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A strategy is outlined to reduce the number of training points required to model intermolecular potentials using Gaussian
processes, without reducing accuracy. An asymptotic function is used at long range and the cross-over distance between
this model and the Gaussian process is learnt from the training data. Results are presented for different implementations
of this procedure, known as boundary optimisation, across the following dimer systems: CO-Ne, HF-Ne, HF-Na+,
CO2-Ne and (CO2)2. The technique reduces the number of training points, at fixed accuracy, by up to ∼ 49 %,
compared to our previous work based on a sequential learning technique. The approach is readily transferable to other
statistical methods of prediction or modelling problems.

I. INTRODUCTION

In any molecular simulation, approximations of the po-
tential energy surfaces (PESs) that describe the relevant in-
teractions are a pre-requisite. Traditionally, these approxi-
mations have been made using empirical potentials (force-
fields)1,2. However, such force-fields have closed functional
forms, which limit their capacity to capture the complicated
topography of the PES. Furthermore, they are laborious to
produce and may fail to capture accurately even the fitted data.
As the accuracy of the simulation depends on the potential
employed, much work has been devoted to developing force-
fields that provide approximations of PESs with quantum-
mechanical accuracy.

Such work includes methods to generate ab initio force
fields3 and attempts to ‘learn’ the potential via a machine
learning algorithm4,5. This article concerns the latter ap-
proach, which has also been applied in other fields in chem-
istry and materials science6–8. This approach proceeds by
training a statistical technique on a relatively small set of data
from ab initio calculations on the PES of interest, known
as the training set. Many such techniques have been em-
ployed to predict the energy in these algorithms, includ-
ing neural networks9–13, moment tensors14–16 and Gaussian
processes17–34 (GPs).

Herein, GPs are employed as the statistical technique.
An existing example of a force-field that uses GPs is
FFLUX35, which has been used to approximate the energies of
weakly bound complexes36 and water clusters37, among other
applications38–40. Furthermore, in the field of materials sci-
ence, GP models that invoke a smooth overlap of atomic po-
sitions (SOAP) kernel41 have seen successful applications to
many systems29–31,42–45.

GP models have also produced promising results in applica-
tions to intermolecular interactions17–19. Initially17, the train-
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ing sets for these models were constructed with Latin hyper-
cube sampling46–48 though sequential design strategies49,50,
which achieve a prescribed accuracy with a smaller training
set, have been shown to outperform such methods19. Re-
gardless of training set design, a fixed cross-over distance,
Rcross, was imposed prior to training. This parameter defines
a boundary beyond which a simple, long-range asymptotic
function takes over prediction from the GP17,19. A similar ap-
proach is used in materials science, in which the contribution
by one atom to the neighbour density of another is assumed
to be zero if the two are separated by a distance in excess
of Rcross

31,44. Cross-over distances have been applied along-
side other statistical methods of prediction too5,51, with neural
network9–12 and moment tensor15 models of PESs employing
fixed, pre-determined cross-over distances.

Use of a cross-over distance limits the portion of the PES
approximated by the statistical method to the region around
the potential well. Consequently, fewer training points are
required to develop an accurate model. Previously these dis-
tances were all fixed and specified a priori, however, they can
be learnt from the training data. Herein the work of Uteva et

al.17,19 is extended into a sequential design strategy in which
Rcross varies as a function of the number of training points and
the species of the interacting atoms. This produces models of
the same accuracy with fewer training points than the same de-
sign strategy with a fixed Rcross. The process by which Rcross
is optimised is referred to here as boundary optimisation.

A. GP Regression

All GP models herein make predictions via GP regression,
with detailed descriptions of GP regression theory available
elsewhere52–54. This section briefly introduces the key con-
cepts in the context of intermolecular potentials. For any inter-
molecular interaction the PES can be thought of as a multivari-
ate function f (x), x∈R

Z, where x is a vector of inputs and Z is
the number of elements in x. Here the inputs are inverse inter-
atomic separations, though promising results have also been
obtained with Morse variables24,55. Only pair intermolecular
interactions are considered, although GP models have been
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applied successfully to non-additive interactions17,19,40 and
the methodology outlined here can be extended to such cases
straightforwardly.

When the outputs f (xi) = Yi are available at N values of i,
the set {xi,Yi}

N
i=1 forms the training set. Letting Y be a vector

of the observed energies from this set, GP regression can be
used to approximate the value of f (x) at a new point x∗ as

f (x∗) = KT
∗K−1Y, (1)

where K∗ is a vector of the covariances between x∗ and all xi,

K∗ =
[

k(x∗,x1) k(x∗,x2) · · · k(x∗,xN)
]

, (2)

and K is the positive-definite covariance matrix,

K =











k(x1,x1)+σ2
n k(x1,x2) · · · k(x1,xN)

k(x2,x1) k(x2,x2)+σ2
n · · · k(x2,xN)

...
...

. . .
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)+σ2
n











.

Here σ2
n is the Gaussian noise variance, which accounts for

the noise in the training data.
All entries in K are found by evaluating a covariance func-

tion, k(x,x′), where x and x′ are configurations from the train-
ing set. The same holds for K∗, only with one training config-
uration replaced by the new point x∗. A common example is
the squared exponential covariance function, for which

k(x,x′) = σ2
f

D

∏
d=1

exp
(

−
(xd − x′d)

2

2l2
d

)

. (3)

Here D is the total number of interatomic distances which
comprise unique atomic pairs, σ2

f is the signal variance, xd

and x′d are the inverse separations in x and x′ which contain
the dth atomic pair, and ld is the lengthscale for the interac-
tion between this pair of atoms. The hyperparameters of the
covariance function are σ2

n , σ2
f and the set of lengthscales, ld .

This covariance function can be modified to account for the
fact that two configurations can have equivalent energies due
to symmetry. The result is the symmetric squared exponen-
tial covariance function, ksym(x,x

′), investigated by Uteva et

al.17, which is used here. The set of all permutations of the
interatomic distances in x under which the energy surface is
unchanged is denoted as P, while p is a single permutation
within this set. Assuming that ld is invariant under interchange
of xd and x′d ,

ksym(x,x
′) = ∑

p∈P
k(px,x′), (4)

where k(x,x′) is the squared exponential covariance function
from equation 3. GPs also employ a mean function, which is
taken here to be zero everywhere.

To specify the hyperparameters of ksym(x,x
′) that produce

a model that achieves the best fit to the training data, the log of
the marginal likelihood function, log(L ), is maximised52,54

log(L ) =−
1
2

YTK−1Y−
1
2

log|K|−
N

2
log(2π). (5)

Equation 5 shows that this optimisation entails inversion of the
N x N covariance matrix. This incurs a sizable computational
cost, which translates to scaling of order O(N3) for hyperpa-
rameter optimisation56. Consequently, though they achieve
higher predictive accuracies than other statistical methods
when modelling PESs51,57,58, GPs require greater computa-
tional effort to train51. For prediction, meanwhile, K−1Y in
equation 1 needs to be calculated once only, and as a result the
cost scales linearly with N. Even so, molecular simulations
that employ a GP model for which N is large are more com-
putationally intensive than those that use a traditional force-
field.

These issues have led to attempts to minimise the training
set size required by a GP model to achieve a given error. For
two training strategies that achieve the same error, that which
does so with fewer training points is more computationally
efficient. Attempts to develop more computationally efficient
training strategies have involved active learning or sequential
design methods19,29,59, composite kernels24 and new sampling
methods27,60.

However, no attempt was made in these previous works
to increase training efficiency by learning the optimal cross-
over distance from the data used in training. Our boundary
optimisation approach has the potential to increase the gains
in efficiency from these prior methods further still with little
associated increase in computational time, provided a viable
long-range approximation is available. Such an improvement
is shown here, building upon the sequential design method of
Uteva et al.19.

B. Training Set Design

It was found by Uteva et al.17 that the predictive per-
formance of a GP for a PES is enhanced by using inverse
interatomic separations rather than non-inverse separations
to describe intermolecular configurations. This is because
ksym(x,x

′) is a stationary kernel (i.e. it relies only on the dis-
tance between the two configurations being compared), mean-
ing it assumes that the rate of change of the output (i.e. the
interaction energy) with the input (the interatomic distances)
is constant. This is not the case for a PES, where the energy
varies rapidly with separation in the short-range repulsive wall
but barely at all in the long-range asymptotic region. The r

→ r−1 conversion addresses this issue: for low r the rate of
change in r−1 is faster than in r, meaning the change in the
input more closely matches the change in the output under the
former; meanwhile, for large r, the rate of change in r−1 is far
smaller, as is that of the energy.

Previously, Latin hypercube (LHC) sampling, which is a
space-filling design, has been employed to build data sets
when modelling PESs with GPs17–19,61. The approach of
Uteva et al.17 entailed designing LHCs in inverse separations
over a range of angles that specified the symmetry-distinct
region17. The algorithm generates a large number of candi-
date LHCs and finds the minimum separation in each. The
LHC with the largest such separation is selected under what is
referred to here as the ‘maximin’ criterion. Quantum chemical
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calculations are undertaken on the selected LHC only. This
LHC is then subject to a high energy cut-off, Ecut, and any
configuration for which the interaction energy exceeds Ecut
is discarded from the LHC17. In addition, a geometric con-
straint of 8.5 Å was placed on all LHCs to ensure no config-
urations with minimum separations above this threshold were
included17. It was observed that at separations greater than
the geometric constraint the GP predictions tended towards a
small, non-zero constant17. As these predictions should tend
towards zero, a long-range function derived from the multi-
pole expansion62 was introduced to approximate energies at
large separations.

In a later work, Uteva et al.19 presented active and sequen-
tial learning approaches, in which the model of the PES is
progressively refined by adding new points to the GP. In this
approach, training and validation of the GP models involves
three data sets: a training, a reference and a test set. The train-
ing set is used in the GP regression. The reference set provides
a pool of configurations from which new training points can
be selected, while the test set determines the GP’s accuracy
against an independent data set.

One sequential design strategy presented by Uteva et al.19

is the highest error search. This approach selects new training
points based on the configuration in the reference set with the
largest GP prediction error. We adopt this approach herein.
However, Uteva et al.19 applied this strategy only at separa-
tions below the fixed, pre-determined cross-over distance19,
meaning no new training data could be added at separations
above Rcross.

The highest error search is best described as a sequential
design rather than an active learning63,64 method. This is be-
cause active learning methods are a subset of sequential de-
sign methods that compute the output corresponding to an in-
put only at the point it is added to the training set. This means,
in the context of modelling PESs, an active learning method
would use a reference set comprising configurations for which
the energies were not calculated. Active learning strategies
have, however, been successfully used to develop GP19,29,59,
moment tensor15 and neural network13 models of PESs, and
the methodology used here for boundary optimisation could
be altered for use with the two set method of Uteva et al.19,
which is an active learning method.

When using a sequential design method, meanwhile, the
energies in the reference and test sets are pre-computed us-
ing a relatively computationally inexpensive ab initio tech-
nique. Once a model with the requisite predictive accuracy is
obtained, the energies in the minimal training set can be re-
calculated using a more accurate, and costly, ab initio method
before use in applications. This process is known as transfer
learning65,66 and it allows a GP model of a PES to be produced
with the accuracy of a high-level ab initio technique with rela-
tively few computationally expensive calculations. For exam-
ple, MP267 energies have been upgraded to CCSD(T)68 ener-
gies for calculation of the CO2-CO second virial coefficient17.

TABLE I: The co-ordinates for the reference and test LHCs
for each system. Nref and Ntest are the number of points in the

reference and test sets respectively after application of the
high-energy cut-off, while the maximum number of training
points for models of each potential are given in the text. Also
shown is the minimum energy across the reference and test
sets, Emin, in Hartrees (Eh), though no attempt was made to
approximate the global minimum energy for any potential.

System Coordinate Range Nref Ntest Emin

CO-Ne r−1 0.01 to 0.67 Å
−1

1914 5718 -1.502 x 10−4

cos(θ ) -1 to 1

HF-Ne r−1 0.01 to 0.67 Å
−1

2148 6468 -2.633 x 10−4

cos(θ ) -1 to 1

HF-Na+ r−1 0.01 to 0.67 Å
−1

2760 8416 -2.518 x 10−2

cos(θ ) -1 to 1

CO2-Ne r−1 0.01 to 0.67 Å
−1

5057 5072 -2.895 x 10−3

cos(θ ) 0 to 1

r−1 0.01 to 0.67 Å
−1

(CO2)2 cos(θ1) 0 to 1 5810 5837 -1.975 x 10−3

cos(θ2) 0 to 1
φ 0 to 180o

II. METHODOLOGY

A. Overview

In previous applications of both LHC learning17 and se-
quential design methods19 a fixed value of the cross-over dis-
tance, Rcross, was determined a priori. Rather than fix Rcross
prior to training, however, it is possible to determine its op-
timal value from the reference data. This is boundary opti-
misation and is possible because a sequential design method
permits Rcross to be varied each time the GP is updated. Con-
sequently, the size of the region over which GP regression is
used for prediction will grow with the predictive accuracy of
the GP.

Boundary optimisation may lead to increased accuracy for
the following reason. When the number of training points,
NTP, is low the predictive accuracy of the long-range func-
tion at the outer edge of the potential well will exceed that of
the GP. Consequently, it is anticipated that allowing the long-
range function to approximate the energies of configurations
in this region at low NTP will increase the predictive accuracy
of the overall model and facilitate more efficient model devel-
opment.
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B. Data Set Generation
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FIG. 1: The calculated energies in the reference set (red) and
the test set (black) of the CO2-Ne potential for separations
between 2.85 Å and 4 Å. Both sets contain ∼ 5000 configura-
tions (see table I).

Both the reference and test sets for each chemical system
were generated under the LHC design strategy discussed in
I B. All energies were calculated in Molpro69 using MP2 with
an aug-cc-pVTZ basis set and the counterpoise correction
with the only exception being HF-Na+, which used an aug-
cc-pwCVTZ basis set instead. The specifications of the LHCs
for each system are given in table I. Therein r is the distance
between the bond centres (not centres of mass), θ is the angle
between r and the bond axis of the molecule, θ1 and θ2 are
the angles between r and the bond axis of the first and second
CO2 molecules respectively, and φ is the torsional angle be-
tween the two CO2 molecules. The molecules were kept rigid,
with rCO = 1.1283 Å for CO, rCO = 1.1632 Å for CO2 and
rHF = 0.9170 Å. However, boundary optimisation could be
applied to non-rigid systems straightforwardly, with the only
additional requirement being generalisation of the long-range
function to non-rigid molecules. A larger geometric constraint
of 100 Å (instead of 8.5 Å17) was employed to probe the long
range behaviour of the system. The maximum value of NTP
was 100 for all systems apart from (CO2)2, which used 300
training points at most.

A high energy cut-off, Ecut, was applied to the reference
and test sets to remove configurations with interaction ener-
gies which exceeded its value. Ecut = 0.005 Eh for all sys-
tems apart from HF-Na+, for which Ecut = 0.05 Eh because
the charge-dipole interaction increases the well-depth. (1 Eh
≈ 27.211 eV ≈ 2625.5 kJ mol−1.)

For systems with Ntest ≫ Nref the independence of the test
set is self-evident. However, for systems where Ntest ≈ Nref
it is also true that the test set is independent. This follows
because, although the reference and test sets for each system
were designed using the same ‘maximin’ strategy, the stochas-
tic nature of the LHC algorithm means that separate LHCs
contain completely independent sets of configurations. Fur-

TABLE II: The properties included in the multipolar
long-range functions of each system, as well as the ab initio

methods used in their calculation. All calculations were
carried out using an aug-cc-pVQZ basis set apart from those
for the dispersion coefficients, which used an aug-cc-pVTZ

basis set.

System Dipole Quadrupole Polarizability Dispersion
CO-Ne X X X X

HF-Ne X X X X

HF-Na+ X X X X

Level of Theory MRCI71,72 MRCI MP2 CCSD

thermore, the ‘maximin’ criterion is based on just one separa-
tion in the whole data set, meaning that two LHCs with similar
maximin will still be dissimilar. This is demonstrated in figure
1, which shows the energies against the inverse C-Ne separa-
tion for the reference and test sets used in training models of
the CO2-Ne potential.

C. Long-range asymptotic functions

For the long-range energy model, multipole series were em-
ployed for all systems apart from HF-Na+. The contributions
included in the multipolar long-range functions are shown in
table II for each system apart from CO2-Ne, for which the
function is already described in previous work17, and (CO2)2.
The latter was developed prior to the other multipolar long-
range functions and uses atomistic charge, dipole, quadrupole
and polarizability contributions from Hartree-Fock70 theory,
which were scaled to give the known total molecular prop-
erties. For HF-Na+ a fitted long-range function was used,
which was derived by fitting a sum of two power laws between
two points where the energy was predicted by GP regression.
More information on the motivation for and derivation of this
function is found in appendix A.

D. Classification of Phase Space using a Boundary

When modelling PESs using GPs it is often necessary to
classify configurations as suitable for prediction via the GP or
via a long-range asymptotic function. In the work of Uteva
et al.17,19 the classifier formed a boundary from the superpo-
sition of atom-centred spheres defined by a single constant,
Rcross. Specifically, if any interatomic distance was less than
Rcross the GP was used. As Rcross was fixed, this classifier is
referred to here as Cfixed. Denoting the region in which GP re-
gression was used for prediction as AGP and the region which
employed the long-range function as ALR, under Cfixed these
regions were

AGP = {r : min(r)≤ Rcross} (6)

and

ALR = {r : min(r)> Rcross}, (7)
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where r is a set of intermolecular atom-atom distances, and
min(r) is the smallest separation in r.

In boundary optimisation, Rcross varies according to the GP
accuracy. Thus Rcross is not constant but a model parameter,
which is learnt from the reference data. As this classifier is
still parameterised by a single value, Rcross, it is referred to
here as Csingle.

More elaborate classifiers are possible by using more de-
tailed parametric forms to define the boundary region. A sim-
ple way of defining a more complex classifier is for the value
of Rcross to depend on the atom types that comprise the inter-
atomic distance. The resulting classifier is referred to here as
Cmulti. For a system of molecules with D interatomic pairs of
chemically different atoms, using Cmulti requires the vector of
cross-over distances Rcross = (R1, ...,Rd , ...,RD). This defines
a multiple-parameter boundary region, as follows,

Cmulti(r) =

{

AGP, if mind(r)≤ Rd for any d

ALR, if mind(r)> Rd for all d,
(8)

where mind(r) is the minimum separation in r that involves an
atomic pair of type d.

The optimum value of the classifier parameters are deter-
mined by minimising the error between the model and the ref-
erence set (i.e. by minimising the training error), meaning the
sizes of AGP and ALR vary with the GP. The sum of squared
errors, SSEtot, over the two regions is

SSEtot = SSEGP +SSELR, (9)

where

SSEmethod =
Nmethod

∑
i=1

(Ŷi −Yi)
2
. (10)

Here, "method" denotes either GP or LR, Nmethod the number
of points in Amethod, Ŷi the prediction of the energy for the ith
configuration from the desired method and Yi the calculated
energy of the same configuration. The RMSE against the test
set, RMSEtest, is given by

RMSEtest =
(SSEtest

Ntest

)
1
2
, (11)

where SSEtest is SSEtot over the test set and Ntest is the number
of configurations in the test set. RMSEtest is therefore a func-
tion of Rcross with discrete steps, as the RMSE changes only
when a change in Rcross causes a configuration in the test set to
be re-classified. Both Csingle and Cmulti are simple, parametric
classifiers that pre-impose a mathematical form on the classi-
fication. Hence, neither is expected to be optimal with respect
to the RMSE against the reference or test sets. That is, a more
complicated boundary than that described by these classifiers
will likely produce a lower RMSE against a given data set.
However, it is shown later that an artificial ‘ideal’ classifier
produces only very marginal improvements over Cmulti, sug-
gesting this classifier provides a very good balance of simplic-
ity and accuracy.

E. Overall algorithm

Using the data and calculation methods above, the algo-
rithm generates a GP model sequentially as follows: train the
GP to the current training set; select the classifier parameters
by minimising the RMSE against the reference set; move a
new point from the reference to the training set based on the
largest error. Below are further details of each step, along with
how the choice of classifier and placement strategy affects the
algorithm.

1. GP training

All GPs described herein were trained using the GPy73

package in Python 2.7. Optimisation of the hyperparameters
was carried out by maximising log(L ) using 20 independent
restarts whenever a configuration was added to the training
set. Moreover, a gamma distribution with an expectation of
one and a variance of two was used as a prior on all hyper-
parameters for all systems. This was to weakly penalise large
hyperparameter values, given that the expected values are typ-
ically of order 0.1 or below.

2. Direct Search Algorithm

When using Csingle, Rcross can be optimised via a direct
search that exploits how the RMSE varies as a piecewise con-
stant function of Rcross. Because of this feature, all possible
values of SSEtot (and hence the RMSE) can be computed read-
ily against the reference set. A direct search of these values
is guaranteed to find the global minimum. Full details of the
direct search are given in algorithm 1.

Algorithm 1 Direct Search Algorithm

1: Compute the squared errors for the GP and long-range function
and min(r) at each configuration in the reference set.

2: Order the configurations from smallest to largest in terms of
min(r).

3: Approximate SSEtot initially from the squared errors of the long-
range function alone.

4: Iterate through the min(r) from the lowest to the highest:
a: set Rcross = min(r), which moves a single configuration from
ALR to AGP;
b: update SSEtot by deducting the squared long range error of
the moved point from SSELR and adding its squared GP error to
SSEGP;
c: store the new SSEtot.

5: Select whichever value of Rcross corresponds to the smallest
value of SSEtot.

The direct search algorithm is computationally cheap for
the following reasons. Each instance of the direct search re-
quires only a single set of predictions from each of the long
range function and GP regression. As the long range function
is fixed throughout the sequential design process, these pre-
dictions need only be calculated once at the start. The GP pre-
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dictions need to be re-calculated whenever the GP is updated,
which occurs once per step of the sequential design. However,
these predictions are already required by a sequential design
step when choosing the new training point. Furthermore, cal-
culation of all possible squared error values (step 4) is cheap
because calculating each value in order requires only a simple
update of SSELR and SSEGP. Consequently, the direct search
is fast compared to the other steps of the sequential design al-
gorithm and can therefore be undertaken at each design step
with negligible additional computational effort.

3. Orthogonal direct search algorithm

An adaption of the direct search algorithm is required for
Cmulti, as this requires a multidimensional optimisation of
multiple classifier parameters. This is called the orthogonal
direct search as it optimises one element of Rcross while keep-
ing the others fixed. The single element that varies is opti-
mised using the direct search algorithm, as this is guaranteed
to return the best minimum along that 1D slice of Rcross. Al-
though orthogonal optimisations can be time-consuming, the
speed of the one-dimensional direct search means that repeat-
ing it multiple times for all cross-over distances is feasible.

Algorithm 2 Orthogonal Direct Search Algorithm

1: Choose limits NImax and NRmax on the number of iterations and
restarts respectively (see the text for details).

2: Assemble the array of minimum distances M, as follows:
a: For every configuration, collect all interatomic distances
which comprise the same atoms types into group d and find
mind(r) for each d.
b: Arrange the lists of mind(r) values in an N x D array, M,
where N is the number of configurations in the data set and D is
the number of unique atomic pairs in r.
c: For each column in M, order the values from smallest to
largest to produce an ordered list in each column.

3: For each restart, select a row from M at random to be the initial
guess at Rcross.

4: For each d in turn, fix all cross-over distances apart from Rd and
find the optimal value of Rd using a direct search.

5: Repeat step 4 until NI = NImax or the elements of Rcross remain
unchanged; save this Rcross and its corresponding SSEtot.

6: Repeat steps 3-5 until NR = NRmax.
7: Select the Rcross that corresponds to the lowest value of SSEtot.

The orthogonal direct search proceeds via algorithm 2. As
in the one-dimensional direct search, the square errors of the
long-range and GP predictions at each configuration are pre-
computed for this algorithm. The orthogonal search algorithm
is not guaranteed to find the global minimum, as local min-
ima may exist in the RMSE landscape. Hence, NRmax restarts
are performed with randomly selected starting points. Each
restart involves NImax optimisations of each Rd . Here NImax
= 15 and NRmax = 5 for all systems. If the values in Rcross
converge such that further one-dimensional searches in any
orthogonal direction do not change its elements prior to NI =
NImax, Rcross is saved and the next restart undertaken. In fact,
it was rare that NI reached NImax for any of the systems ex-

plored here. Moreover, despite the low NRmax employed, the
same minimum was usually found across multiple restarts.

The direct search offers a method that is at once very fast,
designed for the discrete-stepped surface and perfect in a sin-
gle dimension. This latter property means it skips over any lo-
cal minima in a given orthogonal direction. As such, optimal
cross-over distances are obtained quickly and reproducibly
under this method. Typically, about 80 % of random restarts
return the same set of cross-over distances for a given system
and a given training set.

4. Training Point Placement Methods

Once the classifier parameters are optimized, the PES
model is specified and the next training point determined from
the highest error method. The point with the greatest error can
be selected either from AGP alone or from the union of AGP
and ALR. Using AGP alone is referred to as the constrained
placement method, which proceeds via algorithm 3. Steps
2-5 of this algorithm comprise a stage of training, with the
RMSEtest also calculated at each such stage.

Algorithm 3 Constrained Placement Algorithm

1: Select the configuration in the reference set with the highest en-
ergy; add this configuration to the training set and remove it from
the reference set.

2: Retrain the GP to the updated training set.
3: Determine the boundary that minimises the RMSE against the

reference set (see subsection II E 2).
4: Find the configuration in AGP for which the GP error is highest,

where AGP is defined by the boundary from the previous step.
5: Add this configuration to the training set and remove it from the

reference set.
6: Repeat steps 2-5 until the desired RMSE or number of training

points is reached.

Choosing new points from the union of AGP and ALR is
named the open placement method. This proceeded identi-
cally to the constrained placement method (algorithm 3) ex-
cept the highest error point was from either AGP or ALR.
In each region this point is found using the corresponding
method of prediction (i.e. the error of the long-range function
was used in ALR).

Models were trained under both point placement methods
because each held potential advantages over the other. The
constrained placement method ensures all training points are
added in the GP region and so are of immediate use in pre-
diction. Meanwhile, the open placement method is capable
of immediately placing points in regions of the PES where the
long-range function performed poorly, potentially transferring
these regions to AGP more rapidly than under the constrained
placement approach.
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5. Closest Model Training Strategy

In the present work, all training strategies used are combi-
nations of a classifier and a point placement method. A further
strategy, which is intended for comparison only, is the clos-
est model training strategy. This employs the open placement
method to select training points and classifies a configuration
using Coptimal, where

Coptimal(r) =

{

AGP, if SEGP ≤ SELR

ALR, otherwise
. (12)

Here, SEmethod is the squared error in the prediction from
"method" at r. Coptimal is so named because it classifies a con-
figuration based on whether GP regression or the long-range
function best approximate its energy.

Equation 12 shows that Coptimal employs no boundary and
so requires prior knowledge of the energy of a configuration in
order to classify it. Consequently, models obtained from the
closest model strategy are unsuitable for prediction. However,
this method represents an ‘ideal’ classifier that is guaranteed
to find the optimal RMSEtest for a given GP model. Hence
Coptimal is useful for estimating how inaccuracies in the para-
metric classifiers affect the training efficiency. If models from
Coptimal significantly outperform the other classifiers, this sug-
gests the other classifiers are too simple to properly approxi-
mate the true boundary.

There are circumstances where Coptimal may not give an op-
timal RMSE against the test set. There may be short-range
hypersurfaces where the interaction energy is predicted near-
exactly by the long-range function due to chance. Points in the
reference set that are near these hypersurfaces will be classi-
fied by Coptimal as part of ALR instead of AGP. If the configu-
ration density of the reference set around such a hypersurface
is insufficiently high, no training points will be added in its
vicinity. Consequently, points in the test set near to the hyper-
surface will be inadequately approximated by either method
of prediction; the GP will perform poorly due to a lack of
nearby training points and the long-range function will be in-
accurate for short-range points that are not extremely close to
the hypersurface. This problem was avoided by using dense
reference sets and by not using the constrained placement
strategy with Coptimal.

6. Combining Classifiers and Placement Strategies

The sequential design method, or training strategy, requires
a choice of classifier and placement strategy. The combina-
tions of these examined in this work are given in table III.
Methods that do not involve Coptimal can make predictions and
so are suitable for applications. The method involving Coptimal
can only classify points if the true energy is already known,
and so is only useful to estimate the loss in performance due
to inaccuracies in the parametric classifiers. The fixed bound-
ary method corresponds to the method of Uteva et al.19 and
is included to allow comparison with this prior method, on
which the new methods build. The method of Uteva et al.19

TABLE III: The classifier and training point placement
method for all training strategies examined here.

Training Strategy Classifier Point Placement Method
Single-Constrained Csingle Constrained Placement
Multi-Constrained Cmulti Constrained Placement

Single-Open Csingle Open Placement
Multi-Open Cmulti Open Placement

Closest Model Coptimal Open Placement
Fixed Boundary Cfixed Constrained Placement

3 4 5 6 7 8 9
RC−C / Å

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

En
er

gy
 / 
E
h

GP predictions
Long-range predictions
MP2 data

FIG. 2: The predictions of the GP (blue) and the long-range
function (red) for a slice through the PES of the (CO2)2
potential in which the two molecules are in a T-shaped
configuration. The cross-over distance for this model is
shown by the black line at 4.505 Å. Data points (black

circles) are independent of the GP training data.

was previously shown to significantly reduce the number of
training points compared to LHC design. It is demonstrated
below that these new boundary optimisation methods improve
further the already efficient methods of Uteva et al.19.

III. RESULTS AND DISCUSSION

Comparisons of the performances of the different training
strategies are made using the HF-Ne, HF-Na+, CO-Ne, CO2-
Ne and (CO2)2 potentials. These were selected as they pro-
vide a range of interaction types and well depths to test the
robustness of the new training strategies.

The number of training points is NTP, which in each sys-
tem was less than 10 % of the number of configurations in
the corresponding reference set (see table I and the related
text). Consequently, the training sets for the models discussed
are candidates for transfer learning because their small size
makes, for example, CCSD(T) calculations possible for the
whole training set. Boundary optimisation is anticipated to
improve training efficiency as, for small NTP, the long-range
function will outperform the GP at the outer edge of the poten-
tial well. This is illustrated in figure 2 for the (CO2)2 system,
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FIG. 3: Plot of RMSEtest / Eh against NTP on a log10 scale
for models of the HF-Ne PES trained via the

multi-constrained (circles) and fixed boundary (triangles)
training strategies. The blue circles and pink triangles are

points which were included in the fitting of the lines shown.

using a GP model trained under the single-constrained strat-
egy up to NTP = 21.

Figure 2 shows that the predictive accuracy of the long-
range function exceeds that of GP regression for configura-
tions with C-C separations above the cross-over distance. De-
spite this, in the fixed boundary method these configurations
would be predicted with the GP. This not only reduces overall
accuracy, but also means new training points must be placed
at long range to address this, when allowing the long-range
function to predict these energies would give adequate accu-
racy.

The impact of the above on training efficiency compared to
fixed boundary training is shown for HF-Ne in figure 3. For
Cmulti the RMSE falls faster with NTP compared to Cfixed, in-
dicating improved training efficiency. This improvement is
most pronounced when NTP is low and so RMSEtest is high.
This is expected because increasing the size of the training
set increases the size of the GP region, meaning Rcross in the
boundary-optimised strategies will approach the fixed value
of 8.5 Å. Consequently, the difference between the fixed
boundary and boundary-optimised models will close as NTP
increases. Equivalent plots to figure 3 for all training strate-
gies for all systems are found in the supplementary material.
The RMSE data are somewhat noisy. Possible causes of this
noise are minor variations in the hyperparameters upon re-
training, the discrete nature and stochastic design of the refer-
ence set and the low values of NTP meaning that addition of a
single point has a non-smooth effect on the RMSE. The new
methods herein have considerably lower noise than the prior
fixed boundary method.

To compare the efficiency gain over fixed boundary training
across all new strategies from subsections II E 5 and II E 6, a
metric, E, is used. This compares the NTP required by two
different strategies to achieve a given RMSEtest. When com-

TABLE IV: The equation of the lines of best fit for RMSEtest
of models from all training strategies for CO-Ne as power
laws in the number of training points, NTP. Also shown are

the R2 values of each fit on the data. All fits were over points
in the range 1 x 10−6 Eh ≤ RMSEtest ≤ 1 x 10−4 Eh.

Training Strategy Line of best fit to RMSEtest R2

Single-Constrained Placement 4.694N−3.842
TP 0.929

Multi-Constrained Placement 1.551N−3.647
TP 0.944

Single-Open Placement 2.901N−3.718
TP 0.921

Multi-Open Placement 3.113N−3.830
TP 0.958

Closest Model 0.865N−3.490
TP 0.944

Fixed Boundary 546.0N−5.069
TP 0.914

paring a new training strategy with fixed boundary training,

E(RMSEtest) =
NTP(RMSEtest)

NTP,fixed(RMSEtest)
x100%, (13)

where NTP and NTP,fixed are the numbers of training points re-
quired by the new strategy and fixed boundary training, re-
spectively. These quantities and E are shown as functions of
RMSEtest as they vary with its value.

For a given RMSEtest, the values of NTP and NTP,fixed are
determined from least squares fits of log10(RMSEtest) versus
log10(NTP), with examples of such fits shown in figure 3 for
the HF-Ne potential. Fits are made in the region where the
RMSE decays as a power law of NTP. For all systems this
corresponds to 1 x 10−6 Eh ≤ RMSEtext ≤ 1 x 10−4 Eh, apart
from HF-Na+ where the region is 1 x 10−5 Eh ≤ RMSEtext
≤ 1 x 10−3 Eh due to the larger high energy cut-off for this
potential. The fits provide continuous lines to interpolate to
any RMSEtest within the above range. This enables a compar-
ison of NTP between training strategies at fixed RMSEtest that
accounts for the somewhat noisy data. Moreover, this is the
range of errors in which the models are useful for applications
and the decrease in log(RMSEtest) with log(NTP) is linear.

The fitted equations for each training strategy for the CO-
Ne system are given in table IV as power laws in NTP. Equiv-
alent tables for all other systems are found in the supplemen-
tary material. As the data are noisy, these tables also show
the R2 value of each fit. In the case of CO-Ne, these evi-
dence the high quality of the fits. In fact, no fit from any
training strategy for any system achieves an R2 value lower
than 0.8907 (from the fixed boundary training strategy on the
HF-Na+ system). Furthermore, figure 3 and the correspond-
ing plots in the supplementary material show that the RMSE
data follow a straight line (in a log-log plot). This implies that
the R2 arises from scatter in the data rather than unsuitability
of the fitting function.

Re-arranging the equations in table IV provides expressions
for NTP in terms of RMSEtest for the CO-Ne potential. These
give E as a function of RMSEtest, via equation 13, for all new
training strategies herein. This was done for all other poten-
tials as well, with plots of E against RMSEtest for all training
strategies for each system given in figure 4.

As observed earlier, the training efficiency gains in figure 4
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FIG. 4: Plots of E against RMSEtest for all potentials are shown in parts (a) to (e). The potential referred to in each frame is
shown in the upper right corner.
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are more pronounced at high RMSEtest for all training strate-
gies across all systems. This suggests that boundary optimi-
sation is most effective when the training set is small, making
this technique ideal for applications where a computationally
cheap but less accurate potential is required. Nevertheless,
significant reductions in the number of training points are also
obtained in the RMSE range where PESs become useful for
first principles predictions. For example, a GP potential with
an RMSE of 3 x 10−4 eV per atom (1.1 x 10−5 Eh per atom)
was employed in a recent simulation of the thermal properties
of β -Ga2O3

31. Furthermore, Uteva et al. successfully deter-
mined the CO2-CO second virial coefficient using a GP PES
with an RMSE of 2.4 x 10−5 Eh

17. In this RMSE range the
boundary optimisation methods typically reduce the required
number of training points by 15-33% (see figure 4).

Generally, the closest model strategy generates the largest
efficiency gain, while the smallest improvement comes from
strategies involving Csingle. Efficiency gains only slightly be-
low those from the closest model strategy are achieved by the
strategies that use Cmulti. This hierarchy of improvement im-
plies that the choice of classifier, rather than point placement
strategy, is most important because strategies with the same
classifier perform more similarly than those with the same
point placement method. The closest model strategy is in-
cluded only to illustrate the total training efficiency gain pos-
sible from an ‘ideal’ classifier, and it is encouraging that the
best boundary optimisation methods are close to this ideal
case. Indeed, the difference in E between this ideal method
and the closest-performing Cmulti strategy never exceeds ∼ 3
% for any system. This implies that Cmulti captures the true
shape of the boundary region for the systems explored suffi-
ciently. Thus introducing a more detailed classifier would not
be worth the increased cost of evaluating the PES.

Cmulti always outperforms Csingle. However, for the CO2-
Ne potential (figure 4d), Cmulti also outperforms the closest
model strategy. This is because the long-range function is
nearly exact for a group of short-range configurations in the
reference set. This is shown in figure 5 by the thin ‘peninsula’
of points that are best estimated by the long range function
(in red) which encroaches deep into the GP region (in blue).
This ‘peninsula’ exists because the long-range function is of
higher energy than the MP2 data in some regions of the PES
and of lower energy in others, meaning there must be some
hypersurface in between where the two are equal. Prediction
for test configurations close to the ‘peninsula’ is problematic
under Coptimal unless the reference set is very dense in this re-
gion. This is because the exact predictions of the long-range
function on the ‘peninsula’ mean no training points are added
there, leading the closest model strategy to perform relatively
poorly for the CO2-Ne potential.

The total gain in training efficiency achieved by boundary
optimisation varies somewhat between systems. While the
best-performing training strategy for HF-Ne improved train-
ing efficiency by between 25-39 % (i.e. E = 61-75 %), for
(CO2)2 the gain was only 12-18 % (E = 82-88 %). The more
limited gains for (CO2)2 may be because the a priori choice of
Rcross = 8.5 Å, required for the fixed boundary method, is rea-
sonable for this system. Nevertheless, even for the (CO2)2 po-

0 1 2 3 4 5 6 7 8
x / Å

0

1

2
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8

y 
/ Å

FIG. 5: Plot of the x and y coordinates of the Ne in the
CO2-Ne system for configurations in the reference set. The
CO2 molecule is aligned along the x-axis with the C at the

origin. Points are classified as GP points (blue) or asymptotic
points (red) by Coptimal using a model from the closest model

strategy trained up to NTP = 100.

tential, use of multi-constrained training confers an efficiency
gain of ∼ 18 % over fixed boundary training. This means that
for all of the potentials explored, use of a training strategy
that employs Cmulti confers a useful improvement over fixed
boundary training.

Boundary optimisation improves the training efficiency due
to more effective placement of training points. This is illus-
trated in figure 6, which shows, for HF-Ne, the differences
in training point placement for three training methods: fixed
boundary, single-constrained and closest model. While all
place most points at separations below 3 Å, indicating that the
repulsive wall is the hardest region to model, the placement
of points at larger separations diverges between methods. For
the first 20 training points few configurations are placed be-
yond 3 Å for the single-constrained and closest model strate-
gies. Thereafter, the distance at which training points are
added slowly increases, even for the closest model strategy,
which does not employ a boundary directly. In fact, single-
constrained training adds training points beyond 8 Å only after
∼ 90 training points have been placed and the closest model
strategy does not add any training points above 7 Å at all.

In contrast, the fixed boundary training method adds its
fifth training point at a minimum separation above 5 Å and
its eighth at 8.5 Å. This demonstrates that a fixed boundary
strategy switches between placing training points in the repul-
sive wall and at the boundary from the onset of training. This
difference is because fixed boundary training requires the GP
to predict energies at separations up to 8.5 Å from the start of
training. Consequently, training points must be added at sep-
arations near the 8.5 Å boundary from the onset, even though
the energies at these separations are very small and gener-
ally well-approximated by the long-range function. This con-
trasts with the boundary-optimised and closest model strate-
gies, which allow the long-range function to approximate con-
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FIG. 6: Plots showing training point placement for the first
100 training points for models of the HF-Ne PES trained

using the fixed boundary (a), single-constrained placement
(b) and closest model (c) strategies. These points are

coloured based on the shortest interatomic distance in the
configuration, with only this shortest distance shown for

each. Boundary values are represented by black lines where
applicable.
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FIG. 7: Plots showing training point placement for the first
100 training points for models of the CO-Ne PES trained

using the single-constrained placement (a) and single-open
placement (b) strategies. These points are coloured based on
the shortest interatomic distance in the configuration, with

only this shortest distance shown for each. Boundary values
are represented by black lines.

figurations at separations around 8.5 Å when the number of
training points is low. This produces more efficient model de-
velopment under boundary-optimised and closest model train-
ing because point placement can be focused on the short-range
region of the PES, where energy varies more rapidly with con-
figuration.

Training point plots for the CO-Ne potential, given in figure
7, show that the single-open strategy extends AGP much fur-
ther than single-constrained training. This suggests that the
capacity to place points in ALR facilitates faster expansion of
the boundary for this system. However, these plots also indi-
cate that this discrepancy is most noticeable when the number
of training points is large; specifically, rapid expansion of the
boundary under single-open training was instigated by place-
ment of a single training point at long range, which facilitated
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FIG. 8: Plot showing the values of Rcross achieved for the
first 100 training points by single-open and

single-constrained training for models of the CO2-Ne
potential.

the increase in Rcross to 63.0 Å. Prior to this, the cross-over
value from single-open training was quite similar to that from
single-constrained training (both were ∼ 17 Å). Hence the
two training strategies differ significantly only when the pre-
dictions from GP regression are already highly accurate, as at
this stage the predictions of the long-range function are poor
enough by comparison to merit placement of a training point
at long-range. The other systems also show close similarity
between the cross-over distance for the single-constrained and
single-open strategies, with equivalent plots to figure 8 found
in the supplementary material. Also, Figure 8 shows that for
the CO2-Ne potential the values of Rcross from the two strate-
gies are similar throughout training. Such a trend suggests that
the choice of point placement strategy does not significantly
change the value of Rcross, implying once more that the choice
of classifier is of greater import.

Similarities in the evolution of the boundary are seen when
the cross-over distances achieved under Cmulti and Csingle are
compared for a given point placement method. Figure 9 shows
the results of such a comparison for the HF-Na+ and CO2-Ne
systems. The cross-over distances generally grow at a similar
rate, but the value of Rcross is consistently larger than all val-
ues in Rcross. This suggests that there are differences between
Csingle and Cmulti, which manifest in both the training effi-
ciency and boundary placement. The larger GP region under
Csingle compared with Cmulti is explained by noting that both
are approximations of an ‘ideal’ classifier. When NTP is low
(i.e. one or two), such a classifier will attempt to make AGP as
small as possible because the training set comprises configu-
rations from the repulsive wall only. Consequently, given the
same training set, Csingle and Cmulti also try to minimise the
size of AGP. As Cmulti is more flexible its approximation of
the ‘ideal’ classifier will be closer than that of Csingle, mean-
ing AGP under Csingle will be initially larger. Other than the
repulsive wall, the largest errors tend to occur at separations
around the boundary. Thus, due to its larger AGP, a Csingle
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FIG. 9: Plots showing the value of Rcross and entries in Rcross
for the first 100 training points for models of the HF-Na+

potential from single/multi-open training (a) and the CO2-Ne
potential from single/multi-constrained training (b).

strategy will place its first long-range training point at a larger
separation than a Cmulti strategy. This facilitates faster expan-
sion of the boundary under Csingle than Cmulti regardless of
which point placement method is used.

Figure 9a shows that RH-Na+ < RF-Na+ throughout most of
training for the HF-Na+ potential, meaning that the interac-
tion involving the larger atom (F) obeys a larger cross-over
distance. Such ordering of the cross-over distances also ap-
plies to the HF-Ne system for most of training. Moreover,
figure 9b shows that the ordering of the cross-over distances
for the CO2-Ne potential is consistent, with RO-Ne < RC-Ne
throughout training. In fact, for the (CO2)2 and CO-Ne poten-
tials it holds generally throughout training that RO-O < RO-C <

RC-C and RO-Ne < RC-Ne respectively for both point placement
methods. This implies that the ordering of the cross-over dis-
tances under Cmulti is consistent between systems as well as
being physically reasonable.

Additionally, figures 6-9 show that the cross-over distance
increases with the size of the training set. This is expected
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FIG. 10: Plots showing the first 100 training points and
values of Rcross from two runs of single-open training (a) and

fixed boundary training (b) for models of the CO2-Ne
potential.

because a larger training set means the GP has more infor-
mation with which to infer the function describing the PES.
The resultant more accurate GP enables larger cross-over dis-
tance(s). This is the case for all training strategies across all
systems.

Boundary optimisation methods decrease the cost of using
PES, by reducing the number of training points and the size
of the GP region. Fewer training points means GP evalua-
tions are cheaper, as the GP cost is proportional to NTP. Addi-
tionally, the lower Rcross or Rcross of the boundary-optimised
model means that in any application the GP would be used
less often, in favour of the much cheaper asymptotic func-
tion. Hence boundary optimisation produces models that are
more efficient to implement in applications than fixed bound-
ary training, with no reduction in overall accuracy.

Boundary optimisation also increases the reproducibility of
training. That is, for two separate models from the same train-
ing strategy and reference set, the results will be more sim-

5 10 15 20 25 30
Separation / Å

0

50

100

150

200

250

300

Nu
m

be
r o

f T
ra

in
in

g 
Po

in
ts

Open Rcross

Constrained Rcross

Single-open TPs
Single-constrained TPs

FIG. 11: The first 300 training points and values of Rcross
from single-open and single-constrained training for the

(CO2)2 potential.

ilar for a boundary-optimised strategy compared to using a
fixed boundary. For example, when modelling the CO2-Ne
potential with single-open training the results from two sepa-
rate training runs were identical. This is shown in figure 10.
This is noteworthy because the values of the hyperparameters
selected when maximising log(L ) can vary slightly, even for
the same training set. Such variations can alter the predictions
of the GP, leading to different values for Rcross or Rcross and
the selection of different training points. Thus, that two sep-
arate runs of the same training strategy are totally identical is
encouraging.

Furthermore, figure 10 shows that for fixed boundary train-
ing separate runs were identical only up to NTP = 27. While
the exact reproducibility in figure 10a is not present for the
other potentials, there is generally significantly less difference
between independent runs of the boundary-optimised train-
ing methods than for fixed boundary training. For example,
models of the HF-Ne potential from single-constrained and
single-open training are reproducible up to NTP = 30 and NTP
= 41 respectively, compared with NTP = 16 for fixed boundary
training. Equivalent plots to figure 10 for this system under
these strategies are given in the supplementary material. This
reproducibility increase compared to fixed boundary training
does not transfer to the use of the Cmulti strategies, likely be-
cause a direct search is not as reproducible in multiple dimen-
sions as in a single dimension. However, from the R2 values
in table IV it can be seen that use of either Cmulti or Csingle re-
duces the scatter in the RMSEtest data relative to use of Cfixed,
as evidenced by the larger R2 values achieved when training
with the former two. This trend is repeated across all other po-
tentials examined here, which suggests that use of boundary
optimisation leads to more stability in selection of the hyper-
parameters and hence more consistent predictions.

For the (CO2)2 system, reproducibility is seen not just for
repeat runs of identical training strategies but between the
training strategies that use Csingle. This is illustrated in figure
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11, which shows that the single-constrained and single-open
training strategies choose identical training points until NTP =
210. Such an observation explains why the two methods have
identical E in figure 4e. This is because when NTP = 210 the
RMSEtest values for single-open and single-constrained place-
ment were 2.817 x 10−7 Eh and 2.784 x 10−7 Eh respectively.
Consequently the error was too low at this NTP to be included
in the fit, meaning the two strategies were identical over the
RMSEtest values used in fitting.

IV. CONCLUSION

It has been shown that boundary optimisation produces GP
PESs of the same accuracy using fewer training points than
fixing Rcross a priori. This improvement in efficiency is hier-
archical, with a boundary defined by a single, variable cross-
over distance offering a modest improvement and a boundary
defined by multiple such distances facilitating a further gain.

The results presented imply that the classifier is more
important to the training strategy than the point placement
method. In the RMSE range that is suitable for first principles
calculations (∼2 x 10−5 Eh) the boundary optimisation meth-
ods typically reduce the required number of training points
by 15-33% relative to a training strategy that is already es-
tablished as efficient19. Because of their reduced training set
size, the resulting boundary-optimised PESs are strong can-
didates for transfer learning, in which the existing ab initio

calculations are upgraded to a higher level of theory. Further-
more, as the size of the GP region increases with the size of
the training set, only as needed, the resulting GPs are also less
computationally intensive in applications than fixed boundary
methods, as they employ the GP over a smaller region of phase
space.

The classifier Cmulti, which uses different cross-over dis-
tances for difference atomic pairs, performed almost as well as
an ’ideal’ classifier. Across all systems, the largest difference
in performance between the closest model strategy, which
uses an ‘ideal’ classifier, and nearest boundary-optimised
strategy was ∼ 3 %. In all cases the best-performing
boundary-optimised strategy employed Cmulti, implying that
a classifier comprising of a spherical boundary with a unique
radius on each unique atomic pair, captures the true bound-
ary effectively. Further refinement of the classifier would not
result in a sufficient reduction in training points to justify the
extra classifier expense.

The cross-over distance(s) are learned from the reference
data under boundary optimisation using a direct search. This
is sufficiently fast to be used at every stage of training whether
one or many cross-over distances are employed and in the
multi-dimensional case returns cross-over distances in a phys-
ically reasonable order. Moreover, both direct search algo-
rithms can be used easily in conjunction with another machine
learning technique or on another chemical interaction. In
fact, a direct search can be applied to any problem whereby a
boundary is sought between a good method of approximation
in one region of phase space (the long-range function here)
and a machine learning technique in another. This means that

the methodology which underpins boundary optimisation is
both fast and flexible, in addition to being effective in solving
the problem of reducing the computational expense associated
with training a GP model of an intermolecular PES.

Physical systems in which the behaviour crosses over from
a simple asymptotic function to more complicated behaviour
are common in many fields. A prominent example is the tran-
sition from ideal to non-ideal gas behaviour. As the bound-
ary optimization techniques herein exploit this cross-over in
behaviour, there are many potential applications of this tech-
nique to physical problems beyond intermolecular potentials.

V. SUPPLEMENTARY MATERIAL

See supplementary material for more plots of results from
the explored systems.
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Appendix A: Derivation of an Empirical Long-range Function

HF-Na+ was the only intermolecular potential examined
above for which a multipolar long-range function was not
used. Instead a fitted, empirical long-range function was em-
ployed. Although determining an optimal long-range function
was not the goal of this work, one that was accurate enough
that all configurations were not rapidly transferred to the GP
region was needed for proof of concept. The multipolar long-
range function was unsuitable for this because of the discrep-
ancy between its predictions and the MP2 energies.
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FIG. 12: Plots of the predicted energies of the long-range
functions derived by the empirical method (red) and the
multipole method (green) for the HF-Na+ potential in a

linear configuration with the F proximal to the Na+ (i.e. with
cos(θ ) = 1). Also shown for comparison are MP2 energies

(blue) for this configuration.

Evidence of this is given in figure 12, which also highlights
the superiority of the predictions of the empirical long-range
function. The RMSEs of each method of prediction were sep-
arated by two orders of magnitude, with the empirical function
achieving an RMSE of 3.07 x 10−7 Eh versus 4.15 x 10−5 Eh
for the multipolar function against the MP2 data shown in the
figure.

Figure 12 evidences that the multipolar long-range func-
tion captured the power law of the interaction energy for this
system in this configuration, with the source of its error be-
ing that it was offset from the calculated energies. This off-
set was a product of the energies being calculated using MP2
while many of the properties used to derive the multipolar
long-range function were calculated at higher levels of the-
ory (see table II). In the other systems, the small magnitude
of the long-range energies meant that this disagreement was
negligible and the multipolar long-range function was usable.
However, in the case of HF-Na+, long-range energies with
larger magnitudes were commonplace due to the strong repul-
sive and attractive interactions between the H-F dipole and the
Na+ cation. This exacerbated the difference between the pre-
dictions of the multipolar long-range function and the MP2
energies.

To approximate accurately the long-range data without up-
grading the reference and test data to a higher level of theory,
a long-range function was produced by fitting directly to these
data. This was the empirical long-range function. Taking r to
be the distance between the centre of the H-F bond (not centre
of mass) and the Na+, this function estimated the energy, E,
as a sum of power laws,

E = Ar−2 +Br−3
. (A1)

In doing so, the empirical long-range function exploits that the
dominant powers of r in the HF-Na+ interaction are known to
be -2 and -3 but assumes that the coefficients of these terms
are unknown.

As the energy varies differently with r when θ changes, a
sum such as in equation A1 must be fitted for every configura-
tion in a given data set for which θ is unique. For a given θ the
coefficients in equation A1 can be found using simultaneous
equations, which are set up by following algorithm 4. In all
cases, rmin = 8.5 Å and rmax = 10.5 Å, though the power laws
which resulted were accurate up to 100 Å. Furthermore, both
GPs in the algorithm were trained on ∼ 300 training points
from a LHC design.

Algorithm 4 Coefficients for the Empirical Long-range Func-
tion

1: Train a GP, GPmin, on a range of θ values at separation r = rmin;
do the same for another GP, GPmax, at r = rmax.

2: For a given θ , predict Emin and Emax using GPmin and GPmax
respectively.

3: Set up simultaneous equations of the form shown in equation
A1: one with E = Emin and r = rmin, and another with E = Emax
and r = rmax.

4: Solve the equations from step three for the coefficients for the
current θ .

By repeating steps 2-4 in algorithm 4, a sum of power laws
was determined for every θ value in the reference set and test
sets. Fitting to the latter was possible as knowledge of the
energies in the set over which fitting was undertaken was un-
necessary. This was because the GP predictions were based on
their respective training sets, and r and θ were found from the
inverse interatomic separations at each configuration alone.

Deriving a long-range function from the predictions of two
GPs could be problematic if a transfer learning approach were
to be invoked as the data used to train these GPs would itself
need to be upgraded. For the HF-Na+ potential this would
not be an issue because increasing the quality of the training
data would increase the quality of the fit from the multipolar
long-range function.

However, when an empirical function is the only option
for modelling the long-range data, upgrading the data used
in training GPmin and GPmax would be of considerable com-
putational expense. This is because, currently, each comprise
∼ 300 configurations. Such an issue could be circumvented
by using a sequential design strategy to build minimal train-
ing sets for these GPs, which could then be upgraded instead.
Furthermore, the training sets used for GPmin and GPmax are
independent of that used to train a GP on the wider PES. Let-
ting the number of training points in the training sets of GPmin
and GPmax be Y and that in the training set of the other GP be
Z, the cost of short-range predictions in any simulation would
scale linearly with Z and the cost of any long-range predic-
tions would scale linearly with 2Y. Given that the training of
GPmin and GPmax take place at a fixed separations, it is likely
that 2Y < Z if all GPs were trained under a sequential design
strategy. This means that the predictions of the empirical long-
range function would not be the computational bottleneck and
that such a function is suitable for use in simulations. Finally,
the method is sufficiently flexible that the GP predictions can
easily be replaced by those of another statistical method.
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