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ABSTRACT

STATIONARY PROBABILITY DISTRIBUTIONS OF STOCHASTIC
GRADIENT DESCENT AND THE SUCCESS AND FAILURE OF THE

DIFFUSION APPROXIMATION

by
William Joseph McCann

In this thesis, Stochastic Gradient Descent (SGD), an optimization method originally

popular due to its computational efficiency, is analyzed using Markov chain methods.

We compute both numerically, and in some cases analytically, the stationary

probability distributions (invariant measures) for the SGD Markov operator over all

step sizes or learning rates. The stationary probability distributions provide insight

into how the long-time behavior of SGD samples the objective function minimum.

A key focus of this thesis is to provide a systematic study in one dimension

comparing the exact SGD stationary distributions to the Fokker-Planck diffusion

approximation equations — which are commonly used in the literature to characterize

the SGD probability distribution in the limit of small step sizes/learning rates. While

various error estimates for the diffusion approximation have recently been established,

they are often in a weak sense and not in a strong maximum norm. Our study

shows that the diffusion approximation converges with a slow rate in the maximum

norm to the true stationary distribution. In addition to large quantitative errors, the

exact SGD probability distribution exhibits fundamentally different behavior to the

diffusion approximation: they can have compact or singular supports; and there can

be multiple invariant measures for non-convex objective functions (when the diffusion

approximation only has one).

Finally, we use the Markov operator to establish additional results: (1) we show

that for quadratic objective functions the SGD expected value is the objective function

minimum for any step size. This has the practical implication that time average SGD

solutions converge to the minimum even when the SGD iterates never reach or access



the minimum. (2) We provide a simple approach to formally derive Fokker-Planck

diffusion approximations using only basic calculus (e.g., integration by parts and

Taylor expansions), which may be of interest to the engineering community. (3) We

observe that the stationary distributions of the Markov operator lead to additional

Fokker-Planck equations with simpler diffusion coefficients than what is currently in

the literature.
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Sarge: Simmons was the one that led us to you after he
stealthily avoided capture.
Grif: Avoided capture!? They knocked him out first and
picked me at random!
Sarge: Yes. A randomness that Simmons used to save
the day!

Red vs. Blue, Episode 92: Where Credit is Due
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CHAPTER 1

INTRODUCTION

1.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an algorithm designed to minimize objective

functions of the form

F (~x) =
1

n

n∑
i=1

fi(~x), (1.1)

where F (~x) can be written as a sum of individual fi(~x)’s.

Minimizing functions of the form (1.1) is a crucial task in the training of

deep-neural networks for supervised learning. In the case of supervised learning,

the functions fi(~x)’s arise naturally as loss functions related to fitting given training

data with an interpolant (so that the interpolant learns the data, see §1.2.3).

It is also relevant to discuss the main advantage that stochastic gradient descent

has when compared to other methods of optimization, such as Newton’s Method or

standard Gradient Descent. When optimizing models to fit billions of records of data

(represented by an individual fj), computing the full gradient for Gradient Descent

or Hessian for Newton’s method requires evaluating the gradient or Hessian of F in

(1.1) — and becomes costly when n is large. As such, even though SGD may require

more iterations to converge (or become close) to a minima, and may need to be

understood in a probabilistic sense, SGD provides approaches that avoid computing

a full gradient or Hessian (which may provide reductions in computational time).

More interestingly, it has been shown that SGD has a regularizing effect in

which the random process appears to intrinsically lower model overfitting[18].
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Remark. Stochastic gradient descent includes gradient descent as a special case when

n = 1, or equivalently when SGD is viewed as having only one mini-batch.

The simplest version of SGD takes the following form: Given initial data ~x0 and

fixed step size η > 0,

(SGD) ~xk+1 = ~xk − η∇fik(~xk), where, (1.2)

ik ∈ {1, 2, . . . , n} is drawn with a uniform distribution.

In Equation (1.2), η is the learning rate parameter or step size, while the random

variables ik are drawn uniformly among the integers [n] where

[n] := {1, 2, . . . , n}.

Such a choice of ik ensures that the average sampling of ∇fi provides an unbiased

approximation to ∇F , that is:

E[∇fik ] =
n∑
i=1

1

n
fi = ∇F. (1.3)

An unbiased sampling guarantees that the expected value of an SGD step agrees

with the deterministic gradient decent step, i.e., starting at a value of ~xk, E[~xk+1] =

~xk − ηE[∇F (~xik)] = ~xk − η∇F (~xk).

In practice, the step direction ∇fik in (1.2) is often replaced with a minibatch

of fi’s. Each minibatch consists of at least one, but possibly several fi’s. Formally,

stochastic gradient descent with minibatches (SGD-MB) is defined via subsets (aka

minibatches) {B1, B2, . . . , Bd}, where Bj ⊆ [n] for each 1 ≤ i ≤ d. Each minibatch

Bi has an associated gradient

gi(~x) :=
1

|Bi|
∑
k∈Bi

∇fk(~x), (1.4)
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which are collectively assumed to satisfy an unbiased approximation E[∇gj] = ∇F .

The notation |Bi| in (1.4) denotes the number of elements in the set Bi. The SGD-MB

dynamics, are: Given initial data ~x0, and η > 0,

(SGD-MB) ~xk+1 = ~xk − η∇gik(~xk), where, (1.5)

ik ∈ {1, 2, . . . , d} is drawn with a uniform distribution.

As an example, the subsets {B1, B2, . . . , Bd} could be taken as a (disjoint) partition

of [n] with each Bj (1 ≤ j ≤ d) having the same size b := |B1| = . . . = |Bd| (in

which case b would divide n). While the SGD in (1.2) and SGD-MB in (1.5) may

produce different dynamics and stationary probability distributions, structurally, the

two share the same dynamical equations once one relabels the variables d ← n, and

gi ← fi.

The SGD in (1.2) is also not restricted to selecting the random variables ik

(which determine the choice of descent direction) with equal probability among the

set [n]. Rather, we can have a set of selection probabilities {p1, p2, . . . , pn} which

represent the probability of selecting {f1, f2, . . . , fn} (or Bj in SGD-MB) as descent

directions. Namely, the pj’s satisfy

n∑
j=1

pj = 1, and pj > 0, for 1 ≤ j ≤ n, (1.6)

and are constrained to provide an unbiased approximation,

E[fjk ] =
n∑
j=1

pjfj = F. (1.7)

Note that withough loss of generality one can take pj > 0 positive; a value of

pj = 0 would imply that the corresponding fj does not contribute to the dynamics

or objective function.

Modifying the distribution from which ik samples the set [n] yields a Weighted

Stochastic Gradient Descent (WSGD). In terms of the algorithm, WSGD does not

3



change the structural form of the update equation, however it can lead to different

dynamics. Algorithmically, WSGD can be written as:

(WSG) ~xk+1 = ~xk − η∇gik(~xk), where, (1.8)

ik ∈ {1, 2, . . . , d} is drawn with a distribution {p1, p2, . . . , pn}.

Note that the WSGD (1.8) as written uses minibatch gradients fik (so it is, more

correctly, a weighted minibatch SGD). The methods presented within this thesis

generalize to include both WSGD and SGD-MB.

1.2 Motivating Examples for SGD from Supervised Learning

Artificial Intelligence, and in particular machine learning, has exploded in popularity

during recent years. In essence, machine learning (ML) is the process of applying

statistical models to data in order to make predictions about, or understand features

of, future data. While early traces of the field date back to the 1950s, the advent of

cheap, high powered computation has enabled the practical use of ML in problems

today.

When discussing machine learning, there are two broad categories of models

used: supervised and unsupervised [22]. In supervised learning models, each data

point used in the training/learning process has a corresponding true output that

the model is supposed to emulate. Common supervised methods include Linear

Regression, Decision Trees, Logistic Regression, Support Vector Machines, and certain

variations of Neural Networks. In unsupervised learning, the model is not given a

correct output for each piece of input data, and needs to make inferences based on

qualities and features of the data collection itself. Some examples of unsupervised

learning methods are K-Means Clustering, Hierarchical Clustering, and Principle

Component Analysis.

4



In order to provide an adequate insight into the type of problems that stochastic

gradient descent might be used for, we will provide two simple examples that can be

found in the field of machine learning.

1.2.1 The Supervised Learning Problem

A standard supervised learning problem [43] is to approximate (learn) a function

y = g(~x) from a collection of input data xi ∈ Rd and corresponding labels yi ∈ R

where yi = g(~xi) for 1 ≤ i ≤ n. For instance, ~xi could be vectors representing images,

and the values of yi could be labels (e.g., yi = 1 if the image contains a narwhal, and 0

otherwise). In practice yi may be vector data and not restricted to scalars. Together,

the data points (~xi, yi) for 1 ≤ i ≤ n are referred to as the training data.

Aside from the known training data (~xi, yi), where yi = g(~xi), one has no

other knowledge of the function g(~x). Mathematically, supervised learning is then

equivalent to constructing an interpolation function for g(~x). The standard approach

is to consider a family of interpolation functions G(~x, ~β) parameterized by unknown—

to be determined—weights, ~β. The ~β values are chosen so that G(~x, ~β) agrees with

g(~x) on the known training data, e.g., G(~xi, ~β) ≈ yi for 1 ≤ j ≤ n. The most common

approach to choose ~β is then to minimize the mismatch of G(~x, ~β)

minimize F (~β) =
1

n

n∑
j=1

(
yi −G(~xi, ~β)

)2

. (1.9)

Note that F (~β) in (1.9) is (up to a factor of n−1) the `2 norm squared of ‖~y− ~G(~x,~b)‖2

characterizing the mismatch of G(~x, ~β) on the training data (the vector ~G is ~Gi =

G(~xi, ~β)). One could of course use loss functions other than `2.

As one can see, the number of terms in (1.9) may be large in practical problems.

Fortunately, however, (1.9) fits within the structure of problems for which SGD may

be used. Namely with batch size 1, we would at every iteration of SGD, randomly

5



select one data point and minimize the resulting expression from considering only

that data point, e.g., move in a step direction of ∇~βfi where fi(~β) = (yi−G(~xi, ~β))2.

From the above observations, we see that SGD (as well as SGD-MB and WSGD)

can all be applied to any objective of the form (1.9) (even if the loss function is not

`2). We now provide two concrete examples for functions G(~x, ~β) that may be used

in practice.

1.2.2 Least Squares Linear Regression

For Least Squares Linear Regression we attempt to fit a linear function to our data

such that we minimize the Residual Sum of Squares Error (RSS) between the data

and predicted values. In general, if we have d input dimensions, then we are trying

to find a ~β ∈ Rd that solves the following minimization problem:

minimize F (β) :=
1

n

n∑
i=0

(~xi
T ~β − yi)2︸ ︷︷ ︸

fi

. (1.10)

Namely, the function G(~x, ~β) = ~xT ~β. Note that the factor of 1/n in front of the

summation is added simply to write (1.10) in the form of (1.2) (re-scaling an objective

function F → αF for α > 0 has the superficial effective of modifying the time step

η → αη in SGD). The function F (~β) is perhaps more often written as F (~β) =

1
n
‖A~β − ~y‖2, where

A =


~xT1
...

~xTn

 , ~y =


y1

...

yn

 .

The Least Squares Regression problem is a convex optimization problem with

several standard solutions (e.g., one can solve the normal equations, or write the

solution via a QR factorization or singular value decomposition of A [44]). However,

we can still consider how (1.10) would look as an objective function for the SGD in

6



(1.2). As written in (1.10), the objective F (~β) is a summation of fi = (~xTi
~β − yi)2

which are defined by each data point. Each step of SGD moves in a direction given

by one of the fi’s.

Example 1. Consider a toy problem where n = 3 with data (~x, y) ∈ R2×R given by:

{(
[1, 2]T , 1

)
,
(
[−1, 0]T , 0

)
,
(
[2,−3]T , 1

)}
. (1.11)

The least squares objective function is:

F (~β) =
1

3

(
1− [1, 2]T ~β

)2

+
1

3

(
0− [−1, 0]T ~β

)2

+
1

3

(
1− [2,−3]T ~β

)2

. (1.12)

Every iteration of SGD, randomly selects one of the following 3 functions:

f1(~β) =
(

1− [1, 2]T ~β
)2

, f2(~β) =
(

0− [−1, 0]T ~β
)2

,

f3(~β) =
(

1− [2,−3]T ~β
)2

,

and moves in a direction of ~b→ ~β−η∇fi(~β). Alternatively, SGD can be viewed

as choosing at random one of the fi’s, and taking a step direction to minimize the

individual fi (before randomly selecting the next one to “optimize”).

1.2.3 A Single Layer Neural Network Example

We now consider fitting a single layer neural network model G(~x, ~β) to our data. In

the context of supervised learning, the neural network G(~x, ~β) is taken to be a nested

composition of activation functions, often either a sigmoid or ReLU (see §1.2.4) with

linear affine functions.
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As an example model, we take G(~x, ~β) to be a single layer neural network:

G(~x, ~β) = σ (w5σ(w1x1 + w2x2 + b1) + w6σ(w3x1 + w4x2 + b2) + b3) , (1.13)

where the parameters ~β = (w1, w2, w3, w4, w5, w6, b1, b2, b3)T , ~x ∈ R2 and σ : R → R

is the activation function. Given three data-points (1.11), the supervised learning

problem is then to find weight values wj and bias values bj that minimize the following

expression

minimize
3∑
i=1

(yi − σ (w5σ(w1xi,1 + w2xi,2 + b1) + w6σ(w3xi,1 + w4xi,2 + b2) + b3))2 ,

subject to ~w ∈ R6, ~b ∈ R3.

We notate that xi,j is the jth component of the ith data point.

1.2.4 Common Activation Functions in Machine Learning

Each type of machine learning model handles data using its own mixture of various

mathematical functions, in a way that can be thought of as a type of cooking: many

different recipes to cook require different ingredients to be handled in different ways.

However, just like how many common ingredients are shared between recipes, there

are numerous functions common to the various ML models.

For the following models, we stick to the convention that ~x ∈ Rd represents

a piece of input data, ~y ∈ Rm represents corresponding output data, W represent

some matrix of weights/coefficients to the input variables, and ~b represents an affine

shift in the model, often called bias or activation energy. The notation of ~x as input

data, W ,~b as model coefficients, and ~y as output data are not representative of the

notation that we will use in subsequent sections, they are more consistent with other

literature.

8



The Perceptron. First introduced in 1958 by Frank Rosenblatt[39], the perceptron

is a function that formed the basis of what would eventually become neural networks.

The perceptron is essentially a Heaviside step function composed with a linear

function, σ : Rd → {0, 1}, given by:

σ(~x) =


1, ~wT~x+ b > 0,

0, else

. (1.14)

Note that in this case, ~w ∈ Rd is a vector and b ∈ R is a scalar. Perceptrons are

then composed into “layers” which can then have their outputs mapped into another

layer of perceptrons: in modern terminology this is considered an example of a neural

network.

While perceptrons initially were thought to be quite powerful, their capabilities

were shown to be much more limited than initially expected in Perceptrons: an

introduction to computational geometry in 1969[36]. The most infamous example of

said limitations is the proof that the single layer set of perceptrons cannot correctly

separate the binary XOR data set, and in fact can only correctly classify linearly

separable data. Geometrically, the perceptron is the characteristic function for an

open halfspace defined by the plane ~wT~x+ b = 0.

The Sigmoid Function. One of the main problems with the perceptron function

is that it is neither continuous, nor differentiable at the activation boundary (i.e., the

interface ~wT~x+b = 0 separating output values of 0 from 1). Even worse, the derivative

is 0 where-ever it exists — which can be problematic when training (or learning) the

weights via optimization algorithms that make use of the function gradient. As such,

a smooth alternative was proposed: a sigmoid, S-shaped curve. There are several
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versions of the sigmoid function, ~f : Rd → Rm, two common ones are:

(Logistic function) ~σ(~x) =
(

1 + exp
(
W x̃ + b̃

))−1

, (1.15)

(Hyperbolic tangent) ~σ(~x) = tanh
(
W~x+~b

)
. (1.16)

In (1.15) and (1.16), the notation exp and tanh etc., is understood as applying the

functions component-wise to each component of a vector, e.g., ~y = exp(x̃) means that

yj = exp(xj) for each 1 ≤ j ≤ d. In words, (1.15) and (1.16) are S-shaped functions

applied to each component individually of the vector W~x+~b.

For the past decade, sigmoid functions have been a popular choice for an

activation function, however they have started to fall out of popularity in recent

years to rectified linear units (ReLUs). Sigmoid functions have a bounded range of

output values and become “flat” for large values of their input arguments. As a result,

sigmoids may have very small gradient values (similar to the perceptron) — which

can cause issues in optimization algorithms that rely on computing the gradients of

the sigmoid.

The Rectified Linear Unit (ReLU). ReLUs are an attempt to fix some of the

pitfalls of sigmoid functions. This activation function is defined as ~σ : Rd → Rm:

~σ(~x) = max(0,W~x+~b), (1.17)

where just like the sigmoid, the max is applied component-wise.

The single variable ReLU, σ(x) = max{0, x}, has a constant derivative of 1 at

all positive points and is unbounded as x→∞. This fixes the vanishing gradient on

values of x > 0, even though the issue still persists on values of x < 0. The function

is also very simple to compute, not needing to perform any numerical methods for
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exponentiation on hyperbolic functions (which can become costly in applications such

as ML where many functional evaluations are needed).

As noted prior though, the vanishing gradient issue still occurs on the left side

but even more dramatically; this can lead to many un-utilized parameters in the

model network, and a reduction of model strength by extension. As such, some

people have suggested some modified variations that do not have a flat left hand side.

For example there is the Gaussian Error Linear Unit defined as f : R→ R:

σ(x) = xΦ(x), (1.18)

where Φ(x) is the cumulative distribution function for the normal distribution.
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CHAPTER 2

ANALYSIS OF SGD WITH MARKOV CHAIN METHODS

Table 2.1 Table Of Notation Used In Following Sections

Notation Table

Symbol Name Description

F Objective Function
Function to be minimized as per

problem requirements

fj
Splitting Function /

Loss Function

Component of objective function

to be selected by SGD. By

definition F =
∑n

j=1 pjfj. In

practice represents one possible

batch of data during an SGD

iteration.

pj Selection Probability

Probability of selecting splitting

function fj at any iteration of

SGD. Generally selected to be

pj = 1
n
.

n Number of Splittings

Variable representing the number

of splitting functions fj that F is

decomposed into. Can be thought

of in practice as the number of

possible SGD batches.

~x ∈ Rd Model Parameters
Parameters of F to be varied in

order to minimize F .

~G Objective Gradient ~G = ∇F .
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Continuation of 2.1

Symbol Name Description

~gj
Splitting Gradient /

Loss Gradient
~gj = ∇fj.

ρm(~x)

Probability

Distribution at Step

m

Probability distribution for the

m’th iteration xm of SGD.

P (~y, A)
Markov Transition

Kernel

Generalization of Markov matrix,

it encodes the Markov transition

probabilities P (~y, A) = Pr(~xm ∈

A|~xm−1 = ~y).

P Markov Operator

Generalization of multiplication

by a Markov matrix. An

Operator who’s application,

i.e. integration against P (~y, A),

advances one iteration of the

probability distribution.

ρm+1(~x) = (Pρm)(~x).

ρ(~x)

Invariant

Measure/Stationary

Probability

Distribution/Steady

State

The probability distribution for

ρm(x) after a “long” number of

iterations. The distribution for

which ρ(~x) = (Pρ)(~x).
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2.1 The Markov Operator for Stochastic Gradient Descent

In this section we view stochastic gradient descent as a Markov chain and introduce

(i) the Markov transition kernel, which generalizes the notion of a Markov matrix

to the infinite dimensional state space; and (ii) the Markov operator, which is

the generalization of matrix multiplication used to (exactly) time step the SGD

probability distributions.

Standard gradient descent is an entirely deterministic procedure in which we

take an input state from our state space (generally Rd) and apply consecutive maps.

Stochastic gradient descent is similar, however there are a set of mappings which

are selected via probability weights. As such, it is natural to observe that stochastic

gradient descent, as well as normal gradient descent, are Markov chains—each state

has a fixed probability to transition to another known state.

For our purposes of stochastic gradient descent, each function fi(~x) corresponds

to its own map ϕi(~x). For notational convenience, we rewrite WSGE (without loss of

generality, restricting to minibatch sizes of 1) as

(WSGD’) ~xm+1 = ϕim(~xm), where ϕj(~y) := ~y − η∇~fj(~y),

im ∈ {1, 2, . . . , d} is drawn with a distribution {p1, p2, . . . , pn}.

The SGD (or more generally WSGD’ (1.8)) defines a Markov chain {~x0, ~x1, . . .}

for the evolution ~xm on an infinite state space X = Rd (e.g., since the possible values

~xm can take are uncountable). The fact that SGD defines a Markov chain follows

from the simple observation that the probability of ~xm+1 = ~y depends only on the

previous value of ~xm (i.e., SGD satisfies the Markov property).

In contrast to the finite dimensional state space setting where the transition

probabilities for a Markov chain are characterized via a Markov matrix, here one has

a more general Markov transition kernel. The transition kernel P (~y, A) is defined
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abstractly as

P (~y, A) := Pr(xm ∈ A | xm−1 = ~y), for any1 set A ⊆ Rd, and ~y ∈ Rd. (2.1)

Here Pr is the probability of an event occurring, ~y ∈ Rd is any point in the state

space, and A ⊆ Rd is any (measurable) set. In words, P (~y, A) is the probability

that ~xm ∈ A given that ~xm−1 = ~y. When the state space is finite, P (~y, A) reduces

to a Markov matrix. The Markov property guarantees that the transition kernel is

independent of m.

The transition kernel P (~y, A) can then be determined for both the deterministic

(iterative) map, n = 1 and the full WSGD’. In the case when n = 1 in WSGD’, i.e.,

~xm+1 = ϕ(~xm) where ϕ(~y) := ~y − η∇~f(~y) then

(WSGD’ with n = 1) P (~y, A) =

 1 when ϕ(~y) ∈ A,

0, when ϕ(~y) /∈ A.
(2.2)

This yields the following alternative form for P (~y, A) when n = 1:

(WSGD’ with n = 1) P (~y, A) =

∫
A

δ(~x− ϕ(~y)) d~x, or, (2.3)

P (~y, d~x) = δ(~x− ϕ(~y)) d~x. (2.4)

More generally, the full WSGE’ transition kernel has the form:

(WSGD’ any n) P (~y, A) =

∫
A

n∑
j=1

pjδ(~x− ϕj(~y)) d~x, or, (2.5)

P (~y, d~x) =
n∑
j=1

pjδ(~x− ϕj(~y)) d~x. (2.6)

In addition to the transition kernels, we also introduce the probability distribution

ρm(~x) for the variable ~xm at iteration m. Intuitively, ρm(~x) d~x is the probability of

~xm being in a box d~x at ~x, i.e. given a measurable set A ⊆ Rd,∫
A

ρm(~x) d~x = Pr(~xm ∈ A). (2.7)
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In (2.7) we have abused the notation somewhat — in general ρm(~x) d~x is the

probability measure for ~xm and can be a non-classical function such as a Dirac mass.

The transition kernels can then be used to characterize how the probability

distributions ρm(~x) of SGD evolve in time. Formally, this is done through the

introduction of the Markov operator P characterizing the (discrete-in-time) evolution

of the probability distribution through integration against P (~y, d~x), that is:

ρm+1(~x) d~x =

∫
Rd
P (~y, [x, x+ d~x])ρm(~y) d~y, (2.8)

which is a Chapman-Kolmogorov Equation [40], and hence

ρm+1(~x) =

∫
Rd

n∑
j=1

pjδ
(
~x− ϕj(~y)

)
ρm(~y) d~y. (2.9)

Equation (2.9) characterizes the exact evolution of the probability distribution for

WSGD. Equation (2.8) can also be recast in operator form (by substituting (2.6)) as

ρm+1(~x) = (Pρm)(~x), where (2.10)

(Pρ)(~x) :=

∫
Rd

n∑
j=1

pjδ
(
~x− ϕj(~y)

)
ρ(~y) d~y. (2.11)

Here P is referred to as a Markov operator (when n = 1, P is also referred to as the

Perron-Frobenius operator [27]). If we state that ρm(~x) is the initial state probability

distribution, then the continuous version of multiplying by a Markov matrix to get the

next state is the Markov operator given as (2.10)–. This can be thought of intuitively

as to get the probability at the point ~x at step m+ 1, you add the probability of all

points at step m where the maps ϕj(~y) = ~x.

2.2 Formal Derivation of the Fokker-Plank Approximations to SGD

In this section we perform a formal derivation of the Fokker-Plank approximation

to equation (2.9) (equivalently (2.10)–(2.10)), by expanding about powers of η.
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There have been numerous works in the literature that establish and/or study

partial differential equation (PDE) approximations for the SGD probability evolution

([7, 8, 33] examined Fokker-Plank/variational models for SGD; see [29, 2, 20, 13, 12]

for rigorous derivations of the diffusion approximation and higher order PDEs; see

[42] for the closely related problem of approximating SGD via a stochastic ODE).

The advantage of the approach here is that we start with the exact Markov operator

and formally derive the PDE approximations using only basic calculus: (i) integration

by parts; and (ii) Taylor expansions. The derivation as presented is not rigorous —

only formal (see [13] for a rigorous approach starting from the Markov operator). In

addition to deriving the diffusion approximation for the time evolution, we also obtain

an additional PDE for the stationary probability distributions that has a different

diffusion coefficient than the diffusion approximation.

We begin by multiplying (2.9) by a smooth test function that vanishes at infinity

Ψ(~x) and integrate to get that

〈Ψ, ρm+1,〉 =

∫
Rd

Ψ(~x)ρm+1(~x)d~x

=
n∑
j=1

∫
Rd

Ψ(~x)pj

∫
Rd
δ (~x− ~ϕj(~x)) ρm(~y)d~yd~x

=
n∑
j=1

pj

∫
Rd

∫
Rd

Ψ(~x)δ (~x− ~ϕj(~x)) ρm(~y)d~xd~y

=
n∑
j=1

pj

∫
Rd

Ψ(~y − η~gj(~y))ρm(~y)d~y

= 〈P †Ψ, ρm(~x)〉

(2.12)

where we can define the adjoint of P as
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P †Ψ(~y) =
n∑
j=1

pjΨ (~y − η~gj(~y))

=
n∑
j=1

pj

[
Ψ(~y)− η~gj(~y) · ∇Ψ(~y) +

η2

2
~gj
T (~y)[HΨ(~y)]~gj(~y)− . . .

]
.

(2.13)

Note that in the previous step we Taylor expanded the adjoint operator. By

definition, we have that

n∑
j=1

pj = 1,
n∑
j=1

pjfj(~y) = F (~y), (2.14)

which means that we can then simplify our expression down to the following

infinite sum

P †Ψ(~y) = Ψ(~y)− η∇F (~y) · ∇Ψ(~y) +
η2

2!

n∑
j=1

pj ~gj
T (~y)[HΨ(~y)]~gj(~y) . . . (2.15)

where H represents taking the Hessian. We will state that ~gj = [g1
j , g

2
j , . . . , g

d
j ]
T

in order to refer to the components of gj (where ~gj = ∇fj is short hand for the

gradients). We now will notate the rth order truncation of P as Pr. The first three

Pr operators are the following:

P†0 = I,

P†1 = I − η
n∑
j=1

pj

N∑
i=1

gij∂i = I − η[∇F (~y)] · ∇,

P†2 = I − η[∇F (~y)] · ∇+
η2

2

n∑
j=1

pj

d∑
k,l=1

gljg
k
j ∂l∂k,

P†3 = I − η[∇F (~y)] · ∇+
η2

2

n∑
j=1

pj

d∑
k,l=1

gljg
k
j ∂l∂k −

η3

3!

n∑
j=1

pj

d∑
l,k,p=1

gljg
k
j g

p
j∂l∂k∂p,

(2.16)
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where I represents the identity operator and ∂k represents ∂
∂xk

. Suppose that

we want to approximate P † by these truncations, we will find that

〈Ψ, ρm+1〉 = 〈P †Ψ, ρm〉 ≈ 〈P†rΨ, ρm〉 = 〈Ψ,Prρm〉 (2.17)

therefore we can say that

ρm+1 ≈ Pr(ρm). (2.18)

To provide a few examples of these truncations, denote

P1(ρ) = ρ+ η∇ ·
(
∇F (~x)ρ

)
,

P2(ρ) = ρ+ η∇ ·
(
∇F (~x)ρ

)
+
η2

2

n∑
j=1

pj

d∑
k,l=1

∂l∂k
(
glj(~x)gkj (~x)ρ),

P3(ρ) = ρ+ η∇ ·
(
∇F (~x)ρ

)
+
η2

2

n∑
j=1

pj

d∑
k,l=1

∂l∂k
(
glj(~x)gkj (~x)ρ)

+
η3

3!

n∑
j=1

pj

d∑
l,k,p=1

∂l∂k∂p(g
l
j(~x)gkj (~x)gpj (~x)ρ).

(2.19)

Now let us consider what would happen if ρ was the solution to the following

linear partial differential equation

∂tρ = Aρ, (2.20)

and we sample at time steps of m · η, we would find that

ρm+1 = eAηρ. (2.21)

If we compare this to (2.18) we will find that
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eAη = Pr =⇒ A =
1

η
logPr (2.22)

It is convenient to define G := (Pr − I)/η, so that Pr = I + ηG, and

A = η−1 log(I + ηG):

∂ρ

∂t
=

1

η
log(I + ηG)ρ (2.23)

Using ε−1 log(1 + εr) = r − 1

2
εr2 +

1

3
ε2r3 + . . ., one has:

∂ρ

∂t
= Gρ− η

2
G2ρ+

1

3
η2G3ρ+O(η3), (2.24)

where

Gρ = ∇ ·
(
∇F (~x)ρ

)
+
η

2

n∑
j=1

pj

d∑
k,l=1

∂l∂k
(
glj(~x)gkj (~x)ρ)

+
η2

3!
pj

d∑
l,k,p=1

∂l∂k∂p(g
l
j(~x)gkj (~x)gpj (~x)ρ).

(2.25)

Note that this was recieved by truncating the perturbed Taylor Expansion (2.24)

in order to get approximate partial differential equations.

2.3 Fokker-Planck Approximations for the Stationary Distribution

For a time varying partial differential equation, we define the stationary solutions

(also known as the invariant measure or steady state), to be the solution to the

equation to which there is no change over time

∂u

∂t
= 0. (2.26)
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This can be thought of as the result that is retrieved after a long period of time,

assuming convergence, or a fixed point solution to the equation. From our above

sections, we know that we can formulate our Markov operator as a partial differential

equation that has steady states. We can also look at the steady states of the equation

that occur when

Pρ = ρ (2.27)

directly from our Markov operator. Note that PDE approximations to (2.27)

do not necessarily provide, in a systematic fashion, the same steady states PDEs as

(2.26).

We introduce the following notation in order to make the equations simpler to

write

D(~x) =
n∑
j=1

pj ~gj ~gj
T − ~G~GT , u(~x) = ∇

(
F +

η

4
(~G)2

)
, (2.28)

where ~G = ∇F . In 1 dimension this simplifies to

D(x) =
n∑
j=1

pjg
2
j −G2, u(x) =

∂

∂x

(
F +

η

4
(G)2

)
. (2.29)

We also use the constant that β−1 = η
2
. From 2.19 we can state that if Pρ = ρ

then

0 = ∇ · (∇Fρ) + β−1

n∑
j=1

pj

d∑
k,l=1

∂l∂k
(
glj(~x)gkj (~x)ρ). (2.30)

We will refer to (2.30) as the Markov PDE. This PDE is not time variational

as we received it directly from the truncations of the Markov operator. In addition,
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from (2.25) we can find our other version of the equation by taking the steady state

equation for the PDE, which gives us

0 = ∇ ·
(
uρ+ β−1∇ · (D(~x)ρ)

)
. (2.31)

In the literature, (2.31) is referred to as the diffusion approximation, and we

will often refer to it as the diffusion equation.

Finally, We note that the following PDE:

0 = ∇ ·
(
∇Fρ+ β−1∇ · (D(~x)ρ)

)
, (2.32)

has been used in various forms throughout the literature as a model PDE,

often without rigorous justification. Eqaution (2.32) does, however, agree with the

Fokker-Planck equations truncated to O(η). We refer to (2.32) as the model equation.

2.4 Fokker-Planck Solutions in 1-D

In one dimension at steady state, we get that our Model ODE, Markov ODE,

and Diffusion Equation reduce to a simple form that can be exactly solved via

simple differential equations methods. Integrating out one derivative term from each

equation, and setting the constant term to 0 such that the resultant solution is a

proper probability distribution, we find that our solutions are all of the form

ρ(x) = Ze−I(x). (2.33)

Here Z, and I(x) are to be determined and depend on the format of the equation.

Note that each stationary PDE equation is of the form

0 =
∂

∂x

[
U(x)ρ+

η

2

∂

∂x
(D(x)ρ)

]
(2.34)

22



with their respective versions of U,D(x). We now observe the follow special

case:

Assumption: D(x) > 0 for all x ∈ R. Note that we first integrate out the collective

∂
∂x

term in (2.34) and set the constant of integration to 0. We can do this as we know

that the solution ρ(x) that we get from these models satisfy the following properties:

1.
∫∞
−∞ ρ(x)dx = 1

2. ∀x ∈ R, ρ(x) ≥ 0.

From (2.34) and with the assumption that D > 0 we can solve our ODEs using simple

integration for I(x)

I(x) =

∫ x

0

2

η

U + η
2
D′

D
dx = log(D) +

∫ x

0

2U

ηD
dx. (2.35)

Since D > 0 we can simplify our expression further to

ρ =
Z

D
e−

∫ x
0

2U
ηD

dx (2.36)

where Z is the constant that normalizes our expression. This expression is

particularly interesting because it shows that our approximations will believe there

to be support for all real numbers. As we will see in future sections this is not true,

we can even come up a splitting for any potential objective function we would like

that would have an infinitely supported approximation.

Theorem 1. For any objective function F : R → R, there exists a splitting of F (x)

for which the ODE approximations will provide a solution with infinite support.

Proof. Since (2.36) is infinitely supported when D(x) > 0, we need to find a splitting

of F that will always provide a non-zero value of D. Suppose that we were to split

F (x) into two functions
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F (x) =
1

2
f1(x) +

1

2
f2(x), (2.37)

where p1 = p2 = 1
2

for the sake of simplicity. We can compute D(x) through

some algebraic manipulation

D(x) =
1

2

(
(f ′1)2 + (f ′2)2

)
− 1

4
(f ′1 + f ′2)2 (2.38)

=
1

4
(f ′1)2 − 1

2
f ′1f

′
2 +

1

4
(f ′2)2 (2.39)

=
1

4
(f ′1 − f ′2)

2
. (2.40)

As such if we select the following splitting functions, then we will find that our

value of D(x) evaluates down to a constant

f1(x) = F (x) + x (2.41)

f2(x) = F (x)− x. (2.42)

Since in this situation we have that D(x) = 1, we know that our solution to the

ODEs will be infinitely supported. Q.E.D.

Something to notice from this proof is that we can easily construct splittings

for any given objective function solely by shifting our objective by a linear term.

From this we will get a resulting constant that then allows us to have this infinitely

supported exponential function as our distribution.

Another particularly interesting observation is that if we do not simplify our

integral expression, we can actually let it become the following form
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ρ(x) = Z−1D(x)−1exp

(
−2

η

∫
U(x)

D(x)
dx

)
,

= Z−1 exp

(
−2

η

∫
D(x)−1 d

dx
[Φ(x) +

η

2
D(x)]dx

)
,

(2.43)

where U(x) = Φ′(x). This is particularly interesting as it shares the same form

as some equations from statistical physics

(Gibb’s measure) ρ(x) = Z−1e−β V (x), where, (2.44)

(Inverse temperature β) β−1 :=
η

2
, (2.45)

(Free energy) V (x) :=

∫
D−1(x)

d

dx

(
Φ(x) + β−1D(x)

)
dx, (2.46)

(Partition function) Z :=

∫ ∞
−∞

e−βV (x)dx. (2.47)

It is interesting to observe that when V (x) is smooth, the point x∗ with highest

probability satisfies:

x∗ = argmin V (x), (2.48)

V ′(x∗) = 0, ⇐⇒ d

dx

(
Φ(x) + β−1D(x)

)
= 0. (2.49)

Hence, we are led to the following observation:

Remark. In the limit as 0 < η � 1, the points x∗ with highest probability (e.g.,

maximize ρ) are critical points of the original objective function F (x), i.e.,

d

dx
F (x∗) = 0 only if

d

dx
D(x∗) = 0.

2.4.1 Lyapunov Entropy Functional for Diffusion Approximation

The diffusion approximation in 1d always exhibits a Lyapunov functional — which

has a unique minimum given by (2.43). For the time variational version PDE of our

model equations, given as
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∂ρ

∂t
=

∂

∂x

[
U(x)ρ+

η

2

∂

∂x
(Dρ)

]
, (2.50)

we can show and find the existance of a Lyapunov entropy function that is

minimized over time. Note that this is only for the Diffusion equation (2.31) and

the Model equation (2.32), as the Markov ODE (2.30) is derived intrinsically through

steady states.

The PDE (2.50) has the following variational form:

∂ρ

∂t
=

∂

∂x

(
D(x)ρ(x)

∂

∂x

δEβ
δρ

)
, (2.51)

where

Eβ(ρ) =

∫
V (x)ρ(x) + β−1ρ(x) log ρ(x) dx. (2.52)

This follows since

δEβ
δρ

= V (x) + β−1 log ρ(x) + β−1, (2.53)

=⇒ ∂ρ

∂t
=

∂

∂x

(
D(x)ρ(x)

∂

∂x

(
V + β−1 log ρ+ β−1

))
, (2.54)

=
∂

∂x

(
D(x)ρ(x)

(
D−1 d

dx

(
Φ(x) + β−1D(x)

)
+ β−1ρ−1ρx

))
, (2.55)

=
∂

∂x

(
Φ′(x)ρ(x) + β−1ρD′(x) + β−1D(x)ρx

))
, (2.56)

=
∂

∂x

(
Φ′(x)ρ(x) + β−1∂x

(
ρD(x)

))
, (2.57)

which is exactly the PDE (2.50) with β−1 = η/2. Further, this variational

structure guarantees Eβ(ρ) is a Lyapunov functional:
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d

dt
Eβ(ρ) = −

∫ ∞
−∞

D(x)ρ(x)
( d
dx

δEβ
δρ

)2

dx, (2.58)

= −
∫ ∞
−∞

D(x)ρ(x, t)
( d
dx

(
V (x) + β−1 log ρ(x, t)

))2

dx, (2.59)

≤ 0. (2.60)

The calculation above is actually not completely rigorous — it made use of

integration by parts and the assumption that the boundary term vanishes, i.e.,

[
D(x)ρ(x)

δEβ
δρ

d

dx

(δEβ
δρ

)]∞
−∞

= 0, ∀ t ≥ 0.

It also assumed that the energy Eβ <∞ was finite for all ρ(x, t).

2.5 Numerical Methods for the Stationary Probability Distributions

Since stochastic gradient descent is an intrinsically random dynamical system that has

the form of an infinite dimensional Markov Operator we can observe the properties

of Markov matrices and operators in relation to SGD. In particular we are interested

in the existence, computation, and approximation of an stationary probability

distribution (invariant measure) of SGD. When the Markov operator satisfies suitable

conditions (for instance has a spectral gap), the invariant measure is the probability

distribution of where the value ~xm will sample after in infinite amount of time.

However, calculations of these stationary probability distributions (to which

a system may have more than one) analytically is either needlessly difficult or

impossible, which is why for each particular system we will turn to numerical

computations in order to make observations about the properties and dynamics of

the true distributions. Our particular choice of numerical method is Ulam’s Method

for calculating invariant measure because of its simplicity to implement.

27



2.5.1 Ulam’s Method for Computing Stationary Distributions

We will approximate the Continuous Markov Operator P as a finite matrix P acting

upon a finite distribution vector ~p [31]. As such we are approximating the relation

ρm+1(~x) = Pρm(~x) (2.61)

with the matrix vector product

~pm+1 = P ~pm. (2.62)

Here ~p is defined to be the probability on the interval [−L,L] with a finite grid

spacing given by H. As such that we can consider that the jth component of ~p,

notated as ~pjm, to represent the probability of x being in the cube with a corner at

−L+ jH. In terms of probability this would be written as

~pjm ≈
∫ −L+(j+1)H

−L+jH

ρm(~x) d~x. (2.63)

For our purposes we only consider the usage of Ulam’s Method in 1D, however

it could be extended to higher dimensions as well.

We now need to build the matrix P . Notice that the element P ij represents the

proportion probability from bin ~pim that moves to ~pjm+1. From this we can numerically

calculate the values of our matrix through repeated application of our map on the

intervals from the following algorithm. For P ij we first apply the map ϕ(x) to a grid

of k points on the interval [−L + iH,−L + (i + 1)H]. To then get P ij we calculate

the proportion of points that land in the interval [−L + jH,−L + (j + 1)H]. This

gives us the matrix for one map ϕ(x), the total Markov matrix for SGD is then the

sum of the matrices for each of the maps ϕ1(x), . . . , ϕn(x).
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Once we compute our matrix, we can get the Stationary Probability Distribution

by solving for ~p in which

P ~p = ~p. (2.64)

This is equivalent to solving for the eigenvector of P for an eigenvalue λ = 1.

As long as the domain Ω is large enough so that Ω is a trapping region for each map

ϕj(x) and 1 ≤ j ≤ n (i.e., ϕ(x) ∈ Ω for each ~x ∈ Ω) then P is (exactly) a Markov

matrix. Hence, by construction, the largest eigenvalue of P is 1.

2.5.2 Ulam’s Method: Code Validation via the Logistic Map

While we perform particle simulations in later sections, in this section we compare our

Ulam’s method computations to a known invariant measure: the invariant measure

of the logistic map. This will provide a way to systematically validate the code.

The logistic map is the map xn+1 = ϕ(xn; r) where ϕ(x; r) = rx(1 − x) with

x ∈ [0, 1]. It is known that for larger values of r, the system will become chaotic,

with r = 4 being total chaos. However, despite the system being chaotic, there is a

known, analytic invariant measure providing the probability (which is sampled over

long times by the iterates xn of the map). The invariant measure is given by [21]:

ρ(x) =
1

π
√
x(1− x)

.

Figure 2.1 plots the invariat measure computed via Ulam’s method against the

known analytic result; the right subfigure contains a convergence plot (in L1) as the

mesh H → 0 (generally Ulam’s method exhibits slow convergence in H).
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Figure 2.1 Convergence plot of Ulam’s method to the invariant measure of the

logistic map. Visually the invariant measure fits quite well even for larger values of H

the grid spacing. Error decays at a low rate as Ulam’s method is not even an O(H)[9]

method and there are singularities on the interval boundaries.
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CHAPTER 3

STOCHASTIC GRADIENT DESCENT FOR A QUADRATIC

OBJECTIVE FUNCTION

In this section we numerically compute the exact stationary probabilities to SGD

for a quadratic test problem, as well as the Fokker-Planck solutions. Although

simple, the quadratic test problem is important because (i) it corresponds to the

least square minimization problem which is important in practice and has widespread

application; and (ii) the quadratic can be used as a local model for nonquadratic

objective functions in the vicinity of a local minimum, and hence can shed light on

more complex problems.

In this section we choose a quadratic cost function F (x) = 1
2
x2 with a quadratic

splitting into two functions parameterized by a ∈ R+ and b ∈ R:

f1(x) =
1

2
(1 + b)x2 + ax, f2(x) =

1

2
(1− b)x2 − ax. (3.1)

We will choose minibatches with size k = 1, which means that at each iteration

we have a 1
2

chance of choosing between the maps

ϕ1(xi) = xi − η((1 + b)xi + a) = (1− η(1 + b))xi − ηa (3.2)

ϕ2(xi) = xi − η((1− b)xi − a) = (1− η(1− b))xi + ηa. (3.3)

3.1 Symmetries and Scalings of the Quadratic Problem

With the above choice, SGD becomes:
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xn+1 = (1− η(1 + b))xn − ηa, with probability
1

2
, (3.4)

xn+1 = (1− η(1− b))xn + ηa, with probability
1

2
. (3.5)

We first discuss the two simple symmetries that can be observed by a change

of variables. First we observe that the dynamics (3.4)–(3.5) are invariant under the

change (a, b) → (−a,−b) which swaps (φ1, φ2) → (φ2, φ1). The dynamics would not

be invariant if the probabilities were not both 1/2.

Second, each of the equations (3.4)–(3.5) remain invariant under the change

(x, b)→ (−x,−b).

1

2
(1 + b)x2 + ax→ 1

2
(1− b)x2 − ax (3.6)

1

2
(1− b)x2 − ax→ 1

2
(1 + b)x2 + ax (3.7)

Due to the two symmetries, it is sufficient that when we are studying the

behavior of solutions in later sections that we focus solely on the cases when a ≥ 0,

b ≥ 0 and η ≥ 0. Note that η > 0 is a problem restriction: when η = 0, the dynamics

(3.4)–(3.5) just reduce to the (trivial) steady state xn = x0 for all n.

The values of a can further be broken into two cases: a = 0 and a > 0.

Case: a = 0 When a = 0, both equations (3.4)–(3.5) are gradient descents on a

quadratic with effective time steps of η(1 ± b). This case is simple as both splitting

equations simplify down to

f1(x) =
1

2
(1 + b)x2, f2(x) =

1

2
(1− b)x2. (3.8)
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which are just two parabolas centered around the origin. For this situation we

note that x = 0 is a fixed point (although perhaps unstable) of the dynamics, which

implies that ρ(x) = δ(x) is a stationary probability distribution for all b, η values. We

do not consider this case any further.

Case: a > 0 In this case, we can rescale xn = ax̃n; the new dynamics on x̃n have a

effectively set to a = 1. Therefore, without loss of generality we can take a = 1 from

the outset.

In the subsequent studies, we will eventually take a = 1; the study of the

quadratic stationary distributions is then reduced to cases where η > 0, b ≥ 0.

3.2 Solution to Diffusion ODE for a Quadratic Problem

Now we solve the diffusion approximation ODE steady states for the choice of

quadratic functions in (3.1). The diffusion approximation makes use of

v(x) =
1

2

(
f ′1(x) + f ′2(x)

)
=

(1 + b)x+ 1 + (1− b)x− 1

2
= x,

and

M(x) =
(f ′1(x))2 + (f ′2(x))2

2
,

=
((1 + b)x+ 1)2 + ((1− b)x− 1)2

2

= (1 + b2)x2 + 2bx+ 1.

(3.9)

The diffusion coefficient D(x) = M(x) − v(x)2. We also have associated

derivatives v′(x) = 1 and M ′(x) = 2(1 + b2)x + 2b. Now plugging in to our general

diffusion approximation solution (2.33)–(2.35) and integrating yields:.
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ρ(x) =


C

(bx+1)α+1 e
−β

(bx+1) , x ≥ −1
b

0, x < −1
b
.

(3.10)

We defined temporary variables β =
a( 2

a
+1)
b2

and α = 2
b2η

+ 1
b2

+ 1.

With respect to x (3.10) is the well-known inverse gamma distribution. That

means that our coefficient is given by C = βα

Γ(α)
which we also must scale by a factor

of b in order to make it appropriately integrate to 1. From here we will also for

brevity drop the piece-wise definition, however it is understood that points outside

the definition we set to 0. With all of this our final distribution is

(b 6= 0) ρ(x) =
bβα

Γ(α)(bx+ 1)α+1
e

−β
(bx+1) . (3.11)

The coefficients α and β in (3.11) become singular when b = 0. In this case,

(2.33)–(2.35) can be reapplied from the start with b = 0 to obtain the final solution

(b = 0) ρ(x) =

√
β

π
e−βx

2

, (3.12)

where β = 2+η
2η

.

When b = 0, ρ(x) has infinite support on both sides, and as η → 0 we find

ρ(x)→ δ(x) and as η →∞, ρ(x)→
√

1
2π
e−

1
2
x2 .

We now look at the more interesting case of when b 6= 0. To keep consistent

with the literature for the inverse gamma distribution we have that

β =
3η

b2
, α =

1

b2
(2/η + 1) + 1, u = bx+ 1 (3.13)

so our distribution is
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ρ(u) =
βα

Γ(α)
u−α−1e−

β
u . (3.14)

Since ρ(u) is a common and well understood distribution, we can see that ρ(x)

has infinite support on the region (−1
b
,∞).

Figure 3.1 Figures showing differences in Diffusion Equation solution behavior when

you vary values of b

3.3 Stationary Probability Distributions of the Markov Operator

In this section we examine the stationary probability distributions to the Markov

operator for varying (b, η). In most cases, the distributions are computed numerically

via Ulam’s method, however for specific (b, η) parameter values we will provide exact

formulas for the distributions.

In this section we also provide boundaries of different solution behaviors. We

provide conditions on (b, η) such that there exists a trapping region, which implies the
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stationary distribution is finitely supported. We also explain conditions on regions

such that the stationary distribution is smooth. Finally we prove the expected value

of the stationary distribution for all values of (b, η) to be equivalently 0.

In this section we let a = 1 in (3.1), so that

f1(x) =
1

2
(1 + b)x2 + x, f2(x) =

1

2
(1− b)x2 − x, (3.15)

with corresponding gradient descents

ϕ1(x) = (1− (1 + b)η)x− η, ϕ2(x) = (1− (1− b)η)x+ η, (3.16)

and associated inverse functions

ϕ−1
1 (x) =

x+ η

1− (1 + b)η
, when 1− (1 + b)η 6= 0, (3.17)

ϕ−1
2 (x) =

x− η
1− (1− b)η

, when 1− (1− b)η 6= 0. (3.18)

In this case, the Markov operator equation (2.9) becomes:

ρn+1(~x) =
1

2

∫
R

[δ(x− ϕ1(y)) + δ(x− ϕ2(y))] ρn(y) dy. (3.19)

The stationary solutions to (3.19) are then obtained when ρn+1 = ρn =: ρ. We

can derive an alternative equation for ρ(x) by integrating the δ-distribution out in

(2.9) to obtain

ρ(x) =
1

2

(
ρ(ϕ−1

1 (x))

|1− (1 + b)η|

)
+

1

2

(
ρ(ϕ−1

2 (x))

|1− (1− b)η|

)
, when (1± b)η 6= 1. (3.20)

Note that (3.20) conserves probability — the action of ϕ−1
j composed with ρn (in

the right hand side) contains a horizontal dialation and shift, which is balanced by a

vertical dialation to conserve the total probability. Furthermore, (3.20) is understood

in a weak sense, and does not need to hold pointwise for every value of x: Namely
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(3.20) is understood in the sense that for any interval (a, b)∫ b

a

ρ(x) dx =

∫ b

a

1

2

(
ρ(ϕ−1

1 (x))

|1− (1 + b)η|

)
+

1

2

(
ρ(ϕ−1

2 (x))

|1− (1− b)η|

)
dx. (3.21)

The case when equation (3.20) fails, i.e., (1 ± b)η = 1, is discussed further in

§3.3.2.

In the remaining subsections, we investigate both numerically and analytically

the stationary probability distributions to (3.19) for varying η > 0 and b ≥ 0. We first

present several exact stationary distributions for special η, b values. These solutions

highlight that stationary distributions can be both classical (L1) functions or singular

probability distributions (with Dirac masses). We then characterize the support of

ρ in different parameter regimes, showing that ρ generally has compact support for

sufficiently small η values. Finally, we provide a phase diagram (for b vs η) with

numerically computed stationary distributions.

3.3.1 Exact Stationary Probability Distribution

In this subsection we present exact stationary probability distributions for specific b

and η values.

Case 1: (η, b) = (1
2
, 0). One particularly interesting situation arises when we have

η = 1
2

and b = 0, for which ϕ−1
1 (x) = 2x + 1 and ϕ−1

2 (x) = 2x − 1 and hence (3.20)

becomes:

ρ(x) = ρ(2x+ 1) + ρ(2x− 1). (3.22)

By direct calculation we see that the uniform distribution:
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ρ(x) =


1
2

when |x| < 1,

1
4

when |x| = 1,

0, when |x| > 1.

(3.23)

satisfies (3.22) (exactly for every x).

Case 2: (η, b) = (3
2
, 0). This case is nearly identical to Case 1, however we now have

to be mindful of the absolute value in the denominator of equation (3.20). Note that

here ϕ−1
1 (x) = −2x+ 3 and ϕ−1

2 (x) = −2x− 3, so that (3.20) becomes:

ρ(x) =
1

2|(1− 3
2
)|
(
ρ(ϕ−1

1 (x)) + ρ(ϕ−1
2 (x))

)
, (3.24)

ρ(x) = ρ(−2x+ 3) + ρ(−2x− 3). (3.25)

By direct computation again we see that a uniform distribution on the range

(−3, 3) satisfies this equation:

ρ(x) =


1
6

when |x| < 3,

1
12

when |x| = 3,

0, when |x| > 3.

(3.26)

This solution is interesting as {−1, 1} are the minima of the functions in (3.15),

so while inside the range [−1, 1], we cannot guarantee the iterates of SGD stay there.

Case 3: (η, b) = (1, 0). In the unique situation in which b = 0, η = 1 we find that the

dynamics are

ϕ1(x) = (1− (1 + b)η)x− η = −1

ϕ2(x) = (1− (1− b)η)x+ η = 1.

(3.27)
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This means that regardless of x0, every value of SGD for m ≥ 1 satisfies xm ∈

{−1, 1}, i.e., the state space is two dimensional and the Markov operator reduces

down to a two dimensional Markov matrix. To make the correspondence precise,

introduce the vector ~pm such that:

~pm =

p1
m

p2
m

 :=

Pr(xm = −1)

Pr(xm = 1).

 , ρm(x) = p1
mδ(x+ 1) + p2

mδ(x− 1). (3.28)

The Markov operator then becomes:

~pm+1 =

1
2

1
2

1
2

1
2

 ~pm. (3.29)

The stationary distribution in vector form is ~p = (1/2, 1/2)T , or equivalently:

ρ(x) =
1

2
(δ(x− 1) + δ(x+ 1)) . (3.30)

3.3.2 Death–Respawn Markov Dynamics when η(1± b) = 1

The Markov dynamics simplify to a state space which is (effectively) countable and

a corresponding Markov chain that can be characterized as a “death” and “respawn”

model in two special cases. Specifically, when η = (1 + b)−1 (b ≥ 0) the dynamics

become:

ϕ1(x) = (1− (1 + b)η)x− η = − 1

1 + b
, (3.31)

ϕ2(x) = (1− (1− b)η)x+ η =
2b

1 + b
x+

1

1 + b
. (3.32)

Similarly, when η = (1− b)−1, (0 < b < 1) the dynamics become
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ϕ1(x) = (1− (1 + b)η)x− η = − 2b

1− b
x− 1

1− b
,

ϕ2(x) = (1− (1− b)η)x+ η =
1

1− b
.

(3.33)

In both cases, one of the two maps resets x to a constant, so that at every time

step there is a probability of 0.5 that the point xm “dies” and respawns at a point

x0 (either −(1 + b)−1 or (1 − b)−1). In this case the stationary probability will be

supported on a discrete (countable) set of points with Dirac masses (with weights

that can be determined explicitly).

3.3.3 Stationary Distributions with Compact Support

In this subsection we establish bounds for the support of stationary distributions ρ(x)

— which roughly speaking are the points where ρ(x) is “non-zero”. A point x is in

the support of the probability ρ(x), written as x ∈ supp(ρ), if for every ε > 0 the

integral is (strictly) positive:

∫ x+ε

x−ε
ρ(x) dx > 0. (3.34)

To establish bounds on the support, we solve for trapping regions U ⊂ Rd of the

SGD dynamics. A trapping region is a set such that if ~xm ∈ U enters, then the SGD

dynamics {xm+1, xm+2, . . .} can never exit. Formally, they are defined as follows.

Definition 1. (Trapping region for SGD) A set U is a trapping region for the SGD

dynamics (or equivalently WSGD) if:

ϕj(U) ⊆ U, for all 1 ≤ j ≤ n.

The notation ϕ(U) := {ϕ(~x) : ~x ∈ U}.
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Trapping regions are significant since they trap the probability dynamics under

the Markov operator, and provide bounds on the support of stationary distributions.

Proposition 1. (Trapping regions trap supp(ρm)) Let U be a closed set and a trapping

region, and suppose that supp(ρm) ⊆ U . Then ρm+1 defined by the Markov dynamics

(3.19) (and more generally (2.8)) has supp(ρm+1) ⊆ U .

Proof. If supp(ρm) ⊆ U , then by direct evaluation of the integral in (3.19), supp(ρm+1)

is contained in ∪jϕj(U) for j = 1, 2 in (3.19) (and more generally 1 ≤ j ≤ n for (2.8)).

Since each ϕj(U) ⊆ U (U is a trapping region) we have that supp(ρm+1) ⊆ U . Q.E.D.

We now determine the smallest closed trapping regions of the form U = [A,B]

(with B > A) for the dynamics (3.16). Note that the case (η, b) = (1, 0) is handled

in §3.3.1 which solves the stationary probability exactly, so we disregard it here.

Case 1: b = 0, 0 < η < 1. Then U = [−1, 1] is a trapping region.

Here 0 < (1 − η) < 1 which is the x-coefficient in ϕ1(x) = (1 − η)x − η and

ϕ2(x) = (1 − η)x + η and squeezes any set ϕ1(U), ϕ2(U). Hence, a set U = [−L,L]

under either mapping ϕ1(U) or ϕ2(U) has has a right boundary of (1 − η)L + η, so

that we require (1−η)L+η ≤ L. Thus any value of L ≥ 1 yields a trapping region —

the smallest such value is L = 1. Note that the dynamics are invariant under x→ −x

so we get the left boundary for free. It is interesting that the trapping region bound

is L = 1 for all values of 0 < η < 1.

Case 2: b = 0, 1 < η < 2. Then U = [−L,L], for L = η
2−η is a trapping region. Since

η > 1, the coefficient in front of x will be negative. Therefore the largest value

on the right for will occur at the end of our support interval of opposite sign. For

U = [−L,L], we want to solve the equation −L = ϕ−1
1 (L):

−L =
L

1− η
+

η

1− η
. (3.35)
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The solution to this equation has the form L = η
2−η . It is interesting that the

set U approaches infinity as η → 2.

Case 3: b = 0, η ≥ 2. There is no trapping region of the form U = [−L,L] for L > 0.

Suppose that there was a bounded region U = [−L,L] of support when η ≥ 2. We

know that one of our dynamics equations would be of the form ϕ(x)1 = (1− η)x+ η.

Since η ≥ 2 we know that the coefficient in front of our value of x will be ≤ −1. For

all possible values of η, we will attain maxx∈U ϕ1(x) when x = −L. Plugging in we

find ϕ1(−L) = (η− 1)L+ η ≥ (2− 1)L+ 2 = L+ 2, holds ∀L ∈ R+. Since L+ 2 > L

there is not a finite trapping region interval. For these parameter values, we observe

numerical that the stationary probability appear to have (unbounded) support on R.

Case 4: General case. The set U = [−L,L] with L > 0 is (in general) a trapping

region if (−L,L) satisfy:

−L ≤ ϕj(−L) ≤ L, and − L ≤ ϕj(L) ≤ L, hold for j = 1, 2. (3.36)

Since ϕj(x) for j = 1, 2 are both linear functions, (3.36) constitutes 8 linear

inequalities, for which there is a feasible solution only for certain b and η values.

Cases 1–3 summarize the “tightest” solutions when b = 0. Note that even in the

non-symmetric case if the trapping region is non symmetric, we could contain it

within a larger symmetric region.

We begin by looking at the dynamic equation ϕ1(x). First, we consider the case

in which [1−(1+b)η] > 0. In this case the sign of the input is preserved upon scaling,

so we only need to consider 1 active inequality in that −L ≤ ϕ1(−L). Solving the

inequality we have that
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−L ≤ [1− (1 + b)η](−L)− η, when η >
1

1 + b

η ≤ [1− 1 + (1 + b)η]L,

L ≥ 1

1 + b
.

(3.37)

Solving for equality, we can see that taking L = (1 + b)−1 yields a trapping

region whenever η < 1
1+b

(note that we satisfy the inequality ϕ2(L) ≤ L for free).

The case when [1− (1 + b)η] = 0 is handled in §3.3.2.

We now look at the more interesting cases of when [1− (1 + b)η] < 0. For this,

we now must solve the active inequality that −L ≤ ϕ1(L) as now at each iteration

the input value changes sign upon scaling. Solving the inequality we find that our

equation becomes

−L ≤ [1− (1 + b)η](L)− η

η ≤ [2− (1 + b)η](L)

L ≥ η

2− (1 + b)η
.

(3.38)

So in this case our interval of support
[
− η

2−(1+b)η
, η

2−(1+b)η

]
. Note, however,

since we assumed L > 0, that if the coefficient [2 − (1 + b)η] ≤ 0, we will get that

our inequality cannot be satisfied. Therefore we find that if η ≥ 2
1+b

then we cannot

be sure that there exists a finite trapping region of the form [−L,L]. Note that we

conjecture that the stationary distribution in this region has infinite support provided

it exists.

Next we observe the cases of ϕ2(x), of which the first few cases will be similar.

The difference now though is that since b > 0 we had that 1 + b was strictly positive,

however now we can have this term be negative for 1 − b which leads to some new

cases.
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First, assume that [1 − (1 − b)η] > 0. In this situation our maximum arises

when x = L, so we only need to solve the active inequality that ϕ2(L) ≤ L,

L ≥ [1− (1− b)η]L+ η

−η ≥ −(1− b)ηL

L ≥ 1

1− b

(3.39)

which gives us a region of
[
− 1

1−b ,
1

1−b

]
. However, we now must also notice that

if [1− (1− b)η] = γ ≥ 1 then we have the inequality

0 ≥ (γ − 1)L+ η, (3.40)

which is impossible to satisfy. As such, we know that in this case we cannot be

sure there exists a finite trapping region of format [−L,L]. In terms of the parameters

(b, η), this will occur if b ≥ 1.

As prior, when [1− (1− b)η] = 0 we have a trivial case in which ϕ2(x) evaluates

to a constant. In this situation the invariant measure is finitely supported in any

interval that contains ϕ2(x).

Finally we consider what happens when [1− (1− b)η] < 0. We proceed similar

to how we proceeded before, and consider the active condition that ϕ2(−L) ≤ L since

the negative coefficient will swap the sign of the input. Solving the inequality we find

that

L ≥ [1− (1− b)η](−L) + η

η ≤ [2− (1− b)η](L)

L ≥ η

2− (1− b)η
.

(3.41)
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Similar to the previous case, this is guaranteed to be finitely supported when

[2− (1− b)η] < 0. In the case this condition is not satisfied we again cannot be sure

that we have a region of finite support, which is when 2
1−b ≤ η.

3.3.4 Necessary Conditions for a Continuous Distribution

In this section we discuss a transition in the Markov operator dynamics that plays a

role in separating probability distributions for which ρ(x) is continuous on all of R

and those which are non-continuous or have singular Dirac masses.

Case 1: b = 0, 1
2
< η < 1. The Markov dynamics reduce to

ρn+1(x) =
1

2(1− η)

(
ρn(ϕ−1

1 (x)) + ρn(ϕ−1
2 (x))

)
, (3.42)

where the coefficient on the right hand side is γ := 1
2(1−η)

> 1. Moreover both

ϕ−1
1 and ϕ−1

2 have a linear term ∼ (1 − η)−1x which acts to squeeze the x-axis by a

factor of (1− η) < 1. Therefore, each term on the right hand side of equation (3.42)

undergoes two actions: (i) the probability ρn is squeezed by a factor (1 − η); and

(ii) stretched by a factor of γ > 1. Moreover, the dynamics admit a trapping region

U = [−1, 1].

Proposition 2. (Necessary condition for a continuous ρ(x)) Suppose that ρ(x) is a

continuous probability density function on all of R with support in [−1, 1]. Then ρ(x)

cannot be a stationary solution of (3.42) in a strong point-wise sense.

Proof. Assume that ρ(x) is a stationary distribution of the equation

ρ(x) = γ
(
ρ(ϕ−1

1 (x)) + ρ(ϕ−1
2 (x))

)
, (3.43)
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for γ > 1. Define ρmax := ρ(x∗) (which is bounded) where x∗ = argmax|x|≤1ρ(x)

(x∗ exists by the extreme value theorem since ρ(x) = 0 outside of [−1, 1] and

continuous everywhere). Then equation (3.43) fails to hold at x = ϕ1(x∗) since:

γ
(
ρ(ϕ−1

1 (x)) + ρ(ϕ−1
2 (x))

)
≥ γρmax > ρmax ≥ ρ(ϕ1(x∗)), (3.44)

Q.E.D.

Case 2: General case. We showed that in Case 1 our steady state solution becomes

“unstable” in that we get that the probability measures grow unbounded under the

Markov dynamics, implying the failure of strong continuous solutions. In the event

that 0 < b we will have that depending on our choice of η only one of our two functions

ϕ1 or ϕ2 will behave in this way (note that the proof of Prop. 2 only required one

such term). We use the equation (3.19) and see that the coefficients

−1 <
1

2(1− (1± b)η)
< 1 (3.45)

determine the amplification of each term. Let c = 1± b. If we adjust this to be

an inequality for η in terms of b we find that |2(1− cη)| > 1:

=⇒ 2− 2cη < −1, or 1 < 2− 2cη, (3.46)

=⇒ cη >
3

2
, or cη <

1

2
(3.47)

A necessary condition for continuous stationary solutions is then

{
(1 + b)η >

3

2
, or (1 + b)η <

1

2

}
and

{
(1− b)η > 3

2
, or (1− b)η < 1

2

}
.

(3.48)

46



With these inequalities we find that there exists a band of non-continuous

solutions that appears to be centered around the curves defined by the Death-Respawn

Dynamics from §3.3.2. This band is visualized in the next section Figure 3.2

3.3.5 Phase Plot of Different True Solution Behaviors

In order to show how different values of b and η affect the behavior of the true solution

that we compute with Ulam’s method, we create a phase diagram of several different

examples.
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Figure 3.2 Phase plot showing the various behaviors of the stationary probability

distributions to (3.19) (true solutions) with respect to different values of η and b. The

magenta lines correspond to parameter values exhibiting death-respawn dynamics in

§3.3.2. The blue curves around the magenta curve defines the boundary of parameter

values for ρ(x) to be discontinuous function as defined in the necessary condition

§3.3.4. The region defined to the bottom-left of the green curves represents the

boundary for which the SGD dynamics admit a trapping region U = [−L,L] for

a finite value of L ≥ 0 as outline in §3.3.3. The letters on the scatter plot points

correspond to the associated figure labeled in Fig. 3.2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

(k) (l)

Figure 3.2 Plots of the various invariant measures for different values of b, η in the

quadratic case. Notice that as η passes a critical line as shown in the phase plots that

the solutions become unstable.

3.4 Convergence Study of the Diffusion Approximation for Stationary

Probabilities

Now that we have a closed form expression that solves the steady state of the

diffusion approximation, it becomes a necessary question to ask how well do these

solutions approximate the true steady state distribution that is provided by the

Markov Operator? In this section we compare the true solutions of the Stationary

Distributions to the approximations that we compute by solving the ODE equations.

For our convergence study we select a 2 function splitting of a 1-D quadratic

equation, specifics of which are described in more detail in further sections, and
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compare the results of what our differential equations believe the steady states to be,

versus what we gather as the true steady state solution. To compute the true solution

we use Ulam’s Method to compute the invariant measure of the Markov operator.

Since we can think of the invariant measure of our problem as the probability

distribution of where some initial data point will lie given a long period of time, we

can perform a particle simulation of several thousand points, which due to the Law

of Large Numbers, should agree with the invariant measure that we get from Ulam’s

Method.

Figure 3.3 Figures showing a comparison between the invariant measures computed

by Ulam’s method on the right and particle simulations on the left. As you increase

the number of particles run, the shape of the particle solution becomes smoother to

match what is computed by Ulam’s method.

We now compare the exact result computed by Ulam’s method to the

approximation equations derived above to see how well they match the true invariant

measure.

As we can see in the above figures that the approximation ODEs do not really do

that good of a job approximating the true behavior of the solution for values of η that

are “large”. These equations do hold in the limiting case, however the non-limiting

cases leave more to be desired.
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Figure 3.4 Plots of the various computed ODE solutions vs. the true invariant

measure computed by Ulam’s method on the right. The figures on the left are the

associated error values of the true solution vs the approximation solution. Visually

we can see that the solutions are quite different then the true values.
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Figure 3.5 Plot of convergence of the Diffusion and Model equations as η grows

smaller.

Plotting the error of the the Model and Diffusion Equations we find that the

error converges, but quite slowly (the numerics suggest a rate slower than
√
η) in

the L∞ sense and (slower than η) in the L1 sense. As stated above, the slow L∞

convergence produces noticeable observed differences in the diffusion approximation

probability distribution (even when 0.1 < η < 1).

3.5 Expected Value of Generalized Quadratic Problem

Practically it is desirable to run SGD with large step sizes of η to speed up convergence

to the optima. In this section we prove the expected value of our parameters converges

to the optimum value of our objective function regardless of the step size.

To compute the expected value of the invariant measure of our stochastic, we

first consider the most generalized variation of stochastic gradient descent in the

quadratic case.
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Let our cost function be f(x) = x2 with a set of n quadratic splitting functions

F chosen with equal probability such that

x2 =
∑
fi∈F

fi(x) =
∑
fi∈F

(bix
2 + aix) (3.49)

in which we have probability pi selection chance for each function. Notice that∑n
i=0 pibi = 1 and

∑n
i=0 piai = 0, which comes from the fact that the expected value

of the function that we select is x2.

Theorem 2. The expected value of the invariant probability measure ρ(x) of stochastic

gradient descent performed by selecting any fi ∈ F with weighted probability pi is

E(x) = 0

Proof. We begin by first creating the ϕi(x) functions that we will randomly choose

from at every iteration. Following the standard form from equation 1.5, we know that

ϕi(x) = x− η(∇fi) = (1− 2biη)x− aiη, (3.50)

with associated inverse function

ϕi(x)−1 =
x

(1− 2biη)
+

aiη

(1− 2biη)
. (3.51)

With these dynamics equations, we can now apply the Perron-Frobenious

operator to generalize equation 3.19 for our set of n dynamics equations. Remember

that we are selecting each possible ϕi(x) with equal probability p = 1
n
. If we say that

the invariant measure is the function ρn(x) such that ρn+1(x) = ρn(x) = ρ(x), then

we get the following equation

ρ(x) =
n∑
i=0

pi
ρ(ϕi(x)−1)

|1− 2biη|
=

n∑
i=0

pi
ρ
(

x
(1−2biη)

+ aiη
(1−2biη)

)
|1− 2biη|

. (3.52)

54



For ease of notation, let us define the following constants

γi =
1

(1− 2biη)
, δi =

aiη

(1− 2biη)
= aiηγi, (3.53)

which simplifies our summation to

ρ(x) =
n∑
i=0

pi|γi|ρ(γix+ δi). (3.54)

Multiplying both sides of the equation by x and integrating from −∞ to ∞ we

get

∫ ∞
−∞

xρ(x)dx =
n∑
i=0

∫ ∞
−∞

pi|γi|xρ(γix+ δi)dx. (3.55)

∫∞
−∞ xρ(x)dx = E(ρ(x)) by definition. We will say that µ = E(ρ(x)) for

simplicity purposes.

Note that because we are working with finitely sized sums, we can confidently

switch the summation and the integral. We now perform the “greatest trick in

mathematics” and multiply each term by γi
γi

and add δi − δi to get the following

equation.

µ =
n∑
i=0

pi|γi|
γi

∫ ∞
−∞

(γix+ δi − δi)ρ(γix+ δi)dx. (3.56)

We can now perform some algebraic manipulations to get these integrals into

some easily integrable forms.
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µ =
n∑
i=0

pi|γi|
γi

∫ ∞
−∞

(γix+ δi − δi)ρ(γix+ δi)dx

µ =
n∑
i=0

pi|γi|
γi

∫ ∞
−∞

(γix+ δi)ρ(γix+ δi)dx−
n∑
i=0

pi|γi|δi
γi

∫ ∞
−∞

ρ(γix+ δi)dx

µ =
n∑
i=0

pi|γi|
γ2
i

µ−
n∑
i=0

pi|γi|δi
γi|γi|

=
n∑
i=0

pi|γi|
γ2
i

µ−
n∑
i=0

piδi
γi
.

(3.57)

We now can simply rearrange the equation to solve for µ, and replacing γi, δi

with their original values we find

µ = −
∑n

i=0
piδi
γi

1−
∑n

i=0
pi|γi|
γ2i

µ = −

∑n
i=0 pi

aiη

(1−2biη)
1

(1−2biη)

1−
∑n

i=0 pi
|γi|

(γi)
2

µ = − η
∑n

i=0 piai

1−
∑n

i=0 pi
sign γi

(γi)

(3.58)

Since we know that the weighted sum of
∑n

i=0 piai = 0, we can say that

µ = 0 (3.59)

Q.E.D.

This is quite surprising as it shows that our expected value, assuming we are

choosing in a uniform way, does not depend on our choice of step size η. So

for large step sizes of η we can estimate our parameter minima by taking the time

average of the values we have.
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CHAPTER 4

SGD ON DOUBLE WELL POLYNOMIAL

In this chapter we observe the effects of SGD dynamics on problems in which the

objective function that we are trying to minimize in non-convex. We offer several

different cases to show how depending on the splitting functions SGD can select

either a optimal but narrow minima or a sub-optimal but wide minima.

We begin by describing a motivating toy problem for the following section.

Residual sum of squares error, often denoted as RSS, is a standard way of quantifying

model error. Suppose we have some model that takes in k a data points x with each

x ∈ Rn with associated true output value y ∈ Rm, and performs some function f(x|β)

to predict the output y with a parameter vector β ∈ Rp. The RSS is defined as

RSS =
k∑
i=1

‖f(xi; β)− yi‖2 (4.1)

Suppose that we are working with a single parameter model β ∈ R, with each

input x ∈ R3 and output y ∈ R. We define our model function as follows

f(x; β) = x0 + x1β + x2β
2 (4.2)

which means that our associated RSS function is given as

RSS =
k∑
i=1

(xi,0 + xi,1β + xi,2β
2 − yi)2. (4.3)

Notice that when adding together all datapoints, our RSS function effectively

becomes
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RSS = aβ4 + bβ3 + cβ2 + dβ + e (4.4)

where a, b, c, d, e are constants related to the problem and the data. As such,

if one wanted to perform complete gradient descent in order to minimize this error

term, this would be the final minimized polynomial.

This example may appear a bit contrived, however it is a necessary exercise

as many practical problems in the field of Data Science are highly non-convex, so

analyzing how SGD approaches problems that do not have one single local minimizer

are greatly valuable. A good example of a practical non-convex problem is the Neural

Network toy problem provided in Section 1.2.3. In particular, in order to analyze the

regularizing effects of SGD, we how to observe how SGD selects between wide, shallow

minima compared to narrow, deep minima.

As such we will observe the results of the ODE models and steady states for

problems that have two local minima; we refer to the problems as ”Double Well”

problems. For simplicity, we restrict ourselves to double well polynomials. In general,

a double well polynomial p(x) where x ∈ R is of the form:

∫ x

0

β0t
k0(β1t+ α1)k1(β2t+ α2)k2q(t)dt. (4.5)

Where βj, αj, kj are constants and q(x) is a polynomial with no real roots. This

creates a polynomial with 3 critical points at −αj
βj

(provided α0 = 0), such that there

are two local minima provided β0 is chosen such that the leading coefficient is positive,

and k0 + k1 + k2 + deg(q) is odd.

4.1 Double Well with Comparable Depths

In this section we observe a particular case of the non-convex objective function in

which the two wells that we are trying to optimize have comparable depths between
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the two of them. As such there is not an extreme difference in which one well can be

thought of as incredibly better than the other. We take this objective function and

perform different splittings on it to observe what occurs in these scenarios.

Our first example of a double well function that we will study is one that does

not have any particularly extreme differences between the two wells, rather one is

deeper and narrower, but not significantly. We choose the function:

p(x) =

∫ x

0

20t

(
t+

1

2

)(
t− 1

2

)(
t2 − t+

3

5

)
dt (4.6)

which evaluates to

p(x) = 2F (x) =
10

3
x6 − 4x5 +

7

4
x4 +

5

3
x3 − 3

2
x2. (4.7)

Unlike the simple quadratic splitting, we now have a case in which there are 7

parameters that we can vary for our various splittings. For a 2 function splitting set

we can have an f1(x), f2(x) given as:

f1(x) = a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6

f2(x) = −a1x+

(
−3

2
− a2

)
x2 +

(
5

3
− a3

)
x3 +

(
7

4
− a4

)
x4

+ (−4− a5)x5 +

(
10

3
− a6

)
x6,

(4.8)

to which we also consider our choice in η as an additional seventh parameter.

Realistically we cannot consider every situation involving these parameter changes,

however we will observe several interesting splitting cases.

The first example that we consider is one derived by performing a splitting

f1(x), f2(x) in which both splitting functions have only one local minima and are

monotonic on each side. This means that at every iteration SGD will approach one
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specific well that does not depend on the parameter value ~x. We then also observe the

example that arises when we have one splitting function that is not convex and has

two local minima as well; this provides different behavior as now SGD can become

stuck in local minima while iterating.

Figure 4.1 Figures in which a double well is split between two functions that have

only one minima, with parameters [a1, . . . , a6] being [1,−.5, 1, 0, 0, 1] for various values

of η. For our larger values of η we only have one invariant measure which is very

non-smooth. This single steady state appears to select the shallower well with greater

probability, while the ODE approximations choose the narrower deep well. For smaller

values of η there is a split between the invariant measures, one per well, to which the

ODE approximations model the deeper well but ignore the state in the shallower well.
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Figure 4.2 Figures in which a double well is split between one function that has only

one minima, with parameters [a1, . . . , a6] being [−.5, 1.5, 0, 0,−.5, 1] for various values

of η. Interestingly, for larger values of η, both the true steady states and the ODE

approximations completely ignore the deep well. This is likely due to the fact that

if one reaches the minima of the single minima function, you are located inside the

shallow well portion of the double minima splitting function. For small enough values

of η we find that there is one invariant measure per well, with the ODE solutions

picking the shallower well.
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Figure 4.3 Figures in which the splitting functions are F (x)±x for various values of

η. From Theorem 1 we know that we will have infinite support on our ODE solutions,

even though this may not be the case for smaller η values steady states. Despite the

solution being very non-smooth, the ODE solutions seem to do an alright job at

approximating the true steady state solutions when there is one steady state. When

there are two steady states the ODE solutions pick the deeper well.
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CHAPTER 5

DISCUSSION AND FURTHER WORK

In this chapter we provide some insight into the work performed in this thesis

document, as well as providing several unanswered questions and tasks that could

provide interesting work in the future.

5.1 Effectiveness of ODE Approximations to Stationary Distributions

Through this thesis we have compared the solutions of the steady state ODEs to

the true invariant measures that we have computed through Ulam’s method. As

such we have observed that, while in the limit of η → 0 these approximations are

correct at predicting the behavior of SGD, for larger values of η the approximations

we calculated have a few noticeable issues. Here we collect a list of several problems

that arise when attempting to model the stationary probability distribution using the

Diffusion, Model, or Markov equation.

1. Steady state diffusion approximations converge slowly in the L1 norm, and even

slower in the L∞ norm. Visually, the diffusion approximations may not appear

close to the true invariant measures (even for moderate to small values of η).

2. Steady state diffusion approximations may provide solutions with infinite

support, even when the true invariant measure have finite support. Several

examples of this phenomenon can be found in the quadratic splitting case (see

§3.3.3).

3. It is possible for the steady state diffusion approximations to have a unique

solution, even when there are multiple invariant measures to the exact Markov

dynamics (see §4). This has the implication that the diffusion approximation
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(in cases when the function F (x) may be non-convex) may not hold for infinitely

long times (c.f. [12]) .

4. Steady State diffusion approximations will be continuous (and even smooth),

when the true invariant measure may not be (see §3.3.4).

As such, we believe that there are more areas that can be researched in the future

to help provide a better understanding of SGD and how it can be approximated using

continuous time models.

5.2 Future Questions to Answer

The first questions relevant to answer are direct questions related to the dynamics

of the invariant measure that are extensions of what was discussed in this thesis

document. We pose the following questions or problems for future work:

1. Do similar behavior of dynamics in the quadratic case appear when extending

to higher dimensional parameter vectors ~x?

2. How do the systems behave under more splittings?

3. Provide more examples of the double well and how the ODE models perform in

these problems.

4. What value of η provides the boundary between one and two invariant measures

in double well problems?

5. In which values of η does both wells in the double well become stable?

6. What is the behavior in the case when both splitting functions are non-convex?

7. How does a more extreme example of splittings behave in different cases?

8. Does the blue line in Fig. 3.2 represent the end of meaningful approximations

via PDE/ODEs?
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9. When there are multiple roots of D(x), how does that impact the ODE

approximations?

10. Does there exist a Lyapunov energy function for higher dimensional equations?

11. Does the O(η2) ODE approximations perform noticeably better for larger values

of η?

We hope that in the future these problems can provide interesting problems and

results for ourselves and any other future researchers.
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method for lasota–yorke maps with holes. SIAM Journal on Applied Dynamical
Systems, 13(2):1010–1032, 2014.

[7] Pratik Chaudhari, Adam Oberman, Stanley Osher, Stefano Soatto, and Guillaume
Carlier. Deep relaxation: partial differential equations for optimizing deep
neural networks. Research in the Mathematical Sciences, 5(3):1–30, 2018.

[8] Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs
variational inference, converges to limit cycles for deep networks. In 2018
Information Theory and Applications Workshop (ITA), pages 1–10. IEEE,
2018.

[9] Jiu Ding, Tien Yien Li, and Aihui Zhou. Finite approximations of markov operators.
Journal of Computational and Applied Mathematics, 147(1):137–152, 2002.

[10] Zhiyan Ding and Qin Li. Langevin monte carlo: random coordinate descent and
variance reduction. arXiv preprint arXiv:2007.14209, 2020.

[11] Carlos Esteve, Borjan Geshkovski, Dario Pighin, and Enrique Zuazua. Large-time
asymptotics in deep learning. arXiv preprint arXiv:2008.02491, 2020.

[12] Y. Feng, T. Gao, L. Li, J.-G. Liu, and Y. Lu. Uniform-in-time weak error analysis for
stochastic gradient descent algorithms via diffusion approximation. Comm.
Math. Sci., 18:163–188, 2020.

66



[13] Y. Feng, L. Li, and J.-G. Liu. Semigroups of stochastic gradient descent and
online principle component analysis: properties and diffusion approximations.
Comm. Math. Sci., 16:777–789, 2018.

[14] Gary Froyland. Ulam’s method for random interval maps. Nonlinearity, 12(4):1029,
1999.

[15] Caroline Geiersbach and Winnifried Wollner. A stochastic gradient method with
mesh refinement for pde-constrained optimization under uncertainty. SIAM
Journal on Scientific Computing, 42(5):A2750–A2772, 2020.

[16] Susanne Gerber, Simon Olsson, Frank Noé, and Illia Horenko. A scalable approach
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Sagun. On the heavy-tailed theory of stochastic gradient descent for deep
neural networks. arXiv preprint arXiv:1912.00018, 2019.

[42] Justin Sirignano and Konstantinos Spiliopoulos. Stochastic gradient descent in
continuous time: A central limit theorem. Stochastic Systems, 10(2):124–151,
2020.

[43] Gilbert Strang. Linear Algebra and Learning from Data. Wellesley - Cambridge Press,
Wellesley MA, 2019.

[44] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, Philadelphia
PA, 2000.

[45] Yazhen Wang and Shang Wu. Asymptotic analysis via stochastic differential equations
of gradient descent algorithms in statistical and computational paradigms.
Journal of Machine Learning Research, 21(199):1–103, 2020.

[46] E Weinan, Chao Ma, and Lei Wu. Machine learning from a continuous viewpoint, i.
Science China Mathematics, 63(11):2233–2266, 2020.

[47] Lei Wu, Chao Ma, and Weinan E. How sgd selects the global minima in over-
parameterized learning: A dynamical stability perspective. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems,
pages 8289–8298, 2018.

[48] Xiaoxia Wu, Edgar Dobriban, Tongzheng Ren, Shanshan Wu, Zhiyuan Li, Suriya
Gunasekar, Rachel Ward, and Qiang Liu. Implicit regularization of normal-
ization methods. arXiv preprint arXiv:1911.07956, 2019.

[49] Xiaoxia Wu, Simon S Du, and Rachel Ward. Global convergence of adaptive
gradient methods for an over-parameterized neural network. arXiv preprint
arXiv:1902.07111, 2019.

[50] Yuege Xie, Xiaoxia Wu, and Rachel Ward. Linear convergence of adaptive stochastic
gradient descent. In International Conference on Artificial Intelligence and
Statistics, pages 1475–1485. PMLR, 2020.

[51] Yao Zhang, Andrew M Saxe, Madhu S Advani, and Alpha A Lee. Energy–entropy
competition and the effectiveness of stochastic gradient descent in machine
learning. Molecular Physics, 116(21-22):3214–3223, 2018.

69


	Stationary probability distributions of stochastic gradient descent and the success and failure of the diffusion approximation
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Analysis of SGD with Markov Chain Methods
	Chapter 3: Stochastic Gradient Descent for a Quadratic Objective Function
	Chapter 4: SGD on Double Well Polynomial
	Chapter 5: Discussion and Further Work
	Bibliography

	List of Tables
	List of Figures

