) and resource density 
(dV). The histograms represent the distribution of selected (gray bars) and available (white bars) locations in 
one scenario with the following parameters (dashed vertical lines): (a) near dN (r = 0 -4 pixels, a = 8 - 25, o = 
0 - 7) and (b) edge dV (v = 0.5). Overlaying the simulated distributions are corresponding functional forms of 
the best SRSF model estimates expressed in terms of the relative preference for movement towards the 
preferred value pixels. The scales of the simulated and estimated distributions have been standardized for 
presentation. Bottom panels represent the averages of the best SRSF model maxima in (c) and (d) featuring 
four scenarios with some combination of simulated parameters (horizontal dashed lines) defined as follows: 
1) near dN and edge dV subsampled at every 130 th location and the radius set to 50 pixels (or twice the 
mean distance moved in one movement); 2) far dN (r = 0 -10, a = 14 - 25, o = 0 - 13)  and edge dV 
subsampled at every 70th location and the radius set to 30 pixels; 3) near dN  and in-patch dV (v = 1) 
subsampled at every 150th location and the radius set to 60 pixels; and 4) far dN  and in-patch dV 
subsampled at every 150th location and the radius set to 55 pixels. The gray dots represent the averages for 
the chosen dN and dV values; they were different from the simulation model optima due to unexpected 
simulation dynamics (see Section 2.5 for an explanation). The gray horizontal line (sampling bias) and black 
horizontal line (crowding bias) in (a) are potential explanations for imperfect estimates of dN and are detailed 
in Section 2.5. 
 



   
 

 42 

Next in E3, where I applied the SRSF model to simulated data with 

different group sizes (i.e., two, six or ten) and constant parameters for both 

predictors, the estimated optimal neighbor distances were always lower than the 

model optima (as in E2 above), but the error was smaller for groups of six 

compared to ten, and much smaller for groups of two (Figure 2.7a). Again, these 

estimated optima closely matched the observed neighbor distances. For all group 

sizes, the physical model accurately estimated the preferred vegetation density 

of 0.5 (Figure 2.7b). 

 

 
 
Figure 2.7 Results of experiment 3 - different group sizes.  
 
Notes: Ranges of the best SRSF model maxima in E3 characterizing location choices in a simulated group 
of 2, 6 or 10 focal individuals as a function of (a) neighbor distance (dN) and (b) resource density (dV). The 
parameter values (horizontal dashed lines) were the following: near dN (r = 0 - 4 pixels, a = 8 - 25, o = 0 - 7) 
and edge dV (v = 0.5) subsampled at every 130th location and the radius set to 50 pixels (or twice the mean 
distance moved in one movement). The gray dots represent the averages for the chosen dN and dV values; 
they were different from the simulation model optima due to unexpected simulation dynamics (see Section 
2.5 for an explanation). To generate an equal amount of data points, I selected 623 random movements per 
individual, per group size. 
 

In E4, where I evaluated the SRSF model using different numbers of 

tracked individuals sampled from a simulation of 10 individuals, with constant 

preference values for both predictors, the resulting estimates were more 

parsimonious in relatively large groups compared to small group regardless of 

the habitat type (Figure 2.8a and 2.8b). 
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Figure 2.8 Results of experiment 4 - different numbers of tracked individuals.  
 
Notes: Ranges of the best model AIC values in E4 across nine group sizes with a number of tracked 
individuals ranging from two to 10, sampled from a simulation containing tracks of 10 individuals in the 
context of a preference for (a) edge resource density (dV) (v = 0.5) and (b) in-patch dV (v = 1). To generate 
equal amount of data points across the nine group size categories, I varied the number of iterations per each 
group size (N2 = 5 groups of 2 individuals, N3 = 4, N4 = 3, N5 = 2, N6 = 2, N7= 2, N8 = 2, N9 = 2, N10 = 1). 
Across all group sizes, the social preference was set to near neighbor distance (r = 0 - 4 pixels, a = 8 - 25, o 
= 0 - 7). The tracks in (a) were subsampled at every 130th location and the radius was set to 50 pixels (or 
twice the mean distance moved in one movement), whereas in (b) the tracks were subsampled at every 
150th location and the radius was set to 60 pixels. 

 

2.4.2 Outcomes of fitting the SRSF model to empirical data   

The SRSF model estimates of preferred distance to other goats and vegetation 

density in E5 suggest that although both parameters informed individual 

movement decisions, the social distance was a stronger signal. This result 

became evident when I evaluated each trajectory at an increasingly large 

sampling interval in E5 (Figure 2.9). In the SRSF model fits where only the social 

landscape was considered, the best model AIC values slightly improved (became 

smaller) at larger sampling intervals (Figure 9a). When only the physical 

landscape was included, the best model AIC values got slightly worse 

(increased) as a function of the sampling interval (Figure 2.9b). Fitting the 

combined, sociophysical SRSF model to movement data subsampled at large 

intervals produced more parsimonious results (Figure 2.9c). Given that there was 
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not one best sampling interval, I selected an intermediate sampling interval equal 

to 50 as an example. 

 
 
Figure 2.9 Results of experiment 5 - subsampling empirical movement.  
 
Notes: Comparison of the best SRSF model AIC values in E5 characterizing trajectories of 16 goats, each 
subsampled at eight sampling intervals within the location interval {10, 80} in increments of 10. The black 
dots represent best full models (i.e., y = x + x^2), whereas gray dots represent best reduced models (i.e., y = 
x). The three panels detail the results of fitting the SRSF to (a) movement data in the context of the social 
versus (b) the physical or (c) the sociophysical landscape. To generate an equal amount of data points, I 
selected 98 random movements per sampling interval limited by the coarsest subsampling. The built-in 
preferences across all sampling intervals were for near social distance with some repulsion at very near 
distance and edge resource density. For each sampling interval, the radius was set to twice the average 
pixel distance moved during that interval and fell within the range 7 – 53 pixels (3 – 25 meters). 

 

The SRSF model estimates of the neighbor distance function in E6 show 

an overall preference for staying close to other group members, but not the 

repulsion at short distances that group movement models generally assume 

(Figure 2.10a). The estimated function for smoothed vegetation density is convex 

with a maximum around 0.5, indicating the overall preference for the edges of 

vegetation patches (Figure 2.10b).  
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Figure 2.10 Results of experiment 6 – accuracy of the SRSF model fit to 
empirical movement. 
 
Notes: Comparison of empirical group movement data (histogram) and associated best SRSF model 
estimates (parabolas) characterizing location choices by 16 goats with an expected ‘preference’ for (a) 
relatively near neighbor distance and (b) intermediate vegetation density (dV). The trajectories were 
subsampled at every 50th location. The histograms represent the observed distribution of selected (gray 
bars) and available (white bars) locations. Overlaying the simulated distributions are functional forms of the 
best SRSF model estimates expressed in terms of the relative preference for movement towards pixels with 
the preferred value ranging from 0 (i.e., outside of -vegetation-patch) to 1 (i.e., in-patch) with 0.5 indicating 
the edge habitat. The scales of the simulated and estimated distributions have been standardized for 
presentation. 

 

Finally, by parsing the results from E5, I found that simultaneous analysis 

of the sociophysical landscapes revealed trends about the importance of the 

social landscape that were not apparent in fitting the SRSF model to goat 

movement in the context of the social or physical landscape alone (Tables 2.2 

and 2.3). While making their movement decisions, the goats did not always 

prioritize the same information. For instance, goat 10, while navigating in a 

complex sociophysical landscape, appeared to have considered information 

about vegetation density and its neighbors as important; goat 12 seemed to 

prioritized information about the distribution of its neighbors as more important 

than cues from the physical landscape; while goat 15 did not seem to consider 

information about vegetation as important, but it did consider social information 

as important. These results suggest that besides estimating animal resource 
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preferences, the SRSF model may offer insights about unique behavioral 

tendencies (e.g., independent foraging or leadership versus followership).  

 

Table 2.2 Evidence of Social Stratification – Comparison of the Social and 
Sociophysical Models 
 

Goat  Sampling interval 
 

10 20 30 40 50 60 70 80 

1 R R C R R R R R 

2 N R R R R R R R 

3 R R R R R R R R 

4 R R R R R R R R 

5 R R R R R R R R 

6 R R R R R R R R 

7 R R R R R R R R 

8 R R R R R R R R 

9 R R R R R R R R 

10 R R C R R R R R 

11 R R R R R R R R 

12 R R R R R R R R 

13 C R R R R R R R 

14 R R R R R R R R 

15 N R R R R R R R 

16 R R R R R R R R 
 
Notes: Assessment of a change in the SRSF estimates of social parameters between the best social versus 
sociophysical models as a function of sampling interval ranging from 10 to 80 in increments of 10. The 
letters used in this table have the following meaning: ‘N’ = no signal, indicating that the social predictor was 
not important in the best social model and the best sociophysical model; ‘L’ = lost signal, indicating that the 
social predictor was important in the best social model but not the best sociophysical model; ‘G’ = gained of 
signal, indicating that the social predictor was not important in the best social model but became important in 
the best sociophysical model; ‘R’ = retained signal, indicates that the social predictor was important in the 
best social model and remained so in the best sociophysical model; ‘C’ = change of signal, indicates that the 
social predictor was important in the best social model and remained so in the best sociophysical model but 
it changed from a linear form to a quadratic one, or vice versa. 
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Table 2.3 Evidence Of Social Stratification – Comparison Of The Physical And 
Sociophysical Models 
 

Goat Sampling interval 
 

10 20 30 40 50 60 70 80 

1 N L R G L L L L 

2 N L R C L R R R 

3 N R N R L R L R 

4 N N N L L N L L 

5 R R C L L L C L 

6 N N C C R C R C 

7 N N N G N R R L 

8 N C N L L N L L 

9 R N R L R R R L 

10 N C R R R R R R 

11 N C L C C L L R 

12 N L G L L L L L 

13 R L L L N L R L 

14 L L L N L N L R 

15 N N N N N N N L 

16 N R C L R C L R 
 
Notes: Assessment of a change in the SRSF estimates of social parameters between the best physical 
versus sociophysical models as a function of sampling interval ranging from 10 to 80 in increments of 10. 
The letters used in this table have the following meaning: ‘N’ = no signal, indicating that the social predictor 
was not important in the best physical model and the best sociophysical model; ‘L’ = lost signal, indicating 
that the social predictor was important in the best physical model but not the best sociophysical model; ‘G’ = 
gained of signal, indicating that the social predictor was not important in the best physical model but became 
important in the best sociophysical model; ‘R’ = retained signal, indicates that the social predictor was 
important in the best physical model and remained so in the best sociophysical model; ‘C’ = change of 
signal, indicates that the social predictor was important in the best physical model and remained so in the 
best sociophysical model but it changed from a linear form to a quadratic one, or vice versa. 
 

2.5 Discussion 

I present the SRSF model as a spatially explicit, statistical tool for the analysis of 

social dynamics interacting with the physical structure of the environment and the 

role this complexity plays in the ability of animal groups to navigate that 
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landscape. This model is based on the RSF framework. Its novelty lies in the 

treatment of the social context as a time-varying, physical landscape. I validated 

this approach using simulated group movement data with predictable 

characteristics, as well as remotely sensed movement and landscape data from 

a readily herding species. In Sections 2.5.1 and 2.5.2, I discuss the agreement 

and inconsistencies between my predictions and results, their potential reasons, 

and their real-life relevance. 

2.5.1 Conclusions from validation using simulated data 

In general, fitting the SRFS social model (which tested the distance to a nearest 

neighbor, or the social landscape, as a predictor of individual resource 

preference) to simulated group movement was more parsimonious at longer 

location sampling intervals. In contrast, the fit of the physical model (which tested 

the density of vegetation, or the physical landscape, as a predictor) did not vary 

systematically with sampling intervals. This difference is likely related to the fact 

that these processes operate at different spatial scales. In other words, (per the 

simulation model used to generate group movement data), focal individuals in 

groups moving across a heterogeneous habitat, have two types of goal: 1) to 

remain in a group and 2) to arrive at a preferred resource patch. Their movement 

was likely restricted more by the time-varying distribution of autonomous partners 

(who had similar but unique goals) than the distribution of resources which in the 

case of the simulation model was static (but in theory could change, likely on a 

longer time scale). It is reasonable to expect that considering both landscapes 

simultaneously may lead to better overall decision, and indeed, fitting the 
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sociophysical model (which considered the social and physical predictors 

simultaneously) was at least as parsimonious or more so than the outcomes of 

the other two models considered separately.  

The fact that fitting the SRSF model to simulated movement subsampled 

at intermediate or longer intervals was generally better than fitting it to data 

subsampled at finer scale intervals indicates that extremely high frequency 

positional data may not always contain useful information about the question of 

interest. It also shows that systematic subsampling alone, even when location 

and landscape data are available at moderately different scales, may reveal 

sufficient scale compatibility (with an increase in signal-to-noise ratio) and result 

in meaningful analysis across disparate contexts. 

The estimated cumulative effect of the physical environment and social 

dynamics on individual resource preference changed with the type of physical 

context. For individuals navigating within the in-patch habitat, which in the real 

world may be thought of as a vast and homogeneous landscape feature, the 

ubiquitous physical signal had less weight as a predictor compared to information 

about social partners. In contrast, the edge of vegetation — a rare and linear 

feature, potentially difficult to sample properly, was a predictor together with the 

signal about social spacing. This outcome when considered in light of a real-life 

example, for instance when an animal is moving along a wildlife corridor in a 

fragmented landscape, illustrates the importance of biologically meaningful 

interpretation, and the impact as well as the challenge that sampling regime may 

have on the SRSF model estimates.  
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Excluding simulated tracks of some group members diminished the impact 

of the sociophysical landscape as a complex predictor, regardless of the physical 

contexts. This result shows that forcing the SRFS model fitting process in the 

context of a partially described social landscape leads to biased estimates. 

In terms of the SRSF model accuracy, the estimates of the preferred 

resource density reflected key features of the simulation across all experimental 

scenarios. In contrast, the estimates of preferred neighbor distance were always 

smaller than in the simulations, particularly in large groups simulated using large 

social separation and the edge of vegetation optima versus near distance and in-

patch optima. This pattern likely emerged as a consequence of ‘sampling’ and 

‘crowding’ biases where each simulated movement was a trade-off between 

maintaining social distance and moving towards rare and clustered edge 

locations. In a large group with a built-in preference for small social spacing, 

each individual could remain close to its neighbors while still finding nearby edge 

resources. However, in a large group with far social distance optimum, the 

theoretical tendency of each individual was to move away from others and 

perhaps from the preferred resources. This trade-off seemed less impactful when 

estimating resource preferences in the context of the in-patch habitat because as 

an abundant resource it was not as strong a cue as the social landscape. 

Together these results indicate that most of the discrepancy between the SRSF 

model estimates and the simulation optima (which were larger than the actual or 

observed preferences) came from the unexpected simulation dynamics, not the 

model fitting. 
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Mitigating the sampling bias in a landscape with rare or linear features 

may require a more sophisticated process that accounts for the proportion of 

such features in the local habitat in the current simulation model. The crowding 

bias may be addressed through 1) allowing a wider range of turning angles and 

momentum to allow for directional and reversal movements likely to occur in a 

patch -corridor landscape, 2) limiting the fitting process to movement where all 

group members are in different pixels and 3) weighing the impact of far neighbors 

more heavily than currently. The last modification may potentially simplify finding 

a common scale for analysis of movement in the sociophysical landscapes 

because it would reduce the need to evaluate repulsion at very small social 

distances. 

2.5.2 Conclusions from validation using empirical data 

Fits of the SRSF model to predict movement preferences by goats revealed that 

the social landscape (e.g., moving towards other goats) was more important than 

the physical landscape (e.g., moving towards the edges of vegetation patches) in 

explaining individual movement segments. This was an expected outcome 

because observations of goats in a natural setting often reveals that while 

browsing some of the time and moving between vegetation areas some of the 

time, these animals move as a tight group 

When estimated at a range of sampling intervals, the social spacing 

preference in goats was best captured at intermediate intervals, whereas the 

preference for vegetation density did not differ across the sampling intervals. This 

outcome suggests that at short distances goats were not responding to their 
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group members, perhaps because there were not enough rapidly occurring or 

otherwise noticeable changes. In terms of vegetation density, smoothing of a 

binary landscape feature enabled the SRSF model to recover the known edge-

browsing habit of goats and produced meaningful signals regardless of the scale 

of analysis. As in the findings from the simulated portion of our study, extremely 

high-resolution in location samples were not necessarily more informative, at 

least in the context of our questions. However, this pattern may be an outcome of 

processing a rather detailed level of spatial and temporal information even at 

relatively coarse scale.    

In general, simultaneous analysis of the sociophysical landscape revealed 

that most goats preferred to move towards locations near other goats and along 

the edge of the vegetation. Given that these behaviors are expected in a group-

living herbivore, having recovered these behaviors the SRSF model may be a 

useful tool for analysis of movement in other group-living species that exhibit 

collective movement. 

Unlike in the simulated validation, in this dataset, the SRSF model did not 

recover a social 'repulsion' effect at small distances. A likely explanation is that 

goats are not afraid to move near one another, often at distances closer than one 

body length. This behavior is much less likely to occur in limbless species  that 

exhibit predominantly  angular movement which requires more space (e.g., fish 

or reptiles) and which had served as early model organisms in studies of 

collective animal movement (101, 209).  
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Lastly, when contrasted with separate analyses of the physical or social 

contexts, simultaneous analysis revealed that movement decisions by different 

goats vary in the relative importance they place on neighbor distance and 

distance from vegetation edge. There is preliminary evidence suggesting a social 

stratification into 'leaders' and 'followers’ but more detailed investigation is 

needed to understand what appears to be presence in different roles within a 

group of herding animals.  

The latter result along with the evidence form the simulated data that 

fitting sociophysical  models to social landscape with incomplete 

information  serve as potential  argument for collection of multi-individual data, 

especially when the goals are to characterize or predict aspects of spatial 

ecology in group living species with compromised conservation status or other 

social species that are being managed without regard for their social dynamics 

(65).  
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3 CHAPTER 3 

ENVIRONMENTAL AND SOCIAL DRIVERS OF MOVEMENT IN MALE 
AFRICAN SAVANNA ELEPHANTS (LOXODONTA AFRICANA) 

 
 

3.1 Abstract 

Despite their popularity and keystone status, little is known about how African 

savanna elephants (Loxodonta africana) integrate information about their 

physical and social surroundings while navigating their habitat. This is because 

(1) tracking of multiple members in a group is rare in wild elephants, and (2) the 

tools to simultaneously quantify physical and social influences on an individual’s 

movement are just beginning to be implemented in movement ecology. Using a 

novel approach that incorporates the social landscape of the animals into a 

resource selection function model, this research evaluates highly synchronized, 

remotely sensed movement from five male elephants inhabiting Etosha National 

Park in Namibia. The global movement patterns and social dynamic as estimated 

with this new sociophysical model reflect known behaviors of male elephants. 

The finding that dominance hierarchy, usually only observable when elephants 

gather at water points, is maintained throughout the explored landscape is 

particularly unique. This result adds to the growing body of evidence on the 

complexity of social interactions in groups of postdispersal male elephants. This 

approach using remotely sensed data may inform applied research into the 

interactions of elephant groups with other species acting as competitors or 

predators, and the management of ensuing conflicts. 
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3.2 Introduction 

African savanna elephants (Loxodonta africana) move in response to the 

physical suitability of their habitat (e.g., mineral content of the soils, presence of 

certain crop species, elevation changes or precipitation patterns) and social 

dynamics (e.g., competition for high quality resources or leadership by seniors) 

(2, 46, 70, 94, 127, 131, 210–212).  

Unlike in matrilineal herds of female elephants, the relationship between 

social dynamics and space use in male elephants is much less documented   

(39).  Understanding this interdependence is important because besides their 

keystone role as a species, male elephants stimulate tourism revenue in many 

range states (e.g., big tuskers) and drive human-wildlife conflict (e.g., crop 

raiding) (78, 140, 213, 214) 

As adolescents, male elephants disperse from their natal groups into a 

social landscape consisting of postdispersal males of varying ages (128). Based 

on remotely sensed movement data and behavioral observations, it is 

increasingly evident that male elephants transition between solitary and 

gregarious states depending on several factors. For instance, males in musth—

an annual state of heightened aggression and elevated testosterone lasting 

approximately two months, spend their time alone, pursuing nonkin estrous 

females or interacting with other courting males (215–217). Non-musth males 

remain in proximity to genetically related or similarly aged male partners, and the 

strength of their relationships increases with age (128–130, 218).  
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An established technique to study spatial and social dynamics in 

elephants involves correlating metrics of dominance and area-based home range 

estimates (219–221). Dominance hierarchy is an index derived from expert 

knowledge about traits such as age category, and traditional behavioral 

sampling, for instance frequency of agonistic and affiliative interactions between 

conspecifics of interest (145). This index generally indicates that older and larger 

male elephants, as well as those in musth, are more likely to be dominant than 

adolescent males. The metrics for deriving dominance rank are often collected 

near vantage locations such as water points or tourist viewing areas and provide 

spatially non-explicit information about rank-dependent behaviors at local scale.  

Home range estimation, and associated techniques, although useful for 

detection of general differences in space use between conspecifics with different 

behavioral tendencies (e.g., discovery of crop raiding individuals which is useful 

for wildlife managers) has been subject to much criticism as too coarse and 

lacking biological relevance (222, 223). As an example, knowing that particular 

elephants move towards human agriculture is not sufficient to consider their 

behavior as crop raiders. Their preferences may actually be for fertilizer-induced 

soil minerals, or an outcome of following affiliates that are not tracked.  

More recent studies concerning global-level properties of movement in 

other group-living animals have shown that movement decisions of individual 

group members about when, where, why, how and with whom to move are 

impacted by and impact group-level dynamics (143, 167, 224). For instance, in 

schooling fish, individuals responding to locally available information about the 
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proximity and heading of their nearest neighbors together generate self-

organizing aggregates that appear robust to splitting—an important antipredator 

strategy. This emergent phenomenon is referred to as collective movement and 

depends on the integration of information about social and physical processes.  

Scientists interested in movement of elephant collectives are developing 

tools to tackle similar questions, for instance ‘how do elephants integrate 

information about the environment and interactions with multiple conspecifics 

during group movement?’ So far studies of correlations between spatially non-

explicit movement modes among individuals with different traits (e.g., 

reproductive state category) and landscape context have shown how different 

elephants move in specific habitats. Work by (225), which considers movement 

of female and male elephants, indicates that in face of limited resources 

movement patterns by low ranking individuals are more energetically costly and 

less predictable than movement by high ranking conspecifics.  

Predicting where or for what reason individual elephants may move while 

interacting with a complex sociophysical landscape remains an outstanding 

problem. To tackle this problem, one basic requirement is access to time series 

data on movement of multiple interacting elephants across geographical 

gradients (97, 98). Recording movement of multiple male elephants inhabiting 

the same general region is common, albeit rarely in synchronized form. The 

decisions about which elephants to track are usually based on arbitrary choices 

(e.g., achieving a ‘representative’ sample of the population in terms of its age or 

regional distribution) instead of an explicit multi-individual tracking where several 
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individuals in a social unit are monitored over the same period (179, 214). This 

practice limits the insights that can be gained from existing non spatially explicit 

techniques and stymies the development of techniques used in other social 

systems exhibiting group movement (86, 97–99).  

Scarcity of high-resolution, synchronous tracking in elephant groups, 

except for cases where tracked male elephants happen to use the same area, 

restricts data processing options meant to reduce inherent autocorrelation (e.g., 

subsampling or interpolation) and may lead to biased estimates (203). In 

addition, many of the techniques used to study how social dynamics and physical 

environment drive collective movement differ in their requirements for data 

necessary for model parameterization (103). Given a number of challenges in 

analysis of collective movement, deciding which techniques to build on for 

greatest benefit remains a tradeoff between generating the most reliable 

estimates possible, given available priors, and delivering easily interpretable 

outputs to benefit not only the scientific community but also practitioners 

interested in actionable results(112).  

Characterizing movement of male elephant groups may help scientists 

tackle basic questions about evolution of social complexity and mechanisms of 

information exchange in these still poorly understood societies, elephants in 

general and their congeners (72, 216, 226). For instance, when male elephants 

leave their family groups, do they carry with them knowledge about the 

landscape, or inherit ‘foraging rights’? Or, similarly, does poaching of female 

elephants affect the ability of their male offspring to successfully track resource 
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phenology as individuals or members of male social networks? In addition, 

information about social interactions in the context of various habitat features 

may potentially inform conservation of at-risk elephant populations in areas of 

rapid anthropization (e.g., railway development through Kenya’s Tsavo National 

Park) (227, 228). For example, translocations of immature male elephants with 

crop raiding tendencies— a set of behaviors which in some populations seems to 

socially learned, in groups with seniors who do not raid crop may prevent the 

problem animals from further developing that habit (78). Or perhaps, buffering 

fields of highly palatable maize with nonpalatable crops, such as a mixture of chili 

peppers and sweet potatoes, may become a part of sustainable deterrence 

approach while still providing human stakeholders with highly nutritious products 

(212, 228, 229).  

To explore the sociophysical landscape as an interconnected set of stimuli 

acting on individual movement, I use highly synchronized movement data from 

five semi-free-ranging (although in fenced park, able to navigate across vast 

region spanning at > 900 km2), male elephants inhabiting Etosha National Park 

(ENP) in Namibia. Besides a detailed account of their movement, recorded every 

15 minutes, I also know the relative dominance rank within this group, based on 

behavioral and endocrine records spanning multiple field seasons. Although I 

cannot be certain if the tracked elephants perceive one another as affiliates, I 

treat them here as a socially functioning group given that they reside 

predominantly in the northeastern region of ENP and interact frequently (i.e., 

daily).  
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To simultaneously test for, and separate, the impact of landscape 

structure and social dynamics on resource preferences of individuals in this 

group, I use a recent improvement on the established ‘resource selection 

function’ framework (RSF) (110, 118, 141, 142). Unlike the RSF framework, this 

framework which I refer to as the ‘social resource selection function’ (SRSF) 

considers the corresponding locations of nonfocal individuals in a group as time-

varying point features on the landscape allowing for coupled treatment with the 

maps of the physical environment. This model is described in detail in Chapter 2 

of this document. I fit the SRSF model to approximately two years of tracking 

data and the imagery of the physical landscape. These landscape features 

include a time-varying map of remotely sensed photosynthetic activity, which I 

refer to as vegetation productivity, and two static maps of perennial water points 

and auxiliary points. Based on frequent visitation, I suspect that the auxiliary 

points  contain valuable resources (e.g., fruiting trees, mineral deposits or water 

seeps) (230–232).  

My objective is to test if the social and physical resource preferences as 

estimated using the SRFS model match my expectations about individual 

dominance rank assessed locally (95). I hypothesize that the estimates of 

resource preferences by male elephants parallel the observed dominance 

hierarchy and general foraging tendencies seen in herbivores (e.g., preference 

for movement towards water sources or high-quality forage). My predictions are 

that 1) the most influential elephants, acting as strong attractants or repellents 

towards their conspecifics, are more dominant than less gregarious and less 
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influential elephants; that 2) compared to less influential elephants, more 

influential individuals prefer to move towards areas containing high quality forage 

(94). 

I discuss my findings in the context of elephant ecology and social 

dynamics. I also consider the applicability of the SRSF model as a tool for 

evaluation of collective movement in other elephant populations, other species, 

or between elephants and their heterospecifics, such as predators or poachers 

(115).  

3.3 Methods 

3.3.1 Study area 

ENP (16° 88'E 18° 58'S - location of a research station near Mushara water point 

where most behavioral and demographic data had been collected) is located in 

northwestern Namibia. The park is classified as a semi-arid ecosystem. The 

region where the five male elephants resided during most of the study period, 

between October 2009 and November 2011, is located in the northeast region of 

ENP. Over the course of data collection, this area received approximately 97 mm 

of rain per month in the wet season (between May and October) and 3 mm of 

rain per month in the dry season (between November and April). This region is 

bound by a saline pan to the west, and by mopane (Colophospermum mopane)-

dominated woodland to the east and south (233). In the northeast it is bordered 

by a mosaic of small- and large-scale agricultural operations on commercial or 

private land (234). Multiple perennial waterholes seeding the region are important 

sources of water for wildlife, especially in the dry season. During the wet season, 
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ephemeral rain puddles and seeps are also available but not explicitly considered 

in this study (235, 236). 

3.3.2 Male elephant population 

The five, semi-free-ranging males considered in this study belong to a large 

subpopulation of ENP’s elephants (N males ≈ 225; N herds ≈ 20) ranging 

predominantly in the northeastern portion of the park. Based on behavioral and 

demographic data, the collared male elephants were previously classified into 

several age, reproductive and social categories (Table 3.1) (95, 216, 220).  

Besides socializing with each other, the collared elephants had likely 

interacted with other herds and males navigating the study region, although I do 

not know if the collared individuals perceive one another as affiliates. However, 

given that they reside predominantly in the northeastern region of ENP and have 

been observed to interact frequently (e.g., near several water points), for the 

purpose of this research I assume that they are members of a social group.  
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Table 3.1 Classification of the Five Collared Males into Several Established Age, 
Reproductive and Social Categories 
 

 Collar Relative age range   Social rank  Reproductive state  Affiliation pattern 

 AG 264  35-44.9 years  5  in musth in July of 2010/11  bonded 

 AG 265  25-34.9 years  4  in musth in July of 2010/11  bonded  

 AG 266  15-24.9 years  3  in musth in July of 2010/11  bonded 

 AG 267  25-34.9 years  1  not in musth   mostly solitary 

 AG 268  ≥ 50 years  2  not in musth  solitary  

 
Notes: Data on absolute age in the ENP population of postdispersal male elephants are not available; the 
age structure of this population were determined on the basis of a number of morphological features (Figure 
A.1.1 in Appendix A.1). The operational age categories are: 1) one quarter (which can be thought of as an 
early postdispersal male); 2) half (young adult); 3) three quarters (prime adult); 4) full (mature adult); or  
5) elder. Dominance hierarchy is represented here as a ranked system, where rank 5 indicates most 
dominant and rank 1 indicates most submissive individuals. Musth is a rut-like period of hypersexual activity, 
aggression and elevated testosterone in sexually mature males. Immature males may undergo a premusth 
period characterized by behavioral displays of aggression without elevated testosterone. In bonded groups, 
males appear to spend a notable portion of their time with long-term affiliates. 
Source: (128–130, 234) 
 

3.3.3 Social landscape 

In September 2009, the ENP personnel fitted five male elephants with Global 

Positioning System (GSP) and satellite Global System for Mobile Communication 

(GSM) devices. These devices were programmed to record positional data 

consisting of longitude, latitude, as well as speed and elevation, every 15 

minutes. The tracking period started approximately one month after deployment 

of these devices. To express tracking data in real-world units (i.e., meters) and 

analyze them in the context of the physical landscape, I used the Universal 

Transverse Mercator coordinate system (UTM) projection (208). The resulting 

datasets had a median of 70840 movements per individual. Median tracking 

duration was 24.97 months per individual.  
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Movement data included in the analysis were characterized by the 

following set of features: 1) location sample intervals ≤ 15 minutes; 2) movement 

distance ≤ 300 meters; 3) distance to all nonfocal individuals ≤ 20000 meters. By 

applying these filters, I aimed to eliminate unreliable location data (e.g., 

generated due to equipment or human error); and ensure that each focal 

individual navigated in a landscape where the effect of its conspecifics was 

possible through a combination of visual, auditory and/or olfactory stimuli.  

3.3.4 Physical landscape 

To evaluate movement data in the context of the physical landscape, I 

considered maps of vegetation productivity, permanent water sources and 

auxiliary points. To construct a map of vegetation productivity, I used data from 

the 16-day 250m Normalized Difference Vegetation Index (NDVI) (Figure 3.1a) 

(237). I also created a map of the perennial water points by extracting their 

coordinates from existing geospatial records generated by ENP personnel 

(Figure 3.1b). These coordinates were manually corrected to represent actual 

locations of the water points as opposed to adjacent locations (e.g., at the edge 

of the service roads near the water points) (235). Finally, based on the density of 

large turning angles in frequently visited areas, I compiled a map of  auxiliary 

points other than known water points (Figure 3.1c). All records containing 

information about the physical attributes of the landscape were projected using 

the UTM coordinate system. 

Given the relatively coarse landscape resolution, I could not determine the 

type or quality of resources that may be found at the auxiliary points (e.g., fruiting 
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trees, mineral deposits or water seeps). Possible explanations of behaviors 

occurring at these points that are worth exploring include: directed movement 

towards and away from specific point resources; meandering while foraging; 

being lost; or following/chasing a conspecific.  Consideration of the auxiliary point 

map, although predictably important for at least for some elephants, has two 

potential benefits. First, understanding how various spatially confounded features 

impact animal movement together or separately may clarify the interpretation of 

model estimates. For example, if the distribution of the auxiliary points predicts 

an individual’s movement only when it is also impacted by a conspecific, it may 

indicate a link between social behavior and acquisition of the resources found at 

auxiliary points. Secondly, given that the auxiliary attractants are estimated fairly 

accurately , this approach may help in detecting areas of interest to moving 

animals besides known or easily observable features.  
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Figure 3.1 Elephant movement and the landscape data.  
 
Notes: (a) An overview exemplifying trajectories of two male elephants AG 267 (green trajectory; top left) 
and 264 (red trajectory; top right) (for behavioral and demographic detail see Table 3.1). The trajectories are 
set in the context of an example map of remotely sensed vegetation productivity (NDVI generated every 16 
days at 250 meter resolution, for the region encompassing Etosha National Park (ENP). Only NDVI values 
presumed to represent vegetation were considered. The blue and white value pixels were considered as 
bare ground, salt pans or otherwise noninformative. The featured tiles span a region of approximately of 200 
square kilometers. (b) The distribution of the perennial water points (orange dots) in the northeastern area of 
ENP  (blue square in (a)). (c) An overview of an example set of auxiliary points (black dots) with details of 
two such points with high turning angle locations  These points were diagnosed by searching for frequently 
visited turning points within the core range of elephant movement (red square in (b)) in ENP. 
 

3.3.5 Application of the SRSF model 

The SRSF model is an extension of the established RSF framework with a social 

landscape components (109, 118). It simultaneously estimates the physical 

environmental and social influences on an individual’s movement across the 

landscape. The inputs are data on movement of multiple animals (or, if desired, 
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other mobile agents such as rangers or poachers) and 2) physical layers (e.g., 

imagery of vegetation or poaching hotspots) (54, 132, 135, 238). The SRSF 

model treats the end location of each movement by the focal individual as a 

choice from a random ‘sample’ set of alternatives bounded within an accessible 

radius. The relative probability of choosing different locations is modeled using a 

conditional logistic regression (CLR) as a function of various parameters that 

differ between available locations (200, 201). Unlike the traditional approach, the 

SRSF quantifies social impact by using a time-varying map of distances between 

the focal animal and its conspecifics, which can be thought of as a map of the 

social environment that changes with every movement. For a given movement m, 

the ‘choice’ is a binary response where a potential location i is either the endpoint 

at which the individual was recorded (yi = 1) or one of the alternatives (yi = 0). 

For convenience, I will label the chosen location with the subscript j (j ∈ i). The 

probability of a movement is modeled as a CLR: 

 

𝑝! = (1 − 𝑠)
𝑒"!	$

∑ 𝑒""	$)
%

+ 𝑠
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where X is a matrix of k predictors derived from the landscape data, β is a k by 1 

matrix of parameters to be estimated and s is the probability of a ‘stochastic 

event’: an external stimulus such as a fright that results in a movement in which 

the endpoint is not ‘chosen’. In that case, all of the c possible endpoint locations 

have the same probability, i.e., 1/c. Thus, pm is the probability of the animal’s 

observed location conditional on the qualities of other reachable locations and on 
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the probability of a stochastic, non-choice-type movement. The CLR is fit by 

maximizing the log-likelihood of the entire set of movements n, denoted as 

 

𝐿 = ' 𝑝!

&

!'(

 

 
using quasi-Newton nonlinear maximization.  

I performed variable selection by first fitting models with all possible 

subsets of ‘physical’ and ‘social’ landscape variables (e.g., distance to a 

particular point resource, such as water, or a neighbor at any given location) in 

their quadratic forms. Each fit always included a linear function representing 

distance to the previous location - an established proxy for the effort required to 

move to the new location. I ranked the models using Akaike’s Information 

Criterion (AIC) and calculated importance scores for each variable as the 

cumulative Akaike weight of the models in which it appeared (204, 205).  

Interpretation of the SRSF model outputs depends on the functional form 

for each variable over the range of its values and the combined importance score 

for the quadratic expressions for each variable. Because I assumed that the cost 

of movement, represented by a decreasing linear function, would always be 

important, I exclude it from further reporting and discussion. The functional forms 

or the remaining variables can be divided into five categories: monotonically 

increasing or decreasing in this case arising from quadratic expression 

(indicating a preference for large or smaller values of the variable in question); 

convex with the maximum within the data range (a preference for intermediate 

values); concave with the minimum within the data range (a preference for large 
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and small values indicating a back-and-forth movement between the variable in 

question and other locations); or constant over the data range (lack of preference 

for a specific value) (118). Table 3.2 details all possible functional forms and 

proposed behavioral interpretations in the context of example predictors 

evaluated in this study.  

 
Table 3.2 A Set Of Possible SRSF Model Outputs With Possible Behavioral 
Interpretations 
 

 
Notes: The SRSF outputs are expressed as the relative preference for movement towards locations defined 
by the physical variable (e.g., vegetation productivity) and the social variable (e.g., distance to nearest 
neighbor) 
Source: (118) 

 
3.3.6 Predictions about movements in elephant group 

To test my predictions, I performed three experiments by fitting the SRSF model 

to three different subsets of movement data (Figure 3.2). In the first experiment 
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(E1), I considered movement data occurring in the proximity (i.e., ≤ 2000 meters) 

of the perennial water points (Figure 3.2a). In experiment two (E2), I evaluated 

movements recorded in the proximity to the auxiliary points using the same 

distance cutoffs as in E1 (Figure 3.2b). Finally, in the third experiment (E3), I 

used the remaining movement data without binning them into distance categories 

(Figure 3.2c). The choice to filter movement data in this way stems from the fact 

that social interactions are presumably more likely to occur near the relatively 

rare water sources, and because combining observations occurring at the 

landscape scale would likely diffuse the importance of social interactions and 

generate biased model estimates. 

After filtering for reliable locations for all five collars (described above in 

Section 3.3.3 Social landscape ), and for the different regions of interest (E1-E3) 

different numbers of movements remained. The numbers of movements in the 

filtered sets ranged from 924 to 3201. For that reason, I chose 900 as a constant 

sample size for E1-E3, fitting the SRSF model to 900 movement segments 

selected at random from the available set. To assess the robustness of the 

results to this random sampling, I repeated it five times for every experiment. It 

turned out that 900 movements is sufficient to give consistent results even when 

those are less than one quarter of the available movements, while reducing the 

computational burden proportionally. 

The physical predictors within each fit included vegetation productivity (as 

defined by NDVI index), as well as distance to the nearest water point and 
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auxiliary points. The social models considered the distance to each of the four 

nonfocal elephants as the predictors of interest.  

 

 
Figure 3.2 An overview of elephant movement in three unique types.   
 
Notes. (a) In experiment one (E1), I fit the SRSF model to movement occurring near the perennial water 
sources illustrated as yellow circles with radius from water points ≤ 2000 meters).  In this experiment, the 
subset of movement of the focal individual, consisting of 900 movements, was estimated as a function of the 
physical (i.e., vegetation productivity and distance to the auxiliary point sources) and social predictors (i.e., 
distance to each conspecific). The fit per each individual was repeated five times. (b) In experiment two (E2), 
I performed the same set of fits as in (a) including only movement data occurring within 2000 m of the most 
often visited auxiliary points. (c) In experiment three (E3), I performed a series of fit as described in (a) but 
only using movement data not considered in (a) and (b), illustrated as grey trajectories occurring outside of 
the grey circles. 
 

3.4 Results  

3.4.1 Experiment one - movements near established water sources 

Results from E1 (Figure 3.2a) indicate that the distance to water is on average 

highly influential as a predictor of the movements by every focal elephant, with a 

concave function indicating a back-and-forth movement pattern (Figure 3.3, 

second column, Water). As for the remaining physical predictors, an intermediate 

level of vegetation productivity (Figure 3.3, first column, NDVI) is on average a 

moderately influential predictor of movement for elephants AG 265 and 266, with 

an intermediate preferred value. In contrast, distance to auxiliary points (Figure 

3.3, third column, Points) is highly influential as a movement predictor only for 

elephant AG 264. The function shows that AG 264 prefers closer distances to the 
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auxiliary points, but it is important to remember that these are movements that 

happen while that elephant is close to the perennial water points, not when it is 

close to the auxiliary points themselves. So, the interpretation is that while AG 

264 is moving to and from a nearby water source, it tends to do so in the 

direction of the auxiliary points (which are clustered in one region of the 

landscape).  

Social influences are evident in the interactions between elephants AG 

264, 265 and 268. AG 264 and AG 265 exhibit a strong influence on each other, 

as indicated by the fact that both functions are concave which suggests an 

‘approach and retreat’ dynamic. However, the functions are asymmetrical in 

different ways, with AG 264 seemingly preferring to be further away from AG 265 

than AG 265 prefers to be from AG 264. This would be the pattern if, for 

example, AG 265 repeatedly approached AG 264, which responded by 

retreating.  AG 268 also seems to want to be close to AG 264, but in this case 

AG 264 appears to largely ignore AG 268. 
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Figure 3.3 Plots represent the functional forms of the best SRSF model fits in 
experiment 1 estimating movement of male elephants near water.  
 
Notes: The five focal male elephants are referred to as AG 264. The SRSF model outputs are expressed as 
relative preference (y axis) for choosing the next location as a function (x axis) of each of the three physical 
or non-social and four social predictors. Shading indicates the degree of influence that a predictor has been 
estimated to have on the movement of the focal individual; it expresses the statistical value of an importance 
score which is a cumulative Akaike weight of the models in which it appeared. The importance scores below 
and above the diagonal in each plot represent the lower and upper bounds of the 95 percent confidence 3 
interval resulting from fitting the same combination of models, per each set of experimental conditions per 
each focal elephant to five randomly drawn samples of 900 movement segments. The circles represent the 
mean of the five fits repeated per experimental condition per individual. 1. See Table 3.2 for interpretation of 
the SRSF model outpost in their functional forms. 2. See Table 3.1 for behavioral and demographic 
descriptors of each of these elephants. 3. See Figure 3.2 for details on binning movement data into three 
categories. 

 

3.4.2 Experiment two - movements near auxiliary points 

Results from E2 (Figure 3.2b) indicate that none of the physical landscape 

predictors are influential on the movement of any of the elephants (Figure 3.4). 

The social variables, however, replicate the same pattern seen near water points, 

in which AG 264 and AG 265 have an ‘approach and retreat’ dynamic. It is less 

balanced, however, with AG 265 influenced more strongly by AG 264 than vice 
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versa, yet more symmetric, with neither elephant consistently initiating or 

retreating.   

 

 
Figure 3.4 Plots represents the functional forms of the best SRSF model fits in 
experiment 2 estimating movement of male elephants near auxiliary points.  
 

3.4.3 Experiment three - movements far from water and auxiliary points 

Results from E3 (Figure 3.2c) are very similar to those of E2, in that the physical 

landscape predictors are not important in explaining the movement choices of 

any of the focal elephants (Figure 3.5), but the AG 264/265 pairing show the 

same social relationship of coming closer then moving apart, this time quite 

balanced and with a slight and mutual preference for the approach over the 

retreat.  One relationship found only (and only once) in this dataset is mild 
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evidence that AG 267 wants to stay a certain minimum distance away from AG 

265. The opposite is not true for AG 265, which is not influenced by AG 267. 

 

 
Figure 3.5 Plots represents the functional forms of the best SRSF model fits in 
experiment 3 estimating movement of male elephants away from water and 
auxiliary points.  
 

3.5 Discussion 

Using a recently developed approach (SRSF) that incorporates the social 

dynamics into a resource selection function model, I evaluated a unique set of 

GPS tracks from five male elephants inhabiting the northeast region of Etosha 

National Park in Namibia. My goal was to study whether the estimated patterns 

of movement would match known behavioral tendencies observed in areas of 

high visibility. I found that the global movement patterns and social dynamic 

estimated by the SRSF model did reflect the observed behaviors of male 
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elephants. Below, I interpret the findings of this study in the context of the 

observed social dynamics and space use; their departure from my expectations; 

and how this work may inform our understanding of the socioecology of male 

elephants as well as their conservation and management. 

As expected, the SRFS model estimated that water was a predictor of 

movement for all elephants when they were near it. As for the estimates of the 

remaining physical resources (i.e., vegetation productivity and auxiliary points), 

they were impactful only on some elephants (i.e., AG 264, 265 and 266) when 

they were near water. The estimated preference by elephants AG 265 and 266 

for movement towards areas with intermediate vegetation productivity (as well as 

water points) is likely a reflection of their repeated movement between water 

sources and adjacent edges of the salt pan (characterized by extremely low 

vegetation productivity). This result does not only reveal the sensitivity of the 

SRFS model to a heterogeneous landscape but also may hint at the fact that 

relatively young, subordinate or nonmusth elephants (e.g., AG 266) may resort to 

foraging in areas with lesser quality of vegetation. The fact that at a larger scale 

of analysis vegetation productivity was not a predictor of movement for any 

elephant, which was not my expectation, suggests that the visited areas were 

relatively homogenous and neither particularly attractive or repulsive. Given that 

the auxiliary points landscape was assembled from explicitly searching for places 

of high visitation and foraging-like movement characterized by high tortuosity, it 

was not informative on its own (except for elephant AG 264). However, when 

combined with the estimates of vegetation productivity, this landscape helped me 
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confirm that the coarse-scale distribution of consumable resources in general is 

not a useful predictor of high-resolution movement in the region of ENP 

considered in this analysis. 

The social dynamics recovered by the SRSF model across the landscape 

matched the relative dominance hierarchy observed at water points and nearby 

vantage points. In other words, pairs of elephants known to interact with one 

another near water points were estimated to exhibit similar social behaviors at 

intermediate and landscape-wide scales. The push and pull interactions 

estimated to be occurring between elephants AG 264 and AG 265 at the time of 

data collection are consistent with what is respectively known about their relative 

social rank and reproductive status. Both are dominant adults and exhibit social 

rather than solitary tendencies. When in musth (at least for some portion of the 

data collection period), they tend to be very aggressive towards others. As a 

prime adult, AG 265 usually successfully displaces more mature males. Its 

preference to move towards locations near water that are also occupied by AG 

264, which is more mature and often more aggressive, may suggest that as a 

high ranking male AG 265 is not intimidated by either affiliative or aggressive 

interaction, both of which may be invaluable learning opportunities (128). The 

counterpart to this behavior is the estimated preference by AG 264 for movement 

back and forth between locations occupied by AG 265 to either avoid closer 

interaction or more likely (given the dominant rank of AG 264) to move 

unencumbered by the presence of AG 265. The estimated level and type of 

importance of each male on the movement behavior of the other changes across 
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the scale and the type of the landscape considered. What remains constant, 

however, is that these elephants are always important predictors of each other’s 

movement. 

Besides being impactful on each other, these two elephants are also 

impactful on behavior of more submissive or senior elephants. Specifically, 

AG264 is an important predictor of movement by AG 268 when AG 268 is 

moving in the vicinity of water. This elephant is the most senior member in this 

group and, according to the SRSF model estimation, it prefers moving towards 

locations that are relatively near AG 264. Perhaps this outcome is related to their 

common arrival to the same water points or an affinity by AG 268 as the most 

senior elephant to interact with another mature male (i.e., AG 264) who may 

simply be more familiar, more predictable than younger conspecifics or a long 

term affiliate (i.e., AG 265). Finally, AG 267, the most submissive, non-musth 

male in this group, unsurprisingly seems to stay away from the much more 

dominant AG 265 across a large region in the south, with the result that AG 265 

roams in the south-west and AG 267 traverses a larger but more marginal region 

of ENP. In fact, AG 267 it is the only elephant traversing agriculture-dominated 

region bordering ENP in the north where the risk of conflict with landowners, or 

poachers, may be much higher. Similar movement behavior in herds of elephants 

in eastern Africa has been associated with lower rank of the matriarchs, or the 

most mature females within their social units (94).   

The proposed explanation of the results detailed in Sections 3.4.1, 3.4.2 

and 3.4.3, although informed by what is known about the ENP population and 
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elephant behavior in general, is limited by the extent of available data (95, 218, 

239). Because the focal individuals had likely interacted with other adult males 

and herds residing in the same region of ENP, it means that the SRSF model 

fitting process was estimating social behaviors on the basis of an incomplete 

social landscape. This in turn may have impacted the resulting estimates (as 

suggested in Chapter 2 of this dissertation). In addition, the relatively coarse 

resolution of NDVI as a representation of foraging resources may have obscured 

the behavioral responses of the elephants to the complex, finer-scale distribution 

of actual vegetation. An important but challenging future task will be to develop a 

reliable, fine-scale vegetation map of this large region. Despite these limitations, 

the SRFS model estimates indicate that the dominance hierarchy, usually only 

observable when elephants gather at water points, is indeed maintained in 

broadly similar form throughout the explored landscape (240).  

The SRSF model can be used to tease apart and rank the contribution of 

various environmental and social factors in shaping movement behavior of 

group-living animals, such as socially bonded groups of postdispersal male 

elephants or between members of matrilineal herds. The novel perspective that 

this statistical tool adds is beyond resource preferences by individual elephants. 

Instead, it characterizes individual resource preference during engagement in 

social interaction, or competition from conspecifics or heterospecifics. This 

perspective, in turn, may motivate the development of practical methods for 

multi-individual tracking in male as well as female elephants. Or, it may inform 

the choice of parameters in other predictive models focused on diagnosing 
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movement features by elephants in different types of landscape (e.g., protected 

areas,  agricultural fields or poaching hotspots) (41, 225).  

In a more applied sense, understanding how groups of elephants interact 

across spatial and temporal scales may inform decisions by wildlife managers 

regarding contraception, culling, reintroduction or translocation efforts, which in a 

variety of social species have proven more successful when designed with 

regard for their existing and future social landscapes (217, 241, 242). In 

elephants, translocation is typically carried out to remove ‘problem’ individuals, 

augment population demography or rehabilitate orphaned or captive individuals. 

In most cases, prior behavioral research is rarely included in the decisions about 

which animals can be translocated (170). As a result, many translocation are 

unsuccessful due to homing behavior (i.e., return by translocated animals to their 

natal territories) or ensuing human-elephant conflict with newly translocated 

animals ((138); see Asian elephant example (243)).  

Ideally, observation of social behavior as a means of informing 

management decisions should occur at a spatiotemporal scale relevant to the 

organism’s biology. However, most conservation and management operations 

are notoriously under-resourced (112). This, in turn, means that long-term 

behavioral observations are rarely a priority, especially in situations where 

elephants are endangering human life (and vice versa). Characterization of ‘past 

to present’ records of movement and resource use by problem animals in the 

context of a complex sociophysical landscape, now made possible by the SRSF 

model, may offer practitioners valuable, long-term information. For instance, 
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evidence-driven decisions about which affiliates may or should not be 

translocated together may be more effective. In addition, questions about what 

destinations may be most appropriate, given the demographic and behavioral 

makeup of populations residing in those areas, or the surrounding land use. This 

in turn, may help predict and avert otherwise unforeseen aggression or 

trespassing by translocated elephants (244, 245).  
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4 CHAPTER 4 

SIMULATED POACHING AFFECTS GLOBAL CONNECTIVITY AND 
EFFICIENCY IN SOCIAL NETWORKS OF AFRICAN SAVANNA 

ELEPHANTS – AN EXEMPLAR OF HOW HUMAN DISTURBANCE 
IMPACTS GROUP-LIVING SPECIES 
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4.2 Abstract 

Selective harvest, such as poaching, impacts group-living animals directly 

through mortality of individuals with desirable traits, and indirectly by altering the 

structure of their social networks. Understanding the relationship between 

disturbance-induced, structural network changes and group performance in wild 

animals remains an outstanding problem. To address this problem, we evaluate 

the immediate effect of disturbance on group sociality in African savanna 

elephants — an example, group-living species threatened by poaching. Drawing 

on static association data from one free-ranging population, we constructed 100 

virtual networks; performed a series of experiments ‘poaching’ the oldest, socially 
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central or random individuals; and quantified the immediate change in the 

theoretical indices of network connectivity and efficiency of social diffusion. 

Although the virtual networks never broke down, targeted elimination of the 

socially central conspecifics, regardless of age, decreased network connectivity 

and efficiency. These findings hint at the need to further study resilience by 

modeling network reorganization and interaction-mediated socioecological 

learning, empirical data permitting. Our work is unique in quantifying connectivity 

together with global efficiency in multiple virtual networks that feature the 

sociodemographic diversity of elephant populations likely found in the wild. The 

basic design of our simulation makes it adaptable for hypothesis testing about 

the consequences of anthropogenic disturbance or lethal management on social 

interactions in a variety of group-living species with limited, real-world data. 

 

4.3 Introduction 

In group-living animals, from insects to mammals (246, 247), interactions among 

conspecifics with diverse social roles (248–250) impact individual survival (251–

254), reproductive success (255–257) and adaptive behaviors (224, 258–260). In 

species with complex organization characterized by flexible aggregates of stable 

social units (122, 261, 262), the loss of influential group members through natural 

or anthropogenic causes can be detrimental to surviving conspecifics (126, 263, 

264) and to entire populations (166, 265). Unlike natural phenomena, such as fire 

(266, 267), harvest is intrinsically nonrandom (134, 268, 269). For instance, 

poachers profiting from pet trade prefer to capture immature individuals as the 

most desirable commodity (270), eliminating gregarious ‘brokers’ of social 
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interactions (271, 272). As another example, trophy hunters target individuals 

with prominent features, such as elephants with big tusks (133, 273), killing the 

oldest and socioecologically experienced conspecifics (130, 274, 275). 

Animal social network analysis (ASNA) can be a powerful tool in 

demonstrating how selective elimination of individuals with key social roles 

impacts closely knit animal groups. Quantifying relationships between members 

of a group as ‘networks of nonrandomly linked nodes’ (276, 277) has revealed 

that while some disturbed groups break down (278, 279), others stay connected 

(263, 280). Understanding whether the relationships in remaining groups operate 

as prior to disturbance is based on a small number of studies. In an instance of 

captive zebra finches, group foraging ability decreased following repeated social 

disturbance (149). In simulated primate groups, network disturbance led to a 

decrease in its global connectivity and the efficiency of social diffusion but did not 

lead to group fragmentation (148). These indices depend on network structure; 

are based on an assumption that transmissible currency, such as information, 

diffuses through network links (281); and have been related to cohesion, the 

transfer of social currency and robustness to loss of influential conspecifics in 

animal groups (282–284). In light of the anthropogenic impact on ecological 

communities (22, 285–287), evaluating the relationship between post-

disturbance social structure and limitations to social resilience vis-à-vis group 

performance in natural animal systems is becoming increasingly important (263, 

288).  
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To explore this relationship, we considered the African savanna elephant 

(Loxodonta africana) — a group-living species threatened by poaching (54, 55, 

289). Elephant social organization consists of several tiers, ranging from 

transitional clans and bonded groups of distant kin, to matrilinear core units of 

adults and their immature offspring (39); or flexible groups of postdispersal males 

of varying ages and kinship (130). While immature elephants frequently engage 

in affiliative interactions (290, 291), mature individuals are more experienced 

about resource distribution and phenology (2, 94) and about social dynamics 

(123, 131, 292). The interactions among individuals with diverse social roles 

across social tiers manifests as fission-fusion dynamics in response to changing 

sociophysical landscape (120, 122). Poaching (which during the militarized wave 

of the past decade eliminated large subsets of populations including mature and 

immature elephants (293)), impacts demography (294), resource acquisition 

(136, 295) population genetics (238) and various social behaviors (132, 296) in 

affected populations.  

Evidence from ASNA of data spanning periods of low and high poaching 

in one free-ranging population revealed that the composition and association 

patterns within matrilines were conserved among close but not distant surviving 

kin. This outcome suggests clan-level impact of poaching on network structure 

and resilience, with little detrimental effect at the bonded group- or core unit-

levels (125). Whether changes in network structure in elephants relate to group 

functionality is difficult to test directly. However, quantifying network connectivity 

together with global efficiency while simulating poaching may shed new light on 
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the theoretical capacity for dissemination of social currency and the limitation to 

social resilience in disturbed populations. These insights may eventually inform 

our understanding about the mechanisms of group performance, as well as the 

efforts to mitigate human-elephant conflict (78, 129) and conserve this 

economically important but endangered, keystone species (139, 140).  

We characterized the immediate effect of eliminating the most influential 

individuals on the global structure of simulated, social networks. We used a static 

set of empirical association data on one free-ranging elephant population from 

Amboseli National Park (NP) in Kenya (121) because continuous data featuring 

network reorganization after poaching, necessary to parametrize time-varying 

models, do not yet exist for wild elephants. Initially, we assembled one social 

network using an Amboseli dataset and conducted a series of ‘poaching’ 

experiments by either incrementally removing 1) the oldest elephants as 

presumably the most experienced and prone to poaching, or topologically central 

individuals as the most sociable network members (297, 298); or 2) by removing 

individuals randomly (279, 299). To quantify network-wide structural changes, we 

evaluated four theoretical indices expressing network-wide connectivity (i.e., 

clustering coefficient and modularity, dependent on local neighborliness or global 

partitioning, respectively); as well as the efficiency of social diffusion (i.e., 

diameter and global efficiency, based on the distance or pervasiveness of 

diffusion, respectively) (283). To set these results in the context of a large-scale 

variation in demography and social interactions found in real elephant 

populations, we generated 100 distinct, virtual populations modeled on 
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demographic trends in empirical data. To simulate social network formation in 

these populations, we built a spatiotemporally nonexplicit, individual-based model 

with rules informed by empirical associations (39, 121). The steps of assigning 

social influence, conducting deletion experiments and quantifying deletion effects 

were as mentioned earlier. 

We hypothesized that elimination of the most influential individuals, 

defined according to their age category or network position would lead to a 

decrease in global network connectedness and efficiency. Specifically, we 

predicted that relative to random deletions, targeted removal of the most central 

or mature individuals would result in a decrease in global clustering coefficient 

and efficiency, and an increase in diameter and modularity. We also anticipated a 

worsening in these outcomes as a function of the proportion of deleted 

individuals, resulting in an eventual network breakdown. This set of findings 

would be an indication of increased subgrouping at the population level, fewer 

interactions with immediate social partners and fewer pathways for timely and 

fault-tolerant transfer of social currency.   

Although it was not parameterized to reflect the rate of ‘poaching’ events 

in absolute time and cannot be used to inform response to poaching after 

network reorganization, our work offers a novel perspective on the immediate 

response to disturbance in a large number of sociodemographically diverse 

populations with experience of poaching-like stress. Keeping in mind the 

limitations of our approach, we interpret our findings in the context of a common 

behavioral repertoire in wild elephant populations and offer insights about how 
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our findings may potentially help view natural populations subject to poaching. 

Finally, we consider the utility of our simulation platform as a generalizable tool 

for testing hypotheses about the disturbance of social dynamics in other species 

that facilitate ecosystem functioning or impact human welfare (300, 301). 

4.4 Materials and Methods 

We performed a series of deletions using one social network derived from 

association data on a free-ranging elephant population and 100 virtual networks 

mimicking the empirical one. Details of these experiments and underlying 

assumptions are described below. 

4.4.1 Empirical data -specifying empirical population composition 

To gather baseline information about demography and social interactions 

characterizing elephant sociality, we considered two dyadic association datasets 

from Amboseli NP originally published elsewhere (121). We assume that these 

datasets, collected at vantage points where different social units converge to 

drink, capture a range of social processes including events that required group 

cohesion and transfer of information (e.g., conflict avoidance in a multigroup 

gathering at a waterhole requires learning and recall about which conspecifics to 

affiliate with and whom to avoid (242)).     

During the original data collection, the authors inferred proximity-based, 

dyadic associations at two social tiers: among individuals within 10 separate, 

core groups (within core group - WCG) and between 64 core groups (between 

core group - BCG), where each group was treated as a single social entity. 

However, we had a different goal — to examine population-wide dynamics. To 
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represent associations that occurred within each core group in the population, we 

used the unaltered WCG association data according to the following association 

index (AI) formula: AIi,j = xi,j / (xij + d + (n - d - xi,j)). In this formula,  xij is the 

number of times individuals i and j were seen together; d is the number of times 

neither individual was seen; n is the total number of times a group was observed; 

and by extrapolation (n - d - xij)) represents the number of times either individual i 

or j was seen. To express the interactions occurring between individuals from 

different core groups, we assembled a dyadic association matrix by combining 

the WCG and BCG data as (302) (302).   

Although the original dataset included 64 groups, we could only focus on 

10 groups for which both WCG and BCG data were available (labeled AA, CB, 

DB, EA, EB, FB, JAYA, GB, OA, and PC). To reflect the typical, multi-tier 

structure of an elephant society (39), we aggregated the 10 core groups into 

eight bond groups [i.e., B1 (core group AA, including 10 individuals); B2 (FB, 6); 

B3 (EA, 9 and EB, 10); B4 (DB, 4); B5 (CB, 6 and OA, 10); B6 (GB, 11); B7 (PC, 

9); and B8 (JAYA, 8)] and three clan groups [i.e., K1 (bond groups B1, B2, B3 

and B4); K2 (B5, B6 and B7); and K3 (B8)] using genetically determined 

relatedness indices and long-term, behavioral associations inferred by the 

authors (121). 

4.4.2 Inferring population-wide social interactions and assembling one 

social network based on empirical association data 

We calculated the fraction of all sightings when an individual i from core group G 

was seen in that group according to the following formula: fi,G = average ni,j,G  / 



   
 

 90 

(nG – average di,j,G) where the averages are over all the other individuals j in 

group G. In this formula, ni,j,G represents the number of times individuals i and j 

were seen within group G; di,j,G is the number of times neither individual i nor 

individual j was seen within group G; and nG is the number of times group G was 

observed. The denominator is, therefore, the average number of times group G 

was observed with either individual i, individual j or both present; and fi,G, which 

falls in the interval {0,1}, can be thought of as the average fraction of these 

occasions when they were both present or an index of the overall sociability of 

individual i. This process was repeated for every individual in the population. 

Using the information available for the BCG association data, we 

calculated the fraction of all sightings when group G was seen with group B 

according to the following formula: fG,B = nG,B / (nG + nB – nG,B). Here, nG,B 

indicates the number of times groups G and B were seen together; nG indicates 

the number of times group G was seen without group B; and nB indicates the 

number of times group B was seen without group G. Thus, the denominator is 

the number of times groups G and B were seen individually. This process was 

repeated for every pair of groups in the population and can be thought of as the 

probability of seeing a given pair of groups together. We then derived a 

symmetric, weighted matrix consisting of probabilities of dyadic associations 

between individuals from two different groups, for instance, individuals iG and aB 

from groups G and B respectively, by using the following formula: p(iG , aB) =  fi,G 

×  fa,B ×  fG,B. Finally, using this matrix, we constructed a population-wide network 

of associations or links.  
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4.4.3 Quantifying social influence in empirically based social network 

To identify influential network members serving as social centers and 

intermediaries (303), we quantified each individual’s betweenness and degree 

scores (298). Given that these metrics were highly correlated, we used 

betweenness going forward as particularly suitable for questions about global 

connectivity and more importantly the efficiency of social diffusion in a society 

with fission-fusion dynamics (284, 304). From this point onward we often refer to 

individuals with high betweenness scores as the most central individual. To 

include age as a form of social influence due to presumed disparity in 

socioecological experience between mature versus immature individuals, we 

considered four age categories. They included young adults, prime adults, 

mature adults and the matriarchs (305). Betweenness and age category were not 

correlated. Their definitions are detailed in Table 4.1.  

4.4.4 Conducting deletions using empirically based social network 

To assess how disturbance affects global structure in elephant social networks 

and determine the level of stress that would bring about network fragmentation, 

we carried out a sequence of targeted deletions by selecting 20 percent of the 

oldest or most central network members (together referred to as ‘deletion 

metrics’) and deleting them in a random sequence in increments of two percent. 

By eliminating up to 20 percent of members, we attempted to mimic the varying 

degree of poaching stress likely imposed on wild populations (53). In addition, we 

were motivated by evidence that many synthetic, biological systems (306) are 

organized around several, highly connected nodes, important for network 
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development and stability (307). We compared the effect of targeted deletions 

against a null model by also deleting 20 percent of network members randomly 

(together referred to as ‘deletion types’) in increments of two percent (collectively 

referred to as ‘deletion proportions’). Each deletion proportion was replicated 

1000 times per both deletion types and both metrics (i.e., betweenness centrality 

and age category) (148).     

After each deletion proportion, in each deletion type and metric, we 

quantified four, established, theoretical indices diagnostic of social network 

connectivity and efficiency of social diffusion. These indices included the 

clustering coefficient and weighted forms of the diameter, global efficiency and 

modularity. Weighted variants of these indices are informative when individuals 

associate differently with different conspecifics, which has been reported in 

elephants (e.g., young adults may associate more frequently with close rather 

than distant kin) (292). Given the importance of fission-fusion dynamics in 

elephant populations occurring through interactions among immediate and 

distant kin (119), we quantified the clustering coefficient and weighted modularity 

before and after removal of socially influential elephants. By characterizing the 

number and weight of links within (i.e., clustering coefficient) and across (i.e., 

modularity) disparate subgroups or modules, we simultaneously compared the 

change to network connectivity at the social unit and population levels. By 

measuring weighted diameter and global efficiency, we aimed to illustrate the 

potential rapidness (i.e., diameter) and pervasiveness (i.e., global efficiency) of 

social diffusion. Evaluating these indices in the context of elephant social 
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networks allowed us to identify social interactions with capacity for timely and 

pervasive diffusion of social currency, and their change after poaching-like 

disturbance. The definitions of these indices and our predictions regarding their 

change after deletions are detailed in Table 4.1 (284). 

We assessed the mean value of each index as a function of the 

proportion, type and metric of deletion. Each deletion condition (e.g., targeted 

deletion of two percent of the most mature network members) was repeated 

1000 times — a process theoretically unlimited in the sample size. Therefore, 

instead of using a comparison of means statistical test informed by a biological 

distribution, we quantified the difference in the effect size between means of 

targeted and random deletions using Hedge's g test (308). We expressed the 

differences in the mean values between all corresponding conditions using the 

95 percent confidence intervals.  
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Table 4.1 Definitions of Social Influence Metrics and Network Indices, as well as 
Expected Outcomes after Deletion Experiments 
 

 
Notes: Definitions of social influence metrics and network indices used in this publication, as well as 
expected outcomes for weighted (W) and unweighted indices measured after incremental deletion of the 
most socially influential individuals in targeted deletions, or in random deletions without consideration for 
their social influence. 1Path weight - the inverse of the weight of a link, where links with highest weights are 
equivalent to shortest paths. 2Shortest path - the path with the minimum number of links between any pair of 
individuals. 3Diameter - the longest among the shortest path lengths in a network  
Sources: (309, 310,121, 305, 277, 298, 311, 277, 279, 298, 312, 213, 314, 315, 316, 317, 284, 277)  

Individual 
level metric 

Definition 

Betweenness The number of shortest paths1 passing through an individual. High value indicates high 
social interconnectedness and thus important theoretical role that an individual has in 
the exchange of social currency, such as information (309, 310) 

Age 
category 

A segment of the population within a specified range of ages, including: 1) young adults 
(individuals <12 and < 20 years old); 2) prime adults (20-35); 3) mature adults (>35);  
4) the matriarchs (the oldest or most dominant females in the core group)) used when 
categorical consideration of age is desired, or when data on absolute age are not 
available; in the empirically based population the age ranges were based on year of 
birth; in the virtual populations, the age range distribution was modeled to parallel the 
empirical distribution of ages (121, 305) 

Network 
level index 

 Predictions 

Clustering 
coefficient 
 

The number of triplets (where any set of three individuals are 
connected by either two or three links, referred to respectively as open 
and closed triplets, respectively) divided by the total possible number of 
triplets. High values have been associated with high group cohesion, 
little subgrouping, and resilience against disturbance-induced 
breakdown (277, 298, 311) 

deletion 
proportion: 
0 > 0.2 
deletion type: 
random > 
targeted 

Diameter W The path with the maximum weight1 among the shortest path lengths2 
across all dyads. High values have been associated with low degree of 
cohesion potentially impeding rapid transmission of information  (277, 
279, 298) 

0 < 0.2 
random < 
targeted 

Global 
efficiency W 

The inverse of the network’s global efficiency, which measures the ratio 
between the total number of individuals and links multiplied by the 
network diameter3. High values have been associated with high 
probability of social diffusion in a group and thus important theoretical 
role in efficient transmission of information (312, 313) 

0 > 0.2 
random > 
targeted 

Modularity W The density of links within a module in a weighted network relative to 
the density of links between modules. High value indicates low group 
cohesion with cohesive subgroups, and susceptibility to breakdown 
after disturbance (314–316) 

0 < 0.2 
random < 
targeted 
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4.4.5 Virtual data - characterizing composition and association properties 

in virtual populations 

To evaluate the impact of poaching-like disturbance on global network structure 

in the context of sociodemographic diversity likely seen in wild elephant 

communities, we generated 100 virtual populations based on empirical 

population composition (121). Each virtual population consisted of females in the 

previously detailed age categories (Table 4.1) and four social tiers, namely core, 

bond, clan and non-kin clan group (Table B.1.1 in Appendix B.1) (39). 

Evaluating the distribution of AIs in the empirically based network, 

according to age category and kinship, revealed the following patterns. 1) 

Individuals of any age category were most likely to associate within their core 

group. They were also more likely to associate with kin from the same bond 

group than from other bond groups; then with individuals from their clan; and 

lastly with non-kin (317). 2) In a core group, individuals of any age category were 

slightly more likely to associate with conspecifics from older age categories 

(Figure 4.1a). Since these patterns are generally consistent with the dynamics 

described in many elephant populations (genetic relatedness — (317, 318); 

multilevel structure — (121); spatial proximity — (292, 319)), we used the 

empirically based AI ranges for social network assembly in the virtual 

populations. To show the parallels, we present the ranges of dyadic associations 

across all age categories and social tiers in the empirically based and virtual 

populations (Figure 4.1 and Table B.1.1 in Appendix B.1). 
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Figure 4.1 Graph representing the distribution of association indices in 
empirically based and virtual populations  
 
Notes: Distribution of association indices for (a) the empirically based versus (b) virtual populations as a 
function of age category and kinship of the associating individuals Age categories are abbreviated using the 
following symbols: Y - young adult; P - prime adult; M - mature adult; G - matriarch. A detailed account of 
population composition in the empirically based versus virtual populations can be found Table B.1.1 in 
Appendix B.1. 



   
 

 97 

4.4.6 Simulating virtual social networks 

To simulate 100 virtual social networks, we used a spatiotemporally nonexplicit, 

individual-based model at two levels — between core groups and then dyads. 

The range of probabilities of kinship- or age-based association between two 

groups or individuals, respectively, were drawn from a triangular distribution 

mimicking empirically based data (Figure 4.1b). At each time step, each dyad in 

the population had the opportunity to associate. Once a core group and a dyadic 

association had been determined to occur, the time step was terminated and the 

total number of observed associations per each dyad was updated (Figure 4.2).  
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Figure 4.2 Flow chart summarizing the process of simulating social networks 
among virtual elephant populations 
 
Notes: At initialization, the probabilities of association between and within groups are set according to 
kinship and age category (Figure 4.1). At the beginning of each time step, the set probability of association 
between or within each set of groups and between each dyad is compared to a randomly generated number 
(RDN) between {0,1}. If this probability is greater than RDN, the association is set to occur; if this probability 
is lower than RDN, the association does not occur, and the time step is terminated. At the end of each time 
step the number of times a specific dyad has formed across all previous time steps is updated (i.e., 
increased by one if the association had occurred, or remained the same otherwise). For the distribution of 
network indices as a function of the number of simulation time steps refer to Figures B.1.1 in Appendix B.1. 
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The networks had started to reach a plateau after 500-time steps (Figure 

B.1.1 in Appendix B.1). However, to study how deletions may affect the global 

structure of networks at different stages of development, we stopped the 

simulation at 100-, 200-, 300-, 400- or 500-’time steps. From these networks, we 

noted the age category and quantified betweenness of every individual. To 

compare their structure, we present graphs of the empirically based network and 

an example of a similarly sized virtual network (Figures 4.3). They appear similar 

in age category makeup and WGS associations. The empirically based network 

has fewer BCG associations and nodes with higher overall betweenness values 

than the virtual network.  

 

 
Figure 4.3 Social network graphs of the empirically based population 
 
Notes: Color partitioning is according to a core group, considered from the perspective of either (a) age 
category or (b) betweenness; and a comparable example of a virtual population with the partitioning 
according to a core group, and either (c) age category or (d) betweenness. The nodes are ranked by size 
where the largest nodes indicate oldest age or highest betweenness. The links are ranked according to their 
relative weight. The color and thickness scheme depicting the weight of each link ranges from red/thin (low) 
to dark grey/thick (high weight). The links with weight less than 5 percent were filtered out for visual clarity.  

 

4.4.7 Conducting deletions using virtual social networks 

To measure if the disappearance of the most socially influential individuals 

changed the connectivity and efficiency in the 100 virtual networks at each of the 
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five time steps, we performed a series of targeted and random deletions. 

Individuals were deleted in four percent increments, ranging from zero to 20 

percent. In targeted deletions, 20 percent of individuals selected for removal had 

the highest betweenness or belonged to the oldest age category. During each 

random deletion, the same proportion of individuals as in targeted deletions was 

removed randomly, disregarding their betweenness or their age category. After 

every deletion proportion, we recalculated the following network level indices: 

clustering coefficient, as well as weighted diameter, global efficiency and 

modularity (Table 4.1). As in the empirically based portion of our study, we used 

the Hedge’s g test to quantify the difference in the effect size between the means 

of all network indices across 1) the deletion proportion spectrum, 2) deletion type, 

3) time step and  4) deletion metric (308). 

Motivated by a preliminary assessment indicating a high degree of 

resilience to fragmentation after the deletion of the oldest or most central 

members, even at early stages of network formation (i.e., 100-time steps), we 

explored if simulated networks would break down when subject to prior 

elimination of relatively weak associations (320). Here we wanted to determine if 

weak associations, likely formed among individuals with high betweenness, could 

also be explained by age category. During this process, we manipulated only the 

most robust networks (i.e., 500-time steps) by filtering out the ‘weakest links.’ To 

do so, we divided the value of each link in the association matrix by the highest 

link value and eliminated the links with values up to three percent of the highest 
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link in increments of one percent. After each elimination without replacement, we 

carried out the deletions and quantification of outcomes as described above. 

The social network quantification and analysis of both the empirically based 

and virtual data were performed using the R statistical software, version 3.2. (R 

Core Team 2017). Visualization of the social networks was performed in Gephi 

software, version 0.9.2 (321). 

4.5 Results 

4.5.1 Empirically based network 

Contrary to our expectations, the results of targeted deletions in the empirically 

based portion of our study revealed disparities in almost all network indices 

between age category and betweenness (Table B.1.2 and Table B.1.3 in 

Appendix B.1) and an overall unexpected level of resilience against disturbance. 

The effect size statistics estimating the mean difference between age 

category-targeted and random deletions at each deletion proportion revealed no 

change in clustering coefficient, as well as weighted global efficiency and 

modularity. Weighted diameter decreased in targeted deletions but only at larger 

deletion proportions (e.g., proportions in the interval {0.1, 0.2}) (Figure 4.4). 

Although we did not expect these results, the removal of the oldest elephants in 

simulated populations appears less damaging to the network connectivity than 

we expected. Network efficiency, however, based on the weighted diameter 

results, was negatively affected by elimination of seniors.  

In contrast, the effect size statistics comparing the differences between 

targeted and random elimination of individuals with highest betweenness, as a 
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function of deletion proportion, showed an expected decrease in clustering 

coefficient and weighted global efficiency, as well as an increase in weighted 

diameter (Figure 4.4). Weighted modularity revealed no change relative to 

random deletions (Figure 4.4). This set of results indicates that the loss of the 

most central conspecifics, particularly if more than 10 percent of them are 

removed, impedes connectivity and efficiency in simulated networks.  

 

 
Figure 4.4 Results of deletion experiments using empirically based social 
networks 
 
Notes: Graphs representing results (mean plus 95% confidence interval) of 1000 deletions per each 
combination of deletion proportion (i.e., 0-20%) and type (i.e., random vs. targeted) in the empirically based 
network. The deletions were either targeted according to age category (black series) or betweenness (blue 
series); or were random (grey and teal series represent random deletions without considering individual 
traits conducted as control conditions to age- or betweenness-targeted experiments, respectively). The 
network indices evaluated included clustering coefficient as well as weighted modularity, diameter and 
global efficiency. For a cross-species context, the minima of y-axis ranges per clustering coefficient as well 
as weighted modularity and global efficiency are plotted to express the minima from a similar, theoretical 
treatment in an egalitarian primate society (148). The weighted diameter index depends on group size, thus 
the pertinent y-axis is not expressed in a cross-species context. For results of Hedge’s g test expressing the 
difference in the effect size between the mean values of each network level index in targeted versus random 
deletions along the deletion proportion axis and per deletion type, refer to Table B.1.2 and Table B.1.3 in 
Appendix B.1.  
 



   
 

 103 

4.5.2 Virtual networks 

The results in the virtual portion of this study were similar to those from the 

empirically based portion. When age category was the focus of deletions, the 

effect size statistics comparing means of targeted and random deletions in the 

100 virtual networks, along the time step and deletion proportion axes, revealed 

an increase in clustering coefficient and weighted global efficiency, and a 

decrease in weighted diameter. For the latter two indices, large effect size 

statistics were only apparent at early time steps and large deletion proportions 

(e.g., up to 300-time steps and proportions in the interval {0.16, 0.2}). There was 

no change in mean, weighted modularity between targeted and random deletions 

(Table B. 1.4 in Appendix B.1). Contrary to our expectation, these results suggest 

that removal of older individuals improved connectivity in 400- and 500-time step 

networks but without improving their efficiency.   

When targeted deletions were performed according to betweenness, the 

clustering coefficient and weighted global efficiency decreased, while weighted 

modularity and diameter increased. The effect size statistics for these indices 

were large across most time steps and deletion proportions. As we expected, 

these results point to a decrease in connectivity and efficiency of simulated 

networks and importance of individuals with high betweenness in shaping these 

network features. 

Elimination of the weakest association links with values ranging from one 

to three percent of the highest link in 500-time step networks led to multiple 

events of breakdown into at least two modules (Table B.1.5 in Appendix B.1). 
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Given their ‘premature’ disruption, we excluded these networks from the 

subsequent deletions. In the remaining filtered networks, targeted deletions of 

individuals with the highest betweenness, more so than age category, caused 

more fragmentation than random deletions. Finally, although the weakest links 

were rather evenly distributed between individuals of various age categories, 

they occurred more often among individuals from different clans (Figure B.1.2 in 

Appendix B.1) indicating an important role in network connectivity. 

4.6 Discussion 

In this study, we addressed a timely question about the response of animal 

groups to human disturbance by simulating poaching in African savanna 

elephant populations. After targeted removal of socially influential individuals, 

according to their age category or position in a social network (i.e., 

betweenness), we characterized network indices associated with cohesion and 

transfer of information in animal groups. We anticipated that targeted disturbance 

would 1) perturb theoretical indices of network connectivity and the efficiency of 

social diffusion immediately after disturbance and 2) increase as a function of 

deletion proportion (i.e., 0 - 0.2) leading to network breakdown.  

Contrary to our expectations, targeted deletions according to age category 

resulted in improved connectivity in simulated networks. This outcome, however, 

instead of pointing to social influence of seniors, revealed their peripheral roles in 

contributing to network connectivity relative to younger conspecifics. Elimination 

of individuals with high betweenness led to an anticipated decrease in indices 

expressing connectivity and efficiency of social diffusion in simulated networks. 
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Unlike age category, betweenness proved to be an indicator of social influence in 

the context of strong links among close kin as well as weak links among distant 

kin. Finally, regardless of the deletion metric, the simulated networks did not 

break down even when subject to relatively high degree of ‘poaching’, leaving the 

question of a theoretical breaking point outstanding. 

The disparities between age category- and betweenness-specific 

deletions are consistent with intraspecific behaviors in species with multilevel 

sociality, established dominance hierarchy and high degree of tolerance towards 

subordinate group members (219). For instance, in real elephant populations, 

immature individuals are rather indiscriminate in their affiliations and likely to 

engage with multiple conspecifics of different ages and kinship (128, 290, 291). 

Frequent bouts of social engagement may afford them some social skills without 

direct engagement of senior kin and fosters cohesion between distinct subgroups 

(125, 271). In contrast, similarly to mature individuals in other group-living 

species (322, 323), senior elephants may be more selective about their social 

partners and less sociable (121). Their value as social intermediaries contributing 

to network connectivity and efficiency may for that reason be comparable to their 

immature conspecifics (125, 130), regardless of the wealth of socioecological 

experience seniors likely possess and display during social activities (e.g., such 

as group antipredator defense led by the matriarch — (127)).  

This type of organization, where network stability is mediated by different 

categories of individuals, exemplifies a decentralized system, likely selected to 

buffer destabilizing effects of prolonged fission or stochastic events such as 
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disease-induced die-off (324) or poaching. The notion of network 

decentralization, reflected in our simulation, parallels the findings by Goldenberg 

and collaborators who propose that the redundancy between social roles of 

mature elephants, prior to poaching, and their surviving offspring is a potential 

mechanism of network resilience against breakdown (125). The simulated 

networks in our research were also resilient to removal of the socially influential 

group members. Given the seemingly greater flexibility and interconnectedness 

in elephant populations, relative to other closely knit social species (148) finding 

hypothetical limitations to social resilience may require evaluating more intensive 

yet biologically meaningful ‘poaching’ disturbance than considered in our work 

(325). 

Although our assessment of the effects of disturbance on social 

organization and resilience does not account for the dynamic or indirect 

responses to poaching (e.g., network reorganization or avoidance of poaching 

hotspots), it is a valuable first step in systems with limited real-world data. Having 

access to information about the proportion and type of missing group members 

may 1) offer basic but meaningful insights about why some poached elephant 

populations take exceptionally long to recover from member loss (326), while 

others recover much quicker (327) and 2) help reason about the fate of 

recovering populations. Our ideas may also be transferable to management of 

other group-living, keystone species (172, 328–331). For instance, applied 

without consideration for social interactions, trophy hunting of pride lions may 

intensify infanticide by immigrant males (134, 265, 330) and displace distressed 
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females to hunt in fringe habitats exacerbating conflict with humans (172, 332). 

Prior to making decisions about lethal management or translocations of ‘problem’ 

individuals, wildlife managers may be well served by simulating relevant 

disturbance on focal populations, quantifying social network effects and adjusting 

management decisions for better outcomes (241, 277). As another example, the 

use of ASNA in captive animal populations is already helping researchers 

characterize the dynamics of harmful agonistic interactions, such as tail biting in 

newly mixed groups of domestic pigs (333). These data may help parametrize 

simulated disturbance to social network structure in captive systems by taking 

into account traits such as genetic relatedness in group composition to determine 

its link to aggression and health of animal subjects. Insights from this type of 

assessment may improve animal husbandry and safety of farm workers (334, 

335).  

In summary, our work confirms previous findings that although elimination 

of the most central network members decreases network connectivity at the 

population level, it does not lead to network fragmentation. Uniquely, however, 

our research shows that poaching-like stress in a large number of virtual 

elephant populations impedes the theoretical efficiency of social diffusion. A 

follow-up question about the relationship between the structural network changes 

and population performance will require simulating a dynamic process that 

accounts for network reorganization after poaching. In addition, to tease apart an 

individual's importance due to network position versus age-specific experience 

will require a method that accounts for interaction-mediated information transfer. 
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Still, our simulation platform can be easily altered to test basic hypotheses about 

disturbance of social interactions in wild and captive systems. 
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5 APPENDIX A 

SUPPLEMENTARY MATERIAL FOR ANALYSIS OF MOVEMENT IN 
CHAPTER 3 

 
This appendix provides additional information about the population of male 

elephants evaluated in Chapter 3  

 
A.1 Supplementary Material 1 
 
Table A.1.1 Classification of the five collared males into several established age, reproductive and social 
categories. When data on absolute age in postdispersal male elephants is not available, it is segment into 
five categories including (O’Connell manuscript in review at Mammalogy Journal) 
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6 APPENDIX B 

SUPPLEMENTARY MATERIAL FOR ANALYSIS OF SOCIAL NETWORK 
DYNAMICS IN CHAPTER 4 

 
This appendix provides additional information useful for interpretation of results in 

Chapter 4. 

 
B.1 Supplementary Material 1 
 
Table B.1.1 The summary composition of 100 virtual populations with the numbers of clan, bond and core 
groups, as well as individuals per population; the number of bond and core groups, and individuals per clan; 
the number of core groups per group; and the number of individuals per bond and core groups. The 
distribution of age categories within each core group was the following: young adults (mean = 2 individuals, 
min = 1 , max = 5); prime adults  (mean = 2, min = 0, max = 7); mature adults (mean = 1, min = 0, max = 3); 
and matriarchs (mean = 1 , min = 1, max = 1). The composition of the empirical population is included as a 
reference (i.e., = 10 core groups including a total of n= 83 individuals) (121, 305). 
 

Demographic group Minimum Maximum Median Empirical contrast 

Clan groups per population 1 8 5 3 

Bond groups per population 1 28 14 8 

Core groups per population 5 86 40 10 

Bond groups per clan group 1 5 3 4,3,1 

Core groups per clan group 1 20 9 5,4,1 

Core groups per bond group 1 5 3 1,1,2,1,2,1,1,1 

Individuals per population 95 760 350 83 

Individuals per clan group 10 175 74 39,36,8 

Individuals per bond group 1 45 25 10,6,19,4,16,11,9,8 

Individuals per core group 4 15 8 10,6,9,10,4,6,10,11,9,8 
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Table B.1.2. Results of Hedge’s g test expressing the effect size difference between mean values of 
weighted forms of modularity and global efficiency indices. These statistics express the difference between 
targeted and random deletions in empirically based networks, along the deletion proportion axis, with 
deletions performed according to either age category or betweenness (308). Bold values indicate medium (≥ 
|0.5|) and large (≥ |0.8|) effect size.  
 

Network Index Deletion proportion Hedge’s g statistic 

Age category Betweenness 

Modularity W 0.02 -0.0348  0.2513 

0.04 -0.0239  0.1394 

0.06 -0.1002  0.3639 

0.08 -0.0538  0.2219 

0.1  0.0380  0.1154 

0.12  0.0171 -0.4311 

0.14  0.0630 -0.1442 

0.16  0.0315 -0.1178 

0.18  0.2038  0.0303 

0.2  0.3683  0.3449 

Global efficiency W 0.02  0.0750 -1.5411 

0.04  0.1247 -2.2205 

0.06  0.1565 -2.9173 

0.08  0.2054 -3.5236 

0.1  0.2066 -4.0418 

0.12  0.1941 -4.6401 

0.14  0.1994 -5.3114 

0.16  0.2650 -6.0381 

0.18  0.2883 -6.9214 

0.2  0.3328 -8.1713 
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Table B.1.3 Results of Hedge’s g test expressing the effect size difference between mean values of 
clustering coefficient and weighted form of diameter indices. These statistics express the difference between 
targeted and random deletions in empirically based networks, along the deletion proportion axis, with 
deletions performed according to either age category or betweenness (308). Bold values indicate medium (≥ 
|0.5|) and large (≥ |0.8|) effect size. 
 

Network Index Deletion proportion Hedge’s g statistic 

Age category Betweenness 

Clustering coefficient 0.02  0.0476 -1.6673 

0.04  0.0904 -2.3356 

0.06  0.1218 -3.0060 

0.08  0.1693 -3.5128 

0.1  0.1572 -3.9375 

0.12  0.12531 -4.3778 

0.14  0.1212 -4.8515 

0.16  0.1635 -5.3056 

0.18  0.1570 -5.7977 

0.2  0.1709 -6.2864 

Diameter W 0.02 -0.2706 -0.4453 

0.04 -0.3439 -0.5870 

0.06 -0.4264 -0.6470 

0.08 -0.4898 -0.6503 

0.1 -0.5604 -0.5966 

0.12 -0.6311 -0.4333 

0.14 -0.7000 -0.1889 

0.16 -0.7693  0.1999 

0.18 -0.8560  0.9766 

0.2 -0.9446  2.4932 
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Table B 1.4 Results of Hedge’s g test expressing the effect size difference between targeted and random 
deletions in virtual populations. The effect size differences, calculated as the Hedge’s g test, are presented 
as mean values for each network index in targeted and random deletions in the virtual networks, spanning 
all network time step and deletion proportion increments. The deletions were performed according to age 
category or betweenness (308). Bold values indicate medium (≥ |0.5|) and large (≥ |0.8|) effect size.   
 

                                                          Simulation time step/Deletion proportion 
  

 
300 500 

Deletion  
metric 

Network level index  0.04  0.08  0.12  0.16  0.20  0.04  0.08  0.12  0.16  0.20 

   
Ag

e 
ca

te
go

ry
 

Diameter W  0.01 -0.07 -0.20 -0.37 -0.59  0.05 -0.01 -0.11 -0.28 -0.47 
Modularity W -0.02 -0.05 -0.10 -0.18 -0.26 -0.04 -0.06 -0.13 -0.19 -0.25 
Global efficiency W -0.04  0.04  0.19  0.39  0.63 -0.27 -0.27 -0.17  0.00  0.25 
Clustering coefficient  0.60  0.82  0.98  1.11  1.21  0.53  0.74  0.89  1.01  1.13 

 B
et

w
ee

nn
es

s Diameter W  1.11  1.53  1.75  1.86  1.97  0.76  1.26  1.60  1.80  1.95 
Modularity W  0.22  0.55  0.90  1.29  1.57  0.13  0.44  0.77 1.15  1.53 
Global efficiency W -1.79 -1.91 -1.96 -1.97 -1.98 -1.69 -1.88 -1.94 -1.97 -1.98 
Clustering coefficient -1.88 -1.94 -1.96 -1.97 -1.98 -1.89 -1.95 -1.97 -1.98 -1.98 
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Table B.1.5 The summary of the percentages of filtered, virtual networks that broke down into two or more 
modules as a result of the deletions performed according to age category or betweenness. The filtering 
process was carried out before the onset of the deletions by dividing the value of each link in the association 
matrix by the highest link value and eliminating the links with values up to three percent of the highest link in 
increments of one percent (320). Only 500-time step networks were considered in these experiments.  
 

Deletion 
metric 

Deletion 
type 

Filtering 
percent 

Deletion proportion Minimum, Maximum 
number of modules at 
0.2 deletion 

0.04 0.08 0.12 0.16 0.2 

Age category Targeted 1 0 0 0 0 0 1,1 

2 0 1 2 2 2 1,1.41 

3 0 0 0 0 0 1,1 

Random 1 0 0 0 0 0 1,1 

2 3 4 5 8 14 1,1.22 

3 100 100 100 100 100 1.25,1.25 

Betweenness  Targeted 1 0 0 0 0 0 1,1 

2 6 14 17 19 19 1,4 

3 100 100 100 100 100 2,5 

Random 1 0 0 0 0 0 1,1 

2 1 5 7 11 16 1,1.34 

3 0 100 100 100 100 1.22,1.22 
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Figure B.1.1 The distribution of values per each of the network indices evaluated, including the clustering 
coefficient, as well as weighted diameter, global efficiency and modularity, expressed as a function of the 
number of simulation time steps. The 500-time step cut-off was based on when the density (or the proportion 
of existing interactions among network members, relative to the number of possible interactions) of the 
resulting networks started to reach a plateau (~ 75% median density) (298).  
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Figure B.1.2 The percentage of the weakest associations (i.e., links with values up to three percent of the 
highest link) filtered out from the 500-time step, virtual networks prior to deletion experiments. These links 
are presented according to age class in a dyad (Y = young adult; P = prime adult; M = mature adult; G = 
matriarch) and one of four social tiers. For the summary of filtering experiments showing percentages of 
filtered, 500-time step, virtual networks that broke down into two or more modules as a result of the deletions 
performed according to age category or betweenness, refer to Table B.1.5 in Appendix B. 
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