New Jersey Institute of Technology Digital Commons @ NJIT

Chemical and Materials Engineering Syllabi

NJIT Syllabi

Fall 2021

FED 101-007: Fundamentals of Engineering Design

Irina Molodetsky

Follow this and additional works at: https://digitalcommons.njit.edu/cme-syllabi

Recommended Citation

Molodetsky, Irina, "FED 101-007: Fundamentals of Engineering Design" (2021). *Chemical and Materials Engineering Syllabi*. 185. https://digitalcommons.njit.edu/cme-syllabi/185

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Chemical and Materials Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Fundamentals of Engineering Design FED 101 2 credits

Class meetings: FED 101-L53 Monday 8:30 am -11:20 am FED 101-007 Wednesday 8:30 am -11:20 am

Room 411 Tiernan Hall (Computer Lab)\Room 206 Tiernan Hall (FED Lab)

Instructor: Dr. Irina Molodetsky Room 350 Tiernan Hall Office hours: Wednesday, 1-5:00pm; Please, contact by email for additional meeting Email: Irina.Molodetsky@njit.edu

FED 101 is an introduction to a chemical engineering process design. The course combines engineering science and elements of the engineering design cycle that the teams of students use to build a laboratory model of a mini-plant prototype.

At the end of this course, the successful students will:

- Know main steps of the engineering design
- Design and build a scale-down lab prototype of a mini-plant
- Know relationship between the flowrates and average flow velocity
- Measure flowrates and static pressure in the flow systems
- Know relationship between energy and pressure in the fluid
- Manipulate different units of pressure and flowrates
- Predict and measure pressure drops in the flow system
- Analyze and present experimental data
- Work in a team of peers, assess and improve collaborative environment

Details about assignments and grading policies are discussed in the "Introduction" lecture.

If you need accommodations due to a disability please contact Chantonette Lyles, Associate Director of Disability Support Services, Fenster Hall Room 260 to discuss your specific needs. A Letter of Accommodation Eligibility from the Disability Support Services office authorizing your accommodations will be required.

Course Schedule

	Course Introduction. Schedule and grading policy
W1	Engineering Design Cycle: problem identification
	 Engineering Science: Average fluid velocity, v Volumetric flow rate, Q Mass flow rate, m
	 Instruments and engineering measurements Flowmeters Design of the experiment Flowmeter Calibration
	FED Laboratory orientation

	10 minutes quiz #1
W2	 Data analysis Working with Excel. Statistical errors. Accuracy. Precision. Making graphs in Excel Lab: Construction and measurements Manual for the lab experiment and Template for the Lab report are uploaded.

	10 minutes quiz #2
W3	
	Units and Units Conversion
	Primary units, SI, English. Dimension units
	Concepts
	Pressure. Hydrostatic pressure
	Instruments and engineering measurements
	How to measure static pressure in the fluid
	 Bourdon gauge. Absolute pressure and gauge pressure
	Lab: Completion of "Flowmeter calibration"

	10 minutes quiz #3
W4	Concepts
	Pressure-Energy relationship
	Instruments and engineering measurements
	Centrifugal pump
	Design of Experiment: Exploration of Pressure drops in a flow system
	Lab: Construction and measurements
	Manual for the lab experiment and Template for the Lab report are uploaded.

10 minutes quiz #4
Exercises and problems solving
Estimates and Analogy
Lab: Exploration of Pressure drops in a flow system ("Pressure Drops")

	10 minutes quiz #6
W6	Concepts • Single flow through a packed column • Laminar and turbulent flows. Modeling • Ergun equation: pressure drop calculations (discussion of parameters: effective particle size; void fraction, surface area, gc conversion factor) Lab: Completion: "Pressure Drops"

	10 minutes quiz #7
	Exercises and problems solving.
W7	Estimates and Analogy
	Lab demo: Packed Column

	TEST
W8	Discussion of the application of spray column and packed columns
	Final design: discussion of requirements
	Requirements for final design are uploaded.
	Work on the final design (Visio)

10 minutes quiz #7	10 minutes quiz #7
--------------------	--------------------

W9 T	Test –lessons learned
r	Modeling
	Ergun equation
L	Lab: construction

	10 minutes quiz #8
W10	
	Lab: construction and measurements.

	10 minutes quiz #9
	Concepts
W11	 Ergun equation –Viscosity (dynamic and kinematic) Demo (class) Lab: construction and measurements Requirements for final presentation -uploaded

	10 minutes quiz #10
W12	Work on electronic design notebook Work on final presentation

W13	Review Lecture "300-500 words" assignment
	Meeting with individual teams to give a feedback for submitted ppt slides; Final report "Pressure Drop measurements" is due Peers evaluation form is due

W14 Prep for Final demo and ppt presentations (see final exam schedule)

Grading (changes may apply)

- A 90 and above
- B+ 85 and above
- B 80 and above
- C+ 70 and above
- C 60 and above
- D 50 and above
- F below 50